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ABSTRACT

Acquisition and Mining of the Whole Mouse Brain Microstructure. (August 2009)

Jae-rock Kwon, B.S, Hanyang University, Seoul, Korea;

M.S., Hanyang University, Seoul, Korea

Co–Chairs of Advisory Committee: Dr. Yoonsuck Choe
Dr. Ricardo Gutierrez-Osuna

Charting out the complete brain microstructure of a mammalian species is a

grand challenge. Recent advances in serial sectioning microscopy such as the Knife-

Edge Scanning Microscopy (KESM), a high-throughput and high-resolution physical

sectioning technique, have the potential to finally address this challenge. Never-

theless, there still are several obstacles remaining to be overcome. First, many of

these serial sectioning microscopy methods are still experimental and are not fully

automated. Second, even when the full raw data have been obtained, morphological

reconstruction, visualization/editing, statistics gathering, connectivity inference, and

network analysis remain tough problems due to the unprecedented amounts of data.

I designed a general data acquisition and analysis framework to overcome these

challenges with a focus on data from the C57BL/6 mouse brain. Since there has been

no such complete microstructure data from any mammalian species, the sheer amount

of data can overwhelm researchers. To address the problems, I constructed a general

software framework for automated data acquisition and computational analysis of the

KESM data, and conducted two scientific case studies to discuss how the mouse brain

microstructure from the KESM can be utilized.

I expect the data, tools, and studies resulting from this dissertation research to

greatly contribute to computational neuroanatomy and computational neuroscience.
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CHAPTER I

INTRODUCTION

The brain may be the final frontier of science. Scientists may have much more knowl-

edge about the universe than their own brain as John Horgan, an American science

journalist, pointed out [1][2]. As brain science made great advances during the past

few decades, we have come to understand the brain much more than any other time

in human history. However, in spite of numerous significant findings, there still are

many mysteries of the brain that have yet to be solved.

In order to understand the function of the remarkably complex networks of neu-

ronal cells and vasculature, their elements and inter-connections should be investi-

gated [3]. However, the sheer structural complexity of the brain prevents us from

studying brain function through examining its large-scale structure. For example,

the human brain has approximately 1011 neurons and their possible connections are

estimated to be 1014 [4]. Besides, the total length of the vasculature in the human

brain is estimated as hundreds of miles and its surface area is more than 100 square

feet [5].

It is a tremendous challenge to understand brain function because elements and

interconnections of the brain networks should be fully investigated, given the sheer

number of elements and their connections [3].

A. Motivation

It is important to map out the anatomical structure underlying the topological con-

nectivity of microstructure of the brain, because the functional connectivity between

This thesis follows the style of Transactions on Neural Networks.
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the units in the brain heavily depends on the topology of the underlying their con-

nections [3]. However, previous microscopic studies have been limited by their small

sample size, and this prevented a global interpretation of the relationship between

functional principles and topological connectivity in the brain [6]. The data size can

become extremely large when the anatomical data is acquired in sub-micron level

from the whole mouse brain. The data generated can easily exceed tens of terabytes.

Moreover, the objects in the data have highly complex structures and they are also

densely packed. For these reasons, the investigation of the microanatomy of the brain

has been limited either to a small part of the brain such as parts of the cerebral

cortex, or in thick sections when the whole brain was investigated [7][8]. However, in

order to find the information processing mechanism in the brain, it is inevitable to

scrutinize the microstructure of the brain at the whole-brain level, and inspect the re-

lationship between them. According to models of large-scale cortical networks, basic

functions reside in scattered cortical areas, whereas complex and integrated functions

are processed simultaneously in widespread areas [9]. Therefore, if it is possible, ex-

ploring the entire brain seems to be the best way, toward a more precise and complete

understanding of the brain.

Even though recent advances in high resolution and high throughput imaging

technologies have the potential to get microstructure of the brain of larger animals,

acquiring the complete connection matrix of microstructure of a mammalian species

yet remains a grand challenge.

B. Approach

The ultimate goal of brain research is not only to figure out cellular structure but

also to relate function with structure. To figure out cellular level structure of the
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brain, we need to have high-resolution microscopy technologies. At the same time,

the microscopy techniques should be high-throughput because it is a prerequisite to

large scale analysis. A major reason large-scale analysis of the structure is needed

is that such structure gives us invaluable insights into the highly complex functional

organization of the brain. In this context, there have been efforts to acquire, store,

analyze, and visualize brain data, and much recent research has resulted in various

data sets [10][11][12][7]. However only few microscopy technologies exist today that

satisfy the conditions of high-resolution and high-throughput even though high reso-

lution and high throughput imaging technologies have advanced in recent years. The

main reason is that the two conditions are often hard to achieve at the same time.

Most imaging techniques currently being used in image acquisition have limitations

either in the speed of data acquisition or in the resulting resolution of the captured

images.

Therefore, the complete anatomical connections between the network elements of

the human brain are still mostly unexplored due to not just its massive volume but also

for ethical reasons [13]. Given these circumstances, the mouse brain serves as a viable

alternative, as a template for mammalian brains in neurobiological and behavioral

research [14][15][16][6][17]. It is small in size so that researchers can possibly get a

full set of brain sections; it is also relatively cheap and can be easily used without

serious ethical controversies [13]; and finally it has a relatively smooth cerebral cortex

[18], so that it can be easily imaged and explored. Despite many differences between

the mouse brain and the human brain, the genes of both organs are 90% identical

[19]. So, the mouse brain can be an invaluable tool to explore and investigate the

complexity of the human brain.

Knife Edge Scanning Microscopy (KESM), a high-throughput and high-resolution

three-dimensional imaging instrument, allows us to acquire microvascular and neu-
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ronal microstructure data from whole mouse brains. However, many problems had

existed in exploring the data sets.

To address these problems, I have developed new methods that can acquire

anatomical microstructure data sets in large scale using KESM, reconstruct mor-

phological structures from the data sets, and visualize raw and reconstructed data

sets in efficient ways. Contributions of this dissertation are as follows.

• Automation of our data acquisition system using modified KESM techniques

for larger data sets

• Image pre-processing techniques for reconstructing and visualizing large biolog-

ical volumetric data sets

• Data representation for efficient storage, retrieval, and annotation

• Automation of structural feature extraction using a fast tracing algorithm ad-

justed for parallel processing

• Integrated tools to manage raw data sets, process data sets, reconstruct mor-

phological structures from the raw data sets, and visualize both raw and recon-

structed structures from data sets

• Two neuroscience case studies to discuss possibilities of utilization of the data

sets and the software framework in testing neuroscience hypotheses

C. Outline of the Dissertation

The methods described in this dissertation are for imaging, processing, managing, and

analyzing the whole mouse brain (on the order of several cm3 at the sub-micron scale
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(0.3 µm - 1.0 µm). Here, I present an integrated software framework to effectively

acquire, manage, visualize, and analyze the mouse brain microstructure.

In this chapter, I described the motivation of my work and approaches that I used

to address research challenges. In Chapter II, I discuss background information of

my research including the brain microstructure, microscopy technologies, and the

Knife-Edge Scanning Microscopy (KESM).

Chapter III, IV, and V describe the data processing pipeline of KESM. In

particular, I focus on automation of the process with algorithms for data acquisition in

Chapter III. In Chapter IV, data processing frameworks and relevant algorithms

for the data sets are described. This includes an algorithm for fixing misaligned image

columns and a method for removing image noises. Chapter V explains an efficient

hierarchical data management method.

In Chapter VI, I briefly describe visualization methods. Also I will discuss a

data representation method for the traced fibrous data of densely packed and inter-

connected networks.

Chapter VII is devoted to the statistical data analysis. Here, I focus on mor-

phometry analysis for large amount of data sets.

In Chapter VIII, I explain an integrated software framework that helps us

acquire, manipulate, store, manage, visualize, and analyze the data sets.

Two theoretical studies in neuroscience is discussed in Chapter IX to examine

the possibility of utilizing of the data sets.

Chapter X summarizes this dissertation and discusses future directions of my

research. This dissertation concludes with Chapter XI.

The main topic of my work is to provide an efficient software framework to

acquire, process, manage, analyze, and visualize the data sets for KESM, a high-

throughput and high-resolution three-dimensional imaging instrument. Understand-
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ing microstructure in the brain is an important step in understanding its function. In

order to get precise and high-resolution (sub-cellular level) three-dimensional struc-

ture of the brain, we need to have a high-throughput image acquisition system. Au-

tomation is a key issue in the high-throughput microscopy techniques. By providing

an efficient software framework for organizing and analyzing the microstructures in

the brain, such as neurons, their supporting cells, and microvessels, I expect to con-

tribute to the furthering of our knowledge of the brain structure and function.

In the following, I will start by introducing general microscopy technologies.

Next, I will describe high-throughput and high-resolution data acquisition technolo-

gies, with a focus on Knife Edge Scanning Microscopy (KESM).
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CHAPTER II

BACKGROUND

Mapping out the precise interconnections of microstructure in the brain is crucial

to understand brain function because the functional connectivity between units in

the brain heavily depends on the morphology of the underlying neuronal connections

[3]. The microstructure includes not only neurons and their supporting cells but

also vasculature. In the brain, neurons are linked with endothelial cells of blood

vessel walls through glia cells. The close functional interaction led to a concept of

neurovascular unit [20][21].

The Brain Networks Lab (BNL), where I have been working, is conducting a sur-

vey of the three-dimensional microstructures across whole mammalian brains, specif-

ically that of the C57BL/6J mouse. Three tissue stains are used: (1) Nissl stain

allows us to plot the spatial distribution and morphology of all cell bodies; (2) Golgi

stain is used to see the morphology of randomly selected cells (approximately 1% of

neurons); and (3) India Ink stains vasculature.

A. Brain Microstructure

Blood flow in vasculature is typically well correlated with neural activity. Functional

hyperemia, a localized blood influx correlated with neural activity levels, is a good

example and it is the basis of functional magnetic resonance imaging (fMRI) where

Blood Oxygen Level-Dependent(BOLD) signals are measured [22]. The blood flow in

the brain can be considered as a proxy for neural activity and we can safely consider

that the blood flow changes as activity of neurons changes [23]. Therefore, the brain

microstructure, composed of neurons, microvessels, and their supporting cells [24],

collectively termed the neurovascular unit (Fig. 1) should be investigated to figure
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out brain function because their components dynamically interact and communicate

with each other to regulate cerebral blood flow or synaptic activity [24][25][23][22][26].

1. Connectome and Connectomics

Connectomics, a new field in neuroscience, has emerged to find out anatomical struc-

ture of neurons and their inter-connections [27][28][29][30]. The goal of connectomics

is to get the complete physical map of neural circuits (connectome [31][32]). As of

now, C. elegans is the only species of which we have the connectome. The nematode

is one of the simplest organisms with a nervous system. It has 302 neurons and 7,000

synapses and their connectivity patterns have been completely mapped out in the

mid-80s [33].

Connectomics will be driven by new technologies. The Blue Brain Project [34],

an ambitious attempt to reverse-engineer the mammalian brain, is an example of the

large-scale modeling and simulation. As completion of the first phase, the project

built a model of the basic functional unit of the brain, the neocortical column [35].

A main reason of large-scale analysis and modeling is that cognitive brain function

should be understood by figuring out inter-regional pathways. Furthermore, in order

to build a biologically accurate model of the brain, the first step is to inspect three

dimensional morphology [34]. Thus, high-resolution and high-throughput microscopes

are key prerequisites of revealing connectomes and recent microscopy technologies

offer significant advances in mapping out the connectome at cellular resolution.

2. Blood Vessels

Brain microvasculature has been shown to play an important role in neurological disor-

ders and neurodegenerative diseases including Alzheimer’s Disease, Multiple Sclerosis,

and Parkinson’s Disease [20]. Capillaries, the basic component of the microvascular
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Fig. 1. The Neurovascular Unit. This unit consists of neurons, microvessels, and their

supporting cells[24]. Astrocytes play an important role in communication be-

tween neurons and microvessels [25].
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system, perform important nutritional functions and may also affect the neural re-

sponse [22][36]. Thus, complete models of the vascular structure are important for

understanding brain function and dysfunction. However, very little is known about

the structure of microvascular networks. This is due both to their small size and to

their extraordinary complexity. Microvascular networks have several properties that

make them difficult to image and model. The capillaries are about 5µm in diameter,

requiring high-resolution imaging for reconstruction. Their connected components

are often stretched over several millimeters of tissue. Creating complete microvas-

cular network data sets requires imaging entire organs at a sub-cellular resolution.

Advanced imaging methods and segmentation techniques are required to cope with

these large and complex data sets.

In order to examine and analyze the microstructure of the whole mouse brain

tissue, first of all, a high-throughput and high-resolution data acquisition technique

is needed. In this chapter, I provide a brief overview of various imaging methods to

provide a proper context for the work I discuss in the remainder of the dissertation.

B. Microscopy Technologies

Confocal light microscopy [37] and multi-photon microscopy [38] are commonly used

to acquire high-resolution images. The basic idea of the confocal light microscopy

is to change the depth of focus (focal plane) and use a pinhole aperture to detect

photons emitting from the specified depth. This is called optical sectioning in which

actual sectioning does not take place. Each image can be considered as a thin slice

of a tissue block. By stacking up these images, we can build a three-dimensional

data set. However, there are limitations in such an optical sectioning method. First,

the images can be acquired only on or near the tissue surface because back-scattered
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light deteriorates the image contrast as scanning depth increases. Second, its scanning

resolution is limited by diffraction. Thus, the main limitation factor is the resolution

of the z direction (about 700 nm) [?]. Multi-photo microscopy improves the resolution

and the imaging depth limitation but this is a optical sectioning technique that suffers

from the z-axis resolution limitation. Slow imaging speed is also an issue for optical

sectioning techniques such as confocal or multi-photon microscopy. The data rate is

less than 8MB/s in [39] and 1 frames/s in [38].

These limits in optical microscopy can be solved by using electron microscopy

(EM). EM uses a beam of electrons instead of light and has a much greater resolution

than light microscopy. However, there are some limitations to EM as well. It requires

the use of heavy metal stains, but these stains cannot penetrate the tissue deeply.

This limitation prevents EM from being used for large tissue samples. Additionally

EM imaging takes much longer than light microscopy. The long imaging time could

be a practical limitation when it comes to dealing with massive volumes.

In order to overcome the scanning depth, serial physical sectioning techniques can

be considered as an alternative since z-axis resolution depends on the tissue thickness

(it can be up to about 30nm using a vibrating microtome). Also virtually no depth

limit exists because it physically sections a tissue block.

Here are recent advances in physical sectioning microscopy.

• All-optical Histology [40]

• Array Tomography [41]

• Serial Block Face Scanning Electron Microscopy [42]

• Automatic Tape-collecting Lathe UltraMicrotome [43]

• Knife-Edge Scanning Microscopy (KESM) [44][45][46][36]
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1. All-optical Histology

All-optical Histology (AOH) is an enhanced technique of multi-photon microscopy

for removing the depth limitation (Fig. 2). Standard optical sectioning is used for

imaging but, for deeper imaging, AOH ablates tissue sections using femtosecond laser

pulses. The main advantage of this hybrid optical microscopy is that it overcomes

the z axis limitation. However, the imaging speed is still slow due to the property of

multi-photon microscopy.

2. Array Tomography

Array Tomography (AT) uses an ultramicrotome to serially section tissue embedded in

acrylic resin (Fig. 3). A tissue specimen is cut into ribbons of ultrathin (50−200nm)

sections which are placed on a glass slide. The main advantage of this technique is

that the resulting tissue array can be repeatedly washed, stained, and imaged which

enables to use multiple fluorescent markers at a time. As an imaging method, array

tomography uses electron microscopy. It again, suffers from slow imaging speed.

3. Serial Block-face Scanning Electron Microscopy

Serial Block-face Scanning Electron Microscopy (SBF-SEM) images the block surface

after cutting off a tissue ribbon [42] at a resolution on the order of 10nm× 10nm×

50nm (Fig. 4). The main advantage of SBF-SEM is its high-resolution so that

cellular and subcellular structure can be imaged. However, the imaging time is almost

prohibitive when we need the high signal-to-noise ratio. For example, it can take up to

about one year to scan a 200µm cube at the above resolution. The size of the volume

can be problematic when we need to have large amount of data sets because the

volume size is limited to several hundred µm in SBF-SEM. Given these conditions,



13

Fig. 2. All-optical Histology (AOH). It shows the iterative process by which issue is

imaged and cut in AOH. (A) A tissue sample (left column) containing two

fluorescently labeled structures is imaged by conventional two-photon laser

scanning microscopy to collect optical sections through the ablated surface.

Sections are collected until scattering of the incident light reduces the signal–

to-noise ratio below a useful value; typically this occurs at 150 m in fixed tissue.

Labeled features in the resulting stack of optical sections are digitally recon-

structed (right column). (B) The top of the now-imaged region of the tissue

is cut away with amplified ultrashort laser pulses to expose a new surface for

imaging. The sample is again imaged down to a maximal depth, and the new

optical sections are added to the previously stored stack. (C) The process of

ablation and imaging is again repeated so that the structures of interest can

be fully sectioned and reconstructed (Adapted from [40]).
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Fig. 3. Schematic Representation Of The Array Tomography Method. A tissue spec-

imen is embedded in acrylic resin and cut into ribbons of serial ultrathin

(50 − 200nm) sections, which are then bonded to glass slides. The result-

ing array is labeled with fluorescent antibodies or other fluorescent stains and

imaged to generate ultra-high-resolution volumetric images. The array can be

repeatedly eluted, restained, and fluorescently imaged, and finally, it can also

be stained with heavy metals and imaged under a scanning electron micro-

scope. Insert illustrates the principle behind the axial resolution enhancement

by array tomography. Optical microscopes have their poorest resolution along

the optical axis, represented in the figure by z axis elongation of the 3D point

spread function. Optical sectioning (left) yields an image that is severely de-

graded by confusion along the z axis, a problem avoided in array tomography

by using ultrathin physical sectioning. (Adapted from [41]).



15

SBF-SEM is not a proper choice for large volumes of tissue due to its low image

acquisition rate.

4. Automatic Tape-collecting Lathe Ultramicrotome

Automatic Tape-collecting Lathe Ultramicrotome (ATLUM) is one of the latest de-

velopments in serial sectioning microscopy [43] (Fig. 5). ATLUM sections a tissue

block, collects a series of ribbons, and puts them on a long carbon-coated tape that

is cut into a section library. As the name of the technology implies, imaging is a

completely separate step. Images in the section library will be digitize only when

needed.

5. Knife-Edge Scanning Microscopy (KESM)

Knife-Edge Scanning Microscopy (KESM) is a high-throughput optical technique,

particularly for sectioning and imaging large tissue blocks at sub-micron level[44][45][46][36].

The operation principle of KESM is that cutting and imaging take place at the same

time using a diamond knife. Thin sections are cut from the specimen and imaged

using a high speed line scan camera. KESM is not constrained by the specimen thick-

ness since physical tissue ribbons are sectioned from the specimen, like other serial

sectioning techniques (Fig. 6).

Illumination is provided through the diamond knife using a high-intensity illu-

minator. Here, the diamond knife is used as both a microtome and an illumination

device. The light is passed through the tissue ribbon as the tissue block is being sec-

tioned (Fig. 7). KESM has lower resolution than EM since it is an optical technique,

but it allows us to acquire larger image volumes of tissue in a much faster rate. It

is capable of scanning a complete mouse brain (about 310mm3) at 300nm sampling

resolution within 100 hours when scanning in full production mode.
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Fig. 4. Serial Block-face Scanning Electron Microscopy (A) Principle of SBFSEM op-

eration: (1) a SEM image is taken of the surface of the plastic-embedded tissue

preparation (amber trapezoid). (2) Then with a diamond knife (blue) an ul-

trathin slice is cut off the top of the block. (3) After retraction of the knife, the

next picture is taken. The pictures shown are from an actual stack (cerebellar

cortex) but are not successive slices; rather, they are spaced by five images

(about 315nm) to make the changes more apparent. (B) Usually cut-off slices

pile up on the top of the knife. Protruding into the picture from the right is a

puffer pipette, occasionally used to remove debris from the knife. (C and D)

The mechanical design for the in-chamber microtome is shown in an overview

(C) and a close-up of knife and sample (D) in renderings from the comput-

er-aided design software. Most parts are nonmagnetic stainless steel (grey). A

large-motion leveraged piezo actuator (green part on the left) drives the knife

holder back and forth. The custom diamond knife (light blue) is clamped in

a special holder. The sample (amber) advance is driven via a lever by a di-

rect-current-motor-driven micrometer (dark blue). The retraction during the

backwards knife motion is again piezo actuated (green cylinder in the lower

right of [C]). Bearing springs are brown. The BSE detector (red) is depicted

schematically above the sample. Not shown is the lateral positioning mecha-

nism.. (Adapted from [42]).
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(a) (b)

Fig. 5. Automatic Tape-collecting Lathe Ultramicrotome (ATLUM). (a) ATLUM pro-

totype. (b) Overview of ATLUM operation. (Adapted from [47]).

I will describe more technical details of KESM in the following section.

6. Comparison of Physical Sectioning Microscopy

The resolution and the imaging speed of the methods that I described all differ.

Any one of methods can play a complementary role to the other methods. In other

words, each method has relative advantages and disadvantages to the other methods.

However, as Table I indicates, KESM shows relatively high-resolution as well as high-

throughput property.

C. Knife-Edge Scanning Microscopy (KESM)

KESM comprises four major subsystems: (1) precision positioning stage (Aerotech),

(2) microscope/knife assembly (Micro Star Technology), (3) image capture system

(Dalsa), and (4) cluster computer (Dell) (Fig. 6). The specimen, a whole mouse

brain, is embedded in a plastic block and mounted atop a three-axis precision stage.

A custom diamond knife, rigidly mounted to a massive granite bridge overhanging the
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(1)

(2) (3)

(4)

(5)

(6)

(7)

(9)

(10)

(8) (11)

Fig. 6. The Knife-Edge Scanning Microscope (KESM). Major components of the

KESM are marked: (1) high-speed line-scan camera, (2) microscope objective,

(3) diamond knife assembly, (4) specimen tank (for water immersion imaging),

(5) three-axis precision air-bearing stage, (6) microscope illuminator, (7) water

pump for removal of sectioned tissue ribbon, (8) precision stage controller (side

view), (9) granite base, (10) granite bridge, and (11) connection cable to PC

server for stage control and image acquisition.
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(a) (b)

Fig. 7. Tissue Sectioning And Imaging In KESM (a) A close-up of the parts 2, 3, and

4 in Fig. 6 is shown. To the left is the microscope objective, and to the right

the diamond knife and light collimator. Submerged under water in the center

is the plastic-embedded brain tissue held in a specimen ring. (b) The principal

of operation of KESM is illustrated. The objective and the knife is held in

place, while the specimen affixed on the positioning stage moves (white arrow

with solid line) and gets scraped against the diamond knife, generating a thin

section flowing over the knife. Line-scan imaging is done at the very tip of

the knife where the distortion is minimal. Illumination if provided through the

diamond knife (black arrow indicates the light path after reflecting the knife

tip). Adapted from [36].
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Table I. Comparison Of Physical Sectioning Microscopy

Method Resol.(x,y) Resol.(z) Volume Modality Time

All-opt. hist. 0.5µm 1µm 1cm3 FL* ∼ 900hrs

Array Tomo. ∼ 0.2µm 0.05− 0.21µm ∼ 1003µm3 FL*,

EM**

N/A

SBF-SEM ∼ 0.01µm ∼ 0.03µm ∼ 5003µm3 EM** N/A

ATLUM ∼ 0.01µm 0.05µm ∼ 2.153µm EM** N/A

KESM 0.3− 0.6µm 0.5− 1µm 1cm3 BF*** ∼ 100hrs

FL*: Fluorescence, EM**: Electron Microscopy, BF***: Bright field

three-axis stage, cuts consecutive thin serial sections from the block. Unlike block face

scanning, the KESM concurrently cuts and images (under water) the tissue ribbon

as it advances over the leading edge of the diamond knife. A white light source

illuminates the rear of the diamond knife, providing illumination at the leading edge

of the diamond knife with a strip of intense illumination reflected from the beveled

knife-edge, as illustrated in Fig. 7. Thus, the diamond knife performs two distinct

functions: as an optical prism in the collimation system, and as the tool for physically

cutting thin serial sections. The microscope objective, aligned perpendicular to the

top facet of the knife, sees a tissue ribbon through the transmitted light. A high-

sensitivity line-scan camera repeatedly samples the newly cut thin section at the

knife-edge, prior to subsequent major deformation of the tissue ribbon after imaging.

The imaged stripe is a 20µm-wide band locate at the bevel at the very tip of the

diamond knife, spanning the entire width of the knife. Finally, the digital video

signal is passed through image acquisition boards and stored for subsequent analysis

in a small dedicated computing server. The current server is a dual processor PC (3.2

GHz/2MB Cache, Xeon) with 6 GB of memory, built-in 1 TB storage, connected to an
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archival RAID attachment. The process of sectioning and imaging is fully automated

with minimal human intervention.

A quick calculation puts us in context, regarding the massiveness of the data

that KESM can produce. Consider the acquisition of volume data representing

a plastic-embedded mouse brain (15mm Anterior-Posterior, 12mm Medial-Lateral,

6mm Dorsal-Ventral). A 40X objective has a field of view (knife width) of 0.625mm.

Sixteen strips (each 0.625mm wide by 15mm long) are cut for each z-axis section

(like plowing a field). For a (z-axis) block height of 6mm, 12,000 sections must

be cut, each 0.5µm thick. The integrated tissue ribbon length (15mm/strip × 16

strips/section × 12,000 sections/mouse brain) is 2.9km. The tissue ribbon is line-

sampled at 300nm resolution, near the Nyquist rate for an ideal optical resolution

of (0.77)(532nm)=(0.80NA) = 512nm. Based on this, the total data size (assuming

one byte per voxel) comes out to 20 terabytes (TB) (at half the resolution in each

dimension, it would be about 2.5 TB). The tissue ribbon can be sampled at 11 mm/s

by line sampling at 44 kHz (180 MB/s), the camera maximum (Dalsa CT-F3-4096

pixels). Sampling the 2.9km tissue ribbon requires 265,000 s = 73 hours. Because

mice brains are not cubical, stage return takes time, etc., we add 50% overhead,

resulting in about 100 hours.

Figs. 8, 9, and 10 show typical data that can be obtained using the KESM

[36]. Nissl staining dyes the RNA in the cytoplasm of all neurons and the DNA in

cell bodies in all cells. However, the dendritic arbors and axons remain unstained.

Thus, Nissl staining allows us to reconstruct the distribution of all cell bodies in the

mouse brain, and in particular their distribution within the six layers of the cerebral

cortex (see Fig. 8 and 9). Golgi staining, in contrast, reveals the entire structure of

neurons, as it stains just 1% of the neurons in the tissue. Individual neurons can be

seen clearly, permitting reconstruction (see Fig. 10). India ink enables high-contrast
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Fig. 8. Coronal Section Of The Mouse Olfactory Bulb. The complete section is shown

(left) along with two close-up inserts (right). The tissue is stained with Nissl

along with perfusion of India ink through the vascular system. The optical

resolution of the image is 0.6µm/pixel and the section is 1µm thick. (Adapted

from [36].)
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Fig. 9. Nissl Data from KESM. Coronal section of mouse brain stem is shown with

part of the cerebellum visible to the bottom half. Close-up of the inserts are

shown to the right. The pixel resolution of the images is 0.6 µm/pixel with a

section thickness of 1 µm. (Adapted from [36].)
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Fig. 10. Golgi Data from KESM. the stack of images generated by KESM can be

viewed from the side of the stack (resectioning). A single resectioned plane

is shown at the top. Golgi stain results in sparse data so often times it is

easier to see familiar structures by overlaying multiple planes (middle). A

single neuron can be observed when approximately 300 planes are overlayed

(bottom). (Adapted from [36].)
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staining of the entire vascular network (see Fig. 8).

In this chapter, I reviewed neurovascular units as a basic structural building

block of the brain. We need to have high-throughput and high-resolution physical

sectioning technology to map a complete connection matrix of such microstructures

in the brain. This led me to introduce recent advances in microscopy technologies.

Especially, I focused on the KESM, a high-throughput and high-resolution physical

sectioning technology.

In the following, I will discuss a data acquisition method for the mouse brain

and its automation which is a crucial factor for achieving high-throughput.
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CHAPTER III

DATA ACQUISITION

Microstructure from the whole mouse brain requires very large image volumes of

tissue containing great detail. Considering the massive amount of the data sets, the

automation of sectioning and imaging is a crucial factor in acquiring the whole mouse

brain image.

In principle, since sectioning and imaging in KESM are performed simultane-

ously, the captured images are perfectly aligned along with the cutting axis. This

removes the need to carry out post processing which often uses complex and time-

consuming algorithms to align the acquired images. Therefore, the sectioning and

imaging of tissue through KESM can be done much faster than other exiting se-

rial sectioning techniques. However, in reality there are many obstacles in achieving

high-throughput imaging with KESM. One major bottleneck was the need for several

manual steps involved in the acquisition processes. For years, the users of KESM

had used generic commercial software to capture images with the custom built con-

troller application for the movement of the precision positioning stage. Due to the

limited inter-process communication capability of the commercial software, the user

was supposed to save several images manually when the frame buffer in the image

capture board was filled. Only after naming and saving the acquired images, the user

was able to continue to section the tissue for a while until the frame buffer was filled

again. These manual tasks were not a big problem when we sectioned and imaged

only few hundred slices from the tissue, even though it was time-consuming and te-

dious. However, it becomes almost infeasible to maintain such manual intervention

when we widen our exploration into the whole mouse brain which consists of hundreds

of thousand slices.
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MFC /User Interface

XCLIB UNIDEX 500 Library

OS Libraries

Image 
Capturer

Send/Receive 
Signals

Stage 
Controller

KESM Image Acquisition

Fig. 11. Diagram of Data Acquisition System. XCLIB is a library routine to control

camera actions. UNIDEX 500 library is for controlling the precision position-

ing system.

I have automated many of the manual tasks mentioned above to improve the

actual data acquisition rate. All the naming and saving processes have also been

fully automated by developing a custom image capture system rather than using a

generic commercial software package (see Fig. 11 to see the overview of the system).

A. KESM Image Acquisition System

KESM comprises four major components: (1) precision positioning system, (2) mi-

croscope/knife assembly, (3) imaging system, and (4) data server. One interesting

thing is that the moving part is not the knife but the specimen block mounted atop

a three-axis precision positioning stage. A custom diamond knife is firmly mounted

above the tissue block to a heavy granite stone in order not to vibrate when it digs

into the tissue block. The precision positioning stage is located on the side of a tissue

block slightly over the knife edge and moves it against the direction of the knife edge



28

KESM
Image Capture 

System
(KICS)

KESM
Stage Controller

(KSC)

KESM
Stair-Step Controller

(KSSC)

KESM Session Manager (KSM)

KESM Image Acquisition System 
(KIAS)

Raw Image Stacks Precision Positioning System

Fig. 12. KESM Image Acquisition System (KIAS) Components. KICS captures im-

ages accordingly with movements of the stage. The stage is controlled by KSC

with KSSC which is an implementation of the stair-step cutting algorithm.

KSM manages cutting sessions by saving and reloading all information of the

previous status of the stage enabling us to resume the task where it stopped.

to section and image the tissue. The movement of the precision positioning system is

controlled by a control software package, the KESM Stage Controller (KSC), which

is a part of the KESM Image Acquisition System (KIAS), both of which I have devel-

oped. KIAS mainly consists of KESM Image Capturer System (KICS), KSC, KESM

Stair-Step Controller (KSSC) and KESM Session Manager (KSM). Fig. 12 shows an

overview of these components and their relations.

In KESM, the high speed line scan camera images a newly-cut thin tissue ribbon.
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The line images are accumulated in two image capture boards until the tissue ribbon

is scanned for the entire length. The accumulated line images become a single image

in the frame buffers inside the two capture boards and then the image is saved to the

data server [46]. The process of capturing and storing images is managed by an image

capture software package, the KICS. Stage movement along the x-axis controlled by

the precision positioning system triggers KICS to start or stop capturing images, and

each of the captured images is automatically saved with a unique name specified by

parameters such as the thickness of the section, the cutting speed of the stage, the

current date and time, and the position in three-dimensional space where the tissue

ribbon was sectioned.

Fig. 13 is a screen shot of KIAS. The user can change the system parameters such

as the width of a slice, the thickness of a slice, the length of a slice, cutting speed, the

interval and the duration of the triggering signal by using a parameter settings dialog

box (Fig. 13, right). KICS is shown in Fig. 13 (left). Load button allows the user to

load a video setting file, if the user wants to have different settings for the images.

Other buttons in KIC such as Snap and Save are supposed to be used only for the

purpose of testing. All capturing processes are performed automatically without any

human intervention. Once sectioning starts, KSC sends control signals triggered by

the stage movement to KICS to start or stop capturing the images.

The KIAS records the information for each tissue ribbon in its filename. The

image filename below shows the specification.

yyyymmdd hhmmss xx cordyy cordzz cord tthickness vvelocity.tif

The first two fields separated by indicate the date and the time when the tissue

ribbon is cut and imaged, and the next section indicates the x, y, and z coordinates
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Fig. 13. KESM Image Acquisition System (KIAS) Screen-shot. (left) KICS captures

images and shows the captured image to allow a user to monitor the operation.

(center) KESM Stage Controller (KSC) can start, stop, pause, and resume a

cutting session. The position of the stage is updated on the screen to help a

user to monitor the movement of the stage. (right) Parameter Settings Dialog

for KSC. A user can save and load parameters for the cutting. By setting

the parameters, a user can change the cutting thickness, cutting speed, the

number of columns, the number of depth for stair-step cutting, and etc.
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of the upper-left corner of the image. Finally t and v indicate the thickness of the

tissue ribbon and the velocity at which the tissue was cut. This scheme is simple

and efficient in storing crucial information about the image. Here is an example of

the image filename. This image was sectioned at 12:57:44 on April 11, 2009, and the

section thickness was 1µm.

20090411 125744 x148.0967y26.6286 z10.3750 t0.001000 v19.9778.tif

B. Lateral Sectioning

Sectioning and imaging become more challenging for larger volumes of tissue. The

area through the field of view (FOV) of the microscope objective is the maximum size

of an image that we can acquire. However, the size of a tissue block (Fig. 14) is often

larger than the FOV. For example at high resolutions, some neuronal elements such

as the axon of a neuron may be stretched beyond the FOV. To address the problem,

I fully analyzed and developed a lateral sectioning technique (Fig. 15) [48]. As the

name indicates, the strategy is to section and image tissue in successive scan across

the top of the tissue block. Lateral movement allows us to acquire images across the

tissue block beyond the size of the FOV, so that this technique can be used for the

acquisition of large volumetric data sets.

In the following sections, new terminologies about the KESM technology will

appear, and they are rarely used in other contexts because of the uniqueness of the

KESM. Here, I clarify the new terms before using them. The tissue block means the

whole plastic block where the tissue is embedded (Fig. 14). Due to the property of

lateral sectioning, multiple column-wise image stacks are generated after the section-

ing. I call the column image stacks column blocks (Fig. 15). A thin tissue section cut
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Fig. 14. Tissue Block. In the middle, the inner circular plastic block where tissue is

embedded.

from a column block is a tissue ribbon (Fig. 15). Last, a plank can be defined as a

group of tissue ribbons.

Here, I discuss lateral sectioning in more detail. Conventional serial sectioning

techniques require only two axes to move the specimen block and the knife. First,

one vertical lift is used to adjust the level of the specimen relative to the knife.

Second, the movement of the tissue block toward the knife edge performs the actual

cutting. In order to section and image the tissue across the block, the precision

positioning stage moves along with y axis, perpendicular to the cutting direction

(Fig. 15). The distance of the movement is decided by the specified width for a

tissue ribbon. However, the lateral sectioning technique requires an additional axis

that moves orthogonal to both of these axes. KESM uses a three axis precision

positioning stage, so the additional axis can be used for lateral sectioning. There

are two ways to perform lateral sectioning; (1) cutting an entire vertical column at a

time and then moving to the next column, or (2) cutting all ribbons across the top

surface of tissue blocks (across multiple columns) before moving on to the next depth.

The first approach is straightforward, but it is limited by the distance between the
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Fig. 15. Lateral Sectioning. The knife cuts the tissue block and images the tissue slices

across the tissue block [48].

knife edge and the microscope objective. The side of the objective will bump into

the uncut specimen block (Fig. 16 (a)). In addition, as the cutting depth increases,

more contact between the edge of the knife and the neighboring tissue takes place,

and this can cause tearing of the tissue and induce knife vibrations. The second

approach is to cut a ribbon across the tissue surface without going down deeper into

a column. Cutting a ribbon across the top surface seems a solution of the problem,

but the knife is often slightly misaligned, and this can cause damage to un-imaged

tissue outside the FOV of the objective (Fig. 16 (b)). Due to the problems mentioned

above, these two straightforward approaches do not work with lateral sectioning.

In order to successfully perform lateral sectioning with minimal tissue damage, the

sectioning process should not make the objective bump into the uncut block when the

knife goes down to the bottom of the tissue block and also should not cut across the

tissue surface. To tackle the challenges, I derived precise quantitative requirements

for stair-step lateral sectioning, along with colleagues at the Brain Networks Lab

(BNL).

The stair-step lateral sectioning algorithm allows us to avoid the problems men-
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Fig. 16. Problems In Lateral Sectioning. (a) The object comes into contact with the

tissue. The area of dotted gray circle shows damage of the tissue by the

objective. (b) Un-imaged tissue is being damaged when sectioning is taking

place across the surface. The big arrow inside the dotted circle shows damage

in the un-cut tissue column by the misaligned knife. [48].

tioned above by cutting small stacks of images in a stair-step fashion (Fig. 17). The

order of sectioning should be as Fig. 17 (a) to avoid damage of un-imaged columns

(Fig. 16 (b)). The key requirement here is that the stair step depth should be small

enough so that the objective does not bump into the uncut neighboring tissue block.

In order to avoid damage to the tissue or the microscope objective, the stair step

depth d needs to be:

• Small enough so that the microscope objective does not make contact with

un-cut tissue

• Small enough to minimize knife vibrations and tissue tearing, and

• Large enough so that the knife assembly does not cause damage to neighboring

columns when it moves to an adjacent column to cut a ribbon from them.
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Fig. 17. Stair-step Cutting. (a) The number presents the order of sectioning. In this

specific case, the stair depth d is 3. (b) One bar represents a plank which is

a group of ribbons within a stair depth [48].

Another issue is that the knife is not often perfectly aligned to the tissue block.

The scanning on the knife edge introduces error in imaging when the knife is not

properly aligned. The misalignment of the knife can be due to roll and/or yaw (Fig.

18).

These misaligned angles of the knife are difficult to measure accurately. However,

an upper bound for the knife misalignment angle can be determined, so that we can

calculate an acceptable stair-step depth d (Fig. 19).

For the entire tissue section to be in focus, both side points of the knife edge

within the FOV of the objective must be within the Focal Depth (FD). This means

that the maximum misaligned angle of the knife θ can be determined by:

θ ≤ arctan
(
FD

FOV

)
(3.1)

where FD is the focal depth of the objective and FOV is the field-of-view. If the roll

angle of the knife is greater than θ, this can be detected by the user because part of
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Fig. 18. Knife Misalignment. (a) Error in roll and yaw. (b) The objective sees a tissue

ribbon on the tip of the knife edge. If the knife is rolled, the captured images

are distorted. (c) The yaw error of the knife edge introduces deformation of

captured images as well [48].
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Fig. 19. Acceptable Stair-step Depth. The roll error is exaggerated just for the purpose

of explanation [48].
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Fig. 20. Misalignment Of The Knife Relative To The Focal Plane. θ represents the

maximum undetectable misalignment. In practice, θ is quite small resulting

in d < 3µm [48].

the image will be out of focus. If θ complies with the above constraint, the angle of the

knife cannot be detected using the imaging hardware available in KESM. Therefore,

we compute a worst-case depth d based on the maximum possible un-detectible value

of θ:

d = Lk sin θmax − FD (3.2)

where Lk is the length of the knife (Fig.19) and θmax = arctan
(

FD
FOV

)
. where FD is

the focal depth of the objective and FOV is the field of view. If the roll angle of the

knife is greater than θ, this can be detected by a user because part of the image will

be out of focus (Fig. 20).

In short, the stair step depth d should be greater than dmin (Fig. 19) before

lateral sectioning takes place, otherwise the left edge of the knife will damage the

tissue column 0 (see the tissue column 0 in Fig. 19). In other words, the tissue

column 0 should be cut by at least the depth FD+dmin before cutting the column 1.

The graphic user interface of KESM Stage Controller (KSC) allows a user to change

the depth d in terms of the number of ribbons in a plank which is a group of ribbons

within a stair depth, so the user can calculate the number of ribbons considering the

cutting section thickness along the z-axis.
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Algorithm 1 Stair-step sectioning

nNumOfCols⇐ (int)(dTotalBlockWidth/dColWidth)

nCurCol⇐ 0

nCurColZ[0..(nNumOfCols− 1)]⇐ initial z positions

while nCurColZ[nCurCol] < nMaxBlockDepth do

for nIndexRibbon to nP lankDepth do

Section a tissue ribbon

nCurColZ[nCurCol] += nRibbonThickness;

end for

nP lankThickness⇐ nRibbonThickness× PlankDepth

if nCurColZ > (nNextColZ + nP lankThickness× 2) then

nCurCol⇐ nCurCol + 1

else

nCurCol⇐ nCurCol − 1

end if

end while

I implement stair-step sectioning by maintaining a height field of the tissue sur-

face with colleagues at BNL. I can then constrain cutting so that the height differ-

ence between two columns never exceeds the calculated value d from Equation 3.2.

Changes to the cutting parameters (e.g. column thickness) can be handled robustly

by simply re-sampling the height field in order to insure that there is no loss in data.

The algorithm used to constrain the sectioning process is shown in Algorithm 1.

To summarize, I discussed how the KESM Image Acquisition System (KIAS)

was designed and built, KIAS being an automated high-throughput data acquisition

system for KESM featuring stair-step lateral sectioning implemented in the KESM
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Stage Controller (KSC). Sectioning and imaging a large specimen such as the whole

mouse brain takes a long time (several days or even several weeks). Based on our

experience, sectioning and imaging the whole mouse brain would take several weeks

in 8 hour shift in the current KESM setup. The user should be able to stop the

system whenever it is needed, and the cutting session should be able to resumed later

with exactly same conditions. The management of multiple sessions is conducted by

the KESM Session Manager (KSM). KESM Image Capturer System (KICS) is also

developed to save the acquired images automatically.
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CHAPTER IV

DATA PROCESSING

Acquired images using KESM have several different types of artifacts. Lateral sec-

tioning often introduces column misalignment even though lateral sectioning itself

allows us to image larger tissue block than the FOV of the objective. Also, KESM

uses the knife edge as a collimator so that the misaligned knife may introduce different

intensity levels inside a same image (Fig. 21). These artifacts should be effectively

removed to reconstruct three-dimensional structure from the volumetric data sets

acquired using KESM.

This chapter is divided into two main sections. First, I focus on describing the

column misalignment problem and its solution. The second part is devoted to data

processing methods to remove noise due to intensity irregularities.

All data processing modules share the same software structure (see Fig. 22).

Image Segmentation and Registration Toolkit (ITK) [50] is used for image processing,

Visualzation Toolkit (VTK) [51] for visualization, and Qt [52] for cross platform user

interface.

Fig. 21. Overall Intensity Shift. The overall intensity shift along the x-axis is due to

knife misalignment (arrows). Adapted from [49].
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Fig. 22. Diagram For Data Processing. ITK [50] is used for image processing, VTK

[51] for visualization, and Qt [52] for cross platform user interface.

A. Misalignment between Image Stacks

KESM captures line images when a ribbon being cut is at the tip of the knife edge as

the knife sections the tissue ribbon from a specimen block. This technique that scans

the knife edge rather than the entire tissue block surface improves the imaging speed

without sacrificing image resolution. On the other hand, the scanning process can

introduce imaging artifacts if the knife is not aligned properly. When a user focuses

on only one column whose width is less than or equal to that of the Field Of View

(FOV), the image distortions due to knife misalignment could be ignored, because

the overall structural properties are intact.

Lateral sectioning in a stair step fashion removes the limit in cutting depth,

compared to conventional serial sectioning techniques and extends the section width

beyond that of the FOV of the objective by cutting multiple lateral columns. However,

image distortions due to knife misalignment become a more complicated problem

when lateral sectioning generates image stacks in multiple columns from a single
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Fig. 23. Misaligned Columns. (a) Cutting tissue ribbons from multiple columns with

a tilted knife. (b) The acquired image stacks. (c) Finding the amount of the

misalignment.

tissue block.

Next, I discuss two types of image distortions due to knife misalignment. As a

possible solution, block alignment will be described and its problems will be discussed.

Finally I will describe potential solutions for the image distortion problem as proposed

work.

1. Column Misalignment Detection and Correction

Suppose the knife is rolled in α degrees and yawed in β degrees (For the roll and

th yaw error, see Fig. 18). The roll angle α introduces deformation in the captured

images. The image volume captured from a column will be tilted due to the roll. In

such a case, the knife sections the tissue block and captures an image not from an

exactly horizontal tissue surface but from a tilted surface with the roll angle (Fig. 23

(a)). When the captured images are stacked, and the columns are aligned (Fig. 23

(b)), we can see that the fibrous structures are not perfectly aligned as they were in

the original column due to the knife roll.

Microstructure within each column is subject to be distorted a little bit when the

knife is rolled. However, it is not a severe problem as far as one column is concerned,
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Fig. 24. Column Alignment. (a) Comparing two lateral image stacks. (b) A real image

from a lateral part of a column. (c) A lateral image with tissue damage.

because basic structural properties in the column block will be intact. When the

adjacent columns are put together, on the other hand, the misalignment between

columns can be prominent and can be identified from the error in the orientation of

the knife across columns (Fig. 23). We have to find out roll z (Fig. 23 (b) and (c))

to adjust the misaligned columns. The knife orientation introducing misalignment of

the tissue columns is fixed from the beginning unless mechanical error occurs. So, the

roll z derived from any two neighboring columns can be applied to all other columns.

It is straightforward to get roll z and the roll angle α. First, get the right lateral

surface image from the image column n and get the left lateral image from the image

column n + 1 (Fig. 24). Then, compare the two lateral surface images which are

bound to be slightly different, and find out how much displaced the two images are.

However, it is not easy to match two adjacent lateral surface images due to tissue

damage from lateral sectioning.

During the sectioning process, some tearing occurs at the interface of two neigh-

boring columns (Fig. 25) because the knife only cuts beneath the tissue ribbon and

not on the side. One side of a tissue ribbon is actually torn from the neighboring

columns. The amount of actual data loss is quite small and the damage is usually
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Fig. 25. Tissue Damage Due To Lateral Sectioning. (a) Damage occurs due to tearing

at the interface of two columns. (b) This results in some data loss at the

edge of the image (arrow). (c) Two neighboring blocks show tissue damage

between them.

less than 5µm in width in most cases. If a 10X objective is used, the horizontal pixel

resolution is 0.6µm and the FOV is 2.5mm: 0.2% (= 5µm/2.5mm) of data is lost in

the torn part. Even though the tissue damage is small enough to be ignored compared

to the total data width, the damage looks quite visible when we look at the surface

made up to the torn side (Fig. 24 (c)).

One way to find out the misplacement of the images is to look for prominent

structural features throughout the neighboring pair of columns. In most cases, the

whole data set has multiple columns, so there is a high probability of finding promi-

nent features across the neighboring columns. Fig. 24 (b) and Fig. 24 (c) are two such

cases. Even though the surface images are noisy due to tissue damage, the center

point can be identified from the circular features from each lateral surface image. In

this example, we can say two surfaces are misplaced by 5(= 118 − 113) pixels along

the x axis and 7(= 204− 197) pixels along the z axis. Since the offsets are based on

the knife angle which is unchanged during a cutting session, this misplacement values

can be applied to all other columns.

The knife can also often have yaw even though it could be a very small amount.
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This angle introduces another distortion of the captured images (see 2 for detail).

Each of the ribbons captured is slightly skewed (yaw x) if the knife is yawed. The

ribbons should be aligned to exactly restore the original morphological properties. As

in the case of distortion from the knife roll angle, the structural information from the

acquired images could be a little bit different from the original one. The structural

properties, however, can be restored by moving a ribbon backward or forward along

the x axis. Once yaw x is determined, the same amount of yaw x can be applied to all

the other ribbons, because the yaw error is introduced by the knife misalignment just

like the roll error. The aligned ribbons recover the original morphological properties

across the ribbons but the final result is slightly skewed. In most cases, the yaw x

is so small that the skew distortion can be ignored. We can skew the final images

again in the opposite direction of the original distortion to restore the original spatial

properties, but skewing back the images might introduce further distortions.

When examining the yaw error, we have to consider the vertical distortion. Ac-

cording to the previous result where the image is misplaced by 7 pixels along with y

axis, it is safe to say that the ribbon m from the column n and the ribbon m+ 7 from

column n + 1 should be compared when we measure the yaw misalignment. Fig. 26

shows that the 7 pixels are quite a reasonable outcome, because the same structural

information is found in ribbon number 57 and ribbon number 50. When it comes to

the vertical misplacement in Fig. 26, the center points of the circular objects from the

two neighboring ribbons are misaligned by 5 pixels, and this is a consistent outcome

with the column misplacement result.

In this section, I introduced a manual method in which the user can align two

neighboring image columns by comparing their lateral surface images facing each

other. There exists a potential solution that can be performed automatically. As Fig.

24 (b) and (c) show, the outermost lateral surface is severely torn. Therefore, it is not
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Fig. 26. Measuring Yaw Misalignment. (a) Part of a ribbon from a slice. (b) The

neighboring part of ribbon from the adjacent slice.

easy to find matching features from two neighboring surfaces facing each other. Even

though the lateral surface is too much rugged, if we go slightly deeper into the surface

by several pixels, we can see a clearer image. In this case although the lateral surface

to be compared would be farther apart, subsequently more accurate comparison of

the two neighboring lateral images can be possible. More importantly, using a clearer

image in the comparison can shed light on finding the amount of knife misalignment

in an automatic way.

2. Distortion of Tissue Ribbon

As mentioned in the previous sections, small misalignments in the knife orientation

are difficult to detect and result in the knife contacting the specimen surface at a

slight angle θ. Although the roll angle of the knife is the only misalignment that can

cause unwanted tissue damage, note that it is also possible for there to be a slight

yaw misalignment (Fig. 27 (a)). Both of these knife angles cause each column to be

imaged at a slight skew (Fig. 27).

When the image stacks are placed next to each other, this results in misalign-

ment at the interface between columns (Fig. 23 (b)). We fix this misalignment by
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Fig. 27. Distortion From The Yaw Error. (a) The knife with a way angle cuts the

tissue block. (b) Acquired images. (c) Aligned tissue ribbons.

applying a translation to each column to compensate (Fig. 23 (c)). The direction of

translation parallel to the plane created by the column interface. Each component of

the translation (x and z) is proportional to the angle of misalignment. We note two

important properties of these offsets:

• The offsets are based on knife misalignment along two axes. These angles are

too small to be measured with the KESM optics but can produce noticeable

distortion in the data set.

• Since the offsets are based on the knife angle, they are constant throughout the

entire data set.

• Practical constraints on the knife angle (discussed above) limit these offsets to

very small values (1–4 pixels).

In my initial experiments, I attempted to determine these offsets automatically

by aligning images representing the interface between the columns. The major dif-

ficulty with this approach is that tissue tearing, and therefore data loss, occur at

this interface. Although it is possible to acquire image data slightly inward of the
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interface, this sampling was too coarse to allow effective alignment based on image

data alone.

Since the knife misalignments are constant throughput a data set, we found that

the offsets need to be determined manually only once. This was done by selecting

a small volume of tissue at the interface of two neighboring columns. These vol-

umes were aligned by using filament structures, such as vasculature and neuronal

processes, as fiducials. Many of the larger filaments have trajectories that can be

interpolated through missing data at the interface. After an initial estimated align-

ment, we can then explore several other samples along the interface to evaluate and

refine the offsets. Since imaging can occur uninterrupted for several hours at a high

data rate (approximately 30 GB/hour), one-time manual alignment (requiring only

a few minutes) was an efficient method for determining offsets between neighboring

columns.

B. KESM Volume Noise

KESM exhibits several types of noise. Irregularities in lighting is a main cause of

noise in KESM because it uses the knife edge as a collimator as well as a cutting

device. Knife vibration is also a cause of the lighting irregularities. Knife chatter is

well known in machining, but is not a problem in conventional imaging devices [49].

However, due to the fact that KESM images data as it is being cut, knife vibration

becomes a issue in KESM.

1. Noise from Lighting Defects

Since the problem of knife chatter marks were successfully addressed in [49], I focus

algorithms to remove noise due to irregularities in lighting. A fluctuation in illumina-
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tion across the knife edge is one of the major lighting defects. The sources of defects

are as follows.

• Misalignment between the objective connected to the camera and the edge sur-

face of the knife. This results in intensity irregularities across the width of the

image.

• Fluctuation in illuminator power.

• Different exposure time to illumination. Varying cutting speed to reduce knife

vibration causes different exposure time to the line scan camera.

• Defects on the surface of the knife edge. Since the knife edge is used as a

collimator, the defects on the edge cause refraction of illumination. This results

in dark vertical stripes in the images.

Images from the KESM often suffer from not just intra-image intensity difference

but also inter-image difference. Slight misalignment between the knife edge and the

objective (eventually the line scan camera) causes uneven illumination on an image

across the horizontal direction (Fig. 28 (a)). The overall intensity level in a part of

an image is higher or lower than the rest of the image.

The cutting speed randomly changes in each sweep to reduce knife chatter marks

in the specimen being cut. The difference in the speed of knife movement (it appears

to be knife movement but actually specimen mounted on top of the stage moves)

causes different light exposure time to the line scan camera. In other words, when

the speed is slower, more photons come to the camera which results in a brighter

image. Fig. 28 (b) shows the intra-image intensity difference.

Dark vertical stripes are also caused by non-uniform illumination but the main

reason is not from changes of illumination itself. It is because of defects on the knife
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(a) (b)

Fig. 28. Intensity Difference in Captured Images. (a) Intensity irregularities across the

image width. The black arrows indicate darker vertical areas in the image.

(b) Different intensity levels between images.

edge. The unique way of KESM imaging, i.e. the knife also being used as a collimator,

causes dark vertical lines if the knife edge has defects.

Fig. 29 (a) represents intensity levels from a normal area. In contrast, Fig. 29

(b) shows intensity levels having two different layers of background intensity ranges.

The brighter one (the white downward arrow) indicates the background of normal

intensity areas neighboring the vertical stripes. The gray arrow points to the area

of the background of the vertical stripes. There are still clear distinctions between

foreground and background objects even inside the vertical stripes.

2. Image Processing Techniques

The unique noise in KESM images should be removed effectively to build a uniform

volumetric data set for segmentation. I specifically focus on image processing tech-

niques that use only local information inside an image so that the processing can be

run on heterogenous systems in parallel. Parallelism in data processing is important,
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Fig. 29. Vertical Stripes. Intensity levels of the foreground objects (slanted black ar-

rows) are different from those of the background (hollow downward arrows).

(left) An area with normal intensity. (center) An image example with vertical

stripes. (right) The gray arrow indicates the intensity level of the background

of the vertical stripe.

to deal with large amounts of data resulting from the KESM.

The first step of noise removal is to normalize overall intensity levels within an

image. Each pixel in a row is normalized based on the median value of the row. The

same process is applied for the columns in the image. The normalization process is

iterated for all rows in an image, and then all columns in the image, according to

Eq. 4.1, 4.2, and 4.3. The desired median intensity level, L, is defined as a base

background intensity level to normalize the inter-image intensity difference in the

following (see Fig. 30).

Tx =
p[x, Y ]

M(Row(I, Y ))
× L (4.1)

Ty =
p[X, y]

M(Col(I,X))
× L (4.2)
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Fig. 30. Intensity Normalization. First, all rows are normalized based on the median

value of each row. After the normalization of the rows, all columns are pro-

cessed in the same way.

Ī = ∀xTX (∀yTY (I, y), x) (4.3)

where M(·) is the median value of a series of pixels, L is a constant representing

a desired median intensity level in inter-image variation, Row(I, Y ) = ∀xp[x, Y ],

Col(I,X) = ∀yp[X, y], I = ∀x∀yp[x, y], and Ī is the normalized image.

Noise from non-uniform illumination and knife defects can be simply solved by

the intensity normalization method based on the median value. However, it becomes

more difficult if the stripes are excessively dark. The excessiveness can be determined

by the clear distinction between intensity levels of background and foreground objects.

In other words, we can say that the dark stripes are excessive if the intensity levels of

the background are not clearly distinctive from those of the foreground objects. When

vertical stripes are excessively dark, the intensity normalization algorithm cannot

recover from the noise. The intensity levels of foreground objects (dark arrows in

Fig. 31) after normalization based on median values are even brighter than those

of the background (gray arrows in Fig. 31) in the original image which means that

normalized foreground objects become brighter than other foreground objects (see



53

Light DarkNormalized

Normalized
intensity

Original
intensity

Fig. 31. Excessively Dark Vertical Stripe. The intensity level of foreground objects in

the dark vertical stripes becomes too bright (over-normalization) compared to

foreground objects in other areas (compare areas pointed by two larger gray

arrows).

Fig. 32 (b)).

To address this excessive normalization problem, I introduce the Selective Nor-

malization method. This new method selectively normalizes columns in an image

only when the median value of a column is not too small which means that the whole

column is generally too dark to be recovered. In this specific case, the new algorithm

maintains intensity levels of foreground objects while the background is being nor-

malized. Fig. 32 illustrates the processes. Without using the Selective Normalization

method, the vertical stripes would not have been properly recovered as shown in Fig.

32 (b). The new method can recover the vertical stripes (see Fig. 32 (c)). A result of

the noise removal process is shown in Fig. 33.

To summarize, KESM images have inter-image and intra-image intensity un-

evenness. In order to build clear volumetric data sets for segmentation, the uneven

intensities should be properly recovered. An intensity normalization method based

on median values of rows and columns is used to remove the unevenness both in an
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(a) (b) (c)

Fig. 32. Selective Normalization. (a) An example of excessively dark vertical lines. (b)

Foreground objects (arrows) become too much bright. (c) Fixing over-normal-

ization. Foreground objects (arrows) are properly recovered.

Uneven lighting

Vertical lines

(a) (b)

Fig. 33. Normalization Result. (a) The original image before normalization. The

image has dark vertical lines (white arrows) and uneven intensities across

the horizontal direction (black arrows). (b) Vertical lines are recovered and

uneven intensity levels are successfully removed.
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(a) (b) (c)

Fig. 34. Extra Regions In A Captured Image. (a) A captured image has extra regions

in its left and right side containing no data. (b) The image should be cropped

to remove those areas. (c) An example of the cropped image.

image and between images. The excessive normalization problem can be solved by

the selective normalization algorithm.

C. Image Chunk Alignment

Captured images from KESM have extra regions containing no data because the Field

of View (FOV) of the objective should be larger than the width of the tissue ribbon.

Fig. 34 (a) shows a tissue ribbon captured. The white dotted box in Fig. 34 (b)

indicates the actual tissue area.

In principle, KESM does not need to do image registration because a tissue

ribbon is imaged as it is being cut. The high speed line scan camera images the same

location of the edge of the knife all time. However, in practice, several image block

chucks are generated (see Fig. 35) in image stacks since the knife position may be
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(a) (b)

Fig. 35. Misaligned Image Chunks. (a) Images are supposed to be aligned an image

stack, in principle. (b) The knife needs to be re-installed in the middle of

cutting sessions, in practice, so that the angle of the knife often changes a

little bit from the previous session. It causes a misaligned image chunk.

slightly changed after knife reinstallment. The knife often needs to be reinstalled in

the middle of cutting sessions for maintenance. When the knife is reattached to the

knife assembly, the angle of the knife edge tends to be slightly different from that

of the previous session. This causes misaligned image chunks in a column of image

stack.

Due to the misalignment of the image chunks, cropping the tissue region becomes

a painful and time consuming manual job. I have developed an automation algorithm

to crop the tissue area using template matching based on Sum of Absolute Differences

(SAD) (see Eq. 4.4 and Fig. 36).

dx
SAD(x, y) =

(wt−1)∑
c=0

(ht−1)∑
r=0

|ps(x+ c, y + r)− pt(c, r)| (4.4)

where wt and ht is the width and the height of the template image respectively, ps is
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Fig. 36. Cropping By Template Matching. (a) An example of a captured image. (b)

Part of an image shows the tissue width. (c) Template (100 × 50).
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a point in the raw image, pt is a point in the template image.

The left edge of the tissue image is not clear since the area was on the knife

edge when the image was being cut while the right side has clear cut between the

foreground and background information. The x start position of the template in the

raw image is the minimum value among dSAD (see Eq. 4.5) meaning that the smallest

difference exists between the template and the area of the image.

dx
SAD = minx(dSAD(x, y)) (4.5)

Thus, the x start and end positions of the tissue area (xright) can be calculated

by Eq. 4.6 and 4.7

xright = dx
SAD +

wt

2
(4.6)

xstart =
(
dx

SAD +
wt

2

)
−W (4.7)

In this chapter, I discussed data processing methods for the image stacks ac-

quired by KESM. Lateral sectioning was introduced to overcome the limitation of the

FOV. Due to the fact that lateral sectioning generates multiple images stacks (col-

umn volumes), column misalignment and distortion in acquired ribbon images were

introduced to the image columns. I described these problems and their solutions in

this chapter. In addition, image noise owing to the irregularities in illumination was

described and I discussed possible solutions to recover from the noise. Besides these

image process techniques, I introduced an automatic cropping algorithm to address

the problem of misaligned image chucks in an image stack.

In the following, I will describe an efficient data management method to deal

with large data sets to be able to be used in visualization and analysis of such data.
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CHAPTER V

DATA MANAGEMENT

The information seeking principle of overview first, zoom and filter, and then details-

on-demand [53] is useful when we develop a system to explore large volumes of data.

To provide the user an overview of the data, the whole data should be visualized at a

lower resolution at the first stage. However, it is impractical to generate the data at

runtime in different scales from the huge amounts of data. Therefore, to provide the

features such as overview and zoom in/out, the data should be presented in different

scales before the visualization. The primary examples of data representations for

three-dimensional volumetric data are octree [54] and treemaps [55]. The main focus

of these multi-resolution and hierarchical data representations is to support fast access

and efficient rendering of data. Instead, in this dissertation, I focus on an efficient

data storage and retrieval scheme for interactive exploration of large data sets.

The management of such large and complex data collections is also a challenging

task, so researchers often use general purpose data models to manage interactive

exploration of remotely stored large data [56]. HDF5 (Hierarchical Data Format) [57]

is such an example and can present complex data objects. HDF5 is also a software

library that provides high-level APIs. For the case of KESM data, however, the main

requirement of the data representation is to provide an efficient data storage and

retrieval method in a local system. The types of the data for KESM are restricted

to images, three-dimensional volumes, reconstructed geometric data, and some of

metadata. To fulfill the requirements and consider the properties of the KESM data,

I have developed a customized hierarchical volume representation that is easier to

extend and has no overhead in using high-level APIs of general purpose data models.
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A. Hierarchical Data Representation

Once lateral sectioning is implemented, the amount of the data volumes that can be

acquired becomes extremely large. In order to figure out how big it can get, we can

calculate an approximate size of the captured images from a tissue block. The typical

size of an image is 4, 096 × 9, 000 pixels for the 10X objective, although the length

depends on the size of the tissue. The typical length is from 9, 000 to 13, 000 pixels.

The pixel depth of a captured image is eight bits in gray scale. Among the 4, 096

pixels, only 3, 319 pixels contain meaningful data, because some of the imaged area

is beyond the knife edge. Assuming the number of the columns is eight, the height of

the tissue block is 1 cm (10 mm = 10×1, 000µ m), and the cutting thickness is 1µ m,

the total size of the block is going to be 3, 319 (image width) ×9, 000 (image length)

×10, 000 (the number of slices) ×8 (the number of columns) = 2, 389, 680, 000, 000

which is more than 2 terabytes. The exact formula is as follows:

V = Wi ×Hi ×
(
Ht

T

)
× C (5.1)

where V is the tissue volume size, Wi is the image width, Hi is the image height, Ht

is the tissue block height, T is the cutting thickness or the tissue ribbon thickness,

and C is the number of columns.

It is hard to handle such a large data set with pre-existing tools or techniques.

Currently, a 256 or a 512 cubic pixel volumes are being used as data sets to be

analyzed, because such amounts of data can fit in the RAM of modern desktop PCs.

Figure 15Error! Reference source not found. shows an example from the rat cortex

stained with Nissl. This example has only four and 1/5 columns, but it can still show

that how much small a 256 or a 512 cube is compared to the whole data set resulting

from lateral sectioning. For example, the smaller rectangle to the left represents
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256 x 256

512 x 512

The rat cortex stained with Nissl

Fig. 37. The Size Comparison Of Data Volumes. The smallest rectangle to the left

represents 256 x 256, and the slightly larger rectangle below it represents 512

x 512. The underlying image is the rat cortex stained with Nissl (saggital

section).

256× 256 and the larger rectangle below it shows 512× 512 (see Fig. 37).

In summary, since lateral sectioning technique has been introduced in KESM, it

has been generating large amounts of biological data. However, conventional methods

cannot be used to handle such data sets because the sheer amount of data easily

exceeds the main memory in a typical desktop PC, so a data representation scheme

for the KESM data sets has to be developed.

1. Multi-resolution and Hierarchical Representation

To manage such a large data set, I have developed a multiresolution and hierarchical

data representation scheme. All images captured by the automated data acquisition
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Fig. 38. Whole Image Stack. The width, the height, and the depth of the image stack

are defined as shown in the picture.

system are saved in the lossless Tag Image File Format (TIFF) [58]. The raw images

are stacked up column-wise after removing unnecessary regions from each image in

the column blocks. If misalignment between adjacent column blocks is detected then,

column blocks should be rearranged. After correction of the misalignment, the column

blocks can be attached side by side. The attachment takes place on an image-by-image

basis. Open source libraries, LibTIFF [59] and Image Magick [60] are used to stitch

image patches into a large virtual slice. The continuous connections of neighboring

image columns result in a whole image stack (Fig. 38).

For proper coordination, the width, length, and height in the image stack need

to be defined. First, the horizontal direction is the width axis. Second, the vertical

to the width axis and the direction from the rear to the front is the length axis. Last,
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Fig. 39. Multiresolution Volumes And Bricking. The three-dimensional volumetric

data set is divided into a unit volume. Also the volume is re-scaled at the half

of the original resolution. This process is iterated until the volume size is as

same as that of the unit volume.

the orthogonal direction to the width-length plane and toward the depth of the image

stack is the height axis.

The size of the whole image stack is too large to load into the main memory of a

typical desktop PC, so the data should be divided into small bricks. This partitioning

of data is called bricking [61] (see Fig. 39). And a group of bricks is defined as a brick

volume. On the other hand, the whole image stack is also degraded into a lower

resolution volume to give the user a better overview of the data. The bricking and

the generation of lower resolution volumes continue until the brick becomes a unit

volume. The size of a unit volume is automatically calculated based on the tissue

block size and the ribbon size to be in between 256 and 512.



64

The lower resolution image stacks and their brick volumes are saved in a hierar-

chical directory structure. The specifications of the directory structure are as follows.

Each specimen has a unique root data directory, and the images and the bricks will

be saved into the separated directories. The name of an image file starts with the

resolution field that is followed by the serial number of the image. The name of a

brick also starts with the resolution field, and indexes for the width, the length, and

the height follow the resolution field.

1 / <−− Data Root
2 /Specimen
3 /Specimen/ Reso lut ion /
4 /Specimen/ Reso lut ion / Images
5 /Specimen/ Reso lut ion / Images/ Resolut ionSer ia lNumber . t i f
6 . . .
7 /Specimen/ Reso lut ion / Br icks
8 /Specimen/ Reso lut ion / Br icks /

ResolutionIndexWidthIndexLengthIndexHeight . brk
9 . . .

1 Reso lut ion : (
2 1 = actua l s i z e |
3 2 = h a l f o f 1 |
4 4 = h a l f o f 2 |
5 8 = h a l f o f 4 |
6 . . .
7 )

Here is an example of the data directory.

1 / <−− Data Root
2 /MouseBrain001
3 /MouseBrain001 /1/ <−− ac tua l s i z e
4 /MouseBrain001 /1/ Images
5 /MouseBrain001 /1/ Images /1 00000000 . t i f
6 /MouseBrain001 /1/ Images /1 00000001 . t i f
7 /MouseBrain001 /1/ Images /1 00000002 . t i f
8 . . .
9 /MouseBrain001 /1/ Br icks

10 /MouseBrain001 /1/ Br icks /1 0 0 0 . brk
11 /MouseBrain001 /1/ Br icks /1 0 0 1 . brk
12 /MouseBrain001 /1/ Br icks /1 0 0 2 . brk
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13 . . .
14 /MouseBrain001 /1/ Br icks /1 0 1 0 . brk
15 /MouseBrain001 /1/ Br icks /1 0 1 1 . brk
16 /MouseBrain001 /1/ Br icks /1 0 1 2 . brk
17 . . .
18 /MouseBrain001 /2/ <−− h a l f s i z e
19 /MouseBrain001 /2/ Images
20 /MouseBrain001 /2/ Images /2 00000000 . t i f
21 /MouseBrain001 /2/ Images /2 00000001 . t i f
22 /MouseBrain001 /2/ Images /2 00000002 . t i f
23 . . .
24 /MouseBrain001 /2/ Br icks
25 /MouseBrain001 /2/ Br icks /2 0 0 0 . brk
26 /MouseBrain001 /2/ Br icks /2 0 0 1 . brk
27 /MouseBrain001 /2/ Br icks /2 0 0 2 . brk
28 . . .
29 /MouseBrain001 /2/ Br icks /2 0 1 0 . brk
30 /MouseBrain001 /2/ Br icks /2 0 1 1 . brk
31 /MouseBrain001 /2/ Br icks /2 0 1 2 . brk
32 . . .
33 /MouseBrain001 /4/ <−− quarte r s i z e
34 /MouseBrain001 /4/ Images
35 /MouseBrain001 /4/ Images /4 00000000 . t i f
36 /MouseBrain001 /4/ Images /4 00000001 . t i f
37 /MouseBrain001 /4/ Images /4 00000002 . t i f
38 . . .
39 /MouseBrain001 /4/ Br icks
40 /MouseBrain001 /4/ Br icks /4 0 0 0 . brk
41 /MouseBrain001 /4/ Br icks /4 0 0 1 . brk
42 /MouseBrain001 /4/ Br icks /4 0 0 2 . brk
43 . . .
44 /MouseBrain001 /4/ Br icks /4 0 1 0 . brk
45 /MouseBrain001 /4/ Br icks /4 0 1 1 . brk
46 /MouseBrain001 /4/ Br icks /4 0 1 2 . brk
47 . . .

Let us review the data file format for the brick. The brk data file begins with a

20-byte header containing the following information.

1 nIndexBrick : 4 bytes
2 nSizeWidth : 4 bytes
3 nSizeLength : 4 bytes
4 nSizeHeight : 4 bytes
5 Reso lut ion : 4 bytes

The 4-byte nIndexBrick indicates the unique id of a brick in the brick volume.
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Also it can be used to calculate the position of a brick in the brick volume. The

following formula shows how to get the indexes for the width, the length, and the

height.

nIndexWidth = (nIndexBrick%nSizeWidthLength)%nSizeWidth (5.2)

nIndexLength = (nIndexBrick%nSizeWidthLength)/nSizeWidth (5.3)

nIndexHeight = nIndexBrick/nSizeWidthLength (5.4)

where nSizeWidthLength = nSizeWidth× nSizeLength.

The 20-byte header is followed by a 32-byte reserved area for the future use. This

reserved area will be used when the captured images need additional information such

as the color depth (as of now, the KESM produces only 8-bit, 256 gray scale images).

The brk filename consists of four elements. The first element represents the resolution.

1 means the actual size, 2 means half the actual size, 4 means a quarter of the actual

size, and so on. The three numbers after the resolution field represent the position

indexes along the width, height, and depth in the resolution volume. For example,

the brk filename 2 2 3 1.brk means that (1) the volume is half the size, (2) the width

index is 2, the length index is 3, and the height index is 1. Fig. 40 shows the result

of the indexing example.

To summarize, in this section, I described a hierarchical data representation to

support an efficient data storage and retrieval scheme for huge data sets. By using the

scheme we are able to manage large KESM data. The following section will describe a

parallel reconstruction system for extracting three-dimensional objects from the data.
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Fig. 40. An Example Of Indexing A Brick.
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B. Parallel Processing Framework

In microscopy studies, it is often needed to reconstruct three-dimensional objects from

a set of the serial sections. However, it is not easy to find three-dimensional struc-

tural information from serial sections. Reconstructing three-dimensional geometric

structure from image stacks is another important step in examining and analyzing

the morphological properties of neurons and vascular networks from the whole mouse

brain. The images acquired through serial sectioning are stacked as figures shown

in Fig. 41 (right-top) to form a volume (Fig. 41, right-bottom). Inside the three-

dimensional volume, there often are many objects. If the objects can be described by

a set of features, then we could get essential information about the geometric struc-

ture of the objects from the features. The reconstruction task is to extract the set of

features such as geometric structures and shape from the volumetric data set (Fig.

41, left-bottom). The example shows traced blood vessels in India ink-stained tis-

sue. From the reconstructed data, we can measure much essential information about

the volumetric data, e.g., the number of branches, the length of a certain fibrous

structure, the average radius of the fibrous structure and the number of cell bodies.

There has been much research on reconstructing three-dimensional objects from

image stacks. Reconstruct [62] is a free tool for montaging, aligning, and analyzing

serial sections. NeuronMorpho [63], a plugin for ImageJ [64], allows the user to

measure the neuron morphology. These tools are, however, based on manual work by

the user, so it is not useful for large amounts of data from the KESM.

There are also many tracing methods to extract the objects if interest from a

tissue volume [65][49], but I will not delve into reconstruction algorithms of three-

dimensional objects. Rather, I discuss a parallel reconstruction method where any

reconstruction algorithm can be used as long as their output follows the specifications
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Fig. 41. 3D Volume Reconstruction From Image Stacks. (left-top) Data acquisition.

(middle-top) An acquired image. (right-top) Stacked images can be considered

as a volumetric data set. (bottom-left) An example of blood vessel from a

mouse spinal cord stained with India ink.

in the following chapter.

As I mentioned in earlier sections, the amount of data is unprecedented, so it is

not easy to use conventional methods to deal with the data sets. First, let us review

a volume data analysis technique, vector tracing, that can trace structures within

an image stack such as cell bodies, dendrites, axon fibers, and vasculature. Many

existing tracing techniques were developed for two-dimensional images. Some of the

methods were extended to work in three-dimensions, but they had limitations in terms

of the speed of tracing and the accuracy of the result, because most of the extended

solutions from two-dimension used basically the same approach while expanding the

search space to three-dimensions. The output of the vector tracing algorithm is a
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set of points, the diameters of each point, and connection information of the points.

Therefore the output has the following properties.

• Most structures in the data can be reconstructed by using only local structural

information, and

• The local results of reconstruction can be combined at a later stage.

These properties allow parallelism to be exploited. The volumetric data will be

divided into small blocks and the reconstruction task of each small volume can be

performed by a separate processor. Due to the properties of the vector tracing algo-

rithm, the geometric structures from neighboring small blocks can be combined later

to build larger blocks. I expect the overhead for combining the small blocks would

be negligible compared to the benefit of parallelism, because the type of computa-

tions required is either addition or subtraction. In other words, when we combine

the outputs from the neighboring blocks, all the new positions of the vertices can be

calculated by simply adding or subtracting a value to the original positions.

For the parallel processing model, four major aspects are considered. First, the

input is a brick that is a sub-volume from the whole image stack in full resolution.

Second, the processing unit is an execution module that runs any object tracing

algorithm for three-dimensional objects inside the brick. The format of the output file

of the processing unit will be described in the specification of the fiber data file in the

following chapter. The server maintains the original image files and the reconstructed

results from client nodes. Also the information of the reconstruction status for all

the sub-volumes is maintained by the server. Below are the possible states of the

server and the clients. The run-time information of each client is managed by the

CReconInfo data structure in the server.
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1 S ta t eC l i en t = { IDLE OK | IDLE FAIL | CONNECTED | RECEIVING |
RUN | SENDING }

2
3 Sta teSe rve r [ numClient ] =
4 { IDLE OK | IDLE FAIL | CONNECTED | SENDING |

WAITING | RECEIVING }
5
6 CReconInfo {
7 bool m bFinished ;
8 LONG m lStartTime ;
9 LONG m lEndTime ;

10 bool m bSuccess ;
11 LONG m lReconAlgorithmID
12 s t r i n g m strResultFi leName ;
13 LONG m lResu l tF i l e ID ;
14 s t r i n g m strSourceFileName ;
15 LONG m lSourceFi le ID ;
16 }

Considering the four aspects above, I designed a parallel reconstruction protocol

for a network of PCs (Fig. 42). Two different configurations are possible for the

system. The first one is a single server system which consists of one server and

multiple client PCs. For the single server configuration a star network was chosen as

the network topology. It consists of a central server and several client nodes. There

are several advantages of the star network. First of all, the network can be easily

scaled up or down by adding or removing nodes. The central server is a repository

that saves all the outputs from the clients and combines all the building blocks.

The server manages information about the building blocks while client PC nodes

reconstruct geometric data from small image volumes. The client PCs do not need

to manage information about the whole volume; rather, they simply perform a task

that the server has allocated. In other words, the client nodes only need to run

reconstruction algorithms to trace geometric structures from the small data volumes

they have to take care of. Secondly, the client PCs in star networks do not need to

directly communicate with each other. This allows us to use any kind of computer
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Fig. 42. Single Server Configuration. Star network topology is used to increase ro-

bustness of the system. The server manages raw data sets and collects traced

results from clients.

system that can run the reconstruction algorithm for the client PCs.

The single server system can be easily extended to a multi-server system. If the

total amount of data is too large to be handled by a single server or the reconstruction

task needs to be finished earlier, then a multi-server configuration can be considered.

A meta server should be introduced in the multi-server configuration which can be

considered as a double layer star network topology. A meta server is a central server

of the other server nodes, and each server node is also a central server for other clients.

The main difference between the single server and the multi-server configuration is

that the meta server does not have the raw image data. Instead, it collects all the

reconstructed geometric data set from the sub-servers. In most cases, the raw data
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Fig. 43. Mutl-server Configuration. The main server has multiple sub-server and each

sub-server manages client connections.

sets are extremely large (tens of terabytes), so it is not practical for a meta-server to

hold a copy of all the raw image data (Fig. 43).

In order to guarantee data transfer reliability between the server and the client

PCs, I decided to use a secure File Transfer Protocol (sFTP) rather than using a cus-

tom data transfer protocol. The file size transmitted through the network is between

16 MB (8-bit gray scale image in 256× 256× 256 cube) to 128 MB (512× 512× 512).

Besides the raw transmission, the server shares information with the client PCs via

KESM Parallel Reconstruction Protocol (KPRP, Fig. 44).

The server needs to know what the clients are doing at a given moment and what

they are going to do next. To do this, the server manages the task control blocks of

the clients, but does not directly control the clients. The server acts passively, and
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Fig. 44. KESM Parallel Reconstruction Protocol.
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the clients have initiatives in the reconstruction process. In some sense, the server

simply waits until the clients send requests or report their status, and does not direct

the clients run the reconstruction algorithm. The clients are supposed to ask for a

data block to the server, run the reconstruction algorithm, and transmit the result to

the server. The server collects the reconstructed geometric data, and maintains the

overall process. This makes the system simple to maintain. The advantages of the

present system design are as follows.

• Minimum communication: the server does not directly control the clients. The

clients do not rely on the server when they perform their own tasks; rather,

they just notify their status and task information to the server.

• Robustness: when some of the client PCs crash, it simply means to the server

that some of the tasks allocated to a client node cannot be performed within a

certain amount of time. The server will reallocate the task to another client as

another client asks for a new task.

• Simplicity and scalability: if more client PCs are connected to the server, it

simply improves the performance without increasing a significant management

overhead for the server.

Fig. 45 shows a screen-shot of the parallel reconstruction framework.

I discussed a parallel processing framework in this section. Due to large amount

of data sets from KESM, it is a big challenge to reconstruct whole three-dimensional

geometric structure from image stacks. A parallel processing framework was intro-

duced to reduce the time. Following sections are about
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Fig. 45. KESM Parallel Reconstruction.
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C. Unit Volume

A Unit Volume is defined as a basic processing block for visualization and analysis. In

order to visualize volumetric data sets, we need to extract a Region of Interest (ROI)

since the entire volume is too large to load into the system memory of a modern

computer.

The size of the unit volume is calculated automatically based on the whole tissue

block size. In most current computer system, the cubic size should be less than

512× 512× 512. The width, the length, and the height are decided to be in between

256 and 512. The width is defined as the size of the horizontal direction (Eq. 5.5),

the length means the size of the vertical dimension inside an image (Eq. 5.6), and the

height represents the height of the volume (Eq. 5.7).

UnitWidth =
(WR × C)

2w
(5.5)

UnitLength =
LR

2l
(5.6)

UnitHeight =
max(HR(c))

2h
(5.7)

where WR is the tissue ribbon width, C is the number of columes, LR is the ribbon

length, HR(c) is a height of the image column stack indexed by c, and w, l, h are

the smallest numbers that make the UnitWidth, UnitLength, and UnitHeight are

between 256 and 512.

Col =
floor(UnitWidth×Wi)

R
(5.8)

StartXinCol = R− (R× (Col + 1)−Wi × UnitWidth) (5.9)

where Col is a column index, R is the width of a ribbon, Wi is the index for the width
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direction, and StartXinCol is the start position in the column.

Once we have the Col and the StarXinCol values (Eq. 5.8 and 5.9, then we

are ready to extract image regions from each image in the image stacks. Col tells

us which folder should be explored (note that images are located in separate folders

based on the column number). The image file names in each folder are based on the

height index. So it is trivial to get the right image file in the folder. StartXinCol,

as the name implies, indicates the start position for extracting a region from the

image. If the extracted region is smaller than that of the unit volume, then the

algorithm continues to extract a region in the image in the Col + 1 folder. This

process is continued until the size of the extracted region is the same as that of the

unit volume.

Here is an example for better illustration:

1 The number o f columns : 8
2 The t i s s u e r ibbon width : 2 ,400
3 The t o t a l width o f the t i s s u e block : 19 ,200
4 The maximum he ight o f image s tack columns : 5 ,573

Suppose the scale is 1/4 and the index of the width, iWidth is 5. First, the

tissue ribbon width, 600 (= 2, 400/22) is calculated. The automatically calculated

width of the unit volume is 304 (= 38 × 8) in this example. 38 is the width of a

ribbon in the smallest scale (in this case, 1/32) and 8 means the number of columns.

Using Eq. 5.8, we can get Col = is 2 (= floor((304 × 5)/600). StartXinCol is 320

(= 600 − (600 × 3 − 5 × 304) (Eq. 5.9). In column number 2, we can get a region

whose width is 280 which is less than the unit width, so we need to move on to the

next column. After extracting a region whose width is 24 in the next column, these

regions which are extracted from separated images should be stitched into an image.

Fig. 46 illustrates these steps. This process is iterated until to collect all image pieces

across columns. A unit volume is made by stacking up unit images.
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Fig. 46. An Example Of Extracting A Unit Image For A Unit Volume.
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To summarize, I discussed data representation methods to manage large amount

of data sets in the first section of this chapter. To address the challenge, I described a

multi-resolution and hierarchical data representation method, and parallel processing

framework to speed up the processing speed. The last section of this chapter was

devoted to an algorithm for extracting a unit volume from the multi-resolution and

hierarchical data representation.

In the following chapter, I describe visualization, image segmentation, and data

representation for the fibrous three-dimensional data structure.
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CHAPTER VI

INTERACTIVE VISUALIZATION

Scientific visualization [66][67] provides methods that allow us not only to explore

data, but also to test hypotheses based on measurements or simulations. Visualiza-

tion of KESM data is problematic in many aspects [68]. First, the volume of the data

is too large for a typical desktop computer to be handled. Second, the anatomical

entities may be densely packed and branches of dendrites often intertwined in com-

plex ways. In this context, simply isolating a single structure from such a data set

could be difficult. Interaction is also an important element in scientific visualization,

because interactivity helps the user interpret and understand the data sets. Interac-

tion methods should allow the user navigate the data by selecting a Region of Interest

(ROI), or object of interest.

Through previous chapters, I showed how large volumetric data sets can be

successfully acquired, and processed, ready to be analyzed. To handle and examine

the large biological data sets, interactivity is an important factor. For example,

to grasp an idea about overall structure, seeing the whole block is an inevitable

function. However, it is almost infeasible to load all the image data, process them,

and explore inner structure, because the large amounts of the data often exceed the

system resource of the desktop PCs. To investigate the data sets, the user should

be able to select a portion of the data to examine it in more detail. Annotation is

also an important function for researchers to understand the data sets. Experts in a

certain area can help other researchers or share their interpretation of the data sets

through shareable annotations.

From the reconstruction method proposed in the previous chapters, I am able

to provide volumetric data sets as well as geometrical structure describing the mor-
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phology of the object in the data sets. The reconstructed data sets may shed light on

understanding the data, because we can get information about connectivity of fibrous

structure and length or thickness of the fibers through the reconstructed topological

and morphological data sets. This information is important especially to researchers

who are interested in neuronal processes, because it is commonly known that the

morphological properties of biological entities lead to difference in functions.

A. Data Visualization

A three-dimensional data viewer for volumetric data gives us a better overview, but

distortion due to perspective in three-dimensional objects may be inevitable. On

the other hand, a two-dimensional image viewer can provide precise and detailed in-

formation about an image, but it is hard to figure out the overall structure in the

volumetric data sets by viewing the images sequentially. In this context, a combi-

nation of two-dimensional and three-dimensional visualization is needed to build an

effective scientific visualization system.

Let us consider about a two-dimensional image viewer first. The user should be

able to examine a portion of a data set more accurately, and for this two-dimensional

image viewer with zoom in and zoom out function needs to be used. The KESM Two-

dimensional Image Viewer (K2IV) (Fig. 47)can be considered as a virtual microscopy

[69] which shows image slides and helps researchers analyze neuroanatomical data sets.

The two-dimensional image viewer is a sub-module for the KESM Data Visualization

System (KDVS).

KESM data sets often contain densely packed fibrous structures, and because

of this, it is hard to explore the data sets by only a two-dimensional image viewer.

Volume rendering is a better approach to get an overview of the data sets and it gives
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Fig. 47. KESM Two-Dimensional Image Viewer (K2IV). Users can rotate the volume

to see other surfaces.

us a more comprehensible picture. Through the volume visualization tool or three-

dimensional data viewer, a user can more easily identify neurons, their connectivity,

and microcirculation. A three-dimensional data viewer is a rendering tool, so the

image stacks are displayed in a volumetric form that is semi-transparent to show the

internal structures in the volume. The three-dimensional volumetric data viewer can

be used as a building block for integrated tools like the two-dimensional image viewer,

K2IV. Here, I have implemented a three-dimensional image volume visualization tool

and it will also be extended to KESM Three-dimensional Volume Renderer (K3VR)

which will be integrated into the KDVS (Fig. 48).

Efficient navigation will require multiple resolutions of the data. In order to

increase responsiveness, as I described in the previous sections, data sets will be pre-

generated at different zoom levels, and stored to a database as scaled-down images.

When a user is looking at a large portion of the data, a lower resolution data set will

be presented. If the user wants to see more specific features from a small portion of

the data, higher resolution data would be presented.
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Fig. 48. KESM Three-dimensional Volume Renderer (K3VR). The volume renderer is

integrated to the data representation method. The user can choose scale level

and indexes of the unit volume to display.
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(a) (b)

Fig. 49. Basic Elements of Fibrous Data. (a) Node segment. It consists of a node

pointer and a set of points led to the next node. (b) Line. A line can be

represented by a group of node segments.

B. Fibrous Data Representation

As part of the visualization system, an output file format has been developed. Even-

tually the geometric data reconstructed from the parallel reconstruction system will

be visualized with either the two-dimensional image viewer or the three-dimensional

volume renderer to help the user understand the data. Therefore, the visualization

system needs to understand the data file format for the reconstructed geometric data.

1. Data Representation

After three-dimensional segmentation, the traced structure needs to be stored in a

format that can be used in analysis of the data sets. Fibrous data can be represented

by a group of line segments and their connections.

A node segment is defined as the basic elements of the fibrous structure as shown

in Fig. 49 (a). A line can be described by a group of connected node points (see

Fig. 49 (b)). By using the basic elements, traced fibrous structure can be stored in a
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(a) (b) (c)

Fig. 50. Traced Data Representation. (a) An example of traced structure. (b) Traced

points are represented by groups of node points. (c) All points in the traced

structure are represented in a form of connected node segments.

certain format. Fig. 50 shows a conceptual illustration for the traced data. The traced

three-dimensional structure can be seen as groups of connected line segments (see Fig.

50 (b)). The segment in the traced structure is simplified to the node segment. Thus,

as Fig. 50 (c) shows, all points in the traced structure are represented in a form of

connected node segments.

2. Fibrous Data File Format

The data format consists of two major sections. First, all the data points are de-

scribed. Second, they are followed by the details of connections between the points.

1 NumPoints
2 index0 x0 y0 z0 r0
3 index1 x1 y1 z1 r1
4 index2 x2 y2 z2 r2
5 . . .

The data file starts with an integer number that represents the total number of

points (vertices). In the format, indexn is an integer label that identifies each point.
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xn, yn, and zn are the coordinates of the point and rn is the radius of the point.

The radius of the point is measured from the cross section when two neighboring

points are connected by an edge, where the first point is pointing toward the second

point. The second part of the data file has information about the conductivities of

the points.

1 NumLines
2 NumEdges
3 index n index m
4 index m i n d e x l
5 i n d e x l index o
6 . . .
7 NumEdges
8 index p index q
9 index q index r

10 index r index s
11 . . .

Below is a simple example to illustrate the data file format. Fig.51 shows the

connectivity based on the example below.

1 12 <−− the number o f po in t s
2 1 x1 y1 z1 r1
3 2 x2 y2 z2 r2
4 3 x3 y3 z3 r3
5 4 x4 y4 z4 r4
6 5 x5 y5 z5 r5
7 6 x6 y6 z6 r6
8 7 x7 y7 z7 r7
9 8 x8 y8 z8 r8

10 9 x9 y9 z9 r9
11 10 x10 y10 z10 r10
12 11 x11 y11 z11 r11
13 12 x12 y1 z12 r12
14 2 <−− the number o f l i n e s
15 8 <−− the number o f edges c o n s i s t i n g the l i n e
16 1 2
17 2 3
18 3 4
19 4 5
20 5 6
21 6 7
22 7 8
23 4 <−− the number o f edges c o n s i s t i n g the l i n e
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Fig. 51. An Example Of Fibrous Data.

24 12 11
25 11 10
26 10 9
27 9 2

Once the image volumes are described in geometric information, we can now get

a statistics of the geometrical structures. In the example above, x3 is a branch point

(Fig. 51).

I followed the information seeking principle overview first, zoom and filter, and

then details-on-demand [53] to visualize the data sets. Large-scale high-resolution

neuroanatomical data sets often cannot be displayed because of their immense size,

but to grasp an overview of the data, rendering the data at a low resolution at first

may be a good approach. When a user navigates the data and wants to see further

details, the visualization system should retrieve relevant portions of the data and

display them at a higher resolution.

Two-dimensional image visualization allows a user to see the image more pre-

cisely, whereas volume rendering provides us a better overview. When we navigate



89

the data sets while changing the view angle, it gives us various points of view so that

we can more easily identify structures such as branch points in closely packed fibrous

structures. I have developed a two-dimensional image viewer and a three-dimensional

volume renderer to provide a better way for a user to understand the image data sets.

As I described in the previous sections, the amount of the data sets is extremely

large, so I introduced the KESM Hierarchical Data Clustering (KHDC) scheme in a

previous chapter. The data sets are supposed to be divided into many small sub-

volumes. Also, MIP map (multum in parvo, meaning much in a small space) volumes

are generated for visualization in KHDC. The geometric structure inside a sub-volume

will also be traced. Therefore, we will have numerous volumetric blocks of the raw

images, and the traced data sets from those blocks. These viewers that I developed

here can deal with only an image volume without any context of the whole data set.

A geometric viewer is also needed to show a user the traced data. The hybrid of a

raw image viewer and a geometric viewer is a good approach to provide a user with

an enhanced ability to explore the data sets.

For the implementation of the visualization system, I used the Visualization

Toolkit (VTK) [51] and Insight Segmentation and Registration Toolkit (ITK) [50],

an open source library for three-dimensional visualization. The VTK has been used

for the visualization part and ITK for the image processing part. The user interface

has been implemented in Qt [52] which is a cross platform GUI framework. The

following chapter is devoted to data analysis and results of it.
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CHAPTER VII

DATA ANALYSIS

Efficient data analysis methods for large volumes of data sets play an important role

in neuroscience study. Standard procedure in experimental neuroscience study is as

follows. Possible situations such as aging are applied to a tissue, and the tissue is

compared with a control tissue. In order to compare the test tissue with the control

tissue, methods for measuring three-dimensional structural information are necessary.

Eventually the findings from the comparison can refine computational models (see Fig.

52).

A. Data Analysis

Efforts of my colleagues at BNL and I allowed us to scan two whole mouse brains

stained with Golgi and with India Ink, respectively. In this chapter, I describe some

results of data analysis from one of our data sets. For this analysis, I used a processed

three-dimensional volumetric data sets of a mouse brain specimen stained by India

ink.

Dotted square boxes in Fig. 53 indicate volume areas analyzed here. One box

stands for four adjacent 225µm × 262.5µm × 290µm cubic volume. I intentionally

chose three different regions, specifically the olfactory bulb, the cerebral cortex, and

the cerebellum, to see statistical difference between those areas.

As iso-surface visualizations in Fig. 54 (a), 55 (a), and 56 (a) show, the structural

differences cannot be easily observed by just looking at the three-dimensional visual-

ization. Before starting data analysis, the tracing method that has been used needs

to be discussed. To trace fibrous microstructure in three-dimensional volumetric data

sets, I used a model-based method [72] implemented for [73]. Fiber segments are
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Fig. 52. Possible Scenario For Data Analysis. Possible experimental conditions can be

applied to a test tissue. Efficient ways of Data analysis allows us to compare

the test tissue and the control tissue.
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(a) (b)

Anterior

Posterior

Anterior Posterior

Dorsal 
side

Ventral 
side

Fig. 53. Mouse Brain. Dotted square boxes (gray arrows) indicate the analyzed areas.

(a) Dorsal view of the mouse brain. The black rectangle is a scale bar, 1 mm.

Mouse brain image adapted from [70]. (b) Sagittal view of a mouse brain.

Mouse brain image adapted from [71].

(a) (b)

Fig. 54. A Unit Volume From The Olfactory Bulb. (a) Iso-surface visualization (b)

Traced result.
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(a) (b)

Fig. 55. A Unit Volume From The Cerebral Cortex. (a) Iso-surface visualization (b)

Traced result.

(a) (b)

Fig. 56. A Unit Volume From The Cerebellum. (a) Iso-surface visualization (b) Traced

result.



94

modeled with a central axis curve coupled to a fiber wall surface. Many approaches

to segment structure often use a single-scale analysis that can only apply for a range

of width. This model-based method uses multi-scale algorithms to cope with fiber

width variations.

The detail of the implementation of this model-based tracing method can be

found in [72]. My main contributions to the tracing implementation is focused on the

automation of the tracing for multiple volumetric data sets and the development of

a fibrous data file format.

Due to the fibrous data representation framework, statistical information can

be automatically calculated since the data structure has all the necessary pieces of

information.

B. Results

We can compare the three different regions through automatic statistical analysis.

A segment is defined as an edge between two neighboring branches. Fig. 57 shows

the comparison between the three different regions: the olfactory bulb, the cerebral

cortex, and the cerebellum. The total length of fibrous structure in an area of the

cerebellum is longer than that of the two other areas. This may mean that the fibrous

structure in the cerebellum is most densely packed. The number of branches of the

area in the cerebellum is also greater than that of others (see Fig. 58). This graph

means that the fibrous structure in the cerebellum is not only densely packed but

also the most interwoven.

The automatic data analysis framework generates all radii in the traced struc-

tures to see the distribution of the data. By looking over Fig. 59 (a), we can tell that

there are thicker fibrous structures in the area of the cerebellum (see the bars around
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Fig. 57. Comparison between the Three Different Regions. (a) The total length of

fiber structure is shown. The length in the cerebellum is the longest among

the three. (b) Surface areas between the three areas. (c) The volume size of

fiber structure.
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Fig. 58. Number Of Branches And Total Segment Length. (a) The number of branches

in the area of the cerebellum is the largest among the three. (b) The total

length of segments. The length of the segments in the areas of the olfactory

bulb is longer than that of the cerebral cortex.
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Fig. 59. Distributions Of Radius and Segment. (a) Histogram of all radii. (b) His-

togram of the numbers of segments. Relatively, the cerebellum shows longer

distances between two branch points.

radius 12µm). The segment histogram (Fig. 59 (b)) shows that there are longer seg-

ments in the area from the cerebellum since small segment lengths are dominant in

the areas from the olfactory bulb and the cerebral cortex while the segment lengths

up to 80µm are evenly distributed in the areas from the cerebellum.

Below is another example of the potential usefulness of structural information of

tissue samples from the reconstruction system. The two following automated quan-

titative analyses are the structural information from small blocks (256 × 256 × 256

cube) from the mouse neocortex and the mouse spinal cord.

The number of branches and segments (Fig. 60 (a)), and the length of segments

(Fig. 60 (b)) in the vascular network in the spinal cord are almost three times greater

than those in the neocortex. The average length between neighboring branches is

almost the same (Fig. 60). One interesting thing is that the surface area and the

total volume between the spinal cord and the neocortex samples are significantly

different. In other words, the blood vessels in the spinal cord sample seem much
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Fig. 60. Comparison Between The Spinal Cord And The Neocortex Samples. (a) The

number of branches and segments. (b) The length of segments.
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Fig. 62. Distributions Of Segment Lengths In Blood Vessels. (top) an example from

the mouse spinal cord. (bottom) an example from the mouse neocortex.

thicker than those in the neocortex sample (Fig. 61). Also the distributions of the

lengths of segments are quite different (Fig. 62).

In this chapter, I discussed the utility of the automatic data analysis tool that

allows us to open a new opportunity to analyze large amounts of volumetric data

sets. In the following, I will describe a software framework for acquisition and mining

of microstructure in the brain.
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CHAPTER VIII

SOFTWARE FRAMEWORK

Throughout previous sections, I introduced the KESM Image Acquisition System

(KIAS), the KESM Image Capturer System (KICS), the 2D Image Viewer (K2IV), the

3D Volume Render (K3VR), and a framework for parallel data reconstruction (KESM

Hierarchical Data Representation [KHDR] and KESM Parallel Data Reconstruction

System [KPDR]). Here, I present an integrated tool by combining and extending the

components listed above. Fig. 63 shows an overall organization of the system.

A. Overall Structure

The software framework has several parts. First, the KESM Image Acquisition Sys-

tem (KIAS) mainly consists of the KESM Image Capturer (KIC), the KESM Stage

Controller (KSC), the KESM Stair-Step Controller (KSSC), and the KESM Session

Manager (KSM). The data acquisition system, KDAS, was designed and implemented

especially for getting large data sets from small animal organs such as the brain, kid-

ney, or spinal cord. In order to expand the scan area beyond the width of the fixed

Field of View (FOV), I have developed a lateral sectioning algorithm with my col-

leagues in the Brain Networks Laboratory (BNL). Sectioning and imaging of a tissue

block often takes more than a week, and sometimes more than a month depending on

the size of a tissue block. Even though the acquisition system runs by itself after a

user set all the parameters, it still needs human intervention. Therefore, the ability to

resume sessions is essential where a user restarts the operation at the same condition

from the previous session. Suppose that a user stopped the data acquisition operation

one day and then and the user needs to resume the task later. The stage should be

positioned at exactly the same place where the previous sectioning was being done.
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Fig. 63. KESM Software Framework.

Also, all the coordinate values for the lateral sectioning process should be restored

even though all the systems would have shut down previously. The KSM manages

the status of each cutting session.

When the image acquisition task is finished, all the raw image stacks should be

trimmed in order to remove extra region where there is no tissue structure. The KESM

Image Manager (KIM) browses raw images and manages the data pre-processing. To

build the data for the KESM Hierarchical Data Clustering (KHDC) module, the

volumetric data should be divided into small blocks and also multi-resolution data

should be generated. These multi-resolution and sub-divided data sets will be inputs

to the KESM Parallel Reconstruction System (KPRS).

The KPRS is a system that extract morphological information from the divided
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blocks in parallel. When the whole mouse brain is sectioned and imaged, the recon-

struction task is almost infeasible not only because of the immense size of the data

but also because of the tracing time. KPRS uses a star topology network to configure

the reconstruction process and provides an efficient method to extract the geometric

structures from a large scale volumetric data set. A communication protocol was also

desribed for this parallel processing. When the size of the data becomes even bigger,

then multi-server configuration can also be considered.

B. Software

I have provided an integrated tool for KESM data sets. The image acquisition part

is dedicated to the KESM design, but the rest of the system such as KIM, KHDC,

KPRC, K2IV, and K3VR can be used as a general image management tool for other

types of large scale volume data.

An image stack can be acquired by the KESM Image Acquisition System (KIAS).

As I described in earlier sections, the amount of the KESM data sets are extremely

large in most cases, So a typical desktop computer cannot handle the whole data set

at once. In order to use the data sets for interactive data visualization, the raw data

sets should be pre-processed. A hybrid representation, KHDC, consisting of octree

data representation and MIP map will be used.

1. Data Processing Pipeline

Let us review the data processing pipeline before discussing the software frameworks.

First, a tissue block is mounted on top of the stage of the KESM. KIAS generates

several raw image stacks from the tissue block. Images in these raw image stacks have

extra areas to be removed and intensity noises to be recovered. KIM converts raw
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Fig. 64. Data Processing Pipeline. A tissue block turns into raw image stacks by

the image acquisition system. The raw stacks result in several images stacks

through automatic image crop and intensity normalization. Multi-scale Image

Maker generates image stacks in different scales. Unit volumes can be accessed

by the Unit Volume Generator.

images stacks to clean-cut image stacks which is ready to be reconstructed into three-

dimensional volumetric data sets. These processed image stacks go into Multi-scale

Image Maker which produces multiple image stacks in different resolutions. K3VR

or Fibrous Data Tracer uses the multi-scale image stacks through the Unit Volume

Genereator (Fig. 64).

2. Image Capturer and Stage Controller

Fig. 65 shows a screenshot of the KESM Image Capture System. KESM Stage Con-

troller (KSC) communicates with KICS to synchronize two tasks: stage movement

and corresponding image capture.

The operation parameters for image acquisition can be set by the interface shown

in Fig. 66 (b) and the task of the stair-step operation can be monitored and managed

by the dialog box (see Fig. 66 (c)).
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(a) (b)

Fig. 65. KESM Image Acquisition System (KIAS). (a) KESM Image Capture System

(KICS) (b) KESM Stage Controller (KSC).
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(a) (b)

(c)

Fig. 66. KESM Stage Controller (KSC). (a) The main window of KSC (b) The dialog

box for setting operation parameter (c) Stair-step controller.
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Fig. 67. Image Cropper. This software includes intensity normalization module.

3. Image Cropper and Intensity Normalizer

The Intensity Normalizer is embedded inside the Image Cropper (Fig. 67). The Image

Cropper can also be considered as a tool for removing misaligned image chunk issue

discussed in Chapter IV. I automated the whole process by implementing this crop

software.
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Fig. 68. Multi-scale Image Volume Maker. Users can choose either a specific column

number or all columns.

4. Hierarchical Data Generator

In order to generate hierarchical data, I implemented a Multi-scale Image Volume

Generator (Fig. 68). The software framework resizes all image stacks throughout all

columns. This resize task is continued until the volume size resized reaches that of

the unit volume.

Users can choose either a specific column to resize or all columns. After clicking

the start button, all processes are done automatically.
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Fig. 69. Unit Volume Maker. Unit volumes are extracted by this software.

5. Unit Volume Maker

Through the Hierarchical Data Generator, now we have multi-scale image volumes

in the form of column-wise images stacks. In order to visualize it or trace structures,

unit volumes need to be extracted (see Fig. 69).

6. Fibrous Structure Tracer in 3D Volume and Structure Analyzer

Fig. 70 shows a screenshot of the Fibrous Structure Tracer which is an implementation

of a model-based multi-scale tracing method [73]. The output files of the tracing are

saved both in a VTK-compatible data file format and a data file represented by data
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Fig. 70. Fibrous Structure Tracer.

structure and node segments represented in Chapter VI.

7. Examples of Visualization Software

KESM 3D Volume Renderer (K3VR) is shown in Fig. 71. The rendering software can

display not just iso-surfaces but also wired frames.

In conclusion, the software framework is an integrated tool for acquiring, han-

dling, and sharing the data sets. The morphological properties of the data sets can be

traced and their structural information can be described by the fibrous data format.

Also the data can be stored in standard data formats such as the VTK file format.

Fig. 72 shows the extensibility of the KESM data sets. VTK’s standard viewer, Par-

aView [74] can display the KESM data volume stored in the VTK file format (see
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(a)

(b)

Fig. 71. Examples Of Visualization Software. (a) Iso-surface visualization (b)

Wired-frame visualization



110

Fig. 72. ParaView [74]. This shows that the KESM data volume can be loaded by

other visualization tools supporting VTK [51] data file format.

Fig. 72).
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CHAPTER IX

CASE STUDIES

It is important for neuroscientist to have efficient tools to explore the microstructure

data sets of the brain, because the morphological information in the brain is closely

related to its function. It is well known that the function of the brain depends

on the connectivity and the neuronal morphology. Therefore, understanding the

relationship between structure and function is a crucial step to understand brain

function. Throughout the previous sections, I reviewed a framework that enables the

construction of a detailed connectivity and neuronal morphology. All the statistical

and morphological information can allow us to explore theoretical issues such as

modeling neural circuits, and eventually intelligence.

In relation to this dissertation, I have studied two theoretical issues: (1) A model

of compensation for neuronal delay in neural networks [75], and (2) internal state

predictability inside a neural system as an evolutionary precursor of self-awareness

[76]. Anatomical predictions of these models can be tested with the KESM data.

The case studies here have been conducted for investigating delay compensa-

tion mechanism in the neural system and the role of internal state in terms of self-

awareness. The delay compensation mechanism in neural systems may be scrutinized

if we have exact morphological structure in cellular level and its physiological prop-

erties. The second case study is about the predictability of internal state in neural

systems. It is interesting to note that anatomically determinable properties such as

delay distributions can be related to dynamic properties of neuronal network acti-

vation. For example, Thiel et al. have shown that random networks with broadly

distributed delay show simple dynamics while those with narrowly distributed delay

exhibit complex dynamics [77]. The data from KESM can help assess dynamical
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properties of networks or subnetworks in the mouse brain by measuring the delay

distribution, estimated through axonal length and thickness. The prediction of my

theoretical work indicates that self-awareness may be related to simpler, more pre-

dictable dynamics. So, identifying regions in the mouse brain that show more broadly

distributed delay could be related to self-awareness.

A. Facilitatory Neuronal Dynamics

1. Introduction

Goal-directed behavior is a hallmark of intelligent cognitive systems. Therefore, un-

derstanding such behavior is not only important but also essential to scrutinize in-

telligence. However, it is not easy to directly investigate goal-directed behavior since

there is an implied agent behind such behavior, and there is yet not a consensus on

what constitutes an agent.

Thus, here we take a different approach to initiate a first step toward understand-

ing goal-directed behavior. Our strategy is to focus on a precondition, or a necessary

condition for goal-directed behavior, rather than trying to address the problem head-

on.

The main question we will address here is how the precondition could have

evolved. Once the prerequisite has evolved, it could have laid a critical stepping

stone toward goal-directed behavior. We theorize that one important necessary con-

dition of goal-directed behavior is prediction. Note that a goal is always defined as

a future event. Thus, without the ability to anticipate future events, one may not

be able to establish a goal. In order to anticipate, one needs to be able to predict.

Consequently, by analyzing how prediction has evolved, we could shed light on a po-

tential evolutionary pathway toward goal-directed behavior. Also, we must note that
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prediction is increasingly being recognized as one of the core functions of the brain

[78][79] (see also [80][81] on prediction in dynamic neural network architectures).

In my previous work with my colleagues [82][83][84][85], we hypothesized that

delay in the nervous system could have led to a delay compensation mechanism, which

in turn could have further developed into a predictive function. First, let us take a

look at neuronal delay in detail before investigating the predictive property of the

delay compensation mechanism. Strictly speaking, representations of the present in

the brain may not even be precisely aligned with the present in the environment. Our

sensory information would reflect the past if the higher perceptual areas in the brain

register the signal at the moment the signal is received. Consider visual processing.

A series of steps is required for visual stimulus information to reach higher visual

processing areas: photoreceptors, bipolar cells, ganglion cells, the lateral geniculate

nucleus, the primary visual cortex, and beyond [86]. It could take in the range of

100 to 130 ms for the visual signal to arrive in the prefrontal cortex (in monkeys)

[87]. In order to make up for the neuronal transmission delay, the brain should utilize

information from the past and predict the current state.

Some researchers probed this topic in terms of delay compensation [88][84][83] or

prediction [89][90]. Lim and Choe suggested a neural dynamic model for delay com-

pensation using Facilitating Activity Network (FAN) based on short term plasticity

in the neuron known as facilitating synapses [88][83]. Facilitating synapses have been

found at a single neuron level in which the membrane potential shows a dynamic

sensitivity to the changing rate of the input [88][91]. As illustrated in Fig. 73, the

original signal can be recovered from the delayed signal by using facilitating dynam-

ics. According to the facilitation model, as Fig. 74 illustrates, higher facilitation rates

are needed to effectively deal with longer delay. However, the FAN model turns out

to have limitations, i.e., oscillation under high facilitation rate (see Sec. 3 for details).
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Fig. 73. Delay And Delay Compensation Through Facilitating Neural Activity. (a)

The solid curve represents the original signal, and the dotted curve corre-

sponds to the delayed signal (delayed by d). (b) The original signal can be

extrapolated by facilitating the neural activity (further increasing when the

signal is increasing, and further decreasing when the signal is decreasing). For

example, an activation value b at time t (original signal from t − d, delayed

by d) can be modulated down to a through facilitating dynamics, where the

modulated value a is an approximation of the original signal at time t.
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Fig. 74. Length Of Delay And Required Degree Of Facilitation For Delay Compen-

sation. The solid curve represents the original signal, and the dotted curve

the delayed signal (delayed by d). (a) Short delay requires only a moderate

amount of facilitation to compensate for the delay. (b) More facilitation is

needed as the length of delay between the original and the delayed signal

becomes greater (the vertical arrows are longer in (b) than in (a)).
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Furthermore, the analysis in [88][84] did not consider differential utilization of facil-

itation among different neuron types within the context of the entire network (e.g.,

sensory neurons vs. motor neurons).

Here, we propose an improved dynamic model, Neuronal Dynamics using Previ-

ous Immediate Activation value (NDPIA) that solves the oscillation problem in FAN.

In addition, we conducted experiments in less restricted conditions than in [88, 84]:

(1) input delay was applied to the system for the entire duration of each experi-

ment, and (2) we extended the delay to twice the usual value compared to the earlier

experiments with FAN, and analyzed the results from the increased delay.

To test NDPIA and to investigate the properties of the neuronal networks with

the suggested neuronal dynamics, we employed a 2 degree-of-freedom (2D) pole-

balancing [92] agents with evolved recurrent neural networks as their controllers (cf.

[93][94]). We used conventional neuroevolution to train the networks (see Sec. b for

detailed justification, and Ward and Ward for successful use of such strategy in a

different task domain). [95]

Our main findings are as follows: (1) NDPIA can solve the oscillation problem

in FAN during heightened facilitation. (2) Motor neurons in a NDPIA network tend

to evolve high facilitation rates, confirming similar previous results with FAN. (3)

Longer delay leads to higher facilitation rates. (4) Neural network controllers using

NDPIA dynamics result in better performance in pole balancing tasks than those

based on FAN. (5) NDPIA networks show robust performance under extremely high

facilitation rates, especially when only the motor neurons are facilitated. These results

suggest that delay and facilitation rate must be positively correlated for effective

compensation of delay, and the best part in the system to introduce such dynamics

is the motor system.

Below, we first look into related research, then we analyze the limitations in the
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FAN dynamics. Then we will propose a new facilitating dynamics (NDPIA). Next,

the 2D pole-balancing problem and evolutionary neural networks will be introduced.

Finally we will present and analyze the results, followed by discussion and conclusion.

2. Background

The activation level or the membrane potential of the postsynaptic neuron is modu-

lated by the change in the rate of past activation. These dynamic synapses generate

short-term plasticity, which shows activity-dependent decrease (depression) or in-

crease (facilitation) in synaptic transmission [91][96]. These activities occur within

several hundred milliseconds from the onset of the stimulus [91][97]. [88][83][84] inves-

tigated the relationship between these neuronal dynamics and delay compensation,

and suggested that facilitating dynamics at a single neuron level may play an impor-

tant role in the compensation of neuronal transmission delay.

How can such dynamics be realized in a neural network? We can begin with

conventional artificial neural networks (ANNs), but ANNs lack such single neuron

level dynamics (note the adding recurrent connections can introduce a network-level

dynamics). As we can see in Eq. (9.1), the activation values in conventional ANNs

are determined by the instantaneous input value and the connection weights.

X(t) = g

 m∑
j=1

wjXj(t)

 (9.1)

where g(·) is a nonlinear activation function such as the sigmoid function, m is the

number of neurons of the preceding layer, wj is the connection weight, and Xj is an

activation value from a neuron of the preceding layer [88][83][84]. Eq. (9.1) shows

that there is no room to consider the past values of Xj. Recurrent ANNs could be

one simple solution for this, but the dynamics may not be fast enough to cope with
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input delays. [98] proposed a neural network based Smith predictor to compensate

for large time delay; [99] used the Kalman filter in the internal forward model to

predict the next state; and [84] showed that facilitating neuronal dynamics at a single

neuron level can play an important role in compensating for input delays.

In order to overcome the issues above, the activation value needs to be directly

modulated as in the Facilitating Activity Network (FAN) model [88][83][84]:

A(t) = X(t) + r∆(t) (9.2)

where A(t) is the modulated (facilitated or depressed) activation value at time t,

X(t) is the immediate activation value, r is a dynamic rate (−1 ≤ r ≤ 1), and ∆(t)

is X(t)− A(t− 1).

If r ≥ 0, and if the signal increases for a while, the activation value is augmented

by the difference ∆(t) of the immediate activation value X(t) and the previous mod-

ulated activation A(t− 1) with the rate r (see Fig. 75(a)). If r ≥ 0, but if the signal

decreases, the activation value is diminished by ∆(t), because it becomes a negative

value in this case as shown in Fig. 75(b). This results in facilitation.

Suppose r ≤ 0, and that the signal increases for a while, then the activation value

is diminished by the difference ∆(t) between the immediate activation value and the

previous modulated activation with the rate r. If the signal decreases for a while under

the same condition, the amount of decrease becomes smaller than the immediate value

by ∆(t) with the rate r, because r is a negative value and ∆(t) is a negative value

as well, so r∆(t) becomes a positive value. This makes the signal greater than the

immediate signal. Furthermore it means that the signal is decreased less than what it

is supposed to be. In other words, the modulated activation values can be considered

within the range of (X(t) − ∆(t)) ≤ A(t) ≤ (X(t) + ∆(t)) [88] which means that

the present activation value could be diminished by ∆(t) (depressing dynamics) or
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Fig. 75. Facilitating Neural Activity. (a) The immediate activation value X(t) is mod-

ulated by the difference between X(t) and the modulated activation value

A(t − 1) in the previous time step, with facilitation rate r. (b) The same

principle can be applied to the decreasing activation case.

augmented by ∆(t) (facilitating dynamics).

Neural networks using the FAN model showed not only better performance than

conventional networks but they were also more robust in various delay conditions

[88][82].

3. Methods: Enhanced Facilitating Activity Model

Even though [88][83][84] paid attention to short-term synaptic plasticity, especially

facilitating synapses, and suggested a compensation mechanism for neuronal trans-

mission delay, several further challenges remain. As Fig. 74 illustrates, we need to

use a higher facilitation rate as the delay increases. However, Lim and Choe did not

investigate the effect of higher facilitating rates. rates. When the FAN model is used

with high facilitation rates, the modulated activation values become unstable/oscil-

latory. Furthermore, a systematic analysis of the neuronal dynamics in the network

level is needed because Lim and Choe did not investigate differential utilization of

facilitating dynamics dependent on neuron type.
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Fig. 76. Problems In Facilitating Dynamics Of FAN. (a) When the activity is increas-

ing, the immediate activation value X(t) could be smaller than the modulated

value A(t − 1) from the previous time step, so the modulated value at the

present A(t) becomes smaller than the immediate value X(t). This property

of the conventional FAN model makes the system output to become unstable.

(b) Basically, the same analysis can be applied in the case of decreasing ac-

tivity. When the activity is decreasing, X(t) is larger than A(t − 1). Hence,

A(t) becomes even larger than X(t).

Here, we propose an improved dynamics model to address these challenges. The

previous FAN model turns out to have a limitation especially when longer delay is

applied to the model. Below, we analyze the potential problems of the FAN model in

detail and propose an enhanced model to deal with the problems. First, we expand

Eq. (9.2) into:

A(t) =

(
k−1∑
n=0

(−1)nrn(1 + r)X(t− n)

)

+ (−1)krkA(t− k) (9.3)

Now we can more clearly see that the current modulated activation value A(t)

is a function of X(t− 1), X(t− 2), X(t− 3) and so on. The problem is that, given a

positive dynamic rate r, X(t−1), X(t−3), etc. contribute negatively while X(t−2),
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X(t − 4), etc. positively. These positive and negative components can give rise to

abrupt oscillations in A(t) that originally do not exist in the input signal.

To better illustrate the problem, let us take an example in the case of facilitating

dynamics. As we can see in Fig. 76(a), even when X(t) keeps increasing from X(t−1),

the immediate activation value X(t) could be smaller than the previous modulated

value A(t − 1). This is not desirable since A(·) will oscillate unlike X(·). The same

phenomenon happens when the activity is decreasing as in Fig. 76(b).

a. Enhanced Facilitating Activity Model

In order to address the above issue, we propose an improved neuronal dynamics model

(NDPIA) which considers only the previous immediate activation value (Fig. 77).

A(t) = X(t) + r(X(t)−X(t− 1)) (9.4)

where A(t) is the modulated (facilitated or depressed) activation value at time t,

X(t) is the immediate activation value, and r is the dynamic rate. The dynamic rate

r can either facilitate or depress the activity, and it is not limited to −1 ≤ r ≤ 1, so

that we can either facilitate or depress the immediate activation values as highly as

we want. But practically, this value should not be too high.

As we have shown in Eg. (9.3), the effect of X(t−(n+1)) disappears very quickly

as n increases and r is less than 1. NDPIA accounts for the current and the previous

immediate activation values. So in order to consider the previous activation values

such as A(t − 1) and A(t − 2) prior to the immediate one, we used recurrent neural

networks in the present paper, and the context inputs that are simply feedback from

the hidden layer could make up for the effect of older past activation values. Fig. 78

shows that the proposed facilitation model can solve the problem in FAN.
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Fig. 79. 2 Degree-Of-Freedom Pole-Balancing Task. The cart (gray disc) with an up-

right pole attached to it must move around on a 2D plane while keeping the

pole balanced upright. The cart controller receives the location (x, y), the

pole angle (θx, θy), and their respective velocities as the input, and generates

the force in the x and the y direction. Note that θx and θy are projected

angles to the x-z and the y-z plain respectively.

b. 2D Pole-balancing Problem with Delayed Inputs

We tested our new facilitating dynamics in recurrent neural network controller for a

2D pole-balancing task (Fig. 79). The state of the cart (the gray disc on the bottom

Fig. 79) with a pole on top is characterized by the following physical parameters: The

cart position in the plane (x, y), the velocity of the cart (ẋ, ẏ), the angle of the pole

from the vertical in the x and the y directions (θx, θy), and their angular velocities

(θ̇x, θ̇y) [92].

To test our facilitation dynamics, we employed the 2D pole-balancing problem,

following [84]. The differences from [84] are as follows. First, we tested with delays in

all inputs, and the delay was applied during the entire test period in all experiments.

In [84], delay was applied either to a subset of the input for the entire duration, or

to all the inputs only for a limited time period during each trial. Second, we evolved
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the controllers under no delay condition and tested them with up to two-step delay

with increased facilitation rate. Longer delay may not be acceptable because of the

high possibility of phase difference (see Sec. 5 for a discussion). In [84] only one step

delay was investigated for measuring the performance of controller networks. Third,

we used conventional GA to evolve the controllers instead of Enforced SubPopulation

algorithm (ESP) [92][94]. The main reason for using conventional GA was to have

a clearly separated role for the sensory and the motor neurons, to investigate the

differential utilization of facilitating dynamics in these neuron types.

The cart controller applies force to the cart on a flat surface to balance the pole

(the pole must remain within ±15◦ of the vertical). The force was applied in both

the x and the y directions at a 0.1 second interval. If the controller balances the

pole more than 5,000 steps (1 step = 100 milliseconds), we consider it as a success.

The fitness function returned the number of steps the agent balanced the pole within

±15◦ from the vertical and stayed inside a 3m × 3m area (each axis ranging from

−1.5m to 1.5m). We used recurrent neural networks to control the cart (Fig. 80).

See Sec. c for details on the neural network controller. Fifty recurrent networks were

evaluated in each generation, and to avoid situations where some neurons evolve to

have accidentally good fitness values, we used the roulette wheel sampling method

[100, 101, 102]. We used a pole length of 0.5m tilted 1 degree from the vertical towards

the +y direction with (θ̇x, θ̇y) = (0, 0) in the initial state. Force within the range of

-10N to 10N was applied to the cart at a time step of 0.1 second, based on the output

(Fx, Fy).

With this setup, we (1) investigated the effect of dynamic rates in a single neuron

level by evolving the rates from depressing to facilitating property, (2) compared

the performance between FAN and NDPIA, and (3) showed that facilitating motor

neurons are better at coping with longer delays than facilitating sensory inputs or
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Fig. 80. Recurrent Neural Network For 2D Pole-Balancing. The signal flow inside each

neuron is shown in the box. Z−1 means unit delay.

both sensory and motor neurons.

c. Neuroevolution

[88][84] investigated dynamic activation rates in a single neuron level, however, they

have not tested the effect of facilitation in different parts of the network (e.g., by

neuron type).

We evolved controllers having recurrent neural networks with dynamics neuronal

activities. These activity rates were evolved to range across −1 ≤ r ≤ 1 which means

it could be facilitating or depressing.

We used a recurrent neural network with eight input nodes, three context input

nodes, three hidden neurons, and two output neurons in order to control the cart
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in the plane (3m × 3m). Fig. 80 shows the recurrent network that we used in the

experiments. Input nodes correspond to the cart position (x, y), the velocity of the

cart (ẋ, ẏ), the angle of the pole from the vertical in the x and the y directions

(θx, θy), and their angular velocities (θ̇x, θ̇y). The hidden layer activations are fed

back as contextual input, with a unit delay. Output neurons Fx and Fy represent the

force in the x and the y direction, respectively. Each neuron’s immediate activity is

calculated by Eq. (1), and subsequently facilitated using the dynamics in Eg. (4).

In training these non-linear controllers, neuroevolution methods proved efficient

[93][94]. Unlike [93][94], we used a conventional neuroevolution method instead of

ESP. The chromosome encoded the connection weights between input nodes and

hidden layer neurons, and between hidden layer neurons and output neurons. In the

experiment of the evolution of dynamic activation rates, we additionally included a

dynamic rate parameter in the chromosome. Crossover occurred with probability 0.7

and the chromosome was mutated by ±0.3 (perturbation rate) with probability 0.2.

These parameters were determined empirically.

4. Experiments and Results

First, we tested whether NDPIA helps fix the unstableness/oscillation problem in

FAN, using a fixed time series as input. Next, to test the rest, we evolved recurrent

neural networks with FAN or NDPIA dynamics, where the connection weights and

also the dynamic rates were allowed to evolve. The networks were trained in a 2D

pole-balancing task, and then tested with added delay in the sensory signals (the

input).
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a. Enhanced Facilitating Activity Model

With NDPIA, we were able to correct the oscillation problem in FAN, discussed in

Sec. 2. We compared the two models with a signal taking a simple functional form:

f(t) = 2× exp(−t)× sin(t) (t is time). Figs. 81 and 82 show portions of the function

where the change in the signal is either fast or slow. First we observed the part of

the signal where the signal changes rapidly. Here we used a dynamic activation rate

of 0.8 (facilitation). In Fig. 81(a), which shows FAN, the immediate activation value

cannot keep up with the modulated one, thus oscillation occurs in the modulated

activation values. In other words, facilitation did not occur properly in this case.

Fig. 81(b) shows that using NDPIA these oscillations can be removed. Even when

the signal changes slowly, if the facilitation rate is high enough (0.9 was used in this

case), the oscillation would occur again (Fig. 82). Facilitation rate of 0.9 might seem

too high, but as we examined in Sec. 1, high facilitation rates can be necessary. As

before, FAN results in oscillation (Fig. 82(a)) while NDPIA results in no oscillation

(Fig. 82(b)).

b. Evolved Dynamic Activation Rates

In the recurrent neural network controller, the hidden units receive direct sensory

input, so we can say these are sensory neurons. In a similar manner we can consider

the output neurons as motor neurons since they are directly coupled to the cart

motion. Our main question here is if all types of neurons (sensory or motor) evolve

to utilize facilitating dynamics under delayed input conditions. Furthermore, we

question if increase in input delay leads to stronger facilitating dynamics.

In order to test these, we encoded into the chromosome the dynamic activation

rates of sensory neurons (hidden) and motor neurons (output) as well as the synaptic
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Fig. 81. Facilitation Under Fast Signal Change Condition. This graph shows a small

portion of the function f(t) = 2 × exp(−t) × sin(t) in the interval [0..20]

(dotted line, simulating a delayed signal). The x axis represents time t and

the y axis the activation value f(t). Facilitation rate of r = 0.8 was used

in this example. (a) When the signal changes quickly (increasing leg, from

time 0 to 7), the FAN results in jagged oscillation. Note that when the signal

change is slow relative to the facilitation rate (decreasing leg, from time 7

to 20), the oscillation disappears. (b) The proposed method eliminates the

oscillation problem in (a). Note that due to the facilitation, the resulting

curve (solid line) appears shifted to the left (i.e., we can say that delay was

compensated).



128

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25

 20  25  30  35  40

Ac
tiv

at
io

n 
le

ve
l

Time

FAN
Delayed signal

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25

 20  25  30  35  40

Ac
tiv

at
io

n 
le

ve
l

Time

NDPIA
Delayed signal

(a) FAN (b) NDPIA

Fig. 82. Facilitation Under Slow Signal Change Condition. The same function as in

Fig. 81 is shown, but in a different interval [20:40]. A higher facilitation rate of

r = 0.9 was used, to demonstrate the oscillation problem in FAN even under

slow signal change conditions. (a) Even when the signal changes slowly, if

r is high, FAN results in oscillatory activation. (b) The proposed dynamics

again eliminates the oscillation problem, with the same delay compensation

property as in Fig. 81.

weights in the connections in the neural network controller.

Fig. 83 shows the distribution of evolved dynamic rates of top 5 individuals from

25 separate populations (each population had 50 individuals), under three different

delay conditions (0, 1, and 2). The motor neurons exhibit higher utilization of facil-

itating dynamics (high dynamic rate) compared to sensory neurons, when the delay

is high (Fig. 83(c)). The cumulative distribution of the dynamic rate shows more

clearly the positive correlation between increasing input delay and higher dynamic

rate in motor neurons (Fig. 83(e)) but not in sensory neurons (Fig. 83(d)). In sum,

motor neurons are more likely to be facilitated, and increasing input delay leads to

higher facilitation.
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Fig. 83. Dynamic Rate Distribution. The distribution of dynamic rates for the con-

trollers trained with different delay conditions are shown (top 5 individu-

als from the last generation in 25 separate evolutionary trials). (a–c) shows

the dynamic rate distribution under different delay conditions. As the delay

increases, motor neurons increasingly utilizes higher dynamic rate (i.e., fa-

cilitation). (d-e) shows the cumulative distribution, directly comparing the

different delay conditions. Only for the motor neurons (e), increasing delay

shifts the cumulative distribution toward the right (i.e., higher facilitating

rates: the mean increases from -0.196 to -0.184 to 0.724).
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c. Pole-balancing Performance in FAN and NDPIA

In this experiment, we compared the effectiveness of FAN and NDPIA in the 2D

pole-balancing task, under various delay conditions.

To test the effectiveness of facilitation under a strictly controlled environment,

we set the facilitation rate to a fixed value of 0.7, with different types of neurons

being facilitated in three different sets of experiments. We trained (evolved) 60 FAN

networks and 60 NDPIA networks under no delay. Among the 60 networks, 20 were

evolved with facilitated motor neurons, 20 networks were evolved with facilitated

sensory neurons, and 20 remaining networks were evolved with facilitation in both

sensory neurons and motor neurons for each facilitation model (FAN and NDPIA

respectively).

For testing, we put the evolved networks under no delay, 1-step delay, and 2-

step delay environment to see the effect of dynamic activation rates. Fig. 84 shows

that NDPIA has better performance than FAN in most cases, especially under longer

delays. Note that if both sensor and motor neurons are facilitated at the same time,

no significant difference is found (Fig. 84(c)). There was not much difference when

there was no delay in the input (see delay 0 cases in Fig. 84), but the difference of

performance becomes clear when motor neurons were facilitated as delay increases

(see Fig. 84(b)).

d. Pole-balancing Performance under Extremely High Facilitation Rates in Different

Neuron Types

In this experiment, we investigated the effect of extremely high dynamic activation

rates under long delay. Controller networks with NDPIA maintained their perfor-

mance under longer delay, with a fairly high facilitation rate of 0.7, especially for the
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motor-neuron only facilitation (Fig. 84). How would the performance change if we

push the facilitation rate to an even higher value? We tested how extreme facilitation

like that affects performance when different types of neurons are facilitated: sensory,

motor, or both. This is an interesting question since longer delay might necessitate

higher facilitation rate.

When either the sensory neurons or the motor neurons were facilitated with a

high facilitation rate of 0.7, the performance remained high (a and b), but the perfor-

mance degraded when both neuron types were facilitated at that rate. As facilitation

rate was further increased to even higher values (1.2 to 1.5 to 2.0), performance

started to degrade for the case where sensory neurons were facilitated (a), but it was

not the case when only motor neurons were facilitated (b). The case with both sen-

sory and motor neurons facilitated showed consistently low performance regardless of

the facilitation rate. These results suggest that motor neurons could be the best type

to facilitate at higher rates, for the compensation of longer delays (Fig. 85).

5. Discussion

The main contribution of our work is to have shown the link between facilitating

neuronal dynamics and delay compensation in a systematic study. In particular

we have shown that facilitation is more effective in motor neurons, and that longer

input delay leads to higher rates of facilitation. We have also improved the previous

facilitation model (FAN) [88, 83, 84] so that higher facilitation rates can be used

without side effects (oscillation). As a consequence, our new approach allowed our

model to deal with longer delay applied over the entire duration of each trial.

One of the main results of our investigation was that facilitating dynamics is

more effective in counteracting delay in certain classes of neurons (i.e., motor neu-

rons). This could be due to two high-level reasons: (1) local connection topology,
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Fig. 84. Comparison Of FAN And NDPIA Under Different Delay Conditions And For

Different Types Of Neurons Facilitated. (a) Top five individuals from the

final generation of those with facilitated sensory neurons are shown, for delay

0 (top) to delay 2 (bottom). The number of pole balancing steps in FAN (*)

and NDPIA (◦) are plotted. NDPIA shows a slight advantage under longer

delay conditions (bottom row). (b) The same information is plotted as in

(a), for top 5 individuals with facilitated motor neurons. NDPIA has better

performance than FAN under longer delays (middle and bottom rows). (c)

The same information is plotted as in (a), for top 5 individuals with facilitated

sensory and motor neurons. There is no significant difference between FAN

and NDPIA.
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Fig. 85. The Performance Of Ndpia In 2-Step Delay Under High Facilitation Rates.

Performance of top 5 controllers under extremely high facilitation rates are

shown for facilitated (a) sensory neurons, (b) motor neurons, and (c) sensory

and motor neurons. With a facilitation rate of 0.7, there is minimal degra-

dation of performance in (a) and (b), but much degradation in (c). Also, (b)

is the only case where very high facilitation rate (= 2.0) does not affect the

performance. Thus, when very high facilitation is needed (e.g., to compensate

for longer delays), motor neurons should be facilitated.

and (2) series of delay compensation happening in a chain of neurons, and both could

cause over-compensation. First, if the local topology of the neuron has a recurrent

link, then facilitation could be amplified, thus leading to over-compensation. This is

why we believe the sensory neurons did not do well compared to the motor neurons

(recall that the sensory neurons are the hidden units that receive not only the input

but also the context input from the recurrent connections). Second, if a chain of

neurons originating from the input and ending in the output are all facilitated, again

it could lead to over-compensation. This could be the reason why the networks with

both sensory and motor neurons facilitated performed poorly. These observations

can lead to concrete predictions that can be experimentally validated: (1) Facilitat-

ing neural dynamics, when employed to perform delay compensation, may be more

prevalent where the local connection topology is feedforward. (2) Within a sensori-

motor processing chain, facilitating dynamics may be found in only few parts of the

chain.
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As we have seen already in Fig. 83, in order to compensate for longer delay,

higher facilitation should be used. However, since higher facilitation in longer delay

may cause higher error rates, this facilitation dynamics is applicable only when the

delay is within a certain bound. In other words, if the signal changes more rapidly

than the delay duration (or equivalently if the delay duration is longer than the

time scale of signal change), our approach may not work well. In order to deal with

such situations, sensorimotor anticipation [103] or sensory prediction [89][103] may

be needed. To address the challenge of longer delay, internal representations, internal

models, or forward models [104][105][106] can also be used. These works suggest the

use of anticipation for the future inputs or states in a higher level than at the level

of neuronal circuits.

In the beginning, we started out with the insight that predictive function could

have originated from delay compensation mechanisms. What our results show is that

an intimate relationship exists between longer delay and higher facilitatory dynamics

(i.e., the compensation mechanism), and that such compensation mechanisms can

emerge during the process of evolution. Since the final outcome of delay compensation

is the estimation of the present state (based on information from the past), one might

argue that it is not prediction. However, the task itself can be systematically mapped

to that of prediction, since it all boils down to the estimation of the state in the

relative future, whether that future is now or whenever (see [107]). An interesting

future direction is to see if actual predictive capability can evolve in a similar simulated

evolution environment, when the task itself requires prediction, rather than just delay

compensation. We expect facilitating dynamics to again play an important role in

such a case.

Another matter of debate is the biological significance of the proposed facilitating

dynamics. As we briefly mentioned in the beginning, part of the motivation for this
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work came from the facilitating synapses reported in the experimental literature [108],

which provides the feasibility. Also, in return, our proposed mechanism assigns a

specific role regarding the function of such synapses. In a similar line, we can ask

whether the proposed method is biologically feasible, especially within an individual’s

lifetime. Although our experiments were done using simulated evolution, it could be

seen as just another optimization process, so there is no reason why such a delay

compensation mechanism can be developed over time within a single individual’s

lifetime.

Finally, we would like to take the discussion further and speculate on the role of

prediction in brain function. Prediction is receiving increasing attention as a central

function of the brain [78][79]. The brain is fundamentally a dynamical system, and

understanding the dynamics can lead to deep insights into the mechanisms of the

brain. For example, according to Kozma and Freeman [109], the brain state trajectory

transitions back and forth between chaotic high-dimensional attractors to periodic

low-dimensional attractors. An interesting property of these two different attractors

is that for the chaotic attractor, predicting the future state in the state trajectory may

be difficult compared to that of the periodic attractor. Such predictive function could

form an important necessary condition for more complex and sometimes subjective

phenomena as consciousness or self-awareness [76]. It could also be thought of as

the “unconscious” process discussed in [110] that drives brain function, that is later

confirmed or described by consciousness, post hoc. Prediction can also be useful in

other ways, including predicting the upcoming input, based on the current model

of the world [111] This kind of mechanism, coupled with emotional circuits (e.g.,

Levine [112]) could serve as a fundamental component in goal-directed behavior. In

sum, how such humble delay compensation mechanisms as presented in this paper can

develop into a fully functioning predictive system, laying the foundation for high-level
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cognitive processes, is an important future question to be addressed.

6. Conclusions

In this paper, we proposed an improved facilitating dynamics, NDPIA, to address

shortcomings in the previous FAN model. We showed that our approach overcomes

the limitations and results in higher performance in a standard 2D pole-balancing

task, with longer delay in the input during the entire duration of the task. More

importantly, we have found that facilitating dynamics is the most effective in motor

neurons, and increasing input delay leads to higher utilization of facilitating dynam-

ics. Our findings are expected to help us better understand the role of facilitating

dynamics in delay compensation, and its potential development into prediction, a

necessary condition for goal-directed behavior.

B. Internal State Predictability

1. Introduction

To build intelligent agents that can interact with their environments and also their

own internal states, the agents must identify the properties of objects and also under-

stand the properties of other animated agents [113]. One of the fundamental steps in

having such abilities is to identify agents themselves from others. Therefore, finding

self has been a grand challenge not only among cognitive scientists but also in com-

puter scientists. Even though Feinberg and Keenan strongly suggested that the right

hemisphere has a crucial role in the creation of the self [114], localizing the self does

not answer many intriguing questions about the concept of the self. On the other

hand, a Bayesian self-model that can distinguish self from others was proposed, and

Nico, an upper-torso humanoid robot, was able to identify itself as self through the
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dynamic Bayesian model using the relationship between its motor activity and per-

ceived motion [115]. Bongard, Zykov, and Lipson made a self-aware robot which can

adapt to the environment through continuous self-modeling [116]. We believe that

Autonomous Mental Development (AMD) [117] can also lead to a self-model, e.g., as

in Self-organizing Autonomous Incremental Learner (SAIL) [117] and Dav [118].

Nico [115] focused more on higher level modeling of self-awareness; SAIL [117]

and Dav [118] concentrated on modeling autonomous mental development; and the

resilient machine [116] continuously re-modeled its physical body rather than con-

ceptual self. As far as we know, neuronal substrate of self has not been discussed.

It is not easy to answer the question about the self without invoking complex and

controversial issues. However, an alternative way exists to address the problem: If

we uncover necessary conditions for the emergence of self-awareness, then we might

be able to make some progress. An interesting insight is that predictability in the

internal state dynamics can be such a necessary condition. We postulate that the pre-

dictability of the neural activities in the internal dynamics may be the initial stepping

stone to self-awareness. Such predictability could lead to authorship (and eventually

agency and self-awareness), since a distinct property of one’s own actions is that they

are always perfectly predictable.

a. Self-awareness

Self-awareness has an important role in cognitive processes [119]. Self-aware sys-

tem has an ability to distinguish itself from others. Being self-aware can be a good

beginning to have cognitive capabilities. However why have intelligent agents such

as humans evolved to have self-awareness? Is self-awareness simply an evolutionary

by-product of self-representation as Menant pointed out [120]? Otherwise, if cogni-

tive agents always have to be self-aware, there must be an associated evolutionary
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pressure. However, the attributes of self-awareness is still uncertain [121]. So, it is

difficult to track down the roots of the emergence of self-awareness or agency. One

way to circumvent the problem is to find circumstances that can serve as necessary

conditions for the emergence of self-awareness, and assess their evolutionary value.

In this paper, we focus on finding these necessary conditions. One possible re-

quirement would be the predictability of one’s own internal state trajectory (another

possibility is direct prediction of one’s own action, as in Nolfi et al.’s work on neuroevo-

lution combined with learning [122]). We postulate that Internal State Predictability

(ISP) can have a strong impact on performance of the agents, and ISP could have

lead to intelligent agents developing self-awareness.

b. Internal State

Many researchers have focused on external environments and behaviors when devel-

oping intelligent robots or agents. This was especially true when the investigations

were carried out in an evolutionary context.

However, researchers started to take a serious look at the internal dynamics of an

intelligent agent as well. The central nervous system models sensorimotor dynamics,

and the model seems to reside in the cerebellum [123]. Exploring one’s internal state

can lead to a sense of self. The sense of self may be a prerequisite to building a

machine with consciousness [124].

There may be a consensus that neuronal activation levels can be considered as

the state of a neural system. Bakker and de Jong pointed out that the state of a neural

network could be defined by the current activation levels of the hidden units [125].

Also, the system state could be viewed as consciousness, in a way [126]. There are also

physiological arguments about this idea. The firing rate of each neuron in the inferior

temporal visual cortex tells much about the stimuli applied to the cortex [126]. On
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the other hand, spiking activities from place cells in the hippocampus can be used

to rebuild certain features of the spatial environment [127]. These results tell us

that spiking patterns of neurons that form one’s internal state might influence task

performance. In sum, knowing internal state of oneself may be the first step of being

conscious and internal state itself can be simply stated as spiking patterns of neurons

during task performance.

The idea that self-awareness has evolutionary advantages is not new [120]. Menant

hypothesized that noticing agony of conspecifics may be the first step in developing

self-awareness. But as far as we understand, the precondition of identifying agony

in conspecifics is self-awareness and the identification of agony is also a requirement

of being self-aware. It falls into a circular argument. Namely, self-awareness is a

requirement of identifying agony and also, identifying agony develops self-awareness.

Moreover, Menant’s argument is more like a hypothesis, without giving plausible

evidence.

We present experimental results that indicate “understanding” internal states

has an actual evolutionary benefit.

2. Method

We hypothesized that activation values from neurons in the hidden layer can represent

the internal state of an agent. Understanding one’s own internal state can be strongly

linked to knowing what is going to happen in one’s internal state. We quantified such

an understanding as the predictability of the internal state trajectories.

In order to examine whether internal state predictability has any evolutionary

value, we evolved sensorimotor control agents with recurrent neural network con-

trollers. The neural activity in the hidden layer of the network was viewed as the

internal state of an agent. A two-degree-of-freedom (2DOF) pole balancing task was
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chosen to scrutinize the internal state trajectories. The neural network controllers

were trained by a neuro-evolution method. The activation values from each neuron

in the hidden layer from the neural network were stored to measure the predictabil-

ity of each neuron’s activation trace over time. The predictability of each neuron

was quantified by a supervised learning predictor which forecasted the next activa-

tion value based on the past activations. Note that any reasonable predictor can be

used for this, e.g. Hidden-Markov models, and the choice is orthogonal to the main

argument of this paper.

a. Two-Degree-of-Freedom Pole Balancing

Pole balancing task has been used to demonstrate complex and unstable nonlinear

dynamical systems in the field of artificial neural networks for decades because it is

straightforward to understand and easy to visualize. A conventional 1D pole balancing

task has dealt with the following situation: A pole is hinged atop a cart that travels

along a single straight line track. The pole can only move on the vertical plane along

the track [128, 129]. It makes the task simple enough to be analyzed, but it is not

complex enough to show interesting behavior. Here, we used 2D pole balancing where

force to the cart can be applied in both the x and the y directions, so the cart moves

around on a 2D plane within a boundary and a pole attached on top of the cart can

fall in any direction [92, 130]. As a result, the task is more complex and difficult

to master than 1D version. Fig. 86 shows a 2D pole-balancing system with which

we conducted our experiment. (Removing velocity information from the 1D problem

could make the task more difficult and thus more interesting, but we did not pursue

this direction.)

The state of the cart (the gray circle on the bottom Fig. 86) with a pole on

top is characterized by the following physical parameters: The cart position in the
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Fig. 86. Two-Degree-Of-Freedom Pole-Balancing System.

plane (x, y), the velocity of the cart (ẋ, ẏ), the angle of the pole from the vertical in

the x and the y directions (θx, θy), and their angular velocities (θ̇x, θ̇y) [92]. These

parameters were used as eight input values to a neural network. Fourth-order Runge-

Kutta method was used to simulate the real world physics.

b. Time Series Prediction

A time series is a sequence of data from a dynamics system. The measurements of one

or more variables of the system take place at a successive and regular time interval

[131]. The system dynamics changes the state over time, so it can be considered as a

function of the current state vector x(t). A time series is a sequence of either vectors

or scalars.

{x(t0), x(t1), · · · , x(ti), x(ti), x(ti + 1), · · ·}

The activation level of hidden neurons in a neural network can be considered as

a time series. In our case, three sets of time series exist since there are three neurons

in the hidden layer of our neural network. Let us assume that we predict value x at
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time t+1 which is the very next state from present. If we can look back N time steps

including the current one from time t, we can say that forecasting x(t + 1) means

finding a function f(·) using a time series {x(t), x(t−1), x(t−2), · · ·x(t−N+1)}(Fig.

87):

x̂(t+ 1) = f (x(t), x(t− 1), x(t− 2), · · · , x(t−N + 1)) .

Fig. 87. Predicting Future Using The Past.

Feed-forward neural networks have been widely used to forecast a value given a

time series dataset [131]. The neural predictors use a set of N data as inputs, and

a single value as an output for the target of the network. The number of input data

is often called the sliding window size [131]. Fig. 88 gives the basic architecture of a

feed-forward neural network predictor.

When a neural network predictor forecasts a future state, the outcome of the

predictor, which is a predicted value, should be compared with a real activation

value. If a prediction error, the difference between a predicted and a real value, is

greater than a certain amount (we call it minimum error threshold) then it is fair

to say the prediction had failed. However, we cannot use a fixed minimum error

threshold, because amplitude envelope of activation values could be different from

neuron to neuron. Why does the envelope of activation matter?
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Fig. 88. A Neural Network Predictor For A Time Series.

(a) Big amplitude values and the amount of error

(b) Small amplitude values and the amount of error

Fig. 89. An Example Of Adaptive Error Rates. The big solid arrows indicate the

amplitude of activation values, and the hollow big ones indicate the amount

of error. When estimating the error, the activation amplitude envelope should

be considered.
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As Fig. 89 shows, it cannot be stated that two cases have the same amount of

error, although the actual amount of error is almost the same in (a) and (b). The

minimum error threshold value should be adapted to the variance of the time series.

Namely, if the amplitude of a time series is also small, the minimum error threshold

should be small, and if it is large, then the threshold should become large as well.

Errth = |ActV aluemax − ActV aluemin| ×R,

where Errth is the minimum error threshold, ActV alue means an activation value of a

neuron in a hidden layer, and R is the adaptive rate for the minimum error threshold

adjusted based on the activation amplitude as shown in Fig. 89.

3. Experiments and Results

We evolved agents driven by a recurrent neural network in a 2D pole balancing task,

and then partitioned successful individuals into two groups: One group had high ISP,

and the other had low ISP. The high-ISP group showed better performance than the

low ISP group in tasks with harsher initial conditions.

a. Training the Controllers

We implemented the pole balancing agent with a recurrent neural network controller.

The artificial neural networks were trained by genetic algorithms. Network connection

weights of an agent were evolved to balance the pole during the training sessions.

Force between −10N and 10N was applied at regular time intervals (10 millisec-

ond). The pole was 0.5 meter long and was initially tilted by 0.573◦ (0.01 radian) on

the x-z plane and the y-z plane respectively. The area where the cart moved around

was 3× 3 m2.

The configuration of a controller network was as follows: eleven input nodes
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(eight input values from the simulated physical environment and three context input

values from the hidden layer), one hidden layer with three neurons, and two output

neurons (Fig. 90). The eight parameters describing the current state of the cart

were used as the input values, and two values from the output neurons, Fx and Fy,

represented the force in the x and the y direction.

Fig. 90 shows the recurrent network that we used in the experiments.

Fx

Fy

!x
!’x
!y
!’y
x

x’

y

y’

Z-1

Z-1

Z-1

X(t)

NDPIA

A(t)

Z-1

Fig. 90. Recurrent Neural Network Controller For 2D Pole-Balancing. The signal flow

inside each neuron is shown in the box. Z−1 means unit delay. [75]

In training these non-linear controllers, neuroevolution methods have proved to

be efficient [93, 94]. Fitness was determined by the number of time steps where a

network was able to keep the pole within ±15◦ from the vertical in the x and the y

directions and kept the cart within the 3× 3 m2 area. The chromosome encoded the

connection weights between input and hidden layer neurons, and between hidden and

output neurons. Crossover occurred with probability 0.7 and the chromosome was

mutated by ±0.3 perturbation rate with probability 0.2. The force was applied in

both the x and the y directions at 10 millisecond intervals. The number of networks

in a population was 50 for an evolutionary epoch. If an agent balanced the pole more

than 5,000 steps, we considered it as a success.
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b. Training the Neural Network Predictors

Neuronal activities in the hidden layer of the recurrent neural network were viewed

as the internal state of the agent. The predictability in the internal state trajectory

was able to be measured using a feed forward neural network predictor.

The size of the sliding window was four. The activation values of neurons in the

hidden layer formed the network input. 3,000 activation values were used as training

data for each input, and a test set used the next 1,000 steps (3,001 to 4,000). Time

series from 1 to 1,000 steps and from 4,001 to 5,000 steps were not used because

we did not want to use the somewhat chaotic initial movements and finalized stable

movements. Back-propagation algorithm was used to train the predictors (learning

rate 0.2). In the test sessions, we compared the predicted value with the real activation

value. We chose 10% threshold error rate to calculate the adaptive minimum error

threshold when comparing the forecasted activation with the real activation value.

The adaptive error rate was determined empirically, based on the performance of the

time series predictor.

c. Performance Measurement in High- vs. Low-ISP Groups

We evolved approximately 130 pole balancing agents. By definition, all the agents

were necessarily good pole balancers during the training phase. Some of them turned

out to have high ISP and others low ISP. Fig. 91 shows all the agents sorted by their

prediction success rates.

We chose pole balancers having top 10 highest ISPs, and bottom 10 lowest ISPs.

High predictability means all three neurons from the hidden layer have highly pre-

dictable internal state trajectories. Most of their prediction rates in a high ISP group

were over 99%, and only two pole balancers had average prediction success rates
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Fig. 91. All Trained Agents Sorted By Their Prediction Success Rates. A small num-

ber of agent toward the left end show very low predictability, while those near

the right end show very high predictability.

83.30% and 88.93% (µ = 95.61% and σ = 5.55%). As for low ISP pole balancers,

their average prediction performances from the three neurons were between 17.37%

and 48.53% (µ = 31.74% and σ = 10.79%). Fig. 92 shows the predictability in the

high and the low ISP group.

The learning time of the two different groups was also investigated, but we could

not find a significant difference, even though low ISPs took slightly less time than

high ISP (Fig. 93). Note again that the performance of both groups (high and low

ISP) were comparable during the evolutionary trials.

In order to further test and compare the performance between the two groups, we

made the initial condition in the 2D pole balancing task harder than that during the

training phase. All the neural network controllers were evolved in a condition where

both projected initial angles to the x-z and the y-z plain were 0.573◦ (0.01 radian). In

the test condition, we had those trained neural network controllers balance the pole

in a more difficult initial condition where the initial projected angles were 4.011◦ (0.07

radian) on the x − z plain, and 2.865◦ (0.04 radian) on the y-z plain. This strategy
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was used to push the controllers to the edge so that differential behavior results. Our

main results were that networks with higher ISP show better performance in harder

tasks than those with lower ISP.
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Fig. 93. Learning Time In High Vs. Low ISP Groups. Agents are ordered in the same

order as in Fig. 92.

Fig. 94 shows that the evolved pole balancers with higher ISP have better per-

formance than the other group.

One might argue that this result seems straightforward, because simple internal

state trajectories simply reflect behavioral properties. A trivial solution to a pole
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balancing problem would be to quickly make the pole stand up vertically, and then

make minimal adjustments. But according to our experimental results (see Fig. 95),

higher ISP does not necessarily mean that their behavioral trajectory is also simple.

Fig. 96 (compared to Fig. 98) and Fig. 97 (compared to Fig. 99) show that behavioral

complexity is not necessarily directly related to the complexity of internal states.

That is, even an agent having high ISP may have complex behavioral properties, and

those with low ISP may have simple behavioral attributes.

Fig. 96. Examples Of Internal State Dynamics From The High Isp Group Showing

Smooth Trajectories.
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Fig. 97. Examples Of Internal State Dynamics From The Low Isp Group Showing

Abrupt, Jittery Trajectories.
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4. Conclusion

Starting with individuals evolved to give the same level of behavioral performance,

we showed that those with simpler (more predictable) internal dynamics can achieve

higher levels of performance in harsher environmental conditions. These results sug-

gest that internal agent properties such as simpler internal dynamics may have a

survival value. We also showed that the increased survival value is not always due to

smoother behavior resulting from the simpler internal states. The implication of these

findings is profound, since they show that, in changing environments, apparently cir-

cumstantial internal agent properties can affect external behavioral performance and

fitness. The results also show how an initial stepping stone (or a necessary condition)

in the evolutionary pathway leading to self-awareness and agency could have formed.

We expect the framework we developed here to help us better address hard issues

such as self-awareness and agency in an evolutionary context. Future directions in-

clude evolution of model-based prediction of both internal and external dynamics (cf.

[116][122]), and generalization of our framework to other more complex tasks.
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CHAPTER X

DISCUSSION

A. Summary

In this dissertation, I described the data acquisition and mining of the whole mouse

brain microstructure. A new high-throughput and high-resolution microscopy tech-

nique, Knife-Edge Scanning Microscopy (KESM) was introduced as an ideal data

acquisition method. KESM is capable of generating high-resolution data sets from

large tissue volumes much faster than any other known methods currently available.

Yet, its full potential was not realized due to many steps that required maximal

automation.

To address the problem, I introduced methods to automate the whole process

involved in the data acquisition. I also provided proper software frameworks through-

out the data processing pipeline through which the data flow. These include a par-

allel processing framework, an automatic method for alignment of image chunks in

an image stack, removal of intensity irregularities, a hierarchical data representation

framework, and automatic data analysis tools.

Finally, I conducted two computational neuroscience case studies to discuss the

utility of the data sets from the KESM. First, facilitatory neural dynamics was intro-

duced as a possible mechanism to compensate for delay in transmission of neuronal

signals. Second, internal state predictability was investigated as a precursor of emer-

gence of self-awareness.

The techniques and studies discussed in this dissertation are expected to greatly

enhance our ability to explore microstructures in the brain in three-dimensions. The

data acquisition methods that I automated allows us to scan three-dimensional tissue
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volumes much faster than other sectioning and imaging technologies. Automatic data

analysis methods can shed new light on large-scale data investigation by proposing

much easier exploration of highly complex network structures.

B. Future Work

In this section, I discuss possible future work regarding my research.

1. Data Validation

A large-scale data validation framework is a possible extension of my research. Cur-

rently, the BNL does not have proper validation methods by which we can measure

accuracy of the reconstruction and the three-dimensional structure tracing. Recursive

and iterative refinement of the ground true data could be one of the options.

2. Data Dissemination

Currently all data reside inside local storage (hard drive) of the KESM server. If such

large-scale databases of tissue volumes can be accessible from other researchers who

have various data sets which can be compared with the KESM data sets, it could

have a big impact on the research community since experts from a wide variety of

areas can share their insights regarding the data sets.

3. Data Simulation

Structural information in three-dimensions can also be used as input for simulation

of specific tissue function. Simulating blood flow can be a good example by using the

traced fibrous data sets.
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4. Full-scale Data Analysis

The ultimate goal of figuring out structural information is to understand brain func-

tion related to its structure. In order to achieve the goal, large-scale (possibly full-

scale) data analysis is necessary. Tracing micro structures in three-dimensional vol-

umes involves a lot of manual work. Consequently, those time consuming tasks should

be effectively removed and replaced by automated algorithms to effectively analyze

large-scale data sets.
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CHAPTER XI

CONCLUSION

The mouse brain microstructure requires very large image volumes of tissue con-

taining great detail. Accurate estimation of morphological parameters is a key in

building exact models of connection matrices. Considering the massive amounts of

data, automation of sectioning and imaging is a crucial factor. Given these conditions,

high-resolution and high-throughput data acquisition systems become mandatory. To

address the challenge, I proposed an automated technique for physical sectioning mi-

croscopy to acquire large volumes of neuronal microstructure data. In order to provide

a method that can be used in analyzing the data and reconstructing their morpholog-

ical properties, a software framework has been developed. The framework allows us

to properly interpret both the reconstructed geometric data and raw image volumes

of anatomical microstructure data sets, and also helps us analyze the data sets more

accurately and completely.

The obtained KESM data may be used in validating neuroscience hypotheses.

Through two case studies, I have shown how the structural properties acquired from

the KESM data could be used in testing assumptions and results in neuroscience

research.

I expect the KESM data, tools, and my case studies to initiate a new area of

investigation in computational neuroscience.
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