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ABSTRACT 

 

Design, Syntheses and Biological Applications of Through-bond Energy Transfer 

Cassettes and Novel Non-covalently Cell Penetrating Peptides. (August 2009) 

Junyan Han, B.S., Shandong University, P. R. China 

Chair of Advisory Committee: Dr. Kevin Burgess 

 

A xanthene-BODIPY cassette is used as a ratiometric intracellular pH reporter 

for imaging protein-dye conjugates in living cells.  A model was hypothesized to explain 

the pH-dependent energy transfer efficiencies from the donor to the acceptor based on 

the electronic chemistry data.   

Sulfonation conditions were developed for BODIPY dyes to give water-soluble 

functionalized monosulfonation and disulfonation donors. A water-soluble TBET 

cassette, which has good photophysical properties, was synthesized using a bissulfonated 

BODIPY dye as the donor, and their applications for in vitro protein labeling is 

achieved.  Chemoselective cross-coupling reactions were demonstrated for C-S bonds in 

the BODIPY dye, and similar reactions were applied to make the acceptor of the water-

soluble cassette.  

Chemiluminescent energy transfer cassettes based on fluorescein and Nile Red 

were synthesized and their spectral properties were studied. 

Pep-1 (also known as Chariot), R8 (which is not often used as a non-covalent 

protein carrier), and a new synthesized compound, Azo-R8, was used for the study of 



 iv

non-covalent delivery of four different proteins into mammalian cells.  Data from 

confocal spectroscopy revealed that all three carriers are effective for translocating 

protein cargos into live cells.  At 37oC, import into endocytic compartments dominates, 

but at 4°C weak, diffuse fluorescence is observed in the cytosol indicative of a favorable 

mode of action. 
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CHAPTER I  

INTRODUCTION: THE IMPORTANCE AND CHALLENGES OF THE RESEARCH  

 

My research focuses on the synthesis and biological applications of through-bond 

energy transfer cassettes.  Intramolecular energy transfers have been studied using 

molecules containing two fluophores, i.e. D-A. When the donor (D) is brought to an 

excited state, emission is observed from the acceptor (A) portion of the molecule.  The 

energy can be transferred via non-conjugated linkers (through-space), or a π-conjugated 

system (through-bond).  

The efficiency of energy transfer through space, fluorescence resonance energy 

transfer (FRET), is dependent on the overlap of donor emission with the absorption of the 

acceptor.  The smaller the overlap, the less efficient the energy transfer.  However, there 

is no known requirement for Förster rule for through-bond energy transfer (TBET).  This 

process seems to involve the physical contact of orbital of the donor and acceptor.  Our 

group has proved that efficient energy transfer through bonds does not require the overlap 

of donor emission with acceptor absorbance.  Therefore, TBET cassttes could process 

desired photophysical properties for cell imaging, e.g. large Stoke shifts, long-wavelength 

excitation and emission wavelengths.  Our group focuses on the synthesis and biological 

applications of through-bond energy transfer cassettes.  We are particularly interested in 

applying TBET cassettes for studying multiple proteins’ interaction in vivo,  

____________ 
The dissertation follows the style of Journal of American Chemical Society. 
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determination of intracellular pH values, and detection of H2O2 in living cells.  In order to 

study the protein interaction in water, we have to synthsize water-soluble TBET cassettes, 

which should have high quantum yields and a handle to attach to proteins. Please read the 

chapter II to chapter IV for detailed description of the study.  I hope I will convince you 

that how useful the TBET cassettes in biological chemistry after knowing the advantages 

of TBET cassettes compared to regular dyes. 

There are many exhisting methods for uptaking proteins into living cells, e.g. 

microinjection, electroporation.  Conjugation of proteins to carrier peptides is also 

another commonly used method.  The well-known carriers of this type are TAT and 

polyarginine derivatives.  These to methods are either disruptive to cells or time 

consuming.  We are interested in non-covalent proteins carries, which can translocate 

proteins in life cells relatively easy and noninvasive.  The Pep-1, also called carrier 

peptide, is commercialized and widely used.  However, it is very expensive and not easy 

to synthesize in large scale since it involved solid-state prepation.  We are interested in 

developing novel non-covalent protein carriers for transferring cassette-labeled protein 

inside living cells.  Please see the chapter V for the details of our discovery in this area. 
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CHAPTER II 

AN RATIOMETRIC PH INDICATOR FOR IMAGING PROTEIN-DYE 

CONJUGATES IN LIVING CELLS BASED ON THROUGH-BOND ENERGY 

TRANSFER  

 

A. INTRODUCTION: INTRACELLULAR PH INDICATORS 

1. Introduction 

Intracellular pH (pHi) can influence many critical cell, enzyme and tissue 

activities, including apoptosis,1-3 proliferation, multidrug resistance (MDR),4 ion 

transport,5,6 endocytosis,3 and muscle contraction.7,8  Changes of pHi effect the nervous 

system too, by influencing synaptic transmission, neuronal excitability, cell-cell 

coupling via gap junctions, and signal cascades.9,10  Abnormal pHi values are associated 

with inappropriate cell function, growth, and division, and are observed in some 

common disease types such as cancer11 and Alzheimer’s.12  Some organelles, e.g. 

endosomes13 and plant vacuoles,14 have intracompartmental pHs of 4 - 6.  In cell 

biology, low intracompartmental pH values can serve to denature proteins, or to activate 

enzyme and protein functions that would be too slow around pH 7.0.  For instance, the 

acidic environments in lysosomes (4.5 – 5.5)15,16 can facilitate the degradation of 

proteins in cellular metabolism.  Thus, cellular dysfunction is often associated with 

abnormal pH values in organelles.13 
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Intimate connections between the cell functions with intracellular pH means that 

precise measurement of intracellular pH can provide critical information for studying 

physiological and pathological processes down to a single organelle.  Good resolution in 

the space and time dimensions, ie spatial and temporal, is highly desirable.  Compared to 

other pHi measurement methods (e.g. microelectrodes, NMR, and absorbance 

spectroscopy) fluorescence spectroscopy has advantages with respect to spatial and 

temporal observation of pHi changes.  Moreover fluorescence techniques have high 

sensitivities, they tend to be operationally simple, and they are in most cases non-

destructive to cells.  

Qualitative measurements of pHi can be achieved using fluorescent indicators 

that switch on or off at sharply defined pH values.  However, such measurements may be 

influenced by many factors, including optical pathlength, changes of temperature, altered 

excitation intensities, and varied emission collection efficiencies.   The alternative is to 

use “ratiometric detection”.  

Ratiometric spectroscopic methods require fluorescent sensors that are 

differentially sensitive to the analyte (ie protons for pH probes) for at least two 

excitation or emission wavelengths (see Figure 2.1).  For instance, for a suitable 

fluorescent dye, emission at one carefully chosen wavelength may be enhanced or 

diminished relative to the emission at another.  Ratios between these signals then can be 

calibrated to indicate pHi values.  Advantages in using ratiometric methods are accrued 

because parameters such as optical pathlength, local probe concentration, 
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photobleaching, and leakage from the cells are irrelevant.  This must be so since both 

signals come from the probe in exactly the same environment. 

 

+

analyte sensor

(i) 
activated

on binding

location of sensor
may be unclear

 

+

sensor

(ii) 
changed

on binding

sensor and complex both observable  

Figure 2.1 Fluorescent sensors may be activated (i) by analytes; Ratiometric ones (ii) which change 
wavelength of fluorescence emissions on binding. 

 
A variety of methods can be used for importing highly charged fluorescent 

compounds into cells.  These include microinjection,17 scrape loading,18 hypertonic 

lysis,19 and carrier-mediated endocytosis.20 All of these approaches perturb the cell 

resting state physiology.  

Another strategy for import of fluorescent compounds into cells uses concepts 

similar to the “prodrug approach”.21  This strategy involves chemical modification of 

charged, non-cell-permeable dyes outside cells to neutral cell-permeable ones after 

import.  Thus transport of masked forms into the cell allows endogenous cellular 

proteases to liberate the charged fluorescent form of these compounds.  The archetypical 
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example of this is the use of non-fluorescent acetoxylmethyl (AM) or acetate esters of 

fluoresceins as pHi indicators.  These compounds diffuse into cells, and are then 

hydrolyzed by non-selective intracellular esterases to afford the free, charged, 

fluorescent dyes (Figure 2.2).  In fact, conversion of non-fluorescent AM esters into 

fluorescent free dyes has been used for cell viability assays.1   Application of this 

approach is probably less disruptive to the cells than the methods mentioned above, but 

it is not totally innocuous.   Hydrolysis of AM esters yields acetic acid and methanol; 

both these by-products may induce abnormal cellular events.  Moreover, the fluorescent 

dyes can localize in any cellular compartment, and in this approach the fluorescent 

compounds may particularly tend to accumulate in organelles having high 

concentrations of esterases.  The AM ester and the liberated dye also may be cytotoxic to 

some extent.  Nevertheless, these undesirable effects may be tolerable fro many 

applications. 

AM esters are typically synthesized via the same strategy.  This features reaction 

of hydroxyl and/or carboxylic acid groups on the free dye with freshly prepared 

bromomethyl acetate22 in the presence of diisopropylethylamine in anhydrous 

chloroform (Figure 2.2).23,24  
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O

O

Br
CHCl3, iPr2NEt

OH

OHO

O

OO

O

O

Oesterase

fluorescent
form

non-fluorescent
form  

Figure 2.2  Synthesis and hydrolysis of AM and acetate esters. 

 
Fluorescence intensities of the free pH indicators inside cells are reduced if the 

fluorescent molecules are somehow expelled from the cells.  Rates of dye leakage from 

cells are related to the net charge on the dyes; more highly charged ones are expelled 

slower.  For instance, fluorescein has a higher leakage rate relative to 5-(and 6)-

carboxyfluorescein because the former has one less negative charge.25   Dye-dextran (a 

complex, branched polyglucose with varying lengths from 10 to 150 kilodaltons), -

biomolecule or -nanoparticle conjugates can circumvent the leakage problem because 

passage of the dyes from the inside to the outside of the cells is unfavorable, and the 

concentration decreases only due to cell division.  Cells labled with pH indicator BCECF 

on dextran have been shown to produce much more stable fluorescent signals, reduced 

probe compartmentalization, and 10-fold greater resistance to light-induced damage 

when compared with dye AM–labeled cells.26  Overall, pH indicators that are coupled to 

carrier molecules that do not cross the cell membrane may be particularly useful for 

long-term experiments where retention of the probe in cells is an issue.     

Interactions of probes with biomolecules or organelles in cells can significantly 

change their spectral properties relative to aqueous saline solutions.27,28  Consequently, 
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ex-vivo, calibration is required for more accurate pHi measurements.  Thomas et al in 

1979 introduced the method that is most widely used for pHi calibration.29  In this 

approach, intracellular pH is assumed to be equal to extracellular pH when the cells are 

treated with the K+/H+ ionophore, nigericin (5μL/ml).  Nigericin makes cells permeable 

to K+ and H+, thus equilibrating the intra and extracellular pH.   

This review provides a brief overview of intracellular pH sensors, including 

small fluorescent organic molecules, nanoparticles, and fluorescent proteins e.g. GFP.  It 

focuses on their preparations, photophysical properties, and advantages/disadvantages 

for intracellular pH measurements.  The discussion is limited to fluorescent indicators 

that have been applied to measure intracellular pH values since 1970’s; relatively few 

indictors were used to measure intracellular pH values before that date, and those that 

were are now largely redundant. 30  

 

2. Fluorescein-based pHi Indicators 

2.1 The Most Widely Used pHi Indicator: BCECF 

2’,7’-bis-(2-Carboxyethyl)-5-(and-6-)carboxyfluorescein (BCECF; Figure 2) was 

introduced for measuring cytoplasmic pH by Roger Tsien and his coworkers in 1982.25  

Since then it has been widely used for mammalian or plant cells,5,6 living tissues31 and 

individual organelles, e.g. endoplasmic reticulum.32   

BCECF is synthesized via condensation of ethyl 3-(2,4-dihydroxyphenyl)-

propionate (from hydrogenation of commercially available 7-hydroxycoumarin in 

ethanol containing catalytic amount of trifluoroacetic anhydride) with trimellitic 
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anhydride in the presence of anhydrous ZnCl2 at 180 oC (Scheme 2.1).  The 

commercially available acetoxymethyl ester of BCECF is a mixture of three compounds 

BCECF AM I-III (Figure 2.3).  Three regioisomeric BCECF AM esters could all be 

transformed into the free BCECF by nonselective esterase inside living cells.  

 

Scheme 2.1  Synthesis of BCECF.  TFAA: trifluoroacetic anhydride 

OO OH

H2, 5 mol% Pd/C

TFAA, ethanol OHHO

EtO

O

1 2  95%

(i) 3, ZnCl2, 180 oC

(ii) 3M KOH(aq),100 oC

 

O

O
O

3

OHO O

CO2
_

-O2C CO2
-

2' 7'

6

5

BCECF  8%
pKa 7.0

φ = 0.84 (0.1M NaOH) 
λmax abs 503 nm

λmax emiss 525 nm

CO2HCO2H

 

 

Just like fluorescein, carboxyfluorescein and fluorescein sulfonic acid, the 

absorbance of BCECF is sensitive to the pH.  Absorption of BCECF red-shifts from pH 

3.6 to 9.2, and its molar absorptivity is much larger in the phenolate anion form than in 

the phenolic form.33  However, indicators based on fluorescence are far more sensitive 

than those that use absorption.   

BCECF is often used as a ratiometric excitation (or dual excitation) pH indicator.  

In this approach fluorescence intensity ratios corresponding to excitation at two different 
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wavelengths are measured, and these data are correlated to pH via ex vivo calibration 

using Thomas’s method.29  The physical basis of this method is that the absorption 

profile for the dye changes significantly with pH. 

An alternative to ratiometric excitation for pH measurements is the ratiometric 

emission method.  This strategy involves measuring fluorescence intensities at two 

different wavelengths when the indicator is excited at one wavelength.  BCECF is 

unsuitable for this approach since its relative emissions at any two different wavelengths 

are not significantly dependant on pH.  An example of a dye that can be used in this 

mode is carboxy.SNARF, i.e. C.SNARF-1 (See below). 

BCECF is widely applied in cell biology because of several attributes.  First, the 

free dye is retained well inside cells because it posses 4-5 negative charges at 

physiological pH values (~7.4).   Second, the pKa of BCECF (7.0 ) is ideal for sensing 

cytosolic pHs, which are normally in the range of 6.8 - 7.4.   Third, BCECF AM esters 

are cell membrane permeable and this facilitates non-invasive loading of the dye into 

cells.  Conversion of non-fluorescent BCECF AM esters into fluorescent BCECF acid 

forms is efficient, so much so that this transformation has been used for cell viability 

assays.1  Fourth, ionic strengths of solutions surrounding BCECF do not have much 

influence on the spectral properties of the dye.25   

There are also some problems associated with BCECF in measurements of pHi 

values.  For instance, even though the rate of leakage of this dye form cells is relatively 

slow, it can still be ca 10% over 10 - 20 min at 25 °C, and more at 37 °C.25  To 

circumvent this issue, the BCECF-dextran conjugate might be used; this exhibits 
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excellent intracellular retention and much lower cytotoxicity effects, but it is not cell 

membrane permeable and has to be delivered into cells via relatively destructive 

techniques, e.g. microjection.  Another disadvantage of BCECF is that it, like most 

fluorescein-based dyes, photobleaches relatively quickly hence erroneous pHi 

measurements can result.31  Simultaneously, such photobleaching reactions can damage 

cells.  Free BCECF inside cells does not usually accumulate in any particular cellular 

compartment. 
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Figure 2.3.  Structures of BCECF/BCPCF AM esters 
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2.2 BCPCF 

BCPCF (structure in Scheme 2), 2’,7’-bis-(2-carboxypropyl)-5-(and-6-)-

carboxyfluorescein, is a homolog of BCECF.  BCPCF has 2-carboxypropyl substituents 

at 2’- and 7’-xanthene positions whereas BCECF has 2-carboxyethyl groups there.  The 

original synthesis of BCPCF is shown in Scheme 2.  In this, 1,3-dimethoxybenzene is 

subjected to Friedel-Crafts acylation with succinic anhydride, followed by in situ 

demethylation and Fisher esterification to yield the ketone ester 4 in 40 % yield.  The 

ketone group of the 4 was reduced to 6 which has a chain of three methylene groups.  

Condensation of this resorcinol derivative 6 with trimetallic acid anhydride 3 in 

methanesulfonic acid eventually gives BCPCF as a mixture of two regioisomers.  In fact, 

the intermediate acid is esterified solely to facilitate chromatographic separation, then 

this ester is converted back to the carboxylic acid form.    

 

Scheme 2.2.  Synthesis of BCPCF. 

OHHO

MeO

O
OMe

OMe

O

2

(i) succinic anhydride
AlCl3, ClCH2CH2Cl

reflux

(ii) MeOH, H+, reflux

4  40 %

H2, 10 mol% Pd/C

AcOH, 90 oC

 

OHHO

MeO
3

O

5  90 %

(i) 3, MeSO3H, 80 oC
(ii) MeOH, H+

(cat),reflux

(iii) NaOH, MeOH/H2O

O-O O

CO2
-

CO2
--O2C

3 3

BCPCF  54 %
pKa 7.0

φ = 0.83 (0.1M NaOH)
λmax abs 505 nm

λmax emiss 527 nm

6
5 CO2

-
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Commercial available BCPCF AM esters predominantly exists in a form shown 

in Figure 2.3.   BCECF and BCPCF have very similar pKa values, absorption and 

emission maximum wavelengths, and quantum yields, just as expected for such 

structurally similar compounds.  The previous section notes that ratiometric excitation 

pHi measurements featuring BCECF are usually achieved by determination fluorescence 

intensity ratios at 535 nm corresponding to excitation at 503 nm and at 439 nm.  The 

absorbance of BCECF at 439 nm corresponds to its isobestic point; this is generally ideal 

for ratiometric methods except that in this case the absorptivity of BCECF at 439 nm is 

quite weak.   Application of BCPCF overcomes this disadvantage of BCECF.  The 

isosbestic point of BCPCF is red-shifted to 454 nm compared with BCECF; this 

corresponds to a stronger absorbance hence BCPCF tends to be a better ratiometric 

excitation probe.    

BCECF and BCPCF share a common disadvantage for pHi measurements.  Their 

fluorescence emission intensities are dependant on the concentration of the probes.  Thus 

if the dyes accumulate in certain regions of the cell then they can indicate different pHi 

values indicative of dye, not proton, concentration differences.33,34 

 

2.3 Fluorescein, Carboxyfluorescein and Fluorescein Sulfonic Acid 

BCECF and BCPCF are preferred for intracellular pH measurements, but 

fluorescein, fluorescein sulfonic acid, and, especially, carboxyfluorescein are still widely 

used for pHi determination presumably because easy and cheap to prepare via standard 

condensation methods.35  Condensation of  resorcinol with trimetallic acid anhydride 3 
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and 4-sulfophthalic acid produced a mixture of 5(6)-carboxyfluorescein and 5(6)-

sulfofluorescein respectively.36,37  The two isomers exhibit essentially identical pH-

dependent spectral properties with pKa of ~6.5, therefore the mixture is sufficiently good 

for pHi determination.  Fluorescein sulfonic acid moves through the paracellular space 

inside live cells since it is water-soluble and is cell membrane impermeant, it can be 

used for the denermination of barrier permeability.38 

On rare occasions it may be desirable to use regioisomerically pure substituted-

fluorescein probes.  Fortunately, methods for the preparation of single isomers are 

available.39,40  For instance, 5- and 6-carboxyfluorescein begins by condensation of 

trigllic anhydride 3 with resorcinol in the presence of methane sulfonic acid at 85 ºC.  

The reaction affords a 1:1 mixture of isomeric compounds 7 and 7’.  An insoluble salt of 

the 6-isomer (7’) is selectively precipitated with an isomeric purity over 98% when this 

mixture is recrysalized in methanol/hexane two times.  The compounds left in the filtrate 

are recrystallized from ethanol/hexane two times to give the 5-isomer (7) also in greater 

than 98% purity. Hydrolysis of the isomerically pure pivalate esters 7 and 7’ under basic 

conditions affords 5-carboxyfluorescein and 6-carboxyfluorescein (Scheme 2.3a).  

Preparation of isomerically pure 5-sulfofluorescein and 6-sulfofluorescein can be 

achieved via a similar approach.  The 5- and 6-isomers 8 and 8’ were produced as 

dipivaloyl esters, and their di-isopropylethylamine salts were separated via 

crystallization from dichloromethane and diethylether solution (Scheme 2.3b).  Basic 

hydrolysis of these pivaloyl esters 8 and 8’ yields the isomerically pure 5-

sulfofluorescein and 6-sulfofluorescein respectively.    
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Scheme 2.3.  Synthesis of: a carboxyfluorescein; and, b sulfonofluorescein, regioisomers. 
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Fluorescein diacetate is occasionally used for measuring pHi values;41 the main 

disadvantage of this is that once fluorescein is liberated via intracellular hydrolysis it can 

rapidly leak out of cells, hence it is not easy to discern if fluorescence intensity decreases 

were induced by leakage or pH changes.  The more charged derivatives, 5- and 6-

carboxyfluorescein applied as cell-permeable carboxyfluorescein AM esters, is more 

often used for pHi measurements because it can be better retained in living cells.   Even 

so, at 37 oC, intracellular concentrations of 5- and 6-carboxyfluorescein have been 

observed to diminish by 30 – 40 % in the first 10 min after washing.25  5- and 6-

Sulfonofluoresceins are more water soluble and even better retained inside cells or 

organelles when compared with carboxy-fluorescein.  However, these sulfonic acid 

derivatives are not commonly used as pHi indicators because their diacetate forms 

cannot easily diffuse into cells.  Some other fluorescein derivatives (e.g. 

dimethylcarboxyfluorescein)34 can be used as pHi indicators, but many of these are not 

particularly photostable or well retained in living cells.   

One approach to the problem of leakage of fluorescein derivatives from cells is to 

import some activated form that will non-specifically conjugate to intracellular 

biomolecules.  For instance, fluorescein isothiocyanate32,42 and 5-(6-)carboxyfluorescein 

diacetate succinimidyl ester,43 have both been used in this way.  

 The xanthene parts of the pHi indicators discussed above have very similar pKa values 

to fluorescein, ~ 6.4.44  The detailed spectral properties of fluorescein, carboxy-

fluorescein and fluorescein sulfonic acid can be obtained on the website of Invitrogen.45  
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2.4 Miscellaneous Fluorescein Derivatives 

Some of fluorescein derivatives with longwave absorption and fluorescence are 

possible for pHi measurements.46  For instance, 5 (and 6)-carboxynaphthofluorecein is a 

dual emission ratiometric near neutral pH probe with a pKa of ~7.6.47  The compound in 

acidic form absorbs and emits at 509 nm and 572 nm respectively.  Its base form has a 

bathchromic shift in absorption and emission with maximum peak at 598 and 668 nm. 

The pH-sensitive long-wavelength dual emission spectra have been applied for 

determination of physiological pHi.47 

 

O

CO2
-

5 (and 6)-carboxynaphthofluorescein 
pKa 7.6
φ = NA

λmax abs 509/598 nm
λmax emiss 572/668 nm

6
5 CO2

-

HO O

 

 

Fluorescein derivatives with different pKa values can be applied in similar ways 

to observe changes of proton concentrations that are centered around other pH values.48  

Electron withdrawing groups on xanthenes  lower their pKa values.  For instance, the 

halogenated fluoresceins Oregon green 488/514,49 and carboxy-DCF50 all have pKa’s of 

~ 4.7.  Otherwise, the pH-dependent absorbance and fluorescence spectral characteristics 

of these dyes are similar to fluorescein, hence dual-excitation ratiometric measurements 
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of pHi are possible.  Detailed information about applications of these dyes can be 

obtained through the Invitrogen website.51  
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Fluorescent rhodols, which is the hybrid of a rhodamine and a fluorescein 

molecules, have the same backbone as rhodamine and rosamine dyes with one of the 

NR2 groups replaced by oxygen.52-54  These fluorophores have high molar absorptivities 

in the visible region, high quantum yields in the range of 520-580 nm with appropriate 

N-substituents.  The dyes are much more photostable comparing to fluorescein 

detivatives.  The probes usually exhibit significant shift in absorbance spectra with 

variation of pH values, and are suitable for dual excitation ratiometric pH measurement.  
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Some of these compounds have lower pKa values between 4.5 - 6.5 and suitable for pH 

measurement in acidic environments.49,54  For instance, the conjugate of rhodol 9 with 

ethylenediamino-ouabain has been used for probing the pH values in the 

microenvironment in the cardiac glycoside-binding site of Na+/K+-ATPase.55 

 

OH2N O

CO2H

CO2H

9
pKa 5.59
φ = 0.89

λmax abs = 494 nm
λmax emiss = 520 nm  

 

3. SNAFLs, SNAFRs, and SNARFs 

There are three possible isomers of benzoxanthene dyes that differ via their 

orientation of annulation (Figure 2.4a). Representatives of all three compounds types 

have been prepared, and their spectral and photophysical properties have been studied.  

Benzo[c]xanthenes were introduced by Molecular Probes in the early 1990s.24  These 

dyes include the seminaphthofluorones (SNAFRs), seminaphthofluoresceins (SNAFLs), 

and seminaphthorhodafluors (SNARFs); all these dyes have one benzene and a 

naphthalene component in the fluorophore (Figure 2.4b).  SNAFLs and SNAFRs, and 

SNARFs are long-wavelength fluorescent pHi indicators with oxygen and nitrogen 10-

substitutuents, respectively.24,56 
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The pnemonics for these compounds are so similar that it is bewildering to use 

them.  The following are generalities that may make these abbreviations more user-

friendly.  Throughout, “SNA” stands for “SemiNAphtho-“.  SNAFRs and SNAFLs share 

similar molecular structures except that SNAFRs do not possess a carboxyl substituent at 

the 3’ position (they are FluoRones), whereas SNAFLs are FLuorescein derivatives, and 

SNARFs are derived from RhodaFluors.    Figure 2.4c delineates how these dyes are 

related to fluorescein and rhodamines.  Consideration of this graphic also makes it 

evident that there are other permutations of the annulation structure and O/N-substitution 

patterns that correspond to compounds that are not used as pH indicators, and may even 

not have been prepared. 
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OH

OH

 

OO
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Figure 2.4.  (a) Three types of benzoxanthenes; (b), three types of benzo[c]xanthenes that have 
different heterocyclic substituents; and (c), evolution of benzoxanthenes from fluorescein and 
rhodamine. 
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Figure 2.4.  Continued. 
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Figure 2.4.  Continued. 

 

Semiempirical computer calculations (AM1) have been used to predict that 

bathochromic shifts should be observed in the absorption and fluorescence spectra of the 

type [a] and [b] benzoxanthene isomers.57  Some compounds in that series have recently 

been prepared, and they do indeed have red-shifted absorbance and emission maxima, 

but they have not yet been used for pHi measurements.56,58 

Scheme 2.5a shows syntheses of benzo[c]xanthene dyes, ie SNARFs and 

SNAFLs, via condensation of 1,6-dihydroxynaphthalenes with the appropriately 

substituted benzophenone derivatives 10; these in turn were made via coupling of 

resorcinol or 3-aminophenol with phthalic anhydride in toluene.  For instance, 

carboxySNARF-4F was synthesized via acid catalyzed condensation of 5-fluoro-1,6-

dihydroxynaphthalene with 2,4- (and 2,5)-dicarboxy-3’-dimethylamino-2’-

hydroxybenzophenone.59  Syntheses of benzo[a] and [c]xanthene dyes was only recently 
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achieved.56,58 For instance, lithiated 1,6-dimethothynaphthelene was coupled with 2,4-

dimethoxybenzophenone to produce compounds 11 and 12.  SNAFR-1 and SNAFR-6 

were isolated in 55% and 15% yield after treatment with BBr3.58 

Molar absorptivities of SNARFs and SNAFLs are highest under basic conditions 

and their absorbance maxima shift to the red; this is true of most fluorescein derivatives.  

However, unlike most fluorescein-based pH indicators, their fluorescent emission 

spectra also show significant pH-dependent shifts.  The protonated form emits in the 

yellow-orange region (540 ~ 580 nm), whereas deep red emissions (620 ~ 640 nm) are 

observed for the basic form.  Both the absorbance and fluorescence spectra of SNARFs 

and SNAFLs show sharp, pH-independent, isosbestic points at ~530 nm and ~585 nm, 

respectively; these are desirable properties for dual-absorbance and dual-emission 

ratiometric measurements.  SNARFs and SNAFLs have been used as dual-emission pH 

indicators60 for determination of intracellular pH values via flow cytometry61 and 

confocal spectroscopy.60  N,N-Dialkyl SNARFs (ie type B SNARFs in Figure 2.4b) are 

more fluorescent in basic solutions where they exist predominantly as their anionic 

forms (quantum yields 0.05-0.20) than in their neutral forms (quantum yields of 0.02-

0.07).  Conversely, SNAFLs and type A SNARFs (Figure 2.4b) have higher quantum 

yields (up to 0.5) in the neutral form (ie under acidic conditions; Figure 2.5).  
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Scheme 2.4.  (a) Original syntheses of SNARFs and SNAFLs; and (b), One example of syntheses of a 
benzo[a]xanthene and a benzo[b]xanthene. 
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Figure 2.5.  Spectral and photophysical properties of some commercially available benzo[c]xanthenes 
that have been used as pH indicators. (a) SNARF; and (b), SNAFL-1 derivatives. 
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Carboxy-SNARF-1 (or “C.SNARF-1”)62 is probably the second most widely 

used pHi indicator behind BCECF (see above).  It has been applied to determine absolute 

cytosolic, mitocontrial60 and nuclear63 pH values in living cells using flow cytometry,61 

microplate readers,20 confocal imaging60 or microspectrofluorometry.27   
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Dyes like C.SNARF-1 have several attributes that may explain why they are so 

widely used.  First, C.SNARF-1 can be temporarily shielded as an AM ester, facilitating 

import into living cells.  Furthermore, the cell permeable chloromethyl SNARF-1 acetate 

slowly reacts with intracellular thiols forming conjugates that are retained inside cells 

and facilitate long-term pH studies.  Second, the ratiometric properties of C.SNARF-1 

are not significantly dependant on its concentration or on the ionic strength of the 

surrounding aqueous media; these are desirable properties for general-use pHi 

indicators.33  When C.SNARF-1 was irradiated to photobleach the compound, the ratio 

of the fluorescence intensities at 580 and 640 nm was shown to be essentially invariant; 

this makes the dye more suitable for extended experiments than it would otherwise be.60  

Furthermore, the fluorescence spectrum of C.SNARF-1 has been shown to be 

sufficiently different to the Ca2+ sensor fura-264 and to the Na+ sensor SBFI,65 
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facilitating simultaneous measurement of H+, Ca2+ and Na+ concentrations in cells.  

Finally, C.SNARF-1 can be excited at longer wavelengths (514 nm or 536 nm) than 

some other probes, reducing cell damage due to irradiation and circumventing some 

effects of intracellular autofluorescence.   
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There are also some drawbacks to using C.SNARF-1 as a pH indicator.  It has a 

low quantum yield, especially under acidic conditions (neutral form; ⎞ = 0.03).  

Intracellular pH values under 7.0 cannot be measured accurately using this dye because 

its pKa is too high (7.5).  Moreover, the spectral properties of C.SNARF-1 are 

significantly influenced by temperatures and environments in living cells.27   The 

quantum yield of the probe decreases by 25% when the temperature increases from 25 
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°C to 37 °C.  Further, the brightness of the dye inside living cells is diminished probably 

because of its interaction with intracellular proteins.  C.SNARF-4F59 and C.SNARF-5F 

have lower pKa values, 6.4 and 7.2 respectively, and are recommended by Invitrogen 

(formerly Molecular Probes) as replacements for C.SNARF-1 to measure acidic or 

cytosolic pHi.66,67  Some other C.SNAFLs, e.g. C.SNAFL-1 and SNAFL-calcein have 

been used for measuring pHi too, but their pKas are usually bigger than 7.6.    Finally, 

the fast photobleaching rate of these dyes, especially at 37 oC, restricts the application of 

SNAFLs for the measurement of pHi in the living systems.68  

 

4. Miscellaneous Small Molecule pHi Indicators 

This section covers small molecule pHi indicators that cannot be grouped into the 

categories discussed above.  The first four considered in this subsection (europium 

complexes, a fluorene derivative 14, 1,4-DHPN, and HPST) are indicators for near 

neutral environments.  The rest of the dyes in this section are useful under more acidic 

conditions; they are based on anthracene, BODIPY, or cyanine structures to give 

emission maxima that occur at longer wavelengths. 

4.1 Various Indicators for Near Neutral pH Values 

Europium Complexes  

Emissive europium(3+)69 complexes such as 13 may be applied for measurement 

of pHi.70  In these molecular, the sensitizing group azathiaxanthone allows excitation in 

the range 360 to 405 nm.  Fluorescence of this complex between 680 - 710 nm is 

hypersensitive to N-ligation of the sulfonamide which, unlike the sensitizing group, 
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dissociates from the metal as the pH is lowered.  Thus the fluorescence intensity at 680 

nm is quite strong in basic aqueous solutions (pH ~8) and diminished in acidic media 

(pH 4-5).  This characteristic makes the complex suitable for ratiometric pH 

measurement based on fluorescence intensity ratios at 587 and 680 nmas a function of 

pH.  The complex possesses a large Stoke shift ~200 nm and fluoresces in the near-IR 

region where cell autofluorescence is less problematic.  Moreover, complex 13 is cell-

permeable and non-toxic.  When the dyes is used to stain cells, confocal fluorescence 

microscopy indicates that both the europium emission (ca 570 nm) and the 

azathiaxanthone fluorescence (450 nm) eminate mainly from the nucleus implying that 

the intact complex is localized there.  A disadvantage of 13 is that, like most lanthanide 

complexes, it has a low quantum yield (0.06). 
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The donor-π-acceptor fluorene derivative 1471 is a near-neutral pHi indicator with 

pKa of ~ 7.  It is water-soluble, cell permeable, and diffuses into the cytosol.  Also it has 

low cytotoxicity (in the 0.1 – 100 μM concentration range)71 as indicated by the Alamar 

Blue (AB) reduction analysis (a method to test cell viability).72  Sharp isobestic points 

are observed in the absorbance and emission spectra of this dye (at 355 and 492 nm 

respectively); as we have already commented, isobestic points are highly desirable for 

ratiometric measurements because they are indicative of well proportioned spectral 

transformations between two {pH} states.  Furthermore, this probe has been applied for 

imaging of with two-photon excitation with a relatively large 2PA cross section (100 

GM at ~800 nm) in its neutral form 14’.  
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1,4-Dihydroxyphthalonitrile (1,4-DHPN) 
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1,4-DHPN73,74 was a commonly used pHi indicator before it was largely 

superceded by BCECF and C.SNARF-1 in the early 1980s.  The spectral properties of 

this compound are more desirable for intracellular pHi measurements than fluorescein 

derivatives; this is because the fluorescence emission maximum for 1,4-DHPN shifts 

with pH whereas fluoresceins tend not to have this properties hence they are used to give 

a change of fluorescence intensity at one single wavelength.29  The maximum 

fluorescence wavelengths in the emission spectra of 1,4-DHPN shift from 450 to 476 nm 

as pH is increased from 3 to 10, and this permits the dual emission ratiometric 

measurement.  The ratio of the fluorescence intensities at 512 and 455 nm do not 

significantly change with dye concentration and the ionic strength of the medium.  

Further, the dye is also not toxic to cells (at least as assessed by monitoring oxygen 

consumption, an older method to test cell viability).74  The parent dye is not especially 

cell permeable but the corresponding diacetate, 1,4-diacetoxyphthalonitrile (1,4-

DAPN),75 is and it can be hydrolyzed into 1,4-DHPN by the enzyme esterase.  1,4-

DHPN has been used to sense the pHi regulatory responses when A6 cells are incubated 

with acid and with base.74    

There are, however, several drawbacks associated with applications of 1,4-

DHPN in pHi measurements.  First the dye is rapidly cleared from living cells because it 

only has 1-2 negative charges at physiological pH values.76  Second the low UV 

excitation wavelengths typically used for this dye (350-365 nm) might perturb the cells.  

Third, the emission spectrum does not have a well-behaved isobestic point hence this 

dyes is not ideal for ratiometric methods based on differences in emission wavelenghts.  
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Overall, dyes like the BCECF and SNARFs are more favorable with respect to these 

parameters hence they tend to be preferred over 1,4-DHPN for pHi measurements. 
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8-Hydroxypyrene-1,3,6-trisulfonic Acid (HPTS) 

HPTS is a highly water-soluble dye compound77 with low toxicity,78 and it is also 

very cheap compared with most other indicators.  It has been used for measurement of 

cytoplasmic pH79  or acidic organelle pH80 in many cell types.  Excitation ratio imaging 

is possible using HPTS since it has absorbance maxima at 405 and 465 nm that increases 

and decreases, respectively, when the solution pH is varied from 5 to 8.  Furthermore, 

this tri- or tetra-anionic dye is retained well inside living cells at physiological pH 

values.  The main limitation to the use of HPTS as an intracellular indicator is its lack of 

cell permeability, and there is no convenient pro-drug like form to facilitate transport of 

this dye into cells.  This accentuates the general need for sulfonic acid protecting groups 

that are cleaved by esterases.  At present HPTS is only useful for pHi measurements 

when loaded inside living cells via microinjection, electroporation,81 and scrape-

loading79 which might damage the cells.   
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Cyanine-based pH Indicators 

Near IR pH stains based on cyanine dyes tend to emit in the near IR region, 

hence minimizing cell damage on excitation and undesirable effects from cell 

autofluorescence.82  A new near-infrared neutral pH fluorescent probe 1583 was recently 

introduced for measurement of near neutral pHi values.  This pH indicator consists of a 

near IR fluorescent tricarbocynine (Cy) fluorophore with high molar absorptivity and a 

4’-(aminomethylphenyl)-2,2’:6’,2”-terpyridine(Tpy) receptor.  In pH 10, the 

fluorescence of 15 was quenched (⎞ = 0.008) by the lone pair electrons of Tpy via PeT.  

Conversely, the protonation of N atoms stops PeT process and the dye fluoresces 

brightly (φ = 0.13) with a peak at 750 nm.  Fluorimetric titration showed that the pKa of 

the probe in aqueous buffered solution is about 7.1.  Compound 15 was applied to living 

HepG2 cells for observing pH-dependent changes of fluorescence brightness.83  

Confocal spectra revealed that dye 15 was more fluorescent at pH 7.0 than at pH 7.8, and 

it could monitor minor pH changes within the range of 6.7 – 7.9.  Extensive studies 

showed that this probe has low toxicity, cell membrane permeability and good 
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photostability.  All these advantages suggest that this probe could be widely used for 

monitoring minor pH changes in biological systems.  
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4.2 Various pH Indicators for Acidic Environments  

Commercialized Lysosensors 

Many probes are available from Life Technologies (former name Invitrogen) for 

measurement of acidic pHi values.  A pyridyl Oxazol probe Yellow/Blue DND-160 

PDMPO84, the anthrathene-based sensor DND-16785 and DND-153, and DND-189 

(Figure 2.6) are dyes that work on the principle of that electronic excited states can be 

quenched before they fluoresce by electron transfer form amines; this is photoinduced 

electron transfer (PeT).86,87  Dyes of this type become more emissive in acidic 

environments when proximal amine is protonated.  Of all the Lysosensors shown in 

Figure 4, DND-160 is unique because it is brightly fluorescent at protonated and 
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deprotonated forms (⎞ < 0.3 for both forms) and its absorbance and fluorescence spectra 

are significantly blue shifted with isosbestic points at 365 and 470 nm as the pH values 

are increased.  Furthermore, it showed pH-dependent lifetime responses indicating a 

good probe for lifetime imaging to determine lysosomal pH.87  The acidic form DND-

160 fluoresces brightly in yellow light with a peak at 540 nm.  The basic form emits 

strongly blue light with a maximum at 440 nm.  The pKa of DND-160 is about 5.1.  

DND-160 has been applied for dual emission imaging for lysosomal pH.  Advantages of 

the DND dyes, and of anthracene derivatives in particular, are that they tend to be very 

photostable, and cell permeable.  Conversely, a disadvantage associated with that 

particular dye type is that that anthracene is a dye that absorbs and emits at relative short 

wavelengths (377 and 430 nm),85 leading to cell damage and undesirable artifacts from 

autofluorescence.  LysoSensor DND-189 is exceptional insofar as it remains fluorescent 

even when the pendant amine is not protonated, ie at pH values from 5.4 to 7.0.88  DND-

153 with a pKa of 7.5 is sensitive to neutral pH, but still has strongly emission in green 

light at pH 8.87  We conclude that PeT does not quench the fluorescence of these dyes so 

effectively because the oxidation/reduction potentials of the fluorophore and the amine 

are not well matched for this.   
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Figure 2.6.  Commercialized Lysosensors for acidic environments. 

 
A group of macrocyclic peptidomimetics FG-H503, FG-H504, FG-H506 and 

FG-H508 derived from 9,10-dimethylanthracene moiety were reported in 2005.88  All of 
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these probes have very similar absorbance (at 377 nm) and fluorescence maxima (ca 430 

nm) in aqueous solution but have tunable pH properties for the fluorescence imaging of 

acidic organelles in live cells.  The peptidic parts differ only in the size of the cyclic 

systems they form around the anthracene (n changes from 3 to 8): this structural change 

modifies the pKa values of the amine parts from 5.06 to 5.43.  Thus these 

peptidomimetics are useful in a pH region that is not covered effectively by lysosensors 

DND-167 and DND-189 (pKa of 5.1 and 5.2).   It was concluded that FG-H503 localizes 

in acidic organelles after being taken up by macrophage Raw 264.3 cells, because it co-

localized with lysosomal probes DND-189 and DND-26.     
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Acridine Dyes 

One of the most commonly method to study the changing of pH in acidic 

organelle in live cell is based on the use of lipophilic weak bases, such as monoamine, 9-

amino-6-chloro-2-methoxyacridine (ACMA), and diamine acridine orange (AO).  These 

dyes are cell permeable in neutral form and much less permeable in protonated form.  

The alteration of absorbance and fluorescence spectra of AO is dependent upon its 
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concentration.89  The monomeric form of AO absorbs at ~ 492 nm and emits green light 

at 530 nm.  A red emission at 655 nm has been attributed to the dimmer or oligomers of 

AO, which has a blue shift absorbance at 465 nm.90,91  The ratio in the green/red 

(530/655 nm) is dependent on the concentration in acidic compartments in living cells, 

which is harnessed by the pH gradient through membrane vesicles.  Therefore, the 

relative acidity of acidic vesicles in sensitive or in muiltidrug-resistant living cancer cells 

has been appraised by determination of the red/green ratio of accumulated AO.90  

Limitations of using AO as a probe for measuring pH across membrane is that its 

spectral properties are significantly affected by temperature and the presence of 

anions.91,92  For instance, NO3- anion can induce aggregation of AO.  Therefore, AO can 

not be used for quantitatively determination of pHi. 

ACMA,93 the nucleic acid stain, mainly exists in monocation form (pKa of 8.6) 

in physiological environments.  This dye, unlike AO, does not dimerize in solution at 

concentration as high as 200 μM.94  Its fluorescence is quenched by pH or potential 

gradients across cell membranes.94,95 
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BODIPY-based  

Cell permeable LysoTracker Green DND-26, a BODIPY derivative (Figure 2.6), 

could also be used for imaging acidic compartments in live cells.  This dye tends to 

absorb and emit at longer wavelengths than the anthracene derivatives, and it is a 

brighter probe because its molar absorptivity is higher. 

A series of pH probes based on BODIPYs (ie NH2BDP, DiMeNBDP, 

EtMeNBDP and DiEtNBDP) were recently reported for imaging acidic endosomes in 

cancer cells.96  These compounds are almost non-fluorescent in basic media (⎞ <0.002) 

due to PeT quenching by the meso-aminophenol substituent.  However, these 

compounds are highly fluorescent in acidic environments (⎞ 0.55 – 0.60) when the 

aniline amine is protonated.  The pKa values of these BODIPY dyes range from 3.8 to 

6.0; this range is possible by changing the alkyl group on the nitrogen.  Monoclonal 

antibody trastuzumab labeled with these acidic pH-sensitive dyes selectively target the 

human epidermal growth factor type 2 (HER2) receptor, and are then internalized.  

Confocal spectroscopy revealed that the antibody-probe conjugates are not fluorescent 

outside cells at neutral pH values.  However, 2 h after they are combined with 

appropriate cells, the pH probe-antibody conjugates fluoresce in endosomes.  Only 

viable cells are visualized under these conditions because the acidic pH in lysosomes is 

maintained by energy-consuming proton pump; this factor can be an advantage for some 

analyses.  
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A Cyanine-based pH Indicator  

The cyanine derivative 15 is cell permeable, and has an optimal pH response 

around ~5.1.97  The aminophenol part is the modulator; when protonated, the dye has a 

maximum absorbance at 558 nm, and fluoresces at 615 nm.  The fluorescence intensity 

increases about 10 times when the pH is decreased from 6.5 to 4.0.  Indicator 15 has 

been applied for monitoring intracellular H+ within HepG2 cells.   One general 

disadvantage cyanine-based dyes is that they tend to photobleach faster than ones based 

on anthracene and BODIPY systems. 
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5. An Energy Transfer Cassette 

Compound 16 based on through-bond energy transfer cassettes98-101 has been 

used for probing pHi in cos-7 cells.20  Probe 16 consists of two xanthene donors, one 

BODIPY acceptor, and a triethylene glycol carboxylic acid linker.  The linker part is 

designed to increase the water solubility of the compound in aqueous solution, and to 

allow attachment to biomolecules.  Energy transfer efficiency from the donors to the 

acceptor is modulated by the oxidative potentials of the xanthene part, which in turn 

depend on its protonation state.  Thus when the system is excited at wavelengths that 

correspond to the donor then the fluorescence of the whole system is sensitive to the pH 

of the medium.  At pH 5.5 or less, the xanthene donors exists the phenolic state, the 

oxidation potential of this is ideal for energy transfer, and the probe fluoresces via the 

acceptor, ie red, around 600 nm.102  Conversely, the xanthene donors exists 

predominantly in the phenolate form under basic conditions pH > 7.  In that state the 

donor and acceptor oxidation potentials are not well matched for energy transfer, and the 

sensor fluoresces almost exclusively from the donors parts (green, ie around 520 nm).  If 

the pH is between 5.5 and 6.5, the cassette emits from donors as well as the acceptor.  

Overall, the cassette remains fluorescent as the pH is changed. 
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A recent discovery from our laboratories shows that Pep-1 mediated import into 

COS-7 cells tends to deposit the dye-labeled protein cargoes into the cytosol and 

ensosome when the experiment is performed at 4 and 37 °C respectively.103  Thus, BSA-

16 under these conditions would be expected to fluoresce with different red-to-green 

ratios when BSA-16 is distributed within the cytosol with pH at ~ 7.2, and the endosome 

with pH around 5-6.  An ex-vivo calibration curve was generated for the cassette shown 

above (Figure 2.7); this facilitated its use to determine pH values for the endosomes and 

the cytosol.  The pH values of endosome and cytosol, obtained from the red/green ratio 
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(R/G = 5.03 and 2.03), were 5.4 and 7.4 respectively; these data are consistent with those 

expected for such intracellular regions.   
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Figure 2.7.  ex-vivo calibration curve with pH values corresponding to those observed within 
endosomes (red/green = 5.03; import at 37 °C) and the cytosol (red/green = 2.03; import at 4 °C). 

 
Imaging of protein-16 inside cells was possible using this probe.  We favor 

reserving the word probe for labels that can be conjugated with biomolecules to track 

them within cells.  This distinction is important when differentiating these from stains.  

We reserve the word stains for dyes like C.SNARF-1 that are usually used in solutions to 

bathe the cells and stain their interiors.  Dyes like C.SNARF-1 are usually not attached 

ot biomolecules then imported into cells for several reasons.  These reasons relate to 

their low quantum yields making them hard to visualize at low concentrations, and 

photobleaching effects.  
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6. pH Indicators Based on Nanoparticles, Lipobeads and Microspheres 

Nanoparticles can have unique properties resulting from their large surface-to-

volume ratios and their small sizes; consequently, they have some potential as sensors in 

medicine and biotechnology.  Probes for pH based on a nanoscaffolds can possess 

several advantages over small molecule pH sensors.  Firstly, multiple indicators can be 

attached to single particles, hence the localized brightness of the system is increased.   

Second, particles can simultaneously support pH-sensitive and -insensitive dyes to 

facilitate ratiometric measurements.  Third, nanoparticles may be less vulnerable to 

leakage through cell membranes and to cellular compartmentalization.  Fourth, some 

nanoparticles are more photostable than small organic dyes.  Finally, the physical 

properties of the nanoparticles can be modulated and manipulated by adjusting their core 

structures, e.g. by choosing between bacteriophage, silica, and coated polystyrenes. 

Fluorescein-loaded onto amino-functionalized polystyrene microspheres, ca 2μM 

diameter have been used for real-time detection of H+ concentrations inside living 

cells.104  These microsphere were shown to be cell permeable to varied cell lines, and 

non-toxic to cells at any concentration tested.  These bead have an aminohexanoic acid 

linker between the bead and the fluorescent label {formed from 5(6)-

carboxyfluorescein}.   
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Scheme 2.5.  Synthesis of fluorescein-capped polystyrene microspheres. 
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M13 bacteriophage particles functionalized with cyanine dyes have been used for 

determination of intracellular pH.105  These particles provide a flexible heterofunctional 

platform that is approximately 880 x 6.6 nm in size.  They contain ca 2700 copies of the 

p8 coat protein, hence the surface of the particle displays amine groups that may be used 

for conjugation to other molecules.  In this particular case those amines were coupled 

with the cyanine dyes, HCyC-646 (pH-sensitive) and Cy-7 dyes (pH insensitive, Figure 

2.8).  When protonated, HCyc-646 absorbs at 646 nm and emits at 670 nm with a 

quantum yield of 0.08 in aqueous solution.   In neutral or basic environments, the dye is 

deprotonated, there is an hypsochromic (blue) shift of the absorbance to 506 nm, and the 

near-IR fluorescence is lost.  The pKa of HCyc-646 is 6.2, which is suitable for sensing 

acidic environments in live cells.  The pH insensitive dye Cy-7 emits at 775 nm, and this 

fluorescence provides an in-built control on the nanoparticle that can be used to calibrate 

the fluorescence changes of the other dye.  Typically 400-500 copies of HCyC-646 and 
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Cy-7 combined were attached to the bacteriophage.   In one experiment, incubation of 

the labeled bacteriophage with RAW cells for 1 h gave internalization of the particles 

into acidic organelles where they indicated a pH of 5.0 - 6.5; such values are to be 

expected for intracellular vesicles such as lysosomes, endosomes and phagosomes.   

Imaging through tissue was also achieved using dye-labeled bacteriophage particles.105  

Good correlations were observed between ratiometric pH readings from these particles 

and the values measured via an electrode.   However, a limitation of this system is that 

fluorescence emissions from HCyC-646 and Cy-7 at (670 and 775 nm respectively) 

penetrate tissue with different efficiencies hence a correction factor must be applied for 

accurate measurements of pH.  
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Figure 2.8.  HCyC-646 and Cy-7 loaded onto bacteriophage particles. 
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Figure 2.8.  Continued. 

 

Colloidal luminescent mercaptoacetic acid capped CdSe/ZnSe/ZnS quantum dots 

are pH-sensitive andhave been applied to sensing intracellular pH in human ovarian 

cancer cells.106  The CdSe core emits visible light, and the two ZnSe/ZnS shells stabilize 

the photoluminescence properties of the quantum dots by preventing oxidation of the 

core.  Capping the dots with mercaptoacetic acid also serves to increase their water 

solubilities.  Fluorescence intensities of these quantum dots in cells increases 

monotonically with increasing pH, ie it is quenched in acidic solutions.  In living cells 

these particles are around 10-fold less fluorescent at pH 4 than at pH 10.  Further, their 
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high resistance to photobleaching facilitates long-term cell tracking and monitoring of 

the intracellular pH. 

Fluorescent dyes encapsulated in silica nanoparticles, ”fluorescent core-shell 

silica nanoparticles”, have been produced for quantitative chemical sensing in live cells.  

The fluors encapsulated in these particles tend to be brighter and more photostable than 

the corresponding free dyes in solution.107,108  Dual emission sensor nanoparticles can 

combine a pH-sensitive fluorescein dye and a pH-insensitive dye like 

tetramethylrhodamine.  Such particles have been shown to be endocytosed by RBL mast 

cells upon the addition of the macropinocytosis stimulator, phorbol 12,13-dibutyrate.  

Following uptake, the particles were trapped in endosomes that later matured into 

lysosomes.  The pH values of various intracellular locations indicated by confocal 

fluorescence images varied from 6.5 (endosome) to 5.0 - 5.5 (lysosome).  The rhodamine 

internal standard for the pHi measurements also acts as an indicator of the particle 

location even in acidic pH conditions where the fluorescein component is less emissive.         

 Micrometric phospholipid-coated polystyrene particles, also called “lipobeads”, have 

been used for determination of pHi in murine macrophage cells.109  Again, just as in the 

work described above, pH sensitive fluorescein and pH-insensitive 

tetramethylrhodamine were used for these ratiometric pH measurements; the liposome-

encapsulated dyes display sensing properties similar to those observed in aqueous 

solution.  In this case those fluors were covalently attached to the phospholipids coats on 

the polystyrene particles thus preventing leakage of dye molecules into the 

microenvironment.  The lipobeads were shown to be non-invasively ingested by 
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macrophage cells and delivered into lysosomes.  However, we note that use of 

macrophage cells is not a stringent test of the ability of particles to permeate cell walls or 

of their cytotoxic effects; this is because macrophage cells easily ingest foreign material, 

and they are relatively robust.  Bright field images of the particles in these cells indicated 

they were not significantly aggregated.   Lysosome pH values deduced using these 

lipobeads were 5.7 ± 0.1; this is a reasonable value. 

    

7. Fluorescent Proteins 

Green fluorescent protein (GFP) from the jellyfish Aequorea Victoria is a widely 

used as the reporter for gene expression110 and as a marker for biomolecules.111 GFP has 

a cylindrical 11-strand β-barrel structure encapsulating the chromophore p-

hydroxybenzylideneimidazolidinone 17.  This fluorescent part is formed by autocatalytic 

condensation, cyclization and oxidation of three consecutive amino acids Ser-Tye-Gly 

from the 65-67 parent protein.  The β-barrel forms a relatively rigid, hydrophobic 

environment which enhances the quantum yield of the chromophore.112     
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Photophysical properties of GFP and similar fluorescent proteins can be modified 

by mutagenesis.113-115  For instance, the replacement of S66 tyrosine residue in GFP with 

histidine gives the blue fluorescent protein BFP that contains the chromophore 18.  The 

spectral properties of both native GFP and its mutants are strongly pH dependent in 

aqueous solutions,116 suggesting a pH sensing roles and applications in cell 

compartments.  The S65T-GFP chromophore has a pKa of 6.0 and has absorbance 

maxima at ~382 and 490 nm.  The intensities of these peaks change with solution pH; in 

acidic environments, absorbance at 382 nm predominates, but in basic media, the 490 

nm peak predominates.   

Two type GFP mutants S65T and F64L/S65T, also termed GFPmul1, have been 

used for measurement of cell compartments in living cells.117,118  Similar pHi values 

were deduced using GFPmul1 and pHi indicator BCECF.  Another pH sensitive GFP 

mutant, called enhanced yellow fluorescent protein (EYFP), has a pKa of 7.1, suggesting 

that this protein is suitable for pHi measurements in pH range of 6.5 -7.5.   

One advantage of fluorescent proteins is that they can be targeted to specific 

organelles (e.g. cytosol, nucleus, mitochondria, trans-Golgi and endoplasmic reticulum) 

by expressing them in conjugation with appropriate targeting peptides or proteins.119,120  

The fact that they are expressed in cells, rather than imported into them, can also be an 

advantage in some situations. 

 

8. Conclusions 

Probes for pHi measurements can be used to study pH-dependent biological and 
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pathological processes, e.g. cell death, cancers, and cell proliferation.  BCECF and 

carboxy-SNARF-1 are the two most widely used pHi indicators since they have desirable 

photophysical properties for the determination of near neutral intracellular H+ 

concentrations.  Fluorescein and fluorescein derivatives, e.g. carboxyfluorescein, are 

common pHi indicators; however, they rapidly leak from the cytosol through cell 

membranes and this can lead to erroneous pH measurements.  HPTS, another widely 

used intracellular pH probe, tends to be retained inside living cells because it has three 

sulfonate groups, and it can be applied for measurements of acidic and near neutral pH 

values.  However, HPTS is not cell permeable and must be injected into cells if it is to be 

observed there.  Other organic fluors that have been used as stains in pH measurements 

have sub-optimal properties in terms of photostabilities or quantum yields.  Figure 2.9 

gives a “pH spectrum” for the most widely used cellular pH sensitive stains.  

Most pHi measurements are ratiometric.  They can be dual excitation (changes at one 

fluorescent wavelength are observed) or dual emission.  Methods based on a single 

excitation wavelength (dual emission) have a significant advantage insofar as they are 

most easily used on different equipment (e.g. confocal microscopes, plate readers, and 

flow cytometers) where only one or limited excitation wavelengths are available. 

Fluorescent proteins can be used to measure the pHi of specific cell organelles 

(e.g. the mitochondria, ER and Golgi) after fusing them to targeting entities.  This is a 

big advantage when probing the pH of specific organelles, but it is a significant amount 

of work to construct suitably genetically encoded cells.   

Other methods for pHi determination are more futuristic.  Nanoparticles, e.g. 
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CdSe quantum dots, dye-dopped silica nanoparticles, and dye-labeled bacteriophage can 

be more photostable and brilliant than small fluorescent organic dyes.  However, they 

tend to be endocytosed into cells and thus they can be trapped in acidic vesicles or 

endosomes.  Moreover, there are more convenient ways to stain cells, and the 

disadvantage of using these indicators as probes bioconjugated to proteins is that they 

tend to be as big or bigger than the protein itself.    

In fact, most of the molecules used for measurements of intracellular pHi values 

are stains, ie entities that color the whole cell.  The xanthene-BODIPY cassette 16 has 

the potential to be used as a probe, ie it can be attached to proteins then imported into 

cells to track that protein.  This is possible because 16 has a higher quantum yield than 

C.SNARF-1 both in acidic and basic environments, and because it has a functional group 

to allow bioconjugation.  There is clearly an opportunity to devise other pHi probes for 

tracking spatial and temporal protein function inside live cells and the way pH changes 

around them. 
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Figure 2.9.  pH sensitive ranges of most widely used cellular pH sensitive stains. 
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B. AN RATIOMETRIC pH REPORTER FOR IMAGING PROTEIN-DYE 

CONJUGATE IN LIVING CELLS 

Of the numerous fluorescent small molecule pH probes that have been reported, 

only a small number are practical for intracellular imaging of protein-dye conjugates.  

This is unfortunate because pH changes within cells are indicative of many cellular 

processes.9-11,121,122  The most useful probes are the ratiometric ones that absorb UV 

excitation at a fixed wavelength, and emit at two different fluorescence wavelengths in a 

pH dependent manner.  These probes do not give dark regions in the cell at extreme pH 

environments, and simply areas where the dye did not permeate are clear.  A widely 

used, commercially available pH-sensitive probe of this type is C.SNARF-1 (Invitrogen 

Inc.). This communication focuses on the pH probe 16 based on a through-bond energy 

transfer cassette.98-100  Data are presented to demonstrate that probe 16 tends to fluoresce 

with higher quantum yields than SNARF over a physiologically relevant pH range.  The 

ideal pH ranges of operation for 16 and for C.SNARF-1 are complementary (4.0 – 6.5 

and 7.0 – 8.0, respectively).  

Xanthene (the fluorescent core of fluorescein) is highly emissive at pH values 

above 7 (φ = 0.9); under those conditions it exists predominantly in the phenolate form.  

As the pH is lowered to around 6, it transforms into the phenolic state that is somewhat 

less emissive (φ = 0.4).51,102,123  The pH probe 16, which has two xanthene donors and 

one BODIPY acceptor, was designed to harness changes in the oxidation potentials 

associated with these protonation states.  We hypothesized that the efficiency of the 

energy transfer from the xanthene donors to the BODIPY core would be governed by 
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oxidation potentials which in turn depend on the protonation state of the xanthenes, 

making the whole cassette sensitive to pH changes in the range of cellular physiological 

processes.  Perfect energy transfer, when the probe is excited near the fluorescein 

absorption maxima (ca 495 nm), would give red fluorescence (600 nm).  Conversely, if 

the energy transfer was completely eliminated at certain pH values then the cassette 

would fluoresces from the xanthene core (ie around 520 nm).  In either case, the cassette 

would remain fluorescent as the cellular pH changes. 

 

1. Design and Synthesis of the pH Probe 

Cassette 16 was prepared via Sonogashira coupling of two 5’-alkynyl fluorescein 

diacetate molecules C98 with an appropriate diiodo-BODIPY 20, followed by 

deprotection of t-butyl ester and acetate esters by pyrolysis and hydrolysis respectively. 

Compound 16 was designed to have a triethylene glycol linker that would somewhat 

separate the dye from the protein as well as increase solubility in polar solvents. 

Iodination of BODIPY 19, which is synthesized by the Sonogashira coupling reaction of 

two known fragments BODIPY B124 and terminal alkyne A125, gave diiodo-BODIPY 20 

in quantitative yield using conditions developed in Nagano’s group.[Yogo, 2005 #10599  

The final cassette is slightly water soluble at neutral pH, and more so at pH 8.  
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Scheme 2.6.  Syntheses of pH indicator 16 
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2. Results and Discussion   

Absorbance spectra for the conjugate of this probe with bovine serum albumin, ie 

BSA-16 were measured as a function of pH in aqueous media.  The absorption maxima 

for the acceptor BODIPY part is around 576 nm, and is impervious to pH changes 

between 4.1 and 7.9.  However, the extinction coefficient for the fluorescein part at 

around 495 nm diminishes markedly from pH 7.9 to 4.1. (Figure 2.10a)  

Fluorescence spectra for BSA-16 as a function of pH are shown in Figure 2.10b.  

Under neutral and basic conditions, pH 7.0 and 7.9, the probe emits almost exclusively 

at around 520 nm, ie green fluorescence.  Conversely, at the acidic extreme, pH 4.1 and 

5.0, the cassette fluoresces almost completely red, ie from the BODIPY acceptor.  The 

inset of Figure 2.10b shows that the ratio of red-to-green fluorescence for BSA-16 is 

highly sensitive to pH in the 4.0 – 6.5 range.  A crossover occurs around pH 6.0 where 

significant red and green fluorescence are observed.  If the measurement at pH 7.9 is 

excluded from consideration in Figure 2.10b (this is justifiable because we do not claim 

that the probe is sensitive above pH 7), then an isobestic point is apparent.  Quantum 

yield measurements for BSA-16 at the pH extremes of 4.1 and 8.8 were 0.18 and 0.14.  

By comparison, literature quantum yields for SNARF are 0.03 (pH 5 – 6) and 0.09 (pH 

10 – 12).[Brasselet, 2000 #13204]  The fluorescence response of 16 as the pH is cycled 

between acidic (3.4) and  basic media (8.0) demonstrated that the probe is stable to this 

treatment as shown in Figure 2.11. 
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Figure 2.10.  Spectroscopy and pH titration of BSA-16 (0.75 x 10-6 M) in aqueous solutions containing 
125 mM KCl, 20 mM NaCl, 0.5 mM CaCl2, 0.5 mM MgCl2, and 25 mM of one of the buffers, 
including acetate (4.1, 5.0), Mes (6.0), Mops (7.0) and HEPES (7.9).  (a) Absorbance spectra; (b) 
emission spectra with excitation at 488 nm.  Inset: Ratio of fluorescence integral for the red channel 
(575-625 nm) relative to the green channel (503–553 nm) at different pH values.  
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Figure 2.11.  Fluorescence responses of 16 (8.0 x 10-7 M) to acid/base cycles in 1:1 water-ethanol 
solutions.  The pH values used were 3.8 to 7.2, 6.0 to 8.0, 3.5 to 7.5, and 3.4 to 7.6, corresponding to 
cycles 1 to 4 respectively. The fluorescence intensities of the donor at 525 nm and acceptor at 600 nm 
were monitored with excitation at 488 and 565 nm respectively. 

 
Endosomes within cells (pH 5.0 – 5.5) are markedly more acidic than the 

cytosol.126  We have observed that when the non-covalently bound carrier peptide “Pep-

1”127 imports dye labeled proteins into COS-7 cells the protein-dye conjugates tend to be 

encapsulated in endosomes.103  Consequently, we anticipated that when BSA-16 was 

imported into cells using Pep-1, it would localize in endosomes and, in that acidic 

environment the probe would emit around 600 nm.  When BSA-16 was imported into 

COS-7 cells using Pep-1 (1 mM protein; 1:20 mol ratio protein:carrier, 37 ºC, 1h), 

irradiation at 488 nm resulted predominantly in red fluorescence localized in punctuate 

vesicular structures (Figure 2.12a). 
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a 

 

b 

 

Figure 2.12.  Pep-1 mediated cellular uptake of BSA-16 (1 μM) into COS-7 cells after 1h incubation 
at (a) 37 °C and (b) 4 °C.  The cells were irradiated at 488 nm and fluorescence from donor (503-553 
nm) and acceptor (575-625 nm) was detected respectively. 

 
A recent discovery from our laboratories shows that Pep-1 mediated import into 

COS-7 cells tends to deposit the dye-labeled protein cargoes into the cytosol when the 

experiment is performed at 4 °C.103  Thus, BSA-16 under these conditions would be 

expected to fluoresce with diminished red-to-green ratios.  The fluorescence intensity for 

BSA-16 is distributed within the cytosol, hence the images in Figure 2.12 appear to be 

deceptively weak relative to situations (e.g. Figure 2.12a) where the probe is 

concentrated in punctates.  A better impression of the relative intensities in the red and 

green channels for both experiments (37 and 4 °C) after correction for autofluorescence 

and donor bleed through is shown in the Figure 2.13a. 



 

 

61

Quantitative data for pH measurements in cells were obtained via a calibration 

experiment.  Details of this are provided in the supporting information, but the salient 

feature is that the ionophore nigericin was used to produce “leaky cells” that were then 

bathed in buffers.  This is a standard approach that has been used for the same purpose to 

calibrate other pH measurements ex-vivo.27,29,61,119  A curve generated with the 

calibration experiment (Figure 2.13b) was used to determine pH values for the 

endosomes and the cytosol for the experiments shown in Figure 22.  The pH values, 

obtained from the red/green ratio (R/G = 5.03 and 2.03 at 37 and 4 °C, respectively), 

were 5.4 and 7.4 and were in good agreement with those expected for such intracellular 

regions.  When C.SNARF-1 AM (not protein conjugated) was imported into COS-7 cells 

(at 37 and 4 °C) as a lipophilic, hydrolysable form, a pH value of 7.1 was determined 

(see Figure 2.13c); this is very close to the value cited above for probe 16 (ie 7.4).  
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a 

 
 

b 

 

Figure 2.13.  (a) Corrected relative intensities observed in the green and red channels for BSA-16 
imported into COS-7 cells at 37 and 4 °C; (b) Ex-vivo calibration curve of BSA-16 with pH values 
corresponding to those observed within endosomes (red/green = 5.03; import at 37 °C) and the cytosol 
(red/green = 2.03; import at 4 °C). (c) Ex-vivo calibration curve of C.SNARF-1with pH values 
corresponding to that observed within the cytosol (red/green = 2.03; import at 4 °C).  Emission spectra 
were obtained upon excitation at 530 nm. 
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Figure 2.13.  Continued. 
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3. Conclusions 

Our interpretation of the C.SNARF-1 literature indicates that this probe is usually 

used as a non-conjugated form (i.e. not attached to proteins); presumably this is because 

it has a low quantum yield and cannot easily be visualized when present at low 

concentrations.128  By contrast, the data presented in this study show that visualization of 

proteins conjugated to 16 is possible.   This is highly significant because the new probe 

should facilitate observation of processes within the cell. Further, the energy transfer 

approach to pH probes for intracellular imaging has considerable potential for 

modifications with other pH sensitive donors to give a spectrum of probes with 

systematically varied pH response transitions.  Design of probes of this type requires an 

understanding of the parameters underlying the fluorescence energy transfer processes.  

These parameters although not simple, have been elucidated in a parallel study that 

focuses on the redox behavior of the cassette components; this is to be reported in the 

following chapter in detail. 
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C. “STOP-GO” FLUORESCENT PROTON SENSORS BASED ON THROUGH-

BOND ENERGY TRANSFER 

Intracellular sensing of protons is a non-trivial task; it is often achieved via 

oblique methods that do not allow direct observation of sensors that fluoresce at different 

wavelengths according to pH.  Such sensors would be preferred relative to ones that 

switch off completely at certain pH values, because probes of the latter type are not easy 

to locate inside cells in their “off-state”.  The former chapter that precedes this work 

described how a through-bond energy transfer cassette 16, a derivative of compound 22 

in this paper, could be used for intracellular imaging of pH.  This probe does have a 

desirable pH-fluorescence profile and it is always in the “on-state”.  Described here are 

syntheses of three other cassettes; another one containing two xanthene donors 23, and 

two more that each have two BODIPY-based donors, 24 and 25.  Remarkably, both the 

cassettes with xanthene-based donors, 22 and 23, fluoresce red under slightly acidic 

conditions (pH < ca 6), and green when the medium is more basic (> ca 7), whereas the 

corresponding cassettes with BODIPY donors, 24 and 25, give almost complete energy 

transfer regardless of pH.  Further, the quantum yield of the xanthene donor parts in 

cassettes 22 and 23 were much less (< 0.1) than the unsubstituted reference compound F 

(0.7 – 0.9).  Cassettes 24 and 25, by contrast, show no significant fluorescence from the 

donor parts, but the overall quantum yields of the cassettes when excited at the donor 

(observation of acceptor fluorescence) are high (ca 0.6 and 0.9).  Electrochemical 

measurements were performed to help explain the marked differences between the pH-

fluorescence profiles of cassettes 22 and 23 relative to 24 and 25.  Relative energies of 
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the HOMO and LUMOs for the donor and acceptor parts were deduced from the 

oxidation and reduction potentials of reference compounds representing the donor and 

acceptor fragments in the BODIPY-donor cassette 24 and the xanthene donor cassette 22 

in different protonation states.  This led to a unifying hypothesis to explain the pH-

fluorescence profiles of these cassettes (Figures 1.17 – 1.19).  It is suggested that the 

concept of designing through-bond energy transfer cassettes wherein orbital levels can 

be perturbed by analytes, is a relatively new, and potentially useful, approach to sensors 

for biomedical applications. 

 

1. Introduction 

Fluorescent sensors are widely used for detection of protons and metals in 

several applications, especially intracellular imaging.129 Types of indicators may be 

divided into three: (i) ones that are insignificantly fluorescent in the absence of analyte, 

but are much more emissive when it is present; (ii) the inverse, where fluorescence of 

the probe is quenched by the analyte; and, (iii) sensors which have observable 

spectroscopic differences when the analyte is present compared to when it is absent.  The 

third type of sensor is “always on” and this is a significant advantage because it is clear 

that the probe is present even if the analyte is not (Figure 2.14).   
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Figure 2.14.  Fluorescent sensors may be activated (i) or quenched (ii) by analytes; ones that are 
“always on” (iii) but change wavelength of fluorescence emissions on binding. 

 
When imaging inside cells, it is hard, and in some cases impossible, to gauge if a 

probe that is invisible in cells until it is activated [ie a type (i) probe as defined above] 

has permeated to the relevant place.  Conversely, probes that are always fluorescent 

inside cells until they bind an analyte [type (ii)] are of little value because the absence of 

signal tends not to be observable over background.  Probes of the third type outlined 

above tend to be more useful than the others if they fluoresce at different wavelengths in 

the presence and in the absence of analyte.130  To detect protons, however, there are very 
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few probes of this kind.115,131-136 Consequently, researchers are forced to rely on much 

less conspicuous changes in sensors that are “always on”.  Typical fluorescence based 

methods to detect intracellular proton concentrations (pH),29,60,70,82,88,97,104,106,137 for 

instance, gauge emission intensities as a function of excitation wavelength that change as 

pH varies.104 Fluorescein-based probes, for example, can be used in this way. 138-

140However, these sensors do not change emission wavelength maxima as the pH is 

varied; if they did, they would be far easier to use.  A simple analogy is that traffic lights 

based on only a green or a red light would be less effective than ones that switch 

between the colors. 

This paper focuses on how red-green, “stop-go” sensors can be produced using 

through-bond energy transfer (TBET) cassettes arranged to exploit photoinduced 

electron transfer (PeT).  The background on “TBET cassettes” and “PeT” is as follows.  

Rapid and efficient through-bond energy transfer may be possible when a fluorescent 

donor fragment is joined to a fluorescent acceptor part in such a way that the two 

fragments would be electronically conjugated if they became planar, but they are 

sterically prevented from doing so.98-100,141,142 The fact that they cannot easily achieve 

planarity means that the absorption spectra of the complete system, the “cassette”, 

resembles that of the sum of the donor and acceptor parts.  However, the donor part will 

not fluoresce when it is excited in an efficient TBET cassette; instead the energy will be 

rapidly transferred to the acceptor fragment that will then fluoresce (Figure 2.15a).  

Through space energy transfer may occur simultaneously, but the through-bonds routes 

tends to be faster.143-145  
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Figure 2.15. The concepts of: (a) through-bond energy transfer cassettes; (b) fluorescent probes not 
effected by PeT; (c) reductive PeT for a meso-substituted BODIPY; and, (d) oxidative PeT for a meso-
substituted BODIPY. 
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Photoinduced electron transfer (PeT) generally quenches fluorescence via the 

two ways that are illustrated for the hypothetical fluorescent 8-aryl (or meso-aryl) 

BODIPY system in Figure 2.15b.146 8-Aryl substituents that raise the HOMO of this 

aromatic part facilitate reduction of the BODIPY core in the excited state; fluorescence 

of this fragment then becomes impossible (Figure 2.15c).   Conversely, 8-aryl 

substituents that lower its LUMO facilitate oxidation of the BODIPY excited state, and 

fluorescence of this is also impossible (Figure 2.15d). 

Nagano and co-workers recently described PeT in the context of both 

fluorescein-147,148 and BODIPY-149 based dyes.  This led them to demonstrate some 

elegant ways in which PeT could be exploited.  Some examples of the application of this 

strategy include development of probes to sense: singlet oxygen when it undergoes a 

cycloaddition to a fluorescein meso-substituent,150 nitric oxide,151,152 nitrite,153 nitronium 

ions that nitrate BODIPY meso-aryl substituents,154 and thiols when they add to a 2’-N-

maleimide on an 8-aryl BODIPY.155 More recently, Dan Yang and co-workers have 

devised a hypochlorous acid probe that responds by oxidizing a 8-(4’-

methoxyphenol)BODIPY substituent to a quinone.156 Most of this work features 

oxidation by analytes causing  “on-off” responses in sensors of type (i) and (ii) as 

defined above.  A possible exception is the thiol probe that probably functions by 

changing the electron donating properties of the substituents near a BODIPY core. 

An application of probe 16 to monitoring intracellular pH has already been 

demonstrated in the last chapter. That work shows this to be a “stop-go” probe that 
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fluoresces red at pH values less than about 6.5, and green at pH values above about 7.0 

and, significantly, it is always on. 

Data shown in this paper features the four TBET cassettes 22 – 25.  The research 

described here includes: (i) syntheses of these four TBET cassettes; (ii) the observation 

that the change of the meso-substituent on the central BODIPY [acceptor] fragment 

represented by the difference between cassettes 22 and 23 and between 24 and 25 is 

largely inconsequential to their fluorescence vs pH profiles indicating that PeT between 

the acceptors and meso-substituents does not play a significant role in the photophysical 

properties of the cassettes; (iii) the observation that the change of donor fragment from 

xanthene to BODIPY represented by the structural differences between 22 or 23, and 24 

or 25 have profound differences on the fluorescence characteristics of these cassettes; 

and, (iv) electrochemical data that can be interpreted to comprehensively explain these 

differences.  We feel this work is significant because it highlights the underlying 

electronic properties of TBET cassettes 22 and 23 that make them type (iii) stop-go, pH 

sensors.  One may conclude that it is reasonable this same strategy could be used to 

prepare “always on”, stop-go sensors for other analytes, and this would be particularly 

important in intracellular imaging.  
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2. Syntheses of the Cassettes 22 - 25   

Two key diiodinated BODIPY intermediates, 20 and 27, were prepared to make 

the cassettes featured in this paper.  Synthesis of the first compound 20 is shown in 

Scheme 2.6. The second, compound 25 (Scheme 2.7), was formed via a route that is 

analogous to one used for a homolog formed from glutaric anhydride.157  Synthons 20 

and 27 lead to cassettes with different meso substituents: aryl and alkyl functionalities.   

A minor objective of this study was to determine if these differences would have any 

significant effects on the electronic spectra of these cassettes as explained above; in fact, 

they did not (see below). 

 

Scheme 2.7.  Syntheses of pivotal diiodinated synthons BODIPY 27. 

H
N

(i) succinic anhydride
BF3•Et2O, toluene, 80 oC, 5 h

(ii) BF3•Et2O, Et3N
20 oC, 16 h

N
B
F2

N

CO2H

26  18 %  

N
B
F2

N

CO2H

II

I2, HIO3

MeOH, 60 ºC, 30 min

27  54 %  

 
Sonogashira reactions158,159 were used to assemble the cassettes from the 

acceptor components 20 and 27, and the fluorescein-based and BODIPY-based donor 

components C100,160,161  and D56 (Scheme 2.8).  The diacetate intermediate 21 is of some 
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importance because this compound has been shown to be cell permeable, and hydrolyzes 

in the cytosol to give green fluorescence. (Data are not shown here) The fluorescein-

based cassettes 22 and 23 are soluble in lower alcohol solvents giving pink solutions. 

 

Scheme 2.8.  Syntheses of cassettes: a, 22; and, b, 24. 
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Scheme 2.8.  Continued. 

b 
0.5 equiv. 20

cat. PdCl2(PPh3)2, cat. CuI

Et3N, THF, 50 ºC, 16 h
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Cassette 23 (Scheme 2.9) was difficult to purify.  Flash chromatography did not 

give pure material, but the compound was isolated via preparative reverse phase HPLC 

in 4 % yield.  Both cassettes 24 and 25 are soluble in lipophilic solvents like CH2Cl2, and 

give strongly colored pink or red solutions. 
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Scheme 2.9. Syntheses of cassettes: a, 23; and, b, 25. 

a 

O

O

O

OAc

OAc
(i) 0.5 equiv. 27

cat. PdCl2(PPh3)4, cat. CuI
Et3N, DMF, 40 ºC, 4 h

(ii) Na2CO3, MeOH
25 ºC 12 h

C  

N
B
F2

N
O

HO

O

O

OH

O

HO2C

CO2H

CO2H

23  4 %  

 
 

b 
0.5 equiv. 27

cat. Pd(PPh3)4, cat. CuI

Et3N, DMF, 25 ºC, 3 d

D

N
BF2

N

 

N
B
F2

N

N
F2B

N N
BF2

N

CO2H

25  53 %  

 
During the course of these studies the methyl ester of cassette 29 was also 

generated, and crystallized for single crystal X-ray diffraction studies.  The solid state 

structure of this molecule (Figure 2.16) demonstrates how the BODIPY donor fragments 
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can rest in conformations that are perpendicular to the acceptor part.  In part, it is this 

molecular twist that differentiates cassettes from planar dyes consisting of a single 

conjugated chromophore.   Interestingly, the molecule appears to “sag” around the 

central BODIPY fragment; this is because the alkyne parts are not exactly in the same 

plane.  In the solid state this degree of sagging can be quantitated from the angle formed 

between two lines that connect the two carbons of each alkyne.  An ideally linear 

arrangement would give a 180° angle; in fact, the observed angle was 168.2 degrees.  

This parameter may have some relevance because if the angle were 180° and rigid then 

the transition dipoles of the BODIPY acceptor and the two donor fragments (which are 

aligned with their long axes)144 would be exactly perpendicular in any conformation 

about the alkyne.  In that orientation there can be no dipole-dipole coupling hence 

fluorescence resonance energy transfer (FRET) could not occur.  The fact that the 

molecule is not perfectly linear means that FRET cannot be completely excluded 

because rotation about the alkyne bond could place the BODIPY donors in 

conformations in which weak dipole-dipole coupling could occur.  However, the “sag-

angle” is small, and conformations that allow dipole-dipole coupling also take the phenyl 

group out of conjugation with the rest of the acceptor; consequently, energy transfer via 

this mechanism162 is unfavorable. 
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Figure 2.16.  Single crystal X-ray structure of 29. 

 
An important set of new acceptor fragments 30 - 33 and known BODIPY E and 

xanthene F reference compounds were also generated for this study.  Photophysical and 

electrochemical properties in cassettes tend to be accurately represented by the 

individual donor and acceptor fragments.163 Consequently, electrochemical studies were 

performed on these constituents, thus avoiding the need for destructive experiments 

(electrochemistry) on the valuable cassette samples.  All these acceptors 30 - 33 were 

synthesized by Sonogashira coupling reactions of 20 and 27 with the corresponding 

phenyl alkynes.  Detailed syntheses of the new materials are outlined in the supporting 

material. 
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3. Results and Discussion 

3.1. Photophysical Properties.   

Salient photophysical properties of the cassettes are shown in Table 2.1.  The key 

feature of these is that the acceptor fragment is formed by the 2,6-(alkyne-aryl) 

substituents because these impose a dramatic red-shift on the absorbance and 

fluorescence properties of that BODIPY core; Ziessel and co-workers have also 

observed this.159  The fluorescein and BODIPY donor parts exhibit characteristically 

large extinction coefficients, and absorb/fluoresce at wavelengths that are characteristic 

of the free dye fragments (see Table 2.2 below). 

Through-bond energy transfer cassettes are usually designed to absorb light at the 

donor excitation wavelength, relay it to the acceptor part, then emit fluorescence from 

there.  The term “energy transfer efficiency” (ETE %) quantifies this, and we define it as 

follows: 

quantum yield of the acceptor fragment in the cassette
excited at the donorETE % = x 100

quantum yield of the acceptor fragment in the cassette
excited at the acceptor  

 
ETE % is a measure of the quantum yield of the cassette when irradiated at the 

donor.  It reflects the extent of energy transfer including the negative effects of non-

radiative loss in the transfer process.  The product of the extinction coefficient of the 



 

 

81

donor in the cassette and the ETE give a measure of the brightness of the acceptor in the 

system.  

Values of the ETE % for the cassettes 22 – 25 are shown in Table 2.1.  Several 

important observations are clear.  First, the fluorescein-based cassettes 22 and 23 have 

moderate ETE values in the absence of base, but not when Bu4NOH is added.   Second, 

the BODIPY-based cassettes 24 and 25 have excellent ETE values, and these are not 

influenced by added base.   This contrast between the cassettes with fluorescein- and 

BODIPY-based donors is the key observation presented in this paper. 

 

Table 2.1.  Photophysical properties of 22 - 25 in 1:1 ethanol:CH2Cl2.  

absorptionb fluorescencec

cmpd basea 
λmax D(nm) / 

log ε 
λmax A(nm) 

/ log ε 
 

λmax D
(nm)

λmax A
(nm) 

φA 
excited 
at Ad 

φA 
excited 
at De,j 

ETE 
(%)f φdonor

g

22 - 505 / 4.73 575 / 4.55 521 600 0.30i 0.15 51 0.05 

22 + 505 / 5.06 578 / 4.48 529 - 0.01i - < 5 0.09 

23 - 506 / 4.57 560 / 4.29 528 579 0.24j 0.09 38 0.07 

23 + 505 / 5.13 561 / 4.45 529 - 0.01j - < 5 0.08 

24 - 502 / 5.14 566 / 4.82 513 606 0.62i 0.58 93 -h 

24 + 502 / 5.13 566 / 4.82 516 604 0.66i 0.60 92 -h 

25 - 502 / 5.03 561 / 4.67 521 588 0.84j 0.79 94 -h 

25 + 502 / 5.06 560 / 4.72 515 588 0.93j 0.85 91 -h 
a with nBu4NOH at a concentration of 8 x 10-5 M. b At 1 x 10-5 M. A acceptor, D donor c At 1 x 10-6 M.  

d Quantum yield of acceptor when excited at the acceptor.  e Quantum yield of acceptor while excited at the 
donor.  f Energy transfer efficiency calculated with the quantum yield of the acceptor with excitation at 
donor divided by that with excitation at the acceptor.  g Fluorescein (φ = 0.92 in 0.1 M NaOH)164 was used 
as a standard.  h Donors in these cassettes show no significant fluorescence emission.  i Rhodamine 101 (φ 
= 1.00 in EtOH)165 was used as a standard.  j Rhodamine B (φ = 0.97 in EtOH)164 was used as a standard. 



 

 

82

Effects of base on the cassettes are probably best visualized by considering their 

absorbance and fluorescence spectra (Figures 1.17 and 1.18).  Addition of nBu4NOH to 

cassettes 22 and 23 increases the absorption corresponding to the fluorescein component 

relative to that from the BODIPY acceptor part.   This is logical because addition of base 

forces the fluorescein donor into its ring-opened phenolate carboxylate form.  

Absorbance spectra of cassettes 24 and 25 are almost completely insensitive to base, as 

would be predicted since the electronic spectra of BODIPY dyes are not significantly 

affected by pH. 

 

a  cassette 22 (fluorescein donor) 

0.0
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wavelength (nm)
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with base

 

 
Figure 2.17.  (a – d) Normalized absorption spectra of cassettes 22 - 25  (at 1 x 10-5 M conc in 1:1 
ethanol/CH2Cl2); throughout, spectra recorded without added bases are shown in blue, and with 
nBu4NOH (concentration of 1 x 10-4 M) are shown in red. 

 
 

 
 
 



 

 

83

b  cassette 23  (fluorescein donor) 
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c  cassette 24  (BODIPY donor) 
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d  cassette 25  (BODIPY donor) 
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Figure 2.17.  Continued. 
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In the absence of base, excitation of the fluorescein donor of cassettes 22 and 23 

leads to significant fluorescence from the BODIPY acceptor.  However, no significant 

fluorescence is observed from the BODIPY part when base is added to the same 

solutions (Figure 2.18a and b).  Conversely, addition of base has no significant effect on 

the extent of energy transfer for the cassettes 24 and 25 that have BODIPY donors.  The 

conclusion from these experiments is that in 1:1 ethanol/CH2Cl2 the fluorescein donor 

parts of cassettes 22 and 23 are, at least partially, protonated, and energy transfer to the 

BODIPY acceptor is possible in this form.  This energy transfer is quenched when the 

fluorescein donors are completely deprotonated.  Cassettes 24 and 25 have BODIPY, not 

fluorescein, donor parts, but they are otherwise identical to 22 and 23.  These systems 

are not affected by base indicating that the pH sensitivity at the fluorescein donor makes 

these cassettes sensitive to treatment with acids or bases. 

 

a  cassette 22 (fluorescein donor)  

0.0

0.2

0.4

0.6

0.8

1.0

500 550 600 650 700
wavelength (nm)

without base
with base

 

Figure 2.18.  (a – d) Fluorescence spectra of cassettes 22 - 25 (1 x 10-6 M in 1:1 ethanol/CH2Cl2); 
throughout, spectra recorded without added base are shown in blue, and with nBu4NOH (concentration 
of 1 x 10-4 M) are shown in red. 
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d  cassette 25  (BODIPY donor) 
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Figure 2.18.  Continued. 
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Table 2.3 shows photophysical properties for the reference compounds 30 – 33, 

E and F.  A striking observation from this data is that none of the building blocks that 

were assembled to give cassettes 22 – 25 have fluorescence characteristics that are 

significantly changed by added base.  The largest change in quantum yield is seen for 

the dicarboxylate 31 and xanthene F: for these compounds a 25 % increase in the 

presence of base.  There are no appreciable shifts in λabs, λem, or even the peak width 

values when these fragments are compared without and with base. 

 

Table 2.2.  Photophysical properties of reference compounds in 1:1 ethanol/CH2Cl2.  Absorption spectra 
taken at 1 x 10-5 M.  Emission spectra taken at 1 x 10-6 M.  

cmpd baseb λabs (nm) / 
log ε 

λem 
(nm) 

fwhm 
(nm) φa 

30 _ 560 / 4.41 587 41 0.72 
30 + 559 / 4.42 587 41 0.71 
31 _ 565 / 3.94 593 46 0.46 
31 + 563 / 4.00 592 43 0.61 
32 _ 574 / 4.50 606 44 0.52 
32 + 574 / 4.50 605 53 0.54 
33 _ 573 / 4.36 612 53 0.42 
33 + 578 / 4.40 613 52 0.44 
E _ 506 / 4.94 511 16 0.98 
E + 506 / 4.94 511 17 0.90 
F _ 508 / 4.87 517 26 0.76 
F + 508 / 5.04 517 25 0.95 

a Rhodamine 101 (φ = 1.0 in ethanol)165 was the standard for 30 - 33 and fluorescein (φ = 0.92 in 0.1 
M NaOH)164 for E and F.  b with Bu4NOH at a concentration of 8 x 10-5 M. 

 

None of the reference compounds can undergo changes like that shown in 

equilibrium 1, but this has been comprehensively studied for fluorescein in aqueous 
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media.123  These data show that the quantum yield of fluorescein is highest in its dianion 

state.   However, Table 2.2 shows that the quantum yield of the donor part in the 

fluorescein-based cassettes 22 and 23 are less than 0.1, with or without base.  Without 

base there is significant energy transfer to the acceptor, so some quantum yield reduction 

is anticipated.  With base, however, less of the energy transferred between the donor and 

acceptor is emitted as acceptor fluorescence.  Further, the xanthene quantum yields in 

the cassettes are much less than for fluorescein in any of the accessible protonation 

states, or for the xanthene F.  Integration of the fluorescein donors in cassettes 22 and 

23 reduces their quantum yields relative to the parent fragments. 
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3.2. Electrochemical Studies  

Oxidation and reduction potentials were measured for the reference fragments E, 

F, 32 – 33, and for cassette 24 relative to the ferrocene/ferrocinium couple.  BODIPY 32 

shows a reversible reduction wave, while for 33 and E the wave is quasi-reversible for 

the first reduction events.  For F and FNa the first reduction wave is irreversible.  The 

oxidation events for all compounds are irreversible.  In a method similar to the one used 

by Reynolds et al.166 the ferrocene/ferrocenium couple in Volts is estimated to an orbital 

level of 5.15 eV and 5.16 eV relative to vacuum in DMF and CH2Cl2, respectively.167,168 

Thus energy levels of HOMO and LUMOs can be pegged relative to this reference point.  

The same data was acquired for compounds 30 and 31 (see supporting information). 

 

Table 2.3.  Electrochemical data for reference compounds E, F, 32 – 33, and cassette 24.  Cyclic 
voltammograms were recorded using a glassy carbon working electrode (A = 0.071 cm2) referenced to 
Fc/Fc+ and a Pt counter electrode at a scan rate of 200 mV/s.  All potentials are reported vs. Fc/Fc+ and 
all HOMO and LUMO energies are derived from electrochemical results based on Fc/Fc+ = 5.15 eV 
(DMF) and 5.16 eV (CH2Cl2) vs vacuum.  All solvents were flushed with Ar(g) before use.  

Cmpd Eonset,ox (V) HOMO 
(eV) Eonset,red (V) LUMO 

(eV) Eg (eV) 

      

Ea +1.22 6.38 -1.43 3.73 2.65 
Fb +0.72 5.87 -1.25 3.90 1.97 

FNa
b, d +0.25 5.40 -1.89 3.26 2.14 

32a +1.21 6.37 -1.12 4.04 2.33 
33b +0.79 5.94 -1.09 4.06 1.88 
33c +0.80 5.95 -1.12 4.03 1.92 

24a +1.27 6.43 -1.10 

-1.36

4.06 

3.80

2.37 

2.63 
(a) In CH2Cl2.  (b) In DMF.  (c) In DMF and 0.1 M pyridine.  (d) Xanthene was first reacted with 

NaOH to obtain the sodium salt. 
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Figure 2.19a plots HOMO and LUMO energy levels for the reference BODIPY 

E and the acceptor mimic 32 that represent cassette 24 (BODIPY donor and acceptor).  

The HOMO level of the acceptor part is marginally higher than that of the donor, and the 

energy transfer efficiency observed (ETE) is high (93 %).  This could be due to two 

single electron transfer processes as shown in Figure 2.19b that are both favorable 

because they move electrons from higher to lower orbital levels.  The net effect is that 

the compound fluoresces strongly from the acceptor, and the donor fluorescence is 

almost completely quenched. 
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Figure 2.19.  (a) HOMO and LUMO levels of the reference compounds representing cassette 24; and, 
(b) rationale for the good energy transfer and strong fluorescence of the acceptor. 

 
Fragments of cassette 22 under neutral conditions are represented by the 

reference compounds F (protonated on xanthene) and 33 (Figure 2.20).  Here we suggest 

the situation is similar to that depicted in Figure 2.19, but with one key difference: the 

HOMO energy level for the acceptor is marginally below that of the donor.  Electron 

transfer from the acceptor to the donor becomes slow while that in the reverse direction 
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is fast.  This would explain the attenuated energy transfer efficiency (51 %) and the fact 

that the donor also fluoresces, but with a low efficiency because it is quenched by 

oxidative PeT.  
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LUMO 3.90 eV
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Figure 2.20.  (a) HOMO and LUMO levels of the reference compounds representing cassette 22 under 
neutral conditions; and, (b) rationale for the partial energy transfer. 

 
Figure 2.21 depicts the situation for cassette 22 under basic conditions.  

Deprotonation of the xanthene fragment (represented by F-Na) would be expected to 

elevate the HOMO/LUMO orbital levels for the donor, and, in actuality, this is 

supported by the electrochemical data.  Electrons cannot be transferred from the highest 

filled (2e) orbital of the acceptor to the donor hence fluorescence emission is observed 

only from the donor part.  The quantum yield of the donor is diminished (from 0.95 to 

0.09) because of electron transfer from the donor excited state to the acceptor (Figure 

2.21b).    
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Figure 2.21.  (a) HOMO and LUMO levels of the reference compounds representing cassette 22 under 
basic conditions; and, (b) rationale for the poor energy transfer. 

 
4. Conclusions 

Previous studies from these laboratories in collaboration with Topp, 

Hochstrauser and co-workers measured energy transfer rates between donor and 

acceptor fragments for TBETs based on BODIPY and fluorescein components.144,145,169 

The rates were faster than would be expected from a FRET mechanism, and for some 

systems the orientations of the transition dipoles are suboptimal for this mechanism 

anyway, just as outlined here.  Dependence on HOMO and LUMO energy levels for the 

donors and acceptor parts is consistent with electron transfer.163,170-172  

Probably the majority of fluorescent sensors tends to feature ligands that quench 

fluorescence in the absence of analyte, usually via electron transfer, but which are 

switched on when a metal or proton binds to prevent this.  Ratiometric dyes that are 

“always on” can be formed by combining FRET coupled dyes in a single molecule.173,174 
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To the best of our knowledge, the data reported here, and in our communication on 16 in 

intracellular imaging, is the first that describes how TBET cassettes can be used as 

proton probes.  The closest work in the literature is from Akkaya’s group who have 

made two metal-sensing cassettes functionalized with coordinating groups that allow 

them to detect Ag(+1)175 and Hg(+2)176, ie compounds G and H respectively.  In our 

cassettes 22 and 23 the analyte modulates the electronic properties of the donor part, but 

in G and H they effect the acceptor.   In fact, in TBETs the donor, acceptor, and linker 

fragments177 could all be modified to give sensors.  The work described here may 

represent the beginning of a new paradigm in which electronically coupled dye pairs can 

be used to sense analytes in biomedical applications. 

G

N

F2
B

N
Et Et

N
B
F2

N
EtEt

N

N

F2
B

N
Et Et

S

S

S

S

H

N
B
F2

N
EtEt

S

O
O

SN

4

 

 



 

 

94

CHAPTER III  

SYNTHESIS OF WATER SOLUBLE THROUGH-BOND ENERGY TRANSFER 

CASSETTES FOR PROTEIN LABELING 

 

A. SYNTHESIS OF WATER-SOLUBLE FUNCTIONALIZED BODIPYS 

1. Introduction 

Behind fluorescein, rhodamine, and possibly cyanine derivatives, 4,4-difluoro-4-

bora-3a,4a-diaza-s-indacene, or BODIPY®51,146,178,179 (hereafter abbreviated to BODIPY) 

dyes are probably the most useful fluorescent probes in biotechnology.  This is because 

they tend to absorb UV radiation efficiently, and emit relatively sharp fluorescence 

peaks at useful wavelengths (typically 520 – 650 nm) with high quantum yields.  

The core of BODIPY dyes is hydrophobic, and does not contain any functionality 

to attach the probes to proteins.  Both these obstacles can be surmounted via synthetic 

modifications.  For instance, there are many BODIPY dyes with carboxylic acid 

functional groups154,157,180,181 that can be activated then linked to amino groups on 

proteins or DNA-derivatives.  Further, such carboxylic acids can be activated using 

sulfonated succinimide reagents;182  this makes the hydrophobic dyes more water-

soluble enabling them to be dissolved in aqueous media for coupling to various water-

soluble biomolecules.  Once hydrophobic BODIPY dyes are conjugated to biomolecules 

then they tend to embed into hydrophobic pockets, or even create micellular-like 

environments via aggregation effects.  This is not always disadvantageous; indeed, 

variations of BODIPY fluorescence with the polarity of their immediate environment 
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can be useful.183-188  However, in other cases it is definitely advantageous to have water-

soluble BODIPY dyes that can be conjugated easily, and that will tend to exist in the 

aqueous environment that surrounds a biomolecule without perturbing it. 

Despite the obvious practical value of water-soluble BODIPY dyes, very few 

have been reported in the open literature.  This is even more surprising in view of the 

fact that BODIPY dyes were first reported in 1969,189 and have been investigated with 

increasing vigor since then.146,179 Indeed, the sum total of synthetic procedures to obtain 

BODIPY dyes includes only the four sulfonated derivatives I – L190,191 and several 

closely related oligoethylene-glycol-containing systems, of which M192 is illustrative 

(Figure 3.1a).  The fact that water-soluble BODIPYs are relatively under-represented in 

the literature is unsurprising to anyone who has attempted to sulfonate these dyes.  

Sulfonation reagents tend to be highly reactive whereas the BODIPY core is relatively 

fragile.  Further, many sulfonated products are not isolated via flash chromatography.  

Consequently, reaction conditions for sulfonation of BODIPY dyes must be controlled 

carefully, and some optimization is required to isolate pure materials from these 

transformations.  
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Figure 3.1  (a) Previously known water-soluble BODIPY systems; and, (b) compounds prepared in 
this work. 
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Figure 3.1  Continued. 

 

This paper describes several procedures for the preparation of several sulfonated, 

water-soluble BODIPY systems (Figure 3.1b).  Mono (a) and di-substituted (b) 
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tetramethyl-BODIPYs 34 have a 4-iodo-benzene substituent at the meso-position to 

enable further functionalization via organometallic cross coupling reactions.  The bromo 

compounds 35 can be similarly derivatized, but they are also potentially reactive towards 

nucleophiles in SNAr reactions.193-195  Compounds 36 are valuable since they can be 

coupled to active carbonyl groups, the azides 37 are amenable to copper-mediated 

cycloadditions to alkynes,196,197 and the disulfonate 38 can be activated and coupled to 

amino groups on biomolecules.  Thus the end-products of this work have potential uses 

in many different scenarios for labeling biological molecules. 

 

2. Results and Discussion 

The following sections describe the preparation of the unusual BODIPY starting 

materials, the pivotal sulfonation reactions, and reactions of the sulfonated products to 

further transform them into useful probes.  Finally, the spectral properties of the target 

molecules are discussed. 

2.1. BODIPY Starting Materials  

The lipophilic starting materials used in this project were generally known 

compounds,143,153,198 with the exception of compounds 39 shown in Scheme 3.1.  

Condensation of 4-substituted benzaldehydes with pyrrole is a known reaction for 

formation of the dipyrromethane N;199 this was repeated here, and an analogous 

procedure was used to prepare the bromoderivative 37.  Chlorination of compounds 

similar to 37 has been reported by Boens and co-workers.200  Slight modifications of 

their procedures enabled us to obtain gram amounts of the dipyrromethenes 38 after a 
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“one-pot” chlorination oxidation sequence and a flash chromatographic separation.  

Incorporation of the difluoroboron groups was achieved via the standard procedure, 

though we found that the products 39 could be isolated via recrystallizations rather than 

column chromatography.  

 

Scheme 3.1. Synthesis of 41 
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2.2. Sulfonation of Various BODIPY Derivatives 

Scheme 3.2 shows the key sulfonation reactions featured in this paper.  After 

considerable experimentation it was discovered that monosulfonations (Scheme 3.2a) of 

BODIPYs tend to proceed efficiently using 1.2 eq of fresh chlorosulfonic acid in 

CH2Cl2.  The sulfonating agent in CH2Cl2 was added dropwise over a few minutes to a 

solution of the BODIPY starting material at – 40 °C.  After the addition was complete, 

the cooling bath was removed and the reaction was allowed to warm to 25 °C and stirred 

for 20 min.  For syntheses of compounds 34a, 35a, and 42a the reactions were quenched 

with NaHCO3(aq), and (after an extraction procedure) the crude products were purified 

via flash chromatography on silica.   A critical observation in this work was the need for 

the bicarbonate quench; it appears that the protic forms of these sulfonic acids tend to be 

unstable (though this is not always the case, see below).  

Disulfonations of the same starting materials to give products 34b, 35b, and 42b 

are shown in Scheme 3.1.2b.  Two equivalents of the chlorosulfonic acid were used to 

achieve the second sulfonation.  Separation in this case is relatively easy because the 

disulfonic acids precipitate from the dichloromethane solution after 20 min at room 

temperature.  The products were collected by filtration, dissolved in a small amount of 

aqueous NaHCO3, evaporated to dryness, then reprecipitated from brine to give 

essentially pure products.  No chromatography is involved, so the procedure is 

convenient and amenable to scale up. 
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Scheme 3.2. Sulfonation Reactions 
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One exception to the preferred sulfonation conditions was for the alkyne-

functionalized BODIPY;143,160 as shown in reaction 1.  Here the disulfonate 43 

precipitated out of the CH2Cl2 solution in near pure form.  This is very fortunate because 

compound 43 is unstable in aqueous media, undergoing relatively rapid hydrolysis at the 
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alkyne group.  For that reason, this is not a particularly useful building block unless the 

sulfonic acid was neutralized with a base, e.g. Et3N. 

 

N
B
F2

N

2 eq ClSO3H
CH2Cl2

-40 oC to 25 oC
20 min

N
B
F2

N
SO3HHO3S

43  60 %O  
reaction 1 

 
 

Reaction 2 shows a sulfonation of the relatively electron-poor BODIPY system 

41b with varying equivalents of chlorosulfonic acid.  A mixture of mono- 44a and 

disulfonation 44b products formed if less than 3.5 equivalents of the sulfonating agents 

were used, and neither of these materials precipitated from the solution; it was, however, 

possible to obtain the yields indicated via flash chromatography.   Clean disulfonation 

was obtained when 3.5 equivalents of chlorosulfonic acid were used and, under those 

conditions, the product 44b precipitated in a relatively pure form and the sample could 

be further purified by re-precipitation from brine as described for compounds 34b and 

35b.  The water-solubility of the monosulfonate 44a was lower than the similar 

tetramethyl-BODIPY monosulfonates 34a, 36a, 37a, and 42a; for instance, it was 

impossible to obtain a clear 13C NMR spectrum of 44a in D2O. 
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amount of ClSO3H       yield of 44a       yield of 44b
         (eq)                            (%)                    (%)

         1.2                              90                      0         
         2.0                              68                     21        
         3.0                              22                     74
         3.5                               0                      97  

reaction 2 
 

 

2.3. Derivatization of Some BODIPY Sulfonates 

Nitro functionalities on BODIPYs have few direct applications, but this group 

allows access to more useful derivatives that contain amine or azido “handles”.  

Exploratory work to establish conditions for hydrogenation of the nitro-compounds 42 

was not encouraging. Almost no reduction was observed under 1 atm of hydrogen in 

aqueous media.  In ethanol, the rates were very slow, and the product amine was 

contaminated by N-ethyl impurities (this is a relatively common occurrence).201 



 

 

104

Reactions featuring SnCl2 in HCl(aq) tended to be complicated, probably by tin 

complexes that did not elute from silica.  Ultimately, hydrazine and catalytic palladium 

on carbon proved to be effective (Scheme 3.3).153  To decrease the risk of an explosion 

during this reaction, the hydrazine was added dropwise to the substrate and reagents in 

refluxing ethanol.  This procedure has been repeated several times on up to 400 mg of 

the nitro compound without any mishaps; however, we advocate use of a blast shield and 

certainly do not recommend that this reaction be performed on a much larger scale.  The 

amino derivatives 36 were isolated via flash chromatography. 

 

Scheme 3.3. Synthesis of 36 and 37. 
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A diazotization/azide treatment reaction was used to convert the amines 36 into 

the corresponding azides 37.  Visually, this reaction is interesting.  The amine starting 

materials are weakly green fluorescent, it becomes more fluorescent under acidic 

conditions, but this fluorescence disappears when sodium nitrite is added, corresponding 

to formation of the diazocompound.  However, addition of azide gives a solution that is 

more fluorescent than the starting amine.   

Reaction 3 shows how the disulfonate 37b was functionalized via a copper-

mediated azide-alkyne cycloaddition reaction.  Attempts to perform this reaction in the 

absence of tris-(benzyltriazolylmethyl)amine (TBTA)202 gave very little product, but 

addition of this ligand made the reaction viable.  The disulfonate 38 is freely water-

soluble and contains an easily accessible carboxylic acid for activation and conjugation 

to biomolecules. 
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2.4. Spectroscopic Properties of BODIPY Derivatives  

Table 2.1 summarizes the spectroscopic data collected for the target materials 34 

- 38 and some interesting intermediates 42 and 44.  In general, all these compounds are 

sufficiently water-soluble to allow their UV and fluorescence properties to be recorded 

in aqueous media.  All of the disulfonates are freely soluble whereas the monosulfonates 

will not form relatively concentrated solutions. 

All the compounds shown in Table 2.1 have absorption maxima in the range 492 

– 518 nm, and their molar absorption coefficients are high (5.60 – 14.9 x 104 M-1cm-1), 

as is characteristic of BODIPY dyes in general;146 they fluoresce in the 507 – 540 nm 

range.  Throughout, there are small differences between the emission maxima of the 

mono- and disulfonated forms; in fact, the maxima shift bathochromically between 2 and 

4 nm when going from the mono- to disulfonated compound, except for the nitro 

derivatives where the opposite trend is observed.  Longest wavelength fluorescence 

emission maxima in the series are associated with the dichlorinated compounds 35 and 

44; all the other probes emit between 507 and 513 nm.  Sharp emissions, as seen in small 

fwhm (full width at half maximum height) values (904 – 1752 cm-1); for comparison it is 

informative to consider the series of water-soluble Nile Red derivatives recently 

reported;203 these have fwhm values for their fluorescence emission of between 1410 – 

1680 cm-1.  Figure 3.2 shows the spectra obtained. 

Quantum yields for the target compounds 34, 35, 37, and 38 were all reasonably 

high for fluorescent probes (0.15 – 0.49).  Some BODIPY dyes have quantum yields that 

are greater than 0.5; the slightly diminished values for 34, 35, 37, and 38 can be 
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attributed to non-radiative decay mechanisms associated with free rotation of the meso-

substituent.204 Compounds 36 have a 4-aminobenzene meso-substituent; this electron 

rich aromatic ring probably quenches the fluorescence of the BODIPY core via 

photoinduced electron transfer (PeT) in which the excited state of the BODIPY 

fluorophore is reduced by electron transfer from the relatively high-lying HOMO of the 

electron-rich meso-substituent quencher (i.e., reductive electron transfer).  Such effects 

have been elegantly described as a-PeT by Nagano et al.148,149,162,205,206 The “a” denotes 

that the fluorescent chromophore acts as an acceptor.  The low quantum yield observed 

for compounds 36 is not a concern if the amine group is transformed into an amide in the 

bioconjugation process, because that will adjust the oxidation potential of the meso-

substituent, bringing down its HOMO level, and restoring the fluorescence. 

 

Table 3.1.  Spectroscopic properties of the BODIPY Derivatives.  

dye 
λmax abs

 a
 

(nm) 
log(εmax) a,b λmax emiss

a
 

(nm) 

Fwhm a 

(cm-1) 
Φ a 

34a c 494 5.18 ± 0.01 507 1021 0.47 ± 0.02 d 
34b c 498 5.00 ± 0.01 509 994 0.34 ± 0.02 d 
35a c 509 4.86 ± 0.01 523 997 0.27 ± 0.01 e 
35b c 512 4.89 ± 0.01 524 904 0.41 ± 0.01 e 
36a f 492 4.93 ± 0.01 507 1050 0.001 d 
36b f 496 5.06 ± 0.01 511 945 0.001 d 
37a f 494 4.84 ± 0.01 507 1062 0.34 ± 0.01 d 
37b f 498 4.89 ± 0.01 509 1053 0.15 ± 0.001 d 
38 g 498 4.90 ± 0.01 511 1027 0.49 ± 0.01 d 
42a c 497 4.76 ± 0.01 513 1752 0.001 d 
42b c 501 4.96 ± 0.01 511 1409 0.002 d 
44a h 514 4.82 ± 0.01 540 1440 0.002 e 
44b h 518 4.76 ± 0.01 538 1177 0.008 e 

a In H2O. b εmax were estimated by linear fit of absorbance A vs dye concentration c at four dye 
concentrations (one dye concentration was at zero). c Scheme 3.1.2. d Fluorescein was used as a standard 
(Φ = 0.92  in 0.1 M NaOH(aq)).207 e Rhodamine 6G was used as a standard (Φ = 0.95 in EtOH)208. f Scheme 
3.1.3.  g Reaction 2.1.3.  h Reaction 2.1.2 



 

 

108

Compounds 42 and 44 are intermediates rather than target materials.  They both 

have relatively low quantum yields, and these can be rationalized via PeT effects.  For 

these materials, the LUMO of the meso-substituent is relatively low-lying due to the 

influence of the 4-nitro group.  This means that the excited state of the BODIPY 

chromophore can act as an electron donor to the electron-poor meso-substituent 

quencher (i.e., oxidative electron transfer). 

 
a

0

0.2

0.4

0.6

0.8

1

400 450 500 550 600

Wavelength (nm)

32a
33a
34a
35a
40a
42a

 

Figure 3.2.  (a) UV absorption, and (b) fluorescence: spectra for the mono-sulfonated BODIPYs.  (c) UV 
absorption, and (d) fluorescence: spectra for the bis-sulfonated BODIPYs.  All these spectra were recorded 
in deionized water at concentrations of approximately 10-6 M for the UV spectra and 10-7 to 10 -6 M for the 
fluorescence, then normalized. 
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Figure 3.2.  Continued. 
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Figure 3.2.  Continued. 

 

3. Conclusions 

Sulfonation reactions of BODIPY derivatives are hard to develop into useful 

synthetic procedures for two reasons: (i) inappropriate conditions give mixtures of 

products; and (ii) sulfonic acid derivatives of BODIPYs can be hard to purify.  The 

sulfonation reactions shown in Scheme 3.2 tend to give predominantly one product, and 

reactions 1 and 2 give essentially binary mixtures that are easily separated by flash 

chromatography.  Conjugation of the target materials to biomolecules could be achieved 

via amide bond formation to amines or acids, or “click” chemistry.  Further, some of the 

dyes presented here can be derivatized via organometallic couplings to the organic 

halide functionalities, and, in the case of the chlorinated derivatives 35 and 44, via SNAr 

reaction.
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B. 3- and 5-FUNCTIONALIZED BODIPYs VIA THE LIEBESKIND-SROGL 

REACTION 

1. Introduction 

Organometallic cross coupling reactions are useful for extending the conjugation 

of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene, or BODIPY® (here abbreviated BODIPY) 

dyes to give probes that fluoresce at longer wavelengths.  Usually this is achieved via 

inherently basic processes (Suzuki209 and Sonogashira210) that tend to cause partial 

decomposition of BODIPY dyes.  Furthermore, chemoselective reactions involving 

different halides in the same molecule are sometimes desirable, but hard to achieve via 

these transformations.  For instance, the C-Cl sites of systems like 41a211 are reactive for 

Sonogashira and Suzuki reactions, but competitive reactions of the aryl bromide site 

would be expected.  This paper describes how Liebeskind-Srogl reactions can be used to 

achieve chemoselective couplings to BODIPY dyes under neutral conditions; further, 

this transformation was used to give a water-soluble two dye cassette system. 
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Scheme 3.4. Synthesis of 3-,5- functionalized BODIPY via Liebeskind-Srogl reaction.   
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2. Results and Discussion 

It has been demonstrated that Liebeskind-Srögl couplings can be used to 

substitute thioalkyl groups at the C8 position of the BODIPY core.212 Chemoselective 

Liebeskind-Srögl couplings at thioalkyl groups over aryl bromides have also been 

demonstrated.213  Consequently we felt that selective  substitution at the 3,5-positions as 

in compound 45 would be possible.  In actuality, phenyltin (a) and electron-rich aryl-tin 

(c) reagents cleanly gave the disubsituted products 47, some monosubstituted 
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intermediate was isolated for the electron-deficient aryl group tested (b), but in no case 

was the aryl-bromide affected.  The synthesis of electron-deficient tin compound 49, 

methyl 4-(tributylstannyl)benzoate, is outtined in the supporting information. 
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Figure 3.3.  (a) Normalized absorbance spectra of compounds 45 - 47 (1 x 10-6 M) in EtOAc; and,  (b) 
normalized fluorescence spectra of compounds 45 - 47 (1 x 10-7 M) in EtOAc with excitation at 540 
nm. 
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Figure 3.3 shows normalized absorbance (a) and fluorescence (b) spectra for 

compounds 45 - 47.  The newly installed aryl groups shift both maxima to the red, as 

previously described for 3,5-diaryl-BODIPY dyes.214  More extensive spectroscopic data 

for these products is shown in Table 2.2. Both para-electron withdrawing (CO2Me) and 

donating (OMe) groups shifted the maximum fluorescence wavelength to red (8 nm and 

33 nm respectively, compare 47a, 47b and 47c). 

 

Table 2.2.  Photophysical properties of compounds 45 - 47 in EtOAc.   

compd 
λabs max 

(nm) 

εmax 

(L·mol-1·cm-1) 

λfl max 

(nm) 

fwhm 

(nm) a 
Φf

 b 

45 577 46700 595 47 0.40 ± 0.04 

46b 571 50600 597 59 0.58 ± 0.01 

47a 555 52400 588 49 0.14 ± 0.01 

47b 559 44000 596 48 0.36 ± 0.03 

47c 581 51900 621 41 0.38± 0.01 

a Full width at half maximum height of fluorescence (fwhm).  b Rhodamine 101 (Φ = 1.0 in ethanol) as 
standard 
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C. SYNTHESIS OF WATER-SOLUBLE CASSETTE FOR PROTEIN 

LABELING 

1. Synthesis of Two-dye Cassette 55 

Meso-(4-bromoaryl)BODIPY substituents like those in compounds 46 and 47 can 

be further elaborated via Sonogashira reactions.  However, recent unpublished data from 

our laboratories have shown that there are advantages to using copper-mediated alkyne-

azide coupling reactions196,197 to join two BODIPY fragments together to form two-dye 

cassette systems. Azido-functionalized dyes are required to achieve this.  Thus the 

sequence outlined in Scheme 3.4a was performed to generate the azidodicarboxylic acid 

system 53.  Coupling of the dithioether 48, which is synthesized from 41b,211 to the 

appropriate 4 eq stannane gave 17 % of the corresponding monosubstituted material 50a, 

and 66 % the desired disubstituted product 50b (data not shown here).  However, using 

4eq 4-methoxycarbonylphenylboronic acid afforded 50b in quantitative yield. We think 

the boronic acid is much more stable than the tin compound under the reaction condition.  

A mild ester hydrolysis215 of this material, and reduction of the nitro group gave the 

amine 53 which was then converted to the azide 53.   

The sulfonated BODIPY alkyne 54 was formed from the known starting material 

Q160 via sulfonation conditions recently reported by us (Scheme 3.4b).211  Finally, the 

appropriately functionalized BODIPYs, azide 53 and alkyne 54, were joined via the 

click reaction shown in Scheme 3.4c.  The final product 55 is highly water soluble.  It 

was isolated via preparative reverse phase HPLC. 
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Scheme 3.5. Synthesis of energy transfer cassette 55.  
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Scheme 3.5. Continued.  

c 
(i) 0.1 eq CuSO4, Cuo, 1:1 THF/H2O, 25 ºC

(ii) NaHCO3, H2O, 25 ºC, then HPLC
53    +    54
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2. Spectral Properties of 55 and BSA-55 

Cassette 55 is designed to function as a “through-bond energy transfer” (TBET) 

system.  These feature two dye components that are prevented from becoming 

completely planar because of steric issues.  Thus the UV-visible absorption spectrum of 

55 and BSA-55 has two maxima corresponding to the donor fragment and the acceptor 

part (Figure 3.4a).  

Motivation for making TBET cassettes is derived from the fact that they can be 

excited at a much shorter wavelength (donor absorbance) than their fluorescence 

emission (from acceptor part).  This leads to enhanced spectral resolution of emission 

peaks if several dyes are used together.  However, three major obstacles have emerged 

from our research efforts: (i) making the cassettes in water soluble form; (ii) obtaining 

good energy transfer from the donor to the acceptor in an aqueous medium (cassettes 
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that work well in less polar solvents can be poor in water); and, (iii) maintaining good 

energy transfer when the cassette is conjugated to a protein.  Cassette 55 is quite water 

soluble, so that parameter is satisfied.  To quantitate the function of the cassettes we 

measure their overall quantum yields for the acceptor fluorescence emission when 

excited at the donor.   

The overall quantum yield of 55, and its ETE % for 55 in pH 7.4 phosphate 

buffer were determined as 0.23 and 85%. Qualitatively, the undesirable “leakage” of 

fluorescence from the donor is seen at about 520 nm in Figure 3.4b. 

Cassette 55 was activated by forming an ester of N-hydroxysuccinimide (see 

supporting information) and conjugated to bovine serum albumin (BSA).  This caused 

the absorbance maxima to be red-shifted by about 8 mm, but had little impact on the 

fluorescence maxima (Figure 3.4).  The overall quantum yield of the BSA-55 conjugate, 

and its ETE % for pH 7.4 phosphate buffer were determined as 0.10 and 75 %.  Again 

these data are comparable to the best TBET-conjugates prepared so far. 

In summary, the work described here indicates that Liebeskind-Srogl couplings 

provide another dimension for chemoselectivity in construction of BODIPY dye 

derivatives.   
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Figure 3.4.  (a) Normalized absorption of 55 and BSA-55 in pH = 7.4 PBS buffer; and, (b) Normalized 
fluorescence spectra of 55 and BSA-55 in pH = 7.4 PBS buffer. 
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CHAPTER IV  

CHEMILUMINESCENT ENERGY TRANSFER CASSETTES BASED ON 

FLUORESCEIN AND NILE-RED 

 

A. Introduction 

The two most common ways to induce chemiluminescence in purely organic, 

non-biological, systems are to treat either oxalate esters or luminol derivatives with basic 

hydrogen peroxide.216,217 Both these types of mixtures give light of relatively short 

wavelengths that are not ideal for applications in biotechnology.  Luminol, for instance, 

emits in the range 420 - 450 nm, depending on the solvent media.218  Intimate mixtures 

of oxalate esters or luminol,219 an oxidant, and an acceptor dye give longer wavelength 

emissions via intermolecular energy transfer.  This results in the mesmerizing, long-lived 

emissions seen in “light stick toys”.  However, the options for forming discrete probes 

for biotechnology that emit at longer, and generally more useful, wavelengths are 

limited.124,220-224  

An ongoing project in our group features twisted, but otherwise conjugated, 

donor and acceptor cassettes for labelling biomolecules.98,99,124 The motivation for this is 

that energy transfer can occur through-bonds as well as through space, hence it can be 

relatively fast and efficient.  All our published research to date features cassettes based 

on UV-absorbing donors, like compound P.  We thought it would be intriguing to make 

cassettes where the donor might be activated chemically instead.  Oxalate esters are not 

useful donors for through-bond energy transfer cassettes because it is impossible to 
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conjugate an acceptor to the oxalate fragment.  Consequently, luminol-based systems 

were selected.  Described here are the syntheses and spectroscopic properties of the 

fluorescein- and Nile Red-based, chemically activated, cassettes 56 and 57. 
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B. Synthesis of Cassettes 56, 57, 63 and 64 

Nearly all luminol derivatives are almost insoluble in most organic media, and 

this makes them extremely difficult to manipulate.  After considerable experimentation, 

one solution to this problem emerged: bis(N-protection) of compounds like 58 with 4-

methoxybenzyl (PMB) groups.  This approach gave organic-soluble, easily 

chromatographed, intermediates, and the PMB group is removed in the closing stages of 

the synthesis via treatment with TFA.   Thus, Scheme 4.1 shows the syntheses that 

evolved for compounds 56 and 57.  In both routes, the cyclic hydrazide 58 was bis-N-

protected, then elaborated via Sonogashira reactions.210 These featured derivatives of 5-

bromofluorescein35 and  2-hydroxy Nile Red.225 The route to the cassettes would have 

been more convergent if an alkyne derivative of luminol could have been coupled with 

halogenated/triflated acceptors, but that approach was ineffective.  The approach to the 

control fluorescein and Nile Red compounds 66 and 68 are similar to luminol cassettes 

56 and 57.  Sonogashira coupling reaction of fluorescein alkyne C and 2-hydroxy Nile 

Red alkyne S with dimethyl 4-bromophthalate, followed by hydrolysis afforded the 

water soluble dyes 66 and 68.  
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Scheme 4 .1.  Preparation of: (a) the fluorescein cassette 56; (b) the Nile Red based cassette 57; (c) the 
fluorescein control 66; and, (d) the Nile Red control 68. 
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Scheme 4.1.  Continued. 
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Scheme 4.1.  Continued. 
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C. Results and Discussion 

It is hard to describe the spectacular chemiluminescence of these compounds 

without moving pictures of the experiments to support the words (Figure 4.1).  For 

cassette 56, a 100 μl aliquots of the compound (10-5 M, in pH = 10 aqueous 

Na2CO3/NaHCO3 buffer) was added to a sample cell containing CuSO4 (1.5 x 10-3 M) 

and H2O2 (2.0 x 10-3 M) with stirring.  Cassette 57 is not very soluble in aqueous media 

and, in any case, the quantum yield for Nile Red emission is less than 0.1 in water.  

Consequently, for 57, potassium tert-butoxide in THF (10-2 M) was added to the 

compound dissolved in dry DMF (10-5 M).  This experiment is done open to the air and 

oxygen is presumed to be the oxidant.   Luminol under the conditions used for cassette 

56 gives a bright blue emission. If efficient energy transfer occurred for compounds 56 

and 57 then we were expecting them to emit yellow/green and red chemiluminescence 

instead, characteristic of fluorescein and Nile Red, respectively.  This is exactly what we 

saw.  Cassette 56 gave a bright yellow/green emission, while 57 glowed with a less 

intense red colour.  No trace of blue in the emission was seen in either case. 

 



 

 

127

 

Figure 4.1.  Pictures of (a) luminol, (b) cassette 56, and (c) cassette 57 when activated with an oxidant. 

 
Compounds 63 and 64 were prepared as controls (see Scheme 4.1c) since it is 

thought that the excited species from luminol derivatives involves the corresponding 

phthalate dianions.  Indeed, ESI-MS analysis of cassettes 56 and 57 after the oxidative 

activation revealed the presence of 63 and 64, respectively.  This was confirmed via 

HPLC analyses in the case of 56.  

Figure 4.2a shows normalized UV absorption and fluorescence spectra for 66, 

and 68.  The extent of overlap between the chemiluminescence output of the phthalate 

derived from luminol and the UV absorption of the acceptor part of cassettes 66 and 68 

is shown in Figure 4.2b.  Normalized chemiluminescence emissions for 56 and 57 are 

shown in Figure 4.2c.  The emissions of 56 and 57 are sharp and characteristic of the 

acceptors only; no chemiluminescence from the donor was detected. 
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Figure 4.2. Normalized: (a) UV/visible and fluorescence spectra of 66 in pH = 10 aqueous sodium 
carbonate/bicarbonate buffer solution, and of 68 in dry DMF; (b) chemiluminescence spectrum of 
luminol (blue), UV/vis absorption bands of compound 66 (green) and compound 68 (red); (c) 
chemiluminescence spectra of luminol (blue), cassette 56 (green), and cassette 57 (red). 
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Figure 4.2.  Continued. 

 

Sometimes, the eyes can play tricks on the brain, and that is partially true in this 

case.  The chemiluminescence from cassette 57 appears to be weaker than that for 56, 

but the quantitative data collected in Table 4.1 indicates this is not the case.  

Chemiluminescent quantum yields measured relative to luminol indicate 57 actually 

emits more strongly.  Probably, chemiluminescence from 57 appears to be weaker than 

that from 56 because the human eye is about five times more sensitive to light near the 

emission maximum of fluorescein than it is to light emitted from the Nile Red 

acceptors.226  
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Table 4.1. Selected spectroscopic properties of luminol, 56, 66, 57, 68 and R. 

UV Fluorescence Chemiluminesence 

Compds λabs max 
(nm) 

λfluor max
 

(nm)b] 
λchemi max

 

(nm)b] 
Relative 
Φchemi 

luminola - - 442 100a 

56a 494 518 524 61b 

66a 493 519 - - 

57b 558 628 634 >100b 

68b 558 628 - - 

R - - 412 0.02d 

                           a In carbonate/bicarbonate buffer.  b In dry DMF.  c From ref. 221. 

 
The relative quantum yields for chemiluminescence that are presented in Table 

4.1 use luminol as a standard.  However, the donor fragments of cassettes 56 and 57 do 

not have the amino substituent of luminol.  Small changes to the luminol structure tend 

to reduce its chemiluminescence dramatically.218 If the emissions from cassettes 56 and 

57 were compared with the hydrazide R (which has a much lower absolute quantum 

yield for chemiluminescence) then the data for cassettes 56 and 57 would appear to be 

even more impressive.   
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Experimentally, it is extremely challenging to determine the extent of energy 

transfer through-bonds and through space in twisted but otherwise conjugated cassettes.  

For the UV-activated system P we asserted that through-bond energy transfer must be 

fast and efficient by considering rates of energy transfer.144 However, direct observation 

of rates is hard in chemically activated systems where excitation of the donor occurs 

continuously.  Further, we have so far been unable to prepare the logical control 

compounds for comparison: those in which the alkyne linker of cassettes 56 or 57 are 

replaced by an ethylene fragment.   In any case, through-space energy transfer for those 

controls might differ considerably from that occurring in 56 or 57 because the 

orientation of the donor and acceptor fragments would be dynamic in the reduced 

compounds.  However, the through-space energy transfer cassette S, based on luminol, 

was prepared approximately four decades ago and does provide an interesting 

comparison.227-229 The reported relative chemiluminescence quantum yield for this 

compound (luminol standard) is significantly less than that measured here for cassettes 

56 and 57.  It may be that, just as in our UV-activated cassettes like P, rapid and efficient 

energy transfer can occur for the systems that facilitate the possibility of through-bond 

energy transfer.   
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Calculations of Förster energy transfer for systems that have donor and acceptor 

fragments arranged within a few Ångstroms are not correct because the theory implies a 

point dipole approximation which fails when the distance becomes less than the special 

size of the donor and acceptor charge distributions.  Nevertheless, these calculations 

were performed; the dipole-dipole energy transfer efficiency was smaller (39 and 42% 

for 56 and 57, respectively) than actually observed. 

Chemiluminescence provides detection methods that approach the sensitivity of 

ones based on radioactivity.230 In the context of intracellular imaging, it has the 

advantage that no excitation irradiation is required.  Simple in vitro experiments show 

that cassettes 56 and 57 can be activated via treatment with peroxidase under 

physiological conditions, and they emit in longer wavelength regions that are more 

transparent to cellular tissues than the 420 - 450 nm range where luminol 

chemiluminesces.  Consequently, there is a possibility that probes based on chemically-

activated energy transfer can be applied in biotechnology. 
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CHAPTER V  

NON-COVALENT DELIVERY OF PROTEINS INTO MAMMALIAN CELLS 

 

A. Introduction 

Import of proteins into cells is an important problem that is frequently 

encountered in many aspects of biological chemistry.  One of the best-studied 

approaches is to covalently attach a peptide carrier, either chemically or genetically, to 

the protein of interest. Perhaps the most commonly used carriers of this type are the 

short peptide segments derived from HIV-1 Tat and Drosophila Antennapedia 

homeodomain proteins.231,232 Use of the HIV-1 Tat carrier, in particular, has motivated 

researchers to look for simpler peptides for more efficient intracellular233 cellular uptake. 

In living cells, both R8 and R16 have been reported to facilitate significant cellular 

uptake, while R4 gave relatively little internalization.234,235 A major drawback to the use 

of these peptide delivery agents, however, is that cargo proteins imported into the cells 

tend to be concentrated in vesicular structures.236,237 These vesicles are widely assumed 

to correspond to endosomes, hence the cargo proteins are not released in the cytoplasm.  

This has inspired many groups to investigate the mechanism of import, and to look for 

ways of liberating the cargo proteins from the endosomes.  For instance, Wender and co-

workers have suggested that the oligo-guanidine moieties can form an ideal hydrogen 

bonding networks with the cell surface phosphates, and this facilitates the import on a 

molecular level.233,238,239 Meanwhile, an elegant series of experiments by Dowdy 

indicates the macromolecular mechanism of import involves macropinocytosis,240 and 
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liberation of protein cargo-Tat conjugates from endosomes could be achieved by adding 

the N-terminal 20 amino acids of the influenza virus hemagglutinin protein, HA-2,241 to 

the carrier sequence.236  

Genetic or chemical methods for covalently attaching carrier peptide sequences 

to cargo proteins are experimentally inconvenient, time consuming, and restrictive with 

respect to the scope of the experiments that can be performed.  Conversely, carrier 

vehicles that can import proteins without being covalently attached have the potential to 

circumvent all these disadvantages.  “Non-covalent carriers” include “Pep-1” (also 

known as Chariot®),127 the cationic pyridinium amphiphile and a helper lipid, SAINT-

PhD,242 BPQ24 BioPORTER® QuikEaseTM (a protein delivery kit of unspecified 

composition),243 and a few used systems like the peptide K16SP244 and the somewhat 

cytotoxic polymer, polyethyleneimine (PEI) (Figure 5.1).245,246 However, the issue of 

whether or not the imported cargo proteins are trapped in endosomes blurs the true 

utility of these systems.  It is clear from some reports in the literature that fluorescently 

labeled proteins imported using these systems become concentrated in cytoplasmic 

vesicles; this was our experience in previous studies.99,247 However, some papers claim 

imported fluorescently labeled proteins appear to be free in the cytoplasm, and there 

have been papers wherein import of proteins using these systems is thought to give a 

predictable functional response.248  
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Figure 5.1.  Structures of the “Non-covalent Carriers” (a) Pep-1 (also known as ChariotTM), (b) 
polyethyleneimine (PEI) and (c) K16SP. 

 
There were no reports of simple Arg-oligomers being useful for non-covalent 

import until recent work by Lee et al.249,250 They described experiments in which high 

concentrations (600 mM) of R9 mediated import of various fluorescent proteins (eg 

GFP) and b-galactosidase into plant (onion root tip) and animal (MCF7) cells.  It was 

claimed that this produced diffuse fluorescence in the cytosol and in the nucleus, 

however, only low resolution images were shown, and in these cells, the fluorescence 

appears as small green aggregates.  Furthermore, the b-galactosidase was imaged after 

fixing the cells, and this is known to give different results relative to live cells.249,250  
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Data presented in this paper deal with import of four proteins labeled with Alexa Fluor® 

488 (F*):51 specifically, avidin, bovine serum albumin (BSA), b-galactosidase (b-gal), 

and a recombinant streptavidin.  These cargoes were chosen to represent proteins with 

different pI values and sizes (Table 5.1).  The potential carriers examined were Pep-1, 

R8, and a novel system that was synthesized “in house”, azo-R8, all of which were not 

covalently attached to the protein.  The key observations are that: (i) at 37°C, avidin was 

imported by all three carriers (Pep-1, R8, and azo-R8) but in each case the labeled protein 

primarily accumulated in vesicles that co-localized with the endosomal marker FM 4-64; 

however, (ii) at 4°C weak, diffuse fluorescence was observed within the cytoplasm with 

little evidence of punctate vesicle formation for all four proteins.  These observations 

indicate a temperature dependence of carrier-mediated protein delivery that was similar 

for three chemically different carriers. 

 

Table 5.1.  Proteins Studied For the (Arg)8 Mediated Cellular Uptake 

Protein Molecular Weight (kDa) Size (a.a.) pI (unlabeled protein)

Avidin 66-68 512 10 – 10.5 

BSA 66 583 4.7 

Streptavidin, rec. 52 560 7.4 – 7.7 

β-Galactosidase 540 1171 4.8 
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B. Results and Discussion 

1. R8 and Azo-R8: Design and Synthesis 

At the onset of this project, we had hypothesized that mimics of Pep-1 could be 

made by fusing well-known “promiscuous binders” (molecules that seem to bind many 

proteins in high throughput screens for drug leads)251,252  to a cell-penetrating warhead. 

The idea was that the promiscuous binder parts of several pep-1 analogs might non-

covalently attach to the protein, coating it with entities that promote cell penetration.   

Thus, an azo-compound was chosen for the promiscuous binder part, and R8 for the cell-

penetrating unit; these were synthetically joined to give azo-R8.  However, azo-R8 was 

found to behave in much the same way as R8, but with some minor differences as 

indicated below. 
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Figure 5.2.  Structure of azo-R8. 

 
Starting from commercially available bis-N protected amino acid, R8 was 

synthesized in 10 steps according to the literature procedure.253 The coupling reagent 
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EDC was used to replace isobutyoxycarbonyl chloride because the reaction is clean, and 

the working up and purification procedure for the reaction are easy.  The coupling 

products can be easily isolated in > 95% pure using extraction by simply washing away 

the byproduct from organic phase with aqueous acid and base solutions.  

 

Scheme 5.1. Synthesis of azo-R8 
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Scheme 5.1.  Continued. 
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The azo-R8 synthesis starts from a known nasty compound azo-phenol T, which 

is synthesized from the coupling reaction of phenol and 4-iodophenyldiazonium salts. 

The submission of the azo-phenol to Sonogashira coupling reaction with trimethylsilyl 

acetylene afforded trimethylsilyl alkyne 72 in moderate yield, which might result from 

decomposition of the s.m. under the reaction conditions. Terminal alkyne 73 was 

achieved by deprotection of the TMS group with K2CO3 in methanol.  The key 

promiscuous binder intermidiate triazole 73 was synthesized by copper I catalyzed cyclo 

addition of terminal alkyne 70 and azide 71, followed by deprotection of Boc group of 

72.  Azide 71 was synthesized from U by simple SN2 reaction as shown in Scheme 5.1b.  

The standard EDC mediated coupling of the known acid W with 73 produced the key 

intermediate 74 in 80% yield in 95% purity after washing away the by products from 

CH2Cl2 phase with 5% NaHSO4 and 5% NaHCO3 aqueous solution.  Removal of the 

trifluoroacetyl protection group, followed perguanidilation afforded the desired products 

75 as a light yellow solid after prep HPLC.  The final azo-R8 was transformed from 75 

by Boc deprotection, followed by RP HPLC purification and counter anion exchange 

with Cl- resin.  The azo-R8 was 95% pure as indicated by analytical HPLC; also it has   

the correct MS peak. 

 

 2. Formation of Carrier: Cargo Complexes 

Pep-1 and azo-R8 are amphipathic peptides, while R8 is cationic.  Pep-1 is known 

to associate with protein cargoes through non-covalent electrostatic or hydrophobic 

interactions and form stable complexes. 127,254-256   The formation of the carrier:cargo 
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complex for azo-R8 was easily monitored by fluorescence spectroscopy.  The azo 

compound can act as quencher of the label on the protein, proving that the two are in 

close contact.  Figure 5.3 shows the intense fluorescecne of BSA-F* (2 μM in DMEM) 

was greatly quenced when azo-R8 was added (1.0:10 mol ratio protein:carrier).  In a 

control experiment, a solution of fluorescein (0.1 μM) was mixed with 1 μM azo-R8 

under almost identical conditions and no quenching was observed. 
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Figure 5.3.  Azo-R8 forms a non-covalent complex with BSA-F*.  The fluorescence of BSA-F* upon 
excitation at 488 nm is compared to the one of a 1:10 molar ratio protein:carrier mixture. 

 
3. Delivery at 37ºC: Uptake into Punctuate Vesicular Structures 

Cellular uptake of avidin-F* into COS-7 at 37°C was studied in the first phase of 

this work.  All three carriers, pep-1, R8, and azo-R8, were used at 10:1 carrier:cargo 

mol:mol ratio, and similar results were observed in all cases.  Figure 5.4 for avidin 

uptake is illustrative.  After 1 h of incubation, followed by a 15 min incubation period 

with FM 4-64, the Alexa Fluor 488-labeled protein accumulated as green, punctate 

cytoplasmic vesicles.  These green vesicles were localized in endosomes as suggested by 

co-loading with the endosomal marker FM 4-64 (Figure 5.4C). 257   When the cells were 



 

 

142

co-incubated with avidin-F* and FM 4-64 for 1h at 37 °C, little to no co-localization was 

observed with the endosomes, as the mitochondria were labeled under those conditions 

and not the endosomes (see supplementary).  The perinuclear distribution of these 

vesicles suggests potential sorting and transport to Golgi and lysosomes.  This was 

confirmed by co-loading the cells with the Golgi marker BODIPY TR ceramide 

complexed to BSA (Figure 5.4D). 51   After extended incubation times (up to 24 h) the 

vesicles persisted, and no significant dispersed fluorescence was observed in the cytosol.  

These observations are consistent with the imported protein being trapped in endosomes, 

even after long periods of time. 

 

 

Figure 5.4.  Delivery of avidin-F* in COS-7 cells at 37 ºC.  (A) Non-covalent protein delivery 
mediated by R8;  (B) Non-covalent protein delivery mediated by azo-R8;  (C)  Endosomal 
colocalization of avidin-F* and FM 4-64 (fluorescent general endosomal marker);  (D)  Golgi 
colocalization of avidin-F* and BODIPY TR ceramide complexed to BSA (fluorescent marker for 
Golgi); (E) Cell autofluorescence; (F) Non-mediated protein delivery.  Throughout the carrier (5.0 
μM), avidin-F* (0.5 μM) and the COS-7 cells were incubated at 37 ºC for 1 h; the cells were then 
washed with PBS and analyzed by fluorescence microscopy.  For endosomal colocalization, the cells 
were incubated with FM 4-64 at 37 ºC for 15 min, then washed with PBS before imaging.  For Golgi 
colocalization, the cells were incubated for 30 min at 4 ºC in DMEM containing 5 μM BODIPY TR 
ceramide complexed to BSA, washed several times with ice-cold medium and incubated in fresh 
medium for 30 min at 37 ºC.  (a) Overlaid images of the avidin-F* (green) and the nuclei (blue, 
Hoechst 33342 marker).  (b) Differential interference contrast (DIC) images. 
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Figure 5.4.  Continued. 

 
Consideration of the images from import mediated by azo-R8 shows this 

consistently directs more of the labeled protein into the cellular membrane compared 

with R8 and pep-1.  This observation implies some protein/azo-R8 complex may be 



 

 

144

trapped in the membrane in these experiments.  It was also observed that when confluent 

cell cultures were used, more membrane staining was observed for all three carriers, but 

more so for azo-R8. 

 

4. Delivery at 4ºC: Diffuse Cytosolic Fluorescence 

Punctate vesicle formation was largely suppressed when the experiments 

described in the previous section were repeated at 4°C.  As an added precaution against 

surface binding,240  the cells were treated with heparin (3 x 5 min, 1 mg/mL of PBS)  

after the PBS washes.  Nevertheless, a weak, diffuse fluorescence signal was observed 

(see supplementary).  Further, fluorescence deconvolution imaging of the cells showed 

the same diffuse fluorescence pattern.  These observations indicate that at 4°C, the 

protein is indeed being imported inside the cytoplasm by all the carriers. 

Experiments were performed to increase the fluorescence signal in the cytosol by 

increasing the concentration of the protein from 2 mM and to 5 mM (carrier:protein = 

10:1 mol:mol, as before).  At 2 μM, the fluorescence intensity in the cytosol was 

increased but some additional binding to the cell membrane was observed.  At 5 mM, the 

intensity of membrane labeling was considerably brighter, however, the cytoplasmic 

signal was retained (Figure 5.5). 

Similar experiments on BSA-F*, β-gal-F*, and recombinant Streptavidin-F* also 

gave diffuse cytoplasmic fluorescence (see supplementary).  Uptake of β-gal-F* was 

significantly lower than for the avidin and BSA dye-conjugates, even when a higher 
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ratio of carrier:protein (20:1) ratio was used.  This difference was confirmed in the flow 

cytometry experiments described in the next section. 

 

a a

b b

 
 

c c

 

Figure 5.5.  Delivery of avidin-F* in COS-7 cells at 4 ºC mediated by R8.  (a) 0.5 μM of avidin–F*..  (b) 2 
μM avidin–F*.  (c) 5 μM avidin–F*.  (d) No carrier used  Throughout COS-7 cells were incubated for 1 h 
at 4°C with R8 and avidin-F* (10:1.0 mol:mol), then washed 4x with PBS buffer.  Images shown are after 
deconvolution; left images are fluorescence images of avidin-F* and Hoechst 33342, right images are 
DIC. 
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Figure 5.5.  Continued. 

 

5. Comparison of Uptake Levels For Different Carriers via Flow Cytometry 

Flow cytometry was used to analyze and compare the non-covalent protein 

transduction (Figure 5.6).  Before the analyses, the cells were washed with PBS, treated 

with trypsin, then washed with heparin (3 x 5 min, 0.5 mg/mL PBS) to minimize the 

possibilities for surface binding.  In each case, the uptake measured by flow cytometry 

was greater when the carrier molecule was included (0.5 mM protein; carrier:protein 

10:1.0 for avidin-F* and BSA-F*, and 20:1.0 for b-gal-F*).  Import of avidin-F* was 

significant, with pep-1 and R8 being more effective than azo-R8 at 4 oC (Figure 5.6A).  

However, for BSA-F* the reverse was true: azo-R8 was far more effective than the other 

two carriers.  The largest protein-dye conjugate, b-gal-F*, was the least well imported of 

the three proteins that were tested, with pep-1 and azo-R8 being the most effective 

carriers. 
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Figure 5.6.  (a) Flow cytometric analysis of the uptake of the Alexa Fluor 488 labeled proteins, avidin-
F*, BSA-F* and b-gal-F* at 4°C relative to FITC Quantum Bead standards (shaded histograms). Each 
histogram for avidin-F* and BSA-F* represents 20,000 to 24,000 cells and 20,000 beads.  For b-gal-
F*,each histogram represents 10,000 cells and 20,000 beads.  The FITC Quantum Beads peaks 
represent 8534, 25857, 79264, and 214887 MESF units each.  The scale for the X-axis is MESF units.  
(b) Summary of the flow cytometric data for each protein with the carriers tested.  Results are 
presented as the median MESF units for each protein-carrier combination. 
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Figure 5.6.  Continued. 

 

6. Evaluation of the Cytotoxicity of the Carriers 

Cell viability during the non-covalent protein internalization mediated by R8 and 

azo-R8 was accessed using ethidium homodimer.  Thus COS 7 cells were treated with a 

l.0:10 mol ratio protein:carrier (2 μM protein) for 1 h at 4°C, washed with PBS and 

treated with ethidium homodimer  (2 μg/mL). Figure 7A illustrates that cells treated with 

R8 and azo-R8 peptides for 1 h at 4°C did not result in any cytotoxicity.  Incubation at 

37°C for another 16 h gave no cytotoxicity (the fluorescence was now mostly 

concentrated into vesicles, probably lysosomes, Figure 5.7B).  After a further incubation 

period of 24 h at 37°C however, all the cells were dead (Figure 5.7C). 
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Figure 5.7.  Viability Assay.  Delivery of avidin-F* (2 μM) in COS-7 cells at 4 ºC mediated by (a) R8 
and (b) azo-R8.  (A) COS-7 cells were incubated for 1 h at 4°C with R8 or azo-R8 and avidin-F* (10:1.0 
mol:mol), then washed 4x with PBS buffer and treated with ethidium homodimer for 30 min.  (B) The 
same cells were incubated at 37°C for 16 h.  (C) The medium was removed, fresh PBS was added and 
the same cells were incubated at 37°C for another 24 h.  Before imaging, 2 μL of ethidium homodimer 
were added. 
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C. Conclusions 

Import into cells at 37°C could be regulated via energy-dependent or independent 

pathways, but at 4°C it is generally accepted that only energy independent pathways are 

operative.  The data accumulated here indicate that at 37°C import into endosomes is 

prevalent and significant diffuse fluorescence in the cytosol was not observed.  

However, the relative brightness of the vesicular staining may obscure low level 

cytoplasmic fluorescence.  Thus, at least two different pathways appear to be operative 

for three different carrier molecules, and the desired one, diffuse import into the cytosol, 

prevails at 4°C.  This observation is parallel and consistent with work reported by Futaki 

et al.237  They studied the mechanism of translocation of R8-Texas Red at 37 and 4°C, 

without cargo proteins and observed vesicular staining at 37°C and diffuse fluorescence 

in the cytosol at 4°C.  The simplest explanation for the reduced efficiency for import of 

b-gal-F* relative to the other proteins is that it is approximately eight times larger.  

Similarly, the simplest explanation for the observation that three chemically different 

carriers facilitate import of three different proteins at 4°C via an energy independent 

pathway is that they form pores in the cells membrane that allow leakage into the cells, 

even at 4°C.  This would explain the fact that the levels of diffuse fluorescence observed 

are weak, and that the larger protein was the one least effectively imported.  At 37°C, 

other mechanisms, perhaps involving macropinocytosis (an energy dependant process), 

become dominant. 
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CHAPTER VI  

SUMMARY AND CONCLUSIONS 

 

In summary that we have demonstrated that TBET cassettes with specific 

characteristics are useful in three different biological areas.  TBET cassettes have desired 

spectral properties for studying proteins' interactions.  The well-resolved muitiple 

fluorescence emission spectra for multiplexing could be obtained.  I have synthesized a 

water-soluble cassette 55 based on bissulfonated BODIPYs, it has been demonstrated to 

be a good protein labeling dye.  A series of this kind of cassettes will be ideal for 

studying multi-protein interactions in vivo.  A ratiometric fluorescent pHi indicator 16 

based on energy transfer has been shown to image protein-dye conjugates in living cells.  

It has better quantum yields than a widely used pH probe C.SNARF-1.  The pH sensitive 

range of this cassette is also complementary to the C.SNARF-1.  Also we have 

demonstrated that the descrete long-wavelength chemiluminescence probe could be 

obtained via TBET cassettes. Described in chapter IV are the syntheses and 

spectroscopic properties of the fluorescein- and Nile Red-based, chemically activated, 

cassettes, 56 and 57.  The chemiluminescence spectra and figure indicate that the energy 

transfer efficiency is very efficient (>90%).  These two cassettes could be activated by 

H2O2 at physiological pH, therefore it might be a potential indicator for reactive oxegen 

species in living cells. 

Importing proteins into cytosol is a challenged problem in biology.  The data 

accumulated in chapter V indicate that at 4 °C import into cytosol is prevalent and 
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significant accumulation of fluorescence in the endosome was not observed. This 

observation is parallel and consistent with work reported by Futaki et al.237  The simplest 

explanation for the observation that three chemically different carriers facilitate import 

of three different proteins at 4°C via an energy independent pathway is that they form 

pores in the cells membrane that allow leakage into the cells, even at 4°C.  This would 

explain the fact that the levels of diffuse fluorescence observed are weak, and that the 

larger protein was the one least effectively imported.   
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APPENDIX A 

EXPERIMENTAL DATA FOR CHAPTER II 

 

General Experimental Procedure 

Bovine serum albumin (BSA) was purchased from Calbiochem.  SephadexTM G-

25 (PD-10) was bought from GE healthcare.  Pep-1 (Chariot) was purchased from 

Active Motif.  Et3N were distilled from CaH2.  Unless otherwise mentioned, other 

solvents and reagents were used as received. NMR spectra were recorded on a VXP-300 

MHz and Inova-500 MHz spectrometers (1H at 300 MHz or 500 MHz, 13C at 75 or 125 

MHz) at room temperature unless otherwise mentioned.  Chemical shifts of 1H NMR 

spectra were recorded and reported in ppm from the solvent resonance (CDCl3 7.26 ppm, 

CD3OD 3.30 ppm).  Data are reported as follows: chemical shift, multiplicity (s = 

singlet, bs = broad singlet. d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), 

coupling constants, and number of protons.  Proton decoupled 13C NMR spectra were 

also recorded in ppm from solvents resonance (CDCl3 77.0, CD3OD 49.1ppm). 

Analytical thin layer chromatography (TLC) was performed on EM Reagents 0.25 mm 

silica-gel 60-F plates, and visualized with UV light.  Flash chromatography was 

performed using silica gel (230–600 mesh).  UV/Visible and fluorescence spectra were 

taken in pH 7.4 PBS buffer unless otherwise mentioned.  MS were measured under ESI 

or MALDI conditions.  

Determination of Quantum Yields and Extinction Coefficients 

UV/Vis absorbance spectra were recorded on a Cary 100 Bio spectrophotometer.  

Steady-state fluorescence spectroscopic studies were performed on a Cary Eclipse 
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fluorometer.  The slit width was 5 nm for both excitation and emission.  The excitation 

wavelength for the test sample and the standard is the same.  Fluorescence spectra were 

corrected for detector sensitivity.  The relative quantum yields of the samples were 

obtained by comparing the area under the corrected emission spectrum of the test sample 

with that of a solution of standard.  The quantum efficiencies of fluorescence were 

average of two measurements with the following equation: 

Φx = Φst (Ix/Ist) (Ast/Ax) (ηx
2/ηst

2) 

Where Φst is the reported quantum yield of the standard, I is the area under the 

emission spectra, A is the absorbance at the excitation wavelength and η is the refractive 

index of the solvent used, measured on a pocket refractometer from ATAGO.  X 

subscript denotes unknown, and st means standard.  

Fluorescein (φ =  0.92 in 0.1M NaOH)1 and Rhodamine 6G (φ =  0.95 in EtOH)2 

were used as the standards for measurements of quantum yields of BSA-18 in pH 4.1 

and 8.8 buffers respectively, and the excitation wavelength was 488 nm.  

 

Cell Culture 

COS-7 cells (American Type Culture Collection) were cultured as subconfluent 

monolayers on 75 cm2 culture flask with vent caps in DMEM supplemented with 10 % 

fetal bovine serum (FBS) in a humidified incubator at 37 ºC with 5 % CO2.  Cells grown 

to subconfluence were enzymatically dissociated from the surface with trypsin and 

plated 2-3 days prior to the experiments in Lab-Tek two well chambered coverglass 

slides (Nunc).  
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Fluorescence Microscopy 

Cells were washed several times with PBS buffer and then put on the stage of the 

Bio-Rad 2000MP system (Bio-Rad Laboratories, Hercules, CA) equipped with a Nikon 

T300 inverted microscope with a 60x (NA1.2) water immersion objective lens and an 

Argon laser tuned to 488 nm wavelength.  Through-bond Energy Transfer data in COS-7 

cells loaded with 5-bromo-fluorescein diacetate (D, control donor) alone (2 min at 37 

ºC), BODIPY derivative (A, control acceptor) (30 min at 37 ºC) alone or with BSA-1 

(1:20 mol ratio of BSA-1:pep-1 for 1h at 37 ºC; the complex BSA-1:pep-1 was 

preformed by mixing both reagents and incubating them at room temperature for 30 min) 

were collected  using 488 nm excitation wavelength. Both SA and SB were excited at 

488 nm and emission of SA (FITC channel; donor signal) was collected using a 560 

DCLP XR dichroic mirror and a HQ 528/50 –nm emission filter whereas emission of SB 

(FRET channel; acceptor signal) was collected using a HQ 600/50-nm filter. Donor 

bleed through signal to the FRET channel was calculated by measuring the FRET 

channel signal resulting from COS cells loaded only with the donor. Acceptor bleed 

through to the FRET channel was calculated by measuring the FRET channel signal 

resulting from COS cells loaded with SB alone.  Accumulated images (N=6, F=1) at a 

1024 x 1024 resolution were captured. 
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For the experiment done at 4 °C, the cells were pre-incubated at 4 °C for 30 min, before 

the addition of the complex.  After addition of the complex, the cells were incubated for 

another hour at 4 °C.   

 

Measurement of pHi Using BSA-18 

COS-7 cells (American Type Culture Collection) were cultured as subconfluent 

monolayers on 75 cm2 culture flask with vent caps in DMEM supplemented with 10 % 

fetal bovine serum (FBS) in a humidified incubator at 37 ºC with 5 % CO2.  Cells grown 

to subconfluence were enzymatically dissociated from the surface with trypsin and 

plated 2-3 d prior to the experiments in Lab-Tek two well chambered coverglass slides 

(Nunc) in 1 mL DMEM.  To measure pHi with BSA-18, cells were incubated with the 

pre-formed BSA-18:pep-1 complex (1 μM BSA-18:20 μM pep-1) for 60 min at 37 or 4 

°C.  When the experiment was performed at 4 °C, the cells were pre-incubated at 4 °C 

for 30 min before the addition of the complex.  After incubation, the cells were washed 

and analyzed on a Bio-Rad 2000MP system (Bio-Rad Laboratories, Hercules, CA) 

equipped with a Nikon T300 inverted microscope with a 60x (NA1.2) water immersion 
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objective lens and an Argon laser tuned to 488 nm wavelength (as described in the 

section Fluorescence Microscopy above). 

Ex vivo calibration curve was obtained as follows.  Briefly, after incubation with 

BSA-16, the cells were washed in ACAS medium of varying pH values (pH was 

adjusted by adding small amounts of 0.2 N solution of NaOH or 0.1 N solution of HCl). 

1 μg/mL of nigericin (Aldrich) was added to the medium to allow a rapid exchange of 

K+ for H+ which resulted in a rapid equilibration of external and internal pH.  The cells 

were then analyzed by fluorescence microscopy as described above. 

The pHi calibration was fit to a linear regression curve using Excel.  The fitted 

parameters were used to generate an equation that converted ratio channel (red/green) 

number to pHi. 

 

Measurement of pHi Using C.SNARF-1 

COS-7 cells (American Type Culture Collection) were cultured as subconfluent 

monolayers on 75 cm2 culture flask with vent caps in DMEM supplemented with 10 % 

fetal bovine serum (FBS) in a humidified incubator at 37 ºC with 5 % CO2.  Cells grown 

to subconfluence were enzymatically dissociated from the surface with trypsin and 

plated 2-3 d prior to the experiments in a 12 wells tissues culture plate (Falcon) in 1 mL 

DMEM.  To measure pHi with C.SNARF-1, cells were placed in 1 mL ACAS medium 

and 10 μM (2 μL) SNARF-1/AM (Invitrogen) was added from a 5 mM stock solution in 

DMSO and the sample was incubated for 60 min at 37 °C or 30 min at 4 °C.  When the 

experiment was performed at 4 °C, the cells were pre-incubated at 4 °C for 30 min 
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before the addition of C.SNARF-1/AM.  After incubation, the cells were washed and 

analyzed on a BioTek Synergy 4 plate reader.  Emission spectra were obtained upon 

excitation at 530 nm.   

A calibration curve was generated by staining the cells in high K+ buffers of 

varying pH values, and adding 5 μg/mL nigericin (Aldrich) to equilibrate the 

intracellular/extracellular pH.  High K+ buffers contained 125 mM KCl, 20 mM NaCl, 

0.5 mM CaCl2, 0.5 mM MgCl2, and 25 mM of one of the buffers, including acetate 

(4.14, 4.97), Mes (5.97), Mops (6.98) and HEPES (7.93). 

The pHi calibration was fit to a sigmoid.  The fitted parameters were used to 

generate an equation that converted ratio channel (λ645/λ595) number to pHi. 

 

Electrochemistry  

Cyclic voltammograms and differential pulse voltammograms were recorded on 

a BAS-100A electrochemical analyzer using a three-electrode cell.  The working 

electrode was a glassy carbon disk (0.071 cm2) and a coiled platinum wire was used as 

the counter electrode.  The experimental reference electrode used was a Ag/AgCl 

prepared by electroplating method.  Solutions were deaerated by an argon purge for 5-10 

min and a blanket of argon was maintained over the solution while performing the 

measurements.  Experiments were performed in CH2Cl2 or DMF solutions containing 

0.1 M n-Bu4NPF6 at room temperature.  All potentials are reported relative to Ag/AgCl 

electrode using Cp2Fe/Cp2Fe+ as an internal reference (E1/2
 = 0.00 V vs Ag/AgCl in 

CH2Cl2 or DMF). 
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19  
Iodophenyl BODIPY (142 mg, 0.316 mmol), A (100 mg, 0.331 mmol), 

PdCl2(PPh3)2 (24 mg, 0.032 mmol, 10 mol %), CuI (12 mg, 0.064 mmol, 20 mol %), 

Et3N (0.44 ml, 3.16 mmol) and 5 ml THF were added into a 50 mL round bottom flask.  

The solvent was degassed three times to remove oxygen, and then the reaction was kept 

at 55 oC for 5 h.   The reaction solvent was removed under reduced pressure. The crude 

product was purified by flash column chromatography eluting with 30 % hexane/ethyl 

acetate to give the desired product as an orange solid (151 mg, 77 %).   1H NMR (300 

MHz, CDCl3), δ7.53 (d, J = 8.1, 2H), 7.20 (d, J = 8.1 Hz, 2H), 5.95 (s, 2H), 4.42 (s, 2H), 

3.98 (s, 2H), 3.72-3.78(m, 2H), 3.63-3.69(m, 10H), 2.51(s, 6H), 1.45(s, 9H), 1.36(s, 6 H) 
13C NMR (125 MHz, CDCl3), δ169.5, 155.6, 142.8, 140.6, 135.0, 132.3, 131.0, 128.0, 

123.4, 121.2, 86.5, 85.4, 81.4, 70.6, 70.5, 70.4, 70.3, 69.2, 68.9,59.0, 27.9, 14.4. MS 

(ESI) calcd for C34H43BF2N2O6 (M+H)+, 624.32, found 624.13. TLC (1:1 

EtOAc/Hexane), Rf = 0.42. 
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1H NMR (CDCl3) 

 
13C NMR (CDCl3) 
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A mixture of 19 (104 mg, 0.165 mmol), I2 (100 mg, 0.412 mmol), HIO3 (58 mg, 

0.33 mol) and 10 mL EtOH  in a 50 mL flask were warmed up to 60 oC for 20 min, and 

then it was cooled to room temperature.  The reaction was quenched by addition of 

Na2SO3 (2 mL 1M).  Water (20 mL) was added to the reaction mixture, and the product 

was extracted from water with CH2Cl2 (25 mL x 3).  The combined organics were 

concentrated under reduced pressure, and the resulting crude product was purified by 

flash chromatography eluting with hexane and ethyl acetate (1:1) to give 20 (145 mg, 

99%) as a red solid that is very soluble in CH2Cl2.  1H NMR (300 MHz, CDCl3), δ 7.60 

(d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 4.47 (s, 2H), 4.02 (s, 2H), 3.78-3.81 (m, 

2H), 3.70-3.75 (m, 10H), 2.64 (s, 6H), 1.47 (s, 9H), 1.40 (s, 6 H).  13C NMR (125 MHz, 

CDCl3), δ 169.9, 157.3, 145.4, 140.6, 135.0, 133.0, 131.3, 128.2, 124.4, 87.3, 86.1, 85.5, 

81.8, 71.0, 70.9, 70.9, 70.8, 70.7, 69.7, 69.3, 59.4, 28.4, 17.4, 14.4.  MS (MALDI) calcd 

for C34H41BF2N2NaO6
+ (M+Na)+, 899.10, found 898.91.  TLC (1:1 EtOAc/Hexane), Rf = 

0.45. 
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1H NMR (CDCl3) 

 

 
13C NMR (CDCl3) 
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A mixture of 20 (65 mg, 0.074 mmol), diacetylfluoresceinalkyne C, (82 mg, 

0.186mmol), Et3N (0.11 mL, 0.74 mmol), Pd(PPh3)4 (8 mg, 0.007 mmol), CuI (3 mg, 

0.014 mmol) were dissolved in THF (2 mL).  After the solution was degassed three 

times via the freeze-thawed method, the mixture was heated up to 45 oC for 16 h.  The 

reaction solvent was removed under reduced pressure and the crude product was purified 

by flash column eluting with 50% hexane:ethyl acetate to give the desired product as a 

light yellow solid (80 mg, 72%).  1H NMR (500 MHz, CDCl3), δ 8.08 (m, 2H), 7.73 (dd, 

J =8.0, 1.5 Hz, 2H), 7.65(d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H), 7.15 (d, J = 8.2 

Hz, 2H), 7.10 (d, J = 2.0 Hz, 4H), 6.83 (bs, 4H), 6.83 (d, J = 2.0 Hz, 4H), 4.48 (s, 2H), 

4.02 (s, 2H), 3.80-3.82 (m, 2H), 3.70-3.75 (m, 10H), 2.75 (s, 6H), 2.32 (s, 12H), 1.58 (s, 

6H), 1.47(s, 9H).  13C NMR (125 MHz, CDCl3), δ 169.6, 168.8, 168.2, 159.1, 152.1, 

151.8, 151.5, 144.6, 142.1, 137.9, 134.1, 132.8, 131.1, 128.9, 127.9, 127.7, 126.6, 125.8, 

124.3, 124.2, 117.8, 116.0, 115.6, 110.5, 94.7, 87.2, 85.3, 84.1, 81.8, 81.5, 70.7, 70.6, 

70.6, 70.5, 69.5, 69.0, 59.2, 28.1, 21.1, 13.8, 13.7 MALDI MS calcd for 

C86H71BF2N2NaO20
+ (M+Na)+ 1523.46, found 1523.26.  TLC (1:1 EtOAc/Hexane), Rf = 

0.20. 
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13C NMR (CDCl3) 
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Compound 21 (6.1 mg, 0.004 mmol) in 5 mL ground bottom flask was heat up to 

200 oC in a sand bath for 15 h.  Then the crude product was dissolved in 1 mL MeOH, 

followed by addition of K2CO3 (3 mg, 0.022 mmol). The mixture was stirred at room 

temperature for overnight.  Then 10 mL water was added to the mixture and the non-

water-soluble impurity was extracted out of the aqueous solution with CH2Cl2 (5 mL x 

2).  The aqueous solution was carefully neutralized with 0.1M HCl and the product was 

extracted out of the water with 75% CHCl3/iPrOH (10 mL x 3) to afford a dark red solid 

16 (5 mg, 95 %).  1H NMR (500 MHz, 75% CD3OD/CDCl3), δ 8.06 (s, 2H), 7.78 (dd, J 

= 8.5 Hz, 1.3 Hz, 2H), 7.68 (d, J = 8.5Hz, 2H), 7.36 (d, J = 8.5 Hz, 2H), 7.19 (d, J = 8.5 

Hz, 2H), 6.74 (s, 4H), 6.67 (d, J = 7.5 Hz, 4H), 6.58 (d, J = 7.5 Hz, 4H), 4.49 (s, 2H), 

4.13 (s, 2H), 3.81-3.83(m, 2H), 3.69-3.75 (m, 10H), 2.74 (s, 6H), 1.61 (s, 6H).  13C NMR 

(125MHz,75%CD3OD/CDCl3),δ 180.8, 173.4, 169.8, 159.6, 154.1, 154.0, 153.9, 145.3, 

143.0, 138.1, 134.8, 133.4, 131.8, 129.9, 128.7, 128.5, 128.4, 126.1, 125.5, 124.8, 116.4,

 113.8, 111.0, 103.3, 95.6, 87.4, 86.0, 84.3, 71.2, 71.1, 71.0, 70.9, 70.8, 69.8, 68.8, 59.5, 

30.2, 14.0.  19F NMR (300 MHz, CD3OD), 30.6 (q, J = 36.0 Hz).  MS (MALDI) calcd 

for C76H55BF2N2O16
-
 (M-H)- 1275.35, found 1275.31.
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1H NMR (75% CD3OD:CDCl3) 

 
13C NMR (75% CD3OD:CDCl3) 
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BSA-16.  Cassette 16 (1.5 mg) was dissolved in dry DMF (0.15 mL) and N-

hydroxysuccinimide (0.4 mg), diisopropyl carbodiimide (DIC, 0.7 μL) were added. The 

reaction mixture was stirred at room temperature for 24 h.  The activated cassette 16 

solution (100 μL, 6 eq.) was added to the solution of bovine serum albumin (13 mg, 1 

eq.) in 1.5 mL freshly prepared sodium bicarbonate (0.1 M, pH 8.3). The solution was 

stirred at room temperature in the dark for 1 h. The desired product was purified by 

SephadexTM G-25 (PD-10) desalting column eluting with DI-water.  The UV-vis 

spectra show the absorbance peak of avidin at 280 nm and the two maximum absorbance 

peaks of the cassettes 16 at 490 nm and 570 nm (Figure S1.1).    
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Figure S1.1 UV absorbance spectra of BSA-16 conjugate in DI water. 
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A solution of 2,4-dimethylpyrrole (1.0 mL, 10 mmol), succinic anhydride (400 

mg, 4.0 mmol), and BF3• Et2O (0.50 mL, 4.0 mmol) in 30 mL toluene was heated to 80 

ºC under N2 for 5 h.  The mixture was cooled to 25 ºC and BF3•Et2O (5.0 mL, 40 mmol) 

and Et3N (10 mL, 80 mmol) were then added.  After stirring for 16 h at 25 ºC under N2 

the reaction was quenched with 60 mL of 0.1 M HCl aqueous solution.  Extraction was 

performed and the organic fractions were combined and dried over magnesium sulfate. 

The organic solvent was removed under reduced pressure and the product was purified 

via flash silica column with 85 % ethyl acetate:hexane to afford the desired product as an 

orange solid (203 mg, 18 %).  1H NMR (300 MHz, CDCl3) δ (ppm) 6.07 (s, 2H), 3.29-

3.35 (m, 2H), 2.62-2.68(m, 2H), 2.52 (s, 6H), 2.44 (s, 6H), 13C NMR (75 MHz, CDCl3), 

δ (ppm), 176.6 154.8, 142.8, 140.3, 131.2, 122.0, 35.1, 23.4, 16.4, 14.5. MS (ESI) calcd 

for C16H18BF2N2O2 [M -H]- 319.15, found 319.15. TLC (50 % EtOAc:Hexane) Rf = 

0.50. 
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1H NMR (CDCl3) 

 
13C NMR (CDCl3) 
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Tetramethyl-BODIPY acid 26 (600 mg, 1.87 mmol) was suspended in 200 mL of 

MeOH.  I2 (1.24 g, 4.87 mmol) was added followed by iodic acid (660 mg, 3.75 mmol) 

in ~3 mL water was added over 5 min.  The mixture was stirred for 30 min at 25 ºC.  

The MeOH was then removed under reduced pressure and the crude product was 

purified via flash silica column with 50 % ethyl acetate:hexane to afford the desired 

product as a red solid (574 mg, 54 %). 1H NMR (300 MHz, CDCl3) δ (ppm) 3.28-3.32 

(m, 2H), 2.45-2.52 (m, 2H), 2.50 (s, 6H), 2.43 (s, 6H), 13C NMR (75 MHz, CDCl3), 

δ (ppm), 175.1 156.3, 142.5, 142.3, 131.1, 87.0, 34.9, 24.2, 19.3, 16.5. MS (ESI) calcd 

for C16H17BF2I2KN2O2[M + K]+ 610.9, found 611.6. TLC (50 % EtOAc:Hexane) Rf = 

0.55. 
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1H NMR (CDCl3) 

 

 
13C NMR (CDCl3) 
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22  

To 21 (12 mg, 0.01 mmol) in 5 mL 2:1 methanol/THF in was added Na2CO3 (3.5 

mg, 0.03 mmol).  The mixture was stirred for 3 h at 25 ºC under N2.  The reaction was 

quenched by adding aqueous HCl (0.1M, 10 mL) and the product was extracted out of 

the solution with 75% CH2Cl2:iPrOH (5 mL x 3).  The organic layers were washed with 

brine solution (10 mL) and dried with magnesium sulfate. The desired product was 

isolated as a purple solid (10 mg, 99 %).  1H NMR (500 MHz, 75% CD3OD:CDCl3), δ 

8.00 (s, 2H), 7.74 (dd, J = 8.0 Hz, 1.5 Hz, 2H), 7.65 (d, J = 7.5Hz, 2H), 7.33 (d, J = 8.5 

Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 6.67 (d, J = 2.5 Hz 4H), 6.59 (d, J = 8.0 Hz, 4H), 6.51 

(dd, J = 9.0 Hz, 2.5 Hz, 4H), 4.47 (s, 2H), 4.00 (s, 2H), 3.79-3.81(m, 2H), 3.71-3.73(m, 

2H), 3.66-3.69 (m, 8H), 2.71 (s, 6H), 1.58 (s, 6H), 1.44(s, 9H), 13C NMR (125 MHz, 

75% CD3OD:CDCl3), δ 170.9, 170.1, 169.8, 159.5, 153.5, 145.2, 142.9, 138.3, 134.8, 

133.4, 131.7, 131.2, 129.6, 128.7, 128.5, 128.0, 126.1, 125.9, 124.9, 116.3, 110.3, 108.2, 

103.3, 95.6, 87.4, 86.0, 84.1, 82.7, 71.0, 70.9 (2 C), 70.8 (2 C), 69.7, 69.3, 59.5, 30.2, 

28.3, 14.0.    MS (MALDI) calcd for C78H63BF2N2O16
+

 (M+H)+ 1333.42, found 1333.44. 
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1H NMR (1:2 CDCl3/CD3OD) 

 

 
13C NMR (1:2 CDCl3/CD3OD)
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24  

A mixture of 20 (80 mg, 0.09 mmol), D (69 mg, 0.20 mmol), Et3N (0.13 mL, 

0.91 mmol), PdCl2(PPh3)2 (6 mg, 0.01 mmol), CuI (4 mg, 0.01 mmol) were dissolved in 

3.0 mL THF.  The solution was degassed three times via the freeze-thaw method and the 

mixture was heated to 50 ºC for 16 h under N2.  The reaction solvent was removed under 

reduced pressure and the crude product was purified via flash silica column eluting with 

67% hexane:ethyl acetate to give the desired product as a purple solid (89 mg, 74 %).  

1H NMR (500 MHz, CDCl3), δ 7.64 (d, J = 8.0 Hz, 2H), 7.59 (d, J =8.0 Hz, 4H), 7.29 (d, 

J = 8.5 Hz, 2H), 7.27 (d, J = 8.0 Hz, 4H), 5.99 (s, 4H), 4.48 (s, 2H), 4.02 (s, 2H), 3.80-

3.82 (m, 2H), 3.70-3.75 (m, 10H), 2.76 (s, 6H), 2.55 (s, 12H), 1.58 (s, 6H), 1.47(s, 9H), 

1.43 (s, 12H), 13C NMR (125 MHz, CDCl3), δ 169.6, 158.9, 155.7, 144.1, 143.0, 141.7, 

140.7, 134.8, 134.3, 132.8, 131.9, 131.2, 128.2 (2 C), 128.0, 124.1 (2 C), 121.3, 116.0, 

96.0, 87.1, 85.3, 82.9, 81.6, 70.7, 70.6 (3 C), 70.5, 69.5, 69.0, 59.2, 28.1, 14.6 (2 C), 

14.6, 13.7. MALDI MS calcd for C76H77B3F6N6NaO6
+ (M+Na)+ 1339.61, found 1339.68. 
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1H NMR (CDCl3) 

 

 
13C NMR (CDCl3)
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A mixture of 26 (34 mg, 0.11 mmol), phenylacetylene (47 μL, 0.43mmol), Et3N 

(0.15 mL, 1.1 mmol), PdCl2(PPh3)2 (8 mg, 0.01 mmol), and CuI (4 mg, 0.02 mmol) were 

dissolved in 2 mL THF under N2.  The solution was degassed three times via the freeze-

thaw method and then heated to 50 ºC for 16 h under N2.  The solvent was removed 

under reduced pressure and the crude product was purified via flash silica column 

eluting with 20% methanol:CH2Cl2 to give the desired product as a red solid (17 mg, 

55%).  1H NMR (500 MHz, CDCl3), δ 7.44-7.46 (m, 4H), 7.27-7.31 (m, 6H), 3.32-3.36 

(m, 2H), 2.62 (s, 6H), 2.56 (s, 6H), 2.53-2.57 (m, 2H), 13C NMR (125 MHz, 3:1 

CDCl3:CD3OD), δ 174.0, 157.5, 144.9, 141.4, 131.4, 131.2, 128.4, 128.3, 123.2, 116.7, 

96.7, 81.4, 24.2, 15.1, 15.1, 13.6. MALDI MS calcd for C32H27BF2N2O2
 (M-H)- 519.21, 

found 519.21.  TLC (50 % EtOAc:Hexane) Rf = 0.20. 
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1H NMR (1:2 CDCl3/CD3OD) 

 

 
13C NMR (1:2 CDCl3/CD3OD)
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A mixture of 20 (66 mg, 0.08 mmol), phenylacetylene (42 μL, 0.38 mmol), Et3N 

(0.10 mL, 0.75 mmol), PdCl2(PPh3)2 (6 mg, 0.01 mmol), and CuI (3 mg, 0.01 mmol) 

were dissolved in 5.0 mL THF.   The solution was degassed three times via the freeze-

thaw method and then heated to 45 oC for 16 h under N2.  The reaction solvent was 

removed under reduced pressure and the crude product was purified via flash silica 

column eluting with 50% hexane:ethyl acetate to give the desired product as a purple 

solid (52 mg, 79%).  1H NMR (500 MHz, CDCl3), δ 7.62 (d, J = 8.0 Hz, 2H), 7.45-7.47 

(m, 4H), 7.31-7.34 (m, 6H), 7.27 (d, J = 8.5 Hz, 2H), 4.47 (s, 2H), 4.02 (s, 2H), 3.80-

3.81 (m, 2H), 3.69-3.75 (m, 10H), 2.72 (s, 6H), 1.54 (s, 6H), 1.47(s, 9H), 13C NMR (125 

MHz, CDCl3), δ 169.6, 158.7, 143.7, 141.4, 134.5, 132.7, 131.3, 130.9, 128.3, 128.1, 

128.0, 124.0, 123.2, 116.3, 96.6, 86.9, 85.4, 81.5, 81.4, 70.7, 70.6 (2 C), 70.5, 69.4, 69.0, 

59.1, 28.1, 13.7, 13.6. MALDI MS calcd for C50H51BF2N2NaO6
+ (M+Na)+ 847.37, found 

847.12. 
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1H NMR (CDCl3) 

 

 
13C NMR (CDCl3)
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N
B
F2

N

O
O

O
O

O

O

HO2C CO2H

33  

A mixture of 20 (58 mg, 0.066 mmol), 3-ethynylbenzoic acid (30 mg, 0.20 

mmol), Et3N (0.10 mL, 0.75 mmol), PdCl2(PPh3)2 (5 mg, 0.003 mmol), and CuI (3 mg, 

0.01 mmol) were dissolved in 5.0 mL THF.  The solution was degassed three times via 

the freeze-thaw method and heated to 45 oC for 16 h under N2.  The reaction solvent was 

removed under reduced pressure and the crude product was purified by flash silica 

column eluting with 80% CH2Cl2:MeOH to give the desired product as a purple solid 

(35 mg, 58%).  1H NMR (500 MHz, CD3OD), δ 8.12 (s, 2H), 8.01 (d, J = 8.0 Hz, 2H), 

7.75-7.78 (m, 4H), 7.53-7.58 (m, 6H), 4.49 (s, 2H), 4.00 (s, 2H), 3.76-3.77 (m, 2H), 

3.66-3.69 (m, 4H), 3.61-3.64 (m, 6H), 2.71 (s, 6H), 1.60 (s, 6H), 1.44 (s, 9H), 13C NMR 

(125 MHz, CD3OD), δ 166.9, 159.2, 144.9, 141.4, 136.0, 135.0, 133.5, 132.8, 132.0, 

131.8, 130.2, 129.7, 129.3, 125.1, 124.4, 116.5, 108.8, 96.6, 88.5, 85.6, 82.8, 81.2, 71.2, 

71.1, 70.0, 69.3, 59.2, 32.6, 30.5, 28.2, 23.3, 14.3, 13.8. MALDI MS calcd for 

C52H51BF2N2NaO10
+ (M+Na)+ 935.35, found 935.37. 



 

 

198 

 
1H NMR (CD3OD) 

 
13C NMR (CD3OD) 
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4. Complete Electrochemical Data 
 Cyclic Voltammetry (CV)  DPVe 

cmpd Eonset,ox 
(V) 

HOMO 
(eV) 

Eonset,red 
(V) 

LUMO 
(eV) 

Eg 
(eV) 

Eonset,ox 
(V) 

HOMO 
(eV) 

Eonset,red 
(V) 

LUMO 
(eV) 

Eg 
(eV) 

           

Ea +1.22 6.38 -1.43 3.73 2.65 +1.15 6.31 -1.20 3.96 2.35 

Fb +0.72 5.87 -1.25 3.90 1.97 +0.51 5.66 -1.08 4.07 1.59 

FNa
b, d +0.25 5.40 -1.89 3.26 2.14 +0.11 5.26 -1.80 3.35 1.91 

30a +1.20 6.36 -1.22 3.94 2.42 - - - - - 

31b +0.80 5.95 -1.14 4.01 1.94 +0.67 5.82 -1.04 4.11 1.71 

32a +1.21 6.37 -1.12 4.07 2.33 +1.14 6.30 -0.94 4.22 2.08 

33b +0.79 5.94 -1.09 4.06 1.88 +0.66 5.81 -1.02 4.13 1.68 

33c +0.80 5.95 -1.12 4.03 1.92 - - - - - 

Table S1.1 Electrochemical data for 30 - 33, E, and F. All experiments were recorded using a glassy 
carbon working electrode (A = 0.071 cm2) referenced to Fc/Fc+ and a Pt counter electrode at a scan 
rate of 200 mV/s.  All potentials are reported vs. Fc/Fc+ and all HOMO and LUMO energies are 
derived form electrochemical results based on Fc/Fc+ = 5.1 eV vs vacuum.  All solvents were dearated 
using Ar(g).  a. CH2Cl2 solution b. DMF solution.  c. DMF solution (0.1 M pyridine).  d. xanthene was 
first reacted with NaOH to obtain the sodium salt.  e. DPV:Differential Pulse Voltammetry. 
Compounds 30 and 33 (base) decomposed during DPV scan.  
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Electrochemistry Spectra 

Electrochemistry of 24 
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DPV - reduction

 

DPV - oxidation
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Electrochemistry of 30 

CV
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Electrochemistry of 31 
 

CV
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DPV - reduction

 

DPV - oxidation
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Electrochemistry of 32 
 

CV
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DPV - reduction

 

DPV - oxidation

 



 

 

207

Electrochemistry of 33 

CV
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DPV - reduction

 

DPV - oxidation
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Electrochemistry of E 
 

CV
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DPV - reduction

 

DPV - oxidation
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Electrochemistry of F 
 

CV
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DPV - reduction

 

DPV - oxidation
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Electrochemistry of F-Na 
 

CV
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DPV - reduction

 

DPV - oxidation
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APPENDIX B  

EXPERIMENTAL DATA FOR CHAPTER III 

 

General Experimental Procedures 

All chemicals were obtained from commercial suppliers and used without further 

purification. Chlorosulfonic acid was purchased from Aldrich and can be used within 

two to three months before it decomposed in to sulfuric acid.  Dichloromethane was 

dried with MBRAUN MB-SPS solvent purification system. All organic tin compounds 

were received from commercially available sources unless otherwise mentioned. 

Chromatography on silica gel was performed using a forced flow of the indicated solvent 

on EM reagents silica gel 60 (230-400 mesh). 1H NMR spectra were recorded at room 

temperature and chemical shifts are reports in ppm from the solvent resonance (CDCl3 

7.24 ppm, DMSO-d6 2.50 ppm, CD3OD 3.31 ppm, D2O 4.79 ppm). Data are reported as 

follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = 

broad, m = multiplet), number of protons, and coupling of constants. Proton decoupled 

13C NMR spectra were also reported at room temperature. Chemical shifts are reported 

in ppm from tetramethylsiliane resonance (CDCl3 77.2 ppm, DMSO-d6 39.5 ppm, 

CD3OD 49.1 ppm). Mass spectra were measured under ESI condition.  Proton decoupled  

19F NMR spectra were also recorded in ppm comparing the standard BF3•Et2O resonance 

(CD3COCD3, 0.00 ppm). Some compounds were purified using preparative HPLC 

(Beckman Coulter, X Terra Prep-MS-C18 Column, 5mm, 19 x 160 mm) eluting with 

solvents A (H2O with 0.1 % TFA) and B (CH3CN with 0.1 % TFA). 
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Determination of Quantum Yields and Extinction Coefficients.  

UV/Vis absorbance spectra were recorded on a Cary 100 Bio spectrophotometer.  

Steady-state fluorescence spectroscopic studies were performed on a Cary Eclipse 

fluorometer.  The slit width was 5 nm for both excitation and emission.  Fluorescence 

spectra were corrected for detector sensitivity.  The quantum efficiencies of fluorescence 

were obtained from the average of three measurements with the following equation: 

Fx = Fst (Ix/Ist) (Ast/Ax) (ηx
2/ηst

2)   

Where Fst is the reported quantum yield of the standard, I is the area under the emission 

spectra, A is the absorbance at the excitation wavelength and η is the refractive index of 

the used solvent, measured on a pocket refractometer from ATAGO.  X subscript 

denotes unknown, and st denotes standard.  Extinction coefficients (ε) where measured 

from Beer’s Law plots. 

General Procedure for the Preparation of Disulfonated BODIPYs 

A solution of chlorosulfonic acid (2 eq) in dry CH2Cl2 was added dropwise to a 

solution of BODIPY in dry CH2Cl2 over 10 min under N2 at -40 oC.  An orange 

precipitate was formed as the solution mixture warmed slowly to room temperature 

within 20 mins.  The disulfonic acid was isolated by vacuum filtration and treated with 

water.  The aqueous solution was neutralized with NaHCO3 (2 eq), concentrated to 5-10 

ml and treated with brine.  The desired product was reprecipitated afterwards to afford 

an orange solid (85-100% yield).  
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34b

N
B
F2

N

I

SO3NaNaO3S

 

Disodium 2,6-disulfonate-1,3,5,7-tetramethyl-8-(4’-iodophenyl)-4,4-difluoro-

4-bora-3a, 4a-diaza-s-indacence (34b) 1,3,5,7-Tetramethyl-8-(4’-iodophenyl)-4,4-

difluoro-4-bora-3a, 4a-diaza-s-indacence{Chen, 2000 #11402} (53 mg, 0.118 mmol) and 

chlorosulfonic acid (16 μl, 0.236 mmol) were reacted according to the general procedure 

giving an orange powder (68 mg, 88%).  1H NMR (500 MHz, D2O) d7.84 (d, 2H, J = 8.0 

Hz), 6.97 (d, 2H, J = 8.0 Hz), 2.57 (s, 6H), 1.49 (s, 6H); 13C NMR (75 MHz, D2O) 

d155.5, 145.7, 144.0, 139.2, 133.1, 132.7, 130.6, 129.7, 95.7, 13.7, 13.0; MS (ESI) calcd 

for C19H17BF2IN2O6S2
- (M-2Na+H)- 608.96 found 608.98. 
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1H NMR (D2O) 

 
13C NMR (D2O) 
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MS ESI 
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35b

N
B
F2

N

Cl Cl

Br

SO3NaNaO3S

 

Disodium 2,6-disulfonate-3,5-dichloro-8-(4’-bromophenyl)-4,4-difluoro-4-

bora-3a,4a-diaza-s-indacence (35b) Compound 41b (500 mg, 0.12 mmol) and 

chlorosulfonic acid (160 μl, 0.24 mmol) were reacted by the general procedure giving an 

orange powder (624 mg, 85%).  1H NMR (500 MHz, D2O) d7.73 (d, 2H, J = 8.4 Hz), 

7.45 (d, 2H, J = 8.4 Hz), 7.27 (s, 2H); 13C NMR (75 MHz, D2O) d147.6, 141.9, 133.7, 

132.6, 132.3, 131.8, 131.5, 130.0, 126.7; MS (ESI) calcd for C15H6BBrCl2F2N2O6S2
2- 

(M-2Na)2- 285.91 found  285.84; IR (thin film) 2968, 1572, 1382, 1206, 1033, 650 cm-1.  
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1H NMR (D2O) 

 
13C NMR (D2O) 
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MS ESI



 

 

224

N
B
F2

N

NO2

SO3NaNaO3S

42b  

Disodium 2,6-disulfonate-1,3,5,7-tetramethyl-8-(4’-nitrophenyl)-4,4-

difluoro-4-bora-3a,4a-diaza-s-indacence  1,3,5,7-Tetramethyl-8-(4’-nitrophenyl)-4,4-

difluoro-4-bora-3a,4a-diaza-s-indacence{Li, 2004 #11780} (400 mg, 1.08 mmol) and 

chlorosulfonic acid (144 μl, 2.16 mmol) were reacted according to the general procedure 

giving an orange powder (630 mg, quant. yield).  1H NMR (300 MHz, D2O) d8.49 (d, 

2H, J = 8.5 Hz), 7.70 (d, 2H, J = 8.5 Hz), 2.77 (s, 6H), 1.63 (s, 6H); 13C NMR (75 MHz, 

D2O) d156.1, 148.8, 144.0, 143.6, 140.5, 132.9, 130.2, 129.6, 125.3, 13.8, 13.0; MS 

(ESI) calcd for C19H16BF2N3O8S2
2- (M-2Na)2- 263.52 found 263.45; IR (thin film) 1522, 

1347, 1190, 1004, 853, 669 cm-1. 
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1H NMR (D2O) 

 
13C NMR (D2O) 
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MS ESI 
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N
B
F2

N
SO3HHO3S

43  

1,3,5,7-Tetramethyl-8-(4’-ethynylphenyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-

indacence 2,6-disulfonic acid  A solution of chlorosulfonic acid (19 μl, 0.276 mmol) in 

CH2Cl2 (2 ml) was added dropwise to a solution of 1,3,5,7-tetramethyl-8-(4’-

ethynylphenyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacence{Wan, 2003 #11399}2 (48 

mg, 0.138 mmol) in CH2Cl2 (5 ml) over 10 min at -40 oC.  An orange precipitate was 

formed as the solution mixture warmed slowly to room temperature.  The disulfonic acid 

was isolated by vacuum filtration giving the disulfonic acid as an orange powder (42 mg, 

60%).  1H NMR (300 MHz, D2O) d7.66 d, 2H, J = 8.8 Hz), 7.29 (d, 2H, J = 8.5 Hz), 

3.48 (s, 1H), 2.63 (s, 6H), 1.54 (s, 6H); MS (ESI) C21H18BF2N2O6S2
-
 (M-H)- 507.07 

found 507.08. 



 

 

228

 
1H NMR (D2O) 

 

MS ESI 
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36b

N
B
F2

N

NH2

SO3NaNaO3S

 

Disodium 2,6-disulfonate-1,3,5,7-tetramethyl-8-(4’-aminophenyl)-4,4-

difluoro-4-bora-3a,4a-diaza-s-indacence   A solution of 42b (200 mg, 0.35 mmol) in 

EtOH (10 ml) was purged with N2 for 10 min. Hydrazine monohydrate (0.2 ml) and 10% 

Pd/C (37.1 mg, 0.1 eq) were added.  The mixture was refluxed under N2 for 30 min. 

Then Pd/C was removed under vacuum filtration.  After evaporation the solvent, the 

residue was dry-loaded onto a silica gel flash column, and eluted using 30% 

MeOH/CH2Cl2 to afford an orange solid (133 mg, 70%). Rf = 0.2 (30% MeOH/CH2Cl2). 

1H NMR (300 MHz, D2O) d7.02-6.94 (m, 4H), 2.70 (s, 6H), 1.70 (s, 6H); 13C NMR (75 

MHz, D2O) d154.7, 148.2, 144.1, 132.3, 131.2, 130.0, 123.9, 117.1, 117.0, 13.0 (2); MS 

(ESI) C19H19BF2N3Na2O6S2
+

 (M+H)+ 544.0572 found 544.0557; IR (thin film) 3346, 

2854, 1608, 1519,1197, 1032, 655 cm-1.    
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1H NMR (D2O) 

 
13C NMR (D2O) 
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MS ESI 
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N
B
F2

N

Br

SBuBuS

45  

A mixture of 41a (310 mg, 0.75 mmol), n-butane thiol (0.17 mL, 1.55 mmol), 

Et3N (0.22 mL, 1.58 mmol) was dissolved in try acetonitrile (15 mL), and then the 

solution was stirred at 85 oC for 4 h.  The solvent was removed under reduced pressure 

and the residue was purified by flash column eluting with 3:1 Hexane/ethyl acetate to 

afford the desired product (365 mg, 99 %) as a purple solid.  1H NMR (500 MHz, 

CDCl3), δ 7.61 (d, J = 8.8 Hz, 2H), 7.34 (d, J = 8.8 Hz, 2H), 6.68 (d, J = 4.5 Hz, 2H), 

6.39 (d, J = 4.5 Hz, 2H); 3.06 (t, J = 7.5 Hz, 4H), 1.80-1.74 (m, 4H), 1.55-1.47 (m, 4H), 

0.95 (t, 6H). 13C NMR (125 MHz, CDCl3), δ 157.3, 146.8, 135.4, 132.9, 131.8, 131.6, 

128.8, 124.2, 116.5, 32.5, 31.0, 21.9, 13.6. MS (MALDI) calcd for C23H26BBrFN2S2
+ 

(M-F), 503.08, found, 503.08.  TLC (1:1 EtOAc-Hexane), Rf = 0.80.  
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1H NMR (CDCl3) 

 

 
13C NMR (CDCl3) 
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N
B
F2

N

NO2

SBuBuS

48  

A mixture of 41b (257 mg, 0.67 mmol), n-butylthiol (0.17 mL, 1.55 mmol), Et3N 

(0.28 mL, 2.02 mmol) was dissolved in dry acetonitrile (15 mL), and then the solution 

was stirred at 85 oC for 4 h.  The solvent was removed under reduced pressure and the 

residue was purified by flash silica gel column eluting with 3:1 hexane/ethyl acetate to 

afford the desired product (326 mg, 99 %) as a purple solid.  1H NMR (300 MHz, 

CDCl3) δ 8.34 (d, J = 8.7 Hz, 2H), 7.65 (d, J = 8.7 Hz, 2H), 6.62 (d, J = 4.4 Hz, 2H), 

6.41 (d, J = 4.4 Hz, 2H); 3.08 (t, J = 7.4 Hz, 4H), 1.82-1.72 (m, 4H), 1.57-1.45 (m, 4H), 

0.95 (t, J = 7.4 Hz, 6H). 13C NMR (125 MHz, CDCl3), δ 158.3, 148.5, 140.5, 135.1, 

133.3, 131.2, 128.5, 123.5, 116.8, 32.5, 30.8, 21.9, 13.6.  MS (ESI) calcd for 

C23H26BF2N3O2S2
- (M-), 489.15, found 489.28.  
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1H NMR (CDCl3) 

 
13C NMR (CDCl3) 
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O OMe

I

2 eq Bu3SnSnBu3
5 mol% Pd(PPh3)4

toluene, reflux, 5 h

O OMe

SnBu3

49  

Methyl 4-iodobenzoate (300 mg, 1.15 mmol), bistributyltin (1.15 mL, 2.29 

mmol) and Pd(PPh3)4 (70 mg, 0.06 mmol) was degassed by vaccum/nitrogen cycles 

(three times), then  degassed toluene (12mL) was added into the flask. The reaction 

mixture was heated to 120 oC for 5 h.  The solvent was removed under reduced pressure 

and the product was purified by silica gel chromatography eluting with 50:1 

hexane/EtOAc to afford the product as colorless oil (330 mg, 70 %). 1H NMR (500 

MHz, CDCl3), δ 7.96 (d, J = 8.0 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 1.57 - 1.51 (m, 6H), 

1.37 - 1.30 (m, 6H), 1.10 - 1.07 (t, J = 9.0 Hz, 6H), 0.88 (t, J = 7.0 Hz, 9H). 13C NMR 

(75 MHz, CDCl3), δ 167.5, 149.6, 136.4, 129.5, 128.3, 52.0, 29.0, 27.3, 13.6, 9.6.  

HRMS (ESI) calcd for C20H34BO2SnLi+ (M+Li)+, 433.16, found, 433.09.  TLC (1:4 

EtOAc/Hexane), Rf = 0.80.  
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1H NMR (CDCl3) 

 

 
13C NMR (CDCl3) 
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General Procedure for the Liebeskind-Srogl Coupling 

The BODIPY substrate (1 eq), organotin reagent (3-6 eq) or organoboron 

compound (4 eq), CuMeSal (4 eq) and Pd(PPh3)4 (5 mol %) were added to a round 

bottom flask. After 3 vacuum/nitrogen cycles, degassed THF was added into the flask.  

The mixture was stirred for 16 h at 55 oC under nitrogen and the reaction was monitored 

by TLC.  After completion, the solvent was removed under reduced pressure and ethyl 

acetate was added.  The mixture was filtered, and the filtrate was concentrated in vacuo.  

The residue was purified by silica gel flash column eluting with a mixture of hexane and 

ethyl acetate. 
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N
B
F2

N

Br

SBu

MeO2C
46b  

Purple solid (26 %).   1H NMR (300 MHz, CDCl3), δ 8.11 (d, J = 8.6 Hz, 2H), 

7.96 (d, J = 8.6 Hz, 2H), 7.66 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 8.1 Hz, 2H), 6.87 (d, J = 

4.7 Hz, 1H), 6.71 (d, J = 4.2 Hz, 1H), 6.61(d, J = 4.2 Hz, 1H), 6.51 (d, J = 4.7 Hz, 1H), 

3.94 (s, 3H), 3.09 (t, J = 7.2 Hz, 2H), 1.82-1.72 (m, 2H), 1.56-1.44 (m, 2H), 0.95 (t, J = 

7.2 Hz, 3H). 13C NMR (75 MHz, CDCl3), d 166.9, 162.5, 154.0, 138.4, 137.2, 136.1, 

135.8 132.9, 131.9, 131.7, 131.4, 130.0, 129.5, 129.2, (t, J = 15.5 Hz), 127.9, 124.6, 

119.3, 118.2, 52.2, 32.4, 30.9, 21.9, 13.5.  MS (ESI) calcd for C27H25BBrF2N2O2S 

(M+H)+ 568.08, found, 569.09, 571.08.  19F NMR (282 MHz, CDCl3), 32.1 (q, J = 33.6 

Hz).  TLC (1:1 EtoAc/Hexane) Rf = 0.50. 
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1H NMR (CDCl3) 

 

 
13C NMR (CDCl3) 
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19F NMR (CDCl3) 
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N
B
F2

N

Br

47a  
Red solid (85 % )  1H NMR (500 MHz, CDCl3), δ 7.87 (dd, J = 7.5 Hz, 2.3Hz, 4 

H), 7.69 (d, J = 9.0 Hz, 2H), 7.47 (d, J = 9.0 Hz, 2H), 7.44-7.41 (m, 6H), 6.86 (d, J = 4.3 

Hz, 2H), 6.64 (d, J = 4.3 Hz, 2H),  13C NMR (125 MHz, CDCl3), δ 159.3, 142.3, 136.2, 

133.2, 132.4, 132.0, 131.6, 130.6, 129.6, 129.4 (t, J = 17.0 Hz), 128.2, 124.7, 121.2. 19F 

NMR (282 MHz, CDCl3), 40.5 (q, J = 50.2 Hz), MS (ESI) calcd for C27H18BBrF2N2Li+ 

(M+Li)+, 505.07, found, 505.08, 507.08.  TLC (1:2 EtOAc/Hexane), Rf = 0.80. 
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1H NMR (CDCl3) 

 

 
13C NMR (CDCl3) 
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19F NMR (CDCl3) 
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N
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F2

N

Br

MeO2C CO2Me

47b  

Red-purple solid (62%).  1H NMR (500 MHz, CDCl3), δ 8.09 (d, J = 9.0 Hz, 

4H), 7.92 (d, J = 9.0 Hz, 4H), 7.71 (d, J = 8.5 Hz, 2H), 7.47 (d, J = 8.5 Hz, 2H), 6.92 (d, 

J = 4.5 Hz, 2H), 6.70 (d, J = 4.5 Hz, 2H), 3.93 (s, 6H), 13C NMR (125 MHz, CDCl3), 

δ 166.6, 158.1, 143.8, 136.5, 132.8, 132.0, 131.8, 131.1, 130.8, 129.5, 129.4 (t,  J = 15.0 

Hz), 125.1, 121.4, 52.2.    MS (MALDI) calcd for C31H22BBrF2N2O4Na (M + Na)+, 

637.08 found 637.24, 639.24.  TLC (1:3 EtOAc/Hexane), Rf = 0.35. 
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1H NMR (CDCl3) 

 

 
13H NMR (CDCl3) 
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N
B
F2

N

Br

MeO OMe

47c  

Purple solid (72 %)  1H NMR (300 MHz, CDCl3), δ 7.88 (d, J = 9.0 Hz, 4 H), 

7.67 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 6.96 (d, J = 9.0 Hz, 4 H), 6.81 (d, J = 

4.5 Hz, 2H), 6.62 (d, J = 4.5 Hz, 2H), 3.85 (s, 6H), 13C NMR (125 MHz, CDCl3), δ 

160.8, 158.6, 140.6, 135.9, 133.4, 132.0, 131.5, 131.1 (t, J = 18.0 Hz), 130.1, 125.0, 

124.4, 120.7, 113.8, 55.3.  19F NMR (282 MHz, CDCl3), 20.1 (q, J = 32.5 Hz), MS (ESI) 

calcd for C29H23BBrF2N2O2
+ (M+H)+, 559.09, found, 559.15, 561.15.  TLC (1:3 

EtOAc/Hexane), Rf = 0.25. 
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1H NMR (CDCl3) 

 

 
13C NMR (CDCl3) 
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19F NMR (CDCl3) 

 

 

 

 

 

 



 

 

250

Purple solid (17 %).  1H NMR (500 MHz, CDCl3), δ 8.38 (d, J = 8.5 Hz, 2H), 

8.11 (d, J = 8.5 Hz, 2H), 7.96 (d, J = 8.3 Hz, 2H), 7.71 (d, J = 8.3 Hz, 2H), 6.80 (d, J = 

4.5 Hz, 1H), 6.64 (d, J = 4.5 Hz, 1H), 6.62 (d, J = 4.0 Hz, 1H), 6.55 (d, J = 4.5 Hz, 1H), 

3.94 (s, 3H), 3.11 (t, J = 7.0 Hz, 2H), 1.80-1.74 (m, 2H), 1.54-1.47 (m, 2H), 0.95 (t, J = 

7.5 Hz, 3H). 13C NMR (125 MHz, CDCl3), δ 166.8, 163.9, 154.6, 148.7, 140.4, 136.9, 

136.3, 136.1, 135.4, 131.3, 131.0, 130.2, 129.5, 129.2 (t, J = 16.0 Hz), 127.6, 123.6, 

119.7, 118.7, 52.2, 32.5, 30.9, 21.9, 13.5.  MS (ESI) calcd for C27H24BF2N3O4SLi+ 

(M+Li)+, 542.15, found, 542.15.  TLC (1:3 EtOAc/Hexane), Rf = 0.45.  
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1H NMR (CDCl3) 

 
13C NMR (CDCl3) 
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50b  

Purple solid (68%).  1H NMR (500 MHz, CDCl3), δ 8.44 (d, J = 8.5 Hz, 2H), 

8.11 (d, J = 8.5 Hz, 4H), 7.94 (d, J = 8.5 Hz, 4H), 7.80 (d, J = 8.5 Hz, 2H), 6.85 (d, J = 

4.3 Hz, 2H), 6.73 (d, J = 4.3 Hz, 2H), 3.94 (s, 6H).  13C NMR (125 MHz, CDCl3), δ 

166.5, 158.9, 148.9, 140.7, 140.2, 136.2, 136.1, 131.4, 131.0, 130.8, 129.5, 129.4 (t, J = 

15 Hz), 123.6, 121.9, 52.3.  19F NMR (282 MHz, CDCl3), 40.9 (q, J = 33.6 Hz).  MS 

(ESI) calcd for C31H22BF2N3O6Li+ (M+Li)+, 588.16, found, 588.18. 
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1H NMR (CDCl3) 
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19F NMR (CDCl3) 
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51  

Dimethyl ester 50b  (32 mg, 0.06 mmol) was dissolved in 3 mL THF at room 

temperature.  Then potassium trimethylsilanolate (30 mg, 0.23 mmol) was added to the 

reaction mixture.  The reaction was complete in 6 h as indicated by TLC.  Aqueous HCl 

(0.1 M, 10 mL) was added and the product was extracted out of water with 1:2 isopropyl 

alcohol/CH2Cl2 (10 mL x 2).  The organic solvent was dried over MgSO4 and then 

removed under reduced pressure to afford the desired product as a red solid (29 mg, 95 

%).  1H NMR (300 MHz, CD3OD), δ 8.42 (d, J = 8.9 Hz, 2H), 7.98 (d, J = 8.4 Hz, 4H), 

7.85 (d, J = 8.4 Hz, 4H), 7.81 (d, J = 8.9 Hz, 2H), 6.84 (d, J = 4.5 Hz, 2H), 6.71 (d, J = 

4.5 Hz, 2H).   19F NMR (282 MHz, CD3OD), 43.8 (q, J = 30.6 Hz). HRMS (ESI) calcd 

for C29H17N3O6
- (M-H)- 552.1178, found 552.1174.  This compound is not very soluble 

in organic solvent, so 13C could not be obtained. 1:2 Hexane/EtOAc, Rf = 0.75. 
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1H NMR (CDCl3) 

 

 
19F NMR (CDCl3) 
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HO2C CO2H

 

The crude product obtained above 51, Pd/C (5 mg, 0.005 mmol) and hydrazine 

monohydrate (0.05 mL) were suspended in ethanol (2 mL).  The reaction mixture was 

heated to 82 oC for 25 min. The reaction solution was passed through celite, and the 

solvent was removed under reduced pressure to afford desired product as a dark red solid 

26 mg (95 %).  1H NMR (300 MHz, CD3OD 1:2), δ 7.98 (d, J = 8.9 Hz, 4H), 7.85 (d, J = 

8.9 Hz, 4H), 7.43 (d, J = 8.4 Hz, 2H), 7.06 (d, J = 4.4 Hz, 2H), 6.83 (d, J = 8.4 Hz, 2H), 

6.75 (d, J = 4.4 Hz, 2H).  13C NMR (125 MHz, CDCl3), δ 180.2, 158.1, 153.2, 137.5, 

136.0, 134.2, 133.0, 131.8, 130.0, 129.9, 129.7, 123.9, 121.5, 115.1. 19F NMR (282 

MHz, CDCl3), 43.8 (q, J = 30.5 Hz).   HRMS (ESI) calcd for C29H19N3O4
- (M - H)- 

522.1437, found 522.1434. 
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1H NMR (CD3OD) 

 
13C NMR (CD3OD) 
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19F NMR (CD3OD) 
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53  

A solution of 52 (18 mg, 0.034 mmol) in HCl (0.1 M, 2.5 mL) and HTF (2.5 mL) 

was cooled to 0 oC.  A solution of NaNO2 (5 mg, 0.072 mmol) in H2O (0.25 ml) was 

added slowly and the mixture was kept at 0 oC with stirring for 30 min.  A solution of 

NaN3 (21 mg, 0.34 mmol) in H2O (0.35 mL) was then added dropwise to the mixture.  

Stirring was continued at room temperature for 16 h after completion of the addition. 

The reaction mixture was acidified with HCl (0.1 M) carefully, then the product was 

extracted out of the water using 1:2 iPrOH/CH2Cl2. The product was achieved after 

removing the solvent under reduced pressure as a red solid (14 mg, 75 %).  1H NMR 

(500 MHz, 2:1 CD3OD/CDCl3), δ 8.06 (d, J = 8.5 Hz, 4H), 7.91 (d, J = 8.5 Hz, 4H), 

7.65 (d, J = 8.5 Hz, 2H), 7.25 (d, J = 8.5 Hz, 2H), 6.99 (d, J = 4.0 Hz, 2H), 6.74 (d, J = 

4.0 Hz, 2H), 19F NMR (282 MHz, 2:1 CD3OD/CDCl3), δ 44.6 (q, J = 33.6 Hz).  HRMS 

(ESI) calcd for C29H17BF2 N5O4
-
 (M - H)-, 548.1342, found 548.1339.  
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1H NMR (CD3OD) 

 

19F NMR (CD3OD) 
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54  

A solution of chlorosulfonic acid (23 μL, 0.35 mmol) in 2.0 mL of dry CH2Cl2 

was added dropwise to a solution of BODIPY Q (50 mg, 0.14 mmol) in dry CH2Cl2 over 

10 min under N2 at -40 oC.  The solution was slowly warmed to room temperature and 

an orange precipitate was formed.  The disulfonic acid was neutralized with 

triethylamine (48 μL, 0.35 mmol) and the solvent was removed under reduced pressure.  

The resulting salt was purified by reverse phase preparative-HPLC (gradient: 5% solvent 

B to 95% solvent B, 25 min) to afford the desired product as an orange solid (45 mg, 60 

%).  1H NMR (500 MHz, CD3OD), δ 7.69 (d, J = 8.5 Hz, 2H), 7.38 (d, J = 8.5 Hz, 2H), 

3.68 (s, 1H), 3.19 (q, J = 7.5 Hz, 12H), 2.78 (s, 6H), 1.69 (s, 6H), 1.29 (t, J = 7.5 Hz, 

18H), 13C NMR (125 MHz, CDCl3), δ 156.9, 145.7, 143.2, 136.3, 136.1, 134.2, 131.5, 

129.7, 125.3, 83.5, 80.6, 47.8, 14.5, 13.6, 9.2.  MS (ESI) calcd for C21H17BBrF2O6S2
2-

 

(M - 2Et3NH)2-, 253.02, found 253.02.  
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1H NMR (CDCl3) 

 

 
13C NMR (CD3OD) 
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55  
Copper (1 mg, 0.02 mmol) and CuSO4•5H2O (2 mL, 1 M, 0.002 mmol) were 

added to a solution of 53 (11 mg, 0.019 mmol) and 54 (12 mg, 0.07 mmol) in 1:1 

THF/H2O (2 ml).  The reaction mixture was stirred at room temperature for 48 h, and 

then was evaporated to dryness.  The residue was purified by reverse phase prep-HPLC 

(gradient: 10% solvent B to 90% solvent B, 25 min) to afford a red solid with retention 

time at 17 min (6 mg, 30%).  1H NMR (500 MHz, CD3OD), δ 9.28 (s, 1H), 8.28-8.27 

(m, 4H), 8.12 (d, J = 8.5 Hz, 4H), 8.03 (d, J = 8.5 Hz, 4H), 7.96 (d, J = 8.0 Hz, 2H), 7.56 

(d, J = 6.5 Hz, 2H), 7.16 (d, J = 4.0 Hz, 2H), 6.93 (d, J = 4.5 Hz, 2H), 2.83 (s, 6H), 1.81 

(s, 6H).  MS (ESI) calcd for C50H33B2F4N7O10S2 (M-2Na-2H)4-, 263.25, found 263.28.  
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APPENDIX C 

EXPERIMENTAL DATA FOR CHAPTER IV 

 

General Experimental Procedures 

NMR spectra were recorded on a VXP-300 MHz and Inova-500 MHz 

spectrometers (1H at 300 MHz or 500 MHz, and 13C at 75 or 125 MHz) at room 

temperature unless other mentioned.  Chemical shifts of 1H NMR spectra were recorded 

and chemical shifts are reported in ppm from the solvent resonance (CDCl3 7.26 ppm, 

CD3OD 3.30 ppm, CD3SOCD3 2.49 ppm).  Data are reported as follows: chemical shift, 

multiplicity (s = singlet, bs = broad singlet d = doublet, t = triplet, q = quartet, br = 

broad, m = multiplet), coupling constants, and number of protons.  Proton decoupled 13C 

NMR spectra were also recorded in ppm from tetramethylsilane resonance (CDCl3 77.0, 

CD3OD 49.1, DMSO-d6 39.5 ppm). Analytical thin layer chromatography (TLC) was 

performed on EM Reagents 0.25 mm silica-gel 60-F plates, and visualized with UV 

light.  Flash chromatography was performed using silica gel (230–600 mesh).  

UV/Visible and fluorescence (1.0 x10-6 M) spectra of compound 56 were taken in 

aqueous Ph = 10 buffer solution (Na2CO3, NaHCO3).  Absorption and fluorescence 

spectra of compound 57 were taken in dry DMF.  HPLC analysis of samples was 

preceded by subjecting the sample to reverse phase analytical HPLC [C18, 5:95 

(CH3CN/H2O)] unless other mentioned.  MS were measured (Thermofinnigan LC-Q 

Deca spectrometer) under ESI, MALDI or APCI conditions.  IR spectra were recorded 

on Bruker (Tensor 27). The total chemiluminescence intensity was calculated by 
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integrating the decay curve between the point of adding sample and the point where 

signal decays to the background level.  The background signal has been subtracted from 

the total chemiluminescence intensity during the calculation.  THF was distilled over 

Na/benzophenone. DMF and Et3N were distilled from CaH2.  Other solvents and 

reagents were used as received.  

 

Methods for Measuring the Chemiluminescence Spectra and Quantum Yields 

Instrument  

A confocal microscope was used with a sample cell volume of ~ 200 μl made by 

gluing a plastic cylinder on a clean microscope cover glass; this was used to hold 

samples and serves as the reaction chamber.  The sample cell was mounted on an 

inverted, epi-illumination microscope (Nikon, Diaphot 300).  A Nikon FLUOR X40, 1.3 

numerical aperture objective was used to collect the chemiluminescence.  The 670DCSP 

or 830DCSP dichroic filters (Chroma Technology) were used in the experiments 

depending on the emission wavelength.  A single-photon counting avalanche diode 

(APD) was used to collect time dependent chemiluminescent signal.  The 

chemiluminescence spectra of samples were obtained by means of a monochromator 

(Acton Research) equipped with a back-illumination liquid-nitrogen-cooled CCD 

camera (Princeton Instruments, Trenton, NJ).  This CCD array detector allows detection 

of  spectrally resolved signals simultaneously, which is useful for obtaining a dynamical 

spectrum, such as chemiluminescence which decays as function of time and its spectrum 

is not accessible by conventional scanning methods. 
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Materials   

The sample solutions of luminol and luminol-fluorescein cassette (LFC) 56 at 

different concentrations were prepared by dissolving a luminol and LFC in pH=10 buffer 

solution (Na2CO3 and NaHCO3).  A second solution containing 1.5x 10-3 M CuSO4 and 

2x 10-3 M H2O2 was also prepared and used to react with sample solutions to generate 

light.  The sample solution of luminol-Nile Red cassette 57 (1.0 x 10-4 M) was prepared 

in dry DMF.  A second solution of 0.01M potassium tert-butoxide in dry THF was used 

to react with the sample solution of 57.  

Experiment 

Either 30 μl or 15 μl of the second solution containing 1.5x 10-3 M CuSO4 and 2x 

10-3 M H2O2 was first added into sample cell and the spectra collected by CCD or the 

total emission signal by APD, both as function of time.  When the computer started 

collecting data, a 100 μl of sample solution was added to the sample cell, which 

immediately reacts with H2O2 and emits lights. The intensity of light decays as the 

concentration of reactants decreases.  Data collection was stopped when the intensity of 

signal decayed to the background level.  

Spectrum of 2 was taken in dry DMF when adding 10 μl (0.01 M) potassium tert-

butoxide solution in dry THF to a sample cell containing 150 μl sample 2 (1 x 10-4M).  

Estimation of Quantum Yield of LFC 

In principle, the quantum yield of LFC was estimated by preparing two sample 

solutions containing equal amounts of luminol and LFC, and measuring the total 

chemiluminescence intensity under the same experimental conditions.  The quantum 
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yields of LFC at different concentrations have been calculated by simply dividing the 

total intensity of luminal chemiluminescence by that of the sample chemiluminescence, 

assuming the quantum yield of luminol is 100%. 

 

Calculation of the Overlap Integral J(λ), the Föster Distance R0, and the Energy 

Transfer Efficiency E.  

The degree of spectral overlap between donor emission and acceptor absorption 

expressed by the overlap integral J(λ).  It can be calculated according to the equation 

derived from classical and quantum mechanic considerations:  

                             ∫ FD(λ)εA(λ)λ4dλ 

J(λ) = ∫ FD(λ)εA(λ)λ4dλ =  ____________________            (1) 

                         ∫ FD(λ)dλ 
The overlap integral J(λ) is in units of M-1cm-1(nm)4. FD(λ) is the corrected normalized 

fluorescence intensity of the donor.  εA(λ) is the extinction coefficient of the acceptor at 

λ.  The Föster Distance R0 in angstroms, is expressed by 

      R0 =0.211[κ2n-4QDJ(λ)]1/6                           (2) 

κ2 is the orientation factor, which describes the orientation of the transition dipoles of the 

donor and acceptor.  n is the refractive index of the medium, which is 1.40 in aqueous 

solution and 1.43 in DMF. QD is the fluorescence quantum yield of the emitter generated 

from donor through chemiluminescent reactions in the absence of acceptor.  

The efficiency of the energy transfer (E) is the fraction of photons generated by 

the donor that are transferred to the acceptor.  If the energy transfer rate is much faster 

than the decay rate of the donor, then much transfer will occur and FRET will be 
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efficient. If the transfer rate is slower that the decay rate, then energy transfer will be 

inefficient.  The energy transfer efficiency E is given by: 

                                                             R0
6 

E =    _____________                          (3) 
                                                           R0

6 + r6 
r is the distance between donor and acceptor. 

 

Table S2. Calculated R0 values for FRET and Energy Transfer efficiency E. R0 was calculated using n 
= 1.4 (H2O), 1.43 (DMF), QD = 2.0 x 10-4 (data from reference 6 in the text) and κ2 = 1/4  

Compounds JDA (M-1cm3(nm)4) R0 (Å) r (Å) E (%) 
56 1.15 x1015 10.47 11.3 39 
57 6.95 x 1014 9.50 10.0 42 
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58  

6-Bromo-2, 3-dihydrophathalazine-1, 4-dione  5-Bromophthalic anhydride 

(11.8 g, 52 mmol) and 40 ml acetic acid were added into a 250 mL round bottom flask.  

The mixture was heated to 125 oC.  After 1h, the mixture was cooled to 25 oC.  

Hydrazine monohydrate (2.65 mL, 54.6 mmol) was added dropwise into the flask, and 

then the mixture was refluxed at 125 oC for 30 min.  The mixture was cooled to room 

temperature again and white solid precipitated out from the solvent.  The white solid was 

separated by filtration. The crude product was dissolved in 5% NaOH (30 mL), acidified 

with AcOH (3 mL), and white solid precipitated out.  The solid was washed with a large 

amount of water and then MeOH to afford 11.9 g 58 (95 %) as colorless powder.  1H 

NMR (300 MHz, DMSO), δ11.72 (s, 2H), 8.16 (d, J = 1.8 Hz, 1H), 8.05 (dd, J = 8.4 Hz, 

1.8 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H); 13C NMR (125 MHz, DMSO), δ153.9 (bs), 135.6, 

128.7, 127.7, 127.5, 126.4, 126.1. HRMS (ESI) calcd for C8H4BrN2O2Na (M-H)- 

238.9462, found 238.8779, 240.8754.  mp 358-361 oC. 
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1H NMR (DMSO-d6) 

 

 
13C NMR (DMSO-d6)
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59a  

6-Bromo-2, 3-bis(4-methoxybenzyl)-2, 3-dihydrophathazine-1, 4-dione   A 

mixture of 6-bromo-2, 3-dihydrophathalazine-1, 4-dione 3 (526 mg, 2.18 mmol) and dry 

DMF (15 mL) in a 100 mL flask were cooled to 0 oC, then NaH (183 mg, 4.58 mmol) 

was added.  The mixture was stirred for 30 min, and then PMBCl (0.63 mL, 4.58 mmol) 

was added into the flask dropwise.  The reaction mixture was warmed up to 25 °C 

slowly and stirred for 14 h.  Water (100 mL) was added to the reaction mixture, and the 

product was extracted from water with ethyl acetate (50 mL x 3).  The combined 

organics were concentrated under reduced pressure, and the resulting crude product was 

purified by flash chromatography eluting with hexane and ethyl acetate (10:1) to give 

430 mg (41%) 59a as a colorless solid. FTIR (neat) 2832, 1726, 1650 cm-1 .  1H NMR 

(300 MHz, CDCl3), δ 8.54 (bs, 1H), 7.81 (m, 2H), 7.41 (d, J = 8.7 Hz, 2H), 7.36 (d, J = 

8.7 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 5.22(s, 2H), 5.22 (s, 2H), 

3.83 (s, 3H), 3.79 (s, 3H).  13C NMR (125 MHz, CDCl3), δ 159.6, 159.2, 157.1, 149.22, 

135.9, 130.5, 130.3, 130.1, 130.1, 129.1, 128.2, 126.7, 125.3, 123.4, 113.9, 113.8, 68.5, 

55.3, 55.2, 53.6. HRMS (ESI) calcd for C24H22BrN2O4
+ (M+H)+, 481.0763, found, 

481.0757, 483.0741.  TLC (50 % EtOAc-Hexane) Rf = 0.78.  
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1H NMR (CDCl3) 

 

 
13C NMR (CDCl3) 
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59b  

6-Bromo-1, 4-bis (4-methoxybenzyloxy) phathalazine   The same procedure 

above for preparing 59a also afforded 59b  (471 mg, 45%) at the same time.  FTIR 

(neat) 2832, 1650, 1609 cm-1.  1H NMR (300 MHz, CDCl3), δ 8.24 (d, J = 8.2 Hz, 1H), 

8.08 (d, J = 2.0 Hz, 1H), 7.81 (dd, J = 8.2 Hz, 2.0 Hz, 1H), 7.41 (d, J = 8.4 Hz, 2H), 7.37 

(d, J = 8.5 Hz, 2H), 6.91 (d, J = 8.2 Hz, 2H), 6.86 (d, J = 8.4 Hz, 2H), 5.26 (s, 2H), 

5.21(s, 2H), 3.81 (s, 3H), 3.60 (s, 3H).  13C NMR (125 MHz, CDCl3), δ 159.5, 159.0, 

157.7, 148.1, 134.9, 130.1, 130.0, 129.0, 128.9, 128.0, 127.8, 127.7, 126.1, 125.9, 113.8, 

113.7, 68.5, 55.1, 55.1, 53.4. TLC (50 % EtOAc-Hexane) Rf = 0.52. 
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1H NMR (CDCl3) 

 
13C NMR (CDCl3) 
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60  

5-((2,3-Bis(4-methoxybenzyl)-1,4-dioxo-1,2,3,4-tetrahydrophthalazin-6-

yl)ethynyl)-3-oxo-3H-spiro[isobenzofuran-1,9’-xanthene]-3’,6’-diyl diacetate  

Compound 59a (103 mg, 0.215 mmol), 5-ethynyl-3-oxo-3H-spiro[isobenzofuran-1,9’-

xanthene]-3’,6’-diyl diacetate C (104 mg, 0.236 mmol), PdCl2(PPh3)2 (8 mg, 0.02 

mmol), CuI (4 mg, 0.04 mmol), Et3N (0.3 mL, 2.15 mmol), and THF 2.0 mL were added 

to a sealed microwave tube.  This tube was subjected to microwave irradiation at 120oC 

for 20 min.  The solvent was removed under reduced pressure.  The crude product was 

purified by flash chromatography over silica gel eluting with hexane/ethyl acetate (2:1) 

to give 60 (104 mg, 58 %) as a colorless solid.  1H NMR (300 MHz, CDCl3), δ 8.57 (d, J 

= 0.9 Hz, 1H), 8.18 (m, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.86 (dd, J = 5.4 Hz, 1.8 Hz, 1H), 

7.83 (dd, J = 5.1 Hz, 1.5 Hz, 1H), 7.42 (d, J = 8.7 Hz, 2H)), 7.36 (d, J = 8.7 Hz, 2H), 

7.20 (dd, J = 8.1 Hz, 0.3 Hz, 1H), 7.11 (m, 2H), 6.84-6.92 (m, 8H), 5.29 (s, 2H), 5.25 (s, 

2H), 3.83 (s, 3H), 3.79 (s, 3H), 2.32 (s, 6H). 13C NMR (75 MHz, CDCl3), δ 168.8, 168.1, 

159.6, 159.1, 157.6, 152.5, 152.1, 151.5, 149.2, 138.4, 135.2, 130.6, 130.3, 130.1, 129.3, 

129.2, 128.9, 128.3, 126.6, 126.0, 125.0, 124.3, 124.2, 123.8, 117.9, 115.9, 113.9, 113.8, 

110.5, 90.3 (2C), 68.5, 55.3, 55.2, 53.5, 21.1. HRMS (MALDI) calcd for C50H36N2O11
+ 

(M+H)+, 841.2397, found, 841.2381.  TLC (50 % EtOAc-Hexane) Rf = 0.60.  
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1H NMR (CDCl3) 

 

 
13C NMR (CDCl3) 
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56  

5-((1,4-Dioxo-1,2,3,4-tetrahydrophthalazin-6-yl)ethynyl)-2-(6-hydroxy-3-

oxo-3H-xanthen-9-yl)benzoic acid  5-((2,3-Bis(4-methoxybenzyl)-1,4-dioxo-1,2,3,4-

tetrahydrophthalazin-6-yl)ethynyl)-3-oxo-3H-spiro[isobenzofuran-1,9’-xanthene]-3’,6’-

diyl diacetate 60 (45 mg, 0.055 mmol) and TFA 5 mL were added to a 25 mL flask.  The 

mixture was heated to 70 oC for 1h.  The solvent was removed under reduced pressure.  

The crude product was dissolved in 1 mL NaOH (1M), acidified with one drop of 

concentrated HCl, then a yellow solid precipitated out.  The crude product was separated 

by filtration, washed with 5 mL water and 10 mL ethyl acetate to afforded 24 mg (88%) 

desired product. IR (neat) 3428, 1638 cm-1.  1H NMR (500 MHz, DMSO), δ 8.26 (s, 

1H), 8.23 (s, 1H), 8.11 (d, J = 8.0 Hz, 1H), 8.00 (d, J = 7.5 Hz, 1H), 7.92 (d, J = 8.5 Hz, 

1H), 7.31 (d, J = 8.0 Hz, 1H), 6.65 (d, J = 9.0 Hz, 2H), 6.58 (s, 2H), 6.50 (d, J = 8.0 Hz, 

2H), HRMS (ESI) calcd for C30H15N2O7
- (M-H)-, 515.0885, found, 515.0873.  Reverse 

phase analytical HPLC: R. T. = 5.533 min (UV detector), 5.483 min (fluorescence 

detector).   
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1H NMR (CDCl3) 

 
HPLC (UV detector) 
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HPLC (fluorescence detector) 

 

  



 

 

286

O

N

Et2N

OTf

O
61  

9-(Diethylamino)-5-oxo-5H-benzo[a]phenoxazin-2-yl 

trifluoromethanesulfonate.  A mixture of compound Q (230 mg, 0.689 mmol), N-

phenyltrifluoromethane sulfonamide (615 mg, 1.72 mmol) and Et3N (0.24 mL, 1.72 

mmol) was stirred at 20 oC in dry THF for 1 d.  The reaction solvent was removed under 

reduced pressure to afford dark red solid.  The crude product was purified by flash 

column eluting with 3% MeOH: CH2Cl2 to give the desired product as a dark red solid 

240 mg (75%).  FTIR (neat) 3077, 2985, 1642, 1622, 1589 cm-1.   1H NMR (300 MHz, 

CDCl3), δ 8.54 (d, J = 2.7 Hz, 1H), 8.41 (d, J= 8.4 Hz, 1H), 7.66 (d, J = 9.3 Hz, 1H), 

7.50 (dd, J = 8.7, 2.4 Hz, 1H), 6.72 (dd, J =9.0, 2.7 Hz, 1H), 6.50 (d, J = 2.7 Hz, 1H), 

6.41 (s, 1H), 3.50 (q, 4.5 Hz, 4H), 1.29 (t, J = 4.5 Hz, 6H), 13C NMR (75 MHz, CDCl3), 

δ 181.9, 152.6, 151.5, 151.5, 147.2, 137.8, 134.3, 131.7, 131.1, 128.7, 125.2, 122.2, 

116.6, 110.3, 109.8, 105.5, 96.2, 45.2, 12.6.  19F NMR (300 MHz, CDCl3), δ -73.1.   

HRMS (ESI) calcd for C21H18F3N2O5S (M+H)+ 467.0889, found, 467.0873.  TLC (50 % 

EtoAc-Hexane) Rf = 0.50. 
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1H NMR (CDCl3) 

 
13C NMR (CDCl3) 
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19F NMR (CDCl3)
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9-(Diethylamino)-2-((trimethylsilyl)ethynyl)-5H-benzo[a]phenoxazin-5-one.  

A mixture of compound 61 (190 mg, 0.408 mmol), trimethylsilylacetylene (0.58 mL, 

4.08 mmol), Et3N (0.57 mL, 4.08 mmol), Pd(PPh3)4 (47 mg, 0.041 mmol), CuI (16 mg, 

0.082 mmol) were dissolved in 4.0 mL dry DMF.  After degassed three times via the 

freeze-thaw method, the mixture was heated up to 80oC for 4 h.  The reaction solvent 

was removed under reduced pressure and the crude product is purified by flash column 

eluting with 50% hexane : ethyl acetate to give the desired product as a dark red solid 

145 mg (80%).  1H NMR (300 MHz, CDCl3), δ 8.70 (d, J = 1.5 Hz, 1H), 8.21 (d, J = 8.1 

Hz, 1H), 7.67 (dd, J = 8.1 Hz, 1.5 Hz, 1H), 6.57 (d, J = 9.3 Hz, 1H), 6.63 (dd, J = 9.3 

Hz, 3.0 Hz, 1H), 6.41 (d, J = 2.7 Hz, 1H), 6.35 (s, 1H), 3.43 (q, J = 7.2 Hz, 4H), 1.25 (t, 

J = 7.2 Hz, 6H), 0.30 (s, 9H), 13C NMR (75 MHz, CDCl3), δ 182.9, 152.2, 150.9, 146.8, 

138.9, 132.7, 131.9, 131.2, 130.9, 127.3, 126.1, 125.6, 125.0, 109.9, 105.8, 104.5, 97.1, 

96.2, 45.1, 12.6, -0.1.  HRMS (ESI) calcd for C25H27N2O2Si (M+H)+, 415.1842, found 

415.1795.  TLC (50 % EtOAc-Hexane) Rf = 0.73. 
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1H NMR (CDCl3) 

 
13C NMR (CDCl3) 
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9-(diethylamino)-2ethynyl-5H-benzo[a]phenoxazin-5-one.  Compound 62 

(130 mg, 0.313 mmol) was dissolved in 6mL dichloromethane at room temperature. 

TBAF (0.63 mL, 0.1M) in THF was added dropwise to the reaction mixture.  The 

reaction was complete in 5 min.  The solvent was removed under reduced pressure and 

the crude product was purified by flash column eluting with 50% hexane : ethyl acetate 

to provide dark red solid 102 mg (95%). FTIR (neat) 3095, 2974, 1622, 1597, 1580 cm-1.  

1H NMR (500 MHz, CDCl3), δ 8.75 (d, J = 1.5 Hz, 1H), 8.24(d, J = 8.1 Hz, 1H), 7.70 

(dd, J = 8.1 Hz, 1.5 Hz, 1H), 7.57 (d, J = 9.3 Hz, 1H), 6.65 (dd, J = 9.3 Hz, 3.0 Hz, 1H), 

6.43 (d, J = 3.0 Hz, 1H), 6.36 (s, 1H), 3.45 (q, J = 7.2 Hz, 4H), 3.26 (s, 1H), 1.26 (t, J = 

7.2 Hz, 6H).  13C NMR (125 MHz, CDCl3), δ 182.9, 152.3, 151.0, 146.8, 138.8, 132.8, 

132.0, 131.3, 131.3, 127.7, 125.8, 125.1, 125.0, 109.9, 105.8, 96.2, 83.2, 79.5, 45.1, 

12.6.  HRMS (ESI) calcd for C22H19N2O2 (M+H)+ 343.1447, found 343.1441.  mp 203-

206 oC.  TLC (33 % EtOAc-Hexane) Rf = 0.32. 
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1H NMR (CDCl3) 

 
13C NMR (CDCl3) 
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64

 

6-((9-(Diethylamino)-5-oxo-5H-benzo[a]phenoxazin-2-ethynyl)-2,3-bis(4-

methoxybenzyl)-2,3-dihydrophthalazine-1,4,-dione.  A mixture of compound 63 (55 

mg, 0.161 mmol), 59a, (70 mg, 0.146mmol), Et3N (0.22 mL, 1.61 mmol), Pd(PPh3)4 (19 

mg, 0.016 mmol), CuI (6 mg, 0.032 mmol) were dissolved in 8 mL 25% DMF:THF.  

After the solution was degassed three times via the freeze-thaw method, the mixture was 

heated to 80 oC for 4 h.  The reaction solvent was removed under reduced pressure and 

the crude product was purified by flash column eluting with 50% hexane:ethyl acetate to 

give the desired product as a dark red solid 75 mg (69%).  1H NMR (300 MHz, CDCl3), 

δ 8.83 (d, J = 1.8 Hz, 1H), 8.61 (d, J = 1.5 Hz, 1H), 8.31 (d, J = 8.1 Hz, 1H), 7.97 (d, J = 

8.1 Hz, 1H), 7.89 (dd, J = 8.1 Hz, 1.5 Hz, 1H), 7.78 (dd, J = 8.1 Hz, 1.5 Hz, 1H), 7.65 

(d, J = 9.3 Hz, 1H), 7.46 (d, J = 8.7 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8.4 

Hz, 2H), 6.89 (d, J = 8.4 Hz, 2H), 6.70 (dd, J = 9.0 Hz, 2.4 Hz, 1H), 6.46 (d, J = 2.4 Hz, 

1H), 6.41 (s, 1H), 5.30 (s, 2H), 5.28 (s, 2H), 3.86 (s, 3H), 3.82 (s, 3H), 3.49 (q, J = 7.2 

Hz, 4H), 1.29 (t, J = 7.2 Hz, 6H),  13C NMR (75 MHz, CDCl3), δ 182.8, 159.6, 159.1, 

157.6, 152.2, 151.0, 149.2, 146.8, 138.7,  135.2, 132.3, 132.0, 131.3, 131.2, 130.5, 

130.3, 130.0, 129.3, 129.2, 128.3, 127.4, 126.6, 125.9, 125.3, 125.1,  123.9, 123.7, 

113.9, 113.8, 110.0, 105.8, 96.1,  92.3, 90.4, 68.4, 55.3, 55.2, 53.4, 45.1, 12.6.  MALDI 
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MS calcd for C46H38N4O6 (M+H)+ 743.2864, found 743.3370.  TLC (67 % EtOAc-

Hexane) Rf = 0.70. 
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1H NMR (CDCl3) 

 

 
1H NMR (CDCl3) 
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6-((9-(Diethylamino)-5-oxo-5H-benzo[a]phenoxazin-2-yl)ethynyl)-2,3-

dihydrophthalazine-1,4-dione.  Compound 64 (45 mg, 0.061 mmol) and 2 mL TFA 

were added to a 25 mL flask.  The mixture was heated to 70 oC for 1 h. The solvent was 

removed under reduced pressure, and the crude product was recrystalized from AcOH 

(1.5 mL) to afford dark red solid 25 mg (82%). 1H NMR (500 MHz, DMSO, 80 oC), δ 

8.73 (s, 1H), 8.26 (s, 1H), 8.17 (d, J = 8.5 Hz, 1H), 8.12 (d, J = 8.5 Hz, 1H), 8.06 (d, J = 

8.0 Hz, 1H), 7.87 (d, J = 8.5 Hz, 1H), 7.67 (d, J = 9.0 Hz, 1H), 6.86 (dd, J = 9.5 Hz, 2.0 

Hz, 1H), 6.65 (d, J = 2.0 Hz, 1H), 6.30 (s, 1H), 3.53 (q, J = 7.0 Hz, 4H), 1.20 (t, J = 7.0 

Hz, 6H).  13C NMR (125 MHz, DMSO, 80 oC), δ 180.6, 151.7, 151.0, 146.2, 137.1, 

134.5, 131.9, 131.7, 131.5, 130.9, 130.5, 128.0, 127.8, 126.2, 125.5, 125.2, 125.3, 124.3, 

110.6, 104.7, 104.4, 96.5, 95.8, 95.3, 91.3, 90.1, 44.1, 12.0.   HRMS (ESI) calcd for 

C30H23N4O4 (M+H)+ 503.1719, found 503.1687.  TLC (10 % MeOH-CH2Cl2) Rf = 0.57. 
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1H NMR (DMSO-d6 at 80 oC) 

 

 
13C (DMSO-d6 at 80 oC) 
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1H NMR (DMSO-d6 at 22 oC) 
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65  

Dimethyl 4-((3', 6'-bis(ethanoyloxy)-3-oxo-3H-spiro[isobenzofuran-1,9'-

xanthene]-5-yl)ethynyl)benzene-1,2-dicarboate.  Dimethyl 4-bromobenzene-1,2-

dicarboate (29 mg, 0.107 mmol), 5-ethynyl-3-oxo-3H-spiro[isobenzofuran-1,9’-

xanthene]-3’,6’-diyl diacetate C (52 mg, 0.118 mmol), PdCl2(PPh3)2 (7 mg, 0.01 mmol), 

CuI (4 mg, 0.02 mmol), Et3N (0.15 mL, 1.07 mmol), and THF 1.0 mL were added to a 

sealed microwave tube.  This tube was subjected to microwave irradiation at 120 oC for 

30 min.  The solvent was removed under reduced pressure.  The crude product was 

purified by flash chromatography over silica gel eluting with hexane/ethyl acetate (3:1) 

to give (40 mg, 60 %) as a colorless solid.  1H NMR (300 MHz, CDCl3), δ 8.19 (m, 1H), 

7.92 (m, 1H), 7.84 (dd, J = 8.1 Hz, 0.9 Hz, 1H), 7.80 (d, J = 8.1 Hz, 1H), 7.73 (dd, J = 

8.1 Hz, 0.9 Hz, 1H), 7.22 (d, J = 7.8 Hz, 1H), 7.13 (m, 2H)), 6.87 (d, J = 0.9 Hz, 4H), 

3.96 (s, 3H), 3.95 (s, 3H), 2.34 (s, 6H). 13C NMR (75 MHz, CDCl3), δ 168.8, 168.0, 

167.3, 167.2, 152.6, 152.2, 151.5, 138.3, 133.9, 132.6, 132.0, 131.4, 129.2, 128.8, 128.3, 

126.6, 125.7, 124.9, 124.3, 117.9, 115.9, 110.5, 90.3, 89.8, 81.8, 52.8, 52.8, 21.1. HRMS 

(ESI) calcd for C34H25O11
+ (M+H)+, 633.1397, found, 633.1379.  TLC (50 % EtOAc-

Hexane) Rf = 0.68. 
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1H NMR (CDCl3) 

 

 
13C NMR (CDCl3) 
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66  

4-((3-Carboxy-4-(6-hydroxy-3-oxo-3H-xanthen-9-yl)phenyl)ethynyl)benzene 

-1,2-dicarboic acid.  Compound 65 (35 mg, 0.055 mmol) was dissolved in 2 mL THF at 

room temperature.  Potassium trimethylsilanolate  (140 mg, 1.11mmol) was added to the 

reaction mixture.  The reaction was complete in 15 h.  The solvent was removed under 

reduced pressure.  The crude product was dissolved in 2 mL water, acidified with two 

drops of concentrated HCl, then a yellow solid precipitated out.  The crude product was 

separated by filtration, washed with 5 mL water and 10 mL ethyl acetate to afforded 26 

mg (90%) desired product as an orange solid.  1H NMR (500 MHz, CD3OD), δ 8.19 (s, 

1H), 7.93 (d, J = 8.5 Hz, 1H), 7.92 (s, 1H), 7.81 (d, J = 7.5 Hz, 1H), 7.78 (dd, J = 8.0 

Hz, 1.3 Hz 1H), 7.26 (d, J = 8.0 Hz, 1H), 6.73 (d, J = 2.0 Hz, 1H), 6.68 (d, J = 9.0 Hz, 

1H), 6.60 (dd, J = 9.0 Hz, 2.0 Hz, 1H).  13C NMR (125 MHz, CD3OD), 

δ 170.5, 170.5, 170.4, 162.0, 154.5, 153.5, 139.5, 135.0, 134.9, 133.9, 132.9, 130.5, 130.

5, 129.3, 129.1, 126.8, 126.3, 126.2, 126.0, 114.2, 111.3, 103.7, 91.2, 90.5.  LRMS (ESI) 

calcd for C30H17O9 (M+H)+ 521.1, found 521.1. 
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Dimethyl 4-(2-(9-(diethylamino)-5-oxo-5H-benzo[a]phenoxazin-2-

yl)ethynyl)benzene-1,2-dioate.  A mixture of compound 63 (47 mg, 0.137 mmol), 

dimethyl 4-bromobenzene-1,2-dicarboate (34 mg, 0.125 mmol), Et3N (0.17 mL, 1.25 

mmol), Pd(PPh3)4 (15 mg, 0.013 mmol), CuI (5 mg, 0.026 mmol) were dissolved in 5 

mL 25% DMF:THF.  After the solution was degassed three times via the freeze-thaw 

method, the mixture was heated to 80 oC for 4 h.  The reaction solvent was removed 

under reduced pressure and the crude product was purified by flash column eluting with 

75% hexane : ethyl acetate to give the desired product as a dark red solid 31 mg (49%).  

FTIR (neat) 3066, 2977, 1728, 1622, 1594, 1580 cm-1.  1H NMR (500 MHz, CDCl3), δ 

8.84 (d, J = 1.5 Hz, 1H), 8.32 (d, J = 8.5 Hz, 1H), 7.94 (d, J = 1.5 Hz, 1H), 7.79 (d, J = 

8.0 Hz, 1H), 7.77 (dd, J = 8.5 Hz, 1.5 Hz, 1H), 7.74 (dd, J = 8.0 Hz, 2.0 Hz, 1H), 7.66 

(d, J = 9.0 Hz, 1H), 6.72 (dd, J = 9.0 Hz, 2.5Hz, 1H), 6.50 (d, J = 3.0 Hz, 1H), 6.42 (s, 

1H), 3.97 (s, 3H), 3.95 (s, 3H), 3.50 (q, J = 7.0 Hz, 4H), 1.29 (t, J = 7.0 Hz, 6H).  13C 

NMR (75 MHz, CDCl3), δ 182.8, 167.4, 167.3, 152.3, 151.0, 146.9, 138.8, 133.8, 132.5, 

132.4, 132.0, 131.3, 131.3, 131.0, 129.2, 127.3, 126.3, 126.0, 125.3, 125.1, 110.0, 105.9, 

96.2, 94.7, 92.2, 89.8, 52.8, 52.8, 45.2, 12.6.  LRMS (ESI) calcd for C32H27N2O6 (M+H)+ 

535.2, found 535.4.  mp 233-236 oC.  TLC (50 % EtoAc-Hexane) Rf = 0.29.
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4-(2-(9-(diethylamino)-5-oxo-5H-benzo[a]phenoxazin-2-yl)ethynyl)benzene-

1,2-dioic acid.  Dimethyl 4-(2-(9-(diethylamino)-5-oxo-5H-benzo[a]phenoxazin-2-

yl)ethynyl)benzene-1,2-dioate 67 (15 mg, 0.024 mmol) was dissolved in 2 mL THF at 

room temperature.  Potassium trimethylsilanolate  (8 mg, 0.061mmol) was added to the 

reaction mixture.  The reaction was complete in 15 h.  The solvent was removed under 

reduced pressure.  The crude product was dissolved in 1 mL water, acidified with 0.2M 

HCl, then a dark red solid precipitated out.  The crude product was separated by 

filtration, washed with 5 mL water and 10 mL ethyl acetate to afforded 8 mg (65%) 

desired product as a red solid.  1H NMR (500 MHz, CDCl3), δ 7.79 (d, J = 1.5 Hz, 1H), 

8.21(d, J = 8.0 Hz, 1H), 8.02 (s, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.79 (dd, J = 4.5 Hz, 1.5 

Hz, 1H), 7.73 (dd, J = 4.5 Hz, 1.5Hz, 1H), 7.67 (d, J = 9.0 Hz, 1H), 6.80 (dd, J = 9.0 Hz, 

3.0Hz, 1H), 6.54 (d, 3.0Hz, 1H), 6.38 (s, 1H), 3.52 (q, J = 7.0 Hz, 4H), 1.28 (t, J = 7.0 

Hz, 6H).  13C NMR (125 MHz, CDCl3 : CDCl3 = 2:1), δ 184.1, 170.0 (bs), 153.6, 152.4, 

147.8, 138.1, 134.2, 133.1, 132.8, 132.7, 132.2, 131.3, 130.4, 129.0, 128.9, 127.8, 126.4, 

126.3, 126.3, 126.2, 116.6, 105.5, 96.6, 92.1, 90.8, 45.8, 12.8.    HRMS (ESI) calcd for 

C30H21N2O6  (M-H)- 505.1400, found 505.1303. TLC (10 % MeOH-CH2Cl2) Rf = 0.38. 
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APPENDIX D  

EXPERIMENTAL DATA FOR CHAPTER V 

 

General Procedures 

Anion Exchange Resin, IONAC A-554, Cl- Form, type II, beads (16-50 mesh) 

were bought from Sigma-Aldrich. Dry DMF, (< 50 ppm water) was purchased from 

Acros. THF was dried with molecular sieves and Et3N was distilled from CaH2. Other 

solvents and reagents were used as received. All reactions were carried out under an 

atmosphere of dry nitrogen.  Unless otherwise indicated, common reagents or materials 

were obtained from commercial source and used without further purification.  

NMR spectra were recorded on a VXP-300 MHz and Inova-500 MHz spectrometers (1H 

at 300 MHz or 500 MHz, and 13C at 75 or 125 MHz) at room temperature unless other 

mentioned.  Chemical shifts of 1H NMR spectra were recorded and chemical shifts are 

reported in ppm from the solvent resonance (CDCl3 7.26 ppm, CD3OD 3.30 ppm, 

CD3SOCD3 2.49 ppm).  Data are reported as follows: chemical shift, multiplicity (s = 

singlet, bs = broad singlet d = doublet, t = triplet, q = quartet, m = multiplet), coupling 

constants, and number of protons.  Proton decoupled 13C NMR spectra were also 

recorded in ppm from tetramethylsilane resonance (CDCl3 77.0, CD3OD 49.1, DMSO-d6 

39.5 ppm).  Analytical thin layer chromatography (TLC) was performed on EM 

Reagents 0.25 mm silica-gel 60-F plates, and visualized with UV light or stained with 

KMnO4.  Flash chromatography was performed using silica gel 60 (230–400 mesh).  

HPLC (Beckman Coulter) analysis of samples was subjected to reverse phase analytical 
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HPLC column [protein & peptide C18, VYDAC] eluting with solvents CH3CN (0.1 % 

TFA) and H2O (0.1 % TFA). Some compounds were purified using prep HPLC 

((Beckman Coulter, X Terra Prep-MS-C18 Column, 5mm, 19 x 160 mm) eluting with 

solvents A (H2O, 0.1 % TFA) and B (CH3CN, 0.1 % TFA).  MS were measured under 

ESI or MALDI conditions. 

 

Experimental 

Material and Methods 

Pep-1 was obtained from Active Motif.  Avidin-Alexa Fluor 488 conjugate, 

BSA-Alexa Fluor 488 conjugate, FM 4-64, BODIPY TR ceramide complexed to BSA 

and Hoechst 33342 were purchased from Invitrogen.  β-Galactosidase and the 

recombinant Streptavidin were purchased from Calbiochem and Roche, respectively and 

labeled with Alexa Fluor 488 5 SDP ester (purchased from Invitrogen) according to the 

procedure provided by Invitrogen. 

Fluorescence Quenching Experiment 

The fluorescence intensity of a solution of BSA-F* (1 μM in DMEM) was 

compared to the fluorescence intensity of a solution of azo-R8:BSA-F* complexe (1μM 

BSA-F*:10 μM azo-R8 in DMEM). Both solution were excited at 488 nm.  As a control 

experiment, the fluorescence quenching of a solution of fluorescein (0.1 μM) with azo-

R8 (1 μM) was also studied. 
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Cell Culture 

COS 7 cells were purchased from the American Type Culture Collection (ATCC) 

and cultured on 75 cm2 culture flasks in DMEM supplemented with 10% fetal bovine 

serum (FBS) in a humidified incubator at 37 ºC with 5% CO2.  Cells grown to 

subconfluence were plated 2-3 days prior to the experiments in Lab-Tek two well 

chambered coverglass slides (Nunc). 

Fluorescence Microscopy 

Subcellular protein localization was measured on living COS7 cells using a Zeiss 

Stallion Dual Detector Imaging System consisting of an Axiovert 200M inverted 

fluorescence microscope, CoolSnap HQ digital cameras and Intelligent Imaging 

Innovations (3I) software.  Digital images of Alexa Fluor 488-tagged proteins, FM 4-64 

labeled membranes and endosomes, BODIPY TR ceramide complexed to BSA labeled 

Golgi, and Hoechst 3342-labeled nuclear DNA were captured with a C-APO 63X/1.2 W 

CORR D=0.28M27 objective with the following filter sets: Exciter BP470/20, Dichroic 

FT 493, Emission BP 505-530 for Alexa Fluor 488; Exciter BP560/40, Dichroic FT 585, 

Emission BP 630/75 for FM 4-64 and BODIPY TR ceramide complexed to BSA;  and 

Exciter G 365, Dichroic FT 395, Emission BP 445/50 for Hoechst 3342.  Sequential 

optical sections (Z-stacks) from the basal-to-apical surfaces of the cell were acquired.  

Digital image acquisition was initiated approximately 1 μm below he basal surface of 

the cells and optical slices were collected at 0.5 μm steps through the apical surface of 

the cells with a high numerical objective lens (C-APO 63X/1.2 W CORR D=0.28M27).  

These wide-field images were subjected to deconvolution using 3I software. 
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The protein:carrier complexes were pre-formed at room temperature for 30 min 

by mixing (in a mol:mol ratio) the protein and the carrier in DMEM supplemented with 

10% fetal bovine serum (FBS).  A 1:10 mol:mol ratio of protein:carrier was used for 

avidin-F*, BSA-F* and rec. Streptavidin-F*, while a 1:20 mol:mol ratio was used for b-

gal-F*.  To study the cellular uptake of the proteins, the culture medium was removed, 

the preformed protein:carrier complex was added, and the cells were incubated for 

another hour at 4 or 37 ºC.  After the incubation period, the cells were washed with 

phosphate-buffered saline (PBS, pH 7.4) several times before imaging.  For experiments 

at 4 ºC, cells were preincubated at 4 ºC for 30 min before being incubated with the 

protein solution for 1h.  The cells were also co-stained with Hoescht (2 μg/mL), a 

nuclear marker, and FM-464, an endosome marker. 

Endosomal Colocalization 

COS7 cells were incubated with the protein:carrier complex for 1h at 37 ºC.  

After the cells were washed with PBS, FM 4-64 (5 μg/mL) was added and the cells were 

incubated for 15 min at 37 ºC.  The cells were washed again with PBS before imaging. 

Note:  when the cells were co-incubated with the labeled protein and FM 4-64 for 1h at 

37 ºC, predominant labeling of the mitochondria was observed. 

Golgi Colocalization 

After the protein was loaded into the COS7 cells, the cells were washed.  Then 

fresh DMEM medium was added, and the cells were incubated with 5 μM of BODIPY 

TR ceramide complexed to BSA for 30 min at 4 ºC.  The cells were then rinsed several 
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with ice-cold medium and incubated in fresh medium for 30 min at 37 ºC.  Finally, the 

cells were washed with PBS before imaging. 

Viability Assay 

Viability of cells was evaluated by searching for any changes in cellular 

morphology using Nomarski differential interference contrast (DIC) microscopy during 

and following analysis of cellular uptake of proteins.  Parallel cultures were also 

evaluated using DIC microscopy along with fluorescence analysis of the cell-

impermeant viability indicator ethidium homodimer-1 (EthD-1) (Invitrogen).  This high-

affinity nucleic acid stain is weakly fluorescent until bound to DNA.  Unlike Hoechst 

33342, EthD-1 can only penetrate cells in which the plasma membrane is compromised.  

Viability assessment was conducted by incubating cells at 4ºC for 1 h with a 1:10 mol 

ratio of protein:carrier, followed by washing cells with PBS with Ca2+ before imaging of 

proteins.  Following image capture of proteins, EthD-1 (1 μM final concentration) was 

added and images were recorded at 5, 10, 20 and 30 min using the 630/75 BP filter and 

revealed no EthD-1 fluorescence.  Cultures were returned to the incubator at 37ºC for 17 

hr before viability was again evaluated by EthD-1 staining.  Morphology of cells 

monitored by DIC and Hoechst 33342 staining was normal and no EthD-1 uptake into 

cell nuclei was detected.  Therefore, no cytotoxic effects of protein:carrier combinations 

were detected for up to 24 h of cell treatments. 

Flow Cytometry 

Protein internalization was measured by flow cytometry on living cells. COS 7 

cells were cultured as subconfluent monolayers on 25 cm2 cell culture plate with vent 
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caps in DMEM supplemented with 10% fetal bovine serum (FBS) in a humidified 

incubator at 37 ºC with 5% CO2.    Carrier/protein complexes were formed in 1 mL 

DMEM at a molar protein/carrier ratio of 1:10 for avidin and BSA and 1:20 for β-

galactosidase and incubated for 30 min at room temperature.  Cells grown to 60-70% 

confluency were then overlaid with the preformed complexes and incubated for 1 h at 37 

or 4 ºC. For experiments at 4 ºC, the cells were preincubated at 4 ºC for 30 min before 

addition of the protein/carrier complex. 

After 1h incubation, the cells were washed with PBS, and treated with trypsin  (2 

min) and heparin (0.5 mg/mL in PBS, 3 x 5 min) to remove extracellular bound protein.  

Samples were resuspended in 500 μL PBS and transferred to sterile tubes.  Cells were 

analyzed on a FACSCalibur (Becton Dickinson Immunocytometry Systems, San Jose, 

CA) flow cytometer, equipped with a 15 mW air-cooled argon laser, using CellQuest 

(Becton Dickinson) acquisition software..  Green fluorescence from Alexa Fluor 488 or 

fluorescein was collected through a 530/30-nm bandpass filter.  List mde data were 

acquired on a minimum of 10,000 cells or beads defined by forward and side light 

scattering light scatter properties.  Data analysis was performed in FlowJo (Treestar, 

Inc., Ashland, OR), using forward and side light scatter to gate on cells or single beads.  

The Calibrated Parameter platform of FlowJo was used to determine the molecules of 

equivalent soluble fluorescein (MESF).  Data are expressed as the median MESF. 
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69  

(E)-4-((4-((Trimethylsilyl)ethynyl)phenyl)diazenyl)phenol.  (E)-4-((4-

iodophenyl)diazenyl)phenol T (257 mg, 0.793 mmol), which was prepared by the 

coupling reaction of phenol and 4-iodophenyl diazonium salt, trimethylsilyl acetylene 

(1.12ml, 7.93 mmol), PdCl2(PPh3)2 (28 mg, 0.04 mmol), CuI (15 mg, 0.08 mmol), Et3N 

(1.1 ml, 7.93 mmol) and 8 ml THF were added into a 50 mL round bottom flask.  After 

degassed three times via the freeze-thaw method, the mixture was stirred at r.t. for 12 h.  

The reaction solvent was removed under reduced pressure and the crude product was 

purified by flash column eluting with 30% hexane : ethyl acetate to give the desired 

product as a red solid 115 mg (49%).  1H NMR (300 MHz, CDCl3), d 7.89 (d, J = 9.0 

Hz, 2H), 7.82 (d, J = 8.1 Hz, 2H), 7.59 (d, J = 8.1 Hz 2H), 6.96 (d, J = 6.3 Hz, 2H), 0.27 

(s, 9H). 
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70  

(E)-4-((4-Ethynylphenyl)diazenyl)phenol.  Compound 69 (78 mg, 0.265 mmol) 

was dissolved in methanol (20 mL) in a 50 mL flask.  Then potassium carbonate (110 

mg, 0,796 mmol) was added to the solution and the mixture was stirred at r.t. until the 

reaction went to completion.  The solvent was removed under reduced pressure.  And the 

product was dissolved in CH2Cl2 (50 mL), which was then washed with water (25 mL x 

2).  The organic phase was dried with MgSO4 and the product was achieved as a pure 

orange solid after removing the organic solvent under reduced pressure.  1H NMR (300 

MHz, CD3OD), d 7.81 (d, J = 9.0 Hz, 2H), 7.78 (d, J = 8.5 Hz, 2H), 7.57 (d, J = 8.5 Hz, 

2H), 6.91 (d, J = 9.0 Hz, 2H); 13C NMR (125 MHz, CD3OD), d 162.6, 153.8, 147.6, 

134.0, 126.3, 125.5, 123.6, 116.9, 84.2, 80.8. MS (ESI) calcd for C14H11N2O (M+H)+ 

223.25, found 223.24. 
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1H NMR (CDCl3) 
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71  
tert-Butyl 4-(azidomethyl)piperidine-1-carboxylate.  A mixture of tert-butyl 4-

((methylsulfonyloxy)methyl)piperidine-1-carboxylate U (2.90 mg, 0.1 mol), NaN3 

(1.95g, .0.3 mol) and dry DMF (100 mL) in a 250 mL flask were stirred at 60 oC until 

the reaction went to completion.  Water (200 mL) was added to the reaction mixture, and 

the product was extracted from water with ethyl acetate (50 mL x 3).  The combined 

organics were washed with water (50 ml x 3), and then dried over MgSO4.  The crude 

product after removing the organic solvent under reduced pressure was purified by flash 

chromatography eluting with hexane and ethyl acetate (4:1) to give desired product (2.37 

g, 99%) as colorless oil.  1H NMR (300 MHz, CDCl3), d 4.13 (bs, 2H), 3.19 (d, J = 6.3 

Hz, 2H), 2.69 (bs, 2H), 1.73-1.66 (m, 3H), 1.45 (s, 9H), 1.24-1.10 (m, 2H).  13C NMR 

(125 MHz, CDCl3), d 154.6, 79.3, 56.9, 43.7, 42.9, 36.4, 29.5, 28.3. MS (ESI) calcd for 

C11H21N4O2
+ (M+H)+, 241.17, found, 241.16.  TLC (1:1 EtOAc:hexane) Rf = 0.78. 



 

 

317

 
1H NMR (CDCl3) 

 
13C NMR (CDCl3) 
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72  

(E)-tert-Butyl 4-((4-(4-((4-hydroxyphenyl)diazenyl)phenyl)-1H-1,2,3-triazol-

1-yl)methyl)piperidine-1-carboxylate.  A mixture of terminal alkyne 70 (100 mg, 

0.455 mmol), organic azide 71 (110mg, 0.455 mmol), Cu (29mg, 0.455 mmol) and 

CuSO4 (0.046 mL, 1M) in THF/H2O (1:1, 10 mL) was stirred in a flask for overnight. 

The product was isolated pure as an orange solid by filter out of Cu and other impurity 

through celite.  1H NMR (500 MHz, CD3OD), d 8.19 (s, 1H), 7.92 (d, J = 9.0 Hz, 2H), 

7.88 (d, J = 9.0 Hz, 2H), 7.81 (d, J = 9.0 Hz, 2H), 6.90 (d, J = 9.0 Hz, 2H), 4.32 (d, J = 

7.5 Hz, 2H), 4.10 (bs, 1H), 4.07 (bs, 1H), 2.71 (bs, 2H), 2.18-2.09 (m, 1H), 1.63 (bs, 

1H), 1.60 (bs, 1H), 1.42 (s, 9H), 1.27-1.08 (m, 2H), 13C NMR (125 MHz, CD3OD), d 

161.4, 155.8, 153.1, 147.7, 146.9, 132.6, 126.9, 125.6, 123.7, 122.5, 116.4, 80.8, 60.6, 

56.1, 37.8, 30.0, 28.6. MS (ESI) calcd for C25H31N6O3
+ (M+H)+, 463.25, found, 463.15.  

TLC (1:1 EtOAc-Hexane) Rf = 0.30. 
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1H NMR (CDCl3) 

 
13C NMR (CDCl3) 
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73  

(E)-4-((4-(1-(Piperidin-4-ylmethyl)-1H-1,2,3-triazol-4-yl)phenyl)diazenyl)- 

phenol.  BOC protected compound 72 (157 mg, 0.339 mmol), and one drop of 

triisopropylsilane (TIS) was dissolved in CH2Cl2/TFA (1:1, 20 mL) and the mixture was 

stirred for 5 h at room temperature.  The solvent was removed under reduced pressure.  

Then the residue was washed with ether (10 ml x 1) to provide the desired product as a 

yellow solid (117 mg, 95%).  1H NMR (500 MHz, CD3OD), d 8.44 (s, 1H), 7.97 (d, J = 

8.5 Hz, 2H), 7.91 (d, J = 8.5 Hz, 2H), 7.83 (d, J = 8.5 Hz, 2H), 6.92 (d, J = 9.0 Hz, 2H), 

4.45 (d, J = 7.0 Hz, 2H)), 3.42 (d, J = 13 Hz, 2H), 3.00 (td, J = 13 Hz, 2.5Hz, 2H), 2.37-

2.29 (m, 1H), 1.90 (d, J = 14Hz, 2H), 1.59-1.50 (m, 2H).  13C NMR (75 MHz, CDCl3), d 

162.4, 153.8, 147.5, 133.3, 127.3, 126.1, 124.1, 123.5, 123.5, 116.8, 55.6, 44.7, 36.0, 

27.4. MS (ESI) calcd for C20H23N6O+ (M+H)+, 363.19, found, 363.19. 
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1H NMR (CDCl3) 

 
13C NMR (CDCl3) 
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74  

BocNH-(OrnNHCOCF3)8-azo.  To a 25 mL flask was added the known 

compound BocNH-(OrnNHCOCF3)8-CO2H W (324 mg, 0.18 mmol), AZO compound 

73 (86 mg, 0.18 mmol), 1-ethyl-3-(3’-dimethylaminopropyl)carbodiimide (EDC, 52 mg, 

0.27 mmol),1-hydroxybenzotriazol (HOBt, 26 mg, 0.189 mmol),  and CH2Cl2/DMF (5:1, 

6 mL).  The mixture was stirred at 0 oC for 10 min, then N-methyl morpholine (NMM, 

0.038 ml, 0.54 mmol) was added to the reaction mixture dropwise, which was then 

slowly warmed to r.t.,  and kept stirring for overnight.  The reaction mixture was treated 

with 100 mL CH2Cl2.  The organic solution was washed with NaHCO3 (1M, 50 mL x 3), 

and then washed with NaHSO4 (1M, 50 mL x 3).  At last, the dichloromethane phase 

was washed with brine (25 ml x 1) and then dried over MgSO4.  The product was 

afforded as a yellow solid (331 mg, 85%, > 90% purity) after removing the organic 

solvent under reduced pressure.  1H NMR (500 MHz, DMSO), d 8.39 (s, 1H), 7.96 (d, J 

= 8.5 Hz, 2H), 7.90 (d, J = 8.5 Hz, 2H), 7.83 (d, J = 9.0 Hz, 2H), 6.92 (d, J = 9.0 Hz, 

2H), 4.61-3.97 (m, 11H), 3.70-3.69 (m, 1H), 3.32-3.30 (m, 16H), 2.68-2.64 (bm, 2H), 

2.32-2.24 (m, 1H), 1.87-1.63 (m, 34H), 1.42 (s, 9H), 1.32-1.26 (M, 2H).  MS (MALDI) 

calcd for C81H102F24N22O19Na+ (M+Na)+, 2165.74, found, 2165.94. 
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1H NMR (CDCl3) 

 

MS MALDI
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BocNH-((Arg)8-azo (8•TFA).  A mixture of 74 (24 mg, 0.018 mmol), pyrazole-

1-carboxamidine hydrochloride (107 mg, 0.728 mmol), and Na2CO3 (77 mg, 0.728 

mmol) were dissolved in MeOH/H2O (8 mL, 1:1).  Then the mixture was heated up to 55 

oC for 48 h.  The reaction solvent was removed under reduced pressure and the crude 

product is purified by RP-prep HPLC (isocratic: 5% solvent B, 5 min; gradient: 5% 

solvent B to 50% solvent B, 19 min) to give the desired product as a yellow solid (25 

mg, 78%, retention time 11 min in analytical HPLC spectra, > 99% pure).  MS (MALDI) 

calcd for C73H127N38O11 (M+H)+, 1712.05 found 1712.24. 
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1H NMR (D2O) 

 

MS MALDI
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NH3-((Arg)8-AZO (9•Cl)  (azo-R8).  A solution of 75 (10 mg, 0.0058 mmol) in 

1 mL trifluoroacetic acid with one drop of triisopropylsilane (TIS) was stirred at room 

temperature for 2 h.  The solvent was removed under the reduced pressure and the crude 

product was purified by RP-prep HPLC (isocratic: 5% solvent B, 5 min; gradient: 5% 

solvent B to 50% solvent B, 19 min) to provide a yellow solid 9 mg (retention time is 11 

min, > 99% purity, 90%), which was dissolved in DI water (1 mL).  Then 500 mg Cl- 

exchange resin was added and the resulting mixture was stirred for 10 h to make sure 

that the Cl- and CF3CO2
- exchange was complete.  The desired product with Cl- counter 

anions was achieved after removing the resin by filtration.  MS (MALDI) calcd for 

C69H119N38O9 (M+H)+ 1611.99, found 1612.04. 
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MS MALDI 

 

 

 

Analytical HPLC of azo-R8 after purification. 
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APPENDIX E  

DEVELOPMENT OF RATIOMETRIC PH PROBES BASED ON THROUGH-BOND 

ENERGY TRANSFER CASSETTES 

 

Ratiometric methods, especially dual emission method (excitation at single 

wavelength and observing emission at two different wavelengths), for determination of 

pHi values have many advantages, e.g. operation convenience, high sensitivity and 

accurate results, however there are only limited this type pH probes available in the 

market, and most of them exhibit the poor photophysical properties.  For instance, 

C.SNARF-1, a commonly used commercialized dual emission ratiometric pHi probe 

from Life Technologies, has very low quantum yield, especially in the acidic form (φ 

= 0.03).  Development of dual emission pHi indicators that have better spectral 

properties will benefit the biological research related to pH-dependent cell functions.   

As mentioned in the first chapter that all three types of benzoxanthene dyes, 

SNARFs, SNAFLs and SNAFRs, exhibit pH-dependent shifts in their fluorescent 

emission spectra (see chapter 1, intracellular pH indicators) indicating potential 

candidates as the ideal pHi indicators.  Benzoxanthene dyes also have desired 

characteristics for cell imaging including long-wavelength emissions (up to 825 nm), 

large Stoke’s shift between emission maxima of their acidic forms and basic forms (up 

to 200 nm), high photostability and good water-solubility.  The brightness of a dye is 

dependent on its molar absorptivity at the excitation wavelength and its quantum yield.  

One common problem when using benzoxanthene dyes as dual emission ratiometric pH 
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probes is that the small molar absorptivity at single excitation wavelength, which is close 

to absorbance isobestic point. This usually results in a bigger noise to fluorescence ratio 

(See Figure S1a).  For instance, compared to the maximum absorptivity of its basic form, 

the absorptivity of C.SNARF-1 at the absorbance isobestic point (534 nm) is only a half 

of that.  The ideal dual emission ratiometric pH probe should have a large pH-

independent absoptivity at the excitation wavelength as well as exhibit pH-dependent 

emission.  We would like to design such kind of ideal pH probes based on through-bond 

energy transfer cassettes, which is composed of a pH-independent donor, e.g. a 

BODIPY, and a pH-dependent benzoxanthene acceptor.  The hypothesis of through-

bond energy transfer cassettes is that when donor and acceptor systems are connected 

via conjugated bonds then rapid and efficient energy transfer from the donor to the 

acceptor may occur through-bonds.  Through-bond energy transfer (Figure S1b) is 

mechanistically different from FRET, and there is no known requirement for overlap of 

the emission of the donor fragment with the absorption of the acceptor part (Figure S1c).  

Thus, appropriately designed through-bond energy transfer cassettes could absorb 

photons via a donor part, or parts, at a convenient wavelength (e.g. 488 nm: excitation 

from an Ar-laser), and transfer the energy rapidly through the conjugated linker to the 

acceptor fragment that emits at a far longer wavelength.  Therefore, it is possible to 

design dyes that absorb strongly at a short wavelength and emit brightly from the 

acceptor when the overlap between donor emission and acceptor absorbance are changed 

with variation of pH (Figure S1d).  In summary, through-bond energy transfer cassettes 
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have the potential to become dual emission pHi probes excited by a laser source 

operating at a single wavelength. 
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Figure S1.  (a) typical excitation of a dual emission pH probe at the isobestic point.  (b) Through-bond 
energy transfer cassettes as a pH indicator with a pH-insensitive donor and a pH-dependent acceptor.  
(c) FRET-based cassettes only partially alleviate this problem because Förster energy transfer requires 
overlap of donor emission with the acceptor absorbance.  (d) pH-independent absorbance and 
fluorescence of the donor and pH-dependent absorbance of the acceptor in through-bond energy 
transfer cassettes-based pH indicators. 

 
As discussed in the first chapter of this dissertation, the pHi indicator 16, a 

through-bond energy transfer cassette, consisting of a pH-dependent donor and a pH-

independent acceptor, is able to overcome this issue.  Excitation at 488 nm is always 

close to the absorbance maxima of the donor.  However, compound 16 has two 
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drawbacks that limit its wide application for determination of intracellular pH values.  

First, the xanthene donor can be photobleached quickly in basic environment.  Second, 

the quantum yield of the donor (0.14) in basic media is quenched by the PeT (See 

Chapter 1).  The ideal pH indicators based on through-bond energy transfer cassette 

should have the following properties: 

1. The donor exhibits a large molar absorptivity that is not pH-dependent. 

2. The acceptor should be photostable, and its fluorescence spectrum should be 

significantly shifted with changing of pH.  

3. The acceptor should have a high quantum yield despite of changing of pH. 

4. The energy transfer efficiency should always be very efficient even the pHs of 

the solution is changed. 

5. The compound should be water-soluble and have a handle to attach to 

biomolecules. 

BODIPY dyes exhibit excellent photophysical properties, e.g. large molar 

absorptivity and high quantum yields, water-soluble sulfonated BODIPYs are also 

accessible, and are therefore the ideal donors for the cassettes.  Figure S2a shows two 

typical cassettes having water-soluble BODIPY dyes as the donor.  The pKa values of 

acceptors can be tuned by halogenation of the benzoxanthenes core.  And more of the 

possible acceptor fragments based on benzoxanthene fluorophores are shown in Figure 

S2b.
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Figure S2.  (a) Two typical pH-sensitive cassettes having a water-soluble BODIPY donor;  (b) a few 
of pH-sensitive benzoxanthene acceptors. 
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All of the cassettes can be synthesized via Cu(I) catalyzed cyclization reaction of 

the water-soluble BODIPY azide 78 and the acceptor with a terminal alkyne group.  Two 

methods can be used to construct the acceptors, and they are illustrated in Scheme S1b 

and S1c.  First, the acceptor 5’-Br.SNFAL-1 81 can be synthesized via condensation of 

1,6-dihydroxynaphthalene 79 with the appropriately substituted benzophenone 

derivatives 80; these in turn were made via coupling of resorcinol or 3-aminophenol with 

phthalic anhydride derivatives in toluene.  Second, lithiated dimethoxynaphthalene 82 

can react with a benzophenone derivative 83, followed by cyclization with BBr3, to 

afford 5’-Br.SNAFR-6 84.  The final alkyne for the click chemistry can be achieved via 

Sonogashira coupling reaction of aromatic bromide, e.g. 81 and 84, with 

trimetrylsilylacetylene, followed by removal of the trimethylsilyl group.  
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Scheme S1.  (a) Synthesis of Cassettes via Click chemistry; Ilustrative syntheses of two acceptors (b) 5’-
Br.SNAFL-1 81; and (c) 5’-Br.SNAFR-6 84. 
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Scheme S1.  Continued. 
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