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ABSTRACT

A Mechanistic Model for Flooding in Vertical Tubes. (August 2009)

Kevin J. Hogan, B.S., University of Maryland; M.S.N.E., Purdue University

Chair of Advisory Committee: Dr. Karen Vierow

In a counter-current two-phase flow system, flooding can be defined as the onset

of flow reversal of the liquid component which results in an upward co-current flow.

Flooding in the surge line of pressurized water reactors poses a significant technical

challenge in the analysis of several postulated nuclear reactor accident scenarios.

Despite the importance of flooding in these analyses, previous work does not

identify a universally accepted rigorous physics-based model of flooding, even for

the simple case of flooding in adiabatic, vertical tubes. This can be attributed to

a lack of conclusive understanding of the physics of two-phase counter-current flow,

specifically the mechanism of flooding, and the large amount of uncertainty among

data from various flooding experiments. This deficiency in phenomenological and

experimental knowledge has led to the use of many empirical and semi-empirical

correlations for specific system conditions and geometries. The goal of this work

is the development of a model for flooding in vertical, adiabatic tubes from first

principles.

To address a source of uncertainty in the analysis of flooding, a model for the

prediction of average film thickness in annular co- and counter-current flows has been

developed by considering the conservation of momentum of the liquid and gas flows.

This model is shown to be a quantitative improvement over the most commonly used

models, those of Nusselt and Belkin, Macleod, Monrad, and Rothfus. The new model

better considers the effects of interfacial shear and tube curvature by using closure

relations known to represent forces appropriately in co- and counter-current flow.
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Previous work based on semi-empirical flooding models has been analyzed to

develop a new theory on the hydrodynamic mechanism which causes flooding. It is

postulated that the growth of an interfacial wave due to interfacial instability results

in a flow reversal to ensure that momentum is conserved in the counter-current flow

system by causing a partial or complete co-current flow.

A model for the stability of interfacial waves in a counter-current flow system

is proposed and has been developed herein. This model accurately represents the

geometric and flow conditions in vertical adiabatic tubes and has been shown to have

limits that are consistent with the physical basis of the system. The theory of waves

of finite amplitude was employed to provide closure to an unknown parameter in

the new model, the wave number of the wave that generates the interfacial instabil-

ity. While this model underpredicts the flooding superficial gas velocity, the result

is a conservative estimate of what conditions will generate flooding for a system.

In the context of the analysis of a nuclear reactor, specifically a pressurized water

reactor, conservatism means that the gas flow rate predicted to cause flooding for

a fixed liquid flow rate will be less than the flow rate found experimentally, mean-

ing that liquid delivery to the core would be safely underestimated. Future work

includes the improvement of the closure relation for the limiting wave number that

will cause unstable interfacial waves, as well as an assessment of the applicability of

the stability-based model to flooding in the presence of phase change and flooding

in complex geometries.
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NOMENCLATURE

a distance from tube centerline to gas-liquid interface, m

f Fanning friction factor

g gravitational constant, 9.8 m/s2

jk superficial velocity, m/s

j∗k Wallis parameter, 〈jk〉
√

ρk/ (gD (ρf − ρg))

k wave number, 2π/λ, 1/m

p pressure, N

r radial cylindrical coordinate

s modified Bessel function order

v velocity, m/s

z axial cylindrical coordinate

A area, m2

D diameter, m

D∗ dimensionless diameter,
√

Bo

N number of points

P wetted perimeter, m

Q volumetric flow rate, m3

R tube radius, m

T temperature, K

U velocity, m/s

V gj drift velocity, (1 − 〈αg〉) vr, m/s

ṁ mass flow rate, m/s

vr relative velocity, see Equation 3.17, m/s

Bo Bond number, D2g (ρf − ρg)/σ

Kuk Kutateladze number for phase k,
√

D∗j∗k

Re Reynolds number (vD/ν)
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ReΓ Reynolds number of the liquid film (4Γ/µf)

Ψ̄ time averaged Ψ

〈Ψ〉 area averaged Ψ,
1

A

∫

A

ΨdA

〈〈Ψ〉〉 mean weight averaged Ψ, 〈αΨ〉/〈α〉

Greek symbols:

α void fraction, αg

αk volume fraction of phase k

δ film thickness, m

δ∗ dimensionless film thickness, δ
(
gzρf (ρf − ρg)/µ

2
f

)1/3

δexp film thickness, experimental, m

δmodel film thickness, calculated from a model, m

ε surface roughness, m

µ dynamic viscosity, Pa · s
ν kinematic viscosity, m2/s

φ potential, m2/s

ρ density

σ surface tension

σmodel standard deviation of values from experimental data

τ shear

θ azimuthal cylindrical coordinate

ω angular frequency, rad/s

Γ mass flow per wetted perimeter, ṁ/ (πD)

Φ1 variable

Subscripts:

f liquid

g gas
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h hydraulic

i interfacial

k k-phase; liquid or gas

w wall

z axial direction

0 initial
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1

1. INTRODUCTION

In a counter-current two-phase flow system, flooding can be defined as the onset

of flow reversal of the liquid component which results in an upward co-current flow.

This flow reversal includes significantly more liquid than that which reverses flow

at low gas flow rates due to entrainment. Flooding can be perceived as a limit

to two-phase counter-current flow, meaning that pairs of liquid and gas flow rates

exist that define the envelope for stable countercurrent flow for a given system. The

ability to predict flooding in a system is important to the analysis of hypothetical

accidents in nuclear reactors. Several accident scenarios have been postulated that

include the possible occurrence of flooding. For example, flooding can occur in the

AP600 reactor design due to the draining of the pressurizer through the surge line

during a small break loss of coolant accident [1]. The difficulty in analyzing the two-

phase flow in the surge line is compounded due to the geometric complexities of the

surge line itself, as can be seen in the schematic given by Figure 1.1. In all PWRs,

degradation of emergency core cooling system performance during a LOCA following

flooding and flow reversal can interfere with accident mitigation [2, 3]. In addition,

the progression of events that may cause a steam generator tube rupture strongly

depends on the timing of the occurrence of flooding in the reactor hot leg [4].

Despite the importance of this phenomenon, a clear, rigorous physics-based model

of flooding, even for the simple case of flooding in adiabatic, vertical tubes, is not

available. This can be attributed to a lack of conclusive understanding of the mecha-

nisms [2,5,6] and the large amount of uncertainty among data from various flooding

experiments [7]. This deficiency in phenomenological and experimental knowledge

has led to the use of many empirical and semi-empirical correlations for specific sys-

tem conditions and geometries. Many “analytical” models have been created and

This dissertation follows the style of International Journal of Heat and Mass Transfer.
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utilize lengthy derivations, only to include a coefficient or parameters determined by

analyzing data from experiments on flooding. The development of a model for flood-

ing in vertical, adiabatic tubes from first principles that does not include empirical

parameters would both identify the mechanisms governing flooding and allow for the

derivation of models for flooding in the presence of phase change and non-vertical

orientations.

Fig. 1.1. PWR schematic (from [8]).

1.1 Objectives

The objectives of this research are to:

1. Develop a model for average annular film thickness for co- and counter-current

flow by considering the parameters governing the system

2. Survey previous experimental and analytical work to identify the mechanism

of flooding and define flooding in this context
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3. Derive a model for flooding based on the mechanism that has been identified

by considering as many relevant parameters as possible

1.2 Technical Approach

This document is structured to describe a complete model for flooding in vertical,

adiabatic tubes in a narrative fashion. To this end, each section will build on the

work described in the previous sections, culminating in a description of how the

model could be feasibly implemented when it is completed.

A review of experimental work and models of flooding is presented in Section 2.

In Section 3, a model is proposed to estimate the void fraction and average liquid film

thickness for annular counter- and co-current flows. This model will both serve as the

basis for the analysis described in Section 4 and will provide closure to the mechanistic

model that will be developed in Section 5. Section 4 investigates previous work on

semi-empirical models of flooding and will pose a mechanism by which flooding

can occur. This mechanism will lead to the development of a physics-based model

for flooding in Section 5. In Section 6, this physics-based model will be analyzed

and validated against experimental data. Finally, conclusions and recommendations

based on this work are detailed in Section 7.
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2. PREVIOUS WORK

Experimental and analytical research on flooding and associated phenomena have

been conducted for more than fifty years [9]. This research has yielded numerous

experimental data sets, experimental observations, and empirical, semi-empirical,

and analytical models of flooding. In spite of this, many parametric dependencies

of flooding are not entirely understood, and no analytical model of flooding exists

that is widely accepted as correct. A review of published literature will show which

observations and trends are commonly agreed upon, which are currently inconclusive,

and the state of models for flooding. A majority of the work conducted in these

areas has been summarized by Bankoff and Lee [2], McQuillan [7], and Zapke and

Kroger [10].

2.1 Experimental Studies

Much experimental research conducted on the topic of flooding has used a con-

figuration with the following characteristics:

• a counter-current flow of liquid and gas

• a horizontal test section (possibly a segment of test section), or an inclined-to-

vertical test section, with liquid flowing downward and gas rising upward

While this is the general configuration for all these experiments, there are several

different goals of flooding experiments. Bankoff and Lee [2] identified these as:

• determination of the onset of flooding

• investigation of the effect of gas flow delivery rate at constant liquid injection

during flooding (and vice-versa)

• exploration of hanging film (described in Section 2.1.1) and flow reversal
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The determination of flooding in these experiments is accomplished by studying the

liquid and gas flow conditions that cause the flow pattern to change to a co-current

flow. This results in a set of pairs of flow rates that cause flooding in that specific

experimental apparatus. Investigating the effect of a changing delivery rate of one

fluid while the other fluid is held constant allows for the observation of the events

that function as precursors to flooding, as well as the study of the behavior of the

liquid-gas interface as flooding is experimentally approached.

2.1.1 Characteristics of Flooding

The indications of flooding are generally agreed upon by most researchers. The

main indicator of flooding is a reduction in liquid delivery rate when compared to

liquid injection rate, signaling that a considerable amount of liquid flow has become

co-current with the gas flow. An increase in the pressure drop from the liquid inlet

to the gas inlet is also known to occur in small diameter tubes [2, 11]. This is

possibly related to another indicator of flooding, the appearance of large amplitude

interfacial waves at the gas-liquid interface. A hysteresis effect is noted following

flooding, meaning that to stop the significant co-current flow, the gas flow rate must

be reduced significantly below the rate that caused flooding [2, 12]. Recently it

has been reported that these indicators can occur without a dynamic change in the

system; hence, flooding happens spontaneously and can occur without an external

perturbation of a countercurrent system [13].

Important definitions and phenomena related to flooding include the locus of

flooding, hold-up and partial delivery, hanging (or “standing”) film, flow reversal,

and deflooding.

The locus of flooding, as defined by Wallis [11] is the axial location where flooding

occurs in a tube. The liquid upstream of the locus of flooding may be partially

reversed, leading to the partial delivery of the liquid, or fully reversed, leading to

liquid hold-up [14]. Liquid hold-up occurs when the downward flow of the liquid
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has completely reversed and is no longer penetrating downstream, past the locus of

flooding [2, 12, 15]. “Gas hold-up,” though not used frequently in literature, is used

to refers to the portion of gas located downstream with respect to the gas flow of the

locus of flooding [5, 16, 17]. Specifically, this may refer to either the volume average

void fraction or the radius of the gas core downstream of the locus of flooding [18].

The hanging film phenomenon is observed following the discontinuance of liquid

partial delivery downstream of the locus of flooding [19]. The contact angle between

the leading edge of the film and the tube wall has been found to be correlated to

the tube diameter, though this contact angle is asymptotic for large tubes (see Sec-

tions 2.1.2 and 2.2.1). The film that remains along the periphery of the tube remains

stagnant. It has been hypothesized that a large tube diameter may represent a phys-

ical limit for the largest possible contact angle between the liquid film and wall [20].

Shearer and Davidson [21] noted that the existence of this hanging film implies

that the interfacial shear may have a minimal effect on flooding. Furthermore, they

postulate that this assumption could be supported by Nicklin and Davidson’s [22]

result that film thickness in an annular flow is unaffected by the flow rate of the

gas. It should be noted that Bankoff and Lee [2] disagree with this assumption due

to the fact that large-amplitude interfacial waves appear and effectively increase the

roughness of the gas-liquid interface.

Flow reversal, beyond simple entrainment of droplets, occurs immediately follow-

ing flooding. The region of the tube downstream of the locus of flooding of the gas

can be described as a churn-annular flow [5]. The growth of interfacial waves is likely

to contribute to flow reversal, and the co-current flow that results may be driven by

interfacial shear force [23]. Most likely, a model for the reversed flow would need to

be derived without regard to the flow conditions that caused the flooding [24].

Deflooding, a term used in literature as early as 1966 by Clift, Pritchard, and

Nedderman [25], describes the transition from co-current flow and partial delivery to

an annular, counter-current flow. It has been well-established that the pairs of liquid
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and gas flow rates that define flooding for a given system are not equivalent to the

pairs of flow rates found for deflooding. This hysteresis effect has been documented by

numerous researchers [2,26]. The gas and liquid flow rate pairs that cause deflooding

are determined by decreasing the gas flow rate in a system undergoing flow reversal

until the annular film redevelops [2, 5].

2.1.2 Parameters Studied

The major parameters affecting flooding are the orientation of the system, the

geometry (including the inlet and outlet conditions and the cross section shape and

size), and the fluid properties, including the presence of phase change [2, 10, 27, 28].

The effect of each of these parameters on pairs of liquid and gas flow rates that cause

flooding has been studied extensively, though a survey of literature shows that there

is not a concurrence of opinion on trends for each of these parameters.

Inclination can cause the flow structure to change between annular flow and

stratified flow and can affect the influence of gravity on the flow [10,17,28,29]. This

may affect where the locus of flooding is located along a channel [2,30]. For vertical

tubes without phase change, flooding tends to occur near the gas inlet. For a specific

inclination, the locus of flooding appears to always be in the same location for a

given system. Inlet and outlet conditions affect the local velocity profiles of both the

liquid and the gas and can affect the momentum of each phase [2].

A variety of inlet and outlet geometries have been studied, but primarily empirical

models have been developed to account for these effects [2,9,10,31]. Cross sectional

geometries, including circular tubes, rectangular ducts and flat plates, were studied,

and the cross sectional shape was shown to have an appreciable effect on flooding.

In addition, for small hydraulic diameter closed channels, the onset of flooding is a

function of the hydraulic diameter. Beyond a specific transition point, where the

Bond number is greater than 160, the diameter has very little effect on flooding [2].
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It is also known that obstructions, bends, and elbows affect flooding but there has

been little work in this area due to the added complications [27, 32–34].

The effects of temperature and pressure on flooding are treated implicitly by

considering their effects on fluid properties. Of all the fluid properties, the density of

liquid and gas are known to have the most significant effect on flooding. An increase

in gas density is known to cause a decrease in the gas flow rate needed to cause

flooding for a given liquid flow rate. The opposite is true for the liquid: increasing

the liquid density increases the flow rate of the gas [2,10]. The gas viscosity has been

shown to have little effect on flooding whereas flooding is a property of the viscosity

of the liquid [10]. Recently, Zapke and Kroger [10] have reported that for large liquid

viscosities, flooding is not a function of viscosity. While this trend is accepted, there

is no consensus regarding the relationship between viscosity and the relative velocities

needed to cause flooding. Some researchers have noted the effects of surface tension,

but various researchers have found conflicting trends [2, 6, 10]. Condensation of the

gas phase has also been studied and has yielded a variety of results. Condensation

appears to affect flooding as a function of the location of the locus of flooding relative

to the injection point of the gas [2,29]. A possible explanation for the many conflicting

trends is the difficulty in isolating individual fluid properties [10]. Understanding

the mechanism that causes flooding through both a theoretical and mathematical

approach could clarify the functional dependencies of flooding on fluid properties.

Conversely, the inclusion of these functional dependencies in an analytical model

would be integral to the accuracy and general success of the model.

2.2 Models of Flooding

The uncertainties and complexities surrounding the parametric dependencies of

flooding significantly contribute to the difficulty in modeling flooding. As a result

of the experimental work on flooding, numerous empirical correlations for flooding

in complicated geometries and configurations have been developed [2]. These mod-
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els are generally unable to predict the flooding in experimental facilities that are

not identical to the facility the model was developed to represent. Historically, all

models have been developed to try to predict flooding in systems with similar sets

of features. Bankoff and Lee [2] categorize all flooding models into four groups:

theories based on stability of a traveling wave, envelope theories, static equilibrium

theories, and theories based on models of slug formation. These categories are based

on the assumptions on which the models are based, including assumptions about

the mechanistic cause of flooding and system configuration, which Bankoff and Lee

determined were most important. Alternatively, the models could be characterized

by the following criteria:

degree of empiricism If a variable parameter in a model represents a phenomenon

based on experimental results and cannot be derived for any given facility, then

the value of that individual parameter is not easily found. This undermines

the physical interpretation of the model and, in general, differentiates between

models considered “semi-empirical” and “analytical” models. However, most

models of flooding rely on experimental data, even if the model itself is derived

from first principles. While these models are technically empirical, they are re-

ferred to as both theoretical and analytical models in literature to differentiate

them from models which are, to a significant degree, empirical. This distinc-

tion would separate the Wallis and Kutateladze-like correlations from analytical

models that are assumed to be better understood (see Section 2.2.1).

reliance on first principles The form of the field equations used to model flooding

strongly influences the form of the final flooding criteria. For example, while

models of flooding based on the theory of slug formation are conceptually sim-

ilar, some models for the onset of slug formation are similar to models Bankoff

and Lee identify in the category of theories on the stability of a traveling wave.

Additionally, envelope theories can conceptually be related to models that fit

into other categories that are identified by Bankoff and Lee [2].
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Therefore, an alternative method of characterizing flooding models is to determine

if the model is semi-theoretical or analytical, and then determine which analytical

models are of similar origin.

2.2.1 Semi-Theoretical Models

Because the prediction of flooding relies on numerous parameters, the prevalent

method of determining the flow rates that lead to flooding for a particular system

is the use of semi-empirical correlations. Variations of the Wallis correlation and

Kutateladze-like correlations are the primary methods of predicting flooding in ver-

tical, adiabatic tubes [2, 11].

The Wallis correlation [11, 15] is given as

[
j∗g
]1/2

+ m
[
j∗f
]1/2

= c. (2.1)

The coefficient m is proportional to the Reynolds number and ranges from 0.8 to

1.0, where m = 1 corresponds to a turbulent flow. The parameter c accounts for

geometric considerations, including tube end effects and fluid injection methods, and

ranges from 0.7 to 1.0. The Wallis correlation is based on a dimensional number, the

Wallis parameter (j∗k), which represents a balance of momentum flux and hydrostatic

forces. For each fluid, liquid (f) and gas (g), the Wallis parameter is

j∗f = 〈jf 〉
√

ρf

gD (ρf − ρg)
(2.2)

j∗g = 〈jg〉
√

ρg

gD (ρf − ρg)
. (2.3)

In these equations, the volumetric flux, or superficial velocity, for a phase k is defined

as

〈jk〉 =
Qk

A
= 〈αk〉 〈〈vk〉〉 , (2.4)

and the following averaging definitions are used [35]:

〈Fk〉 =
1

A

∫

A

FkdA (2.5)
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〈〈Fk〉〉 =
〈αkFk〉
〈αk〉

. (2.6)

Kutateladze [36] presented his eponymous dimensionless group as a number that

determined the break up of droplets suspended in a gas stream. Wallis and Kuo [19]

later pointed out that the Kutateladze number emerges from a two-dimensional po-

tential flow analysis of the hanging film phenomena using the Bernoulli equation.

Pushkina and Sorokin [37] demonstrated that the gas velocity needed to reverse flow

for a given liquid velocity could be determined as a function of the Kutateladze

number for tubes with diameters between 6 mm and 309 mm. Tien [38] and Chung,

Liu, and Tien [39] posed a model, refered to as a “Kutateladze-like” correlation, for

flooding using the Kutateladze number in the form of

Ku1/2
g + mKu

1/2
f = c (2.7)

where m and c are approximately 1 and 1.79, respectively. It should be noted that

m and c in Equation 2.7 are not fundamentally equivalent to the values posed in

Equation 2.1 and must be found empirically for a given experimental system. The

liquid and gas Kutateladze numbers are defined as

Kuf = 〈jf 〉
[

ρ2
f

gσ(ρf − ρg)

]1/4

(2.8)

Kug = 〈jg〉
[

ρ2
g

gσ(ρf − ρg)

]1/4

. (2.9)

The Kutateladze number can then be written in terms of the Wallis number as

Kuk = [D∗]1/2j∗k (2.10)

with the dimensionless diameter, D∗, defined both in terms of the Bond number, Bo,

and known parameters as

D∗ = [Bo]1/2 = D

√
g(ρf − ρg)

σ
. (2.11)

Generally, the Wallis correlation is used for systems where the dimensionless diame-

ter, D∗, is less than 40. For larger values of D∗, it has been noted that there appears
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to be no dependence on tube diameter [2, 15] and a Kutateladze-like correlation is

used.

Criticism

Both the Wallis and Kutateladze-like correlations strongly rely on experimental

data in order to calculate the occurence of flooding. While the Wallis parameter rep-

resents a ratio of forces, attempts to represent experimental data with this quantity

have not established clear trends. McQuillan and Whalley [7] found significant scat-

ter in a plot of the gas Wallis parameter versus the liquid Wallis parameter, implying

that either the Wallis parameter does not account for the appropriate phenomena

involved in flooding or that more parameters must be considered. While uncertainty

in experimental flooding data, such as not observing precisely the minimum pairs of

velocities to cause flooding and entrance and exit plenum effects, can lead to exper-

imental error, error found in the analysis of several experimental data sets using the

Wallis parameter is larger than that of experimental error alone.

The Kutateladze number was used in analysis before it was derived from field

equations, and the form of the Kutateladze-like correlations was determined by in-

serting the Kutateladze number into an equation similar to that of the Wallis corre-

lation [38, 39]. The derivation of the Kutateladze number by Wallis and Kuo does

not result in a model commonly used to predict flooding, nor does it explain the

form of Kutateladze-like correlations.

The use of Wallis and Kutateladze-like correlations together to predict flooding

in tubes of all diameters implies that a change in the diameter of a tube could change

the mechanism that causes flooding. A model that is valid for all tube diameters

would be more justified than a piece-wise model, as the two correlations are not

conceptually continuous. Though a gravitational term is included in both the Wallis

and Kutateladze numbers, the effect of gravity on flooding has not been studied.
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Based on the forms of Equations 2.1 and 2.7, the gravity term effectively acts as a

constant, and is present in each number to provide dimensionless terms.

The model presented herein will address some of the known deficiencies of the

Wallis and Kutateladze-like correlations. The formation of dimensionless groups

that more accurately capture the physics of flooding can be determined by using field

equations to derive an appropriate model of flooding. While experimental uncertainty

will still be present in analyses of experimental flooding data, the characterization

of flow parameters using suitable nondimensional numbers will allow for more useful

comparisons of data between different experimental facilities. The new model will

also address the discontinuity between large and small diameter tubes by assuming

that flooding has a continuous dependence on tube diameter and this dependence

diminishes for larger tubes.

2.2.2 Analytical Models

Analytical models are created by assuming flooding is caused by certain mecha-

nisms, and then applying appropriate equations in order to generate a model that

can be analyzed. Many models of flooding are the result of lengthy rigorous deriva-

tions, only to fit a coefficient to experimental data as a final step. A majority of

these models are given by Bankoff and Lee [2]. Though these models may rely on

first principles, they are nevertheless semi-empirical. The development of a model

to predict flooding in a vertical, adiabatic counter-current flow system without a

major presence of empirical parameters “tuned” to experimental data will both yield

insight into the mechanisms behind flooding and will provide an analytical basis for

the development of future models in complex systems.

Among the analytical models that have been developed are drift-flux models for

flooding. Drift-flux models of flooding have been shown to correlate to flooding

data to a reasonable degree of accuracy. Wallis [11] developed an early drift-flux

model for flooding and showed that these models can predict the qualitative trends
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found in flooding. Ohkawa and Lahey [40] later developed an addition to this model

for predicting flooding based on one-dimensional drift-flux techniques by deriving

the distribution parameter and drift velocity of the gas. Using the Zuber-Findlay

relationship [41], they defined flooding in terms of the maximum value of the gas

superficial velocity for a given liquid superficial velocity [40]. These models tend

to qualitatively predict the occurrence of flooding, but empirical coefficients derived

from experimental data are used to provide closure relations to these models. Con-

sequently, these models contain a high degree of empiricism.

This work aims to analyze flooding using an approach based on one-dimensional

drift-flux momentum equations for each phase with closure relations that are not

derived from experimental data on flooding. The model predictions reveal deficiencies

in current techniques, the implications of which are discussed in relation to future

developments in the modeling of flooding.
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3. A MODEL FOR AVERAGE FILM THICKNESS

The ability to estimate the average film thickness for a counter-current annular

system of liquid and gas allows for the estimation of the void fraction and diameter of

the gas core of the flow pattern, both of which must be provided as closure relations

for many models of flooding. The development of a new model for the average film

thickness of the liquid layer in counter-current annular flow will improve the estimate

of the thickness of the film, as well as provide a more theoretically sound basis for this

calculation. Additionally, this model will be used as the basis for the work described

in Section 4.

3.1 Earlier Models

The models most commonly used to predict the average film thickness in counter-

current annular systems are presented by Wallis [11] and Bankoff and Lee [2] and are

based on the work of Nusselt [42] and Belkin, Macleod, Monrad, and Rothfus [43].

The use of these models requires the gas velocity be low enough that interfacial shear

stresses and the pressure drop are negligible, and the curvature of the tube can be

ignored. A dimensionless film thickness, δ∗, has been defined in the model posed by

Wallis [11] as

δ∗ = δ

(
gzρf (ρf − ρg)

µ2
f

) 1

3

. (3.1)

To determine the magnitude of the nondimensional film thickness, the Reynolds

number of the liquid film must be calculated as

ReΓ =
4Γ

µf
=

4ṁ

πDµf
. (3.2)

If ReΓ < 1000, δ∗ can be calculated as

δ∗lam = 0.909ReΓ

1

3 . (3.3)
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For ReΓ > 1000, the dimensionless film thickness can be found by using the following

model that was posed by Belkin, Macleod, Monrad, and Rothfus [43]:

δ∗turb = 0.315
(
ReΓ

√
fwf

) 2

3

. (3.4)

In Equation 3.4, fwf is the Fanning friction factor, which can be calculated by using

the Colebrook equation [44]:

1√
4fwf

= −2 log

(
ε

3.7D
+

2.51

Ref

√
4fwf

)
. (3.5)

The friction factor must be solved for iteratively, and Ref , the liquid Reynolds num-

ber, is defined as [45]

Ref =
4ρf |vf | δ

µf
≈ ρf |〈jf 〉|D

µf
. (3.6)

These empirical correlations have been shown to provide reasonable agreement

with experimental data. Because the liquid film is known to remain at an approxi-

mately constant thickness until the occurrence of flooding [2], the prediction of the

average film thickness in a counter-current annular flow should describe the geometry

of the flow pattern.

While the gas flow and tube curvature were assumed not to have an effect on

the average film thickness before flooding, this could be explored by applying the

conservation of momentum equation to the system. The development of a new model

that considers the balance of momentum between the fluids would provide a more

theoretically sound basis for this calculation that considers both the downward flow

of the liquid and upward flow of the gas.

3.2 New Theoretical Model for Average Film Thickness

Solving for the geometric configuration before the occurence of flooding can be

accomplished by considering the momentum balance before the appearance of the

large-amplitude waves that are characteristic of flooding, as well as the onset of
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flow reversal and partial delivery. By considering the conservation of momentum in

the axial direction in a cylindrical coordinate system, where the centerline (r = 0)

corresponds to the center of the tube (see Figure 3.1), a relationship between the

liquid volumetric flow rate into the tube, the gas volumetric flow rate into the tube,

and the mean film thickness around the tube (vis-à-vis the void fraction) can be

determined. Using equations developed by Ishii, Chawla, and Zuber [45] to provide a

constitutive equation for the drift velocity in two-phase annular flow, this relationship

will be developed. The conservation of momentum for the gas phase is given as

↑→
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Fig. 3.1. Cylindrical coordinate system.

−
(

dpm

dz
+ ρggz

)
=

τiPi

〈αg〉A
(3.7)

while that of the liquid is [45]

−
(

dpm

dz
+ ρfgz

)
=

τwfPwf

(1 − 〈αg〉) A
− τiPi

(1 − 〈αg〉)A
. (3.8)

Subtracting Equation 3.7 from Equation 3.8 yields Equation 3.9

ρggz − ρfgz =
τwfPwf

(1 − 〈αg〉) A
− τiPi

(1 − 〈αg〉)A
− τiPi

〈αg〉A
. (3.9)
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To use Equation 3.9 as a relationship between Qf , Qg, and α, the following param-

eters must be defined:

• pipe diameter, D

• pipe flow area, A =
(

D
2

)2
π

• wall wetted perimeter, Pwf = Dπ

• liquid viscosity, µf

• liquid density, ρf

• gas density, ρg

• gravitational acceleration, gz

Therefore, parameters that must be determined by constitutive relations are the:

• wall shear of the fluid, τwf

• interfacial shear, τi

• interfacial wetted perimeter, Pi

Bankoff and Lee [2] identified several closure relations that are valid for both co- and

counter-current flow up until the point of flooding. Using these relations allows for

the development of a model to predict the average film thickness of both co- and

counter-current flows.

The wall shear of liquid is defined as [35]

τwf =
fwfρf 〈〈vf〉〉 |〈〈vf〉〉|

2
− ∆ρgzδ

3
. (3.10)

As noted in Section 3.1, the wall friction factor is a function of the Reynolds number.

The wall friction factor is

fwf =
16

Ref
(3.11)
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for laminar flow or the Colebrook Equation (Equation 3.5) for turbulent flow. The

transition to turbulent flow for this internal flow is Re = 2300 [35, 44].

The thickness of the liquid film, δ, can also be defined as a function of the void

fraction as

δ =
1

2

(
1 −√

αg

)
D. (3.12)

The interfacial shear for both counter-current and co-current annular flow is de-

fined as [35, 46]

τi =
fiρg |vr| vr

2
. (3.13)

The interfacial friction factor is known to be a function of the void fraction for

annular flows with thin film layers and can be written [2]

fi = 0.005 [1 + 75 (1 − 〈αg〉)] . (3.14)

The relative velocity, vr, can be found by considering two definitions of the drift

velocity, V gj,

V gj = (1 − 〈αg〉) vr (3.15)

and

V gj = 〈〈vg〉〉 − 〈j〉 . (3.16)

Combining Equation 3.15 and Equation 3.16 gives

vr =
〈〈vg〉〉 − 〈j〉

1 − 〈αg〉
, (3.17)

which expresses vr as a function of the velocity of the gas, the void fraction and,

because 〈j〉 = 〈jf 〉 + 〈jg〉, known values [35]. The interfacial wetted perimeter,

Pi = (D − 2δ)π, (3.18)

is a function of the film thickness, and as given in Equation 3.12, is a function of the

void fraction.

Therefore, by substituting the previous equations into closure relations and the

conservation equation, Equation 3.9 has only three remaining variables: the void
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fraction, 〈αg〉, and the gas and liquid velocities, 〈〈vg〉〉 and 〈〈vf 〉〉 (or, alternatively,

〈jg〉 and 〈jf〉). Since 〈jk〉 = Qk/A is a definition of the superficial velocity of each

fluid, 〈α〉, the void fraction, is the only unknown in Equation 3.9, it can be found

simply by solving the equation. The average film thickness can then be found using

Equation 3.12.

3.3 Model Assessment

The model developed in Section 3.2 provides a physical basis more consistent

with the physics in annular flow when compared to the model posed by Wallis [11]

by Equation 3.1, as well as an improved numerical result when calculating average

annular film thickness.

3.3.1 Model Analysis

The model for average film thickness that has been developed does not necessar-

ily take all relevant phenomena into account, but it significantly improves upon the

popular model described by Wallis [11]. The previous model neglects tube curvature

and assumes that interfacial shear stresses and pressure drop are not signficant. As

the new model is based on the conservation of momentum between the flows, interfa-

cial shear stresses are explicitly treated using Equation 3.13. Tube curvature affects

both the interfacial parameters of the flow, as well as the geometric considerations

of the system. Both of these aspects are treated in this new formulation by using

constitutive relations that have been shown to be valid at varied flow conditions and

system geometries. The rigorous nature of this model also allows for the use of dif-

ferent closure relations based on the analyst’s requirements, though the constitutive

equations given in this paper have been noted above to be valid for a wide range of

co- and counter-current flows. The pressure gradient of the two-phase flow is not ne-
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glected, but rather not necessary due to the mathematical construction of the model

shown in Equation 3.9.

Much like the models presented by Wallis [11], the proposed model does not

explicitly consider entrance effects or frictional wall losses over significant lengths;

however, the use of a field equation based on the conservation of momentum could

allow for the implicit consideration of these parameters based on their contributions

to the loss of momentum. While the new model does not account for under-developed

flows, quantitative results have shown this uncertainty to be small in comparison to

the uncertainty in using the models of Nusselt and Belkin on fully-developed flows

(see Section 3.3.2). The limited knowledge of the exact transition from laminar to

turbulent flows is an uncertainty that contributes to the use of both models, though it

has been found by examination that the model is not very sensitive to this transition

between friction factor models.

3.3.2 Model Validation

In order to quantitatively assess the model described in Section 3.2 for the predic-

tion of average annular film thickness in co- and counter-current flows, experimental

data is analyzed with the new model. The new model for average film thickness by

determining the average film thickness is assessed by determining the average film

thickness from the area area averaged void fraction. To calculate the void fraction

in the test section of the experiment, the following parameters are used as input to

the model:

• liquid volumetric flow rate, Qf

• gas volumetric flow rate, Qg

• liquid density, ρf

• gas density, ρg
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• liquid viscosity, µf

• tube diameter, D

From this input, the output variables that can be found are:

• average film thickness, δ̄f

• superficial fluid velocities, 〈jk〉

• void fraction, 〈αg〉

• average distance from tube centerline to the gas-liquid interface, ā

• mean weight averaged velocities, 〈〈vk〉〉 = 〈jk〉 / 〈αk〉

Approach

While it would be ideal for the application of this research to validate the new

model for average annular film thickness by using several sets of counter-current

annular flow experimental data, scarcity of this data and the low fidelity of the data

that can be found prevent this from being possible. Several reports which appear to

contain this data are not commonly available. Data presented by Bharathan, Wallis,

and Richter [47] was procured for the purposes of validation, but the uncertainty in

measurements of liquid flow rates is large enough to impede the use of this data for

analysis purposes. Limited data reported by Lacy [48] appears to be of relatively

high quality and can be used as validation data.

Despite the limited availability of counter-current annular film thickness data, a

variety of available co-current annular film thickness data allows for the validation

of the new film thickness model against several experimental data sets. The co-

current flow film thickness data that have been chosen to validate the new model

are those of Asali [49], Fore and Dukler [50], MacGillivray [51], and Wolf, Jayanti,

and Hewitt [52]. The co- and counter-current experimental configurations used to
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provide the data from these researchers are similar in that they all consist of a

vertical test section which is instrumented to find the average annular film thickness

for gas-liquid flows. Each experiment is conducted by adjusting the respective fluid

flow rates to desired values, allowing the film thickness to reach a steady state, and

measuring the film thickness at the desired locations along the test section. The

film thickness in each experiment is measured via conductance probes and is then

averaged in time, space, or both. The average film thickness value is reported. The

boundary conditions and data reported are modeled using the method previously

discussed in this section.

Co-current Flow Validation

Each set of experimental data is characterized by the parameters specified in

Table 3.1 (the pressure for each experiment is one atmosphere unless noted.) Data

points are characterized by experimental facility, fluid properties, and prescribed

pairs of liquid and gas flow rates. Many values in Table 3.1 are from the source

reference literature, though liquid and gas flow rates have been recast as superficial

velocities for the purpose of this analysis, and the densities for MacGillivray [51] and

Wolf, Jayanti, and Hewitt [52] and liquid viscosity for the latter work were found

by using EES [53]. The validation is performed by calculating the film thickness

for a given system using both the Wallis and the new models, and then comparing

these results to the film thickness reported from each experiment. The results are

quantitatively assessed with the following equation:

σmodel =

√√√√√√

N∑

i=1

(
δmodel

δexp
− 1

)2

i

N − 1
, (3.19)

where σmodel is the standard deviation for results of a given model, N is the number

of points analyzed, δmodel is the film thickness calculated by the model (either Wallis

or the “New Model” developed in this work), and δexp is the film thickness reported
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from the experiment. The significance of this standard deviation, σmodel, is that this

standard deviation quantifies the magnitude of relative error for a specific model

calculated using the experimental and calculated film thicknesses. In other words,

if a group of calculations is performed and a standard deviation for model x is

calculated, σx, Chebyshev’s inequality [54], among other methods, can be used to

quantify how many points of data must fall within ±σx (calculated as a percentage)

of the film thickness reported from experimentation, δexp.

The quantitative results calculated using Equation 3.19 are shown in Table 3.2.

The standard deviation calculated for each set of data is similar in most cases, and, as

such, one value is reported per literature source. Error is only given in the reference

literature for the data of MacGillivray [51]. This error is reported to be 0.104 mm

for each data point, which is quite large as this value is approximately 50% of most

of the data presented.

The data provided by Wolf, Jayanti, and Hewitt [52] is reported at seven points

along the tube, with data taken at 0.05 m, 0.25 m, 0.44 m, 0.94 m, 1.07 m, 3.85 m,

and 10.4 m from the tube inlet, with the gradient in film height shown to be as large

as 0.017 mm/m. As the liquid film flows down the tube, overall film thickness changes

due to inlet and outlet effects of both fluids, as well as an increase in momentum due

to shear forces and gravity. The calculated film thicknesses for this data set were

compared to data from 0.94 m downstream of the liquid inlet, which is located at

L/D ≈ 30. Film thickness values reported at 0.94 m are similar to those at 1.07 m

from the tube inlet, and the axial location at 0.94 m are significantly closer to the

length of most experimental flooding test sections than the next data point at 3.85 m.

Figures 3.2, 3.3, 3.4, 3.5, 3.6, and 3.7 show the major qualitative trends for each set

of experimental data. A plot of all points analyzed is given as Figure 3.8. While Ta-

ble 3.2 and the aforementioned figures show a general improvement in film thickness

prediction by an order of magnitude, investigation of the qualitative and quantitative
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Table 3.1

Experimental parameters for co-current validation data.

Study Working Fluids Tube I.D. jf jg ρf ρg µf

(mm) (m/s) (m/s) (kg/m3) (kg/m3) (kPa · s)

Asali air-water 42.0 0.00076 − 0.11269 10.1 − 59.9 990 1.28 1.1

air-glyc. solution 42.0 0.0028 − 0.0288 34.0 − 141.8 1056 1.28 2.1

air-glyc. solution 42.0 0.0026 − 0.0475 20.3 − 49.1 1120 1.28 5.3

air-water 22.9 0.0116 − 0.1276 25.6 − 96.0 990 1.28 1.1

air-water (P = 2atm) 42.0 0.0002 − 0.0047 0.84 − 1.34 990 2.34 1.1

air-glyc. solution 42.0 0.0120 − 0.1035 36.5 − 55.7 1056 1.28 2.59

Fore and air-water 50.8 0.00001 − 0.00012 36.5 − 55.7 999 1.27 1

Dukler air-glyc. solution 50.8 0.006 − 0.057 15.8 − 34.1 1128 1.27 6

MacGillivray air-water 9.525 0.076 − 0.315 13.0 − 29.4 998.2 1.306 1

helium-water 9.525 0.098 − 0.312 22.2 − 62.4 998.3 0.2267 1

Wolf, Jayanti, air-water 31.8 0.01 − 0.122 25.5 − 55.4 977.1 2.781 0.89

and Hewitt
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Table 3.2

Comparison of film thickness model performance.

Study No. of points σWallis σNew Model Figure(s)

(%) (%)

Asali 182 290 58 3.2

Fore and Dukler 65 40 48 3.3, 3.4

MacGillivray 328 124 18 3.5, 3.6

Wolf, Jayanti, and Hewitt 28 191 14 3.7

All co-current cases 603 188 38 3.8

Lacy 21 10 to 23 22 to 49 3.14, 3.15

results shows that the new model appears to perform poorly in the prediction of aver-

age film thicknesses for a subset of data from Asali [49], as well as the data presented

by Fore and Dukler [50]. A majority of the results that have been calculated for the

previously presented experimental data is similar to Figure 3.9 in that the new model

appears to clearly outperform the model posed by Wallis. Three specific groups of

film thickness data from Asali [49], for which jg = 13.8 m/s, 20.3 m/s, 20.3 m/s,

respectively, in 0.042 m tubes with air and water at atmospheric pressure, are incor-

rectly predicted by the new model and overpredicted by Wallis’ model in such a way

that the standard deviation between the two models and experimental data implies

that the Wallis model better predicts the liquid film thickness. The cases can be

characterized as having low liquid and gas superficial velocities when compared to

the rest of the data provided by Asali, and comparisons of the experimental data

and predicted film thickness are shown in Figures 3.10, 3.11, and 3.12. The spectrum

of cases analyzed by Fore and Dukler [50], represented by the specific case shown in

Figure 3.13, poorly predict experimental data at low gas flow rates, but significantly

improve for higher gas superficial velocities. This is true for both the air-water and

air-glycerine solution experimental results reported by Fore and Dukler. This dis-
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crepancy can be explained by considering the fact that the Wallis interfacial friction

factor correlation, Equation 3.14, is valid for rough, wavy films [35], which tend not

to form at low flow rates. This limitation of the Wallis correlation is for the partic-

ular situation of low gas flow rates, which should not be of concern in near-flooding

counter-current flow systems.

0 0.2 0.4 0.6 0.8 1

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

Exp. film thickness (m)

M
od

el
 fi

lm
 th

ic
kn

es
s 

(m
)

 

 

Wallis Model
New Model
+20%
−20%

Fig. 3.2. Average film thicknesses for Asali [49].

Counter-current Flow Validation

Data reported by Lacy [48] includes film thickness measurements for air-water

counter-current flow in a 55.8 mm tube. Liquid was introduced to the test section

via a “feed section,” and film thicknesses were measured at points above, inside, and

below this feed section. The new model can be used to calculate film thickness in

the region below the feed, which is downstream of the gas inlet.

As these experiments are conducted by varying gas flow rates to co-current and

post-flooding conditions at five predetermined liquid flow rates, a total of 21 exper-
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Fig. 3.3. Average film thicknesses for Fore and Dukler [50] (air-water cases).
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Fig. 3.4. Average film thicknesses for Fore and Dukler [50] (air-water/glyc. cases).
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Fig. 3.5. Average film thicknesses for MacGillivray [51] (air-water cases).
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Fig. 3.6. Average film thicknesses for MacGillivray [51] (helium-water cases).
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Fig. 3.7. Average film thicknesses for Wolf, Jayanti, and Hewitt [52].
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Fig. 3.8. Average film thicknesses for all validation data.
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Fig. 3.9. Typical analysis of the data of Asali (jg = 29.8 m/s).
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Fig. 3.10. Overpredicted subset of the data of Asali (jg = 13.8 m/s).
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Fig. 3.11. Overpredicted subset of the data of Asali (jg = 20.3 m/s, first case).

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

|<j
f
>| (m/s)

δ 
(m

)

 

 

Wallis Model
New Model
Experiment

Fig. 3.12. Overpredicted subset of the data of Asali (jg = 20.3 m/s, second case).
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imental data points are considered to be usable as validation data for the annular

film thickness model. Specifically, the liquid flow superficial velocities of the points

considered range from 0.006 m/s to 0.062 m/s and the gas superficial velocities from

7.6 m/s to 14.8 m/s. The film thicknesses are measured using conductivity probes

and are reported at distances of 0.07 m, 0.12 m, 1.74 m, and 1.79 m below the liquid

feed of Lacy’s test section. Error on measured values is not reported.

Liquid film thicknesses for Lacy’s test section are predicted using the new model

for average annular film thickness. Qualitative results of this analysis are shown in

Figure 3.14, and numerical results of the validation with Lacy’s data are presented

on Table 3.2. From Figure 3.14 it can be seen that while the model presented by

Wallis [11] tends to underpredict the liquid film thickness, the new model tends to

overpredict the film thickness. This comparison uses the measurements taken at the

conductivity probe 1.74 m from the liquid inlet. The quantitative analysis is sum-

marized by the values given in Table 3.2. A qualitative result given in Figure 3.15

shows that the deviation from experimental data for each model appears to be on the

same order of magnitude. While there is a clear discrepancy between the experimen-

tal data and the film thickness values predicted by the new model, it can be noted

that the results of the Wallis model shown in Figure 3.15 are relatively constant for

each gas flow rate, while the new model is predicting a trend more similar to the

trend of the experimental data. The lack of significant improvement in predictive

capability of the new model for average film thickness is unexpected considering the

improvement shown in a majority of the co-current film thickness calculations. It

is hypothesized that the limited test section length allowed the film thickness to be

affected by inlet and outlet conditions along the entire length of the tube, thereby

decreasing the accuracy of both models. Further analysis and validation using ad-

ditional counter-current film thickness data is necessary to determine whether the

new model is applicable for the predicition of average annular film thickness when

compared to the model presented by Wallis.
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Fig. 3.14. Average film thicknesses for Lacy [48].
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Fig. 3.15. Typical analysis of the data of Lacy (jf = 0.031 m/s).
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Results of New Film Thickness Model

Overall performance of the new model for the prediction of average annular film

thickness appears to be significantly better than the results of the model posed by

Wallis [11] based on the work of Nusselt [42] and Belkin, Macleod, Monrad, and

Rothfus [43]. While the new model does not correctly predict the film thickness

for low gas flow rates, this is consistent with the underlying assumptions inherent

in the closure relations to the model. At this time, it is apparent that the new

model provides a reasonable prediction of counter-current film thicknesses, though

the quantitative improvement shown in the co-current cases is not present. This may

be a function of the limited counter-current film thickness data used in this validation.

Future work should include the procurement of additional counter-current annular

flow data that could be used to assess the performance of the model, specifically

for the application of predicting flooding, as well as possibly testing the formulation

with a variety of closure relations posed by other researchers.
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4. THEORETICAL ANALYSIS OF FLOODING

It is well known that one-dimensional drift-flux models using empirical or semi-

empirical closure relations for the distribution parameter and drift velocity can be

used to predict flooding [2, 11, 40]. These drift-flux models are based on the Zuber-

Findlay relationship for the gas superficial velocity of the flow [41]. To develop a

model based on this relationship, closure relations that rely on data from flooding

experiments have been used in previous work. For example, Ohkawa and Lahey [40]

used the semi-empirical Kutateladze correlation in terms of the liquid and gas super-

ficial velocities with empirical closure relations based on experimental data. While

correlations based on the drift-flux model qualitatively can be used to predict flood-

ing, closure relations based on data that consider the occurrence of flooding, as

opposed to the flow conditions that can lead to flooding, seem to be more dependent

on fitting data than mechanistically capturing relevant phenomena. In this section,

the work of Ohkawa and Lahey [40] will be used in conjunction with the previous

model for liquid film thickness to analyze the mechanism of flooding.

4.1 Model Development

Using the Zuber-Findlay relationship, Ohkawa and Lahey [40] found that the gas

superficial velocity that causes flooding for a given liquid superficial velocity can be

found by satisfying the equation

∂jg

∂αg

∣∣∣
jf

= 0. (4.1)

According to this equation, the superficial velocity of the gas that will cause

flooding is the maximum value of the gas superficial velocity with respect to the void

fraction for a constant liquid superficial velocity. Therefore, if the gas superficial

velocity can be calculated as a function of the liquid superficial velocity and the void

fraction, a plot representing the superficial velocities that cause flooding for a given
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system can be generated. Using the above criteria for flooding, it should be possible

to generate a flooding curve for a given system using the mass and momentum

conservation equations obtained from the one-dimensional drift-flux model as well as

the appropriate closure relations for this model [35].

A model of flooding based on Equation 4.1 can be developed by considering the

following system of equations developed in Section 3.2:

ρggz − ρfgz =
τwfPwf

(1 − 〈αg〉) A
− τiPi

(1 − 〈αg〉) A
− τiPi

〈αg〉A
(3.9)

τwf =
fwfρf 〈〈vf 〉〉 |〈〈vf 〉〉|

2
− ∆ρgzδ

3
(3.10)

fwf =
16

Ref
(3.11)

1√
4fwf

= −2 log

(
ε

3.7D
+

2.51

Ref

√
4fwf

)
. (3.5)

δ =
1

2

(
1 −√

αg

)
D (3.12)

τi =
fiρg |vr| vr

2
(3.13)

fi = 0.005 [1 + 75 (1 − 〈αg〉)] (3.14)

vr =
〈〈vg〉〉 − 〈j〉

1 − 〈αg〉
(3.17)

Pi = (D − 2δ)π. (3.18)

Using this system of equations, a relationship between the gas superficial velocity, the

liquid superficial velocity, and the void fraction can be determined. In order to use

Equation 4.1 to determine the conditions necessary to cause flooding, a liquid flow

rate for a specific system must be determined. Discrete values of the void fraction

(αg) between 0 and 1 can be selected, and the system of equations can be solved for

each discretized value of αg. A physical interpretation of Equation 4.1 would imply

that flooding for a given system with a known liquid superficial velocity of jf would

occur when the value of jg, the superficial velocity of the gas, is at a maximum with

respect to the void fraction, αg. Using this methodology, the flooding conditions for

the system can be determined.
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4.2 Analysis

A qualitative three dimensional plot showing the superficial gas velocity as a

function of the void fraction and the liquid superficial velocity is shown in Figure 4.1.

The behavior exhibited by this surface is qualitatively similar to the surface given

by Ohkawa and Lahey [40], Figure 4.2, for drift-flux models of flooding. Figure 4.2

shows the superficial gas velocity derived using the Zuber-Findlay relationship and

closure relations for the distribution parameter and drift velocity. Figure 4.3 shows

a qualitative flooding curve generated from the solution of Equation 3.9. This curve

is consistent with both previous analyses and experimental data. Therefore, using

a model based on the one-dimensional Zuber-Findlay drift-flux relationship and a

model based on the one-dimensional drift-flux momentum equation, both based on

the superficial velocity of each phase, similar behavior of both the surface describing

the gas superficial velocity and the flooding curve can be generated.

Despite these similarities, the value of the gas superficial velocity found by consid-

ering the conservation of momentum to cause flooding overestimates the experimen-

tally found gas superficial velocities, but generally by no more than a factor of three.

When compared to experimental flooding data for an adiabatic, vertical test section,

the model based on the conservation of momentum overpredicts the superficial gas

velocity. This is illustrated using experimental data from Williams [55] and Tien,

Chung, and Liu [56]. Both sets of flooding data are based on experimental facilities

that use liquid injection methods to induce vertical adiabatic counter-current flows.

(These experiments will be discussed in more detail in Section 6.2.) A comparison

of predicted flooding conditions and experimental data of Williams [55] and Tien,

Chung, and Liu [56] is shown in Figure 4.4 and Figure 4.5. As dimensionless su-

perficial velocities have been shown to correlate poorly to experimental data [7], the

results are also presented in terms of the liquid and gas superficial velocities as Fig-

ure 4.6 and Figure 4.7. Figures 4.4 and 4.6 show comparisons between the flooding

conditions predicted by Equations 3.9 and 4.1 and the data of Williams [55], which
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is based on an air-water countercurrent flow in a 76.2mm inner diameter tube. Fig-

ures 4.5 and 4.7 compare the results of Equations 3.9 and 4.1 with data from Tien,

Chung, and Liu [56]. The experimental setup that generated the Tien, Chung, and

Liu data consisted of fluids of various properties in 16 −70 mm inner diameter tubes.

This data set was selected because data from this experiment spans several tube and

fluid property combinations. It should be noted that not all data from Tien, Chung,

and Liu [56] has been analyzed in Figures 4.5 and 4.7. Additionally, the spread of the

experimental data of Tien, Chung, and Liu [56] when recast as the Wallis parameter

implies that this data may be of questionable quality; this issue will be addressed

in Section 6.2. This shows that Equation 4.1 also overpredicts the gas superficial

velocity that will cause flooding when compared to data that has been demonstrated

to be reproducible. In summary, it is noted that using a momentum-based approach

to model flooding overpredicts the gas flow rate that will cause flooding to occur for

a specified liquid flow rate.

Modeling flooding using the one-dimensional drift-flux momentum equations with

closure relations that are not curve-fit to experimental flooding data should create an

accurate flooding curve if Equation 4.1 is satisfied. Since the one-dimensional drift-

flux momentum equations are derived from physics, the closure relations are known

to model both co-current and countercurrent annular flow reasonably well. Further,

Equation 4.1 has been shown to predict flooding. Therefore, it can be inferred that

additional phenomena that are not currently considered in the momentum balance

are affecting the flow.

4.3 Discussion

The quantitative discrepancies and qualitative similarities between this model

based on conservation of the liquid and gas momentum and models that utilize the

distribution parameter and drift velocity as closure relations suggest that there is a

fundamental difference in the closure relations used in both models and this difference
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Fig. 4.1. Gas superficial velocity in terms of the liquid superficial
velocity and the void fraction.

Fig. 4.2. Qualitative plot of drift-flux models of flooding (from
Okawa and Lahey [40]).
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Fig. 4.3. Qualitative flooding curve based on the new model.

0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|j*
f
|

j* g

 

 

Mom. Balance
Experiment

Fig. 4.4. Comparison between Williams’ air-water data [55] and
momentum-based model of Wallis parameters for flooding.
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Fig. 4.5. Comparison between Tien, Chung, and Liu’s data [56] and
momentum-based model of Wallis parameters for flooding .
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Fig. 4.6. Comparison between Williams’ air-water data [55] and
momentum-based model of superficial velocities for flooding.
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Fig. 4.7. Comparison between Tien, Chung, and Liu’s data [56] and
momentum-based model of superficial velocities for flooding.
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may be obscured by the empirical factors used in models based on the Zuber-Findlay

relationship. It is known from experimental observations that when flooding occurs, a

fast-growing wave appears at the gas-liquid interface. Several stability analyses have

been performed on gas-liquid countercurrent flow systems, and they have shown that

if this instability is a Kelvin-Helmholtz or similar instability [35,57,58], the wave will

grow radially inward from the liquid film as a uniform circle of fluid. Following this

wave growth, the local cross-sectional void fraction will be significantly smaller than

the void fraction that arises from a pure conservation of momentum. This change in

void fraction would instantaneously change the value of all of the closure relations

that depend on the film thickness.

In Figure 4.8, the gas superficial velocity is plotted with respect to the void

fraction for a specified liquid superficial velocity. By using Equation 4.1 and the

model developed above, the gas superficial velocity that will cause flooding due

to the conservation of momentum and the previously discussed closure relations is

located at the maximum value of the gas superficial velocity on the curve. A system

with a gas superficial velocity and void fraction located at point “A” could exist

in a stable counter-current flow pattern. If this system is operating at a constant

liquid superficial velocity and an instability causes significant interfacial wave growth,

the flow would be represented by point “B” in Figure 4.8. The void fraction in the

channel has decreased while maintaining the same gas superficial velocity. This point

is now located above the curve, whereas before this wave growth occurred, the flow

parameters would have matched that of “A” and been located on the curve. The

reduction of void fraction does not allow for the gas and liquid superficial velocities

that are specified, resulting in the reversal of flow in order to conserve momentum.

Using this principle, it may be possible to predict the occurrence of flooding both

by considering the momentum balance of the gas and liquid and by evaluating the

stability of the gas-liquid interface. Therefore, the development of a model for the
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prediction of the onset of the interfacial instability could enable the prediction of the

occurence of flooding.
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Fig. 4.8. Superficial gas velocity versus void fraction for a specific liquid flow rate.
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5. STABILITY-BASED MODEL OF FLOODING

Section 4 described a theory on the mechanism that causes flooding. This theory

maintains that flooding occurs so that momentum is conserved following the growth

of large-amplitude waves at the gas-liquid interface. In order to predict the occurence

of flooding, the criteria for the growth of this wave should be analytically derived.

If the counter-current annular flow pattern is considered to be a cylinder of gas

surrounded by an annulus of water, it should be possible to extend Rayleigh’s [57,59]

work on the vibrations of cylindrical jets. (It should be noted here that the word “jet”

refers to the cylindrical gas flow, as opposed to its common usage.) The stability

criteria that Rayleigh developed were previously used for Zuber’s [60] analysis of

critical heat flux. Zuber [60] and Wallis [9] noted the hydrodynamic similarities

between flooding and the work of Rayleigh, and hypothesized that a model of this

type could be applied to flooding. While Rayleigh derived his model by assuming

that the pressure change due to fluid, the Bernoulli effect, is negligible due to near-

zero fluid velocities in the overall system being analyzed, the relative motion between

the liquid and gas flow should have a significant destabilizing effect in flooding. The

model for wave growth proposed herein will only be valid for vertical, counter-current

annular flows and will not directly account for inlet and outlet effects, but the success

of an analytical approach should provide a theoretical basis for analysis of other

scenarios where flooding may occur.

5.1 Previous Work

Bankoff [2] categorized potential flow models of flooding as stability theories

of a traveling wave. These potential flow models are used to calculate flooding

criteria based on interfacial instability. These models tend to be analogous to slugging

models, such as Mishima and Ishii’s [61] model of slugging in a rectangular duct
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and Georgevich’s [62] integral approach to predict interfacial wave growth due to

instability.

Models that fit into the category of potential flow models include Imura, Ku-

sada, and Funatsu [63], Chung, Liu, and Tien [38], Yao and Sun [64], and Shibata

and Kaminaga [65]. Each of these models employs assumptions that are not consis-

tent with the physics of flooding [2]. The model developed by Imura, Kusada, and

Funatsu [63] relies on an empirical correlation for the mean film thickness and the

dimensionless wave number. In their model, Chung, Liu, and Tien [39] neglected

the flow pattern and the curvature of the tube. Closure relations for this model

are a function of the wave number, which makes their correlation empirical in this

regard. Yao and Sun [64] define flooding as the conditions at which partial delivery

has ceased. This is not a conservative assumption when analyzing flooding in nuclear

reactors. Yao and Sun also use a simplified dynamic interface condition that is not

representative of the shape of the interface. The analyses of Imura, Kusada, and

Funatsu, Tien, Chung, and Lei, and Yao and Sun all rely on linearized kinematic

conditions at the gas-liquid interface. None of the models consider the appropriate

form of the solution of the governing differential equation with respect to boundary

conditions. Shibata and Kaminaga [65] compared linear and non-linear wave models

at the interface and found that the non-linear condition yields a better result when

compared to experimental data. The model Shibata derived from non-linear analysis

is in rectangular coordinates and does not capture the unique mathematical prop-

erties of stability analysis on cylinders. Both the stability analysis of a stationary

jet (Rayleigh, 1878) and the analysis of Imura, Kusada, and Funatsu [63] find that

the stability criteria of cylindrical systems are expressed in terms of modified Bessel

functions, which do not arise from stability analysis in a rectangular plane. The

model based on the non-linear analysis of Shibata consists of many terms and is not

convenient to solve.
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Previous work indicates that a comprehensive physics-based model for the predic-

tion of flooding in vertical adiabatic tubes based on stability criteria should consider

phenomena in a cylindrical coordinate system, account for curvature of the interface,

use non-linear kinematic conditions and not require empirical closure relations. The

development of this stability-based model would allow for the prediction of flooding

based on the premise that flooding is caused by the need for momentum of the liquid

and gas flows to be conserved. A change of the void fraction in the system affects

the closure relations of this momentum balance by reducing the flow area of the gas,

increasing the flow area of the liquid, and reducing the interfacial area between the

fluids.

5.2 Model Development

The stability-based model of flooding is developed using the following procedure:

1. develop the potential functions of the liquid and gas flow

2. determine the interfacial fluid pressures from the fluid potential functions

3. relate the interfacial fluid pressures using the Young-Laplace equation

4. solve the Young-Laplace equation for the wave speed

5. derive stability criteria as when the wave speed contains an imaginary compo-

nent

6. provide closure for the unknown wave number in the stability criteria

5.2.1 Calculation of Fluid Potential

The cylindrical coordinate system presented in Section 3.2 is used to derive the

model of stability criteria. The liquid, “f”, flows downward in an annulus around
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the gas core, “g.” The film thickness at that axial level, δ, can be used to find the

radius at a specific axial location of the gas core, a, by substracting the film thickness

from the radius of the tube, R. The gravitational force acts downward, parallel to

both flows.
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Fig. 5.1. Cylindrical coordinate system (not to scale).

To begin the stability analysis, the continuity equation for phase k is

∂ρk

∂t
+ ∇ · ρk~vk = 0. (5.1)

In an adiabatic system, the flow can be assumed to be incompressible. Therefore,

∇ ·~vk = 0 (5.2a)

1

r

∂ (rvkr)

∂r
+

1

r

∂vkθ

∂θ
+

∂vkz

∂z
= 0. (5.2b)
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By making the additional assumptions that the fluid is inviscid and irrotational,

potential flow theory may be used. The definitions of the radial, azimuthal, and

longitudinal velocities in terms of the velocity potential of each phase [44], φk, are

vkr = −∂φk

∂r
(5.3a)

vkz = −∂φk

∂z
(5.3b)

vkθ = −1

r

∂φk

∂θ
. (5.3c)

Substituting Equation 5.3 into 5.2 yields the continuity equation for potential flow,

∇2φk = 0 (5.4a)

∂2φk

∂z2
+

∂2φk

∂r2
+

1

r

∂φk

∂r
+

1

r2

∂2φk

∂θ2
= 0. (5.4b)

The potential of each fluid, φk, can be written as

φk = Φ1,ke
ik(z−ct) − Ukz (5.5)

where k in the exponential is the wave number, z is the axial position, c is the wave

speed, t is time, and i is equal to
√
−1. The exponential term accounts for the motion

of a wave within the flow in space and time, and the rightmost velocity term accounts

for the initial velocity of the fluid. It should be noted that this rightmost velocity

term is a linear function of z, and the second derivative of this term with respect

to z must be zero. The term Φ1,k = Φ1,k (r, θ) satisfies the initial conditions of the

partial differential equation. Substituting Equation 5.5 into Equation 5.4 results in

a differential equation for Φ1,k,

0 = − k2Φ1,ke
ik(z−ct)

+
∂2Φ1,k

∂θ2
eik(z−ct)

+
1

r

∂Φ1,k

∂r
eik(z−ct)

+
1

r2

∂2Φ1,k

∂θ2
eik(z−ct),

(5.6)
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which can be reduced to form the equation

∂2Φ1,k

∂r2
+

1

r

∂Φ1,k

∂r
+

1

r2

∂2Φ1,k

∂θ2
− Φ1,kk

2 = 0. (5.7)

Equation 5.7 is similar to the modified Bessel differential equation, but in cylindrical

coordinates. The general solution to this equation is

Φ1,k = A1,kIs (kr) cos(sθ) + A2,kKs (kr) cos(sθ) (5.8)

where A1,k and A2,k are constants determined by boundary conditions, Is is the

modified Bessel function of the first kind of order s and Ks is the modified Bessel

function of the second kind of order s (see Appendix A).

5.2.2 Interfacial Liquid Pressure

For the liquid component of the potential, φf , one of the boundary conditions is

that the radial velocity must be zero at the wall, or where r = R. In terms of the

potential, this means

−∂φf (R)

∂r
= 0 (5.9)

and because φk is a separable function (as per Equation 5.5) that can be defined

φk = Φ1,kf(z, t), the following equation is equivalent to Equation 5.9:

−∂Φ1,f (R)

∂r
= 0. (5.10)

The solution to Equation 5.8 that meets the boundary condition posed by Equa-

tion 5.10 is not trivial and is not readily presented in previous literature. This

solution can be found by rewriting Equation 5.8 as

Φ1,k = Bf

(
C1Is (kr) cos (sθ) + C2Ks (kr) cos (sθ)

)
(5.11)

where A1,f = BfC1 and A2,f = BfC2. Writing Equation 5.8 in this manner allows

for Bf to satisfy the boundary condition at the gas-liquid interface and C1 and C2

to satisfy the boundary condition at the tube wall.
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A solution to Equation 5.11 that satisfies the boundary condition posed by Equa-

tion 5.10 can be shown to be (see Appendix B)

C1 =
1(

Is+1(kR) +
sIs (kR)

kR

) (5.12a)

C2 =
−1(

−Ks+1(kR) +
sKs (kR)

kR

) . (5.12b)

The boundary condition for the liquid at the gas-liquid interface is

−∂φg

∂r
=

∂η

∂t
+ Ug

∂η

∂z
. (5.13)

The parameter η represents the radial position of the single wave that exists at the

gas-liquid interface and is defined as

η = η0e
ik(z−ct) cos (sθ) + ā (5.14)

where ā is the time-average distance from the center of the gas core to the interface.

The axial location is given by the parameter z, time is represented by t, and the

wave speed is defined by c. The wave number, k, is related to the wavelength, λ,

by k = 2π/λ. The distance between the tube centerline and the gas-liquid interface

is a (z), which is equal to η for the wave which is defined by Equation 5.14. The

boundary condition given by Equation 5.13 requires that the radial velocity, −∂φk

∂r
,

must equal the change in the wave height with respect to time and the change in wave

height in space, Ug
∂η

∂z
, at the gas-liquid interface. The value of Bf that satisfies this

condition can be found by substituting Equations 5.8 and 5.14 into Equation 5.13.

Evaluating Equation 5.13 at r = a, Bf is found to be

Bf =
ikaη0 (Uf − c)

cos (sθ) [C2 (Ks+1 (ka) ka − sKs (ka)) − C1 (Is+1 (ka) ka + sIs (ka))]
. (5.15)

The pressure in the liquid at the gas-liquid interface, Pf , can now be found by

using the unsteady Bernoulli equation,

Pk = ρk

(dφk

dt
+

1

2
∇φk ·∇φk − G + F (t)

)
, (5.16)
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where G, the Bernoulli constant, and F (t), a forcing function, are both equal to zero.

The convective term of the Bernoulli equation, 1
2
∇φ ·∇φ, is small and negligible [57,

59]. Therefore, the Bernoulli equation of the liquid can be written

Pf = ρf
dφf

dt
. (5.17)

Using the chain rule, Equation 5.17 can be written in terms of partial derivatives of

φf as

Pf = ρf

(
∂φf

∂t
+ Uf

∂φf

∂z

)
. (5.18)

Substituting the potential flow solution, Equation 5.4, into Equation 5.18 using the

boundary conditions described gives the liquid pressure at the interface, Pf , as

Pf = ikρfBf (Uf − c) cos (sθ) (C1Is (ka) + C2Ks (ka)) eik(z−ct) − ρfU
2
f . (5.19)

5.2.3 Interfacial Gas Pressure

Similar to the liquid potential, the potential of the gas must satisfy Equation 5.8

and can be determined by considering a pair of boundary conditions. At the center-

line of the tube, r = 0, the gas potential must be finite. Since

lim
x→0

Ks (x) = ∞, (5.20)

the coefficient A2,g in Equation 5.8 must be zero to satisfy this boundary condition.

The boundary condition for the gas potential at the gas-liquid interface is similar to

that of the liquid potential,

−∂φg

∂r
=

∂η

∂t
+ Ug

∂η

∂z
. (5.21)

Using a method similar to the one posed for the gas-liquid interfacial boundary

condition, A1,g can be calculated as

A1,g =
η0kai (c − Ug)

cos (sθ) (kaIs+1 (ka) + sIs (ka))
. (5.22)



55

The Bernoulli equation for the gas is written as

Pg = ρg
dφg

dt
(5.23)

which is written in terms of partial derivatives of φg as

Pg = ρg

(
∂φg

∂t
+ Ug

∂φg

∂z

)
. (5.24)

Substituting Equations 5.22 and 5.8 into Equation 5.24, the gas pressure at the

gas-liquid interface is found to be

Pg = −ikρgA1,g (c − Ug) Is (ka) cos (sθ)eik(z−ct) − ρgU
2
g . (5.25)

For consistency, Bk will be used to define the parameter that satisfies the interfacial

boundary condition, meaning Bg = A1,g. Therefore,

Pg = −ikρgBg (c − Ug) cos (sθ)Is (ka) eik(z−ct) − ρgU
2
g . (5.26)

5.2.4 Relationship Between Fluid Pressures

The pressures of the gas and the liquid at the gas-liquid interface (i.e., where

r = a) can be related by the Young-Laplace equation [35, 66] as

−σ

(
1

R1

+
1

R2

)
= Pf − Pg (5.27)

where σ is the surface tension and 1/R1 and 1/R2 are the principal curvatures of the

system. The curvature in the azimuthal direction [57] is

1

R1

=
1

a
− 1

a2

(
η +

∂2η

∂θ2

)
, (5.28)

and the curvature in the axial direction is

1

R2
=

∂2η

∂z2
. (5.29)

Substituting η into the definition for the principal curvatures yields
(

1

R1

+
1

R2

)
=

1

a
− η0e

ik(z−ct) cos (sθ) (1 + s2)

a2
+ k2η0e

ik(z−ct) cos (sθ). (5.30)
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Therefore, Equations 5.30, 5.19 and 5.26 can be used with Equation 5.27 to establish

a relationship between the pressure of the liquid and gas near the interface. The re-

sulting equation can be simplified using the method of undetermined coefficients [67]

to generate two equations. The first, the pressure between the unperturbed liquid

and gas flows, is

−σ

a
= ρgU

2
g − ρfU

2
f . (5.31)

The second equation that can be formed describes the relationship between the

pressure of the liquid and gas at the interface due to the wave,

−ση0e
ik(z−ct) (k2a2 + s2 − 1)

a2
= ik cos (sθ)eik(z−ct) [ ρfBfUfCIK

−ρgA1,gUgIs (ka)

+c (ρgA1,gIs (ka)

−ρfBfCIK ) ]

(5.32)

with CIK = C1Is (ka) + C2Ks (ka).

5.2.5 Determination of the Value of s

Stability criteria are found by determining what system parameters cause the

wave speed, c, to become imaginary. The wave speed is found by substituting Equa-

tions 5.12, 5.15, and 5.22 into Equation 5.32 and solving for c. While the relationship

between the liquid and gas pressures for all orders s of the modified Bessel functions

of the first and second kind has been given by Equation 5.32, deriving stability cri-

teria from this general solution leads to unwieldy algebraic manipulation. General

stability criteria valid for all s have been found herein, and this result is given in

Appendix C. Studying this result will allow for the simplification of the development

of the stability criteria for counter-current annular flow and will clarify the procedure

used in this derivation.

If s is a non-zero value, Equation 5.3 will result in a non-zero velocity in the

azimuthal direction. This flow would be inconsisent with experimental observation.
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Using the fact that s must equal zero to correctly model the counter-current flow

system, Equation 5.32 will be simplified in such a way that the derivation of stability

criteria will be expressed clearly. A derivation of unique stability criteria for the case

s = 0 is provided for enhanced methodological clarity in Appendix D.

5.2.6 Wave Speed and Stability Criteria

Using the fact that the order of the modified Bessel functions, s, is zero, Equa-

tion 5.32 can be rearranged by the order of the wave speed as

0 = −
(

ka2ρfξ

γ cos (sθ)
− ka2ρgI0 (ka)

I1 (ka) cos (sθ)

)
c2

−
(
−2ka2ρfUfξ

γ cos (sθ)
+

2ka2ρgUgI0 (ka)

I1 (ka) cos (sθ)

)
c

+

(
−
−σγ + ρfkU2

f a2ξ + σk2a2γ

γ cos (sθ)
+

ρgkI0 (ka) U2
g a2

I1 (ka) cos (sθ)

)
(5.33)

where the parameters ξ and γ are used for convenience to define

ξ = I0 (ka) K1 (kR) + I1 (kR) K0 (ka) (5.34)

and

γ = K1 (kR) I1 (ka) − I1 (kR)K1 (ka) . (5.35)

A graph of ξ and γ for a constant value of ka is shown in Figure 5.2.

Equation 5.33 is a quadratic equation in the wave speed; therefore, the wave

speed can be determined by using the quadratic formula,

c = − X2

2X1

±
√

X2
2 − 4X1X3

2X1

, (5.36)

given that Equation 5.33 is in the form X1c
2 + X2c + X3=0. Equation 5.36 can be

rewritten in terms of simplifying variables Ca and Cb as

c = Ca ± Cb. (5.37)
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Fig. 5.2. A qualitative graph of γ and ξ.

For planar analysis of Kelvin-Helmholtz instability, the negative value of Cb is used

to develop an appropriate solution [35]; analogously, the negative solution will be

used for this analysis. Using this formulation,

Ca =
ρfUfξI1 (ka) − ρgUgγI0 (ka)

ρfξI1 (ka) − ρgγI0 (ka)
(5.38)

and

Cb =

√
− σγ (k2a2 − 1) I1 (ka)

ka2 (ρfξI1 (ka) − ρgγI0 (ka))
+

ρfρgξγ (Uf − Ug)
2 I1 (ka) I0 (ka)

(ρfξI1 (ka) − ρgγI0 (ka))2 . (5.39)

Since the condition for stability criteria is that the wave speed must not contain an

imaginary component, C2
b ≥ 0 would provide the necessary criteria. Therefore, the

gas-liquid interface is stable if the following condition is met:

0 < − σγ (k2a2 − 1) I1 (ka)

ka2 (ρfξI1 (ka) − ρgγI0 (ka))
+

ρfρgξγ (Uf − Ug)
2 I1 (ka) I0 (ka)

(ρfξI1 (ka) − ρgγI0 (ka))2 . (5.40)

5.2.7 Velocity Field Characterizations

From Sections 5.2.2 and 5.2.3, the potential functions of the liquid and gas are

known to be

φf = Bfe
ik(z−ct)

(
I0 (kr)

I1 (kR)
+

K0 (kr)

K1 (kR)

)
− Ufz (5.41)
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and

φg = Bge
ik(z−ct)I0 (kr) − Ugz. (5.42)

Using the definitions of the axial, azimuthal, and radial velocities given by Equa-

tion 5.3, the liquid velocities in terms of the potential function are

vfr = −Bfkeik(z−ct)

(
I1 (kr)

I1 (kR)
− K1 (kr)

K1 (kR)

)
(5.43a)

vfz = −iBfkeik(z−ct)

(
I0 (kr)

I1 (kR)
+

K0 (kr)

K1 (kR)

)
+ Uf (5.43b)

vfθ = 0 (5.43c)

and the velocities of the gas are

vgr = −Bgkeik(z−ct)I1 (kr) (5.44a)

vgz = −iBgkeik(z−ct)I0 (kr) + Ug (5.44b)

vgθ = 0. (5.44c)

The assumption that s = 0 leads to an azimuthally symmetric flow, meaning that

vkθ = 0. This symmetry allows for the flow to be considered two-dimensional. Stream

functions, Ψk, for each fluid can now be generated by considering the definition of

the stream function for the r − z plane [68]:

vkr = −1

r

∂Ψk

∂z
(5.45a)

vkz =
1

r

∂Ψk

∂r
. (5.45b)

The stream functions can then be found by integrating Equation 5.45 for the liquid

and gas flows. Integration of the liquid axial velocity yields

Ψf = irBfe
ik(z−ct)

(
K1 (kr)

K1 (kR)
− I1 (kr)

I1 (kR)

)
+

1

2
Ufr

2 + Ff (z) , (5.46)

while integration of the gas axial velocity results in the stream function

Ψg = −irBge
ik(z−ct)I1 (kr) +

1

2
Ugr

2 + Fg (z) . (5.47)
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These stream functions actually satisfy both conditions of Equation 5.45, meaning

Ff (z) = Fg (z) = 0. Therefore, the liquid and gas stream functions are

Ψf = irBfe
ik(z−ct)

(
K1 (kr)

K1 (kR)
− I1 (kr)

I1 (kR)

)
+

1

2
Ufr

2, (5.48)

and

Ψg = −irBge
ik(z−ct)I1 (kr) +

1

2
Ugr

2. (5.49)

In summary, Table 5.1 (see page 61) characterizes the flow as developed in this

section.

5.2.8 Consideration of Waves of Finite Amplitude

Kordyban and Ranov [69] and Mishima and Ishii [61] have previously shown that

the limiting amplitude of waves in planar systems can be used in order to study wave

stability in the context of slugging in co-current flow. This is accomplished by deter-

mining the maximum value of the product of the wave number and wave amplitude

that may occur in a given system. This principle of waves of finite amplitude will be

used to determine the maximum wave amplitude present given the model that has

been developed thus far.

Derivation

The wave profile as limited by the finite amplitude of liquid waves can be calcu-

lated using the knowledge that for an irrotational flow, the gas-liquid interface can

be determined by considering the stream function for the flow. Therefore, by using

the stream function developed in Section 5.2.7 as Equation 5.49, a function for the

gas-liquid interface can be determined by setting the value of Ψf equal to a constant.

As this calculation is in reference to the actual height of the wave, the position to be
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Table 5.1

Summary of flow characteristics.

Eq. Liquid (f) Eq. Gas (g)

(5.41) φf = Bfe
ik(z−ct)

(
I0 (kr)

I1 (kR)
+

K0 (kr)

K1 (kR)

)
− Ufz (5.42) φg = Bge

ik(z−ct)I0 (kr) − Ugz

(5.48) Ψf = irBfe
ik(z−ct)

(
K1 (kr)

K1 (kR)
− I1 (kr)

I1 (kR)

)
+ 1

2
Ufr

2 (5.49) Ψg = −irBge
ik(z−ct)I1 (kr) + 1

2
Ugr

2

(5.43a) vfr = −Bfkeik(z−ct)

(
I1 (kr)

I1 (kR)
− K1 (kr)

K1 (kR)

)
(5.44a) vgr = −Bgkeik(z−ct)I1 (kr)

(5.43b) vfz = −iBfkeik(z−ct)

(
I0 (kr)

I1 (kR)
+

K0 (kr)

K1 (kR)

)
+ Uf (5.44b) vgz = −iBgkeik(z−ct)I0 (kr) + Ug

(5.43c) vfθ = 0 (5.44c) vgθ = 0

(5.19) Pif =
iρfkBfe

ik(z−ct) (Uf − c) ξ

I1 (kR) K1 (kR)
− U2

f ρf (5.26) Pig = iρgBgkeik(z−ct) (Ug − c) I0 (ka)

with ξ = K1 (kR) I0 (ka) + I1 (kR) K0 (ka) −U2
g ρg
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solved for will be defined as η. Since any streamline can be identified as Ψk = 0 [44],

let Ψk = 0 at the gas-liquid interface. Along the resulting streamline,

0 = irBfe
ik(z−ct)

(
K1 (kη)

K1 (kR)
− I1 (kη)

I1 (kR)

)
+

1

2
Ufη

2, (5.50)

the pressure must be constant.

The maximum attainable wave amplitude can then be found by considering the

unsteady Bernoulli equation for the liquid film [70],

dφf

dt
+

Pf

ρf

+
1

2
∇φf ·∇φf = 0. (5.51)

Despite the fact that it is small, the convective term is included in this equation

to ensure the pressure is completely constant over the streamline. For flow along a

streamline, both sides of the following equation must be constant:

Pf = −ρf

(
∂φf

∂t
+ Uf

∂φf

∂z
+

1

2
∇φf ·∇φf

)
. (5.52)

This equation must be evaluated at the gas-liquid interface, where r = a.

To satisfy this requirement at the gas-liquid interface, the value of φf must be

substituted into Equation 5.52. This equation will include an unknown, Bf , which

must be defined in order to find the maximum wave amplitude. The parameter Bf

can now be defined in terms of the result of Equation 5.50, as

Bf = −
1
2
iUfηI1 (kR) K1 (kR) eik(z−ct)

I1 (kη) K1 (kR) − K1 (kη) I1 (kR)
. (5.53)

In order to satisfy the condition that the pressure is constant along the interface,

the right hand side of Equation 5.52 should be zero. Using this information and

substituting Equation 5.53 and Equation 5.41 into Equation 5.52 yields the equation

0 = − (kη)2 − 4 − 4kη (K0 (kη) I1 (kR) + K1 (kR) I0 (kη))

Ω

+
(kη)2 (I1 (kR) K0 (kη) + K1 (kR) I0 (kη))2

Ω2
,

(5.54)

where Ω = I1 (kη) K1 (kR)−K1 (kη) I1 (kR). Equation 5.54 must be solved implicitly,

as kη = f (kR).
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Using this equation, a maximum value of kη, (kη)max, can be obtained as a

function of kR, which will be used as the effect of the finite amplitude of the wave

on the stability criteria previously derived.

Implementation

In order to implement the theory of waves of finite amplitude into the inequality

posed by Equation 5.40, a closure relation must be provided for the wave number,

or, more practically, the quantity ka. As previously discussed, the values of kη that

satisfy Equation 5.54 will allow for the determination of the maximum value of kη,

(kη)max. In order to accomplish this, the roots of Equation 5.54 must be found. To

determine an appropriate method of solving the equation, the left hand side can be

rewritten

f (kη) = − (kη)2 − 4 − 4kη (K0 (kη) I1 (kR) + K1 (kR) I0 (kη))

Ω

+
(kη)2 (I1 (kR) K0 (kη) + K1 (kR) I0 (kη))2

Ω2
.

(5.55)

The roots can then be found by studying the function given in Equation 5.55 by

considering that when the value of the residual is zero, Equation 5.54 is satisfied.

Plotting Equation 5.55 for specific values of kR allows for the understanding of the

behavior of the roots of Equation 5.55 as a function of kη. This can be accomplished

by considering the non-zero values of the function, Equation 5.55, to be considered

as a residual, an error in the calculation of the roots of the function. For small,

near-zero values of kR, Equation 5.55 has no real roots for positive values of kη, and

Equation 5.54 has no solutions. The functions are not equivalent for kη = 0, as seen

in Figure 5.3, but quickly converge to the same value and diverge from zero, as in

Figure 5.4. As kR is increased, the function is no longer monotonically increasing,

as seen in Figure 5.5. The minimum of each function decreases as the value of kR

increases. This can be further studied by restricting the range of the scale of the

ordinate. For larger values of kR, Equation 5.55 has two real roots for positive values



64

0 0.05 0.1 0.15 0.2 0.25 0.3
−15

−10

−5

0

5

10

15

kη

R
es

id
ua

l

 

 

0.0001
0.0005

Fig. 5.3. Plot of Equation 5.55 for kR = 0.0001,0.0005 (for small kR).
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Fig. 5.4. Plot of Equation 5.55 for kR = 0.0001,0.0005.
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Fig. 5.5. Plot of Equation 5.55 for kR = 1, 2, 4, 5.
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of kη: one root closer to zero (herein referred to as the “left” root) and a root further

from zero (the “right” root). Figure 5.6 shows several plots of Equation 5.55 that

show the existence of both roots. In this figure, both the left and right roots appear to

increase in magnitude for greater values of kR. In Figure 5.7, it can be seen that the
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Fig. 5.6. Plot of Equation 5.55 for kR = 1, 2, 3.

distance between the left roots for each value of kR decreases for increasing values of

kR. Despite this apparent convergence, the distance between the left and right roots

is increasing. For kR ≈ 4 and larger (as shown in Figure 5.8), the left root converges

on a specific value, while the right root appears to grow towards infinity. With this

knowledge, it should be possible to use the known solution to Equation 5.54, the

left root, as the value of (kη)max as a function of kR. Plotting the value of (kη)max

versus kR in Figure 5.9, it can be seen that the value of (kη)max clearly converges on

a value, specifically 1.5997. With this knowledge, the effect of finite wave amplitude
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Fig. 5.7. Plot of Equation 5.55 for kR = 1, 2, 3, 4.
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Fig. 5.8. Plot of Equation 5.55 for kR = 3, 4, 5, 6.
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on the stability of a counter-current annular flow will be accounted for by assuming

(kη)max = 1.6 in this analysis.
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Fig. 5.9. Value of (kη)max versus kR at the wave cusp.

5.2.9 Analysis of the Limiting Wave

Using the solution generated in Section 5.2.8, the wave number, k from Equa-

tion 5.40 can be eliminated in the context of the product of the wave number and

the distance from the tube centerline to the gas-liquid interface, a. Therefore, de-

termination of the product kR is necessary in order to remove the wave number as

a variable in this analysis. This is accomplished by considering the dependence of

Equation 5.40 on the parameter kR.

The stability criteria previously developed as Equation 5.40 is

0 < − σγ (k2a2 − 1) I1 (ka)

ka2 (ρfξI1 (ka) − ρgγI0 (ka))
+

ρfρgξγ (Uf − Ug)
2 I1 (ka) I0 (ka)

(ρfξI1 (ka) − ρgγI0 (ka))2 . (5.40)



69

with ξ = I0 (ka) K1 (kR)+I1 (kR)K0 (ka) and γ = K1 (kR) I1 (ka)−I1 (kR) K1 (ka).

Since the value of kR is only present in ξ and γ, and the quantity ka is known, limiting

values of ξ and γ may be determined. To accomplish this, both sides of Equation 5.40

are multiplied by the quantity (ρfξI1 (ka) − ρgγI0 (ka)), which is valid if it is assumed

that γ will always be negative. This operation results in the inequality

0 < −σγ (k2a2 − 1) (ρfξI1 (ka) − ρgγI0 (ka)) I1 (ka)

ka2
+ρfρgξγ (Uf − Ug)

2 I1 (ka) I0 (ka).

(5.56)

Dividing both sides of this inequality by the quantity ξγ, which will be negative since

γ < 0, yields

0 > −σ (k2a2 − 1) (ρfξI1 (ka) − ρgγI0 (ka)) I1 (ka)

ξka2
+ ρfρg (Uf − Ug)

2 I1 (ka) I0 (ka).

(5.57)

Finally, distributing the quantity ξ results in the inequality

0 > −
σ (k2a2 − 1) I1 (ka)

(
ρfI1 (ka) − ρg

γ

ξ
I0 (ka)

)

ka2
+ρfρg (Uf − Ug)

2 I1 (ka) I0 (ka).

(5.58)

Equation 5.58 is equivalent to Equation 5.40 for the assumptions that γ < 0 and

ξ > 0. In Equation 5.58 a single term can be expressed that represents the effect of

γ and ξ. As the value of ka was established to be approximately 1.6 in Section 5.2.8,

Equation 5.59 can be written as γ/ξ = f(kR):

γ

ξ
=

K1 (kR) I1 (ka) − I1 (kR) K1 (ka)

I0 (ka) K1 (kR) + I1 (kR) K0 (ka)
. (5.59)

A graphical representation of Equation 5.59 is shown in Figure 5.10. Based on this

graphical result, it can be seen that for kR > 5, the expression γ/ξ asymptotically

approaches the value −1.2803. Assuming this asymptotic value is approached, then

the equation γ/ξ = −1.2803 can be used as a closure relation in the instability
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Fig. 5.10. Functional dependence of γ/ξ on kR.
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criteria rewritten as Equation 5.58. Therefore, the resulting stability criteria posed

for an adiabatic, counter-current annular flow is

0 > −
σ (k2a2 − 1) I1 (ka)

(
ρfI1 (ka) − ρg

γ

ξ
I0 (ka)

)

ka2
+ ρfρg (Uf − Ug)

2 I1 (ka) I0 (ka)

(5.58)

with ka = 1.6 and γ/ξ = −1.2803.
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6. MODEL ASSESSMENT

The model developed in Section 5 provides a method of predicting flooding using

the assumption that flooding is caused by instability-driven wave growth. To assess

this model, its mathematical limits will be investigated and a comparison of this

model with experimental data will be used for validation.

6.1 Analysis

In order to verify that the model given in Section 5 is suitable for the calcu-

lation of stability criteria for flooding, several analyses will be performed. First,

equivalence to Rayleigh’s solution to the problem of vibrations of a cylindrical jet,

as given by Lamb [57], will be verified as a limiting case. Then, the asymptotic

dependence of flooding on tube diameter will be investigated with the new model.

From this, the transition from the applicability of the Wallis model to that of the

Kutateladze-like correlations and dependence of this transition on the Bond number

will be demonstrated. Finally, dimensionless parameters derived from the new model

will be discussed.

6.1.1 Simplification to Rayleigh’s Model

In Hydrodynamics, Lamb [57] describes the solution developed by Rayleigh for

interfacial instability on a vibrating cylindrical jet. This derivation is conducted

given the assumptions that a cylindrical column of fluid is surrounded by an infinite

field of a different fluid. The column of fluid is parallel to gravity and is analyzed

using the same coordinate system given by Figure 5.1. The system is adiabatic, and

neither fluid is undergoing motion. Given these considerations, this stability model

should be a limiting case of the model given in Section 5, where the radius of the

tube is infinite and the velocities of both fluids, Uf and Ug, are zero. To verify that
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the newly developed model is analytically sound, it should be possible to show that

it can reduce to Rayleigh’s model given these assumptions.

As shown in Section 5, the interfacial stability of an annular counter-current flow

that has been developed is based on the equation

Cb =

√
− σγ (k2a2 − 1) I1 (ka)

ka2 (ρfξI1 (ka) − ρgγI0 (ka))
+

ρfρgξγ (Uf − Ug)
2 I1 (ka) I0 (ka)

(ρfξI1 (ka) − ρgγI0 (ka))2 , (5.39)

where Cb is the component of the wave speed that may become imaginary. In order to

show that the new stability model can be simplified to give Rayleigh’s model, it must

be noted that Lamb presents Rayleigh’s result in terms of the angular frequency, ω,

which is defined in terms of the wave speed, c, and the wave number, k, as

ω = kc. (6.1)

Substituting Equation 5.37 into Equation 6.1, the angular frequency is written

ω = kCa + kCb, (6.2)

or, analogous to Equation 5.37

ω = Ωa + Ωb, (6.3)

with Ωa = kCa and Ωb = kCb. Using these definitions, Ωb is written

Ωb =

√
− kaσγ (k2a2 − 1) I1 (ka)

a3 (ρfξI1 (ka) − ρgγI0 (ka))
+ k2

ρfρgξγ (Uf − Ug)
2 I1 (ka) I0 (ka)

(ρfξI1 (ka) − ρgγI0 (ka))2 . (6.4)

This equation in terms of ΩB can then be used to derive a new inequality for inter-

facial stability, as Ωb is imaginary when the expression under the radical is less than

zero. Mathematically, this is expressed as

0 <

√
− kaσγ (k2a2 − 1) I1 (ka)

a3 (ρfξI1 (ka) − ρgγI0 (ka))
+ k2

ρfρgξγ (Uf − Ug)
2 I1 (ka) I0 (ka)

(ρfξI1 (ka) − ρgγI0 (ka))2 . (6.5)

Now that this inequality has been formulated, simplifying assumptions can be im-

posed to derive Rayleigh’s equation. To begin, the limit of Equation 6.5 as the radius,
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R, tends toward infinity must be found. As only γ and ξ are explicit functions of

the tube radius, the following equations are posed:

lim
R→∞

γ = lim
R→∞

K1 (kR) I1 (ka) − lim
R→∞

I1 (kR)K1 (ka) (6.6)

lim
R→∞

ξ = lim
R→∞

I0 (ka) K1 (kR) + lim
R→∞

I1 (kR)K0 (ka) . (6.7)

Two functions in the definitions of γ and ξ are calculated based on the tube diameter.

These are a modified Bessel function of the second kind, K1 (kR) and a modified

Bessel function of the first kind, I1 (kR). As the limit of the modified Bessel function

of the second kind is zero as kR goes to infinity (see Appendix A), terms involving

this function go to zero. Therefore, Equations 6.6 and 6.7 are equivalent to

lim
R→∞

γ = − lim
R→∞

I1 (kR)K1 (ka) (6.8)

and

lim
R→∞

ξ = lim
R→∞

I1 (kR)K0 (ka) . (6.9)

For clarity, Equation 6.5 is now written

0 < β1 + β2, (6.10)

with β1 and β2 defined as

β1 = − kaσγ (k2a2 − 1) I1 (ka)

a3 (ρfξI1 (ka) − ρgγI0 (ka))
(6.11)

and

β2 =
k2ρfρgξγ (Uf − Ug)

2 I1 (ka) I0 (ka)

(ρfξI1 (ka) − ρgγI0 (ka))2 . (6.12)

In order to find the limit of the inequality posed by Equation 6.5, the equation

lim
R→∞

(β1 + β2) = lim
R→∞

β1 + lim
R→∞

β2 (6.13)

must be simplified using Equations 6.8 and 6.9. This task is accomplished by first

identifying which parameters are functions of R, specifically by identifying the de-

pendence of β1 and β2 on γ and ξ, which can be written as

lim
R→∞

β1 = lim
R→∞

− kaσγ (R) (k2a2 − 1) I1 (ka)

a3 (ρfξ (R) I1 (ka) − ρgγ (R) I0 (ka))
(6.14)
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and

lim
R→∞

β2 = lim
R→∞

k2ρfρgξ (R) γ (R) (Uf − Ug)
2 I1 (ka) I0 (ka)

(ρfξ (R) I1 (ka) − ρgγ (R) I0 (ka))2 . (6.15)

Substituting Equations 6.8 and 6.9 into Equations 6.14 and 6.15, yields

lim
R→∞

β1 = lim
R→∞

− kaσ (−I1 (kR) K1 (ka)) (k2a2 − 1) I1 (ka)

a3 (ρf (I1 (kR) K1 (ka)) I1 (ka) − ρg (−I1 (kR) K0 (ka)) I0 (ka))
(6.16)

and

lim
R→∞

β2 = lim
R→∞

k2 ρfρg (I1 (kR)K0 (ka)) (−I1 (kR) K1 (ka)) (Uf − Ug)
2 I1 (ka) I0 (ka)

(ρf (I1 (kR) K1 (ka)) I1 (ka) − ρg (−I1 (kR) K0 (ka)) I0 (ka))2 .

(6.17)

It can be seen that I1 (kR) can be factored from the numerator and denominator of

both Equation 6.16 and Equation 6.17, simplifying these equations to

lim
R→∞

β1 = lim
R→∞

−
(

I1 (kR)

I1 (kR)

)
kaσ (−K1 (ka)) (k2a2 − 1) I1 (ka)

a3 (ρf (K1 (ka)) I1 (ka) − ρg (−K0 (ka)) I0 (ka))
(6.18)

and

lim
R→∞

β2 = lim
R→∞

(
I1 (kR)

I1 (kR)

)
k2 ρfρg (K0 (ka)) (−K1 (ka)) (Uf − Ug)

2 I1 (ka) I0 (ka)

(ρf (K1 (ka)) I1 (ka) − ρg (−K0 (ka)) I0 (ka))2 .

(6.19)

Therefore, the limit of these functions as the radius becomes infinite can be expressed

as

lim
R→∞

β1 =
kaσI1 (ka) K1 (ka) (k2a2 − 1)

a3 (ρfK0 (ka) I1 (ka) − ρg (−K1 (ka)) I0 (ka))
(6.20)

and

lim
R→∞

β2 = −k2 ρfρgI0 (ka) I1 (ka) K0 (ka) K1 (ka) (Uf − Ug)
2

(ρfK0 (ka) I1 (ka) − ρg (−K1 (ka)) I0 (ka))2 . (6.21)

Similar to the analysis of Kelvin-Helmholtz instability of planar flow in a channel [35],

modified liquid and gas densities can be expressed by considering the effect of depth

on the density of each fluid as

ρ̂f = ρfK0 (ka) I1 (ka) (6.22)

and

ρ̂g = −ρgK1 (ka) I0 (ka) . (6.23)
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Equations 6.20 and 6.21 are then written

lim
R→∞

β1 =
kaσI1 (ka) K1 (ka) (k2a2 − 1)

a3 (ρ̂f − ρ̂g)
(6.24)

and

lim
R→∞

β2 = −k2 ρfρgI0 (ka) I1 (ka) K0 (ka) K1 (ka) (Uf − Ug)
2

(ρ̂f − ρ̂g)
2 . (6.25)

Substituting Equation 6.24 and Equation 6.25 into Equation 6.10 yields

0 <
kaσI1 (ka) K1 (ka) (k2a2 − 1)

a3 (ρ̂f − ρ̂g)
−k2 ρfρgI0 (ka) I1 (ka) K0 (ka) K1 (ka) (Uf − Ug)

2

(ρ̂f − ρ̂g)
2 .

(6.26)

By making the reasonable assumption that the modified Bessel functions of the first

and second kinds are always positive, Equation 6.26 can be divided by the quantity

I0 (ka) K1 (ka) to give

0 <
kaσI1 (ka) (k2a2 − 1)

a3I0 (ka) (ρ̂f − ρ̂g)
− k2 ρfρgI1 (ka) K0 (ka) (Uf − Ug)

2

(ρ̂f − ρ̂g)
2 . (6.27)

By employing the assumption of stationary fluids, where Uf = Ug = 0, it is easily

seen that

0 <
kaσI1 (ka) (k2a2 − 1)

a3I0 (ka) (ρ̂f − ρ̂g)
. (6.28)

Equation 6.28 is the stability condition of Rayleigh which is posed by Lamb [57].

Therefore, by making the appropriate assumption of a stationary column of fluid

surrounded by an infinite field of stationary fluid, the new stability model for counter-

current annular flow in a tube reduces to the stability model posed in historical

literature.

6.1.2 Investigation of Bond Number Dependence

Previous literature [2] has noted that for tubes with dimensionless diameters

greater than 40, flooding in these systems does not appear to be a function of

tube diameter. As the dimensionless diameter has been defined as D∗ =
√

Bo,
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the stability-based model of flooding can be analyzed to see if this behavior can be

derived from the model.

The inequality presented as Equation 5.58 can be rewritten using the convention

that positive values represent stabilizing forces as

0 <

σ (k2a2 − 1) I1 (ka)

(
ρfI1 (ka) − ρg

γ

ξ
I0 (ka)

)

ka2
− ρfρg (Uf − Ug)

2 I1 (ka) I0 (ka).

(6.29)

As the quantities ka and kR have been calculated in Section 5, Equation 6.29 can

also be formulated

0 <

σ (k2a2 − 1) I1 (ka)

(
ρfI1 (ka) − ρg

γ

ξ
I0 (ka)

)

(a) (ka)
− ρfρg (Uf − Ug)

2 I1 (ka) I0 (ka).

(6.30)

It can be seen from Equation 6.30 that if ka and kR are known, the inequality could

be expressed by writing a, the film thickness, in terms of ā, the average annular film

thickness that can be calculated using the model presented in Section 3. The relative

velocity that is used for these calculations is actually defined as the relative superficial

velocity, 〈jf 〉 − 〈jg〉, as is consistent with previous literature (such as Mishima and

Ishii [61]).

To examine the dependence of the stability-based model of flooding on tube

diameter, Equation 6.30 will be considered a function of tube diameter. While the

film thickness model that is employed explicitly depends on the tube diameter, the

superficial velocities of each fluid are also determined based on the cross-sectional

dimensions of the tube.

Due to the nonlinear nature of Equation 6.30, the effect of tube diameter on

the new model of flooding is not easily studied by simply calculating the limit of

the function as the diameter tends towards infinity. To address this, a numerical

investigation is conducted to examine the gas flow rate needed to cause flooding

for a specific liquid flow rate as a function of tube diameter. The parameters used
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for this study are given in Table 6.1. Results of this investigation are shown in

Table 6.1

Parameters for diameter dependence investigation.

Parameter Value

D 0.04 m − 0.4 m

|Qf | 0.002 m3/s

|jf | 0.0028 m/s − 0.1592 m/s

|j∗f | 0.0017 − 0.0045

ρf 997.1 kg/m3

ρg 1.18 kg/m3

σ 0.07197 N/m

µf 0.0008905 Ns/m2

√
Bo 14 − 110

Figures 6.1, 6.2, 6.3, 6.4, and 6.5. (Plots of the gas volumetric flow rate, gas superficial

velocity, average annular liquid film thickness, void fraction, and gas Wallis parameter

as a function of tube diameter are provided in Appendix E). Each parameter has

been plotted in terms of the square root of the Bond number, equivalent to the

dimensionless diameter, D∗, which is used to characterize the transition from “small”

to “large” tube diameters. As expected, Figure 6.1 shows that the volumetric gas

flow rate is increases with the tube diameter for a fixed liquid volumetric flow rate.

Since the diameter of the tube is increasing, the superficial velocity of both the

gas and liquid for fixed volumetric flow rates decreases as tube size increases. This

phenomenon is shown in Figure 6.2. It is important to note that the change in gas

superficial velocity is decreasing for increasing diameter size and Bond number. The

film thicknesses corresponding to the fixed liquid volumetric flow rate and the gas

flow rate that causes flooding are not monotonic.
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While it is expected that the film thickness should decrease for increasing tube

diameter, Figure 6.3 presents a non-linear dependence of annular liquid film thick-

ness on tube diameter. At
√

Bo ≈ 40, a discontinuity appears due to the transition

between laminar and turbulent wall friction factor models in the liquid film thickness

model. The film thickness then continues to decrease until
√

Bo ≈ 60, where the

film thickness appears to reach a minimum. A maximum film thickness is then ob-

tained at
√

Bo ≈ 100, followed by another decrease in film thickness. This complex

functional dependence of the film thickness on diameter is caused by not only the

obvious changing of the tube diameter, but also the effect of the tube diameter on the

superficial velocities used to calculate the film thickness. While a large tube should

intuitively decrease in film thickness for a fixed liquid flow rate, the dependence of

the film thickness on tube diameter becomes non-linear as the difference between su-

perficial velocities continues to increase. Similarly, Figure 6.4 shows the void fraction

calculated from this predicted average annular film thickness. It is important to note

that while the initial change in void fraction is significant, the more complex behavior

of the film thickness that develops for
√

Bo > 60 has less of a profound effect on the

void fraction. Considering these results, the Wallis parameter for the gas appears

to show an asymptotic dependence on the square root of the Bond number, D∗, as

shown in Figure 6.5. For these values of the gas Wallis parameter, the liquid Wallis

parameter, j∗f , has an overall range of 0.0017 to 0.0045, and is relatively steady at

a range of 0.0017 to 0.0027 for
√

Bo ≈ 40. From this analysis, the trend towards

a lack of diameter dependence for large-diameter tubes (those with dimensionless

diameters greater than 40) can be inferred.

6.1.3 Dimensionless Characterization

While flooding has been categorized historically by the Wallis number, Kutate-

ladze number, and the Bond number, it has been noted in literature, particularly by

McQuillan and Whalley [7], that these parameters alone do not sufficiently charac-
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terize systems where flooding occurs. Specifically, the functional dependence of these

three dimensionless numbers on gravity implies that gravity affects the stability of

vertical, counter-current annular flow despite the fact that the gravitational field is

normal to the forces that would be affecting flow stability. The effect of gravity on

film thickness is established by the model developed in Section 3, but this should have

significantly less of an effect than is implied by the Bond number. Although flooding

data is known to be characterized in the Wallis and Kutateladze correlations using

the aforementioned parameters, it can be inferred that the nature of the curve gener-

ated by the correlations contributes more to this success than the description of the

physics of flooding. Therefore, the suggestion of a new set of dimensionless numbers

based on the new model for flooding is proposed as being a more phenomenologically

sound method of describing flooding conditions.

Film Thickness Analysis

The model for average annular film thickness in co- and counter-current flow de-

scribed in Section 3 is characterized by common dimensionless parameters. The wall

shear is governed by the Reynolds number, defined by Equation 3.6. The Reynolds

number is, in turn, used to calculate a dimensionless friction factor.

The interfacial shear must be characterized by a term developed from the field

equation being used, Equation 3.9. Dividing Equation 3.9 by gz (ρg − ρf) yields

1 =
τwfPwf

gzA (ρg − ρf ) (1 − 〈αg〉)
− τiPi

gzA (ρg − ρf ) (1 − 〈αg〉)
− τiPi

Agz (ρg − ρf ) 〈αg〉
. (6.31)

From this equation, it can be seen that the term

Tτ =
τiPi

gzA (ρg − ρf ) 〈αg〉
(6.32)
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represents the momentum loss of the fluid due to interfacial shear stress on the gas

flow. Substituting the definition of τi, Equation 3.13, into Equation 6.32 results in

Tτ =

(
fiρg |vr| vr

2

)
Pi

gzA (ρg − ρf ) 〈αg〉
(6.33)

with (jf − jg) used as the definition of relative velocity, vr. The interfacial friction

factor, fi, is found using a semi-empirical correlation that is dependent on the void

fraction and can be neglected in the development of this dimensionless number.

Therefore, neglecting fi and replacing the relative velocity with this quantity, the

term can be rewritten

Tτ =

(
ρg (〈jf 〉 − 〈jg〉)2

2

)
Pi

gzA (ρf − ρg) 〈αg〉
. (6.34)

The interfacial wetted perimeter, Pi, can be calculated as

Pi = 2πā, (6.35)

with ā being the average circumferential radius between the tube centerline and the

gas-liquid interface. As the cross-sectional area of the tube, A is

A = πR2. (6.36)

the presence of the void fraction in Equation 6.34 relates the cross-sectional area of

the gas to the tube cross sectional area as

〈αg〉 =
ā2

R2
. (6.37)

Therefore,
Pi

A 〈αg〉
=

2πā

πR2
ā2

R2

=
2

ā
. (6.38)

Using this information, Equation 6.34 reduces to

Tτ =
ρg (〈jf 〉 − 〈jg〉)2

āgz (ρf − ρg)
. (6.39)
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If the density ratio is then neglected (as it will be considered in the “Stability Anal-

ysis”), this equation simplifies to

Tτ =
(〈jf〉 − 〈jg〉)2

āgz

. (6.40)

As the average distance from the tube centerline to the gas-liquid interface is the

term that is being calculated using Equation 3.9, the term ā should be replaced by

a parameter of the dimension of distance that has a strong relation to the term ā.

One such parameter would be the tube diameter, D. This allows Tτ to be written

Tτ =
(〈jf〉 − 〈jg〉)2

gzD
. (6.41)

The term is now cast in terms of the Froude number [71], as

Fr2 =
(〈jf 〉 − 〈jg〉)2

gzD
. (6.42)

The Froude number is a ratio of the inertia force to the gravitational force, and, like

the Reynolds number, has a weak effect on the stability of annular counter-current

flows via the film thickness closure relation.

Stability Analysis

Though the calculation of the average annular film thickness is clearly defined

by several dimensionless numbers, the dependence of flooding on these parame-

ters should be weaker than its dependence on the parameters that can be derived

from Equation 6.30. These dimensionless parameters can be determined by non-

dimensionalizing Equation 5.40 as

0 < −γ (k2a2 − 1) I1 (ka)

ka
+

aρfρgξγ (〈jf 〉 − 〈jg〉)2 I1 (ka) I0 (ka) (ρfξI1 (ka) − ρgγI0 (ka))

σ (ρfξI1 (ka) − ρgγI0 (ka))2 .

(6.43)

The first dimensionless parameter considered is ka, a dimensionless wave number,

which represents the maximum product of the wave number and distance from the
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tube centerline to the gas-liquid interface. This quantity was previously calculated

in Section 5.2.8. Using this parameter, dimensionless densities for the liquid and the

gas phase can be constructed as

ρ∗

f =
ρf

ρfξI1 (ka) − ρgγI0 (ka)
(6.44)

and

ρ∗

g =
ρg

ρfξI1 (ka) − ρgγI0 (ka)
. (6.45)

The unfortunate dependence of the dimensionless liquid and gas densities on the

dimensionless wave number can lead to approximations of ρ∗

f and ρ∗

g as

ρ∗

f ≈ ρf

ρf − ρg
(6.46)

and

ρ∗

g ≈ ρg

ρf − ρg
. (6.47)

Finally, the remaining parameters can be grouped to form a term that resembles

a modified Weber number,

W̃e =
(ρfξI1 (ka) − ρgγI0 (ka)) (〈jf〉 − 〈jg〉)2 a

σ
, (6.48)

where the Weber number is a ratio of the inertia force to the surface tension force.

Employing the assumptions previously used to describe the density difference and

the parameter a, a more practical Weber number can be constructed and written as

We =
(ρf − ρg) (〈jf 〉 − 〈jg〉)2 D

σ
. (6.49)

Summary

A summary of the dimensionless parameters that have been determined to char-

acterize the stability-based model of flooding developed in Section 5 is given by

Table 6.2. While the inertia force appears in several parameters, these dimensionless

terms are derived from two separate but coupled field equations and are therefore the
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most appropriate parameters that can be used to model flooding based on the models

that have been developed in this dissertation. The derivation of an empirical corre-

lation for flooding based on these parameters could be developed, but this method

of correlation would require a plethora of adiabatic flooding data points from numer-

ous experimental facilities. It is important to note the expected relative influence of

Table 6.2

Dimensionless numbers found to characterize flooding.

Number Definition Meaning Model of Origin

Re
ρf |〈jf 〉|D

µf

inertia force

viscous force
film thickness

Fr

√
(〈jf 〉 − 〈jg〉)2

gzD

inertia force

gravitational force
film thickness

k∗ ka relationship between stability
wave number and
gas core radius

We
(ρf − ρg) (〈jf〉 − 〈jg〉)2 D

σ

inertia force

surface tension force
stability

ρ∗

f

ρf

ρf − ρg

impact of liquid density stability

ρ∗

g

ρg

ρf − ρg
impact of gas density stability

each dimensionless number on determining the pairs of data that describe flooding.

The dependence of the stability model on the Reynolds and Froude numbers should

be less significant than that of the remaining terms due to the limited roll of the

film thickness model in the stability model. Overall, the Weber number and the

dimensionless wave number should have the most profound effect on the prediction

of flooding. Particularly, the method of determining the value of ka used in Section 5

has a controlling effect on the stabilizing term of the flooding model. Previous work
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by Zapke and Kroger [72, 73] has identified that flooding can be correlated to the

Froude number, defined above, and the Ohnesorge number, which is defined as

Oh =

√
We

Re
. (6.50)

Using these parameters to correlate flooding data via experimental observation im-

plies possible success in using the newly developed stability model of flooding, though

the use of the Ohnesorge number may incorrectly represent the relative importance

of the Weber and Reynolds numbers by fixing the relative magnitude of the terms.

6.2 Validation

Quantitative assessment of the stability-based model of flooding is accomplished

by validating the model with experimental data. The available literature on flooding

in vertical adiabatic tubes that contain annular counter-current flows was surveyed,

and two sets of experimental data are used to perform a numerical analysis of the

stability-based model for flooding.

6.2.1 Description of Validation Data

Although there has been extensive research on flooding in vertical adiabatic tubes,

two major issues preclude the use of this data for validating the stability-based model

of flooding that has been developed: unavailability of a majority of data and the low

fidelity of a significant set of the data that is attainable. A significant quantity

of experimental data issued at Atomic Energy Research Establishment (AERE, see

Bankoff and Lee [2] for examples) has been used in work from previous decades, but

efforts to find many of these reports either yielded no results or provided documents

that did not include experimental data. While numerous sources cite and use ex-

perimental data from the work of Bharathan and Wallis [47], including Bankoff and

Lee [2] and McQuillan and Whalley [7], it was found that the liquid flow rate into
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the test section of their experiment was not measured with appropriate electronic

instrumentation, but rather by analyzing the length of time it took the water exiting

the test section to fill a vessel of known volume. This method is not only inaccu-

rate but results in experimental data that does not reflect the flow rate actually

entering the test section via liquid injection method. Following extensive research,

it was concluded that two experimental data sets could best be used to validate the

stability-based model of flooding developed in Section 5: the data of Williams [55]

and Tien, Chung, and Liu [56].

Data of Williams

The test section for the facility of Williams [55] consists of an approximately

1.8 m long tube that is 76.2 mm in diameter. The working fluids in this experiment

are air and water. Water enters the tube via an upper plenum that fills and releases

water via twelve equally spaced holes around the periphery of the top of the test

section. This water flows down the walls of the tube, forming a liquid annulus. Air

is injected into the test section directly by using a nozzle that is placed in the bottom

of the test section.

In order to conduct each experiment, the liquid flow rate is fixed before entering

the test section and the gas flow rate is increased incrementally until flooding occurs.

This flow reverse was noted by detecting a sudden change in the pressure drop over

the length of the test section by using a differential pressure transducer.

While the experimental data of Williams [55] does not cover a wide range of

operating conditions, the data appears to be of high quality in that none of the

reported values appear to be counterintuitive and unphysical. The experimental

measurements provided are a good set of validation data, albeit over a limited range

of parameters.
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Data of Tien, Chung, and Liu

In the experiments of Tien, Chung, and Liu [56], tubes of 15.9 mm, 31.8 mm,

46.0 mm, and 69.9 mm in diameter and 0.914 m in length are used in the battery

of experimental tests. Liquid is introduced into the tube by using the “top flood”

method, where the liquid is introduced into an upper plenum, accumulates in that

plenum, and then overflows down the inside of the tube wall, forming an annulus.

The liquid inlet or outlet can be sharp edged or tapered. Gas is introduced into

the tube either by directly entering the nozzle in the test section or by indirectly

entering from a lower plenum. Air is the only gas used in these experiments, and

the liquids used include water, water with Surfynol (a surfactant), silicon oil, and

Chevron white oil.

The experimental facility is operated similarly to that of Williams [55] in terms

of setting and changing fluid flow rates. Flooding is identified by Tien, Chung, and

Lieu as having occured by monitoring the test section pressure for a sudden change,

as well as by observing the “chaotic flow pattern” that formed following flooding via

the transparent test section. More information regarding the experimental facility

or test procedures can be found in reference [56].

Following an initial analysis of the data reported by Tien, Chung, and Liu [56],

it was concluded that the overall quality of the reported values was not exceptional

in all cases and was unusable in a subset of cases. Several combinations of tube

diameters, inlet and outlet conditions, fluids and injection methods provided results

that appeared inconsisttnt, and all of the sets of flooding data for white oil appear

to display no discernable trend. Additionally, it can be seen in the results shown

in Section 6.2.2 that the gas flow rates needed to cause flooding appear to have

been “overshot,” meaning that care was not taken to identify exactly the conditions

causing flooding while the gas flow rate was being increased. The data reported by

Tien, Chung, and Lieu that are used as validation data are those sets which include

decreasing gas superficial velocities for increasing liquid delivery rates and do not
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appear to include flooding conditions that would not allow for momentum to be

conserved in the unperturbed system. These data sets are identified in Appendix F.

6.2.2 Model Performance and Results

The stability-based model for the prediction of flooding developed in Section 5 has

been used to analyze the experimental data of Williams [55] and Tien, Chung, and

Liu [56]. A plot of the results for Williams’ data [55] in terms of superficial velocity is

shown in Figure 6.6 and a plot of the Wallis parameter is shown in Figure 6.7. It can

clearly be seen that there are three distinct sets of data in these figures (from top to

bottom): a set of flow reversal values determined by considering a momentum balance

between the fluids, experimental data, and a set of values determined by using the

new stability theory of flooding. A similar trend can be seen in the calculation

of the experimental results of Tien, Chung, and Liu [56], shown in Figure 6.8 and

Figure 6.9. The three groups of results are more pronounced due to the increased

number of points analyzed, particularly in regards to the plot of Wallis parameters

shown in Figure 6.9. It should be noted that Figure 6.8 and Figure 6.9 show all

experimental points analyzed without distinction of experimental test sets. Results

for each experimental set are provided in Appendix F.

To quantify the assessment of both the momentum balance and stability-based

models of flooding, the standard deviation of the relative error is used as the figure

of merit. As the standard deviation of the relative error is the same between the

superficial velocity comparison and the comparison of Wallis parameters, the error for

the momentum balance and stability analysis are defined in terms of the superficial

velocity as

σmodel =

√√√√√√

N∑

i=1

(〈
j∗g
〉
model〈

j∗g
〉
exp

− 1

)2

i

N − 1
. (6.51)
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for flooding.
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The experimental error reported by Williams [55] is approximately 10%, and

that of Tien, Chung, and Liu [56] is not reported. Table 6.3 shows the standard

deviation of the relative error for both sets of analyzed data. By comparing Fig-

ures 6.6, 6.7, 6.8, and 6.9 and Table 6.3, it can be seen that while, quantitatively,

the standard deviation of the relative error of the stability-based model is better

than that of the momentum-based model, the graphical representation of the stan-

dard deviations show that both sets of predictions are inaccurate. The analysis with

the momentum-based model is consistently overpredicting the gas flow rate needed

to cause flooding, while the computational results of the stability-based model are

consistently conservative.

The underprediction of the gas flow rates when using the stability-based model

may be attributable to the use of the finite amplitude wave assumption employeed

in Section 5.2.8. The work of Kordyban and Ranov [69] and Mishima and Ishii [61]

both demonstrate the underprediction of experimental stability data for two-phase

co-current flows in rectangular ducts. It is hypothesized that the cylindrical geometry

coupled with the annular flow pattern in this analysis increases the conservatism

inherent in applying this method to vertical counter-current annular flows. As the

mathematical analysis of the stability-based model in Section 6.1 indicated that the

model should be able to predict stability criteria for flooding in principle, further

research is suggested in the determination of the closure relations to the model.

Using the result of the finite amplitude analysis, the wave number can be found by

considering the relation

ka = 1.6 (6.52)

with k = 2π/λ. Estimating the value of a as the tube radius, 38.1 mm, the wave-

length used in determining the stability of the flow is found to be about 30 mm. A

continuous wave of this wavelength may not be reasonable to observe in the rough

film that has been noted immediately before flooding. An improved estimate of
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the dimensionless wave number, k∗ = ka, should provide a better estimate as to

appropriate prediction of the conditions that will cause flooding to occur.

Table 6.3

Standard deviation of the relative error for validation data.

Experiment Model σ (%)

Williams [55] momentum-based 138

stability-based 89

Tien, Chung, and Liu [56] momentum-based 188

stability-based 76
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7. CONCLUSIONS

Counter-current flow and flooding in vertical adiabatic tubes have been analyti-

cally studied. A literature survey of previous methods of predicting flooding in many

systems by using empirical, semi-empirical, and “theoretical” models of flooding was

conducted, leading to the conclusions that:

• even as research is conducted on complex phenomena and their relation to

flooding, there is no major consensus on what the mechanistic cause of flooding

is

• the method of predicting the film thickness in co- and counter-current annular

flows did not rigorously model the physics of annular flow systems and did not

produce very accurate quantitative results

• most theoretical models of flooding are actually semi-empirical and rely on

parameters correlating to experimental data

• models classified as “semi-empirical models” are the primary method of calcu-

lating flooding conditions

• the two primary models used to predict flooding, the Wallis and Kutateladze

correlations, are essentially methods to curve-fit data using empirical coeffi-

cients

These assessments led to the following objectives of this dissertation:

1. the development of a model for average annular film thickness for co- and

counter-current flow that produces better quantitative results and provides a

better physics-based methodology of calculation

2. the identification of the mechanism of flooding in the simplest configuration,

that of counter-current flow in a vertical adiabatic tube, to allow for the devel-
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opment of more appropriate models of flooding in more complex systems for

future work

3. the derivation of a theoretical model for flooding based on the mechanism iden-

tified, an imbalance of momentum of the flow, that can serve as a basis for work

in systems such as flooding in the presence of heat transfer and condensation,

as well as inclined tubes

A model for average annular film thickness for co- and counter-current flow in

vertical adiabatic tubes has been developed that outperforms the commonly used

model that was posed by Wallis [11] and based on the models of Nusselt [42] and

Belkin, Macleod, Monrad, and Rothfus [43]. Based on a momentum equation previ-

ously used for the successful prediction of drift velocity, the field equation for the new

film thickness model accurately captures the phenomena necessary to model a flow

that is known to be vertical and annular. The new model better considers the effects

of interfacial shear and tube curvature by using closure relations known to appro-

priately represent forces in co- and counter-current flow. Supplementing this model

with improved closure relations for annular flow can augment its predictive capabili-

ties. The new model shows significant quantitative improvement when compared to

experimental data and is recommended for future film thickness calculations. Fu-

ture work to improve the new film thickness model should include validation with

additional experimental data sets, including microgravity systems and additional

counter-current film thickness data.

The equation posed as a new model for annular film thickness was used to in-

vestigate semi-empirical models of flooding using work by Ohkawa and Lahey [40].

The result of this analysis is the theory that flooding is the result of the need for

momentum to be conserved in a counter-current flow following a decrease in void

fraction due to interfacial wave growth. Therefore, the calculation of the conditions

that cause this interfacial wave growth is requisite to predict flooding.



100

A model was derived to represent wave growth due to interfacial instability in

a two-phase counter-current vertical adiabatic tube. Using the assumption that the

liquid and gas flows can be modeled using potential flow, a condition for instability

was derived by considering exponential wave amplitude growth when the wave speed

was found to have an imaginary component. This stability model appropriately

represents the boundary conditions of a solid wall at the tube periphery, a wave

evolving in time and space at the gas-liquid interface, and the need for the fluid

properties to be finite at the tube center. Following the formulation of this stability

criteria, closure relations for the unknown wave numbers in the flow were developed

by using the assumption of waves of finite amplitude.

An analytical assessment of the stability-based model of flooding was conducted

to verify the physical basis of the model. It was shown that this model can be sim-

plified to represent Rayleigh’s model of the stability of a vibrating jet in an infinitely

large fluid with neither fluid moving in the axial direction. The dependence of the

stability model on the tube diameter and system Bond number was investigated

and was found to be similar to the dependence that is experimentally observed. By

analyzing the flooding stability equation and film thickness model, dimensionless

numbers, including the Reynolds number, Froude number, Weber number, and di-

mensionless densities and wave number were found to characterize the flow. Finally,

a quantitative validation of the new stability model was conducted against two ex-

perimental data sets. The new model for flooding underestimated the gas superficial

velocity needed to cause flooding for a specific liquid superficial velocity, most likely

due to the fact that the finite wave amplitude assumption is known to underpredict

the stability condition of one flow rate in a system when the other fluid flow rate is

fixed. When applied to the analysis of nuclear reactors, specifically pressurized water

reactors, the new stability is conservative in that the gas flow rate predicted to cause

flooding for a fixed liquid flow rate will be less than the flow rate found experimen-

tally. Therefore, the liquid delivery to the reactor core during an accident would be
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safely underestimated. Future work will include procuring of, and validation with,

more sets of experimental data and improved theoretical closure relations for the

wave number. Following this, this model can be extended to analyze flooding in the

presence of heat transfer, condensation, and additional system geometries, as well as

serve as a theoretical basis for the prediction of flooding in complex flow geometries.
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APPENDIX A

MODIFIED BESSEL FUNCTIONS

The following equation is referred to as the modified Bessel equation in rectangular

coordinates [54, 74]:

x2 d2y

dx2
+ x

dy

dx
− (x2 + s2)y = 0 (A.1)

If s ≥ 0, the solution to Equation A.1 is

y = C1Is (x) + C2Ks (x) . (A.2)

where Is and Ks are the modified Bessel functions of the first and second kind,

respectively, of order s. The modified Bessel function of the first kind, Is, can be

defined in terms of a Bessel function of the first kind as

Is(x) = i−sJs(ix) (A.3)

and the modified Bessel function of the second kind, Ks, can be defined as

Ks(x) =
π

2

I−s(x) − Is(x)

sin(sπ)
. (A.4)

Plots of each modified Bessel function for s = 0, 1, 2, 3 are shown in Figures A.1

and A.2 and limits of each function are given in Table A.1.

The derivatives with respect to an argument x of the modified Bessel function of

the first and second kind are

dIs (x)

dx
= Is+1 (x) +

sIs (x)

x
(A.5)

dKs (x)

dx
= −Ks+1 (x) +

sKs (x)

x
. (A.6)
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Fig. A.1. Plot of modified Bessel functions of the first kind.
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Fig. A.2. Plot of modified Bessel functions of the second kind.
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Table A.1

Limits of modified Bessel functions.

Function lim
x→0

lim
x→∞

Is(x) finite value ∞
Ks(x) ∞ 0
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APPENDIX B

A SOLUTION TO THE REDUCED FORM OF THE LIQUID FILM

POTENTIAL FLOW EQUATION

The potential flow of the liquid film is given by Equation 5.7 as

∂2Φ1,f

∂r2
+

1

r

∂Φ1,f

∂r
+

1

r2

∂2Φ1,f

∂θ2
− Φ1,fk

2 = 0. (5.7)

The general solution of this equation has been posed as

Φ1,k = C1Is(kr) cos(sθ) + C2Ks(kr) cos(sθ). (5.8)

A unique solution is to be found that satisfies the boundary condition

−∂Φ1,f (R)

∂r
= 0. (5.10)

To determine this solution, the derivative of Equation 5.8 can be calculated to be

∂Φ1,k

∂r
= C1

(
Is+1(kr) +

sIs(kr)

kr

)
+ C2

(
−Ks+1(kr) +

sKs(kr)

kr

)
. (B.1)

Substituting Equation B.1 into Equation 5.10 yields

0 = C1

(
Is+1(kR) +

sIs(kR)

kR

)
+ C2

(
−Ks+1(kR) +

sKs(kR)

kR

)
. (B.2)

Equation B.2 can be satisfied for all values of R by choosing values of C1 and C2

that cause the first term to always be equivalent to the negative of the second term.

This can be accomplished by choosing C1 and C2 such that

C1 =
1(

Is+1(kR) +
sIs(kR)

kR

) (B.3a)

C2 =
−1(

−Ks+1(kR) +
sKs(kR)

kR

) . (B.3b)

When Equation 5.12 is substituted into Equation 5.8, which is then substituted into

Equation 5.10, the result can be reduced to

0 = 1 − 1 (B.4)

which is true for any given value of R.
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APPENDIX C

GENERAL WAVE STABILITY CRITERIA FOR ANNULAR

COUNTER-CURRENT FLOW

Using Equation 5.32, stability criteria for an annular counter-current flow can be

developed for all values of s. In order to develop this criteria, Equation 5.32 must

be solved for the wave speed, c. The values which make c imaginary cause the flow

to become unstable. This leads to the general stability criterion for counter-current

annular flow for all orders, s, of the modified Bessel functions of the first and second

kind as

0 ≤ Ψ1 + Ψ2 (C.1)

where

Ψ1 = − σ [(k2a2 + s2 − 1)A1 (A2s
2 + A3s + A4)]

k2a3 [(A5ρg + A6ρf ) s2 + (A7ρg + A8ρf ) s + A9ρg + A10ρf ]
(C.2)

and

Ψ2 =
ρf (B1s + B2)B3 ((B4ρg + B5ρf ) s2 + (B6ρg + B7ρf ) s + B8ρg + B9ρf )

4 [(B10ρg + B11ρf) s2 + (B12ρg + B13ρf) s + B14ρg + B15ρf ]
2 .

(C.3)
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Each variable Ai and Bi were defined to allow for the concise expression of Equa-

tion C.2 and Equation C.3 and are defined by the following equations.

A1 =kaIs+1 (ka) + sIs (ka)

A2 =Is (ka) Ks (kR) − Is (kR)Ks (ka)

A3 = − kRIs+1 (kR) Ks (ka) + kRIs (ka) Ks+1 (kR)

+ kaIs+1 (ka) Ks (kR) + kaKs+1 (ka) Is (kR)

A4 =k2aRIs+1 (ka) Ks+1 (kR) + k2aRIs+1 (kR) Ks+1 (ka)

A5 =Is (kR) Ks (ka) Is (ka) − (Is (ka))2 Ks (kR)

A6 = (Is (ka))2 Ks (kR) − Is (kR)Ks (ka) Is (ka)

A7 = − kaIs (ka) Ks (kR) Is+1 (ka) − kaIs (ka) Ks+1 (ka) Is (kR)

− kR (Is (ka))2 Ks+1 (kR) + kRIs+1 (kR) Ks (ka) Is (ka)

A8 =kaIs (ka)Ks (kR) Is+1 (ka) − kRIs+1 (kR)Ks (ka) Is (ka)

− kaIs (kR) Ks (ka) Is+1 (ka) + kR (Is (ka))2 Ks+1 (kR)

A9 = − k2aRIs (ka) Ks+1 (kR) Is+1 (ka) − k2aRIs (ka) Is+1 (kR) Ks+1 (ka)

A10 =k2aRIs (ka) Ks+1 (kR) Is+1 (ka) − k2aRIs+1 (kR) Ks (ka) Is+1 (ka)
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B1 =Is (ka) Ks (kR) − Is (kR) Ks (ka)

B2 =kRIs (ka) Ks+1 (kR) − kRIs+1 (kR) Ks (ka)

B3 =kaIs+1 (ka) + sIs (ka)

B4 = − 4U2
g Is (ka) Is (kR) Ks (ka) + 4U2

g (Is (ka))2 Ks (kR)

− 4UfUg (Is (ka))2 Ks (kR) + 4UfUgIs (ka) Is (kR) Ks (ka)

B5 = − U2
f Is (ka) Is (kR) Ks (ka) + U2

f (Is (ka))2 Ks (kR)

B6 = − 4kaUfUgIs (ka) Ks+1 (ka) Is (kR) + 4kaU2
g Is+1 (ka) Is (ka) Ks (kR)

− 4kaUfUgIs+1 (ka) Is (ka) Ks (kR) + 4kRUfUgIs (ka) Is+1 (kR) Ks (ka)

− 4kRUfUgKs+1 (kR) (Is (ka))2 + 4kaU2
g Is (ka) Ks+1 (ka) Is (kR)

+ 4kRU2
g (Is (ka))2 Ks+1 (kR) − 4kRU2

g Is (ka) Is+1 (kR) Ks (ka)

B7 = − kaU2
f Is+1 (ka) Is (kR)Ks (ka) + akU2

f Is+1 (ka) Is (ka) Ks (kR)

− kRU2
f Is (ka) Is+1 (kR) Ks (ka) + kRU2

f Ks+1 (kR) (Is (ka))2
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B8 =4k2aRU2
g Is (ka) Is+1 (kR) Ks+1 (ka)

+ 4k2aRU2
g Is+1 (ka) Ks+1 (kR) Is (ka)

− 4k2aRUfUgIs (ka) Is+1 (kR)Ks+1 (ka)

− 4k2aRUfUgIs+1 (ka) Ks+1 (kR) Is (ka)

B9 = − k2aRU2
f Is+1 (ka) Is+1 (kR) Ks (ka)

+ k2aRU2
f Is+1 (ka) Ks+1 (kR) Is (ka)

B10 =Is (kR) Ks (ka) Is (ka) − (Is (ka))2 Ks (kR)

B11 =(Is (ka))2 Ks (kR) − Is (kR) Ks (ka) Is (ka)

B12 = − kaIs (ka) Ks (kR) Is+1 (ka) − kaIs (ka) Ks+1 (ka) Is (kR)

− kR (Is (ka))2 Ks+1 (kR) + kRIs+1 (kR) Ks (ka) Is (ka)

B13 =kaIs (ka) Ks (kR) Is+1 (ka) − kRIs+1 (kR) Ks (ka) Is (ka)

− kaIs (kR) Ks (ka) Is+1 (ka) + kR (Is (ka))2 Ks+1 (kR)

B14 = − k2aRIs (ka) Ks+1 (kR) Is+1 (ka) − k2aRIs (ka) Is+1 (kR) Ks+1 (ka)

B15 =k2aRIs (ka)Ks+1 (kR) Is+1 (ka) − k2aRIs+1 (kR) Ks (ka) Is+1 (ka)
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APPENDIX D

DERIVATION OF UNIQUE FLUID PRESSURES FOR ANNULAR

COUNTER-CURRENT FLOW

As described in Section 5.2.5, the value of the parameter s can be determined to

be zero for the case of annular counter-current flow stability. With this informa-

tion, the relationship between the gas and liquid pressures can be developed in a

mathematically succinct manner.

By assuming s = 0, the general solution to the differential equation posed by

Equation 5.7 can be rewritten

Φ1,k = Bk (C1I0 (kr) + C2Ks (kr)) . (D.1)

Using methods described in Section 5.2, Equation D.1 can be written as

Φ1,g = Bg (I0 (kr) + Ks (kr)) (D.2)

for the gas flow and

Φ1,f = Bf (C1I0 (kr) + C2Ks (kr)) (D.3)

for the liquid flow. The wall boundary condition of the liquid, fulfilled by the pa-

rameters C1 and C2, are found to be

C1 =
1

I1 (kR)
(D.4a)

C2 =
1

K1 (kR)
. (D.4b)

The wave at the gas-liquid interface, defined by

η = η0e
ik(z−ct) + ā, (D.5)

can then be used to determine Bf and Bg. Using Equations 5.13 and 5.21, these

coefficients can be found to be

Bg =
iη0 (c − Ug)

I1 (ka)
(D.6)
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and

Bf =
iη0I1 (kR) K1 (kR) (c − Uf )

I1 (ka) K1 (kR) − K1 (ka) I1 (kR)
. (D.7)

Finally, using the Bernoulli equation, the pressure of the gas and liquid can be

calculated to be

Pg =
ρgkηI0 (ka) (c − Ug)

2

I1 (ka)
(D.8)

and

Pf =
ρfkη (c − Uf )

2 (I0 (ka) K1 (kR) + K0 (ka) I1 (kR))

I1 (ka) K1 (kR) − K1 (ka) I1 (kR)
. (D.9)
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APPENDIX E

ALTERNATIVE PRESENTATION OF RESULTS OF TUBE DIAMETER

STUDY
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Fig. E.1. Gas volumetric flow rate as a function of the tube diameter
for diameter dependence demonstration case.
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Fig. E.2. Gas superficial velocity as a function of the tube diameter
for diameter dependence demonstration case.
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Fig. E.3. Film thickness as a function of the tube diameter for
diameter dependence demonstration case.
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Fig. E.4. Void fraction as a function of the tube diameter for diam-
eter dependence demonstration case.
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Fig. E.5. Gas Wallis parameter as a function of the tube diameter
for diameter dependence demonstration case.
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APPENDIX F

ANALYSIS OF THE DATA OF TIEN, CHUNG, AND LIU

The experimental flooding data presented by Tien, Chung, and Liu [56] represent

several sets of experimental conditions. As mentioned in Section 6.2, all the data that

was given was assessed, and a group of experimental sets were dismissed. The data

sets presented in this validation of the stability-based and momentum-based models

of flooding are given in Table F.1. The corresponding table for the data to be found

in the original reference is given by the page number followed by a letter which

indicates the first or second table on that page (e.g. 7-7A, 7-7B). The set of data is

then given a corresponding case number for this assessment in order to match data

sets to the graphical and quantitative results. The gas in each experiment presented

is air, with a density of ρ = 1.2 kg/m3, and the viscosity of all liquids used in these

experiments is 0.001 Pa · s. The liquid inlet and outlet were either straight-edged (s)

or tapered (t), and the air could be delivered via a nozzle into the test section (n) or

indirectly (i), by way of a lower plenum on the test section.

The results of the validation of the stability-based and momentum-based model,

as well as corresponding figures comparing dimensionless velocities and Wallis pa-

rameters, are tabulated in Table F.2.
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Table F.1

Experimental conditions for the data of Tien, Chung, and Liu [56].

Original Case Liquid D ρf σ Inlet Exit Air

Table (mm ) (kg/m3) (N/m) Supply

7-2B 1 water 31.8 997 0.072 t s n

7-3A 2 water 46.0 998 0.073 t s n

7-5B 7 water 69.9 998 0.073 t s n

7-5A 8 water 46.0 988 0.073 s t n

7-6A 9 water 15.9 998 0.073 s t i

7-6B 10 water 31.8 998 0.073 t s i

7-7A 11 water 46.0 998 0.073 t s i

7-7B 12 water 69.9 998 0.073 t s i

7-8A 13 water 69.9 998 0.073 t s i

7-8B 14 water 31.8 998 0.073 s t i

7-9A 15 water 46.0 998 0.073 s t i

7-9B 16 water 69.9 998 0.072 s t i

7-10A 17 water 31.8 998 0.073 t t i

7-10B 18 water 31.8 998 0.073 s s i

7-12A 21 water with 31.8 998 0.029 t s n

Surfynol

7-12B 22 silicon oil 46.0 820 0.017 t s n

7-13A 23 water with 46.0 998 0.029 t s n

Surfynol
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Table F.2

Standard deviation of the relative error for validation data sets of
Tien, Chung, and Liu [56].

Original Case σmomentum σstability Figure of Figure of

Table 〈jg〉 j∗g

7-2B 1 205.76% 75.939% F.1 F.18

7-3A 2 56.387% 91.506% F.2 F.19

7-5B 7 109.82% 93.584% F.3 F.20

7-5A 8 80.814% 89.149% F.4 F.21

7-6A 9 101.42% 36.826% F.5 F.22

7-6B 10 247.98% 53.433% F.6 F.23

7-7A 11 182.17% 78.8% F.7 F.24

7-7B 12 174.21% 90.4% F.8 F.25

7-8A 13 559.63% 82.184% F.9 F.26

7-8B 14 398.83% 53.012% F.10 F.27

7-9A 15 128.02% 83.989% F.11 F.28

7-9B 16 159.81% 91.418% F.12 F.29

7-10A 17 199.6% 60.91% F.13 F.30

7-10B 18 342.33% 42.418% F.14 F.31

7-12A 21 116.93% 87.69% F.15 F.32

7-12B 22 144.19% 96.773% F.16 F.33

7-13A 23 79.266% 96.67% F.17 F.34
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Fig. F.1. Comparison between Case 1, new stability model, and
momentum-based model of superficial velocities for flooding.
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Fig. F.2. Comparison between Case 2, new stability model, and
momentum-based model of superficial velocities for flooding.
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Fig. F.3. Comparison between Case 3, new stability model, and
momentum-based model of superficial velocities for flooding.
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Fig. F.4. Comparison between Case 4, new stability model, and
momentum-based model of superficial velocities for flooding.
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Fig. F.5. Comparison between Case 5, new stability model, and
momentum-based model of superficial velocities for flooding.
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Fig. F.6. Comparison between Case 6, new stability model, and
momentum-based model of superficial velocities for flooding.

0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

12

14

16

<j
f
> (m/s)

<
j g>

 (
m

/s
)

 

 

New Model
Mom. Balance
Experiment

Fig. F.7. Comparison between Case 7, new stability model, and
momentum-based model of superficial velocities for flooding.
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Fig. F.8. Comparison between Case 8, new stability model, and
momentum-based model of superficial velocities for flooding.
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Fig. F.9. Comparison between Case 9, new stability model, and
momentum-based model of superficial velocities for flooding.
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Fig. F.10. Comparison between Case 10, new stability model, and
momentum-based model of superficial velocities for flooding.
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Fig. F.11. Comparison between Case 11, new stability model, and
momentum-based model of superficial velocities for flooding.
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Fig. F.12. Comparison between Case 12, new stability model, and
momentum-based model of superficial velocities for flooding.
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Fig. F.13. Comparison between Case 13, new stability model, and
momentum-based model of superficial velocities for flooding.
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Fig. F.14. Comparison between Case 14, new stability model, and
momentum-based model of superficial velocities for flooding.
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Fig. F.15. Comparison between Case 15, new stability model, and
momentum-based model of superficial velocities for flooding.
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Fig. F.16. Comparison between Case 16, new stability model, and
momentum-based model of superficial velocities for flooding.
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Fig. F.17. Comparison between Case 17, new stability model, and
momentum-based model of superficial velocities for flooding.
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Fig. F.18. Comparison between Case 1, new stability model, and
momentum-based model of Wallis parameters for flooding.
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Fig. F.19. Comparison between Case 2, new stability model, and
momentum-based model of Wallis parameters for flooding.
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Fig. F.20. Comparison between Case 3, new stability model, and
momentum-based model of Wallis parameters for flooding.
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Fig. F.21. Comparison between Case 4, new stability model, and
momentum-based model of Wallis parameters for flooding.
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Fig. F.22. Comparison between Case 5, new stability model, and
momentum-based model of Wallis parameters for flooding.
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Fig. F.23. Comparison between Case 6, new stability model, and
momentum-based model of Wallis parameters for flooding.
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Fig. F.24. Comparison between Case 7, new stability model, and
momentum-based model of Wallis parameters for flooding.
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Fig. F.25. Comparison between Case 8, new stability model, and
momentum-based model of Wallis parameters for flooding.
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Fig. F.26. Comparison between Case 9, new stability model, and
momentum-based model of Wallis parameters for flooding.
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Fig. F.27. Comparison between Case 10, new stability model, and
momentum-based model of Wallis parameters for flooding.
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Fig. F.28. Comparison between Case 11, new stability model, and
momentum-based model of Wallis parameters for flooding.
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Fig. F.29. Comparison between Case 12, new stability model, and
momentum-based model of Wallis parameters for flooding.
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Fig. F.30. Comparison between Case 13, new stability model, and
momentum-based model of Wallis parameters for flooding.
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Fig. F.31. Comparison between Case 14, new stability model, and
momentum-based model of Wallis parameters for flooding.
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Fig. F.32. Comparison between Case 15, new stability model, and
momentum-based model of Wallis parameters for flooding.
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Fig. F.33. Comparison between Case 16, new stability model, and
momentum-based model of Wallis parameters for flooding.
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Fig. F.34. Comparison between Case 17, new stability model, and
momentum-based model of Wallis parameters for flooding.
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