
CHOOSING A KERNEL FOR CROSS-VALIDATION

A Dissertation

by

OLGA SAVCHUK

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2009

Major Subject: Statistics



CHOOSING A KERNEL FOR CROSS-VALIDATION

A Dissertation

by

OLGA SAVCHUK

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Co-Chairs of Committee, Jeffrey D. Hart
Simon J. Sheather

Committee Members, Qi Li
Suhasini Subba Rao

Head of Department, Simon J. Sheather

August 2009

Major Subject: Statistics



iii

ABSTRACT

Choosing A Kernel for Cross-Validation. (August 2009)

Olga Savchuk, B.S., National Technical University of Ukraine;

M.S., National Technical University of Ukraine;

M.S., Texas A&M University

Co–Chairs of Advisory Committee: Dr. Jeffrey D. Hart
Dr. Simon J. Sheather

The statistical properties of cross-validation bandwidths can be improved by choosing

an appropriate kernel, which is different from the kernels traditionally used for cross-

validation purposes. In the light of this idea, we developed two new methods of

bandwidth selection termed: Indirect cross-validation and Robust one-sided cross-

validation. The kernels used in the Indirect cross-validation method yield an

improvement in the relative bandwidth rate to n−1/4, which is substantially better

than the n−1/10 rate of the least squares cross-validation method. The robust kernels

used in the Robust one-sided cross-validation method eliminate the bandwidth bias

for the case of regression functions with discontinuous derivatives.
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CHAPTER I

INTRODUCTION

Any experimenter taking measurements is very likely to face the problem of estimating

either a regression function or a probability density function. At best, one may

have only a vague idea about qualitative aspects of the function which needs to

be estimated. A nonparametric approach suggests that the data should themselves

decide which function provides them the best fit without the restrictions imposed by

a parametric model.

Kernel methods play an important role in nonparametric function estimation.

Kernel density estimation (KDE) was introduced by Rosenblatt (1956) and Parzen

(1962) and is one of the most often used probability density estimation methods.

Among kernel regression methods the most popular are the local linear estimator

(see Fan (1992)), the Gasser-Müller estimator (see Gasser and Müller (1979)), and

the Nadaraya-Watson estimator (see Nadaraya (1964) and Watson (1964)). All of

the previously mentioned methods require selecting a smoothing parameter, which is

usually called the bandwidth and is denoted by h.

The choice of h controls the smoothness of the estimator, as the following example

illustrates. For this example we generated a sample of size n = 100 from a bimodal

density and computed kernel density estimates using the three values of h, 0.15,

0.385, and 0.8. The resulting density estimates are shown in Figure 1. The estimate

based on h = 0.15 is apparently undersmoothed: it is very wiggly and shows several

false modes. The estimate based on h = 0.8 is oversmoothed: it does not show the

bimodal structure of the density. The estimate based on h = 0.385 is fairly close to

This dissertation follows the style of Journal of the American Statistical Association.
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Fig. 1. Density estimates for a bimodal density. Dashed line shows the true density;

crosses on the horizontal axes show the data points.

the true density. The bandwidth h = 0.385 minimizes the mean integrated squared

error (MISE) for the kernel density estimator, which is a popular error criterion in the

density and regression estimation problems. The MISE-optimal bandwidth can be

computed only if the true function is known, so we will not able to find it for the real

data sets. There are many methods that estimate the bandwidth which minimizes

MISE or some other optimality criterion. Such bandwidth selection methods are

called data-driven.

One of the most popular methods of data-driven bandwidth selection is least

squares cross-validation (LSCV). The general idea of cross-validation is explained by
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the following three steps. First, estimate various models from a subset of the data.

Next, predict the remaining observations with each fitted model. Finally, choose

the model that minimizes average squared prediction error. In the kernel density

estimation and kernel regression contexts different models correspond to different

values of h, and each time we predict an observation using all the data points excluding

that observation. An estimator constructed from all the data except for one point is

called a leave-one-out estimator.

There are versions of the LSCV method for the kernel density estimation problem

(see Rudemo (1982) and Bowman (1984)) and for the nonparametric regression

problem (see Härdle, Hall, and Marron (1988)). The LSCV method is completely

automatic, widely used, easy to implement, and is known to perform well on functions

which are difficult to estimate (see Loader (1999b), and van Es (1992)). The main

drawbacks of the LSCV method are high variability of the selected bandwidths, and

a very slow relative convergence rate of the order n−1/10.

Many modifications of LSCV have been proposed in an attempt to improve its

performance. These include the trimmed cross-validation (TCV) method of Feluch

and Koronacki (1992), and the one-sided cross-validation (OSCV) method of Hart

and Yi (1998) and Marti’nez Miranda, Nielsen, and Sperlich (2009). The essence of

the TCV and OSCV methods is to modify the kernel used to compute the leave-one-

out estimator (we will simply call it the cross-validation kernel) in order to improve

the statistical properties of the cross-validation bandwidths. In particular, the TCV

method uses a “trimmed” kernel, obtained from a traditional nonnegative unimodal

kernel K by multiplying it by an indicator function, which results in cutting out the

center of K. The OSCV method uses a so-called one-sided kernel, which is obtained

from K by multiplying it by a line and restricting the kernel’s support to nonnegative

values. In this research we exploit the idea of transforming the cross-validation kernels
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further and propose new modifications of the LSCV method.

In Chapter II we describe a new method of bandwidth selection for kernel density

estimation, which is called Indirect Cross-Validation (ICV). Our initial work on the

ICV method was inspired by the TCV method, in the sense that we constructed a

family of cross-validation kernels by cutting out the middle of the Gaussian kernel.

Further research in this direction lead to another family of kernels which are more

efficient for cross-validation purposes. The major advance for the ICV method is that

it improves the relative bandwidth rate to n−1/4. The ICV method outperforms the

LSCV method in a simulation study and examples.

Chapter III is independent of Chapter II and is dedicated to extending the OSCV

method to the case of nonsmooth regression functions. Subsequently, when we refer

to a nonsmooth function, we mean a continuous function whose first derivative is

bounded and may have a finite number of discontinuities. The points at which the

derivative is discontinuous are often called cusps. One of the proposed modifications

of the ordinary OSCV method, called Robust OSCV, chooses the bandwidth of a

so-called robust kernel which eliminates the bias of the OSCV bandwidths in the

nonsmooth case, making the method robust to lack of smoothness in the regression

function.

Chapter IV contains a summary of our findings and some suggestions for future

research.
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CHAPTER II

INDIRECT CROSS-VALIDATION FOR DENSITY ESTIMATION

1. Introduction

Let X1, . . . , Xn be a random sample from an unknown density f . A kernel density

estimator of f at the point x is defined as

f̂h(x) =
1

nh

n∑
i=1

K
(x−Xi

h

)
, (2.1)

where h > 0 is a smoothing parameter, also known as the bandwidth, and K is the

kernel, which is generally chosen to be a unimodal probability density function that is

symmetric about zero and has finite variance. A popular choice for K is the Gaussian

kernel: φ(u) = (2π)−1/2 exp(−u2/2). To distinguish between estimators with different

kernels, we shall refer to estimator (2.1) with given kernel K as a K-kernel estimator.

Practical implementation of the estimator (2.1) requires specification of the

smoothing parameter h, also known as the bandwidth. Different bandwidth selection

methods are reviewed and compared by Jones, Marron, and Sheather (1996a)

and Jones, Marron, and Sheather (1996b). The two most widely used bandwidth

selectors are least squares cross-validation, proposed independently by Rudemo (1982)

and Bowman (1984), and the Sheather and Jones (1991) plug-in method. Plug-

in is often preferred since it produces more stable bandwidths than does LSCV.

Nevertheless, the LSCV method is still popular since it requires fewer assumptions

than the plug-in method and works well when the density is difficult to estimate;

see Loader (1999b), van Es (1992).

The main flaw of LSCV is high variability of the selected bandwidths. Other

drawbacks include the tendency of cross-validation curves to exhibit multiple local



6

minima with the first local minimum being too small (see Hall and Marron (1991)),

and the tendency of LSCV to select bandwidths that are much too small when the

data exhibit a small amount of autocorrelation (see Hart and Vieu (1990) and Cao,

Quintela del Rio, and Vilar Fernandez (1993) for results of numerical studies).

A number of modifications of LSCV have been proposed in an attempt to improve

its properties. These include biased cross-validation of Scott and Terrell (1987),

a method of Chiu (1991a), the trimmed cross-validation of Feluch and Koronacki

(1992), the modified cross-validation of Stute (1992), the one-sided cross-validation

of Marti’nez Miranda, Nielsen, and Sperlich (2009), and the method of Ahmad and

Ran (2004) based on kernel contrasts. Indirect cross-validation is a new modification

of the LSCV method.

2. Description of indirect cross-validation

2.1. Notation and definitions

We begin with some notation and definitions that will be used subsequently. For an

arbitrary function g, define

R(g) =

∫
g(u)2 du, µjg =

∫
ujg(u) du, (2.2)

where here and subsequently integrals are assumed to be over the whole real line. The

most popular measures of performance of the kernel estimators (2.1) are integrated

squared error (ISE) and mean integrated squared error (MISE). The ISE is defined

as

ISE(h) =

∫ (
f̂h(x)− f(x)

)2
dx, (2.3)

and MISE is defined as the expectation of ISE. Assume that the underlying density f

has second derivative which is continuous and square integrable. Let K be a kernel of
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the second order which satisfies the condition R(K) < ∞. Then the MISE function

has the following asymptotic expansion (see Wand and Jones (1995)):

MISE(h) =
R(K)

nh
+

h4

4
µ2

2KR(f ′′) + o

(
1

nh
+ h4

)
. (2.4)

This approximation is valid for n → ∞ so long as h → 0 and nh → ∞. From

expression (2.4) it follows that the bandwidth which asymptotically minimizes the

MISE of the K-kernel estimator (2.1) has the following form:

hn =

{
R(K)

µ2
2KR(f ′′)

}1/5

n−1/5. (2.5)

The LSCV criterion is given by

LSCV (h) = R(f̂h)− 2

n

n∑
i=1

f̂h,−i(Xi), (2.6)

where f̂h,−i denotes the kernel estimator (2.1) constructed from the data without the

observation Xi. A well known fact is that LSCV (h) is an unbiased estimator of

MISE(h) − ∫
f 2(x) dx. For this reason the LSCV method is often called unbiased

cross-validation.

Let ĥUCV and h0 denote the bandwidths which minimize the LSCV function (2.6)

and the MISE of the K-kernel estimator. Section 2.2 defines the ICV bandwidth,

denoted as ĥICV .

2.2. The basic method

We assume that the underlying density f has second derivative which is continuous

and square integrable. Our aim is to choose the bandwidth of a second order kernel

estimator. A second order kernel integrates to 1, has first moment 0, and finite,

nonzero second moment. In principle our method can be used to choose the bandwidth
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of any second order kernel estimator, but we restrict attention to K ≡ φ, the Gaussian

kernel. It is well known that a φ-kernel estimator has asymptotic mean integrated

squared error (MISE) within 5% of the minimum among all positive, second order

kernel estimators.

The essence of the ICV method is to use different kernels at the cross-validation

and density estimation stages. The same idea is exploited by the one-sided cross-

validation method of Hart and Yi (1998) and Marti’nez Miranda, Nielsen, and Sperlich

(2009).

Indirect cross-validation may be described as follows:

1. Select the bandwidth of an L-kernel estimator using least squares cross-

validation, and call this bandwidth b̂UCV . The kernel L is a second order kernel

that is a linear combination of two Gaussian kernels, and will be discussed in

detail in Section 2.3.

2. Assuming that the underlying density f has second derivative which is

continuous and square integrable, the bandwidths hn and bn that asymptotically

minimize the MISE of φ- and L-kernel estimators, respectively, are related as

follows:

hn =

(
R(φ)µ2

2L

R(L)µ2
2φ

)1/5

bn ≡ Cbn. (2.7)

3. Define the indirect cross-validation bandwidth by ĥICV = Cb̂UCV . Expression

(2.7) and existing cross-validation theory suggest that ĥICV /h0 will at least

converge to 1 in probability.

It is important that the constant C does not depend on any unknowns. Furthermore,

the ICV method does not require any additional computing time compared to the

LSCV method.
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Theory of Hall and Marron (1987) and Scott and Terrell (1987) shows that the

relative error (ĥUCV −h0)/h0 converges to 0 at the rather disappointing rate of n−1/10.

In contrast, we will show that (ĥICV − h0)/h0 can converge to 0 at the rate n−1/4.

Kernels L that are sufficient for this result are discussed next.

2.3. Selection kernels

We consider the family of kernels L = {L( · ; α, σ) : α > 0, σ > 0}, where, for all u,

L(u; α, σ) = (1 + α)φ(u)− α

σ
φ

(u

σ

)
. (2.8)

Note that the Gaussian kernel is a special case of (2.8) when σ = 1. Each member of

L is symmetric about 0 and has the second moment µ2L = 1+α−ασ2. It follows that

kernels in L are second order, with the exception of those for which σ =
√

(1 + α)/α.

The family L can be partitioned into three families: L1, L2 and L3. The first

of these is L1 =
{
L(·; α, σ) : α > 0, σ < α

1+α

}
. Each kernel in L1 has a negative

dip centered at x = 0. The kernels in L1 are ones that “cut-out-the-middle,” some

examples of which are shown in Figure 2(a).

The second family is L2 =
{
L(·; α, σ) : α > 0, α

1+α
≤ σ ≤ 1

}
. Kernels in L2

are densities which can be unimodal or bimodal. Note that the Gaussian kernel is

a member of this family. The third family is L3 =
{
L(·; α, σ) : α > 0, σ > 1}, each

member of which has negative tails. Examples are shown in Figure 2(b).

Kernels in L1 and L3 turn out to be highly efficient for cross-validation purposes

but very inefficient for estimating f . Indeed, it turns out that an L-kernel estimator

based on a sequence of ICV-optimal kernels has MISE that does not converge to 0

faster than n−1/2. In contrast, the MISE of the best φ-kernel estimator tends to 0

like n−4/5. This explains why we do not use L as both a selection and an estimation

kernel.
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Fig. 2. (a) Selection kernels in L1 which have σ = 0.5; (b) Selection kernels in L3 with

α = 6. The dotted curve in both graphs corresponds to the Gaussian kernel.

Selection kernels in L are mixtures of two normal densities, which greatly

simplifies computations. This fact has been utilized by Marron and Wand (1992)

to derive exact MISE expressions. For kernels L it is possible to derive a closed form

expression for the LSCV function. Marron and Wand (1992) also point out that,

in addition to their computational advantages, normal mixtures can approximate

any density arbitrarily well in various senses. Mixtures of normals are therefore an

excellent model for use in simulation studies, a fact which we take advantage of in

subsection 8 below.

3. Large sample theory

Large sample theory for the ICV method is developed in this section. The main

theoretical result is that the asymptotic MSE of ĥICV converges to 0 faster than the
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asymptotic MSE of ĥUCV in two cases:

1. σ → 0 (cut-out-the-middle kernels);

2. σ →∞ (negative-tailed kernels).

We consider each of the cases in what follows.

3.1. Asymptotic MSE of the ICV bandwidth when σ →∞

We derive the asymptotic distribution for the ICV bandwidth in the case σ → ∞.

Before stating our main result, we define some notation:

γL(u) =

∫
L(w)L(w + u) du− 2L(u), ρL(u) = uγ ′(u), (2.9)

Tn(b) =
∑∑

1≤i<j≤n

[
γL

(
Xi −Xj

b

)
+ ρL

(
Xi −Xj

b

)]
,

T (j)
n (b) =

∂jTn(b)

∂bj
, j = 1, 2,

Aα =
3√
2π

(1 + α)2

[
1

8
(1 + α)2 − 8

9
√

3
(1 + α) +

1√
2

]
,

Cα =

√
2Aα(2

√
π)9/10

5(1 + α)9/5α1/5
and Dα =

3

20

(
(1 + α)2

2α2
√

π

)2/5

.

Note that to simplify notation, we have suppressed the fact that L, γ and ρ depend

on the parameters α and σ. An outline of the proof of the following theorem is given

in the Appendix A.

Theorem II.1. Assume that f and its first five derivatives are continuous and

bounded and that f (6) exists and is Lipschitz continuous. Suppose also that

(b̂UCV − b0)
T

(2)
n (b̃)

T
(1)
n (b0)

= op(1) (2.10)

for any sequence of random variables b̃ such that |b̃− b0| ≤ |b̂UCV − b0|, a.s. Then, if
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σ = o(n) and α is fixed,

ĥICV − h0

h0

= ZnSn + Bn + op(Sn + Bn),

as n → ∞ and σ → ∞, where Zn converges in distribution to a standard normal

random variable,

Sn =

(
1

σ2/5n1/10

)
R(f)1/2

R(f ′′)1/10
Cα, (2.11)

and

Bn =
(σ

n

)2/5 R(f ′′′)
R(f ′′)7/5

Dα. (2.12)

Remarks

(R1) Assumption (2.10) is only slightly stronger than assuming that b̂UCV /b0

converges in probability to 1. The sufficient conditions for (2.10) can be found

using techniques as in Hall (1983) and Hall and Marron (1987).

(R2) Theorem 4.1 of Scott and Terrell (1987) on asymptotic normality of LSCV

bandwidths is not immediately applicable to our setting for at least three

reasons: the kernel L is not positive, it does not have compact support, and,

most importantly, it changes with n via the parameter σ.

(R3) The assumption of six derivatives for f is required for a precise quantification

of the asymptotic bias of ĥICV . Our proof of asymptotic normality of b̂UCV only

requires that f be four times differentiable, which coincides with the conditions

of Theorem 4.1 in Scott and Terrell (1987).

(R4) The asymptotic bias Bn is positive, implying that the ICV bandwidth tends to
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be larger than the optimal bandwidth. This is consistent with our experience

in numerous simulations.

Now let us apply the results of our theorem to determine asymptotically optimal

choices for α and σ. The limiting distribution of (ĥICV − h0)/h0 has second moment

S2
n+B2

n, where Sn and Bn are defined by (2.11) and (2.12). Minimizing this expression

with respect to σ yields the following asymptotically optimal choice for σ:

σn,opt = n3/8

(
Cα

Dα

)5/4 [
R(f)R(f ′′)13/5

R(f ′′′)2

]5/8

=

271/16π1/2

35/4
· R(f)5/8R(f ′′)13/8

R(f ′′′)5/4
· α3/4

(1 + α)2

(
3

8
(1 + α)2 − 8

√
3

9
(1 + α) +

3√
2

)5/8

n3/8.

(2.13)

Let MSE(ĥICV ; α, σ) denote the asymptotic MSE of the ICV bandwidth in the

case σ →∞. It follows that

MSE(ĥICV ; α, σ) = h2
0(S

2
n + B2

n).

Evaluating the MSE of ĥICV at σn,opt we get the following:

MSE(ĥICV ; α, σn,opt) =

3

25 · 213/20π1/5
· R(f)1/2R(f ′′′)

R(f ′′)19/10
· 1

α

(
3

8
(1 + α)2 − 8

√
3

9
(1 + α) +

3√
2

)1/2

n−9/10

From the above expression it follows that α is not confounded with f , meaning that

we may determine a single optimal value of α that is independent of f . The function

f(α) =
1

α

(
3

8
(1 + α)2 − 8

√
3

9
(1 + α) +

3√
2

)1/2

,

normalized by its value at the minimum, is plotted in Figure 3. The minimum of the
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Fig. 3. How the asymptotically optimal MSE of ĥICV depends on α in the case σ →∞.

function f(α) occurs at the point

αopt =
36
√

6 + 9
√

3− 64

32− 9
√

3

.
= 2.4233.

It turns out that small choices of α lead to an arbitrarily large increase in mean

squared error, while the MSE at α = ∞ is only about 1.33 times that at the minimum.

The asymptotic MSE of the ICV bandwidth evaluated at αopt and σn,opt has the

following form:

MSE(ĥICV ; αopt, σn,opt) = C∞
R(f)1/2R(f ′′′)

R(f ′′)19/10
n−9/10, (2.14)

where

C∞ =

(
45576− 21087

√
2 + 16384

√
3− 15552

√
6
)1/2

25π1/5 · 223/20(36
√

6 + 9
√

3− 64)

.
= 0.0280.

It is remarkable that when the asymptotically optimal values of α and σ are used,

the asymptotic variance and squared bias make equal contributions to the asymptotic
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MSE of ĥICV .

From expression (2.14) we can see that the optimal MSE of ĥICV tends to 0

at the rate n−9/10. The corresponding rate for the LSCV method is n−6/10. It also

follows that

MSE(ĥICV ; αopt, σn,opt)

h2
0

∼ n−1/2,

which implies that the relative error of ĥICV converges to 0 at the rate n−1/4. The

corresponding rates for LSCV and the Sheather-Jones plug-in rule are n−1/10 and

n−5/14, respectively.

3.2. Asymptotic MSE of the ICV bandwidth when σ → 0

Analogous asymptotic theory was developed for the case σ → 0, which corresponds

to L ∈ L1, i.e., kernels that apply negative weights to the smallest spacings in the

data. The main theoretical results in this case are outlined below.

In the case when σ → 0 the asymptotically MSE-optimal σ has the following

form:

σ∗n,opt =
35/4

271/16π1/2
· R(f ′′′)5/4

R(f ′′)13/8R(f)5/8
· α2

(1 + α)3/4
· 1(

3
8
α2 + 8

√
3

9
α + 3√

2

)5/8
n−3/8

The asymptotic MSE evaluated at σ∗n,opt has the following form:

MSE∗(ĥICV ; α, σ∗n,opt) =

3

25 · 213/20π1/5

R(f)1/2R(f ′′′)
R(f ′′)19/10

· 1

1 + α

(
3

8
α2 +

8
√

3

9
α +

3√
2

)1/2

n−9/10.

The asymptotically optimal α minimizes the function

f ∗(α) =
1

1 + α

(
3

8
α2 +

8
√

3

9
α +

3√
2

)1/2

,
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Fig. 4. How the asymptotically optimal MSE of ĥICV depends on α in the case σ → 0.

which is plotted in Figure 4. It is easy to check that its minimum occurs at

α∗opt = ∞

The minimum asymptotic MSE in the case σ → 0 has the following form:

MSE∗(ĥICV ; α∗, σ∗n,opt) = C0
R(f)1/2R(f ′′′)

R(f ′′)19/20
n−9/10, (2.15)

where

C0 =
33/2

25 · 243/2π1/5
.

The rates of the asymptotic MSE in the cases σ →∞ and σ → 0 are the same. This

means that the same optimal rate of n−1/4 results from letting σ → 0. Moreover, the

minimum asymptotic MSE (2.14) and (2.15), corresponding to the cases σ →∞ and

σ → 0, respectively, have the same form, but different constants of proportionality.
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The ratio of the constants is

C0

C∞
=

33/2

2
· 36

√
6 + 9

√
3− 64

(
45576− 21087

√
2 + 16384

√
3− 15552

√
6
)1/2

.
= 1.33,

implying that the asymptotically optimal negative-tailed kernels are more efficient

than the asymptotically optimal cut-out-the-middle kernels. Our simulation studies

confirm that using L with large σ does lead to more accurate estimation of the optimal

bandwidth.

It is remarkable that when α →∞ and the asymptotically optimal σ is used in

both cases (σ →∞ and σ → 0), the asymptotic MSE are equal:

MSE(ĥICV ;∞, σn,opt) = MSE∗(ĥICV ;∞, σ∗n,opt).

This means that the negative-tailed kernels with σn,opt and α →∞ are as efficient as

the asymptotically optimal cut-out-the-middle kernels.

Since the asymptotically optimal negative-tailed kernels are superior to the

asymptotically optimal cut-out-the-middle kernels, all the subsequent ICV theory

was developed for the case σ →∞.

4. Practical choice of α and σ

It is not immediately obvious how to use the asymptotic results developed in Section 3

for practical purposes. The asymptotically optimal α is a known constant, but the

asymptotically optimal σ depends on f in a fairly complicated way (2.13). The

problem of estimating the constant in (2.13) is potentially as difficult or even more

difficult than estimating f itself. A reference estimator for σ based on the standard

normal density may be used. In this section we develop a practical purpose model

for choosing the parameters α and σ of the selection kernel L defined by (2.8).
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4.1. MSE-optimal α and σ

Asymptotic results are not always reliable for practical purposes. In order to have an

idea of how good choices of α and σ vary with n and f , we considered the following

expression for the asymptotic MSE of the ICV bandwidth:

MSE(α, σ; f, n) =

(
1

4π

)1/5
R(f ′′′)2

R(f ′′)16/5
n−3/5

{
2

25

R(f)R(f ′′)13/5

R(f ′′′)2

R(ρL)

R(L)9/5(µ2
2L)1/5

+

n−3/5

400

(
R(L)2/5µ2Lµ4L

(µ2
2L)7/5

− 3

(4π)1/5

)2
}

,

(2.16)

where ρL(u) is defined by (2.9). Expression (2.16) is valid for either large or small

values of σ and uses a slightly enhanced version of the asymptotic bias of ĥICV . The

first order bias of ĥICV is Cb0−h0, or C(b0− bn)+ (hn−h0), where bn and hn are the

asymptotic MISE minimizers for the L-kernel and φ-kernel estimators, respectively.

Now, the term hn − h0 is of smaller order asymptotically than C(b0 − bn) and hence

was deleted in the theory of Section 3. In expression (2.16) we retain hn−h0. Notice

that the α minimizing expression (2.16) is not free of f .

In order to have an idea of how good choices of α and σ vary with n and f , we

determined the minimizers of the asymptotic MSE (2.16) for various sample sizes and

densities. It is worth noting that the asymptotically optimal σ (expression (2.13)) is

free of location and scale. We may thus choose a single representative of a location-

scale family when investigating the effect of f . We considered the following five

normal mixtures defined in the article by Marron and Wand (1992):
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Gaussian density: N(0, 1)

Skewed unimodal density: 1
5
N(0, 1) + 1

5
N

(
1
2
,
(

2
3

)2
)

+ 3
5
N

(
13
12

,
(

5
9

)2
)

Bimodal density: 1
2
N

(
−1,

(
2
3

)2
)

+ 1
2
N

(
1,

(
2
3

)2
)

Separated bimodal density: 1
2
N

(
−3

2
,
(

1
2

)2
)

+ 1
2
N

(
3
2
,
(

1
2

)2
)

Skewed bimodal density: 3
4
N(0, 1) + 1

4
N

(
3
2
,
(

1
3

)2
)
.

These choices for f provide a fairly representative range of density shapes. In Table I

we provide the MSE-optimal choices of α and σ for the above densities at eight sample

sizes ranging from n = 100 up to n = 500000.

Table I. MSE-optimal α and σ.

Density

skewed separated skewed

normal unimodal bimodal bimodal bimodal

n α σ α σ α σ α σ α σ

100 3.05 2.79 5.28 1.68 109.68 1.03 16.70 1.19 343.74 1.01

250 2.78 4.04 3.16 2.60 48.46 1.06 4.51 1.84 177.15 1.02

500 2.73 4.97 2.84 3.56 6.21 1.55 3.18 2.58 161.39 1.02

1000 2.69 5.97 2.75 4.49 3.73 2.12 2.84 3.54 123.78 1.03

5000 2.61 8.84 2.66 6.85 2.77 4.26 2.70 5.74 4.71 1.79

20000 2.55 12.40 2.59 9.58 2.68 6.22 2.63 8.08 2.85 3.46

100000 2.50 18.80 2.53 14.27 2.60 9.19 2.56 11.94 2.70 5.65

500000 2.47 29.54 2.49 21.88 2.54 13.65 2.50 18.07 2.62 8.39

The following remarks summarize our findings about α and σ:
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1. MSE-optimal α and σ vary greatly from one density to another, which is

especially true for “small” sample sizes.

2. For each density, the optimal α decreases monotonically with n and seems to

converge to the asymptotically optimal value αopt = 2.42 which was derived in

Section 3. However, the convergence to the optimal α is very slow, especially

for the bimodal densities. Thus, for each unimodal density, the optimal α is

within 13.5% of 2.42 at n = 1000, and for each bimodal density is within 18%

of 2.42 when n is 20,000.

3. The MSE-optimal σ is increasing with sample size for all the densities, which

supports the theory of Section 3.

4. For each n, the optimal value of σ (α) is larger (smaller) for the unimodal

densities than for the bimodal ones.

5. All of the MSE-optimal α and σ correspond to kernels from L3, the family of

negative-tailed kernels.

4.2. Model for the ICV parameters

We have built a practical purpose model for α and σ using the data outlined in Table I.

We used the polynomial regression method. Our independent variable was log10(n)

and the dependent variables were the MSE-optimal values of log10(α) and log10(σ)

found from Table I. The log10 transformations for the MSE-optimal α and σ were

needed to stabilize variability. Notice that the five densities defined in Section 4.1

play the role of reference distributions in building our model. Using a sixth degree

polynomial for α and a quadratic for σ, we arrived at the following models for α and

σ:
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Table II. Model choices of α and σ.

n 100 250 500 1000 5000 20000 100000 500000

αmod 25.20 12.77 8.24 5.71 3.23 2.66 2.66 2.62

σmod 1.39 1.89 2.37 2.95 4.83 7.21 11.22 16.98

αmod = 103.390−1.093 log 10(n)+0.025 log 10(n)3−0.00004 log 10(n)6 ,

σmod = 10−0.58+0.386 log 10(n)−0.012 log 10(n)2 , 100 ≤ n ≤ 500000.
(2.17)

The MSE-optimal values of log10(α) and σ together with the model fits are shown in

Figure 5. In Table II we give the model choices αmod and σmod for the same sample

sizes as in Table I.

To the extent that unimodal densities are more prevalent than multimodal

densities in practice, these model values are biased towards bimodal cases. Our

extensive experience shows that the penalty for using good bimodal choices for α and

σ when in fact the density is unimodal, is an increase in the upward bias of ĥICV . Our

implementation of ICV, however, guards against oversmoothing by using an objective

upper bound on the bandwidth, as we explain in detail in Section 7. We thus feel

confident in recommending model (2.17) for choosing α and σ in practice, at least

until a better method is proposed. Indeed, this model is what we used to choose α

and σ in the simulation study reported upon in Section 7.

5. Efficiency of the model-based kernels in bandwidth selection

Define the bandwidth selection efficiency of the selection kernel L(·; α, σ) relative to

the Gaussian kernel as
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Table III. Efficiencies of L(·; αmod, σmod) in selecting the bandwidth for five densities

at different sample sizes.

n 100 250 500 1000 5000 20000 100000 500000
Gaussian density 0.6273 0.5020 0.3627 0.2479 0.1059 0.0615 0.0373 0.0233
Skewed unimodal 0.6315 0.5072 0.3700 0.2573 0.1180 0.0720 0.0443 0.0277
Bimodal 0.6487 0.5288 0.3999 0.2958 0.1674 0.1150 0.0729 0.0456
Separated bimodal 0.6362 0.5132 0.3783 0.2679 0.1317 0.0839 0.0522 0.0326
Skewed bimodal 0.7087 0.6041 0.5039 0.4300 0.3396 0.2649 0.1724 0.1078

E(α, σ, f, n) =
MSE(α, σ; f, n)

MSE(1, 1; f, n)
, (2.18)

where MSE(α, σ, f, n) is given by (2.16). The denominator of (2.18) is the asymptotic

MSE of the LSCV bandwidth, since the values α = 1 and σ = 1 correspond to the

Gaussian kernel.

Our theory of Section 3 suggests that for the asymptotically optimal kernels

the efficiency E tends to 0 at the rate O
(
n−3/10

)
as n → ∞. Even though our

practical purpose model (2.17) estimates the asymptotically optimal parameters, it

does not use the explicit expressions for αn,opt and σn,opt which guarantee the relative

bandwidth rate of O
(
n−1/4

)
. What are the efficiencies for the model-based kernels

for the sample sizes allowed by the model (2.17)?

Table III gives the efficiencies of the kernels L(·; αmod, σmod) for eight sample

sizes and densities defined in Section 4.1. As we can conclude from Table III, using

the model-based kernels L(·; αmod, σmod) in cross-validation is more appropriate than

using the Gaussian kernel for all the considered densities and sample sizes. Moreover,

the efficiencies in Table III decrease as n increases, so that using the Gaussian kernel

at large sample sizes becomes quite unreasonable. For instance, using the kernel
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L(·; αmod, σmod) leads to more than a fourfold decrease of MSE compared to using

the Gaussian kernel K at n = 1000 and Gaussian density. Efficiency issues justify

the rationale of using the model-based kernel L(·; αmod, σmod) for the purpose of

bandwidth selection.

6. Robustness of ICV to data rounding

The LSCV function (2.6) can be written in the following form:

LSCV(h) =
1

nh
R(K) +

1

n2h

∑

i 6=j

∫
K(t)K

(
t +

Xi −Xj

h

)
dt−

2

n(n− 1)h

∑

i6=j

K
(Xi −Xj

h

)
. (2.19)

and hence it is clear that LSCV depends on the spacings Xi −Xj. Silverman (1986,

p.52) showed that if the data are rounded to such an extent that the number of pairs

i < j for which Xi = Xj is above a threshold, then LSCV (h) approaches −∞ as

h approaches zero. This threshold is 0.27n for the Gaussian kernel. Chiu (1991b)

showed that for data with ties, the behavior of LSCV (h) as h → 0 is determined by

the balance between R(K) and 2K(0). In particular, limh→0 LSCV (h) is −∞ and ∞
when R(K) < 2K(0) and R(K) > 2K(0), respectively. The former condition holds

necessarily if K is nonnegative and has its maximum at 0. This means that all the

traditional kernels have the problem of choosing h = 0 when the data are rounded.

Recall that selection kernels (2.8) are not restricted to be nonnegative. It turns

out that there exist α and σ such that R(L) > 2L(0) will hold. We say that selection

kernels satisfying this condition are robust to rounding. It can be verified that the

negative-tailed selection kernels with σ > 1 are robust to rounding when

α >
−aσ +

√
aσ + (2− 1/

√
2)bσ

bσ

, (2.20)
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where aσ =
(

1√
2
− 1√

1+σ2 − 1 + 1
σ

)
and bσ =

(
1√
2
− 2√

1+σ2 + 1
σ
√

2

)
. It appears that all

the selection kernels corresponding to model (2.17) are robust to rounding. Figure 6

shows the region (2.20) and also the curve defined by model (2.17) for 100 ≤ n ≤
500000. Interestingly, the boundary separating robust from nonrobust kernels almost

Fig. 6. Selection kernels robust to rounding have α and σ above the solid curve. The

dashed curve corresponds to the model-based selection kernels.
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coincides with the (α, σ) pairs defined by that model.

Notice that the fact that R(L) > 2L(0) for the model-based kernels has one

more consequence. Consider the behavior of the LSCV(h) function at large values of

the bandwidth h. From expression (2.19) it follows that as h → ∞ the asymptotic

expression for the LSCV(h) based on the K-kernel estimator has the following form:

LSCV(h) ∼ R(K)

h
− 2K(0)

h
.

It follows that LSCV(h) → 0 as h →∞. The sign of LSCV(h) for large h depends on
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the sign of the difference R(K)−2K(0). This difference is negative for the traditional

kernels and is positive for the model-based kernels L. Then it follows that at large n

the ICV criterion function approaches zero from the positive side as h →∞, implying

that when the local minima of the ICV curve are positive, the ICV minimizer will

be h = ∞. This emphasizes the necessity to restrict the range of h over which we

minimize the ICV function. Asymptotically, the problem of a global minimum at

h = ∞ will go away since an LSCV curve is centered at −R(f) (see Scott and Terrell

(1987)).

7. Local ICV

A local version of cross-validation for density estimation was proposed and analyzed

independently by Hall and Schucany (1989) and Mielniczuk, Sarda, and Vieu (1989).

A local method allows the bandwidth to vary with x, which is desirable when the

smoothness of the underlying density varies sufficiently with x. Fan, Hall, Martin,

and Patil (1996) proposed a different method of local smoothing that is a hybrid of

plug-in and cross-validation methods. Here we propose that ICV be performed locally.

The method parallels that of Hall and Schucany (1989) and Mielniczuk, Sarda, and

Vieu (1989), with the main difference being that each local bandwidth is chosen by

ICV rather than LSCV. We suggest using the smallest local minimizer of the ICV

curve, since ICV does not have LSCV’s tendency to undersmooth.

The local ICV criterion function at the point x is defined as

ICV (x, b, w) =
1

w

∫ ∞

−∞
φ

(
x− u

w

)
f̂ 2

b (u) du− 2

nw

n∑
i=1

φ

(
x−Xi

w

)
f̂b,−i(Xi),

where f̂b is the kernel density estimate based on a selection kernel L with a smoothing

parameter b. The quantity w determines the degree to which the cross-validation is
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local, with a very large choice of w corresponding to global ICV. Let b̂(x) be the first

local minimizer of ICV (x, b, w) with respect to b for the fixed value of x. Then the

bandwidth of a Gaussian kernel estimator at the point x is taken to be ĥ(x) = Cb̂(x).

The constant C is defined by (2.7), and choice of α and σ in the selection kernel L

will be discussed in Section 8.

Local LSCV can be criticized on the grounds that, at any x, it promises to be

even more unstable than global LSCV since it (effectively) uses only a fraction of the

n observations. Because of its much greater stability, ICV seems to be a much more

feasible method of local bandwidth selection than does LSCV. We provide evidence

of this stability by examples in Section 9.

8. Simulation study

The primary goal of our simulation study is to compare ICV with ordinary LSCV.

However, we will also include the Sheather-Jones plug-in method in the study. We

considered the four sample sizes n = 100, 250, 500 and 5000, and sampled from each

of the five densities listed in Section 4.1. For each combination of density and sample

size, 1000 replications were performed.

Let ĥ0 denote the minimizer of ISE(h) for a Gaussian kernel estimator. For

each replication, we computed ĥ0, ĥ∗ICV , ĥUCV and ĥSJPI . The definition of ĥ∗ICV is

as follows:

ĥ∗ICV = min(ĥICV , ĥOS), (2.21)

where

ĥOS =

(
243

35

)1/5
(

R(φ)

µ2
2φ

)1/5

s · n−1/5 =

(
243

35
· 1

2
√

π

)1/5

s · n−1/5

is the oversmoothed bandwidth of Terrell (1990); s is the sample standard deviation
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computed for the data x1, . . . , xn. It is arguable that no data-driven bandwidth should

be larger than ĥOS since this statistic estimates an upper limit for all MISE-optimal

bandwidths (under standard smoothness conditions). Since ĥICV tends to be biased

upwards, using the bandwidth ĥOS as an upper bound for the bandwidth search

interval is a convenient means of limiting the bias. In Table XI of Appendix B we

give the percentage of times when the upper bound of ĥOS is used in the bandwidth

selection rule (2.21). In all cases the parameters α and σ in the selection kernel L

were chosen according to model (2.17).

For any random variable Y defined in each replication of our simulation, we

denote the average, standard deviation and median of Y over all replications (with

n and f fixed) by Ê(Y ), ŜD(Y ) and M̂edian(Y ). To evaluate the bandwidth

selectors we computed Ê
{
ISE(ĥ)/ISE(ĥ0)

}
and M̂edian

{
ISE(ĥ)/ISE(ĥ0)

}
for ĥ

equal to each of ĥ∗ICV , ĥUCV and ĥSJPI . We also computed the performance measure

Ê
(
ĥ− Ê(ĥ0)

)2

, which estimates the MSE of the bandwidth ĥ.

Our simulation results for the “normal” and “bimodal” densities, as defined in

Section 4.1, are given in Tables IV and V and Figures 7 and 8. Results for the

”skewed unimodal”, ”separated bimodal” and ”skewed bimodal” densities are given

in the Appendix B. Our main observations and conclusions are summarized as follows.

1. The reduced variability of the ICV bandwidth is evident in our study. The

ratio ŜD(ĥ∗ICV )/ŜD(ĥUCV ) ranged between 0.21 and 0.97 in the twenty settings

considered. However, the variances of the ICV bandwidths were always higher

compared to the Sheather-Jones plug-in bandwidths. It is also worth noting

that the ratio of sample standard deviations of the ICV and LSCV bandwidths

decreases as the sample size n increases.

2. The ratio Ê
(
ĥ∗ICV − Êĥ0

)2

/Ê
(
ĥUCV − Êĥ0

)2

ranged between 0.04 and 0.70
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in the sixteen settings excluding the skewed bimodal density. For the skewed

bimodal density, the ratio was 0.84, 1.27, 1.09, and 0.40 at the respective sample

sizes 100, 250, 500 and 5000. The fact that this ratio was larger than 1 in two

cases was a result of ICV’s bias, since the sample standard deviation of the

ICV bandwidth was smaller than that for the LSCV bandwidth in all twenty

settings. Notice that plug-in always had a smaller value of Ê
(
ĥ− Êĥ0

)2

than

did ICV.

3. The most important observation is that the values of Ê
(
ISE(ĥ)/ISE(ĥ0)

)
were

smaller for ICV than for LSCV for all combinations of densities and sample sizes.

The values of M̂edian
(
ISE(ĥ)/ISE(ĥ0)

)
were smaller for ICV than for LSCV

in all but one case, which corresponds to the large bias case when the density

is skewed bimodal and n = 250. In this case M̂edian
(
ISE(ĥ)/ISE(ĥ0)

)
was

1.0013 times greater for ICV than for LSCV. Being close to LSCV in bimodal

case is not bad since in that case LSCV performs well.

4. Despite the fact that the LSCV bandwidth is asymptotically normally

distributed (see Hall and Marron (1987)), its distribution in finite samples tends

to be skewed to the left. In our simulations we have noticed that the distribution

of the ICV bandwidth is less skewed than that of the LSCV bandwidth. A

typical case is illustrated in Figure 9, where kernel density estimates for the

two data-driven bandwidths are plotted from the simulation with the skewed

unimodal density at n = 250. Also plotted is a density estimate for the ISE-

optimal bandwidths. Note that the ICV density is more concentrated near the

middle of the ISE-optimal distribution than the density estimate for LSCV.

5. Usually the ICV bandwidths cluster more tightly about the MISE minimizer h0

as opposed to the LSCV bandwidths. A typical example is given in Figure 10
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which provides scatterplots of the bandwidths ĥUCV and ĥICV versus the ISE-

optimal bandwidths ĥ0 in the case of the Gaussian density and n = 500. In

this case the MISE minimizer is h0 = 0.315, and the ICV bandwidths are

better concentrated about it compared to the LSCV bandwidths. Notice that

the sample correlation coefficients were -0.52 and -0.60 for LSCV and ICV,

respectively. The fact that these correlations are negative is a well-established

phenomenon; see, for example Hall and Johnstone (1992).
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Table IV. Simulation results for the Gaussian density.

n LSCV SJPI ICV ISE

Ê(ĥ)

100 0.4452 0.3934 0.4153 0.4316

250 0.3640 0.3388 0.3494 0.3549

500 0.3109 0.2980 0.3086 0.3081

5000 0.1836 0.1899 0.1977 0.1953

ŜD(ĥ) · 102

100 12.3217 6.4324 6.5230 7.5201

250 8.3577 3.7174 4.4478 6.2730

500 7.1117 2.6030 3.0802 5.6350

5000 3.9008 0.6190 0.8204 3.0928

Ê(ĥ− Ê(ĥ0))
2 · 104

100 153.5291 55.9547 45.1705

250 70.6115 16.3766 20.0568

500 50.6085 7.7748 9.4813

5000 16.5621 0.6679 0.7311

Ê
(
ISE(ĥ)/ISE(ĥ0)

)

100 2.4700 1.9080 1.7218

250 1.9159 1.5056 1.4757

500 1.7581 1.3773 1.3610

5000 1.4132 1.1146 1.1031

M̂edian
(
ISE(ĥ)/ISE(ĥ0)

)

100 1.3111 1.1570 1.1123

250 1.2172 1.1041 1.0937

500 1.2140 1.1031 1.0961

5000 1.1091 1.0447 1.0518
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Table V. Simulation results for the Bimodal density.

n LSCV SJPI ICV ISE

Ê(ĥ)

100 0.4291 0.3945 0.4196 0.3824

250 0.3136 0.3116 0.3285 0.2972

500 0.2593 0.2624 0.2745 0.2532

5000 0.1526 0.1571 0.1626 0.1548

ŜD(ĥ) · 102

100 13.5653 7.4443 9.5668 7.6090

250 8.4673 4.1878 6.5092 4.2943

500 5.7059 2.4444 4.2008 3.5598

5000 2.4629 0.4795 0.8146 1.9650

Ê(ĥ− Ê(ĥ0))
2 · 104

100 205.6555 56.8404 105.2554

250 74.3324 19.6074 52.1298

500 32.8927 6.8119 22.1647

5000 6.1066 0.2820 1.2669

Ê
(
ISE(ĥ)/ISE(ĥ0)

)

100 1.6995 1.3273 1.3614

250 1.5160 1.2091 1.2874

500 1.4167 1.1507 1.1917

5000 2.0643 1.0684 1.0768

M̂edian
(
ISE(ĥ)/ISE(ĥ0)

)

100 1.2095 1.0874 1.1336

250 1.1609 1.0834 1.1270

500 1.1224 1.0607 1.0942

5000 1.0583 1.0307 1.0365
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Fig. 7. Boxplots for the data-driven bandwidths in the case of the Gaussian density.
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Fig. 8. Boxplots for the data-driven bandwidths in the case of the Bimodal density.
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Fig. 9. Kernel density estimates for random bandwidths from the simulation with the

Skewed unimodal density and n = 250.

A problem we have noticed with the ICV method is that its criterion function

can have two local minima when the sample size is moderate and the density has

two modes. The following example illustrates the problem. Let ICV (h) denote the

ICV criterion function which is computed using kernel L in place of K in the cross-

validation function (2.6). In Figure 11(a) we have plotted three functions ICV
(

h
C

)
for

the case of the separated bimodal density and n = 100. The minimizers of the solid,

dashed and dotted lines occur at the h-values 0.2991, 2.0467 and 0.2204, respectively.

For comparison, the corresponding bandwidths chosen by the Sheather-Jones plug-in

method are 0.3240, 0.2508 and 0.2467. The value of h = 2.0467 which minimizes

the dashed ICV
(

h
C

)
curve is obviously too large. The local minimum at 0.1295

would yield a much more reasonable estimate. The problem of choosing too large
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Fig. 10. Scatterplots of ĥ vs. ĥ0 for the case of the Gaussian density and n = 500,

with ĥ corresponding to the (a) LSCV and (b) ICV bandwidths.

a bandwidth from the second local minimum is mitigated by using the rule (2.21).

Indeed, the oversmoothed bandwidths for the three samples are shown by the vertical

lines in Figure 11 and were 0.7404, 0.7580 and 0.7341. Note that the problem with

the ICV curve having two local minima of approximately the same value quickly goes

away as the sample size increases. This is illustrated in Figure 11(b), where we have

plotted three ICV
(

h
C

)
curves for the separated bimodal case with n = 500. Thus,

the selection rule ĥ∗ICV given by (2.21) rather than just ĥICV appears to be useful

mostly for small and moderate sample sizes.

9. Examples

In this Section we illustrate the use of ICV with five examples. The purpose of the

first two examples is to compare the performance of ICV, LSCV, and Sheather-Jones

plug-in methods for choosing a global bandwidth. The third example illustrates the
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Fig. 11. Three ICV
(

h
C

)
functions in the case of the separated bimodal density at (a)

n = 100 and (b) n = 500. Vertical lines show the location of ĥOS.

benefit of using ICV for rounded data. The last two examples show an advantage of

applying the ICV method locally.

9.1. Mortgage defaulters

In this example we analyze the credit scores of Fannie Mae clients who defaulted on

their loans. The mortgages considered were purchased in “bulk” lots by Fannie Mae

from primary banking institutions. The data set of size n = 402 was taken from

the website http://www.dataminingbook.com associated with the book of Shmueli,

Patel, and Bruce (2006).

The LSCV (h) and ICV
(

h
C

)
curves for the mortgage defaulters data are given

in Figure 12. It turns out that the LSCV curve tends to −∞ when h → 0, but has a

local minimum at about 2.84. In Figure 13 we have plotted an unsmoothed frequency

histogram and the LSCV, ICV and Sheather-Jones plug-in density estimates for the
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Fig. 12. LSCV (h) and ICV
(

h
C

)
curves for the data on credit scores for the defaulters.

Vertical dashed lines show the location of the oversmoothed bandwidth ĥOS.

credit scores. The class interval size in the unsmoothed histogram was chosen to be

1, which is equal to the accuracy to which the data have been reported. We used the

largest local minimizer of the LSCV curve, ĥUCV = 2.84, as suggested by Park and

Marron (1990). The resulting LSCV estimate is severely undersmoothed. Both the

Sheather-Jones plug-in and ICV density estimates show a single mode around 675

and look similar, with the ICV estimate being somewhat smoother.

Interestingly, a high percentage of the defaulters have credit scores less than

620, which many lenders consider the minimum score that qualifies for a loan; see

Desmond (2008).

9.2. PGA data

In this example the data are the average numbers of putts per round played, for the

top 175 players on the 1980 and 2001 PGA golf tours. The question of interest is

whether there has been any improvement from 1980 to 2001. This data set has already
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Fig. 13. Unsmoothed histogram and kernel density estimates for credit scores.

been analyzed by Sheather (2004) in the context of comparing the performances of

LSCV and Sheather-Jones plug-in.

In Figure 14 we have plotted an unsmoothed frequency histogram and the LSCV,

ICV and Sheather-Jones plug-in density estimates for a combined data set of 1980

and 2001 putting averages. The class interval size in the unsmoothed histogram was

chosen to be 0.01, which corresponds to the accuracy to which the data have been

reported. There is a clear indication of two modes in the histogram.

The estimate based on the LSCV bandwidth is apparently undersmoothed. The
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Fig. 14. Unsmoothed frequency histogram and kernel density estimates for average

numbers of putts per round from 1980 and 2001 combined.

ICV and plug-in estimates look similar and have two modes, which agrees with

evidence from the unsmoothed histogram and seems reasonable since the data were

taken from two populations.

In Figure 15 we have plotted kernel density estimates separately for the years

1980 and 2001. ICV seems to produce a reasonable estimate in both years, whereas

LSCV yields a very wiggly and apparently undersmoothed estimate in 2001.
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9.3. The Old Faithful geyser data

The data on the Eruption Duration of the Old Faithful geyser is a very popular

example in the bandwidth selection literature. There are several versions of this

data set. Our analysis deals with the data consisting of n = 272 observations given

in Härdle (1991), which is different from the version used by Loader (1999a).

Observations in the original data set are given up to the precision of 0.001.

Since our goal in this example is to show the failure of the LSCV method when

the data are rounded, we rounded the observations up to the accuracy of 0.1. The

LSCV (h) and ICV
(

h
C

)
curves for rounded data are plotted in Figure 16. As we

can see, LSCV(h) → −∞ as h → 0, and there is no local minimum in the LSCV

curve, as in the example about mortgage defaulters. The ICV
(

h
C

)
curve has two local

minima of about the same size at ĥ1 = 0.0779 and ĥ2 = 0.1253. Notice that the LSCV

bandwidth for the original data (unrounded) is equal to 0.1019 and lies almost exactly

in the center of the interval (ĥ1, ĥ2). The oversmoothed bandwidth ĥOS = 0.4246 falls

above the two local minima. In this case the ICV bandwidth selection rule (2.21) will

choose the bandwidth ĥ∗ICV = 0.0779 which corresponds to the smaller of the two

local minima. In fact, using either of the two bandwidths, ĥ1 or ĥ2, results in a

seemingly reasonable estimate for the eruption duration density. The ICV density

estimate based on the rounded data together with the LSCV estimate based on the

original data are plotted in Figure 17. The two estimates are fairly close. So, for the

rounded eruption duration data the ICV method yields a reasonable density estimate,

whereas the LSCV method fails, selecting h = 0.
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9.4. Local ICV: simulated example

For this example we took five samples of size n = 1500 from the kurtotic unimodal

density defined in Marron and Wand (1992). First, we noted that even the bandwidth

that minimizes ISE(h) results in a density estimate that is much too wiggly in the

tails. Figure 18 shows the ISE density estimate for one of the samples we considered.

On the other hand, using local ICV resulted in much better density estimates.

We computed the local LSCV and ICV density estimates using four values of

w ranging from 0.05 to 0.3. A selection kernel with α = 6 and σ = 6 was used in

local ICV. This (α, σ) choice performs well for global bandwidth selection when the

density is unimodal, and hence seems reasonable for local bandwidth selection since

locally the density should have relatively few features. For a given w, the local ICV

and LSCV bandwidths were found for 61 points: x = −3,−2.9, . . . , 2.9, 3, and were

interpolated at other x ∈ [−3, 3] using a spline. Average squared error (ASE) was
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Fig. 19. The solid curves correspond to the local LSCV and ICV density estimates,

whereas the dashed curves show the kurtotic unimodal density.
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used to measure closeness of a local density estimate f̂` to the true density f :

ASE =
1

61

61∑
i=1

(f̂`(xi)− f(xi))
2.

The local ICV estimates were as smooth or smoother than the local LSCV

estimates for all five samples considered. Figure 19 shows results for one of

the samples, where the local LSCV method performed the worst. Estimates

corresponding to the smallest and the largest values of w are provided. For this sample

the local ICV method performed similarly well for all values of w considered, whereas

all the local LSCV estimates were very unsmooth, albeit with some improvement in

smoothness as w increased.

9.5. Local ICV: real data example

This example shows an advantage of local ICV over local LSCV. We analyze the data

of size n = 517 on the Drought Code (DC) of the Canadian Forest Fire Weather index

(FWI) system. DC is one of the explanatory variables which can be used to predict

the burned area of a forest in the Forest Fires data set. This data can be downloaded

from the website http://archive.ics.uci.edu/ml/datasets/Forest+Fires. The data were

collected and analyzed by Cortez and Morais (2007).

We computed the LSCV, ICV and Sheather-Jones plug-in bandwidths for the

DC data. The LSCV method failed by yielding ĥUCV = 0. The ICV and Sheather-

Jones plug-in bandwidths were very close and produced similar density estimates.

Figure 20 (a) gives the ICV density estimate. It shows two major modes connected

with a wiggly curve, which indicates that varying the bandwidth with x may yield a

smoother estimate of the underlying density. Local ICV and LSCV have been applied

to the DC data. We used w = 40 for both methods and the selection kernel with α = 6

and σ = 6 for local ICV. Let x(i), i = 1, . . . , n, denote the ith member of the ordered
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sequence of observations. The local ICV and LSCV bandwidths were found for 50

evenly spaced points in the interval x(1)−0.2(x(n)−x(1)) ≤ x ≤ x(n) +0.2(x(n)−x(1)).

It turns out that in 45 out of 50 cases the local LSCV curve tends to −∞ as h → 0,

which implies that the local LSCV estimate can not be computed. All 50 local ICV

bandwidths were positive. A smooth bandwidth function ĥ(x) shown in Figure 20 (c)

was found by interpolating at other values of x via a spline. The corresponding local

ICV estimate, given in Figure 20(b), shows a smoother density estimate.

10. Summary

Indirect cross-validation is a method of bandwidth selection in the univariate kernel

density estimation context. The method first selects the bandwidth of an L-kernel

estimator by least squares cross-validation, and then rescales this bandwidth so that

it is appropriate for use in a Gaussian kernel density estimator.

Selection kernels L have the form (1 + α)φ(u) − αφ(u/σ)/σ, where φ is the

standard normal density and α and σ are positive constants. The interesting selection

kernels in this class are of two types: unimodal, negative-tailed kernels and “cut-

out the middle kernels,” i.e., bimodal kernels that go negative between the modes.

Large sample theory shows that the relative bandwidth error for both asymptotically

optimal cut-out-the-middle kernels and negative-tailed kernels converge to 0 at a

rate of n−1/4, which is a substantial improvement over the n−1/10 rate of LSCV.

However, the best negative-tailed kernels yield bandwidths with smaller asymptotic

mean squared error than do the best “cut-out-the-middle” kernels.

A practical purpose model for choosing the selection kernel parameters, α and

σ, has been developed. The model was built by performing polynomial regression

on the MSE-optimal values of log10(α) and log10(σ) at different sample sizes for five

normal mixture densities. Use of this model makes our method completely automatic.
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A simulation study and examples reveal that using the model-based kernels in ICV

leads to improved performance relative to ordinary LSCV.

An extensive simulation study showed that in finite samples ICV is more stable

than LSCV. Although both ICV and LSCV bandwidths are asymptotically normal,

the distribution of the ICV bandwidths for finite n is usually more symmetric and

better concentrated in the middle of the density for ISE-optimal bandwidths. Using

an oversmoothed bandwidth as an upper bound for the bandwidth search interval

reduces the bias of the method and prevents selecting an impractically large value of

h when the criterion curves exhibit multiple local minima.

The ICV method performs well in real data examples. ICV applied locally yields

density estimates which are more smooth than estimates based on a single bandwidth.

Often, local ICV estimates may be found when the local LSCV estimates do not exist.
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CHAPTER III

ONE-SIDED CROSS-VALIDATION FOR NONSMOOTH REGRESSION

FUNCTIONS

1. Introduction

Regression analysis is an area of statistics which studies the association between

covariates and responses. In a nonparametric approach a regression function is not

assumed have any specific parametric form. Nonparametric regression is studied in

both fixed and random design contexts.

In the univariate fixed design case the design points x1 < x2 < · · · < xn are

non-random numbers, which are often specified before collecting the data. In this

case the data Y1, . . . , Yn are assumed to come from the model

Yi = r(xi) + v(xi)
1/2εi, i = 1, . . . , n,

where ε1, . . . , εn are mutually independent random variables, each having zero mean

and unit variance. We call r the mean regression function, or simply the regression

function, since E(Yi) = r(xi), while v is called the variance function since V ar(Yi) =

v(xi). Often it is assumed that v(xi) = σ2 for all i, in which case the model is called

homoscedastic. Otherwise the model is heteroscedastic.

The random design regression model arises when we observe a bivariate sample

(X1, Y1), . . . , (Xn, Yn) of random pairs, in which case the regression model can be

written as

Yi = r(Xi) + v(Xi)
1/2εi, i = 1, . . . , n,

where, conditional on X1, . . . , Xn, the εi are mutually independent with means equal

to zero and the variances equal to one. It is also assumed that the errors ε1, . . . , εn
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are independent of the design points X1, . . . , Xn. In the random design context

r(x) = E(Y |X = x) and v(x) = V ar(Y |X = x),

are, respectively, the conditional mean and variance of Y given X = x. The marginal

density of X1, . . . , Xn will be denoted by f . In either the fixed or random design case,

it may be assumed without loss of generality that the design points are distributed

on the interval [0, 1].

Kernel methods of estimating r include the Nadaraya-Watson estimator

(see Nadaraya (1964) and Watson (1964)), Priestley-Chao estimator (see Priestley

and Chao (1972)), the Gasser-Müller estimator (see Gasser and Müller (1979)), and

the local linear estimator (see Fan (1992)). All the aforementioned methods require

selecting a smoothing parameter, which is also called the bandwidth, as in the density

estimation context.

Local linear estimators were introduced by Cleveland (1979) and studied by Fan

(1992). For a given kernel K and bandwidth h > 0, the local linear estimator at a

point x is computed as

r̂h(x) =

∑n
i=1 wi(x)Yi∑n
i=1 wi(x)

, (3.1)

where

wi(x) = K

(
x− xi

h

)
(tn,2 − (x− xi)tn,1) , (3.2)

and

tn,j =
n∑

i=1

K

(
x− xi

h

)
(x− xi)

j, j = 1, 2. (3.3)

Most often, the kernel K is chosen to be a probability density function that is

unimodal, symmetric about 0, and has finite variance. Fan (1992) showed that

estimators (3.1) adapt to both fixed and random design scenarios, and have the same

order of bias in the interior and boundary regions.
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The bandwidth h determines the smoothness of the regression estimate r̂h.

Inadequately small values of h produce ”wiggly” estimates which follow the data too

closely. Very large values of h lead to oversmoothed regression estimates which may

miss some important features of the underlying regression function. An “optimal” h

minimizes a measure of closeness of r̂h to the true function r. Some popular measures

include mean integrated squared error (MISE), average squared error (ASE), and

mean average squared error (MASE). For simplicity we will consider the fixed design

case below. In the random design case the ordinary expectations are replaced with

the conditional expectations. The MISE function in the regression setting parallels

that in the density estimation setting, and is defined in the following way:

MISE(h) = E

(∫ 1

0

(r̂h(x)− r(x))2 dx

)
,

where x1, . . . , xn are the observed data values. The ASE function is given by

ASE(h) =
1

n

n∑
i=1

(r̂h(xi)− r(xi))
2 . (3.4)

The MASE function is defined as E (ASE(h)). It can be shown that MASE is

asymptotically equivalent to

MISEw(h) =

∫ ∞

−∞
E (r̂h(x)− r(x))2 f(x) dx. (3.5)

Assuming that the design density f is continuous and positive in the interval (0, 1),

the regression function r(x) has a bounded and continuous second derivative for

x ∈ (0, 1), and K is a second order kernel such that R(K) < ∞, the MASE function

for the local linear estimator has the following asymptotic expansion:

MASE(h) =
R(K)σ2

nh
+

µ2
2Kh4

∫ 1

0
(r ′′(x))2 f(x) dx

4
+ o

(
h4 +

1

nh

)
, (3.6)
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where we use the same definitions of functions R(·) and µ2K as in (2.2).

Let h∗0 denote the bandwidth which minimizes the MASE function. From

expression (3.6) it follows that h∗0 is asymptotic to

h∗n =

(
R(K)σ2

µ2
2K

∫ 1

0
(r ′′(x))2 f(x) dx

)1/5

n−1/5. (3.7)

Notice that when the design is fixed and evenly spaced or uniform, the asymptotic

expansion (3.6) will hold and the formula (3.7) will be true if one takes f(x) ≡ 1.

One of the most frequently used data-driven bandwidth selection techniques

for kernel regression estimators is the least-squares cross-validation (LSCV) method

(see Stone (1977)), which parallels the LSCV method in the density estimation

context. The LSCV bandwidth is the value of h which minimizes the cross-validation

function defined by

CV (h) =
1

n

n∑
i=1

(
r̂−i
h (xi)− Yi

)2
, (3.8)

where r̂−i
h is the leave-one-out regression estimator which is computed without using

the ith observation (Xi, Yi). The cross-validation function (3.8) is an approximately

unbiased estimator of σ2+MASE(h) (see Hart and Yi (1998)). It turns out that in the

regression setting the cross-validation bandwidths have the same relative convergence

rate of n−1/10 (see Härdle, Hall, and Marron (1988)) as in the density estimation

context. This slow convergence rate has the consequence of high variability of the

LSCV bandwidths in practice. Additional details about the LSCV method may be

found in the article of Hall and Johnstone (1992).

Plug-in is a popular alternative to cross-validation. The main idea of the plug-

in method is to estimate the unknown terms in an expression for an asymptotically

optimal bandwidth. There are different implementations of the plug-in idea, including

the plug-in of Gasser, Kneip, and Köhler (1991) and the plug-in of Ruppert, Sheather,
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and Wand (1995). The Gasser-Kneip-Köhler plug-in has an Op(n
−1/5) relative rate,

whereas the direct plug-in of Ruppert, Sheather, and Wand has a faster rate of

Op(n
−2/7). Although the direct plug-in has been seen to work well in practice for

a wide variety of functions, it has certain shortcomings. In particular, it relies on

the assumption that the regression function has four continuous derivatives, and it

requires the data analyst to make a subjective choice of a nuisance parameter δ. A

data example in the article of Hart and Yi (1998) illustrates how the Gasser-Kneip-

Köhler plug-in local linear estimator may be sensitive to the choice of the analogous

auxiliary parameter.

One of the modifications of the ordinary cross-validation method is the one-

sided cross-validation method of Hart and Yi (1998). Although OSCV does not

improve the LSCV convergence rate, it can achieve up to twentyfold reduction in

asymptotic bandwidth variance. In a simulation study conducted by Hart and Yi

(1998), the OSCV bandwidths are almost as stable as the Gasser-Kneip-Köhler plug-

in bandwidths while being less biased. More simulation results for the OSCV method

may be found in the article by Yi (2005). Other advantages of OSCV is that

it is completely automatic, fairly robust to autocorrelation among the error terms

(see Hart and Lee (2005)), and does not require more computing time than LSCV.

The OSCV theory is based on the assumption that the underlying regression

function has two continuous derivatives. However, many physical, biomedical

and economical processes involve nonsmooth or even discontinuous functions. For

example, the speed and acceleration of a car can be interpreted as nonsmooth

and discontinuous processes, respectively. Such examples motivated us to extend

the OSCV methodology so that it continues to work well even if the regression

function has fewer than two derivatives. We define an OSCV algorithm that

produces asymptotically optimal bandwidths even when the regression function has
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a discontinuous first derivative. Our methodology can be extended to deal with

discontinuous functions as well, although we do not do so in this work.

The remainder of this chapter proceeds as follows. Section 2 contains a detailed

description of the ordinary OSCV method and its proposed extensions. Simulation

results in Section 3 and examples in Section 4 evaluate the performance of the

proposed modifications of OSCV. Section 5 contains a brief summary of our findings.

2. OSCV methodology

This section is devoted to the theoretical results for OSCV. We start from a detailed

description of the original OSCV method in Section 2.1. The OSCV methodology is

extended for nonsmooth regression functions in Section 2.2. In Section 2.3 we propose

a generic OSCV algorithm for smooth and nonsmooth functions.

2.1. OSCV for smooth regression functions

The OSCV method is very similar in spirit to the ICV method described in the

previous Chapter. As in ICV, OSCV finds the bandwidth in two steps:

(Step1) Select the bandwidth of a kernel estimator based on a special (one-sided)

kernel L using ordinary LSCV.

(Step2) Multiply the bandwidth obtained in Step 1 by a known constant C and use

the resulting bandwidth to estimate the regression function using the K-kernel

estimator.

Even though the OSCV method can be used for the Priestley-Chao and Gasser-Müller

estimators, we will most often use it for the local linear estimators. An appropriate

choice for L will be discussed below. The most popular choices for K include quartic,
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Epanechnikov, and Gaussian kernels (see Wand and Jones (1995)). The rescaling

constant C in Step 2 has the following form:

C =

(
R(K)

µ2K

· µ2L

R(L)

)1/5

, (3.9)

which is motivated by the asymptotically optimal MASE bandwidth (3.7) and the

fact that the cross-validation function (3.8) is an approximately unbiased estimator of

σ2 + MASE(h). Notice that the constant (3.9) is identical to the rescaling constant

for the ICV method, defined by expression (2.7), so we can keep the same notation.

Equality of the multiplicative constants for the two methods is a consequence of

similarity of the MISE asymptotic expansion (2.4) in the density problem and the

MASE expansion (3.6) in the regression problem.

For practical implementation of the OSCV algorithm it is proposed to perform

cross-validation on a special (one-sided) estimator r̃b. For each point x the one-sided

estimator r̃b(x) is defined as the K-kernel local linear estimator computed from the

data points (xi, Yi) for which xi ≤ x. To a good approximation, r̃b is a local linear

estimator with kernel L defined by

L(u) = 2K(u)
c2 − uc1

c2 − 2c2
1

I(0,∞)(u), (3.10)

where ci =
∫ 1

0
uiK(u) du, i = 1, 2; IA(·) is an indicator of a set A. Note that

kernel (3.10) is a second order kernel, unless c2
2 = c1c3, where c3 =

∫∞
0

u3K(u) du.

Also note that kernel (3.10) is the same as the boundary kernel of Gasser and Müller

(1979). Figure 21 shows the quartic kernel and its one-sided counterpart, which are

defined as

KQ(u) =
15

16
(1− u2)2I(−1,1)(u),

LQ(u) =

(
160

27
− 350

27
u

)
(1− u2)2I(0,1)(u).

(3.11)
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Fig. 21. (a)Quartic kernel KQ; (b) One-sided quartic kernel LQ.

The cross-validation function for the one-sided estimator r̃b has the following

form:

OSCV (h) =
1

n−m

n∑
i=m+1

(
r̃ i
b (xi)− Yi

)2
, (3.12)

where m is an integer greater than 1; r̃ i
b (xi) is a one-sided estimator computed without

the observation (xi, Yi). Omitting the first m points in the OSCV function (3.12) is

necessary to ensure a reasonable one-sided prediction of the regression function r

at the (m + 1)st point. For practical purposes is it usually enough to take m = 4

(see Hart (1997)).

One-sided estimators r̃b have very low efficiency for estimating the regression

function r, but are highly efficient for cross-validation purposes. Let ĥOSCV and ĥCV

denote the OSCV and LSCV bandwidths, respectively. Hart and Yi (1998) showed

that under appropriate conditions, the following result holds for the quartic kernel:

lim
n→∞

V ar(ĥOSCV )

V ar(ĥCV )
≈ 0.10.
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The above ratio may be smaller for other kernels, thus explaining the rationale for

using the OSCV two-step bandwidth selection algorithm. A more detailed theoretical

discussion of the OSCV method and its practical performance may be found in Yi

(1996), Hart (1997), Hart and Yi (1998), and Yi (2001).

2.2. OSCV for nonsmooth regression functions

The OSCV method can be extended for nonsmooth regression functions. The same

two-step procedure is appropriate with the constant C replaced by a different constant

B, which depends on K and L in a different way. An expression for B follows from

the MASE asymptotic expansion which is valid when the regression function r is

nonsmooth. The MASE asymptotic expansion for the K-kernel local linear estimator

in the case when r is nonsmooth and the design is fixed and evenly spaced or random

uniform, has the following form:

MASE(h) =
R(K)σ2

nh
+ h3BK

k∑
t=1

(r′(ut+)− r′(ut−))
2
+ o

(
1

nh

)
+ o(h4), (3.13)

where {ut}, t = 1, . . . , k, are the points where the function r has cusps, and for an

arbitrary function g,

Bg =

∫ 1

0

{z(1−Hg(z)) + Gg(z)}2 dz +

∫ 1

0

{zHg(−z) + Gg(−z)}2 dz,

Hg(z) =

∫ z

−∞
g(u) du, and

Gg(z) =

∫ z

−∞
ug(u) du.

Derivation of expansion (3.13) and sufficient conditions for it to hold are given in

the Appendix C. In particular, the kernel K in (3.13) is asumed to be supported on

[−1, 1], and have two continuous derivatives on its support. It is a topic of future work

to prove that the result (3.13) holds when K is piecewise continuous and piecewise
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twice differentiable. From expression (3.13) it follows that the MASE asymptotic

minimizer in the nonsmooth case has the following form:

h∗n =

(
σ2

3
∑k

t=1 (r′(ut+)− r′(ut−))2

)1/4 (
R(K)

BK

)1/4

n−1/4. (3.14)

Denote by AMASE∗(h) the leading terms in the asymptotic MASE expansion (3.13).

It follows that in the nonsmooth case the minimum asymptotic MASE is given by

AMASE∗(h∗n) =

4

3

(
σ2

∫ ∞

−∞

1

f(x)
dx

)3/4
(

3
k∑

t=1

(r′(ut+)− r′(ut−))
2

)1/4

R(K)3/4B
1/4
K n−3/4.

Note the slower MASE convergence rate of O(n−3/4) compared to the rate of O(n−4/5)

in the smooth case.

The asymptotic MASE-optimal bandwidth (3.14) implies the following formula

for the rescaling constant B in the nonsmooth case:

B =

(
R(K)

BK

)1/4 (
BL

R(L)

)1/4

. (3.15)

Notice that the use of asymptotic expansion (3.13) is not yet justified for one-sided

kernels L, which are often discontinuous at 0, and have support [0,1]. However, our

extensive numerical experience suggests that the constant B given by (3.15) helps to

remove the bandwidth bias in the case of a nonsmooth regression function. Table VI

shows the values of the constants B and C for the most frequently used kernels. As we

can see, most of the traditionally used kernels have C > B. However, the discrepancy

between the constants, measured by
∣∣B
C
− 1

∣∣ · 100%, is less than 7% for all the kernels

in Table VI except for the Gaussian, in which case the discrepancy is 14.33%. The

question is “how will the bias introduced by a wrong constant (C) in the nonsmooth

case impact an estimator’s error?” To address this question, we introduce the penalty



60

Table VI. Rescaling constants B and C and the penalty for using a wrong constant in

the nonsmooth case.

Kernel C B
∣∣B
C
− 1

∣∣ · 100% R, %

Epanechnikov 0.5371 0.5019 6.55 0.7215

quartic 0.5573 0.5206 6.59 0.7285

triangle 0.5493 0.5133 6.55 0.7195

Gaussian 0.6168 0.5284 14.33 4.0210

measure R, defined in the following way:

R =

∣∣∣∣
AMASE∗(Cb∗n)

AMASE∗(h∗n)
− 1

∣∣∣∣ · 100%,

where b∗n is the asymptotic MASE-optimal bandwidth (3.14) computed for the L-

kernel estimator. The quantity Cb∗n is a proxy to the bandwidth which would the

ordinary OSCV method select if (inappropriately) applied in the case of a nonsmooth

regression function. It can be shown that

R =
3

4

(
x +

1

3x3

)
,

where

x =

(
BL

BK

)1/4 (
CK

CL

)1/20 (
µ2

2K

µ2
2L

)1/5

.

The last column of Table VI gives the value of R for the traditional kernels. It

follows that R is less than 1% for all the kernels expect for the Gaussian, in which

case R
.
= 4%. This suggest that the ordinary OSCV method is fairly robust to

nonsmoothness of the regression functions.
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2.3. Robust OSCV

As we concluded in Section 2.2, inappropriate use of ordinary OSCV for nonsmooth

functions produces biased bandwidths, since the constants of proportionality C and

B are generally different. We propose to modify the OSCV method so that it has

equal rescaling constants B = C and, consequently, does not require the knowledge

of the regression function’s smoothness.

Notice that the constants C and B depend on the kernels K and L exclusively,

implying that for a given kernel K one can search for a one-sided kernel L∗ which

will produce the desired equality of the constants. Such a kernel L∗ is called robust,

and OSCV based on a robust kernel L∗ is called robust OSCV.

For a practical implementation of the above idea one can first define a parametric

family of two-sided kernels K∗, and then find L∗ using expression (3.10). The

parameters in K∗ and L∗ are determined by requiring B = C.

In our initial efforts we used the quartic kernel (3.11) for K and used polynomials

on the interval [−1, 1] for K∗. We found 18 robust kernels in this setting, with two

kernels performing better than the others in numerical studies. These winning kernels

are defined below and plotted in Figure 22.

• Kernel K∗
1 :

K∗
1(x) =

(
1.1393− 2.4221x− 0.6640x2 + 4.0368x3 − 2.0901x4

)
I[−1,1](x).

For this kernel B = C = 0.3030. Both kernels K∗
1 and L∗1 are continuous and

smooth at x = 1.

• Kernel K∗
2 :

K∗
2 =

(
1.3822− 0.8338x− 5.2104x2 + 3.8913x3 + 4.2729x4 − 3.5022x5

)
I[−1,1](x).
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Fig. 22. Kernels K∗
1 and K∗

2 and the corresponding one-sided kernels L∗1 and L∗2. The

dashed lines correspond to the two-sided and one-sided quartic kernels.
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For this kernel B = C = 0.3385. Kernels K∗
2 and L∗2 are continuous and smooth

at x = 1, and the third moment of K∗
2 is zero.

Notice that the one-sided kernels L∗1 and L∗2 are discontinuous and fairly steep

at x = 0, which matches the properties of ”good” kernels of Hart and Yi (1998).

In our simulation studies OSCV based on the robust kernels K∗
1 and K∗

2 performed

comparable to ordinary OSCV based on the quartic kernel (3.11) for a wide variety

of functions when the design points were fixed and evenly spaced. Even though the

OSCV curves based on K∗
1 and K∗

2 were smooth in all our examples involving the

fixed and evenly spaced design, the criterion curves for K∗
1 and K∗

2 in the case of the

random design are usually very irregular. The following numeric example was used

to illustrate this observation.

We generated n = 100 design points from the Uniform(0, 1) distribution.

Data points were produced using a smooth function with a moderate amount

of added Gaussian noise. We computed the OSCV criterion curve according to

expression (3.12). We used a correction for small h when computing the leave-one-out

one-sided predictor r̃−i
b in the OSCV function (3.12), since the local linear estimator

based on a kernel supported on [−1, 1] is not well-defined (has a denominator equal to

0) if h is less than the largest spacing in the design points. The resulting OSCV curve

plotted in Figure 23 is extremely unsmooth and behaves similarly to a discontinuous

function. In fact, the OSCV curve has many spikes of a large amplitude with most

of them occurring at the relatively small values of h. What is the reason for those

spikes?

We found that the erratic behavior of the OSCV curve plotted in Figure 23 is

due to the properties of the kernel K∗
1 . The OSCV criterion (3.12) is a function of

the LLE based on the kernel K∗
1 . Notice that the denominator of the local linear
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Fig. 23. An OSCV criterion function based on the kernel K∗
1 .

estimator (3.1) has a sum of the weights (3.2) that depend on the kernel function.

Since the kernel K∗
1 is not nonnegative, the weights may add up to a small number

at selected values of h, which will cause a spike in the OSCV criterion function for

those h. In an attempt to solve the problem with rough criterion curves, we tried to

use the one-sided Gasser-Müller estimator instead of the one-sided LLE in the cross-

validation function (3.12). The Gasser-Müller estimator does not have a denominator

and may not have a division by 0 problem. We noted that the OSCV curves for the

one-sided Gasser-Müller estimator based on K∗
1 were more smooth than those for the

LLE based on K∗
1 , but still unacceptably wiggly. We do not as yet have an explanation

for this phenomenon.

Table VI suggests that the OSCV method does not really need correction when

K is the quartic kernel. Our further efforts concentrated on K being the Gaussian
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kernel, since this case corresponds to the most significant discrepancy between B and

C and the largest penalty measure R. One of the parametric families we considered

for K∗ was

K∗(x) = (c0 + c1x + c2x
2)φ(x),

where φ(x) is the Gaussian kernel, and c0, c1, and c2 are the parameters. We found

four robust kernels from this family, none of which is nonnegative, and, similarly to

the kernels K∗
1 and K∗

2 , produce very rough criterion curves in the random design case.

Apparently, the nonnegativity is a necessary property for a “good” cross-validation

kernel.

Next, we considered several parametric families of positive kernels and found

eight robust kernels, all of which are bimodal. Two of the kernels are defined below

and plotted in Figure 24.

• Kernel K∗
3 :

K∗
3(x) =

1

2σ
φ

(
x + µ

σ

)
+

1

2σ
φ

(
x− µ

σ

)
,

where α = 0.4121 and σ =
1

10
. For this kernel B = C = 0.1932.

• Kernel K∗
4 :

K∗
4(x) =

1

3σ
φ

(
x + 2

3
α

σ

)
+

2

3σ
φ

(
x− α

3

σ

)
,

where α = 2.3729 and σ =
1

5
. For this kernel B = C = 0.3786.

Apparently, the bimodal structure of the kernels causes the wiggles in the OSCV

criterion curves. Figure 25 shows two OSCV functions computed using kernel K∗
3 for

n = 100 data points generated from a smooth function with a moderate amount of

added Gaussian noise in the cases of the fixed, evenly spaced design and a random

design, where the design density was a mixture of the Uniform[0, 1] distribution and

a beta distribution.
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Fig. 24. Kernels K∗
3 and K∗

4 and the corresponding one-sided kernels L∗3 and L∗4. The

dashed lines correspond to the two-sided and one-sided Gaussian kernels.
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Fig. 25. OSCV criterion functions based on the kernel K∗
3 in the cases of (a) fixed

evenly spaced design and (b) random design.

Although none of the robust kernels so far discussed is nonnegative and unimodal,

we found a kernel which is “close” to satisfying these conditions. This kernel is a

member of the parametric family

K∗(x) = (1 + α)φ(x)− α

σ
φ(x), (3.16)

and has α = 0.000088 and σ = 10. For this kernel B = C = 0.5217. In what follows

we will call this kernel just K∗ and will denote its constant C∗. Notice that the

parametric family (3.16) exactly matches the selection kernels (2.8) used in the ICV

method described in the previous chapter. Although family (2.8) includes the positive

kernels (family L2), all the robust kernels we were able to find in (3.16) were either

negative-tailed or of cut-out-the-middle type. Out of all the robust kernels we found,

the kernel K∗ is the closest to the Gaussian kernel in the L2-sense. The kernel K∗ is a

negative-tailed kernel which crosses the horizontal axes at the points x = ±4.85. As



68

Kernel K∗ One-sided kernel L∗

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

K
*

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

x

L*

Fig. 26. Robust kernel K∗ and its one-sided counterpart L∗. Dashed curves in both

graphs correspond to the two-sided and one-sided Gaussian kernels.

we can see in Figure 26, the kernel K∗ and its one-sided counterpart L∗ are so close

to the two-sided and one-sided Gaussian kernels, that they can not be distinguished

by eye, at least on the intervals (−4, 4) and (0, 4), respectively.

We explored the OSCV curves produced by the kernel K∗. For the case of the

fixed, evenly spaced design, the criterion curves were smooth for all combinations of

functions and sample sizes considered. In the case of the Uniform(0, 1) design we

have occasionally observed some minor wiggles occurring at small values of h. In

the case of the random design produced by mixing the uniform and a beta density,

the criterion curves were not usually smooth for small values of h. Figure 27 shows

an OSCV curve plotted for the case of the random design (f is a mixture of the

uniform and a beta distribution), a nonsmooth function (with 6 cusps), n = 100,

and a moderate amount of added Gaussian noise. Although the OSCV curve is very

rough for small values of h, it is smooth in the area close to the point of its global
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Fig. 27. An OSCV criterion function based on the kernel K∗.

minimum (ĥ = 0.0516).

The problem with the wiggly criterion curves in random design cases can be

resolved by following the design transformation approach proposed by Hall, Park, and

Turlach (1998). In the design transformation method the criterion curve is computed

after transforming the design sequence to the fixed evenly spaced grid of points. As

we noted above, the kernel K∗ produces smooth OSCV curves for the fixed evenly

spaced design case. One of the examples in Section 4 shows the benefit of using the

OSCV method based on K∗ after performing the design transformation.

The kernel K∗ is the “best” robust kernel we have found thus far. A numerical

study described in Section 3 and examples in Section 4 provide more information

about the performance of K∗.
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3. Simulation study

Here we present the results of a simulation study which compares ordinary OSCV and

Robust OSCV based on kernel K∗. However, we will also provide simulation results

for LSCV and Ruppert-Sheather-Wand plug-in. Our simulation setup is described

next.

We used the following three functions in the study, where in each case 0 ≤ x ≤ 1:

• Regression function r1:

r1(x) = 2.5(2x10(1− x)2 + x2(1− x)10)

• Regression function r2:

r2(x) =





1
20
− 1

20
|x− 1

4
|, x < 0.5,

1
20
|x− 3

4
| − 1

80
, x ≥ 0.5.

• Regression function r3, plotted in Figure 28, which was produced by stacking 7

functions of different types including polynomials, exponential and logarithmic

functions.

The function r1 is smooth and has two peaks, r2 has a single cusp at the point x = 0.5,

and r3 has six cusps. The range of each function is about the same, and hence the

same values of σ, 1/250, 1/500, and 1/1000, were used with each function to represent

high, moderate, and low levels of noise. We considered the three sample sizes n = 100,

300 and 1000. The error terms were taken to be N(0, σ2). We considered two designs:

a fixed, evenly spaced design with

xi =
i− 0.5

n
, i = 1, . . . , n,

and the Uniform[0, 1] design. For each combination of r, σ, n, and the design we
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Fig. 28. Regression function r3.

generated 1000 independent data sets. Figure 29 shows the regression functions r1

and r2 along with the n = 100 evenly spaced data points, generated using different

values of σ.

We computed the bandwidth of the Gaussian local linear estimator using different

data-based methods. Let ĥ0 denote the minimizer of the ASE function (3.4) for

the Gaussian local linear estimator, ĥPI denote the Ruppert-Sheather-Wand plug-

in bandwidth, ĥROSCV denote the bandwidth corresponding to the Robust OSCV

method which uses kernel K∗ for cross-validation, and, finally, ĥOSCV stands for the

ordinary OSCV bandwidth when the Gaussian kernel is used at the cross-validation

stage.

Let us introduce some further notation. For each random variable Y defined in

each replication of our simulation, we denote the mean, standard deviation, and

the median of Y over all replications (with r, σ, and n fixed) by Ê(Y ), ŜD(Y )

and M̂edian(Y ). For each sample we computed ĥROSCV , ĥOSCV , ĥPI , ĥCV , and

ĥ0. To evaluate the bandwidth selectors we computed Ê
(
ASE(ĥ)/ASE(ĥ0)

)
and
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Fig. 29. Regression functions r1 and r2 with added noise. Design: fixed, evenly spaced;

sample size: n = 100.

M̂edian
(
ASE(ĥ)/ASE(ĥ0)

)
for ĥ equal to each of ĥROSCV , ĥOSCV , ĥPI , ĥCV , and ĥ0.

To assess the bias of a data-driven method we define

δ =
|Ê(ĥ)− Ê(ĥ0)|

Ê(ĥ0)
· 100%, (3.17)

which measures the relative distance between the average data-driven bandwidth ĥ

and the average ASE-optimal bandwidth ĥ0.

Our simulation results for the functions r1 and r3 in the case of the fixed evenly

spaced design are given in Tables VII and VIII and in Figures 30 and 31. The

analogous results for the other cases considered are given in the Appendix D. Table IX

contains the summary measures which were used to analyze our simulation results.

The cell format in Table IX is of the form mean(standard deviation), where the mean

and the standard deviation of a quantity are computed over all nine combinations of

n and σ for a given regression function r and the type of design. Table IX contains
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Table VII. Simulation results for r1. Design: fixed, evenly spaced.

n σ R OSCV OSCV PI CV ASE

Ê(ĥ)
1/250 0.03199152 0.03770010 0.03595395 0.03701106 0.03769148

100 1/500 0.02368298 0.02778172 0.02778078 0.02715639 0.02764088
1/1000 0.01772376 0.02067085 0.02103406 0.01983358 0.02041447
1/250 0.02512314 0.02950298 0.02928123 0.02869285 0.02927278

300 1/500 0.01870838 0.02184818 0.02207227 0.02112000 0.02165305
1/1000 0.01387581 0.01613502 0.01661898 0.01552555 0.01596092
1/250 0.01940042 0.02267263 0.02286507 0.02205911 0.02265662

1000 1/500 0.01440028 0.01675465 0.01718620 0.01627201 0.01669468
1/1000 0.01060072 0.01230054 0.01291333 0.01195283 0.01224124

ŜD(ĥ) · 103

1/250 2.35334466 2.82035295 3.35478573 7.77987537 5.78855224
100 1/500 1.36354160 1.64387452 1.61600631 4.91668289 3.77203463

1/1000 0.93613228 1.11759307 0.85003210 3.44337129 2.45968021
1/250 1.22085401 1.47065950 1.94163024 4.65361265 4.00476245

300 1/500 0.76985616 0.91728356 0.80729835 2.92937376 2.57599634
1/1000 0.53843113 0.62557509 0.40084029 1.91421777 1.66549915
1/250 0.68559950 0.81656455 0.83173119 2.83688178 2.67379715

1000 1/500 0.46144256 0.53254480 0.30664674 1.75928821 1.71484542
1/1000 0.31790501 0.36135320 0.15607989 1.08983851 1.09198378

Ê
(
ASE(ĥ)/ASE(ĥ0)

)
1/250 1.13536606 1.07767019 1.08375306 1.19284525

100 1/500 1.10110393 1.05553616 1.05131111 1.14352015
1/1000 1.07483753 1.04015876 1.03352956 1.12027987
1/250 1.10016853 1.05502682 1.05728897 1.13366577

300 1/500 1.07841097 1.03955511 1.03539307 1.09281417
1/1000 1.06379353 1.02932038 1.02536092 1.06792019
1/250 1.08059721 1.03725037 1.03386661 1.08785819

1000 1/500 1.06599570 1.02781598 1.02325004 1.06119134
1/1000 1.05648412 1.02091674 1.02048399 1.04375999

M̂edian
(
ASE(ĥ)/ASE(ĥ0)

)
1/250 1.04733054 1.03122740 1.03010994 1.07450458

100 1/500 1.04012974 1.02465166 1.02442740 1.05356328
1/1000 1.03192935 1.01889956 1.01429995 1.03739459
1/250 1.03819936 1.02437591 1.02226036 1.04676624

300 1/500 1.03223870 1.01892777 1.01678844 1.03050059
1/1000 1.02907223 1.01275110 1.01339069 1.02528878
1/250 1.03842687 1.01710699 1.01601157 1.02850287

1000 1/500 1.03516778 1.01304730 1.01191757 1.02260480
1/1000 1.03145817 1.01001448 1.01008131 1.01738506
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Fig. 30. Boxplots for the data-driven bandwidths in the case of the regression function

r1. The standard deviation of the added noise is σ = 1/500; the design is fixed,

evenly spaced.
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Table VIII. Simulation results for r3. Design: fixed, evenly spaced.

n σ R OSCV OSCV PI CV ASE

Ê(ĥ)
1/250 0.02781345 0.03272048 0.03082594 0.02897165 0.02893465

100 1/500 0.01890343 0.02219969 0.02308152 0.01987884 0.01971586
1/1000 0.01312427 0.01539186 0.01709360 0.01358833 0.01364758
1/250 0.01990575 0.02340561 0.02387928 0.02076053 0.02140777

300 1/500 0.01374898 0.01616434 0.01741220 0.01466136 0.01462972
1/1000 0.00954253 0.01120754 0.01286447 0.01003337 0.01009401
1/250 0.01425194 0.01676164 0.01800473 0.01515277 0.01545087

1000 1/500 0.00987256 0.01160366 0.01332268 0.01046123 0.01059549
1/1000 0.00685782 0.00804998 0.00972627 0.00724627 0.00728106

ŜD(ĥ) · 103

1/250 2.78782735 3.30952944 3.40943951 6.38708243 4.05945129
100 1/500 1.41314142 1.67788534 1.77151546 3.87946228 2.31115754

1/1000 0.89072320 1.06116933 1.02970161 2.64514953 1.30945747
1/250 1.38806227 1.64994695 2.22764492 3.62993131 2.45750160

300 1/500 0.76831525 0.91293330 1.11210843 2.04145693 1.46994235
1/1000 0.44966874 0.53310432 0.49238350 1.25137106 0.82529395
1/250 0.77773412 0.92418724 1.06827851 2.03710686 1.64130473

1000 1/500 0.41718295 0.49475848 0.51611104 1.15064153 0.87307577
1/1000 0.24265057 0.28697854 0.21548413 0.65723075 0.51639643

Ê
(
ASE(ĥ)/ASE(ĥ0)

)
1/250 1.06503553 1.08304548 1.06557020 1.15361768

100 1/500 1.03829659 1.05831928 1.07487172 1.11157242
1/1000 1.02727808 1.04910127 1.10838061 1.10861375
1/250 1.04675049 1.04979230 1.05967264 1.09435410

300 1/500 1.03235995 1.04126111 1.07397087 1.05904786
1/1000 1.02144663 1.03373491 1.10999261 1.04573292
1/250 1.03996338 1.03900099 1.06320398 1.06059237

1000 1/500 1.02487126 1.02961526 1.09949219 1.03841928
1/1000 1.01736240 1.02788043 1.15148588 1.02568193

M̂edian
(
ASE(ĥ)/ASE(ĥ0)

)
1/250 1.02840414 1.04389413 1.03352135 1.05743335

100 1/500 1.01679765 1.03399727 1.04636331 1.04083347
1/1000 1.01035092 1.02847108 1.08890399 1.02724695
1/250 1.01701620 1.02479656 1.03332768 1.03646547

300 1/500 1.01291490 1.02341149 1.04784823 1.02229067
1/1000 1.00934112 1.01867423 1.09372865 1.01878624
1/250 1.01516733 1.02254971 1.04116087 1.02754846

1000 1/500 1.01057203 1.01593085 1.08525696 1.01537137
1/1000 1.00769884 1.01600059 1.14179095 1.01160083
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Fig. 31. Boxplots for the data-driven bandwidths in the case of regression function r3.

The standard deviation of the added noise is σ = 1/1000; the design is fixed,

evenly spaced.
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Table IX. Measures of performance in the numerical study.

r RE RSD δ for ROSCV δ for OSCV RASE

Fixed evenly spaced design

r1 0.8559 0.8464 13.8867 0.6092 1.0421

(0.0043) (0.0180) (0.6686) (0.4323) (0.0082)

r2 0.8509 0.8402 10.7378 4.9078 1.0169

(0.0025) (0.0043) (1.4757) (1.4342) (0.0085)

r3 0.8464 0.8423 5.2189 11.3067 0.9896

(0.0108) (0.0017) (1.5324) (1.4370) (0.0075)

Uniform(0, 1) design

r1 0.8565 0.8415 13.3378 1.1789 1.0365

(0.0049) (0.0204) (1.0590) (0.9600) (0.0073)

r2 0.8511 0.8400 12.3056 3.0389 1.0257

(0.0027) (0.0020) (1.4141) (1.4213) (0.0098)

r3 0.8605 0.8299 5.8213 10.0563 0.9881

(0.0195) (0.0220) (2.6533) (2.9391) (0.0098)

two columns of the values of δ, defined by (3.17), for the Robust OSCV and ordinary

OSCV methods. Other columns in Table IX correspond to the following ratios:

RE = Ê(ĥROSCV )/Ê(ĥOSCV )

RSD = ŜD(ĥROSCV )/ŜD(ĥOSCV )

RASE = Ê
(
ASE(ĥROSCV )/ASE(ĥ0)

)
/Ê

(
ASE(ĥOSCV )/ASE(ĥ0)

)
.

Our main observations and conclusions from the numerical study are summarized

below.

(C1) The average values of RE and RSD reported in the first two columns of Table IX
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are very close to the quantity
C∗

CGaussian

=
0.5217

0.6168
.
= 0.8458. Moreover, the

bandwidths ĥROSCV and ĥOSCV are highly correlated: the sample correlation

coefficient was higher than 0.98 in 53 out of 54 considered cases. This indicates

that the minimizers of the OSCV curves based on the Gaussian kernel and on

the kernel K∗ are typically very close, which is a consequence of the fact that

the kernels are very close (see Figure 26). This suggests that at least for the

fixed evenly spaced and Uniform(0, 1) designs, when the criterion curves based

on K∗ are smooth, using kernel K∗ for cross-validation purposes is like using

the Gaussian kernel with the constant C∗ = 0.5217.

(C2) Notice that C∗ = 0.5217 is very close to the constant B = 0.5284 appropriate

for the Gaussian kernel in the nonsmooth case. Thus, for the fixed evenly spaced

and Uniform(0, 1) designs, using kernel K∗ is practically the same as using a

version of OSCV for nonsmooth functions described in Section 2.2.

(C3) In all the considered cases Ê(ĥROSCV ) < Ê(ĥ0), Ê(ĥOSCV ) > Ê(ĥ0), and

ŜD(ĥROSCV ) < ŜD(ĥOSCV ). In light of our conclusion (C1), the reduced

bandwidth variability for Robust OSCV compared to ordinary OSCV is a

consequence of the fact that C∗ = 0.5217 < CGaussian = 0.6168.

(C4) From the average values of δ reported in Table IX, it follows that the ordinary

OSCV method is practically unbiased for r1, has a very low bias (average(δ) <

5%) for r2 and tends to have a substantial positive bias (average(δ) > 10%) for

r3. Notice that in the case of ordinary OSCV and a nonsmooth function, the

quantity δ, defined by (3.17), estimates

|Cbn −Bbn|
Bbn

· 100% =
|C −B|

B
· 100% =

|0.6168− 0.5284|
0.5284

· 100% = 16.73%.
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This implies that for sufficiently larger sample sizes the bias problem for OSCV

applied to a nonsmooth function will get worse than what we observed in our

study. Notice that for ordinary OSCV the average δ in the case of r3 is closer

to 16.73% than the average δ in the case of r2. It may suggest that in finite

samples the bias of the ordinary OSCV method depends on the smoothness of

the regression function: the more nonsmooth the function, the more severe the

bias. Notice that the Robust OSCV is practically unbiased for the case of r3.

This together with our conclusion in (C1) implies that it would be reasonable

to use a nonsmooth version of OSCV, as described in Section 2.2, only for data

sets where the underlying regression function is apparently nonsmooth.

(C5) Ruppert-Sheather-Wand plug-in is overall the best method for a smooth

function r1, but it experiences a substantial problem with the positive bias

for r2 and r3, which is more severe in the case of the less smooth function r3.

4. Examples

Our analysis in Section 3 reveals that the kernel K∗ is not always useful. Nonetheless,

the examples of using K∗ are still of interest for at least two reasons. First,

the conclusion (C2) in Section 3 suggests that performing OSCV based on K∗ is

practically the same as using a nonsmooth version of OSCV described in Section 2.2.

Second, it is instructive to investigate the OSCV criterion curves based on K∗ for the

real data examples.

In this section we consider one simulated example, involving the design

transformation of Hall, Park, and Turlach (1998), and one real data example which

compares the performance of OSCV, Robust OSCV, LSCV and Ruppert-Sheather-

Wand plug-in. In both examples the Robust OSCV method uses the kernel K∗.
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4.1. Simulated example involving design transformation

For this example we generated 1000 data sets of size n = 1000 using the regression

function

r(u) =





15

160
u, 0 ≤ u ≤ 4

15
;

−15

80
u +

3

40
,

4

15
< u ≤ 2

5
;

1

4
u− 1

10
,

2

5
< u ≤ 1

2
;

− 1

20
u +

1

20

1

2
< x ≤ 1,

(3.18)

which has three cusps. The error terms were taken to be N (0, (1/1000)2). The design

points were generated using the density

f(x) = 0.3 · Uniform(0, 1) + 0.7 · Beta(3, 5). (3.19)

Mixing the beta and uniform distributions ensures that the density satisfies the

necessary conditions and solves the problem of missing design points close to 0 and

1. Design is irregular enough for Robust OSCV to yield unacceptably rough criterion

curves. However, the Robust OSCV method can still be used after we perform the

design transformation proposed by Hall, Park, and Turlach (1998).

For each generated data set we first transform the ordered design sequence xi,

i = 1, . . . , n, to the fixed evenly spaced grid of points ui = i/n. Using data pairs

(ui, Yi) we select the bandwidth ĥ and compute the estimate r̂Q(u) of the so called

regression function of quantiles rQ(u) = r(F−1(u)). The final regression estimate

r̂tr(x) is computed as

r̂tr(x) = r̂Q

(
F̂ (x)

)
,

where F̂ is the empirical distribution function (edf) computed for the design sequence.

Notice that r̂Q(ui) ≡ r̂tr(xi) which implies the identity of the ASE values computed
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for the estimates r̂Q(u) and r̂tr(x).

In the transformed scale the Robust OSCV method yields smooth criterion curves

with a single easily detectable minimum. The average ASE values computed over 1000

replication runs for the Robust OSCV, ordinary OSCV and the Ruppert-Sheather-

Wand plug-in methods are given in Table X. Robust OSCV outperforms the other

Table X. Average ASE values corresponding to different bandwidth selection methods.

Robust OSCV OSCV R-S-W plug-in

Average(ASE) · 108 6.5460 6.7274 7.6068

two methods. This happened because of the positive bias problem for ordinary OSCV

and Ruppert-Sheather-Wand plug-in. This suggests that the regression function is

nonsmooth to such an extent that a nonsmooth version of OSCV should be preferred

to ordinary OSCV.

Figure 32(a) shows the Robust OSCV regression estimate which was computed

involving the design transformation for the data set with the median value of ASE

among 1000 replicated data sets. The corresponding estimate of the regression

function of quantiles is plotted in Figure 32(b).

We noticed that using the edf for back transformation in the design

transformation method yields a staircase regression estimate which is noticeable for

smaller sample sizes and/or more irregular designs compared to what we used in our

example. A smooth approximation of the edf is needed to get a smooth regression

estimate.
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Fig. 32. (a) Robust OSCV regression estimate. Dashed line shows the true regression

function; (b) Robust OSCV estimate of the regression function of quantiles.

Circles show the data values in a transformed scale.

4.2. Electricity consumption and temperature in the building data

In this example we analyze the data on measurements of electricity consumption

in KWH and mean temperature in degrees F for one building on the University

of Minnesota’s Twin City campus for n = 39 months in 1988-1992. The goal

is to model consumption as a function of temperature. The data were taken

from the website http://www.stat.umn.edu/alr/data.html associated with the book

of Weisberg (2005). The author argues that the high temperature should mean high

consumption, since the higher temperature causes the use of air conditioning. Also it

is known that the building was steam heated, so electricity was not used for heating.

Weisberg (2005) uses a so-called broken-stick model, which has a mean function

consisting of two stacked lines, and estimates the location of the band to be around

42◦F.

Figure 33 shows the criterion curves for the LSCV, OSCV, and Robust OSCV



83

LSCV OSCV

0 10 20 30 40 50 60 70

35
40

45
50

CV criterion plot

h

cr
ite

rio
n

10 20 30 40

42
44

46
48

50

Ordinary OSCV (with Gaussian kernel)

h

cr
ite

rio
n

Robust OSCV

5 10 15 20 25 30 35

42
44

46
48

50

ROSCV

h

cr
ite

rio
n

Fig. 33. LSCV, OSCV, and Robust OSCV criterion curves for the electricity and

temperature data.

methods. To make the scales of the graphs comparable, we plotted the functions

CV (h), OSCV
(

h
CGaussian

)
, and OSCV ∗ (

h
C∗

)
, where OSCV ∗(·) denotes the OSCV

function (3.12) based on the kernel K∗. We considered the values of h ranging between

the largest spacing and the range of the design data. The Robust OSCV curve is

smooth and has a single easily detectable minimum in this interval. Notice that the

LSCV curve has two local minima with the largest minimum occurring at ĥ = 13.51.

The LSCV, OSCV, and Robust OSCV Gaussian local linear estimates are shown
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in Figure 34 along with the data points. The OSCV and Robust OSCV estimates are

consistent with the Weisberg analysis, whereas the LSCV and the Ruppert-Sheather-

Wand plug-in estimates are quite wiggly.

5. Conclusions

The ordinary OSCV method was shown to be fairly robust to lack of smoothness in the

regression function. Even though the use of ordinary OSCV for nonsmooth functions

produces biased bandwidths, the asymptotic MASE of the K-kernel regression

estimator does not increase by more than 1% if K is the Epanechnikov, quartic,

or triangle kernel, and it increases by about 4% when K is the Gaussian kernel.

This implies that ordinary OSCV does not need much adjustment for the case

of discontinuous derivative when K is Epanechnikov, quartic, or triangle. This

conclusion is supported by results of our numerous simulation studies. It also explains

the good performance of OSCV applied to a function with discontinuous derivative

in a numerical study of Hart and Yi (1998), which involved the quartic kernel.

We noted in our simulation study that OSCV based on the Gaussian kernel

produces biased upwards bandwidths for nonsmooth functions, with the bias problem

getting worse as the smoothness of the regression function decreases. Should the

Gaussian kernel be used in OSCV at all? The utility of the Gaussian kernel in OSCV

is justified by the following. From the paper of Seifert and Gasser (1996) and from

our numerical examples it follows that for the irregular designs containing sparse

regions, the OSCV criterion plots based on the Gaussian kernel are smoother than

those based on the compactly supported kernels. Below we propose two approaches

to reduce the bias of the OSCV method based on the Gaussian kernel for functions

with discontinuous derivative.

A first approach consists of using a different constant B in place of C for
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Fig. 34. Regression estimates for the electricity and temperature data.
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nonsmooth functions. Our numerical experience suggests that this approach should

be followed in practice for functions which have more than one cusp. Another

method, called Robust OSCV, consists in equating the method’s constants B and

C by means of the appropriate cross-validation kernel, which is called robust. A

“good” robust kernel should be unimodal and nonnegative. Robust kernels which are

not nonnegative may produce very rough criterion curves. Bimodality of the robust

kernel should not be allowed since it may lead to criterion curves which have multiple

local minima. So far we did not find an entirely suitable robust kernel, so this question

remains open.
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CHAPTER IV

SUMMARY

A widely help view is that kernel choice is not terribly important when it comes to

estimation of the underlying curve. In this dissertation we have shown that the kernel

can have a dramatic effect on the properties of cross-validation. In particular, properly

chosen kernels can eliminate bandwidth bias, which is the case with robust kernels

in the Robust OSCV method. Kernels can also substantially reduce the asymptotic

bandwidth variance, which happens with one-sided kernels in the OSCV method.

Finally, we found kernels which improve the bandwidth error rate. In particular, in

the ICV framework we showed that the asymptotically optimal kernels of the form

(1+α)φ(u)−αφ(u/σ)/σ, where α and σ are positive constants, produce bandwidths

that converge to 0 at a rate of n−1/4, which is substantially better than the n−1/10

rate of the ordinary LSCV method.

There is a lot of room for further research on the topic of choosing a kernel for

cross-validation. In particular, it is entirely possible that there exists another class of

kernels that can improve the relative convergence rate of n−1/4. Another open problem

is to find a robust kernel for the Robust OSCV method which will provide bandwidth

variance reduction and smooth criterion curves. One more problem mentioned in the

dissertation of Yi (1996) and in the paper of Hart and Yi (1998), which still remains

unsolved, is to find an asymptotically optimal OSCV kernel. Finally, it is of interest

to generalize the ICV and OSCV methods to multiple dimensions.
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APPENDIX A

PROOF OF THE THEOREM II.1

Here we outline the proof of our Theorem II.1. A much more detailed proof is

available from the authors.

We start by writing

Tn(b0) = Tn(b̂UCV ) + (b0 − b̂UCV )T (1)
n (b0) +

1

2
(b0 − b̂UCV )2T (2)

n (b̃)

= −nR(L)/2 + (b0 − b̂UCV )T (1)
n (b0) +

1

2
(b0 − b̂UCV )2T (2)

n (b̃),

where b̃ is between b0 and b̂UCV , and so

(b̂UCV − b0)

(
1− (b̂UCV − b0)

T
(2)
n (b̃)

2T
(1)
n (b0)

)
=

Tn(b0) + nR(L)/2

−T
(1)
n (b0)

.

Using condition (2.10) we may write the last equation as

(b̂UCV − b0) =
Tn(b0) + nR(L)/2

−T
(1)
n (b0)

+ op

(
Tn(b0) + nR(L)/2

−T
(1)
n (b0)

)
. (A.1)

Defining s2
n = Var(Tn(b0)) and βn = E(Tn(b0)) + nR(L)/2, we have

Tn(b0) + nR(L)/2

−T
(1)
n (b0)

=
Tn(b0)− ETn(b0)

sn

· sn

−T
(1)
n (b0)

+
βn

−T
(1)
n (b0)

.

Using the central limit theorem of Hall (1984), it can be verified that

Zn ≡ Tn(b0)− ETn(b0)

sn

D−→ N(0, 1).

Computation of the first two moments of T
(1)
n (b0) reveals that

−T
(1)
n (b0)

5R(f ′′)b4
0µ

2
2Ln2/2

p−→ 1,
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and so

Tn(b0) + nR(L)/2

−T
(1)
n (b0)

= Zn · 2sn

5R(f ′′)b4
0µ

2
2Ln2

+
2βn

5R(f ′′)b4
0µ

2
2Ln2

+ op

(
sn + βn

b4
0µ

2
2Ln2

)
.

At this point we need the first two moments of Tn(b0). A fact that will be

used frequently from this point on is that µ2k,L = O(σ2k), k = 1, 2, . . .. Using our

assumptions on the smoothness of f , Taylor series expansions, symmetry of γ about

0 and µ2γ = 0,

ETn(b0) = −n2

12
b5
0µ4γR(f ′′) +

n2

240
b7
0µ6γR(f ′′′) + O(n2b8

0σ
7).

Recalling the definition of bn from (2.5), we have

βn = −n2

12
b5
0µ4γR(f ′′) +

n2

240
b7
0µ6γR(f ′′′)

+
n2

2
b5
nµ

2
2LR(f ′′) + O(n2b8

0σ
7). (A.2)

Let MISEL(b) denote the MISE of an L-kernel estimator with bandwidth b. Then

MISE ′
L(bn) = (bn − b0)MISE ′′

L(b0) + o [(bn − b0)MISE ′′
L(b0)], implying that

b5
n = b5

0 + 5b4
0

MISE ′
L(bn)

MISE ′′
L(b0)

+ o

[
b4
0

MISE ′
L(bn)

MISE ′′
L(b0)

]
. (A.3)

Using a second order approximation to MISE ′
L(b) and a first order approximation

to MISE ′′
L(b), we then have

b5
n = b5

0 − b7
0

µ2Lµ4LR(f ′′′)
4µ2

2LR(f ′′)
+ o(b7

0σ
2).

Substitution of this expression for bn into (A.2) and using the facts µ4γ = 6µ2
2L,

µ6γ = 30µ2Lµ4L and b0σ = o(1), it follows that βn = o(n2b7
0σ

6). Later in the proof

we will see that this last result implies that the first order bias of ĥICV is due only to

the difference Cb0 − h0.
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Tedious but straightforward calculations show that s2
n ∼ n2b0R(f)Aα/2, where

Aα is as defined in Section 3.1. It is worth noting that Aα = R(ρα), where ρα(u) =

uγ′α(u) and γα(u) = (1 + α)2
∫

φ(u + v)φ(v) dv − 2(1 + α)φ(u). One would expect

from Theorem 4.1 of Scott and Terrell (1987) that the factor R(ρ) would appear in

Var(Tn(b0)). Indeed it does implicitly, since R(ρα) ∼ R(ρ) as σ → ∞. Our point is

that, when σ → ∞, the part of L depending on σ is negligible in terms of its effect

on R(ρ) and also R(L).

To complete the proof write

ĥICV − h0

h0

=
ĥICV − h0

hn

+ op

[
ĥICV − h0

hn

]

=
b̂UCV − b0

bn

+
(Cb0 − h0)

hn

+ op

[
ĥICV − h0

hn

]
.

Applying the same approximation of b0 that led to (A.3), and the analogous one for

h0, we have

Cb0 − h0

hn

= b2
n

µ2Lµ4LR(f ′′′)
20µ2

2LR(f ′′)
− h2

n

µ2φµ4φR(f ′′′)
20µ2

2φR(f ′′)
+ o(b2

nσ
2 + h2

n)

=
R(L)2/5µ2Lµ4LR(f ′′′)
20(µ2

2L)7/5R(f ′′)7/5
n−2/5 + o(b2

nσ2).

It is easily verified that, as σ → ∞, R(L) ∼ (1 + α)2/(2
√

π), µ2L ∼ −ασ2 and

µ4L ∼ −3ασ4, and hence

Cb0 − h0

hn

=
(σ

n

)2/5 R(f ′′′)
R(f ′′)7/5

Dα + o

[(σ

n

)2/5
]

.

The proof is now complete upon combining all the previous results.
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APPENDIX B

MORE SIMULATION RESULTS FOR THE ICV METHOD

Simulation results for the ”skewed unimodal,” ”separated bimodal,” and ”skewed

bimodal” densities, as defined in Section 4.1, are given in Tables XII, XIII, XIV and

Figures 35, 36, 37. Table XI shows the percentage of times in 1000 replications that

ĥ∗ICV = ĥOS for each combination of density and sample size.

Table XI. Percent of times when ĥ∗ICV = ĥOS for each combination of f and n.

Sample size, n

Density, f 100 250 500 5000

Gaussian 47.8 45.9 46.8 32.2

Skewed Unimodal 21 11.4 5 0

Bimodal 20.4 6.5 1.3 0

Separated Bimodal 0 0 0 0

Skewed Bimodal 32.4 7.4 1 0
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Table XII. Simulation results for the Skewed Unimodal density.

n LSCV SJPI ICV ISE

Ê(ĥ)

100 0.3101 0.2792 0.3049 0.2996

250 0.2466 0.2353 0.2506 0.2459

500 0.2111 0.2063 0.2180 0.2098

5000 0.1281 0.1299 0.1345 0.1317

ŜD(ĥ) · 102

100 8.6639 4.6566 5.6775 5.5223

250 5.8481 2.6449 4.0248 4.0890

500 4.7755 1.8173 2.7911 3.7376

5000 2.2291 0.4058 0.6675 2.0831

Ê(ĥ− Ê(ĥ0))
2 · 104

100 76.0793 25.8405 32.4775

250 34.1710 8.1077 16.4049

500 22.8000 3.4228 8.4560

5000 5.0947 0.1965 0.5218

Ê
(
ISE(ĥ)/ISE(ĥ0)

)

100 2.4546 1.8565 1.7177

250 1.7447 1.4059 1.4441

500 1.7162 1.3186 1.3189

5000 1.2833 1.1135 1.1121

M̂edian
(
ISE(ĥ)/ISE(ĥ0)

)

100 1.3074 1.1456 1.1640

250 1.1818 1.0941 1.1292

500 1.1912 1.0880 1.1200

5000 1.0845 1.0450 1.0472
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Fig. 35. Boxplots for the data-driven bandwidths in case of the Skewed Unimodal

density.
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Table XIII. Simulation results for the Separated Bimodal density.

n LSCV SJPI ICV ISE

Ê(ĥ)

100 0.2657 0.2796 0.2717 0.2563

250 0.2099 0.2248 0.2178 0.2094

500 0.1794 0.1919 0.1876 0.1798

5000 0.1105 0.1153 0.1152 0.1116

ŜD(ĥ) · 102

100 6.0692 2.0866 4.5530 3.4093

250 4.6362 1.2296 2.9603 2.7998

500 3.5225 0.7980 2.0031 2.3275

5000 1.5237 0.1856 0.4645 1.2736

Ê(ĥ− Ê(ĥ0))
2 · 104

100 37.6741 9.7694 23.0845

250 21.4759 3.8939 9.4640

500 12.3971 2.1099 4.6171

5000 2.3313 0.1722 0.3419

Ê
(
ISE(ĥ)/ISE(ĥ0)

)

100 1.4311 1.1250 1.2008

250 1.3811 1.1047 1.1653

500 1.3087 1.0833 1.1178

5000 1.1266 1.0443 1.0510

M̂edian
(
ISE(ĥ)/ISE(ĥ0)

)

100 1.1308 1.0609 1.0752

250 1.1067 1.0491 1.0687

500 1.0885 1.0421 1.0521

5000 1.0432 1.0217 1.0247
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Fig. 36. Boxplots for the data-driven bandwidths in case of the Separated Bimodal

density.
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Table XIV. Simulation results for the Skewed Bimodal density.

n LSCV SJPI ICV ISE

Ê(ĥ)

100 0.3641 0.3530 0.3903 0.3217

250 0.2552 0.2689 0.2814 0.2368

500 0.2046 0.2201 0.2263 0.1990

5000 0.1143 0.1227 0.1259 0.1171

ŜD(ĥ) · 102

100 12.8290 7.0324 10.2930 8.2392

250 6.9456 3.8104 6.7463 3.7563

500 4.7935 2.3689 4.2356 2.6883

5000 1.8091 0.4914 0.7461 1.4445

Ê(ĥ− Ê(ĥ0))
2 · 104

100 182.4215 59.2292 152.9251

250 51.5816 24.8270 65.3387

500 23.2667 10.0500 25.3556

5000 3.3476 0.5544 1.3329

Ê
(
ISE(ĥ)/ISE(ĥ0)

)

100 1.5790 1.2198 1.3989

250 1.3816 1.1550 1.2644

500 1.2872 1.1179 1.1867

5000 1.1685 1.0636 1.0745

M̂edian
(
ISE(ĥ)/ISE(ĥ0)

)

100 1.1921 1.1028 1.1852

250 1.1348 1.0820 1.1363

500 1.1015 1.0597 1.0894

5000 1.0514 1.0328 1.0445
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Fig. 37. Boxplots for the data-driven bandwidths in case of the Skewed Bimodal

density.
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APPENDIX C

ASYMPTOTIC MISE EXPANSION FOR THE LLE IN THE NONSMOOTH

CASE

Our goal in this section is to find an asymptotic expansion for the MASE of the

LLE (3.1) in the case when the regression function r is nonsmooth. We state our

assumptions next.

Assumptions about the regression function:

(R1) r is continuous on [0, 1].

(R2) Second derivative of r exists and is bounded on [0, 1], except at a finite set of

points {ut}, t = 1, . . . , k, at which r′(ut−), r′′(ut−) and r′(ut+) and r′′(ut+)

exist with r′(ut−) 6= r′(ut+).

Assumptions about kernel K:

(K1)
∫ 1

−1
K(u) du = 1;

(K2)
∫ 1

−1
uK(u) du = 0;

(K3)
∫

u2K(u) du = σ2
K 6= 0;

(K4) K vanishes outside (−1, 1)

(K5) K is twice continuously differentiable on [−1, 1].
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As n →∞, we assume that h → 0 and

n2h3 →∞. (C.1)

Now we consider the case of the fixed, evenly spaced design:

xi =
i− 1

2

n
.

For notational convenience, we assume that k = 1 with the point of discontinuity x0.

We choose h such that h < min(x0, 1− x0).

We will use the fact that MASE is asymptotically equivalent to the function (3.5),

which is equal to MISE (3.6) in the case of the evenly spaced design. We have:

MISEw(h) = MISE(h) =

∫ 1

0

Bias2(r̂h(x)) dx+

∫ 1

0

V ar(r̂h(x)) dx = ISB(h)+IV (h),

where Bias(r̂h(x)) = E(r̂h(x)) − r(x), and ISB and IV stand for the integrated

squared bias and integrated variance for r̂h, respectively.

The variance of r̂h remains the same as in the smooth case. In fact, the local linear

estimator has the form
∑n

i=1 WiYi, where Wi, i = 1, . . . , n, are the fixed weights. Then

the variance in either smooth or nonsmooth case is equal to σ2
∑n

i=1 W 2
i . However,

the bias of r̂h in the nonsmooth case will change compared to the smooth case. Thus,

our goal is to find a new expansion for the ISB term. The ISB derivation in the

nonsmooth case relies on the following Lemma.

Lemma IV.1. For any point h < x < 1− h the following is true:

E (r̂h(x)) =
1

h

∫ 1

0

r(u)K

(
x− u

h

)
du + O

(
1

n2h2

)
.

The proof of the above lemma relies on the error bound for the middle sum
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approximation of an integral. In a simple case when a function g(x) is twice

differentiable on the interval [a, b] and the absolute value of its second derivative

is bounded by a constant M2, the error bound for the middle sum approximation of

the integral
∫ b

a
g(x) dx when using the value of the function g(x) at n points is given

by

E =
(b− a)3

24n2
M2. (C.2)

However, some of our functions are not twice differentiable on the intervals where

they are defined. The lemma below extends the error bound (C.2) to a more general

case we need.

Lemma IV.2. Suppose the function g(x) satisfies the following conditions:

(G1) g is continuous on [a, b].

(G2) The second derivative of g(x) exists and is bounded on [a, b], except at a finite

set of points {xt}, t = 1, . . . , k, at which g′(xt−), g′′(xt−) and g′(xt+) and

g′′(xt+) exist with g′(xt−) 6= g′(xt+).

Then the error bound for the middle sum approximation of the integral
∫ b

a
g(x) dx is

given by

E1 =
(b− a)3

24n2
M2 +

(b− a)2

2n2
· k ·M1

where

M1 = max
x∈[a,b]

{g′(x−), g′(x+)},

M2 = max
x∈[a,b]

{g′′(x−), g′′(x+)}.

Proof of Lemma IV.1. Find the expectation of r̂h:

E(r̂h(x)) =
tn, 2

∑n
i=1 r(xi)K

(
x−xi

h

)− tn,1

∑n
i=1 r(xi)K

(
x−xi

h

)
(x− xi)

tn, 0tn, 2 − t2n, 1

, (C.3)
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where the definition of tn,j, j = 0, 1, 2, is given by (3.3). Notice that the function

K
(

x−u
h

)
is supported on the interval [x − h, x + h], which contains O (2nh) points.

Denote by i1 the index of the largest design point such that xi1 ≤ (x− h), and let i2

be the index of the smallest design point, such that xi2 ≥ (x + h). In other words

i1 = b(x− h)nc/n,

i2 = d(x + h)ne/n.

Consider the term tn, 0. Since K
(

x−u
h

)
vanishes outside [x−h, x+h], the following

is true:

1

n
tn, 0 =

1

n

n∑
i=1

K

(
x− xi

h

)
=

1

n

i2∑
i=i1

K

(
x− xi

h

)
.

Notice that the right part of the above equation is the middle sum approximation

to the integral

∫ xi2

xi1

K

(
x− u

h

)
du. The error bound for this approximation can be

found using (C.2). In order to compute it, we need to find the second derivative of

K
(

x−u
h

)
:

∂2

∂u2
K

(
x− u

h

)
=

1

h2
K ′′

(
x− u

h

)
.

From assumption (K5) it follows that the maximum of the above function is O

(
1

h2

)
.

Therefore the error is

E = (xi2 − xi1)
3 ·O

(
1

24(2nh)2
· 1

h2

)
= O

(
(2h)3

24(2nh)2

1

h2

)
= O

(
1

n2h

)
.

Notice that ∫ xi2

xi1

K

(
x− u

h

)
du = h

∫ 1

−1

K(z) dz = h,

which follows from assumptions (K1) and (K4). Combining all steps, we get

tn, 0 = nh + O

(
1

nh

)
. (C.4)
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Next, consider tn, 1. It follows that

1

n
tn, 1 =

1

n

n∑
i=1

K

(
x− xi

h

)
(x− xi) =

1

n

i2∑
i=i1

K

(
x− xi

h

)
(x− xi).

The righthand side is the middle sum approximation to the integral∫ xi2

xi1

K

(
x− u

h

)
(x− u) du. The second derivative is

∂2

∂u2

{
K

(
x− u

h

)
(x− u)

}
=

1

h2
K ′′

(
x− u

h

)
(x− u) +

2

h
K ′

(
x− u

h

)
.

From assumptions (K5) and (K4) it follows that the maximum of the above function

above is O

(
1

h

)
. The error bound is

E = (xi2 − xi1)
3 ·O

(
1

24(2nh)2
· 1

h

)
= O

(
(2h)3

24(2nh)2

1

h

)
= O

(
1

n2

)
.

The integral of interest is

∫ xi2

xi1

K

(
x− u

h

)
(x− u) du = h2

∫ 1

−1

uK(u) du = 0,

which follows from assumptions (K2) and (K4). Putting all steps together, we get

tn,1 = O

(
1

n

)
. (C.5)

Finally, consider tn, 2 and observe that

1

n
tn, 2 =

1

n

n∑
i=1

K

(
x− xi

h

)
(x− xi)

2 =
1

n

i2∑
i=i1

K

(
x− xi

h

)
(x− xi)

2.

The righthand side is the middle sum approximation to the integral
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∫ xi2

xi1

K

(
x− u

h

)
(x− u)2 du. The second derivative is

∂2

d∂u2

{
K

(
x− u

h

)
(x− u)2

}
=

1

h2
K ′′

(
x− u

h

)
(x− u)2+

4

h
(x− u)K ′

(
x− u

h

)
+ 2K

(
x− u

h

)
,

and the maximum of the above function is O(1), which follows from assumptions

(K5) and (K4). The error bound is

E = (xi2 − xi1)
3 ·O

(
1

24(2nh)2

)
= O

(
(2h)3

24(2nh)2

)
= O

(
h

n2

)
.

We have ∫ xi2

xi1

K

(
x− u

h

)
(x− u)2 du = h3

∫ 1

−1

u2K(u) du = h3σ2
K .

Finally, we get

tn, 2 = nh3σ2
K + O

(
h

n

)
. (C.6)

The next step is to consider the term
n∑

i=1

r(xi)K

(
x− xi

h

)
. Notice that

1

n

n∑
i=1

r(xi)K

(
x− xi

h

)
=

1

n

i2∑
i=i1

r(xi)K

(
x− xi

h

)
.

The right side of the above equation is the middle sum approximation for the

integral

∫ xi2

xi1

r(u)K

(
x− u

h

)
du. Notice that the integrand r(u)K

(
x−u

h

)
is a function

described by the conditions (G1) and (G2) of Lemma IV.2. Let
∂

∂u±
(·) denote the
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right or left derivative of a function. Then

∂

∂u±

(
r(u)K

(
x− u

h

))
= r′(u±)K

(
x− u

h

)
− 1

h
r(u)K ′

(
x− u

h

)
;

∂2

∂u2±

{
r(u)K

(
x− u

h

)}
= r′′(u±)K

(
x− u

h

)
− 2

h
r′(u±)K ′

(
x− u

h

)
+

1

h2
r(u)K ′′

(
x− u

h

)
.

From assumptions (R1), (R2), and (K5) it follows that M1 = O

(
1

h

)
and

M2 = O

(
1

h2

)
. The error bound for the integral approximation is

E1 = (xi2 − xi1)
3 ·O

(
1

24(2nh)2
· 1

h2

)
+ (xi2 − xi1)

2 ·O
(

1

2(2nh)2
· 1

h

)
=

O

(
(2h)3

24(2nh)2
· 1

h2
+

(2h)2

2(2nh)2
· 1

h

)
= O

(
1

n2h

)
.

Notice that ∫ xi2

xi1

r(u)K

(
x− u

h

)
du =

∫ 1

0

r(u)K

(
x− u

h

)
du.

The asymptotic order of the above integral is

∫ 1

0

r(u)K

(
x− u

h

)
du = h

∫ 1

−1

r(x− hz)K(z) dz ≤ hA,

where A = max
u∈[0,1]

r(u). Hence,

∫ 1

0

r(u)K

(
x− u

h

)
du = O(h). Combining all work,

we get the following:

n∑
i=1

r(xi)K

(
x− xi

h

)
= n

∫ 1

0

r(u)K

(
x− u

h

)
du + O

(
1

nh

)
. (C.7)



111

The last term to consider in (C.3) is
n∑

i=1

r(xi)K

(
x− xi

h

)
(x− xi). Notice that

1

n

n∑
i=1

r(xi)K

(
x− xi

h

)
(x− xi) =

1

n

i2∑
i=i1

r(xi)K

(
x− xi

h

)
(x− xi).

The righthand term is the middle sum approximation to the integral∫ xi2

xi1

r(u)(x− u)K

(
x− u

h

)
du. The integrand r(u)(x− u)K

(
x− u

h

)
is a type of

function described by conditions (G1) and (G2) of Lemma IV.2. The derivatives of

the integrand are

∂

∂u±

(
r(u)(x− u)K

(
x− u

h

))
=

r′(u±)(x− u)K

(
x− u

h

)
− r(u)K

(
x− u

h

)
− 1

h
r(u)(x− u)K ′

(
x− u

h

)
,

and

∂2

∂u2±

{
r(u)(x− u)K

(
x− u

h

)}
= r′′(u±)(x−u)K

(
x− u

h

)
−2r′(u±)K

(
x− u

h

)
−

2

h
r′(u±)(x− u)K ′

(
x− u

h

)
+

2

h
r(u)K ′

(
x− u

h

)
+

1

h2
r(u)(x− u)K ′′

(
x− u

h

)
.

Using assumptions (R1), (R2), and (K5), we find M1 = O(1) and M2 = O

(
1

h

)
.

The error bound for the integral approximation is

E1 = (xi2 − xi1)
3 ·O

(
1

24(2nh)2
· 1

h

)
+ (xi2 − xi1)

2 ·O
(

1

2(2nh)2

)
=

O

(
(2h)3

24(2nh)2
· 1

h
+

(2h)2

2(2nh)2

)
= O

(
1

n2

)
.

Consider

∫ xi2

xi1

r(u)(x− u)K

(
x− u

h

)
du =

∫ 1

0

r(u)(x− u)K

(
x− u

h

)
du.
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Find the asymptotic order of the above integral:

∫ 1

0

r(u)(x− u)K

(
x− u

h

)
du = h2

∫ 1

−1

r(x− hz)zK(z) dz = O(h2),

since the integrand is a bounded function, which follows from assumptions (R1) and

(K5). Finally, we get:

n∑
i=1

r(xi)K

(
x− xi

h

)
(x− xi) = O(nh2) + O

(
1

n

)
= O(nh2). (C.8)

Now we will combine (C.4), (C.5), (C.6), (C.7), and (C.8) to evaluate the

expected value (C.3). First, we will consider the numerator and the denominator

separately.

Numerator = tn, 2

n∑
i=1

r(xi)K

(
x− xi

h

)
− tn, 1

n∑
i=1

r(xi)(x− xi)K

(
x− xi

h

)
=

(
nh3σ2

K + O

(
h

n

))(
n

∫ 1

0

r(u)K

(
x− u

h

)
du + O

(
1

nh

))
−O

(
1

n

)
O(nh2) =

n2h3σ2
K

∫ 1

0

r(u)K

(
x− u

h

)
du + O(h2) + O

(
1

n2

)
=

n2h4

{
σ2

K ·
1

h

∫ 1

0

r(u)K

(
x− u

h

)
du + O

(
1

n2h2

)}
.

Denominator = tn, 0tn, 2−t2n, 1 =

(
nh + O

(
1

nh

))(
nh3σ2

K + O

(
h

n

))
−O

(
1

n2

)
=

n2h4σ2
K + O(h2) + O

(
1

n2

)
= n2h4

(
σ2

K + O

(
1

n2h2

))
.
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Finally, we get

E (r̂h(x)) =
n2h4

{
σ2

K · 1
h

∫ 1

0
r(u)K

(
x−u

h

)
du + O

(
1

n2h2

)}

n2h4
(
σ2

K + O
(

1
n2h2

)) =

1

h

∫ 1

0

r(u)K

(
x− u

h

)
du + O

(
1

n2h2

)
,

which finishes the proof of Lemma IV.1.

Now we will proceed with computing the ISB for the LLE in the nonsmooth case.

Notice that

ISB(h) =

∫ 1

0

(E (r̂h(x))− r(x))2 dx =

∫ x0−h

0

(E (r̂h(x))− r(x))2 dx +

∫ x0+h

x0−h

(E (r̂h(x))− r(x))2 dx+

∫ 1

x0+h

(E (r̂h(x))− r(x))2 dx.

From the asymptotic expansion in the smooth case it follows that

∫ x0−h

0

(E (r̂h(x))− r(x))2 dx +

∫ 1

x0+h

(E (r̂h(x))− r(x))2 dx =

O
(
h4

)
+ O

(
h2

n

)
+ O

(
1

n2

)
. (C.9)

Consider

∫ x0+h

x0−h

(E (r̂h(x))− r(x))2 dx = h

∫ 1

−1

(E (r̂h(x0 − hz))− r(x0 − hz))2 dz,

with the last step following from the change of variables z =
x0 − x

h
. Consider the

bias

E (r̂h(x0 − hz))−r(x0−hz) =
1

h

∫ 1

0

r(u)K

(
x0 − hz − u

h

)
du−r(x0−hz)+O

(
1

n2h2

)
,
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which holds by Lemma IV.1. For h < min

(
x0

2
,
1− x0

2

)
, the above bias is

∫ 1

−1

r(x0 − h(z + v))K(v) dv − r(x0 − hz) + O

(
1

n2h2

)
=

∫ 1

−1

K(v) {r(x0 − h(z + v))− r(x0 − hz)} dv + O

(
1

n2h2

)
, (C.10)

which follows from the change of variables v =
x0 − hz − u

h
and using the assumptions

(K4) and (K1). Notice that the last integral in (C.10) is O(h), and it is a leading

term due to the assumption (C.1).

We get the following:

∫ x0+h

x0−h

(E (r̂h(x))− r(x))2 dx =

h

∫ 1

−1

{∫ 1

−1

K(v) {r(x0 − h(z + v))− r(x0 − hz)} dv

}2

dz+

O

(
1

n2

)
+ O

(
1

n4h3

)
. (C.11)

Combining (C.9) and (C.11), we get the following expression for the integrated

squared bias:

ISB(h) = h

∫ 1

−1

{∫ 1

−1

K(v) {r(x0 − h(z + v))− r(x0 − hz)} dv

}2

dz+

O

(
1

n2

)
+ O

(
1

n4h3

)
+ O

(
h2

n

)
.

Taking into account the new constraint (C.1), we get:

ISB(h) = h

∫ 1

−1

{∫ 1

−1

K(v) {r(x0 − h(z + v))− r(x0 − hz)} dv

}2

dz+

O

(
1

n2

)
+ O

(
h2

n

)
. (C.12)
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The main term in (C.12) can be written as

h

∫ 1

−1

{∫ 1

−1

K(v) {r(x0 − h(z + v))− r(x0 − hz)} dv

}2

dz =

h

∫ 0

−1

{∫ 1

−1

K(v) {r(x0 − h(z + v))− r(x0 − hz)} dv

}2

dz+

h

∫ 1

0

{∫ 1

−1

K(v) {r(x0 − h(z + v))− r(x0 − hz)} dv

}2

dz =

h

∫ 0

−1

{∫ −z

−1

K(v) {r(x0 − h(z + v))− r(x0 − hz)} dv+

∫ 1

−z

K(v) {r(x0 − h(z + v))− r(x0 − hz)} dv

}2

dz+

h

∫ 1

0

{∫ −z

−1

K(v) {r(x0 − h(z + v))− r(x0 − hz)} dv+

∫ 1

−z

K(v) {r(x0 − h(z + v))− r(x0 − hz)} dv

}2

dz,

(C.13)

Next, we will consider each term in (C.13).

First, consider

∫ −z

−1

K(v)
{
r(x0 − h(z + v))− r(x0 − hz)

}
dv when < −1 < z <

0. In this case −h(z + v) > 0 and −hz > 0. From the Taylor’s expansion we get the

following:

r(x0 − h(z + v)) = r(x0)− h(z + v)r′(x0+) + O(h2)

r(x0 − hz) = r(x0)− hzr′(x0+) + O(h2).

Then the first integral corresponding to the case < −1 < z < 0 is found as

∫ −z

−1

K(v)
{
r(x0 − h(z + v))− r(x0 − hz)

}
dv =

∫ −z

−1

K(v)
{
r(x0)− h(z + v)r′(x0+)− r(x0) + hzr′(x0+)

}
dv + O(h2) =

− hr′(x0+)

∫ −z

−1

vK(v) dv + O(h2) = −hr′(x0+)GK(−z) + O(h2),
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where we define

GK(z) =

∫ z

−1

uK(u) du. (C.14)

Consider another integral corresponding to the case −1 < z < 0:

∫ 1

−z

K(v)
{
r(x0 − h(z + v))− r(x0 − hz)

}
dv =

hz
(
r(x0+)− r(x0−)

) ∫ 1

−z

K(v)− hr′(x0−)

∫ 1

−z

vK(v) dv + O(h2) =

hz
(
r(x0+)− r(x0−)

)(
1−HK(−z)

)
+ hr′(x0−)GK(−z) + O(h2),

where we define

HK(z) =

∫ z

−1

K(u) du. (C.15)

Next, consider the case 0 < z < 1. Compute

∫ −z

−1

K(v)
{
r(x0 − h(z + v))− r(x0 − hz)

}
dv =

− hz
(
r′(x0+)− r′(x0−)

) ∫ −z

−1

K(v) dv − hr′(x0+)

∫ −z

−1

vK(v) dv + O(h2) =

− hz
(
r′(x0+)− r′(x0−)

)
HK(−z)− hr′(x0+)GK(−z) + O(h2).

Finally, consider the second integral corresponding to the case 0 < z < 1:

∫ 1

−z

K(v)
{
r(x0 − h(z + v))− r(x0 − hz)

}
dv =

− hr′(x0−)

∫ 1

−z

vK(v) dv + O(h2) = hr′(x0−)GK(−z) + O(h2).
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Now we can find the first integral in (C.13):

∫ 0

−1

{∫ 1

−1

K(v) {r(x0 − h(z + v))− r(x0 − hz)} dv

}2

dz =

∫ 0

−1

{
h
(
r′(x0+)− r′(x0−)

) (
z
(
1−HK(−z)

)−GK(−z)
)

+ O(h2)
}2

dz =

h2
(
r′(x0+)− r′(x0−)

)2
∫ 0

−1

{
z
(
1−HK(−z)

)−GK(−z)
}2

dz + O(h3) + O(h4) =

h2
(
r′(x0+)− r′(x0−)

)2
∫ 1

0

{
z
(
1−HK(z)

)
+ GK(z)

}2
dz + O(h3).

Similarly, the second integral in (C.13) is

∫ 1

0

{∫ 1

−1

K(v) {r(x0 − h(z + v))− r(x0 − hz)} dv

}2

dz =

h2
(
r′(x0+)− r′(x0−)

)2
∫ 1

0

{zHK(−z) + GK(−z)}2 dz + O(h3).

Putting steps all together, we get the following expression for the ISB:

ISB(h) = h3
(
r′(x0+)− r′(x0−)

)2
BK + O(h4) + O

(
1

n2

)
+ O

(
h2

n

)
,

where

BK =

∫ 1

0

{
z
(
1−HK(z)

)
+ GK(z)

}2
dz +

∫ 1

0

{zHK(−z) + GK(−z)}2 dz. (C.16)

Below we summarize the properties of the functions HK(u), GK(u) and the constant

BK :

(P1) 1−HK(z) =
∫ 1

z
K(u) du;

(P2) GK(z) = − ∫ 1

z
uK(u) du;
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(P3) For a symmetric kernel K

HK(−z) = 1−HK(z);

GK(−z) = GK(z);

BK = 2

∫ 1

0

{
z
(
1−HK(z)

)
+ GK(z)

}2
dz.

(P4) When K has support (0, 1),

BK =

∫ 1

0

{
z
(
1−HK(z)

)
+ GK(z)

}2
dz.

Note that properties (P1) and (P2) follow from the assumptions (K1) and

(K2) on the kernel K.

Finally, we get the following asymptotic expansion of MISE:

MISE(h) =
R(K)σ2

nh
+ h3

(
r′(x0+)− r′(x0−)

)2
BK + o

(
1

nh

)
+ o(h4). (C.17)

The asymptotic minimizer of (C.17) has the following form:

h∗n =

(
σ2

3
(
r′(x0+)− r′(x0−)

)2

)1/4 (
R(K)

BK

)1/4

n−1/4. (C.18)

Notice that the order of the MISE minimizer (C.18) is such that the assumption (C.1)

is satisfied.

Extensions to other settings.

We can extend the results for the asymptotic MISE expansion (C.17) and its

minimizer (C.18) to the following cases.

• By a similar argument it can be shown that the derived results (C.17)
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and (C.18) hold for the Gasser-Müller and Priestley-Chao estimators.

• (k cusps.) The results (C.17) and (C.18) are given for the case of a single

cusp located at the point x0, but they can be extended to the case of k

cusps occurring at the points {ut}, t = 1, . . . , k. In the latter case, the

quantity
(
r′(x0+) − r′(x0−)

)2
in (C.17) and (C.18) should be replaced with

∑k
t=1

(
r′(ut+)− r′(ut−)

)2
. This extension follows from the linearity property of

an integral and does not require any additional proof.

• (Heteroscedastic errors.) To extend (C.17) and (C.18) for the case of

heteroscedastic errors, σ2 should be replaced with
∫ 1

0
v(x) dx, where v(x) is

the variance function.

• (Irregular design.) The results of our work can be extended to the case of an

irregular design, when the design points are such that

(D1) xi = Q
(

i−1/2
n

)
, i = 1, . . . , n, where Q is the inverse of a cdf having

density f that satisfies

(D2) f has support (0, 1),

(D3) f is Lipschitz continuous on [0, 1], and

(D4) f(x) > 0 for each x ∈ [0, 1].

In the case of an irregular design we should expand the weighted MISE

function (3.5).

• Kernels K with infinite support. Suppose K is a function which satisfies

all the conditions imposed on the kernel except for (K4). The results (C.17)

and (C.18) can be extended to this case if certain additional constraints are

imposed on the tails of K.
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• Continuous kernels with cusps. The results (C.17) and (C.18) also hold for

the case when K is continuous and piecewise twice differentiable, which is the

case for the Epanechnikov and Laplace kernels.
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APPENDIX D

MORE SIMULATION RESULTS FOR THE ROBUST OSCV METHOD

Simulation results for the regression function r2 in the case of the fixed,

evenly spaced design are given in Table XV and Figure 38. Simulation results for

the functions r1, r2, and r3 in the case of the Uniform(0,1) design are given in

Tables XVI, XVII, XVIII and in Figures 39, 40, and 41.
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Table XV. Simulation results for r2. Design: fixed, evenly spaced.

n σ R OSCV OSCV PI CV ASE

Ê(ĥ)
1/250 0.04451301 0.05254226 0.04788073 0.05063080 0.05138712

100 1/500 0.03195355 0.03764036 0.03621886 0.03598396 0.03638195
1/1000 0.02310231 0.02713216 0.02706505 0.02567717 0.02568816
1/250 0.03418282 0.04029476 0.03854830 0.03846096 0.03877243

300 1/500 0.02457805 0.02889493 0.02852991 0.02723184 0.02750377
1/1000 0.01761207 0.02064199 0.02171727 0.01916771 0.01948894
1/250 0.02565697 0.03017704 0.02953395 0.02854604 0.02871046

1000 1/500 0.01835511 0.02152430 0.02241550 0.02021740 0.02029310
1/1000 0.01310097 0.01532149 0.01740454 0.01425469 0.01435227

ŜD(ĥ) · 103

1/250 4.17377531 4.96611050 8.21838032 11.96528882 9.86158664
100 1/500 2.59102501 3.09897203 5.00691750 7.75322072 5.86682730

1/1000 1.67807085 2.00591976 2.31176304 4.84963938 3.42402975
1/250 2.51738203 3.00467688 5.60409309 7.54206592 6.10303447

300 1/500 1.51334467 1.80580804 2.93284324 4.68929460 3.72324244
1/1000 0.91486089 1.08549757 1.31674733 2.90937100 2.22693317
1/250 1.48168544 1.76741883 3.28673157 4.64034477 3.92229115

1000 1/500 0.88175399 1.04749095 1.36337438 2.74885972 2.30834537
1/1000 0.53811967 0.63312130 0.79473548 1.64543362 1.38023335

Ê
(
ASE(ĥ)/ASE(ĥ0)

)
1/250 1.13919783 1.10365144 1.16973490 1.25638651

100 1/500 1.09782258 1.07219720 1.09824981 1.18350311
1/1000 1.06694086 1.05427403 1.05477526 1.13481368
1/250 1.09724629 1.07061871 1.10486133 1.16357049

300 1/500 1.07090100 1.05365733 1.06557090 1.11926407
1/1000 1.04970132 1.03965545 1.05377369 1.08207093
1/250 1.06518737 1.04997135 1.06509046 1.10877299

1000 1/500 1.04753036 1.03696557 1.04963212 1.07443487
1/1000 1.03659350 1.02985680 1.08758391 1.05045221

M̂edian
(
ASE(ĥ)/ASE(ĥ0)

)
1/250 1.04421790 1.04617793 1.06084278 1.08014415

100 1/500 1.03418149 1.03219198 1.04466608 1.06619746
1/1000 1.02404147 1.02670809 1.02408392 1.04856178
1/250 1.03615976 1.03371349 1.05116435 1.05986069

300 1/500 1.02867076 1.02536189 1.03160595 1.04406362
1/1000 1.01914650 1.02032292 1.03029875 1.02922946
1/250 1.02153413 1.02735898 1.03031578 1.04128633

1000 1/500 1.01729040 1.02047193 1.03206717 1.02957047
1/1000 1.01327938 1.01549158 1.07345813 1.01892252
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Fig. 38. Boxplots for the data-driven bandwidths in the case of regression function r2.

The standard deviation of the added noise is σ = 1/500; the design is fixed,

evenly spaced.



124

Table XVI. Simulation results for r1. Design: Uniform(0, 1).

n σ R OSCV OSCV PI CV ASE

Ê(ĥ)
1/250 0.03232221 0.03806921 0.03545243 0.03743289 0.03792869

100 1/500 0.02490912 0.02922465 0.02828651 0.02842373 0.02864920
1/1000 0.01913825 0.02218616 0.02124425 0.02145490 0.02155682
1/250 0.02515952 0.02956033 0.02942132 0.02865374 0.02904550

300 1/500 0.01881788 0.02197205 0.02175634 0.02155956 0.02176808
1/1000 0.01425331 0.01652614 0.01631989 0.01620413 0.01625569
1/250 0.01945687 0.02274063 0.02295855 0.02231343 0.02266633

1000 1/500 0.01425573 0.01660195 0.01696484 0.01622938 0.01659012
1/1000 0.01056406 0.01227973 0.01274135 0.01199043 0.01221388

ŜD(ĥ) · 103

1/250 3.24267172 3.89309730 3.85335072 6.74814328 5.84837881
100 1/500 1.77457491 2.15113418 2.08928267 4.60298419 3.56255079

1/1000 1.57119458 1.91538584 0.99034115 3.25746964 2.50837823
1/250 1.24116731 1.48894501 2.07674822 4.23284836 3.85143218

300 1/500 0.73860867 0.89238240 0.72208219 2.87095794 2.64524401
1/1000 0.54205733 0.64240864 0.39625917 1.80064350 1.70619790
1/250 0.69221563 0.82391663 0.83573111 2.72908882 2.75237702

1000 1/500 0.50027594 0.57498926 0.31859809 1.76589744 1.73124358
1/1000 0.31614607 0.35936873 0.16182203 1.09410883 1.09240274

Ê
(
ASE(ĥ)/ASE(ĥ0)

)
1/250 1.12891644 1.08293352 1.09723519 1.17180538

100 1/500 1.10040517 1.05234968 1.05587649 1.12481472
1/1000 1.06676509 1.04526470 1.03571893 1.10001978
1/250 1.08849336 1.05145015 1.05655636 1.11414223

300 1/500 1.08143529 1.04118719 1.03651587 1.09295312
1/1000 1.06492368 1.03190902 1.02610560 1.06636760
1/250 1.08261639 1.03979774 1.03600888 1.08261912

1000 1/500 1.06849752 1.02919136 1.02341043 1.06224536
1/1000 1.05659024 1.02109855 1.01937600 1.04392716

M̂edian
(
ASE(ĥ)/ASE(ĥ0)

)
1/250 1.04903265 1.03658481 1.03665227 1.06256481

100 1/500 1.03845981 1.02260015 1.02123268 1.05049224
1/1000 1.02370471 1.02119828 1.01431556 1.04004291
1/250 1.03643733 1.02471755 1.02527598 1.04018390

300 1/500 1.03501438 1.01942064 1.01600506 1.03752091
1/1000 1.03230476 1.01481048 1.01280845 1.02665804
1/250 1.03461158 1.01688693 1.01701970 1.02709110

1000 1/500 1.03365213 1.01295630 1.01091911 1.02343976
1/1000 1.02943637 1.00956386 1.00958079 1.01643634
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Fig. 39. Boxplots for the bandwidths in the case of regression function r1. The

standard deviation of the added noise is σ = 1/500; the design is

Uniform(0, 1).



126

Table XVII. Simulation results for r2. Design: Uniform(0, 1).

n σ R OSCV OSCV PI CV ASE

Ê(ĥ)
1/250 0.04528986 0.05348694 0.04941739 0.05234910 0.05293601

100 1/500 0.03297073 0.03883176 0.03564665 0.03807817 0.03842472
1/1000 0.02401140 0.02817743 0.02498657 0.02700382 0.02683877
1/250 0.03436888 0.04051179 0.03915591 0.03851786 0.03905650

300 1/500 0.02440595 0.02866698 0.02713008 0.02775206 0.02801996
1/1000 0.01767143 0.02070383 0.02042552 0.01998088 0.01985346
1/250 0.02567259 0.03019127 0.02917635 0.02902262 0.02951896

1000 1/500 0.01832578 0.02148972 0.02150440 0.02033297 0.02073369
1/1000 0.01309426 0.01531247 0.01610439 0.01443667 0.01472242

ŜD(ĥ) · 103

1/250 4.75485756 5.65157153 8.87231491 11.35875404 9.67949808
100 1/500 2.80026425 3.34091320 6.08978153 7.58816792 6.27390415

1/1000 2.03259526 2.42330504 3.24644235 4.99546198 3.77239645
1/250 2.61022619 3.11156080 5.85828959 7.29501318 6.26113564

300 1/500 1.49753413 1.78474525 2.74912085 4.65548337 3.62015264
1/1000 0.87795393 1.04562822 1.05238406 3.23608148 2.56629731
1/250 1.49508186 1.78410444 3.18019279 4.75837906 4.12465480

1000 1/500 0.89774062 1.06608870 1.34997302 2.83552671 2.43844642
1/1000 0.53631847 0.63544076 0.85113877 1.81480355 1.51756062

Ê
(
ASE(ĥ)/ASE(ĥ0)

)
1/250 1.15068885 1.10391892 1.18257420 1.20478084

100 1/500 1.10266342 1.06531141 1.12698597 1.16235228
1/1000 1.06455803 1.05229360 1.07236641 1.11109367
1/250 1.10792801 1.08001730 1.12595063 1.16400796

300 1/500 1.07860594 1.04679639 1.06169803 1.11187922
1/1000 1.05340408 1.03562955 1.03423719 1.08646924
1/250 1.08354116 1.05229939 1.06672520 1.11570054

1000 1/500 1.06048549 1.03783929 1.03902651 1.08125756
1/1000 1.04455745 1.02708377 1.03769955 1.05746756

M̂edian
(
ASE(ĥ)/ASE(ĥ0)

)
1/250 1.04931640 1.05098907 1.06239284 1.08623321

100 1/500 1.04008791 1.02715976 1.04409101 1.05494761
1/1000 1.02525002 1.02592786 1.03127843 1.04567497
1/250 1.03690213 1.03752322 1.05514394 1.05694722

300 1/500 1.03272763 1.02561648 1.02979449 1.04409069
1/1000 1.02334481 1.01763904 1.01655295 1.03123326
1/250 1.03180304 1.02448325 1.02972084 1.04469758

1000 1/500 1.02550633 1.01927112 1.01940507 1.02975975
1/1000 1.01930478 1.01486523 1.02161334 1.02191551
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Fig. 40. Boxplots for the bandwidths in the case of regression function r2. The

standard deviation of the added noise is σ = 1/500; the design is

Uniform(0, 1).
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Table XVIII. Simulation results for r3. Design: Uniform(0, 1).

n σ R OSCV OSCV PI CV ASE

Ê(ĥ)
1/250 0.02764573 0.03243142 0.02982051 0.02926722 0.02898387

100 1/500 0.01958961 0.02264601 0.02101072 0.02316956 0.02128753
1/1000 0.01498380 0.01651557 0.014973887 0.01726621 0.01542466
1/250 0.01959382 0.02301398 0.02282689 0.02111411 0.02116256

300 1/500 0.01401467 0.01645239 0.01718795 0.01435196 0.01447137
1/250 0.01428014 0.01678820 0.01773797 0.01560092 0.01558614

1000 1/500 0.01016672 0.01193513 0.01299631 0.01060943 0.01071737
1/1000 0.00698158 0.00818222 0.00948285 0.00713901 0.00720262

ŜD(ĥ) · 103

1/250 3.44346365 4.12972396 4.05586827 5.76602406 3.75966637
100 1/500 2.08744573 2.61453099 3.09840220 4.37903938 2.31610740

1/1000 1.58595198 2.00319852 1.51616408 3.27097202 1.60810832
1/250 1.33502298 1.58817027 2.12753048 3.37297535 2.54993038

300 1/500 0.87176679 1.03745076 1.06468140 1.95469604 1.42009273
1/250 0.72956718 0.86639625 1.06879559 1.94715815 1.51174985

1000 1/500 0.45193187 0.53663231 0.41109787 1.25010387 0.94623753
1/1000 0.28115319 0.33089202 0.17871324 0.66383006 0.49246551

Ê
(
ASE(ĥ)/ASE(ĥ0)

)
1/250 1.07914593 1.09861497 1.08495306 1.13358548

100 1/500 1.04996210 1.05507657 1.06971981 1.12052416
1/1000 1.03384982 1.05176590 1.03869050 1.12137235
1/250 1.04871542 1.05080314 1.05539121 1.08565309

300 1/500 1.03102802 1.05570791 1.07514590 1.06087083
1/250 1.03865684 1.03521224 1.05315654 1.05447328

1000 1/500 1.02171882 1.03373305 1.06709853 1.03857692
1/1000 1.01445837 1.03725795 1.13168982 1.02571757

M̂edian
(
ASE(ĥ)/ASE(ĥ0)

)
1/250 1.03198808 1.05250521 1.04124859 1.06704661

100 1/500 1.02102021 1.02669730 1.03275517 1.05712287
1/1000 1.01522171 1.02800707 1.01775410 1.05875204
1/250 1.01940512 1.02504385 1.02814879 1.03691132

300 1/500 1.01212335 1.02989500 1.05011906 1.02476130
1/250 1.01596532 1.01709755 1.03103668 1.02334128

1000 1/500 1.00928082 1.01831604 1.05441287 1.01679691
1/1000 1.00567991 1.02609596 1.12520355 1.01143505
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Fig. 41. Boxplots for the bandwidths in the case of regression function r3. The

standard deviation of the added noise is σ = 1/500; the design is

Uniform(0, 1).
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