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ABSTRACT

Finite Element Analysis of Three-Phase

Piezoelectric Nanocomposites. (August 2009)

Kevin S. Maxwell, B.S., Texas A&M University

Chair of Advisory Committee: Dr. John Whitcomb

In recent years, traditional piezoelectric materials have been pushed to the limit

in terms of performance because of countless novel applications. This has caused an

increased interest in piezoelectric composites, which combine two or more constituent

materials in order to create a material system that incorporates favorable attributes

from each constituent. One or more of the constituents exhibits piezoelectric behavior,

so that the composite has an effective electromechanical coupling. The composite

material may also have enhanced properties such as stiffness, durability, and flexibility.

Finite element analyses were conducted on a three-phase piezoelectric nanocom-

posite in order to investigate the effects of several design parameters on performance.

The nanocomposite consisted of a polyimide matrix, β-CN APB/ODPA, enhanced

with single wall carbon nanotubes and PZT-5A particles. The polyimide and nan-

otube phases were modeled as a single homogenized phase. This results in a two-phase

nanocomposite that can be modeled entirely in the continuum domain. The material

properties for the nano-reinforced matrix and PZT-5A were obtained from previous

experimental efforts and from the literature.

The finite element model consisted of a single representative volume element

of the two-phase nanocomposite. Exact periodic boundary conditions were derived

and used to minimize the analysis region. The effective mechanical, electrical, and

piezoelectric properties were computed for a wide range of nanotube and PZT particle
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concentrations. A discrepancy was found between the experimental results from the

literature and the computational results for the effective electrical properties. Several

modified finite element models were developed to explore possible reasons for this

discrepancy, and a hypothesis involving dispersion of the nanotubes was formulated

as an attempt to explain the difference.

The response of the nanocomposite under harmonic loading was also investigated

using the finite element model. The effective properties were found to be highly

dependent on the dielectric loss of the βCN/SWNT matrix. It was also found that

increasing the matrix loss enhanced piezoelectric performance up to a certain point.

Exploiting this type of behavior could be an effective tool in designing piezoelectric

composite materials.
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CHAPTER I

INTRODUCTION

A. Motivation

Piezoelectric materials have long been used in sensing and actuator applications be-

cause of their ability to couple electrical and mechanical fields. However, the perfor-

mance limits of traditional piezoelectric materials have caused an increased interest

in piezoelectric composites. For example, piezoelectric ceramic materials are too stiff

and brittle for some applications while piezoelectric polymers are tough and flexible

but lack the greater piezoelectric response of the ceramics. Traditional composite ma-

terials combine two or more constituent materials in order to create a material system

that performs better than any of the constituents alone. In the case of piezoelectric

composites, one or more of the constituents exhibit piezoelectric behavior, so the

effective response of the composite also exhibits piezoelectric coupling. In addition,

the composite material may have enhanced properties that do not directly involve

coupling between electrical and mechanical fields.

There have been several attempts to create piezoelectric composite materials uti-

lizing a polymer matrix with piezoelectric ceramic inclusions [1, 2, 3]. Ideally, this

type of material system can provide the light weight and flexibility of the polymer

while exhibiting a greater piezoelectric response than traditional piezoelectric poly-

mers. The problem with such a material system is that if there is a high dielectric

mismatch between the polymer and piezoelectric inclusions the material is difficult to

pole. If a very large electric field is applied to the material, the polymer’s low elec-

tric permittivity causes the electric field over the piezoelectric inclusions to be much

This thesis follows the style of Acta Materialia.
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smaller than the applied field. This leads to piezoelectric inclusions that have only

been partially poled, and the piezoelectric response of the composite material is quite

small. Furthermore, even if the inclusions could somehow be poled completely, the

low permittivity of the matrix would not allow efficient actuation of the inclusions.

This is because the actuating electric field would not be able to reach the inclusions.

The same problem would happen if the material was used as a sensor. A force applied

to the material would cause a large electric field over the inclusions, but this electric

field would remain mostly trapped in the inclusions by the low permittivity matrix.

To overcome this issue, Ounaies et al. [4, 5] have made composites consisting of a

thin film polyimide matrix, piezoelectric particle inclusions, and single wall nanotubes

(SWNT). The resulting nanocomposite is such that the electrical properties of the

nanotubes increase the electric permittivity of the polymer matrix, so the piezoelectric

particles can be poled more easily. A schematic of the three-phase nanocomposite is

given in Fig. 1. The aim of this research is to investigate the effects of several design

parameters for this type of material system on overall material performance.

Fig. 1. Schematic of three-phase piezoelectric nanocomposite (not to scale).
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B. Literature Review

There are several important areas of research that must be reviewed to fully un-

derstand the current state of knowledge for piezoelectric nanocomposites. First and

foremost, the constituent dielectric properties of a piezoelectric composite play an

important role in the effective electromechanical properties of the material. There-

fore, the characterization of dielectric properties must be fully understood in order to

predict effective piezoelectric properties. Many research groups have investigated the

dielectric properties of different types of materials using experimental and computa-

tional approaches, so both methodologies will be reviewed here. In addition, research

pertaining to the characterization of piezoelectric composite materials is obviously of

interest in this work. Hence, separate sections are given to both experimental and

computational investigations of piezoelectric composites.

1. Experimental Dielectric Properties

Ounaies et al [6] investigated the electrical properties of single wall carbon nanotube

(SWNT) reinforced polyimide composites as a function of SWNT concentration. Us-

ing measured values of AC and DC conductivity, it was shown that the additions of

SWNTs to the polyimide results in an effective conductivity that exhibits a percola-

tion type behavior. Analytical and numerical models were also used in conjunction

with experiment to show that bundles of nanotubes dispersed throughout the poly-

imide play an important role in the effective properties. A very important result of

this work is the ability to tailor the electrical properties of the composite over many

orders of magnitude.

Potschke et al [7, 8] used dielectric spectroscopy to measure the complex permit-

tivity and conductivity spectra of polycarbonate (PC)/multiwalled carbon nanotube
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(MWNT) composites at varying concentrations of MWNT. The frequency depen-

dent electrical properties were used to investigate the percolation behavior and state

of dispersion of the nanotubes. The percolation threshold was assumed to be the

MWNT concentration where the static conductivity increased significantly. For the

PC/MWNT nanocomposites, the static conductivity increased by ten orders of mag-

nitude between 1.0 and 1.5 wt% MWNT. In addition to the static conductivity, the

real and imaginary parts of complex permittivity were also found to increase signifi-

cantly above the percolation threshold.

The dispersion of the nanotubes was investigated by varying processing parame-

ters such as mixing screw speed and mixing time. The permittivity and conductivity

spectra from the resulting composites indicated that the percolation, and therefore

dispersion, of the nanotubes is highly dependent on processing. Higher screw speeds

at longer mixing times generally resulted in percolation at lower concentrations of

MWNTs, which indicated better overall dispersion of the nanotubes.

Youngs [9] performed dielectric measurements on samples consisting of silver

coated microspheres in a paraffin wax matrix, and a clear percolation transition was

observed at higher inclusion fractions. The results were also compared to several

effective medium and percolation theories. Effective mean theories such as Brugge-

man and Maxwell-Garnett failed to predict effective permittivity for volume fractions

greater than 0.1. However, the Kirkpatrick-Zallen and McLachlan statistical per-

colation theories were able to provide a good fit for filler fraction dependence of

permittivity.

2. Modeling of Dielectric Properties

Krakovsky et al [10] modeled the dielectric properties of two-dimensional composites

using the finite element method. Interfacial, or Maxwell-Wagner-Sillars polarization
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was the only polarization mechanism considered so that the material permittivities

were frequency independent. The constituent phases of the composites consisted of

two different materials with complex permittivities, and the dielectric losses were as-

sumed to be purely ohmic. The dielectric spectra obtained from FEA were compared

to results obtained using mixture formulas. The FEA spectra were found to lie be-

tween the curves given by the Maxwell-Garnett and Bruggeman formulas. It was also

found that the FEA spectra for a random composite differed from the spectra for a

periodic composite.

Sareni et al [11] modeled the complex effective permittivity of a lossy composite

material using FEA. The finite element method was found to be an accurate way to

calculate the permittivity of this type of material in the quasistatic limit. The results

were also compared to the Bergman and Milton theory, and the two methods were

found to be consistent.

Ang et al [12] calculated the effective permittivity and loss of two-phase com-

posites using FEA. The inclusion phase of the composite was modeled as various

shapes such as circles, triangles, and rings. It was found that given a fixed volume

fraction, the shape of the inclusion affects the electric field distribution enough to

greatly affect the effective permittivity. Zhang et al. [13] performed a nonlinear finite

element analysis on a PZT/polymer composite to understand the poling behavior of

these types of composites. The effects of poling voltages and PZT volume fraction on

the distribution of residual stress in the PZT were studied. It was found that under

a certain PZT volume fraction, poling caused a residual compressive stress on the

inclusions that partially depolarized the PZT.

Wu et al [14] used a finite-difference time-domain (FDTD) method to analyze the

effective dielectric properties of three-dimensional composite materials. They found

that the inclusion shape, inclusion concentration, and operating frequency can all
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have significant effects on a composite material’s electrical properties.

3. Experimental Piezoelectric Composites

Researchers over the last several decades have synthesized many types of piezoelec-

tric composites. Safari et al. [3] made piezoelectric composites by dispersing PbTiO3

powder in a dielectric gel polymer. Measurements of the resulting composites yielded

a usable piezoelectric response with d33 values as high as 60 pC/N , which is greater

than that of PVDF. Liu et al. [1] made lead zirconate titanate (PZT)/PVC com-

posites doped with semiconducting graphite particles. The graphite allowed more

effective poling of the PZT inclusions by increasing the amount of electric field over

the PZT. However, the highest d33 value measured was approximately 22 pC/N ,

which is about the same as PVDF. Showcasing a novel application of piezoelectric

composites, White et al. [15] developed a piezoelectric ceramic/polymer composite

that can be used as a thick film strain sensor for vibration monitoring of structures.

The composite is produced as a paint which can be applied using conventional paint

spraying equipment.

Hori et al. [16] developed piezoelectric composites consisting of PZT/carbon

black/epoxy. Instead of pure piezoelectric response, their goal was to create an elas-

tic damping material with a large effective mechanical loss factor. The resulting

piezoelectric composite converted mechanical vibrations to alternating electrical en-

ergy, which were then dissipated by joule heating through the network of carbon black

particles and an external resistor. By increasing the amount of carbon black in the

composite, they were able to increase the piezoelectric loss of the material, which

allowed the material to dissipate mechanical energy more efficiently. Similarly, Tian

and Wang [17] prepared and investigated samples of an epoxy/multiwall carbon nan-

otube (MWNT)/PZT piezoelectric nanocomposite. Like the carbon black that Hori
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et al. used, the MWNTs formed a network throughout the material that allowed

the composite to dissipate energy. These composite systems are a promising type of

damping material, and their enhanced dielectric properties indicate that the addition

of carbon black or MWNTs can facilitate better poling.

4. Modeling of Piezoelectric Composites

There has also been much interest in modeling the response of piezoelectric com-

posites because an accurate model could help design a material system before ever

spending time and money to make a test specimen. Shin [18] modeled PZT/polymer

composites using finite element analysis (FEA), but the available computing power

at the time limited the models to a very small number of elements, which resulted in

low accuracy. However, an interesting result from the analysis was the fact that the

hydrostatic piezoelectric charge coefficients only increased with increasing PZT con-

tent up to a certain point. After this, the hydrostatic coefficients actually decreased

with increasing PZT content. This observation implies that there is an optimum

PZT volume fraction for which the hydrostatic piezoelectric response is maximized.

Salehi-Khojin and Jalili [19] attempted to design piezoelectric polymer composites

with tunable mechanical properties ranging from a stiff structure to an efficient me-

chanical damper. They modeled the composites using a shear-lag model, and they

found that stiffer structures show better tuning capabilities. These types of materials

could be used in the next generation of active vibration damping systems.

Sherrit and Mukherjee [20] extended the idea of complex permittivity to the use of

complex material constants for piezoelectric materials. They gave various reasons for

using complex dielectric, elastic, and piezoelectric coefficients to account for the losses

that arise when piezoelectric materials are subjected to harmonic loads. In addition,

Lamberti et al. [21] extended the definition of the electromechanical coupling factor
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to include losses in the context of a complex factor. Along the same lines, Piquette

and McLaughlin [22] were able to come up with completely real coupling factors while

keeping all other material constants complex.

Odegard [23] used FEA to predict the effective properties of several types of

piezoelectric polymer composites. The four types of composites modeled were a

graphite/poly(vinylidene fluoride) (PVDF) composite, a silicon carbide (SiC)/PVDF

particulate composite, a fibrous lead zirconate titanate (PZT)/polyimide composite,

and a PZT/polyimide particulate composite. The FEA results were compared to pre-

dictions from Mori-Tanaka and self-consistent methods, as well as a new, proposed

model. The FEA data was used as a benchmark to show that the proposed microme-

chanics model could predict properties more accurately than the Mori-Tanaka and

self-consistent schemes.

Silva et al [24] used FEA along with sequential linear programming (SLP) to find

optimized unit cell topologies for piezoelectric composites. The linear programming

was used to find the distribution of phases that optimizes the performance character-

istics of the composite material. The effective properties for each distribution were

found using FEA applied to a unit cell subject to periodic boundary conditions. The

microstructures obtained from the optimization process showed a large increase in

performance when compared to both pure piezoelectric material and more simplistic

types of unit cells. The work highlights the ability to engineer a composite piezoelec-

tric material to obtain better performance characteristics.

Berger el at [25] modeled piezoelectric fiber composites consisting of PZT fibers

embedded in a soft polymer matrix. Effective coefficients for the composite were

calculated using the asymptotic homogenization method (AHM) and FEA. Periodic

boundary conditions were applied to the representative volume element used in the

FEA model. The results from the AHM and FEA models were compared, and it
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was found that the two analysis methods compared reasonably well with each other,

especially at lower volume fractions of PZT. The differences between the two methods

was attributed to the AHM assuming transverse isotropy of the composite while the

FEA model used a square packing of fibers.

Kelly et al [26] investigated the effects of loss in piezoelectric materials. The

main contributors to loss were identified as DC conductivity, dielectric loss, acoustic

viscosity, and piezoelectric loss. They argued that all forms of loss can be lumped

into the electromechanical coupling factor, which results in a complex value.

C. Scope of Research

The overall objectives of this research were to develop a micromechanics model of a

three-phase piezoelectric nanocomposite, such as the one shown in Fig. 1, that can

predict effective properties and to investigate the effects of several design parameters

on performance. Finite element analysis was used to solve the micromechanics bound-

ary value problem. The effects of various parameters on electrical and piezoelectric

performance were explored in several parametric studies in an attempt to improve

performance and enhance understanding of the design criteria for a piezoelectric com-

posite. The finite element modeling was performed with COMSOL Multiphysics [27]

because this software has the ability to model coupling between a wide array of

physical fields. Thus, COMSOL is well suited to the peculiarities of modeling the

electromechanical coupling in a piezoelectric material. Also, COMSOL allows the use

of scripting, and this feature was used extensively to efficiently perform parametric

studies.

Parametric studies were performed to determine the effective electromechanical

properties of a piezoelectric composite under static electromechanical loads. In the
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first study, material properties of a two-phase piezoelectric microcomposite from [23]

were used, and the properties obtained were compared to results in that work. This

gave some validation to the modeling approach used. Additionally, predicted prop-

erties were compared to several sets of experimental results, and good agreement

between the results was observed. A second parametric study was then performed

using the material properties of the three-phase nanocomposite from [5]. The results

were compared to experimental results when possible so that the accuracy of the

model could be quantified. The results did not initially agree well with experimental

values, so an attempt was made to understand the discrepancy.

Because many applications of piezoelectric material systems involve harmonic

excitation over a broad frequency spectrum, a parametric study of harmonic behavior

was also performed on the three-phase nanocomposite. The finite element analysis was

performed in the frequency domain with complex-valued material properties, which

represent the response of the material at all excitation frequencies. From this, the

complex-valued effective properties were calculated and compared to other types of

piezoelectric materials. It is hoped that, along with the predictions of static effective

properties, the complex effective properties for the three-phase nanocomposite will

contribute to the overall understanding of this material system. In particular, the

results will hopefully show that the addition of carbon nanotubes to the composite

matrix provides a logical way to increase piezoelectric performance.



11

CHAPTER II

THEORY

A. Piezoelectric Effect

The piezoelectric effect is a property of certain materials that manifests itself as

a coupling between electrical and mechanical fields [28]. If a mechanical stress is

applied to the material, an electric displacement results, and the application of an

electric field results in a mechanical strain. The mechanical-to-electrical coupling is

termed the direct piezoelectric effect because it was discovered first. The electrical-to-

mechanical coupling was observed later and was thus coined the inverse or converse

piezoelectric effect. Both effects occur because of the presence of electric dipoles

within the material.

B. Governing Equations

In order to solve an elasticity boundary value problem, there are four types of gov-

erning equations that must be considered. They are equilibrium, kinematic relations,

constitutive relations, and boundary conditions. This can be extended to solving

a piezoelectric boundary value problem by combining the governing equations from

elasticity and electrostatics. The result is a system of coupled partial differential equa-

tions that can be organized into four groups of equations. The groups are divergence

equations, gradient equations, constitutive relations, and boundary conditions.

1. Divergence Equations

There are two divergence equations that govern piezoelectric materials. The first is

the equilibrium equation of elasticity as given in Equation 2.1 below, where Tij is
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the stress tensor and Fi are body forces. The second is the well known Gauss’s Law

of electrostatics. Gauss’s Law is given in Equation 2.2 where Di is the electric field

vector, and ρf is the free electric charge density.

∂Tij

∂xj

+ Fi = 0 (2.1)

∂Di

∂xj

= ρf (2.2)

In this work there are never any body forces or free charge densities. Therefore,

the equilibrium equation and Gauss’s Law simplify to

∂Tij

∂xj

= 0 (2.3)

∂Di

∂xj

= 0. (2.4)

2. Gradient Equations

The gradient equations for piezoelectricity are the strain-displacement or kinematic

relations from elasticity and the definition of electric field from electrostatics, which

are given in Equations 2.5 and 2.6, respectively. In the equations, Sij is the strain

tensor, ui is the displacement vector, and V is the electric field potential.

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(2.5)

Ei = −∂V

∂xi

(2.6)

3. Constitutive Relations

The constitutive equations for a piezoelectric material are given in Equation 2.7 where

sE
ijkl is the constant electric field compliance tensor, Tij is the Cauchy stress tensor,

εT
ij is the stress-free electric permittivity tensor, and dijk is the piezoelectric coupling
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tensor. Note that if dijk = 0, the constitutive equations reduce to the constitutive

equations of elasticity and electrostatics.

Sij = sE
ijklTkl + dlijEl

Di = diklTkl + εT
ilEl (2.7)

The constitutive relations in tensor notation can be tedious to use. Therefore,

from this point forward, the constitutive relations will be expressed in contracted,

matrix notation. With this notation, the constitutive relations become

S = sET + dE

D = d′T + εTE, (2.8)

where a primed matrix denotes the transpose of the matrix.

The superscripts on sE and εT indicate that the material properties depend on

boundary conditions. The superscripts E and D represent constant electric field and

constant electric displacement boundary conditions, respectively. The superscripts

T and S indicate stress-free and strain-free boundary conditions, respectively. To

understand the meaning of the different electrical and mechanical boundary condi-

tions, consider the piezoelectric material specimen in Fig. 2. There are electrodes on

both ends of the specimen, and a switch between the electrodes allows the electrical

boundary condition to be switched from open to closed circuit.

If the compliance of the material is to be measured, a known stress is applied and

the resulting strain is measured. If the stress is applied with a short circuit electrical

boundary condition, the electric field across the specimen is zero, and the constitutive
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Fig. 2. Piezoelectric material with electroded ends subject to applied stress and electric

fields in the 3-direction.

relation reduces to

S = sET

D = d′T. (2.9)

However, if the stress is applied with an open circuit boundary condition, the

electric displacement across the specimen is zero, and the constitutive relation be-

comes

S = sET + dE (2.10)

0 = d′T + εTE. (2.11)

Rearranging Equation 2.11, we obtain

E = −(εT )−1d′T, (2.12)
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which can be substituted into Equation 2.10 to obtain

S = sET− d(εT )−1d′T

=
(
sE − d(εT )−1d′

)
T, (2.13)

where the actual compliance for the open circuit, constant electric displacement

boundary condition is clearly given by

sD = sE − d(εT )−1d′ (2.14)

Similarly, the mechanical boundary conditions affect the electric properties of

a piezoelectric material. Consider again the piezoelectric specimen in Fig. 2. This

time we want to measure the electric permittivity of the material. A known electric

field, E, is applied, and the resulting electric displacement, D, is somehow measured.

If, during the application of E, the specimen is allowed to freely deform, then the

stresses, T in the specimen will be zero. The constitutive relation reduces to

S = dE

D = εTE. (2.15)

However, if the electric field is applied while the specimen is mechanically con-

strained in all directions, the strains in the specimen are zero, and the constitutive

relation becomes

0 = sET + dE (2.16)

D = d′T + εTE. (2.17)
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Rearranging Equation 2.16, we obtain

T = −(sE)−1dE

= −cEdE, (2.18)

which is substituted into Equation 2.17 to obtain

D = εTE− d′cEdE

=
(
εT − d′cEd

)
E, (2.19)

where the actual permittivity for the strain-free boundary condition, εS, is clearly

given by

εS = εT − d′cEd (2.20)

The form of the constitutive relations given in Equation 2.8 is usually referred

to as the strain-charge form. This is the form most piezoelectric material vendors

use to specify material properties. However, sometimes it is desirable to use other

forms that have different independent variables. Another widely used form is the

stress-charge form which is given in Equation 2.21. In the stress-charge form, cE is

the constant electric field stiffness tensor, εS is the strain-free electric permittivity,

and e is the piezoelectric coupling tensor.

T = cES− eE

D = e′S + εSE, (2.21)

It should be stressed that both constitutive forms are equivalent. The use of

a particular form is dictated by which independent variables lend themselves to a

particular analysis. For example, the implementation of periodic boundary conditions

in COMSOL makes the stress-charge form a good choice for post processing the results
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from analyses in this work. This is because the periodic boundary conditions are

expressed in terms of volume average strains and volume average electric fields, and

it is easier to calculate the effective material properties if the constitutive form is also

in terms of strains and electric fields. To illustrate the structure of the matrices in the

constitutive relations, the expanded form of the stress-charge constitutive relations is

given in Equation 2.22 using the standard Voight notation.





T11

T22

T33

T12

T23

T13





=




c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66








S11

S22

S33

2S12

2S23

2S13





−




0 0 e13

0 0 e23

0 0 e33

0 e24 0

e15 0 0

0 0 0








E1

E2

E3









D1

D2

D3





=




0 0 0 0 e15 0

0 0 0 e24 0 0

e13 e23 e33 0 0 0








S11

S22

S33

2S12

2S23

2S13





+




ε11 0 0

0 ε22 0

0 0 ε33








E1

E2

E3





(2.22)

4. Boundary Conditions

The boundary conditions for the piezoelectric boundary value problem can be split

into natural and essential boundary conditions. The natural boundary conditions are

given in Equation 2.23 while the essential boundary conditions are given in Equation

2.24. The terms with a ’ˆ’ are specified values. Note that for the natural boundary
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conditions, t̂i are applied tractions, and q̂ is applied charge.

Tijnj = t̂i

Dini = q̂ (2.23)

ui = ûi

V = V̂ (2.24)

C. Finite Element Method

The finite element software COMSOL Multiphysics was used for all of the finite

element modeling in this work. This software was chosen because it allows the finite

element method to be applied to solving a general set of partial differential equations.

In addition, there is a piezoelectric material module already defined, and the software

also supports solving problems in the frequency domain. Another important feature of

COMSOL is the implementation of periodic boundary conditions, which are necessary

for micromechanical analysis.

COMSOL solves the weak form of the governing partial differential equations. To

obtain the weak form of the elasticity equations, start with the equilibrium equations

∂Tij

∂xj

+ Fi = 0, (2.25)

and multiply by a test function δui. Then integrate over the volume domain (Ω).

∫

Ω

(
∂Tij

∂xj

+ Fi

)
dΩ = 0 (2.26)

Now integrate by parts to obtain

∫

Γ

δuiTijnjdΓ +

∫

Ω

(
δuiFi − ∂δui

∂xj

Tij

)
dΩ = 0, (2.27)
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where Γ is a surface domain. Rearranging, we get

∫

Γ

δuiTijnjdΓ +

∫

Ω

δuiFidΩ−
∫

Ω

∂δui

∂xj

TijdΩ = 0. (2.28)

The kinematic relations can now be used to obtain

∫

Γ

δuiTijnjdΓ +

∫

Ω

δuiFidΩ−
∫

Ω

δSijTijdΩ = 0, (2.29)

which is equivalent to the weak form that COMSOL solves for elasticity using finite

elements.

To obtain the weak form of the electrostatics equations, start with Gauss’s Law

∂Di

∂xj

− ρf = 0, (2.30)

and multiply by a test function δV . Then integrate over the domain to obtain

∫

Ω

δV

(
∂Di

∂xj

− ρf

)
dΩ = 0. (2.31)

Integration by parts yields

∫

Γ

δV DinidΓ +

∫

Ω

(
−δV ρf − ∂δV

∂xi

Di

)
dΩ = 0. (2.32)

Rearranging, we get

∫

Γ

δV DinidΓ−
∫

Ω

δV ρfdΩ−
∫

Ω

∂δV

∂xi

DidΩ = 0. (2.33)

Recall that the definition of electric field is given by

Ei = −∂V

∂xi

. (2.34)

This can be used in the weak form to obtain

∫

Γ

δV DinidΓ−
∫

Ω

δV ρfdΩ−
∫

Ω

δEiDidΩ = 0, (2.35)
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which is equivalent to the weak form COMSOL solves for electrostatics using finite

elements.

D. Harmonic Analysis

Dynamic material properties are important for piezoelectric materials because many

applications require piezoelectrics to be used over a broad frequency range. In order

to model this type of behavior using finite elements, a framework must be set up to

allow efficient calculation of dynamic effective properties.

1. Circuit Analogs

Lossy dielectric materials are important for the βCN-PI/SWNT/PZT material system

because the addition of conductive nanotubes to the polymer matrix causes the matrix

to behave as a lossy material under alternating current (AC) loads. A lossy material is

a material that somehow dissipates electromagnetic energy passing through it. Note

that all real materials are lossy to some extent, but in many materials the loss can

be considered negligible. However, the βCN-PI/SWNT matrix is lossy enough that

significant changes in effective properties occur under alternating current conditions.

The easiest way to understand the effect of harmonic excitations on a dielectric

material is to use an electrical circuit analog that represents the material [29]. The

well-defined AC circuit analysis methods from electrical engineering can then be used

to understand material behavior. For example, a lossless dielectric material can be

represented by a simple capacitor. In order to understand and analyze a circuit analog,

several material parameters must be defined. Many of the electrical engineering

equations and derivations are taken from [30, 31].

Ohm’s Law, which governs the macroscopic relationship between resistance R,
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voltage V , and current I in electrical elements, is given as

R =
∆V

I
. (2.36)

The resistivity ρ of a material is defined through the constitutive relation

E = ρJ, (2.37)

where E is electric field and J is current density. If the material considered is formed

into a cylindrical material specimen with electrodes placed at the ends, the relation-

ship between E and J of the specimen becomes

∆V

d
= ρ

I

A
, (2.38)

where ∆V is the potential difference between the electrodes, I is the current across

the specimen, A is the cross sectional area of the electrodes, and d is the distance

between the electrodes.

The resistivity ρ of the specimen is then

ρ =
∆V A

Id
. (2.39)

We know from Ohm’s Law that the factor ∆V/I is equal to the resistance R. The

resistivity becomes

ρ = R
A

Id
. (2.40)

Now the conductivity of the same material specimen can be defined as the reciprocal

of the resistivity as follows

σ =
1

ρ
=

d

RA
. (2.41)

Another parameter that must be defined is capacitance. If the voltage potential

between two conductors is kept constant at ∆V , then a charge Q will form on each
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conductor proportional to ∆V . The proportionality constant is capacitance

Q = C∆V (2.42)

In order to define the capacitance of a material between two parallel electrodes,

Gauss’s Law is used to find the electric field between the electrodes

E =
q

εA
(2.43)

Setting q = Q and substituting Equation 2.42 into Equation 2.43, we get the capaci-

tance for the material between the parallel plates

C =
Aε

d
. (2.44)

A very important parameter in AC circuit analysis is impedance. Impedance can

be thought of as a complex resistance, but several concepts must be introduced in

order to properly define it. Consider a linear electrical element subject to a harmonic

current I that can be represented as

I = I0e
jωt, (2.45)

where I0 is a real valued amplitude, ω is the radial frequency of the signal, and j is
√−1.

Now assume that the driving current produces a harmonic potential difference

V across the element which can be measured and represented as

V = V0e
j(ωt+φ), (2.46)

where φ is the phase shift between the two harmonic signals V and I. Note that the

frequencies of the signals are the same because the element is assumed to be linear.

The impedance Z of the electrical element can now be defined as the ratio of V
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and I as shown in Equation 2.47.

Z =
V

I

=
V0e

j(ωt+φ)

I0ej(ωt)

=
V0

I0

ejφ

= |Z|ejφ (2.47)

As can be seen in Equation 2.47, impedance is simply a complex number that relates

V and I. The form of impedance given in the equation is called the polar form, but

it is usually expressed in the rectangular form:

Z = Z ′ + jZ ′′, (2.48)

where

Z ′ = |Z|cosφ

Z ′′ = |Z|sinφ. (2.49)

The principle of complex impedance can now be used to analyze a material

circuit analog. The goal of the analysis is to obtain the effective permittivity that

can represent the circuit analog, which can then be used to describe the frequency

response of the material. When considering a lossy dielectric material, the most

widely used circuit is the parallel RC circuit [29]. This circuit consists of a perfect

resistor and a perfect capacitor connected in parallel, and a schematic is shown in

Fig. 3 below. The effective impedance of two elements connected in parallel is given

as

1

Zeff

=
1

Z1

+
1

Z2

. (2.50)
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Fig. 3. Schematic diagram of parallel RC circuit.

The impedance of a resistor is simply the resistance of the resistor, as shown in

Equation 2.51.

ZR = R (2.51)

The impedance of a capacitor is

ZC =
1

jωC
= − j

ωC
. (2.52)

Substituting the impedances of a capacitor and resistor into the effective impedance

given in Equation 2.50, we get the effective impedance relation of the parallel RC cir-

cuit given in Equation 2.53.

1

Zeff

=
1

R
+

1
1

jωC

=
1

R
+ jωC

(2.53)

If we assume that there is lossy capacitor that is equivalent to the RC circuit,

then there must be an effective capacitance Ceff of the RC circuit, and Ceff is related

to the effective impedance of the RC circuit. Therefore, the capacitive impedance
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relation given in Equation 2.52 can be extended to mean

Zeff =
1

jωCeff

= − j

ωCeff

. (2.54)

Substituting Equation 2.54 into Equation 2.53, we obtain

jωCeff =
1

R
+ jωC. (2.55)

Substituting the definition of capacitance from Equation 2.44 yields

jω
Aεeff

d
=

1

R
+ jω

Aε′

d
, (2.56)

where εeff is the effective permittivity of the circuit. Rearranging, we obtain

εeff =
d

jωRA
+ ε′. (2.57)

Finally, the definition of conductivity from Equation 2.41 is substituted to obtain

the effective, frequency dependent permittivity of the parallel RC circuit, as given in

Equation 2.58.

εeff = ε′ − jε′′ = ε′ − j
σ

ω
(2.58)

2. Harmonic Analysis Using Complex Numbers

Although the parallel RC circuit analog is very helpful in gaining an understanding

of harmonically excited dielectric materials, there are problems with assuming such

a response. Sherrit and Mukherjee [20] explained that in most piezoelectric ceramic

materials, the complex permittivity is due to a polarization lag rather than a leakage

current due to Ohmic conduction. Using an RC circuit to model complex permittivity,

however, assumes that the imaginary part of permittivity is due entirely to Ohmic

conduction, and it also imposes an inverse relationship between the imaginary part of

permittivity and frequency [32]. This inverse relationship is not necessarily present
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in piezoelectric materials.

In order to avoid these problems, there is a much more general way to interpret

and model the response of a lossy dielectric. Consider the harmonic electric field E

that can be represented as

E = E0e
jωt. (2.59)

If E is applied to a dielectric material, a harmonic electric displacement D of the

same frequency will develop in the material according to the electrostatic constitutive

relation D = εE. If the material is a lossy dielectric, the waveform of D will be of

the same frequency as E, but it will lag the driving electric field by an angle φ.

D = D0e
j(ωt+φ) (2.60)

Using the constitutive relation for a dielectric material, the material’s electric

permittivity can be defined as

ε =
E

D

=
E0e

j(ωt)

D0ej(ωt+φ)

=
E0

D0

e−jφ

=
E0

D0

cos(φ)− j
E0

D0

sin(φ). (2.61)

The complex permittivity is usually generalized with the following notation [29, 33].

ε = ε′ − jε′′ (2.62)

At this point it must be emphasized that there have been no assumptions made

about the dependence of permittivity on frequency or conductivity. A complex valued

permittivity is simply assumed and can be calculated by applying an electric field to
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a material, measuring the electric displacement response, and finding the complex

ratio between the two. Hippel [32] showed that using a complex permittivity instead

of an RC circuit ensures that no incorrect assumptions are made about the frequency

response of a dielectric material. Of course, it is still implicitly assumed that the

input and response both have the same frequency.

3. Complex Piezoelectric Material Properties

A lossy dielectric material is modeled with a complex permittivity value. As was seen

in the previous section, a non-zero imaginary part of permittivity indicates there is a

phase lag between the driving electric field E and the resulting electric displacement

D. A simple examination of the piezoelectric constitutive relation in Equation 2.22

reveals that if the permittivity ε11 is complex, the only value that necessarily becomes

complex is D1. However, in the case of a composite where the matrix has a complex

permittivity, and the piezoelectric inclusion has all real-valued material properties,

it will be shown in the results that all of the effective material properties become

complex.

All realistic materials have some mechanical loss associated with them. Similarly,

all piezoelectric materials have some piezoelectric loss associated with the piezoelec-

tric coefficients of the material. However, these intrinsic losses are assumed to be zero

in this work because experimental values for them were unavailable. Therefore, the

complex effective stiffness and piezoelectric coefficients that result from having a com-

posite material with a lossy dielectric matrix are due solely to the lossy permittivity

value.
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E. Electromechanical Coupling Factor

The electromechanical coupling factor is a dimensionless quantity that material sci-

entists use to quantify the electromechanical energy conversion in piezoelectric mate-

rials. It is a combination of specific elastic, dielectric, and piezoelectric coefficients.

Equation 2.63 gives the most common definition of the coupling factor kij.

kij =

√
d2

ij

εT
iis

E
jj

(2.63)

The following is based on derivations of the coupling factor from [28] and [21].

Note that the coupling factor can be derived from either the direct or converse piezo-

electric effects.

1. Direct Piezoelectric Effect

Consider a block of piezoelectric material like the one in Fig. 4. The ends of the

specimen are electroded, and the electrical boundary condition at the ends can be

switched between open and closed (short) circuit. A mechanical stress T̄3 is incre-

mentally applied to the material while the electric terminals are shorted (E3 = 0).

This causes the transition from Point 1 to Point 2 on the S − T diagram in Fig. 5.

Note that only the response in the 3-direction will be considered.

Because E3 = 0, the constitutive relations for the transition from Point 1 to

Point 2 reduce to

S3 = sE
33T3

D3 = d33T3. (2.64)

An inspection of Equation 2.64 reveals that the slope of the line from Point 1 to

Point 2 on the S-T diagram is equal to sE
33, the short circuit (zero electric field) com-



29

Fig. 4. Piezoelectric material with electroded ends subject to applied stress and electric

fields in the 3-direction.

Fig. 5. Graphical interpretation of the mechanical to electrical cycle for the coupling

factor k33.
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pliance. The total mechanical energy density applied to the specimen is proportional

to the area W1 + W2. When the stress reaches T̄3 at Point 2 the electrical boundary

condition is changed to an open circuit. This causes the electric displacement in the

specimen to remain constant at the value D̂3 given in Equation 2.65.

D̂3 = d33T̄3 (2.65)

The stress is now incrementally reduced to its initial value (Points 2-3). The

constitutive relations for this part of the cycle are given in Equation 2.66, where the

electric displacement is held constant.

S3 = sE
33T3 + d33E3

D̂3 = d33T̄3 = d33T3 + εT
33E3 (2.66)

From the second constitutive relation, we know E3:

E3 =
D̂3 − d33T3

εT
33

. (2.67)

Substituting E3 back into the first part of the constitutive relation, we get:

S3 = sE
33T3 + d33

(
D̂3 − d33T3

εT
33

)

=

(
sE
33 −

d2
33

εT
33

)
T3 + d33

D̂3

εT
33

= sD
33T3 + d33

D̂3

εT
33

. (2.68)

Equation 2.68 shows that the line between Points 2 and 3 has a slope equal to sD
33,

the open circuit (zero electric displacement) compliance. The relation also indicates

that the line does not pass through the origin on the S-T plot. This transition reduces

the mechanical energy density in the specimen to the area W1.
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At this point there is still some residual strain leftover in the material, so an ideal

electrical load is connected at Point 3 which decreases the strain to its initial value

at Point 1 which completes the cycle. The work done on the ideal electrical load is

represented by the area W1. Because the partial cycle 1-2-3 can be represented as

the conversion of mechanical energy to electrical energy, the area W2 is the internal

energy that is returned to the environment in mechanical form. The areas W1 and

W2 can be found by integrating:

W1 =
1

2
(sE

33 − sD
33)T̄

2
3 (2.69)

W2 =
1

2
sD
33T̄

2
3 (2.70)

The square of the electromechanical coupling factor is defined as the ratio of

energy converted to electrical form (W1) to the total mechanical energy applied to the

specimen (W1 +W2). Therefore, the coupling factor k33 can be derived as in Equation

2.71 below. While the square of the coupling coefficient is useful for comparing the

energy conversion ratio of a piezoelectric material, most published material data uses

the square root value given previously in Equation 2.63.

k2
33 =

W1

W1 + W2

=
sE
33 − sD

33

sE
33

=
d2

33

sE
33ε

T
33

(2.71)

2. Converse Piezoelectric Effect

The coupling factor is also well defined for conversion from electrical energy to me-

chanical energy. Consider the same block of piezoelectric material from Fig. 4. This

time, an electric field Ē3 is incrementally applied to the material while the specimen

is free to expand (T3 = 0). This causes the transition from Point 1 to Point 2 on the

D − E diagram in Fig. 6.

Because T3 = 0, the constitutive relations for the transition from Point 1 to Point
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Fig. 6. Graphical interpretation of the electrical to mechanical cycle for the coupling

factor k33.

2 reduce to

S3 = d33E3

D3 = εT
33E3. (2.72)

From Equation 2.72, it is clear that the line representing the transition has a

slope of εT
33 which is the stress free electric permittivity. The total electrical energy

density applied to the specimen is proportional to the area W1+W2. When the electric

field reaches Ē3 at Point 2 the mechanical boundary condition in the 3 direction is

changed to clamped (zero displacement in 3-direction). This causes the strain in the

specimen to remain constant at the value Ŝ3 given in Equation 2.73.

Ŝ3 = d33Ē3 (2.73)
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The electric field is now incrementally reduced to its initial value (Points 2-3)

while the specimen remains clamped. The constitutive relations for the transition are

given in Equation 2.74. Note that the strain Ŝ3 remains constant during this part of

the cycle.

Ŝ3 = sE
33T3 + d33E3

D3 = d33T3 + εT
33E3 (2.74)

From the first part of the constitutive relation, we know T3:

T3 =
Ŝ3 − d33E3

sE
33

. (2.75)

Substituting T3 back into the second part of the constitutive relation, we get:

D3 = d33

(
Ŝ3 − d33E3

sE
33

)
+ εT

33E3

= d33
Ŝ3

sE
33

+

(
εT − d2

33

sE
33

)
E3

= d33
Ŝ3

sE
33

+ εSE3. (2.76)

From Equation 2.76, it is clear that the line between Points 2 and 3 has a slope

equal to εS
33, the strain free electric permittivity. Also note that the constant d33

Ŝ3

sE
33

term indicates that the line does not pass through the origin in Fig. 6. This transition

reduces the mechanical energy density in the specimen to the area W1.

At Point 3 there is a residual electric displacement in the material, so an ideal

mechanical load is connected which decreases the electric displacement to its initial

value at Point 1 which completes the full cycle. The work done on the ideal mechanical

load is represented by the area W1. Because the partial cycle 1-2-3 can be represented

as the conversion of electrical energy to mechanical energy, the area W2 is the internal
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energy that is returned to the environment in electrical form. The areas W1 and W2

can be found by integrating:

W1 =
1

2
(εT

33 − εS
33)Ē

2
3 (2.77)

W2 =
1

2
εS
33Ē

2
3 (2.78)

As in the direct piezoelectric case, the square of the coupling factor can be defined

as the ratio of the energy converted to mechanical form (W1) to the total electrical

energy applied to the specimen (W1 + W2). Hence the coupling factor can be derived

using Equation 2.79.

k2
33 =

W1

W1 + W2

=
εT
33 − εS

33

εT
33

=
d2

33

sE
33ε

T
33

(2.79)

In both the direct and converse derivations of k33, the square of the coupling

factor was defined as the ratio of energy converted to total energy applied. Because

of this, the k2
33 can be viewed as an efficiency of energy conversion. Indeed, the limits

of k2
33 must be zero and one which correspond to zero energy conversion and total

energy conversion, respectively. A k2
33 value greater than one implies there is more

energy converted than energy applied to the material, which is thermodynamically

impossible. Actually, even a k2
33 of one is technically impossible because the second law

of thermodynamics states that energy conversion with 100% efficiency is impossible.

3. Complex Coupling Factor

The definition of the electromechanical coupling factor can be extended to harmonic

analysis using complex material constants. If any of the material constants in Equa-

tion 2.79 are complex, the coupling factor k33 must therefore be complex. The same

convention used to distinguish between the real and imaginary parts of the material
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constants can be used with k33.

k33 = k′33 + k′′33 (2.80)

However, for this representation to be of any use, some kind of physical meaning

must be associated with the real and imaginary parts of the coupling factor. The

following derivation is from [21]. To begin, the instantaneous energy density is defined

as

w(t) = D(t)E(t) = S(t)T (t). (2.81)

Now, consider the same piezoelectric block of material from the static coupling

factor definition. A harmonic stress T = T0e
jωt is applied to the material in the

3-direction, and the electrical contacts are shorted. The resulting strain in the 3-

direction can be represented by

S3(t) = |sE
33|T0e

jφE

ejωt, (2.82)

where φE is the phase lag between the applied stress and resultant strain.

From Equation 2.81, it is easy to see that the total energy density wT (t) applied

to the specimen is

wT (t) = |sE
33|T 2

0 ejφE

e2jωt. (2.83)

The energy density converted to electrical form w1(t) is simply the difference

between the total energy density applied wT (t) minus the open circuit compliance

energy density.

w1(t) = |sE
33|T 2

0 ejφE

e2jωt − |sD
33|T 2

0 ejφD

e2jωt (2.84)

As was seen in the static coupling factor derivation, the square of the coupling

factor is equal to the ratio of energy density converted to electrical form w1(t) to the
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total applied energy density:

k2
33 =

w1(t)

wT (t)
=
|sE

33|T 2
0 ejφE

e2jωt − |sD
33|T 2

0 ejφD
e2jωt

|sE
33|T 2

0 ejφEe2jωt
(2.85)

Simplifying, we get:

k2
33 =

|sE
33|T 2

0 ejφE − |sD
33|T 2

0 ejφD

|sE
33|T 2

0 ejφE =
sE
33 − sD

33

sE
33

=
d2

33

sE
33ε

T
33

, (2.86)

where sE
33, sD

33, d33, and εT
33 are complex numbers.

The complex coupling factor can also be derived from the converse effect. Con-

sider the same piezoelectric material specimen. A harmonic electric field E = E0e
jωt

is applied to the material in the 3-direction, and the specimen is free to expand. The

resulting electric displacement in the 3-direction is given by

D3(t) = |εT
33|E0e

jφT

ejωt. (2.87)

From Equation 2.81, it is easy to see that the total energy density wT (t) applied

to the specimen is

wT (t) = |εT
33|E2

0e
jφT

e2jωt. (2.88)

The energy density converted to electrical form w1(t) is simply the difference

between the total energy density applied wT (t) minus the open circuit compliance

energy density.

w1(t) = |εT
33|E2

0e
jφT

e2jωt − |εS
33|E2

0e
jφS

e2jωt (2.89)

As was seen in the static coupling factor derivation, the square of the coupling

factor is equal to the ratio of energy density converted to electrical form w1(t) to the

total applied energy density:

k2
33 =

w1(t)

wT (t)
=
|εT

33|E2
0e

jφT
e2jωt − |εS

33|E2
0e

jφS
e2jωt

|εT
33|E2

0e
jφT e2jωt

(2.90)
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Simplifying, we get:

k2
33 =

|εT
33|E2

0e
jφT − |εS

33|E2
0e

jφS

|εT
33|E2

0e
jφT =

εT
33 − εS

33

εT
33

=
d2

33

sE
33ε

T
33

, (2.91)

where εT
33, εS

33, d33, and sE
33 are complex numbers. The real and imaginary parts of k2

33

can be physically interpreted in the same way that complex permittivity was. The real

part is a measure of the conversion efficiency between the electrical and mechanical

energy densities. The imaginary part is a measure of the phase lag between the energy

densities.

It should be noted that there has recently been put forth an alternative to the

preceding derivation of a complex valued coupling factor. According to Piquette and

McLaughlin [34], the derivation by Lamberti et al. [21] is mathematically flawed.

Specifically, they argue that Equation 2.90 is not correct because it assumes real and

imaginary parts for each term, and they contend that this is not consistent with the

definitions of instantaneous energy density. To overcome this issue, they derived the

coupling factor from fundamental fields and stresses using energy densities averaged

over a single drive cycle. The result for the coupling factor k33 is given as:

k2
33 =

(d′33)
2

εT ′
33s

E′
33

(2.92)

Surprisingly, this is the same result as Equation 2.91 except that only the real

values of the material properties are used. However, there is an important requirement

for this equation to hold. Namely, the applied harmonic stress and harmonic electric

fields must be in phase, or the coupling factor obtained from this definition will not

be independent of the applied fields and stresses. Not surprisingly, this definition of

the coupling factor produces results that are quite different from those produced by

the definition from Lamberti et al. Because most of this work had been completed

before [34] was published, the decision was made not to use the new definition in this
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work. However, future work should definitely attempt to determine the usefulness

and correctness of the new definition.
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CHAPTER III

COMPUTATIONAL MODELS

A. Configurations

Two basic configurations were considered in this work. The first is a cubic repre-

sentative volume element (RVE) as shown in Fig. 7. The second configuration is a

hexagonal prism RVE as shown in Fig. 8. Each RVE consists of a spherical PZT

inclusion imbedded in a polymer matrix. Piezoelectric material properties were used

for the PZT inclusion, and the polymer matrix was modeled with uncoupled electrical

and mechanical responses. For both configurations, the material axes for the PZT

inclusions were assumed to be perfectly aligned with the global coordinate system.

Fig. 7. Cubic RVE.

It should be noted that with periodic boundary conditions applied in all direc-

tions, the cubic RVE represents a three dimensional cubic array of PZT particles.



40

Fig. 8. Hexagonal RVE.

However, the hexagonal RVE represents a hexagonal packed array of particles in the

1- and 2- material directions and a cubic array in the 3- material direction, which can

be seen in Fig. 9.

B. Periodic Boundary Conditions

Exact periodic boundary conditions (PBCs) were applied to the FEA models using

formulations given in Whitcomb et al. [35]. The PBCs relate displacements, stresses,

electric potential, and electric displacement between opposing boundaries of RVE.

Volume averaged strains and electric potentials can be applied through the PBCs.

The displacement and traction periodic boundary conditions are given in Equa-

tion 3.1 where ui is the displacement vector, xα is the position vector, Tij is the stress

tensor, and dβ is the vector of periodicity. Mechanical loads are applied to the model

as volume averaged displacement gradients.
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Fig. 9. Array of hexagonal RVEs with hexagonal packing in 1- and 2-directions and

square packing in the 3-direction.

ui(xα + dα) = ui(xα) +

〈
∂ui

∂xβ

〉
dβ

Tij(xα + dα) = Tij(xα) (3.1)

The electrostatic boundary conditions are given in Equation 3.2 where V is elec-

tric potential (voltage) and Di is the electric displacement vector. Electric loads are

applied as volume averaged potential gradients.

V (xα + dα) = V (xα) +

〈
∂V

∂xβ

〉
dβ

Di(xα + dα) = Di(xα) (3.2)

The periodic boundary conditions were verified by creating a large array of RVEs

and applying the periodic boundary conditions to the outer boundaries of the array.

The resulting stress, strain, electric displacement, and electric fields were checked

to verify that they were identical in each RVE. Since the periodic PBCs were only
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applied to the outer RVEs, identical electrical and mechanical fields in each RVE

indicate that the PBCs were exactly satisfied.

C. Material Properties

The three-phase piezoelectric nanocomposite studied is based on nanocomposites

made by Ounaies et al. [4]. It consists of a βCN-PI matrix with single wall nan-

otube (SWNT) and piezoelectric PZT-5A particle inclusions. A two-phase piezoelec-

tric nanocomposite was also modeled in order to compare results to results from the

literature. The material system consists of a LaRC-SI matrix and PZT-7A particle

inclusions. Again note that for both material systems considered, the material di-

rections of the PZT particles were assumed to be perfectly aligned with the global

coordinate system.

The properties for all materials used in this work are given in Table I. The

material properties for βCN-PI/SWNT were taken from the experimental results in

[5]. The electrical permittivity values are shown in Fig. 10. An exponential fit

was used to interpolate permittivities in between the experimental values, and this

is shown in the figure as well. The experimental permittivities for the three-phase

βCN-PI/SWNT/PZT specimens, also from [5], are given in Fig. 11. Since only

three data points were available, a quadratic polynomial (given in the figure) was

used to interpolate values in between these three points when needed. All of the

permittivity values used in this work are normalized by the permittivity of free space,

ε0 = 8.854×10−12F/m. It should be stressed at this point that the volume fractions of

nanotubes given in Fig. 11 correspond to the fraction of nanotubes in the entire three-

phase composite. However, whenever FEA results are given in this work, the volume

fraction correpsonds to the fraction of nanotubes in the βCN-PI/SWNT matrix.
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Fig. 10. Experimental permittivity of βCN-PI/SWNT as a function of SWNT volume

fraction (%).

D. Calculation of Effective Material Properties

In order to calculate all of the effective piezoelectric material properties, a series

of nine different load cases were applied to the model. The load cases consisted of

three uniaxial strains, three shear strains, and three electric fields as shown in Table

II. Each load case allowed the calculation of one or more material constants. The

effective coefficients calculated at each load step are given in Table III.
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Fig. 11. Experimental permittivity of three-phase βCN-PI/SWNT/PZT as a function

of SWNT volume fraction (%).

Table II. Summary of load cases used to calculate all effective properties.
Load

Case ∂u1
∂x1

∂u2
∂x2

∂u3
∂x3

∂u2
∂x1

∂u3
∂x1

∂u1
∂x2

∂u3
∂x2

∂u1
∂x3

∂u2
∂x3

∂V
∂x1

∂V
∂x2

∂V
∂x3

1 0.001 0 0 0 0 0 0 0 0 0 0 0
2 0 0.001 0 0 0 0 0 0 0 0 0 0
3 0 0 0.001 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0.001 0 0.001 0 0 0
5 0 0 0 0 0.001 0 0 0.001 0 0 0 0
6 0 0 0 0.001 0 0.001 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 10 0 0
8 0 0 0 0 0 0 0 0 0 0 10 0
9 0 0 0 0 0 0 0 0 0 0 0 10
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Table III. Effective coefficients calculated for each load case.
Load Case Effective Coefficient(s) Calculated

1 c11, c12, c13, e31

2 c22, c23

3 c33, e33

4 c44

5 c55

6 c66

7 ε11, e24

8 ε22, e15

9 ε33
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CHAPTER IV

RESULTS AND DISCUSSION

A. Comparison to Results from Literature

A special FEA model was developed to compare predicted effective properties with

results from [23]. The hexagonal RVE and LaRC-SI/PZT-7A material properties used

match the finite element analysis performed by Odegard. It must be stressed, however,

that Odegard used multiple RVE’s connected together to form a larger finite element

model. Displacement and traction boundary conditions were applied to the outer

surfaces of the full model, and the properties were predicted at the innermost RVE.

The boundary conditions used represented approximate periodic boundary conditions.

As the number of RVEs in the array increases, the solution at the innermost RVE

approaches the exact periodic solution. The hexagonal model in this work used exact

periodic boundary conditions applied to the boundaries of a single RVE.

In addition to a finite element analysis, Odegard also predicted effective piezoelec-

tric properties using several micromechanics models. These included self consistent

and Mori-Tanaka schemes as well as a novel, proposed scheme. In this work Odegard’s

FEA and micromechanics predictions were used for comparison.

The effective permittivity εS
11/ε0 is shown in Fig. 12 as a function of PZT vol-

ume fraction. Overall, the trends are the same for each of the methods shown. The

permittivity increases with PZT volume fraction which is expected because the per-

mittivity of the PZT is so much higher than the LaRC-SI matrix. Also, the various

methods show better agreement at lower volume fractions.

The effective piezoelectric coefficient e31 is shown in Fig. 13. There is much more

variation between the different methods for e31 than there was for the permittivity.
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Fig. 12. Effective εS
11/ε0 as a function of PZT volume fraction.

An interesting result of the comparison is that Odegard’s FEA predictions do not

seem to match the micromechanics models very well, even at low volume fractions.

This is most likely due to the use of approximate periodic boundary conditions in his

FEA model.

The effective piezoelectric coefficient e33 is given in Fig. 14. There is again a

noticeable amount of variation between the predictions, especially at higher volume

fractions. Also, Odegard’s FEA results due not agree as well throughout the entire

range of PZT volume fraction. This is again attributed to the use of approximate

boundary conditions.

While the comparison of FEA predictions to Odegard’s work does not completely

validate the model being used, it still shows that the FEA model does give reasonable

results over a wide range of inclusion volume fraction. The comparison also highlights

the fact that exact periodic boundary conditions are extremely important if accurate
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Fig. 13. Effective −e31 as a function of PZT volume fraction.
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Fig. 14. Effective e33 as a function of PZT volume fraction.
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predictions are desired.

There were also several comparisons made to experimental results in the lit-

erature. Three different sets of experimental results for PZT/PVDF piezoelectric

composites were taken from Poon et al. [36], and the constituent properties in that

work were used in a finite element model with a cubic RVE. The piezoelectric coeffi-

cients d33 or d31 were predicted and compared to the experimental results. It should

be noted that Poon et al. only presented the experimental data from other sources for

comparison to their analytical model. The experimental data was taken from their

work by digitizing the appropriate figures.

The first set of data was from Chan et al. [37] and their experimental results

for d33 are plotted along with the predictions from the FEA model in Fig. 15. The

second set of data was from Furukawa [38], and the experimental results for d31 are

given alongside the FEA predictions in Fig. 16. The final set of experimental results

from Venkatragavaraj et al. [39] are compared to FEA predictions in Fig. 17.

The comparisons to experiment show that the finite element model can predict

piezoelectric performance reasonably well for smaller volume fractions of PZT. How-

ever, at volume fractions around 50%, the FEA and experimental results do not agree

nearly as well. This is due to the fact that the finite element model assumes a per-

fect cubic array of perfectly spherical PZT particles. At lower volume fractions, this

is a reasonable approximation of the actual microstructure, but at higher volume

fractions, the differences between the actual and assumed microstructure contribute

more to the difference in predicted properties. In future work, a more realistic RVE

with randomly spaced and sized PZT particles could be used to get better results at

higher volume fractions. It should also be noted that the piezoelectric coefficients for

PZT/PVDF composites from experiment and FEA are lower than the coefficients for

PVDF alone. This is a direct result of the dielectric mismatch between the ceramic
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Fig. 15. Effective d33 as a function of PZT volume fraction.
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Fig. 17. Effective d33 as a function of PZT volume fraction.

and polymer and highlights the need for carbon nanotubes in order to achieve better

piezoelectric peformance.

B. Parametric Studies Under Static Conditions

1. Volume Fraction Effects

A parametric study was performed to predict properties of the three-phase nanocom-

posite under static conditions. The effective properties were obtained for various

concentrations of PZT and nanotubes. The effective permittivity εS
11/ε0 is shown in

Fig. 18 as a function of the volume fraction of nanotubes for different concentrations

of PZT. It is clear that the permittivity increases with both increasing nanotube and

PZT content. The effective permittivity εS
33/ε0 is shown in Fig. 19. The trend is very

similar to that in Fig. 18, but the εS
11/ε0 values are higher.

The effective permittivity εS
33/ε0 for 20% PZT is shown again in Fig. 20. The
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experimental values for this PZT concentration is also given for several SWNT con-

centrations. It is seen in the figure that the predicted permittivities are much higher

than the experimental values. This indicates that there is some phenomenon that is

not being modeled in the finite element model. This could include quantum effects

like electron tunneling, an assumed microstructure that does not represent the actual

microstructure, or simply inaccurately assumed constituent properties. Again, note

that the volume fractions for the experimental values correspond to the fraction of

nanotubes in the entire three-phase composite whereas the FEA volume fractions

correspond to the fraction of nanotubes in the βCN-PI/SWNT matrix. The differ-

ence between the two volume fractions is assumed to be small enough that a direct

comparison between FEA and experiment can be made.
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Fig. 20. Effective εS
33/ε0 as a function of SWNT volume fraction (%).

The piezoelectric coefficient e33 is shown in Fig. 21 as a function of nanotube
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volume fraction for different concentrations of PZT. As in the case of the permittivi-

ties, the piezoelectric coefficient increases with increasing concentrations of nanotubes

and PZT. However, the difference between the 10% PZT and the 50% PZT is much

greater for e33. The piezoelectric coefficient e31 is given in Fig. 22. Note that the

absolute values of the coefficient are given in the plot. The same trends as Fig. 21

are seen. Even though the results show large gains in piezoelectric capabilities, it is

important to note that the over-prediction in electric permittivity most likely indi-

cates that the piezoelectric coefficients are over-predicted as well. The results could

not be compared to experiment because experimental data was not available for the

piezoelectric coefficients.
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2. Apparent Permittivity of Specimen Matrix

In order to try and explain the discrepancy between FEA and experimental results, a

parametric study was performed to find the apparent permittivity of the three-phase

specimen matrix. The permittivity of the FEA matrix was varied so that the resulting

effective permittivity matched the experimental permittivity. A secant method linear

solver was used to quickly find the correct matrix permittivity values. In this way, the

exact FEA matrix permittivity needed to match the effective permittivity was found

in less than ten iterations. The results are shown in Fig. 23. It is clear from the

figure that the apparent permittivities of the in-situ matrix are much less than the

experimental values for βCN-PI/SWNT (refer to Fig. 10 for experimental values).

This could indicate that there are dispersion issues in the three-phase samples and/or

nano-effects that are not being modeled.

The results in Fig. 23 were used to find the effective properties the material
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would have if the matrix permittivities were set to the apparent permittivities. The

piezoelectric coefficients e31 and e33 are given in Fig. 24 as functions of nanotube vol-

ume fraction for 20% PZT. It is clear from the results that the piezoelectric response

using apparent permittivities is much lower than the response using experimental

βCN-PI/SWNT properties.

3. Effect of PZT Poling

Up to this point it has been assumed that the PZT particles in the nanocomposite

have been perfectly poled. However, the apparent permittivities of the matrix for

the three-phase samples indicate that the PZT may not have been completely poled,

and this may explain the discrepancy between FEA and experimental values for per-

mittivity. In order to investigate the effect unpoled PZT particles would have on the

effective properties, the material properties for unpoled PZT-5A, given in Paradies



58

0 0.05 0.1 0.15 0.2
0

0.005

0.01

0.015

SWNT Volume Fraction (%)

E
ff

ec
ti

ve
 e

33
 (

C
/m

2 ) 
o

r 
e 31

 (
C

/m
2 )

 

 

e
33

e
31

Fig. 24. Piezoelectric coefficients e33 or e31 vs. SWNT volume fraction (%) for apparent

matrix permittivity and 20% PZT.

and Schlapfer [40], were used for the particle inclusions. Refer to Table I for the

specific properties used.

Figure 25 gives the variation of εS
33/ε0 with respect to SWNT concentration for

the cases of poled PZT, unpoled PZT, and experimental values. Even though the

permittivities of the unpoled case are less than the poled permittivities, there is

still a large difference between the unpoled and experimental results. Therefore, it is

reasonable to assume that the discrepancy between the FEA and experimental results

is not due solely to partial poling of the PZT.

4. Polymer Interphase Model

Because the FEA permittivities were all much higher than experimental values, a

modified model was used to try and match the effective permittivity. A spherical

interphase region was added around the PZT inclusion, and the material properties of
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Fig. 25. Comparison of electric permittivity εS
33/ε0 vs. SWNT volume fraction (%) for

poled and unpoled PZT.

the interphase were set to the properties of the neat polymer. The interphase volume

fraction was then varied to see if it was possible to reproduce experimental effective

permittivities with this modified FEA model. A schematic of the interphase model is

shown in Fig. 26. The diagram shows the minimum and maximum interphase volume

fractions used. The maximum volume fraction of 31.7% corresponds to the largest

spherical interphase that could fit inside the cubic RVE. Note that the diagram is a

2D projection of 3D shapes, so apparent volume fractions can be misleading.

The effective permittivity εS
33/ε0 for 0.1% SWNT is given as a function of polymer

interphase volume fraction in Fig. 27. The experimental permittivity value for 0.1%

SWNT is also given in the figure. It is clear from the results that even the maximum

polymer interphase volume fraction cannot match the effective permittivity with the

experimental permittivity.

The effective permittivity εS
33/ε0 for 0.2% SWNT is given as a function of polymer
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Fig. 26. Diagram of polymer interphase model.
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Fig. 27. Effective permittivity vs. polymer interphase volume fraction for 0.1% SWNT.
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interphase volume fraction in Fig. 28. The experimental permittivity value for 0.2%

SWNT is also given in the figure. Similar to the results for the 0.1% volume fraction, it

the polymer interphase cannot match the effective permittivity with the experimental

permittivity. Clearly, the polymer interphase model does not capture the material

distribution of the three-phase nanocomposite well enough to predict the effective

properties accurately.
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Fig. 28. Effective permittivity vs. polymer interphase volume fraction for 0.2% SWNT.

5. Agglomerated Nanotube Interphase Model

A second interphase model was created to attempt to understand the material distri-

bution of the nanocomposite. In this model, a spherical interphase around the PZT

inclusion is assumed to have a high concentration of nanotubes. The matrix material

outside the interphase is assumed to have the properties of the neat polymer. This
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distribution of material properties represents the phenomenon of nanotube agglom-

eration around the PZT inclusion. This makes physical sense because dispersion of

nanotubes is still a serious issue, as noted in [6, 4]. A schematic of the model is given

in Fig. 29. Again, please note that the diagram is a 2D projection of 3D shapes.

Fig. 29. Diagram of agglomerated nanotube interphase model.

The effective permittivity εS
33/ε0 is given as a function of agglomerated interphase

volume fraction in Fig. 30. The experimental permittivities for the three-phase com-

posite with 0.1% and 0.2% SWNT are also shown for reference. It is easy to see that

the effective permittivity matches the experimental permittivity at approximately

24.5% and 22% interphase volume fraction for the 0.1% and 0.2% SWNT cases, re-

spectively. Because the choice to use the permittivity value for 0.2% SWNT in the

interphase was based solely on this value being the highest expermimental permit-

tivity of the βCN-PI/SWNT matrix, another model was run with the interphase

permittivity set to the experimental value for 0.1% SWNT. Since the actual concen-
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tration of the SWNT in the interphase region is not known, it is reasonable to assume

the concentration is somewhere between the 0.1% and 0.2% cases. The results for

the 0.1% case are shown in Fig. 31 where the effective permittivity εS
33/ε0 is given

as a function of agglomerated interphase volume fraction. The figure shows that the

lower permittivity interphase can still match the experimental values.
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Fig. 30. Effective εS
33/ε0 vs. interphase volume fraction (%) for 0.2% SWNT inter-

phase.

Because the effective permittivities of the agglomerated interphase model can be

made to match experimental properties, it can be concluded that this model gives

a possible material distribution of the three-phase nanocomposite. This material

distribution indicates that there are agglomerations of nanotubes around the PZT

inclusion and areas with little to no concentrations of nanotubes farther away from

the PZT. This distribution is also in agreement with experimental evidence [41] that
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Fig. 31. Effective εS
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phase.

nanotubes form agglomerations easily, and this greatly affects the electrical properties

of the composite. If the discrepancy between FEA and experimental permittivities

is indeed caused by dispersion issues in the experimental samples, then the paramet-

ric studies without interphase can be considered estimations of properties assuming

perfect dispersion. It should be stressed that the material distribution used in the ag-

glomerated interphase model is only one possible distribution that the material might

have. Indeed, there are an infinite number of material distributions that could give

the same effective properties, but the aforementioned experimental evidence showing

SWNT agglomerations makes the chosen distribution a reasonable one.
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C. Parametric Studies Under Harmonic Loading

A parametric study was performed to predict material properties of the three-phase

nanocomposite under harmonic loading (AC) conditions. This was done by using

a complex permittivity to model the electrical behavior of the material. Because

experimental results for the imaginary part of the βCN-PI/SWNT permittivity were

not available, the matrix permittivity loss was varied in order to find reasonable

ranges for this value. Figure 32 shows the result of varying the matrix loss of a

nanocomposite with 0.1% SWNT. The real and imaginary parts of the permittivity

εS
33/ε0 are given as a function of the imaginary part of the matrix permittivity. The

effective ε′33/ε0 shows a sharp increase as the matrix loss increases. The values of

ε′33/ε0 before and after this jump are fairly constant. This sigmoid curve response

suggests that increasing the matrix loss to a certain point could improve the dielectric

properties of the composite. It is also important to note that the permittivity before

the jump is exactly the same value as the static permittivity found in the static

parametric study.

The S-curve plot in Fig. 32 looks very similar to results from percolation the-

ory. It must be emphasized that percolation is not being explicitly modeled in this

analysis. It is true that percolation of the nanotubes does play an important role in

the actual three-phase samples. However, the FEA analysis assumes a homogenized

βCN-PI/SWNT matrix with real permittivity values that correspond to experiment

and imaginary permittivity values that are arbitrarily varied over a specific range.

Therefore, the percolation transition that occurs in the experimental matrix as more

nanotubes are added only affects the real permittivity values in this analysis. The

S-curve type jump seen in the FEA results is due entirely to varying the loss com-

ponent of the matrix permittivity. If the matrix loss is assumed to be proportional
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Fig. 32. Effective complex εS
33/ε0 vs. matrix loss.

to conductivity, as in the parallel RC circuit, then the potential across the PZT is

higher for greater matrix loss. This causes the electrical properties of the PZT to

have a greater effect on the overall response.

The complex piezoelectric response from varying the matrix loss is given in Figs.

33 and 34 for 0.1% SWNT. Figure 33 shows the real and complex parts of e33 as a

function of matrix loss and Fig. 34 shows a similar plot for e31. Much like the com-

plex permittivity results, the real parts of the piezoelectric coefficients show a sharp

increase at approximately the same values of matrix loss. This result is extremely

important because it relates directly to improving the piezoelectric response of the

nanocomposite. It appears that increasing the matrix loss by adding a certain amount

of nanotubes can improve the piezoelectric performance by an order of magnitude.

Also, the piezoelectric coefficients before the jump are again the same values as those

obtained in the static parametric study.
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Another way to analyze the complex piezoelectric response is to analyze the

complex electromechanical coupling factors k33 and k31. Figure 35 shows the real

and imaginary parts of the complex k33 for 0.1% SWNT, and Fig. 36 shows k31 in

a similar plot. The coupling factors show a sharp increase with increasing matrix

loss. However, unlike the plots for εS
33/ε0, e33, and e31, the coupling factors peak at

a certain value of matrix loss and then decrease rapidly. This result highlights the

role of the coupling factor in quantifying the efficiency of a piezoelectric material.

The peak in the coupling factors shows that increasing the matrix loss will improve

piezoelectric efficiency up to a point, but after that the excessive loss in the material

causes the efficiency to drop rapidly.
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D. Comparison to Other Piezoelectric Materials

The discussion of results from the static and harmonic parametric studies would not

be complete without comparing predicted properties from the FEA model with prop-

erties for common piezoelectric materials that are already commercially available.

This comparison is given in Table IV below. The predicted nanocomposite proper-

ties given are for a perfectly dispersed composite with matrix properties identical to

the experimental values for βCN-PI/SWNT. For the harmonic loading results, the

maximum real values obtained by varying the matrix loss are shown.
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From Table IV it is easy to see that PZT-5A is the clear winner in terms of pure

piezoelectric performance. The piezoelectric coefficients are at least an order of mag-

nitude higher than any of the others for the materials given. However, the goal of the

three-phase nanocomposite is not to have a better response than common piezoelectric

ceramics. The goal is to create a composite that has a higher piezoelectric response

than common piezoelectric polymers such as PVDF while exhibiting the flexibility

that makes polymers useful in many applications. The table indicates that this goal

is achieved, as most of the nanocomposite systems shown exhibit higher piezoelectric

coefficients than PVDF. It must be noted, however, that the static coupling factor

k31 for PVDF is higher than that for most of the nanocomposites, which indicates

a more efficient conversion between the electrical and mechanical fields. Therefore,

if power consumption is a concern for a particular application, the PVDF may still

have an edge over some of the nanocomposite systems. Unfortunately, complex piezo-

electric coefficient data for PVDF was not readily available, so the comparison must

be made between the real parts of the nanocomposite results and the static PVDF

values. An inspection of Table IV reveals that the real parts of the harmonic piezo-

electric coefficients are at least an order of magnitude greater than the static PVDF

coefficients.

Another important observation from Table IV is that under harmonic loading,

there is no real benefit to using 0.2% SWNT as opposed to 0.1% SWNT. This can

be seen by noticing that the real parts of the piezoelectric coefficients are the same

for the two concentrations, but the coupling factors k33 and k31 are actually slightly

higher for the 0.1% SWNT system. This is because of the more efficient coupling

that occurs in the 0.1% SWNT material as a result of there being less dielectric loss.

Therefore, if an application is strictly for AC loading, the 0.1% SWNT material would

actually be the most suited.
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CHAPTER V

CONCLUSIONS

A micromechanics model was developed to analyze piezoelectric composite materials.

Finite element analysis was used to solve the micromechanics boundary value problem

and to explore the effects of various material parameters on the effective piezoelec-

tric properties of the composite. Scripting was used in conjunction with COMSOL

Multiphysics so that all of the effective properties of a given material system could

be calculated efficiently over a wide range of constituent properties.

A parametric study was performed using the LaRC-SI/PZT-7A material system.

The predictions from this analysis were compared to finite element and microme-

chanics results from [23]. While the comparison did not completely validate the finite

element model being used, it did show that the use of exact periodic boundary con-

ditions is necessary to obtain accurate results.

A parametric study of a three-phase piezoelectric nanocomposite subject to static

conditions was performed. The properties of the βCN-PI/SWNT/PZT-5A material

system used were taken from [4]. The nanotube content (and thus matrix permittiv-

ity) were varied, and the predicted effective permittivities were compared to experi-

mental results from that work. The FEA results were found to greatly over-predict

the experimental properties. Therefore, several modified FEA models were created

in an attempt to understand and explain this discrepancy.

The apparent permittivity of the βCN-PI/SWNT matrix used in the experi-

mental specimens was first determined. This was done by taking the experimental

properties for the three-phase specimen and numerically finding the matrix permit-

tivity needed to obtain these exact effective properties with the FEA model. The

resulting apparent permittivities of the matrix were much lower than experimental
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values of the two-phase βCN-PI/SWNT specimens, and the trends with increasing

nanotube content were also different. It was concluded that the original homogenized

matrix properties in the FEA model were not the same as the actual properties in

the three-phase specimens.

A modified model that utilized a spherical interphase region around the PZT

inclusion was developed. The properties of the interphase were set to those of the

neat polyimide, and the interphase volume fraction was varied to see if any resulting

material distribution could replicate the experimental results of the three-phase spec-

imens. It was found that even at the largest interphase volume fraction allowed by

the geometric constraints of the problem, the effective permittivities could not match

experimental values. Also, no physical basis for this material distribution could be

found.

A final modified model was developed with the same interphase geometry as

the polymer interphase model. This time, however, the properties of the interphase

were set to the highest reasonable value of βCN-PI/SWNT permittivity obtained

from experiment. The material outside of the interphase was set to properties for

the neat polymer. After varying the interphase volume fraction, it was found that

a material distribution that matches the effective properties to experiment could be

obtained. This result indicates that if the nanotubes were agglomerated around the

PZT inclusion, the effective properties of the composite would be very different from

a composite with perfect dispersion. Thus, the poor dispersion of nanotubes in the

three-phase composite may explain the discrepancy between FEA and experimental

results. Under this assumption, it is reasonable to assume that the original effective

properties predicted by FEA correspond to the response of a perfectly dispersed

material. Assuming this perfect dispersion of nanotubes, the three-phase composite

shows a large enhancement of piezoelectric properties (due to nanotubes) for static
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loadings.

A parametric study of the original FEA model was performed for cases of har-

monic loading. The real part of permittivity for the matrix was set to experimental

values for βCN-PI/SWNT, and the imaginary part (matrix loss) was varied. The

effective properties were all found to exhibit a sigmoid curve response when plot-

ted against matrix loss. This indicated that there is an optimum amount of matrix

loss for a given piezoelectric material system. Up to the optimum point, the ma-

trix loss contributes to improved electromechanical performance. Past the optimum

point, increasing matrix loss causes exponentially increasing effective electromechan-

ical loss while only improving performance by a negligible amount. In this way, the

βCN-PI/SWNT/PZT-5A material system can be tailored to achieve optimum per-

formance by adding just enough nanotubes so that the matrix loss is optimal. Using

this reasoning, it was found that with optimized matrix loss, there is no benefit to

using 0.2% SWNT over 0.1% for harmonic loading.

The predicted properties from the static and harmonic parametric studies were

compared to several common piezoelectric materials. It was seen that while the three-

phase nanocomposite system studied cannot compete with traditional piezoelectric

ceramics in terms of pure piezoelectric response, the system still has a response much

greater than piezoelectric polymers such as PVDF. Also, the constituent makeup

of the nanocomposite makes it much more flexible than a traditional ceramic. It

was found that PVDF does have a higher static coupling factor k31 than most of

the nanocomposites studied, which is an indication of a more efficient piezoelectric

response. In addition, for harmonic loading, it was seen that there was no benefit to

using the 0.2% SWNT material instead of the 0.1% SWNT material. This is due to

the increased loss seen in the 0.2% material.
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