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ABSTRACT

Turbulent Flow and Transport Modeling by

Long Waves and Currents. (August 2009)

Dae Hong Kim, B.S., Hanyang University, Seoul, Korea;

M.S., Hanyang University, Seoul, Korea

Chair of Advisory Committee: Dr. Patrick J. Lynett

This dissertation presents models for turbulent flow and transport by currents

and long waves in large domain.

From the Navier-Stokes equations, a fully nonlinear depth-integrated equation

model for weakly dispersive, turbulent and rotational flow is derived by a perturbation

approach based on long wave scaling. The same perturbation approach is applied

for the derivation of a depth-integrated transport equation. As the results, coherent

structures generated by the turbulence induced by the bottom friction and topography

can be predicted very reasonably.

The three dimensional turbulence effects are incorporated into the flow model by

employing a back scatter model. The back scatter model makes it possible to predict

turbulent transport: It contributes to the energy transport and the lateral turbulent

diffusion through relying on the turbulent intensity, not by relying on an empirical

diffusion constant. The inherent limitation of the depth-integrated transport equa-

tion, that is, the limitation for the near field prediction is recognized in the derivation

and the numerical simulation.

To solve the derived equation set, a highly accurate and stable finite volume

scheme numerical solver is developed. Thus, the numerical solver can predict dis-

persive and nonlinear wave propagation with minimal error. Also, good stability is

achieved enough to be applied to the dam-break flows and undular tidal bores. In
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addition, a robust moving boundary scheme based on simple physical conditions is

presented, which can extend the applicability area of the depth-integrated models.

By the comparison study with experimental data, it is expected that the numerical

model can provide high confidence results for the wave and current transformations

including shocks and undular bores on complex bathymetry and topography. For

the accurate near field transport prediction, a three dimensional transport model in

σ-coordinate coupled with the depth-integrated flow model is developed. Like the

other models, this model is also intended for large domain problems, and yet efficient

and accurate in the far field and near field together.
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CHAPTER I

INTRODUCTION

I.1. Problem Statement

In natural environment, shallow water flows are ubiquitous with various scales ranging

from small scale stream flows to oceanic flows of geophysical scale. In those shallow

flows, two dimensional (2D) horizontal large coherent structures related with the

rotationality and turbulence are frequently observed as shown in the Figure 1. To

understand the motions of these coherent structures is very important because they

usually dominate flow patterns and mixing processes of constituent.

The flow and transport models that can accurately simulate these flow motions

and the scalar transports can be valuable scientific and engineering tools if those

models are based on the reasonable physics and scales.

For the free surface flow simulation in large domain where the water depth is not

deep, the depth-integrated or depth-averaged flow models based on long wave scaling

are most widely used and still being developed for their efficiency and robustness.

Firstly, the shallow water equations models are the most popular engineering tool

and widely spread. The reasons are that, in the view of the computational technique,

the shallow water equations can be solved very efficiently and stably, and so a lot

of various and robust computational methods for the shallow water equations mod-

els were developed, such as finite difference method (FDM), finite element method

(FEM), and finite volume method (FVM). Also, in the view of results, the free surface

can be captured within satisfactory accuracy if the shallow water assumption is valid.

The journal model is Journal of Engineering Mechanics.
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Figure 1. Two dimensional coherent structures in the sea and sky off the Queen Char-

lotte Islands, Canada (Courtesy NASA SeaWiFS).

Whereas, in the view of physics, they can lose the accuracy when the flow field is

dispersive or under nonhydrostatic pressure conditions which are frequently observed

in nature, even in shallow water depth areas.

The Boussinesq equations model, one of the depth-integrated equations sets,

recently has demonstrated very good capability beyond the limitations of the shallow

water equations models. It can be applied to the nonlinear, weakly dispersive and

nonhydrostatic pressure fields and excellent results were reported in many literatures.

However, in many cases, the potential flow assumption was used for the derivation

so that it made hard to apply the Boussinesq equations model to a real flow field,

where the flow is rotational and turbulent. In addition that, as an engineering tool,

the Boussinesq equations models have some limitations like the stability. Unlike the

shallow water equations models, various and stable numerical methods are not yet
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developed for the Boussinesq equations, especially in 2D space. Thus it may be

valuable to study it further.

Naturally, the three dimensional (3D) numerical model based on the Navier-

Stokes equations with turbulent closures can give the most physical and accurate

results. However, even till these days, huge computational resources are required so

that they may not be practically feasible for large domain simulations. Especially, in

cartesian grid system, the free surface crosses the computational grid perpendicularly,

and so it brings the difficulty of applying the pressure boundary condition. Sequently,

predicting accurate free surface profiles can initiate more difficulties. Besides, the

small scale phenomenon that can be captured by only the 3D flow models is often

beyond of our interests in many engineering problems. Therefore, the Boussinesq

equations model can be a practical and scientific tool if several shortages can be

removed and it is used under appropriate assumptions.

The environmental problem is an indispensable and critical issue to every hu-

man being. Specifically, to the scientists and engineers in the field of fluid flows,

the scalar transport by the flows is the one of the most interesting and important

environmental topics. For the similar reasons with the depth-integrated flow model,

it would be appreciable to develop a depth-integrated transport equation model with

the consistent scales and assumptions of the depth-integrated flow models. Various

coupled shallow water equations and depth-averaged transport models were applied

to many engineering problems for far field mixing problems. However, because of the

inherent limitation of the 2D horizontal model, the efficient modeling for near field

mixing is still remaining as an unsolved problem.
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I.2. Overview of the Depth-Integrated Equations

Joseph Boussinesq (1872) firstly derived a equations set nowadays called as “Boussi-

nesq equations” on horizontal bottom. Significant advances have been made in de-

riving the Boussinesq equations and in developing numerical models in recent years.

From the Peregrine (1967) who introduced the weakly nonlinear Boussinesq equa-

tions model, almost of the progresses were based on the inviscid flow assumption;

the Boussinesq equations were typically derived using the 3D Euler or potential flow

equations as a starting point, and resulted in depth-averaged form.

Yoon and Liu (1989) derived a new class of the Boussinesq equations set that

included the effect of wave and current interaction. A similar approach was used

by Nwogu (1993) through replacing the depth-averaged velocity by the velocity at

arbitrary water depth. In his derivation much improved linear dispersive properties

was obtained so that the applicable area was extended to the intermediate water

depth, kh ≈ 3, where k is wave number and h is water depth. Recently, Lynett

and Liu (2004) proposed a set of equations by piecewise integration of the primitive

equations of motion through two arbitrary layers. Up to kh ≈ 6, very good linear

dispersive properties were observed.

For the enhancement of the nonlinear properties, the higher-order nonlinear

terms truncated by assuming the weakly-nonlinear phenomena were recovered by

Wei et al. (1995), which made possible the simulations of wave propagations with

very large amplitude.

To apply the Boussinesq equations model to real fields where the rotationality

exist, Chen et al. (2003) introduced the vertical vorticity into the irrotational Boussi-

nesq equations and several ad-hoc viscosity terms, but the equations are incomplete

mathematically in 2D space. This inconsistency has been approached in a number of
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ways. For example, it was found that by enforcing zero vertical vorticity, all the z-

dependent terms would disappear, resulting in a solvable, irrotational model (Hsiao et

al., 2002). Again, Chen (2006) successfully derived a complete equations set by elimi-

nating the z-dependent terms by double-integrating the Boussinesq equations, which

resulted in a model that included vertical vorticity, though the horizontal vorticity

was not included.

In the view of numerical method, a significant progresses have not been made

even these days, especially for the 2D space. Most of the numerical solvers for the fully

nonlinear Boussinesq equations are not relatively strong or flexible as much as the

shallow water equations solvers. Recently, Erduran et al. (2005) presented a hybrid

numerical model comprised of FVM and FDM to solve the Boussinesq equations in

one dimensional (1D) space. Tonelli and Petti (2009) extended it to the 2D space.

However, no numerical test with severe conditions was provided. Therefore, the

development of more robust numerical models and verifications should be encouraged.

I.3. Objectives

The main objective of this study is to present the depth-integrated flow equations

for the analysis of a real flow field in large domain. Thus the equations will have to

account the effects of rotationality, viscosity, turbulence and dispersion.

To solve the proposed Boussinesq equations model, a highly accurate and stable

numerical method will be developed. To allow wider range of applications in natural

topography and bathymetry, robust moving boundary scheme will be added.

For the efficient and accurate numerical simulation of scalar transport in near field

and far field together, a depth-integrated transport model and a 3D transport model

based on the σ-coordinate system will be developed. For all the derived equations
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and numerical models, various validations will be conducted and discussed.

I.4. Outline of Dissertation

In Chapter II, from the Navier-Stokes equations, a set of fully nonlinear Boussinesq

equations for weakly dispersive, turbulent and rotational fluid flows are derived in

conservative form. The numerical methods based on a fourth-order FVM for solving

the derived equations are described. For the verifications of the derived equations

and the numerical model, four tests including flows with strong coherent structures

are presented.

In Chapter III, a depth-integrated flow model with subgrid turbulence closure

is presented. With the same approach, a depth-integrated scalar transport equation

based on the long wave scales is derived. By coupling the transport model with the

flow model which can account the 3D turbulence effects, the turbulent transport by

long waves and currents are simulated.

In Chapter IV, a robust moving boundary scheme for the Boussinesq equations

model is provided based on simple physical conditions. For the test of the applicability

on various engineering problems, several numerical tests under severe conditions such

as overtopping, undular bores generated by the dam-break flows and tsunami are

simulated.

In Chapter V, a 3D transport model for near field mixing simulation is developed

based on the σ-coordinate grid system.

In Chapter VI, the conclusions of this study are presented. Also included are

suggestions for the future and further studies.
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CHAPTER II

BOUSSINESQ EQUATIONS FOR WEAKLY-DISPERSIVE,

TURBULENT AND ROTATIONAL FLOWS

II.1. Introduction

Boussinesq equation models are a popular choice for the simulation of weakly disper-

sive free-surface phenomena, such as wind waves in the nearshore area. Significant

advances have been made in deriving the Boussinesq type equations and in developing

numerical models to solve them in recent years. Nearly all of this progress is based

on the inviscid flow assumption; the Boussinesq equations are typically derived using

the 3D Euler or potential flow equations as a starting point. One of the common

derivation methods is the perturbation approach, with the final equation model cast

in depth-averaged form (e.g. Peregrine, 1967). Nwogu (1993) derived a new set of

Boussinesq equations by using an arbitrary elevation zα and extended the applicable

water depth to the intermediate water regime. While Nwogu’s equation model is

depth-integrated, the velocity variables are not in a depth-averaged form, and pro-

vide information about the varying vertical flow structure. Wei et al. (1995) extended

Nwogu’s approach to capture nonlinear-dispersive effects, allowing for the simulation

of very large amplitude, weakly dispersive waves. In this study, the models are ex-

tended to incorporate friction effects by bottom-generated turbulence through the

common quadratic bottom stress. The effects represent a high-order correction to the

leading order, shallow-water hydrodynamics, which when consistently applied, allows

the model to capture vertical and horizontal vorticity. These model enhancements

are important to simulate energy and constituent transport by large 2D coherent

structures in coastal flows.
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Inclusion of rotationality in the standard Boussinesq model has been the subject

of some recent studies. As mentioned above, the Boussinesq model is usually founded

on either potential flow or Euler’s equations. However, many derivations, including

the Euler’s-based approach, enforce zero horizontal vorticity. From a strict physical

standpoint, if the two horizontal vorticity components are zero, the third must be con-

stant (or zero for practical consideration). Thus, it is difficult to consider an equation

model with zero horizontal vorticity, whether derived from Eulers or Navier-Stokes

equations, as capable of predicting vertical vorticity. This physical inconsistency has

been approached in a number of ways. In the derivation of Hsiao et al. (2002),

which is based on Eulers equations, a number of z-dependent terms resulted in the

final Boussinesq model. As the model is depth-integrated, these residual z-dependent

terms are mathematically nonsense, implying there is not a unique solution to the

Hsiao et al. model. However, it was found that by enforcing zero vertical vorticity, all

the z-dependent terms would disappear, resulting in a solvable, irrotational model.

Chen (2006), faced with a similar issue of z-dependent terms, used a different ap-

proach. He eliminated the z-dependent terms by double-integrating the Boussinesq

model, providing a model that included vertical vorticity, although without explic-

itly including horizontal vorticity. Others have included horizontal vorticity directly,

such as Musumeci et al. (2005), who derived a set of Boussinesq-type equations

with horizontal vorticity, where the vorticity was solved with a separate transport

equation.

To include the effect of the turbulent mixing in the Boussinesq equation model,

Chen et al. (1999) used a quadratic bottom friction dissipation term with a current-

based subgrid dissipation model. Both terms are added in an ad-hoc manner to the

derived, inviscid Boussinesq equations. Hinterberger et al. (2007) presented a “depth-

averaged LES” closure, used within a shallow water wave equation model. They
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showed that the depth-averaged LES is considerably more economic and can produce

results that are generally of sufficient accuracy for practical purposes, compared with

the full 3D LES, in shallow flows.

One of the most important characteristics that a numerical model must have

is stability, because, in many cases, numerical models are to be applied to real or

complex conditions. Recently, approximate Riemann solvers have been widely used

with finite volume methods to provide a stable and accurate solution for the analysis

of the Euler equations and the shallow water equations. For the Boussinesq equa-

tions, Erduran et al. (2005) used the fourth-order MUSCL-TVD scheme and used an

approximate Riemann solver to solve leading order terms in 1D space. They used a

finite difference scheme to solve the dispersive terms in their numerical model.

In this section, a set Boussinesq equations that include the depth integrated

viscosity and associated horizontal and vertical vorticity terms is derived. Hence, the

derivation starts from the Navier-Stokes equations. A stable numerical model to solve

the derived equations is presented, basically with the fourth-order FVM.

II.2. Boussinesq Equations with Viscosity Terms

II.2.1. Dimensionless Governing Equations

The basic approach for including viscous effects into the Boussinesq equations is

to derive the governing equations not from Eulers equations but from the Navier-

Stokes equations. For the derivation of the approximate, depth-integrated model, a

nondimension, or scaling, of the primitive equations is the first step. Consistent with

previous Boussinesq-type approaches, it is expected that the leading order solution

will be shallow water, and thus a long wave scaling is used. A spatial region is

characterized by a typical water depth ho, a horizontal length scale 	o, wave amplitude
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ao, and a time scale 	o/
√
gho. With these variables, the following dimensionless

variables and a parameter can be introduced:

(x, y) =
(x′, y′)
	o

, z =
z′

ho

, t =
t′
√
gho

	o
, h =

h′

ho

, ζ =
ζ ′

ho

,

(U, V ) =
(U ′, V ′)√

gho

, W =
W ′

μ
√
gho

, p =
p′

ρgho

, μ =
ho

	o
(2.1)

where (x′, y′) denotes horizontal axes, z′ is a vertical axis, t′ is time, h′ is water depth,

ζ ′ is water surface elevation, (U ′, V ′) are horizontal velocities, W ′ is the vertical

direction velocity, and p′ is pressure. The g and ρ are a gravitational acceleration

and density, respectively. All these variables are dimensional. The μ is a standard

parameter for a scale analysis of long waves.

For this study, due to the depth-integration and resulting loss of flow details in

the vertical plane, it will be reasonable to divide the turbulent eddy viscosity into

horizontal and vertical components, as is commonly done for shallow mixing studies.

The Smagorinsky model (1963) will be used for the horizontal eddy viscosity νh
t
′
, that

is, νh
t
′
= (CsΔ

′)2√2S ′
ijS

′
ij where Cs is a constant, the S ′

ij is a strain rate tensor and

Δ′ is the grid size. By applying the above scalings to the horizontal eddy viscosity,

νh
t
′
can be expressed as

νh
t

′
= C2

s Δ2ho

√
gho

√(
∂U

∂z

)2

+ 2μ2

(
∂U

∂x

)2

+ 2μ2

(
∂W

∂z

)2

+ · · · · · · (2.2)

Equation (2.2) is rewritten in the compact form

νh
t

′
= αho

√
ghoν

h
t (2.3)
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where α = C2
s Δ2. For the vertical eddy viscosity, we presume a shallow flow formu-

lation, where the vertical turbulence is driven by the bottom shear only. Considering

that the vertical turbulence is mainly driven by the bottom shear in shallow flows,

the vertical eddy viscosity νv
t
′ = ChH

′u′τ is used, in which the constant Ch is given

by Ch = κ/6 following Elder (1959), the κ is the von Karman constant, the H ′

is the total water depth, and the u′τ is the friction velocity. The typical magni-

tude of the Ch is O (Ch) ∼ 0.1 and it is expressed with β. By using the relation

u′τ =
√
cf |u′| =

√
gH ′S ′

f , the typical magnitude of the roughness coefficient cf can

be determined as O (cf ) ∼ μ, in which the S ′
f is the energy slope (Chaudhry, 1993).

Finally, the nondimensional vertical eddy viscosity can be expressed as

νv
t
′ = βμho

√
ghoHuτ = βμho

√
ghoν

v
t (2.4)

Finally, the continuity equation and the Navier-Stokes equations can be scaled

with the equations (2.1), (2.3) and (2.4):

∇ ·U +
∂W

∂z
= 0 (2.5)

∂U

∂t
+U · ∇U +W

∂U

∂z
+ ∇p = αμ∇ · (νh

t ∇U
)

+ β
∂

∂z

(
νv

t

∂U

∂z

)
(2.6)

μ2∂W

∂t
+ μ2U · ∇W + μ2W

∂W

∂z
+
∂p

∂z
+ 1

= αμ3∇ · (νh
t ∇W

)
+ βμ2 ∂

∂z

(
νv

t

∂W

∂z

)
(2.7)
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where ∇ = (∂/∂x, ∂/∂y).

II.2.2. Derivation of the Depth Integrated Momentum Equations

This derivation will be of the perturbation type, and a small parameter assumption

must be made. Looking to the vertical momentum equation (2.7), it is assumed that

O(μ2) = O(βμ2) � 1, yielding

∂p

∂z
+ 1 = O(μ2, βμ2) (2.8)

The above indicates that to leading order, the pressure is hydrostatic, which

will permit the standard depth integration to obtain a long wave model. Thus the

derived model will be restricted to weakly dispersive waves and flow with weak vertical

turbulence and rotation. This step provides significant physical insight into this class

of problem, and indicates that in order for the flow to be assumed hydrostatic to

leading order, both dispersive and turbulent effects must be weak. Any model that

assumes hydrostatic pressure implicitly assumes weak turbulence.

Typically, the perturbation of the inviscid primitive equations is performed using

μ2 as the small parameter. In these inviscid cases, where of course α = β = 0, the

small parameter choice essentially required by the equation (2.8) is clear. This would

be the choice when deriving the typical (inviscid) shallow water or Boussinesq-type

equations. It is noted that the “true” Boussinesq equations are derived assuming

a balance between nonlinearity, or wave amplitude to depth ratio, and frequency

dispersion, μ2, where both effects are considered to be small. The weak nonlinearity

assumption is often violated by nearshore wind waves, and can be discarded from

the derivation (e.g. Wei et al., 1995). These new fully nonlinear equations are still

referred to as Boussinesq or Boussinesq-type equations, despite the fact that they no
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longer employ the scaling assumptions associated with their namesake.

Back to the scaling found here, with viscosity, the choice for the expansion pa-

rameter is not clear, as either μ2 or μβ could be used as the small parameter. Mathe-

matically, there is no reason to choose one over the other, as in fact both would result

in the same final dimensional equations. For the derivation presentation, μ2 will be

used, and this issue of ambiguity will be addressed later.

Physical values are expanded with power series following

f =
N∑

n=0

μ(2n)fn (2.9)

where f = p, U, V,W and μ2 assumed to be small. Substituting this expansion into the

equation (2.7) or (2.8) gives po as hydrostatic. It follows that ∇po is independent of z.

This implies that in the horizontal momentum equation, all the other leading order

should also be z-independent functions (Dellar and Salmon, 2005). Consequently, U o

becomes U o(x, y, t).

At the water surface and at the bottom, the following boundary conditions Wζ =

∂ζ/∂t +U ζ · ∇ζ at z = ζ and W−h +U−h · ∇h = 0 at z = −h can be applied. The

vertical velocity can be expressed with the horizontal velocity terms by integrating

the continuity equation, yielding,

Wo = −zS − T (2.10)

where S = ∇ ·U o and T = ∇ · (hU o).
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With the perturbation analysis, the horizontal vorticity is expressed as

∂U ′

∂z′
−∇W ′ = μ2 co

ho

(
∂U 1

∂z
−∇Wo

)
+
co
ho

O
(
μ4
)

= μ2 co
ho

ω1 +
co
ho

O
(
μ4
)

(2.11)

where co =
√
gho. A vertical profile ofU 1 can be derived from equation (2.11) through

a vertical integration:

U 1 = −1

2
z2∇S − z∇T +

1

2
h2∇S − h∇T +

∫ z

−h

ω1dz +U 1(−h)

+ O
(
μ2
)

(2.12)

such that the horizontal velocity, including high-order terms, becomes

U = U o − μ2

(
1

2
z2∇S + z∇T − 1

2
h2∇S + h∇T

)
+ μ2

∫ z

−h

ω1dz

+ μ2U 1(−h) +O
(
μ4
)

(2.13)

As this derivation will make use of Nwogu’s (1993) approach, the horizontal

velocity is evaluated at an arbitrary elevation z = zα,

Uα = U o − μ2

(
1

2
zα

2∇S + zα∇T − 1

2
h2∇S + h∇T

)
+ μ2

∫ zα

−h

ω1dz

+ μ2U 1(−h) +O
(
μ4
)

(2.14)

Subtracting the equation (2.14) from the equation (2.13), U can be expressed in

terms of Uα.

U = Uα + μ2

{
1

2

(
zα

2 − z2
)∇S + (zα − z)∇T

}
+ μ2Ω +O

(
μ4
)

(2.15)
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where Ω =
∫ z

zα
ω1dz. For later use, the horizontal velocity can be expressed as

U = Uα + μ2
(
Uφ

1 +U r
1

)
+O (μ4) in which U r

1 = Ω and Uφ
1 =

(
Uφ

1 , V
φ
1

)
is defined

as

Uφ
1 =

1

2

(
zα

2 − z2
)∇S + (zα − z)∇T (2.16)

The vertical profile of pressure is found through integration of the vertical mo-

mentum equation. Noting that the vertical distribution of νv
t is independent of z as

shown in equation (2.4), the pressure can be expressed as

p = ζ − z

+ μ2 1

2

(
z2 − ζ2

) ∂S
∂t

+ μ2 (z − ζ)
∂T

∂t

+ μ2 1

2

(
z2 − ζ2

)
U o · ∇S + μ2 (z − ζ)U o · ∇T

+ μ2 1

2

(
ζ2 − z2

)
S2 + μ2 (ζ − z)TS

+ O
(
μ4, αμ3, βμ4

)
(2.17)

The next step in deriving the horizontal depth-integrated momentum equation

is to express each term of the horizontal momentum equations through Uα. These

terms, included to elucidate how vorticity and viscosity terms appear, become

∂U

∂t
=
∂Uα

∂t
+ μ2 ∂

∂t

{
1

2

(
zα

2 − z2
)∇S + (zα − z)∇T

}
+ μ2∂Ω

∂t
+O

(
μ4
)

(2.18)
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U · ∇U = Uα · ∇Uα + μ2∇
[
Uα ·

{
1

2

(
zα

2 − z2
)∇S + (zα − z)∇T

}]
+ μ2∇ (Uα · Ω) + μ2ξ +O

(
μ4
)

(2.19)

W
∂U

∂z
= μ2

(
z2S∇S + zT∇S + zS∇T + T∇T +Woω1

)
+O

(
μ4
)

(2.20)

∇p = ∇ζ

− μ2 1

2
∇
(
ζ2∂S

∂t

)
− μ2∇

(
ζ
∂T

∂t

)
+ μ2 1

2
∇
(
z2∂S

∂t

)
+ μ2∇

(
z
∂T

∂t

)
− μ2 1

2
∇ (

ζ2Uα · ∇S)− μ2∇ (ζUα · ∇T ) + μ2∇
(

1

2
ζ2S2

)
+ μ2 1

2
∇ (

z2Uα · ∇S)+ μ2∇ (zUα · ∇T ) − μ2∇
(

1

2
z2S2

)
+ μ2∇ (ζTS) − μ2∇ (zTS)

+ O
(
μ4
)

(2.21)

αμ∇ · (νh
t ∇U ) = αμ∇ · (νh

t ∇Uα

)
+O

(
αμ3

)
(2.22)

β
∂

∂z

(
νv

t

∂U

∂z

)
= βμ2∂ν

v
t ω1

∂z
− βμ2νv

t ∇S +O
(
βμ4

)
(2.23)

In equation (2.19), ξ = (ξx, ξy) is defined as
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ξx = Vα

⎧⎨⎩∂
(
Uφ

1 + Ωx
)

∂y
−
∂
(
V φ

1 + Ωy
)

∂x

⎫⎬⎭−
(
V φ

1 + Ωy
)(∂Vα

∂x
− ∂Uα

∂y

)
(2.24)

ξy = Uα

⎧⎨⎩∂
(
V φ

1 + Ωy
)

∂x
−
∂
(
Uφ

1 + Ωx
)

∂y

⎫⎬⎭+
(
Uφ

1 + Ωx
)(∂Vα

∂x
− ∂Uα

∂y

)
(2.25)

where (Uα, Vα) = Uα and Ωx and Ωy are defined as Ω = (Ωx,Ωy).

The horizontal vorticity term appearing in equation (2.23), namely ∂νv
t ω1/∂z,

will be expressed through a shear stress, τ , in the following way:

∂νv
t ω1

∂z
=

∂

∂z

{
νv

t

(
∂U r

1

∂z
+
∂Uφ

1

∂z
−∇Wo

)}
=

∂

∂z

(
νv

t

∂U r
1

∂z

)
=
∂τ

∂z
(2.26)

If the shear stress is assumed to vary linearly from zero at the water surface to

τ b at the bottom (Rodi, 1980), then the horizontal vorticity terms can be expressed

as

ω1 =
∂U r

1

∂z
=
τ b

νv
t

ζ − z

ζ + h
(2.27)

Ω =

∫ z

zα

ω1dz =
τ b

νv
t (ζ + h)

{
1

2

(
z2

α − z2
)

+ ζ (z − zα)

}
(2.28)

Equation (2.28) shows that with horizontal vorticity correlated directly, and sim-

ply, to the bottom stress, the depth-integrated result is a polynomial “deficit” velocity

profile. This rotational velocity component will act to increase the total horizontal

velocity near the free surface, and decrease it near the bottom. The justification of
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the assumed linear shear stress profile is addressed at the end of the section II.3.2

and its validation is given in section II.5.2.

By substituting the derived equations (2.18)-(2.28) into the equation (2.6) and by

substituting Uo into S and T with Uα following Nwogu (1993), the depth-integrated

momentum equation becomes:

∂Uα

∂t
+ Uα · ∇Uα + ∇ζ

− μ2 1

2
∇
(
ζ2∂S

∂t

)
− μ2∇

(
ζ
∂T

∂t

)
+ μ2

(
1

2
zα

2∂∇S
∂t

+ zα
∂∇T
∂t

)
− μ2 1

2
∇ (

ζ2Uα · ∇S)− μ2∇ (ζUα · ∇T ) + μ2∇
(

1

2
ζ2S2

)
+ μ2 1

2
∇ (

zα
2Uα · ∇S)+ μ2∇ (zαUα · ∇T ) + μ2 (T∇T )

+ μ2 ∂

∂t

[
ψ

{
1

2

(
z2

α − z2
)

+ ζ (z − zα)

}]
+ μ2∇ (ζTS)

+ μ2∇
(
Uα ·

[
ψ

{
1

2

(
z2

α − z2
)

+ ζ (z − zα)

}])
− μ2 (zS + T ) (ζ − z)ψ + μ2ξ

− αμ∇ · (νh
t ∇Uα

)
+ βμ2νv

t ∇S − βμ2∂τ

∂z

= O
(
μ4, αμ3, βμ4

)
(2.29)

where ψ = τ b/ {νv
t (ζ + h)}.

II.2.3. Elimination of z-dependent Terms

Several approaches have been used to eliminate the z-dependent terms in the Boussi-

nesq type momentum equations. In Hsiao et al.(2002) and in many publications,

irrotational flow assumptions were used to eliminate the terms. Chen et al. (2003)

eliminated the z dependency by setting z = zα in these terms. In this study, the

approach proposed by Chen (2006) is used; the equation (2.29) is depth-averaged.
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For example, the τ term can be rewritten by

1

ζ + h

∫ ζ

−h

∂τ

∂z
dz = − τ b

ζ + h
(2.30)

Finally, the depth-integrated momentum equations including viscosity and vor-

ticity effects can be expressed as

∂Uα

∂t
+ Uα · ∇Uα + ∇ζ + μ2

(
D +Dν + ξ + ξν

)
− αμ∇ · (νh

t ∇Uα

)
+ βμ2νv

t ∇S + βμ2 τ b

ζ + h

= O
(
μ4, αμ3, βμ4

)
(2.31)

where

D =
1

2
∇ (

zα
2Uα · ∇S)+ ∇ (zαUα · ∇T ) + (T∇T )

− 1

2
∇
(
ζ2∂S

∂t

)
−∇

(
ζ
∂T

∂t

)
+

(
1

2
zα

2∂∇S
∂t

+ zα
∂∇T
∂t

)
− 1

2
∇ (

ζ2Uα · ∇S)−∇ (ζUα · ∇T ) + ∇
(

1

2
ζ2S2

)
+ ∇ (ζTS) (2.32)

Dν =
(ζ − h)

2

∂ψζ

∂t
− (ζ2 − ζh+ h2)

6

∂ψ

∂t
+
∂

∂t

{
ψ

(
z2

α

2
− ζzα

)}
+

(ζ − h)

2
∇{Uα · (ψζ)} − (ζ2 − ζh+ h2)

6
∇ (Uα ·ψ)

+ ∇
[
Uα ·

{
ψ

(
z2

α

2
− ζzα

)}]
− ψ

{
(ζ2 + ζh− 2h2)S

6
+

(ζ + h)T

2

}
(2.33)

ξ =
(
ξx, ξy

)
and ξν =

(
ξνx , ξνy

)
are given by
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ξx = −Vα

{
∂zα

∂x

(
zα
∂S

∂y
+
∂T

∂y

)
− ∂zα

∂y

(
zα
∂S

∂x
+
∂T

∂x

)}
(2.34)

−
(
∂Vα

∂x
− ∂Uα

∂y

)[{
z2

α

2
− (ζ2 − ζh+ h2)

6

}
∂S

∂y
+

{
zα − (ζ − h)

2

}
∂T

∂y

]

ξy = Uα

{
∂zα

∂x

(
zα
∂S

∂y
+
∂T

∂y

)
− ∂zα

∂y

(
zα
∂S

∂x
+
∂T

∂x

)}
(2.35)

+

(
∂Vα

∂x
− ∂Uα

∂y

)[{
z2

α

2
− (ζ2 − ζh+ h2)

6

}
∂S

∂x
+

{
zα − (ζ − h)

2

}
∂T

∂x

]

ξνx = −Vα

[
∂

∂x

{
ψy

(
1

2
z2

α − zαζ

)}
− (ζ2 − ζh+ h2)

6

∂ψy

∂x
+

(ζ − h)

2

∂ψyζ

∂x

− ∂

∂y

{
ψx

(
1

2
z2

α − zαζ

)}
+

(ζ2 − ζh+ h2)

6

∂ψx

∂y
− (ζ − h)

2

∂ψxζ

∂y

]
−

(
∂Vα

∂x
− ∂Uα

∂y

)
ψy

{
z2

α

2
− zαζ +

(2ζ2 − 2ζh− h2)

6

}
(2.36)

ξνy = Uα

[
∂

∂x

{
ψy

(
1

2
z2

α − zαζ

)}
− (ζ2 − ζh+ h2)

6

∂ψy

∂x
+

(ζ − h)

2

∂ψyζ

∂x

− ∂

∂y

{
ψx

(
1

2
z2

α − zαζ

)}
+

(ζ2 − ζh+ h2)

6

∂ψx

∂y
− (ζ − h)

2

∂ψxζ

∂y

]
+

(
∂Vα

∂x
− ∂Uα

∂y

)
ψx

{
z2

α

2
− zαζ +

(2ζ2 − 2ζh− h2)

6

}
(2.37)

and (ψx, ψy) = ψ.

The continuity equation is obtained by integrating equation (2.5) with the kine-

matic bottom and free surface boundary conditions, giving:

∂ζ

∂t
+ ∇ · {(ζ + h)Uα} + μ2 (M + Mν) = O

(
μ4
)

(2.38)
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where

M = −∇ ·
[
(ζ + h)

{(
(ζ2 − ζh+ h2)

6
− z2

α

2

)
∇S

+

(
(ζ − h)

2
− zα

)
∇T

}]
(2.39)

Mν = ∇ ·
[
ψ (ζ + h)

{
z2

α

2
− zαζ +

(2ζ2 − 2ζh− h2)

6

}]
(2.40)

Note that the viscous / rotational modification to the continuity equation is non-

zero unless zα is chosen such that the inner-most bracket of the Mν term is zero. This

is a simple quadratic equation solution, and yields a zα that is a function of time.

II.2.4. Subgrid Scale Eddy Viscosity Model and Bottom Friction

It is expected that, in the horizontal plane, the depth-integrated model will be able

to resolve eddy scales larger than the grid size. For subgrid scale dissipation, the

Smagorinsky model is used for the horizontal eddy viscosity, and is given as

νh
t

′
= αμhoco

[
2

(
∂Uα

∂x

)2

+ 2

(
∂Vα

∂y

)2

+ 2

(
∂Wo

∂z

)2

+

(
∂Vα

∂x
+
∂Uα

∂y

)2
]1/2

+ αhocoO
(
μ2
)

(2.41)

For the vertical eddy viscosity, equation (2.4) is used, where Ch = κ/6 following Elder

(1959). κ is von Karman’s constant; a value of 0.4 is used in this study.

To approximate the bottom stress, a quadratic friction equation is used:

τx
b = cfu

√
u2 + v2 , τ y

b = cfv
√
u2 + v2 (2.42)

where the τx
b and τ y

b are the bottom stresses in the x and y directions respectively and
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u and v are the depth averaged velocities in the x and y directions respectively. The

roughness coefficient cf = f/4 (Chen and Jirka, 1995) and f is estimated using the

Moody diagram, which here is calculated by the explicit formula given by Haaland

(1983).

II.3. Limiting Cases of Derived Equation Model

II.3.1. Non-Dispersive, Inviscid Model: μ2 ≈ 0; νh
t = νv

t = τb = 0

Under these assumptions, the model reduces to the standard nonlinear shallow water

wave equations:

∂Uα

∂t
+Uα · ∇Uα + ∇ζ = O

(
μ2
)

(2.43)

∂ζ

∂t
+ ∇ · {(ζ + h)Uα} = O

(
μ2
)

(2.44)

II.3.2. Weakly-Dispersive, Inviscid Model: μ2 � 1; νh
t = νv

t = τb = 0

Under these assumptions, the model reduces to the extended Boussinesq equations of

Chen (2006), prior to the ad-hoc additions of dissipation sub-models:

∂Uα

∂t
+Uα · ∇Uα + ∇ζ + μ2

(
D + ξ

)
= O

(
μ4
)

(2.45)

∂ζ

∂t
+ ∇ · {(ζ + h)Uα} + μ2M = O

(
μ4
)

(2.46)

As shown in Chen (2006), this equation set conserves potential vertical vorticity,

although due to the inviscid nature of the model, there is no direct means to generate

vorticity. In practical application of the above equations, the addition of dissipation

sub-models for bottom friction, subgrid mixing, and breaking provides the vorticity
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sources.

It is important now to go back to the original scaling argument (see beginning

of section II.2.2). It was mentioned in this earlier discussion that there was no clear

reason to choose either μ2 or βμ as the perturbation expansion parameter. If one

derives the inviscid model, given above as equations (2.45) and (2.46), the expansion

parameter is clearly μ2. It is then reasonable to extrapolate that, comparing the

inviscid and viscous equations, the new high-order terms appearing in the viscous

equations are in fact order βμ:

∂Uα

∂t
+ Uα · ∇Uα + ∇ζ + μ2

(
D + ξ

)
+ βμ

(
Dν + ξν

)
− αμ∇ · (νh

t ∇Uα

)
+ βμ2νv

t ∇S + βμ2 τ b

ζ + h

= O
(
μ4, αμ3, βμ3, β2μ2

)
(2.47)

∂ζ

∂t
+ ∇ · {(ζ + h)Uα} + μ2M + βμMν = O

(
μ4, β2μ2

)
(2.48)

Following this argument, the vertical profile of horizontal velocity is now

U = Uα + μ2Uφ
1 + βμU r

1 +O
(
μ4, β2μ2

)
(2.49)

and the viscous contribution to the profile is evident. Note that the equation set

(2.47) and (2.48), and the velocity profile (2.49), is the weakly-dispersive and weakly-

turbulent model, which will be described in more detail in section II.3.4.
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II.3.3. Non-Dispersive, Weakly-Turbulent Model: μ2 ≈ 0, O(αμ) = O(βμ) �
1

Under this set of assumptions, O(βμ) terms are retained as they will be greater than

the truncated O(μ2) dispersive terms:

∂Uα

∂t
+ Uα · ∇Uα + ∇ζ + βμ

(
Dν + ξν

)
− αμ∇ · (νh

t ∇Uα

)
+ βμ2νv

t ∇S + βμ2 τ b

ζ + h

= O
(
μ2, αμ3, βμ3, β2μ2

)
(2.50)

∂ζ

∂t
+ ∇ · {(ζ + h)Uα} + βμMν = O

(
μ2, β2μ2

)
(2.51)

and the horizontal velocity is

U = Uα + βμU r
1 +O

(
μ2, β2μ2

)
(2.52)

Here, the equations indicate the interesting result that, in a physically consistent

context, one cannot simply append a bottom friction term onto the inviscid shallow

water wave equations in an attempt to capture dissipative effects. By including a

bottom stress, a number of associated terms, all of equal order to the added bottom

stress, appear in both the momentum and continuity equations. It is argued that, in

any shallow flow where the bottom stress plays a non-negligible role, the equation set

given above as (2.50) and (2.51) is the proper model to solve. This set includes both

the vertical and horizontal vorticity resulting from the bottom stress.
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II.3.4. Weakly-Dispersive, Weakly-Turbulent Model: O(μ2) = O(αμ) =

O(βμ) � 1

This is the model presented earlier in equations (2.47) and (2.48). This model includes

the high-order frequency dispersion correction for free surface waves as well the viscous

and rotational correction due to a bottom stress. It is reiterated here that both the

frequency dispersion and viscous terms represent corrections to the leading order,

shallow water flow. Thus the viscous/rotational effects should mimic those found in

very long wave phenomena, such as rivers, tides, storm surges, and some tsunamis.

Following this perturbation approach, if one wanted to include the viscous/rotational

effects of dispersive waves, such as a wind wave-induced bottom boundary layer, this

would be a third-order correction, or a viscous correction to the high-order dispersive

terms.

While the eddy viscosity and horizontal vorticity models are simplified, a model

with known physical limitations has been derived that includes the bottom friction

term commonly added, in an ad-hoc manner, to the inviscid equations. Finally, it is

stated that one should take care when adding such ad-hoc models; it is clear from this

exercise that (1) it is not necessary to do so - the terms can be included through a con-

sistent derivation from the viscous primitive equations - and (2) one cannot properly

add the quadratic bottom friction term without also adding a number of additional

terms in both the continuity and momentum equations. Note, however, that addi-

tional terms in the continuity equation only exist due to the use of the Nwogu-type

approach; use of a depth-averaged velocity formulation would, by definition, result in

a continuity equation without high-order terms.
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II.4. Numerical Scheme: Finite Volume Method

From here on, the dimensions are recovered and all dimensional variables are expressed

without ‘ ′ ’ for the convenience of expression.

II.4.1. Conservative Form of Boussinesq Equations

In coastal regions, lakes, and rivers, flow motions can easily become complex. For ex-

ample, due to bathymetry variations, flow can change from subcritical to supercritical

and vice-versa, causing steep fronts and shocks. It is well known that primitive vari-

able or non-conservative schemes will compute shock waves with the wrong strength

and the wrong speed of propagation (Toro, 2002).

Conservative schemes are known as a remedy, providing more accurate and stable

results. To convert the momentum equations into conservative form, the momentum

equation (2.47) is multiplied by the total water depth and continuity equation (2.48)

by the horizontal velocity. Assuming that the bottom does not vary in time (ht = 0),

the two multiplied equations are added, and after some algebra, a set of conservative

Boussinesq equations is obtained:

∂H

∂t
+
∂HUα

∂x
+
∂HVα

∂y
+ Hc = 0 (2.53)

∂HUα

∂t
+
∂HU2

α

∂x
+
∂HUαVα

∂y
+ gH

∂ζ

∂x
+HHx

m + UαHc = 0 (2.54)

∂HVα

∂t
+
∂HUαVα

∂x
+
∂HV 2

α

∂y
+ gH

∂ζ

∂y
+HHy

m + VαHc = 0 (2.55)
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where H = ζ + h is the total water depth, Hx
m and Hy

m are the high-order terms

(O(μ2, αμ, βμ2)) of the depth integrated x and y horizontal momentum equations,

and Hc includes the high-order terms of the continuity equation. These are given by

(Hx
m,Hy

m) = D +Dν + ξ + ξν −∇ · (νh
t ∇Uα

)
+ νv

t ∇S +
τ b

ρH
(2.56)

Hc = M + Mν (2.57)

II.4.2. Time Integration

A standard issue for the extended Boussinesq-type equations, which include first to

third-order spatial derivatives, is that the time integration should be fourth-order

accurate. This prevents numerical truncation errors of the same form as included

derivatives. A third-order Adams-Bashforth predictor and the fourth-order Adams-

Moulton corrector scheme are used for the time integration.

The predictor step is

ζn+1 = ζn +
Δt

12

(
23En − 16En−1 + 5En−2

)
(2.58)

P n+1 = P n +
Δt

12

(
23F n − 16F n−1 + 5F n−2

)
+ 2F n

1 − 3F n−1
1 + F n−2

1 + F p
v (2.59)

Qn+1 = Qn +
Δt

12

(
23Gn − 16Gn−1 + 5Gn−2

)
+ 2Gn

1 − 3Gn−1
1 +Gn−2

1 +Gp
v (2.60)
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where P , Q, E, F and G are defined as

P = HUα +
H

2

(
z2

α − ζ2
)
Uαxx + H (zα − ζ) (hUα)xx

− Hζx {ζUαx + (hUα)x} (2.61)

Q = HVα +
H

2

(
z2

α − ζ2
)
Vαyy + H (zα − ζ) (hVα)yy

− Hζy

{
ζVαy + (hVα)y

}
(2.62)

where the subscripts x and y mean the derivatives in the x and y direction, respec-

tively.

E = ELO + ED + EV (2.63)

F = FLO + FD + Uα (ED + EV ) (2.64)

G = GLO +GD + Vα (ED + EV ) (2.65)

ELO, FLO, and GLO are rewritten by

ELO = −∂HUα

∂x
− ∂HVα

∂y
(2.66)
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FLO = − ∂

∂x

(
HU2

α +
1

2
gH2

)
− ∂HUαVα

∂y
+ gH

∂h

∂x
(2.67)

GLO = −∂HUαVα

∂x
− ∂

∂y

(
HV 2

α +
1

2
gH2

)
+ gH

∂h

∂y
(2.68)

and ED, EV , FD, GD, F1 and G1 are defined as

ED =

[
H

{(
1

6

(
ζ2 − ζh+ h2

)− 1

2
z2

α

)
∇S +

(
1

2
(ζ − h) − zα

)
∇T

}]
x

+

[
H

{(
1

6

(
ζ2 − ζh+ h2

)− 1

2
z2

α

)
∇S +

(
1

2
(ζ − h) − zα

)
∇T

}]
y

(2.69)

EV = −
[
Hψx

{
z2

α

2
− zαζ +

(2ζ2 − 2ζh− h2)

6

}]
x

−
[
Hψy

{
z2

α

2
− zαζ +

(2ζ2 − 2ζh− h2)

6

}]
y

(2.70)

(FD, GD) = H

[
1

2
∇ (

ζ2Uα · ∇S)+ ∇ (ζUα · ∇T ) − 1

2
∇ (

ζ2S2
)

− 1

2
∇ (

zα
2Uα · ∇S)−∇ (zαUα · ∇T ) − (T∇T ) −∇ (ζTS)

− (ζ − h)

2
∇{Uα · (ψζ)} +

(ζ2 − ζh+ h2)

6
∇ (Uα ·ψ)

− ∇
[
Uα ·

{
ψ

(
z2

α

2
− ζzα

)}]
+ ψ

{
(ζ2 + ζh− 2h2)S

6
+
HT

2

}
− ξ − ξν

+ ∇ · (νh
t ∇Uα

)− νv
t ∇S − τ b

ρH

]
(2.71)
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F1 =
H

2

(
ζ2 − z2

α

)
Vαxy −H (zα − ζ) (hVα)xy +Hζx

{
ζVαy + (hVα)y

}
(2.72)

G1 =
H

2

(
ζ2 − z2

α

)
Uαxy −H (zα − ζ) (hUα)xy +Hζy {ζUαx + (hUα)x} (2.73)

F p
v and Gp

v are rewritten by

F p
v =

Hn (ζ2 − ζh+ h2 + 3z2
α)

n

6

{
2 (ψx)n − 3 (ψx)n−1 + (ψx)n−2}

− Hn (ζ − h− 2zα)n

2

{
2 (ψxζ)n − 3 (ψxζ)n−1 + (ψxζ)n−2} (2.74)

Gp
v =

Hn (ζ2 − ζh+ h2 + 3z2
α)

n

6

{
2 (ψy)n − 3 (ψy)n−1 + (ψy)n−2}

− Hn (ζ − h− 2zα)n

2

{
2 (ψyζ)n − 3 (ψyζ)n−1 + (ψyζ)n−2} (2.75)

The corrector step is

ζn+1 = ζn +
Δt

24

(
9En+1 + 19En − 5En−1 + En−2

)
(2.76)

P n+1 = P n +
Δt

24

(
9F n+1 + 19F n − 5F n−1 + F n−2

)
+ F n+1

1 − F n
1 + F c

v (2.77)

Qn+1 = Qn +
Δt

24

(
9Gn+1 + 19Gn − 5Gn−1 +Gn−2

)
+ Gn+1

1 −Gn
1 +Gc

v (2.78)
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where F c
v and Gc

v are rewritten as

F c
v =

Hn+1 (ζ2 − ζh+ h2 + 3z2
α)

n+1

6

{
(ψx)n+1 − (ψx)n}

− Hn+1 (ζ − h− 2zα)n+1

2

{
(ψxζ)n+1 − (ψxζ)n} (2.79)

Gc
v =

Hn+1 (ζ2 − ζh+ h2 + 3z2
α)

n+1

6

{
(ψy)n+1 − (ψy)n}

− Hn+1 (ζ − h− 2zα)n+1

2

{
(ψyζ)n+1 − (ψyζ)n} (2.80)

After each predictor and corrector step, P and Q are solved by a matrix solver.

Note that the governing equations are solved by a cell averaged finite volume method,

so all computed values are cell averaged values. P and Q can be expressed as

P =
H

Δx

[∫ xi+1/2

xi−1/2

Uα(x)dx+
1

2

(
z2

α − ζ2
) ∫ xi+1/2

xi−1/2

Uα(x)xxdx

+ (zα − ζ)

∫ xi+1/2

xi−1/2

{hUα(x)}xx dx

− ζxζ

∫ xi+1/2

xi−1/2

Uα(x)xdx− ζx

∫ xi+1/2

xi−1/2

{hUα(x)}x dx

]
(2.81)

Q =
H

Δy

[∫ yj+1/2

yj−1/2

Vα(y)dy +
1

2

(
z2

α − ζ2
) ∫ yj+1/2

yj−1/2

Vα(y)yydy

+ (zα − ζ)

∫ yj+1/2

yj−1/2

{hVα(y)}yy dy

− ζyζ

∫ yj+1/2

yj−1/2

Vα(y)ydy − ζy

∫ yj+1/2

yj−1/2

{hVα(y)}y dy

]
(2.82)

The equations (2.81) and (2.82) yield a tridiagonal matrix and can be solved
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efficiently. For x direction,

αU i−1
α + βU i

α + γU i+1
α = P (2.83)

where

α = Hi

{
z2

α − ζ2

2Δx2
+

(zα − ζ)hi−1

Δx2
+

ζxζ

2Δx
+
ζxhi−1

2Δx

}
(2.84)

β = Hi

{
1 − z2

α − ζ2

Δx2
− 2 (zα − ζ)hi

Δx2

}
(2.85)

γ = Hi

{
z2

α − ζ2

2Δx2
+

(zα − ζ)hi+1

Δx2
− ζxζ

2Δx
− ζxhi+1

2Δx

}
(2.86)

For y direction, a similar procedure is used. The convergence error for the iter-

ative corrector step is defined as
∑ |fn+1 − fn+1

∗ |/∑ |fn+1| and it is required to be

less than 10−4.

II.4.3. Fourth-Order Accuracy Compact MUSCL TVD Scheme for Lead-

ing Order Terms

For the calculation of ELO, FLO and GLO, except for the bottom slope terms gHhx

and gHhy, a fourth-order compact MUSCL TVD scheme (Yamamoto and Daiguji,

1993) is used to construct the interface values as follows:

φL
i+1/2 = φi +

1

6

{
Δ∗φi−1/2 + 2Δ∗φ̃i+1/2

}
(2.87)
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φR
i+1/2 = φi+1 − 1

6

{
2Δ∗φi+1/2 + Δ∗φ̃i+3/2

}
(2.88)

where

Δ∗φi−1/2 = minmod
(
Δ∗φi−1/2, bΔ

∗φi+1/2

)
(2.89)

Δ∗φ̃i+1/2 = minmod
(
Δ∗φi+1/2, bΔ

∗φi−1/2

)
(2.90)

Δ∗φi+1/2 = minmod
(
Δ∗φi+1/2, bΔ

∗φi+3/2

)
(2.91)

Δ∗φ̃i+3/2 = minmod
(
Δ∗φi+3/2, bΔ

∗φi+1/2

)
(2.92)

Δ∗φi+1/2 = Δφi+1/2 − 1

6
Δ3φi+1/2 (2.93)

Δ3φi+1/2 = Δφi−1/2 − 2Δφi+1/2 + Δφi+3/2 (2.94)

Δφi−1/2 = minmod
(
Δφi−1/2, b1Δφi+1/2, b1Δφi+3/2

)
(2.95)
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Δφi+1/2 = minmod
(
Δφi+1/2, b1Δφi+3/2, b1Δφi−1/2

)
(2.96)

Δφi+3/2 = minmod
(
Δφi+3/2, b1Δφi−1/2, b1Δφi+1/2

)
(2.97)

minmod(i, j) = sign(i) max [0,min {|i|, sign(i)j}] (2.98)

minmod(i, j, k) = sign(i) max [0,min {|i|, sign(i)j, sign(i)k}] (2.99)

in which the coefficients b1 = 2 and 1 ≤ b ≤ 4. Additional details of this numerical

scheme are described in Yamamoto and Daiguji (1993). By using the constructed

interface values, the numerical fluxes are computed by HLLC approximate Riemann

solvers (Toro, 2002) on a cartesian grid. The wave speeds of the Riemann solver used

in this study are given by

SL = UL − aLqL, SR = UR + aRqR (2.100)

where the subscripts L and R indicate the left and right computational cells of the

interface and aL and aR are the long wave celerity. The qL is given by

qL =

⎧⎪⎨⎪⎩
√

1
2

(H∗+HL)H∗
H2

L
, H∗ > HL

1 , H∗ ≤ HL

(2.101)
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where H∗ is given by

H∗ =
1

g

{
1

2
(aL + aR) +

1

4
(UL − UR)

}2

(2.102)

The qR can be obtained straightforwardly and is given in Toro (2002).

However, in this numerical scheme which combines the Riemann solvers and

MUSCL scheme, there can occur unphysical oscillations when applied on rapidly

changing bathymetry. One option to mitigate this issue is use of the Surface Gradient

Method (Zhou et al. 2001), which can eliminate these oscillations, but requires that

the bathymetry varies continuously. In this study, a modified version of the Surface

Gradient Method, developed by Kim et al. (2008), is used.

II.4.4. Finite Volume Discretization for Dispersive Terms

A cell averaged value φ̄i is defined as

φ̄i =
1

Δx

∫ xi+1/2

xi−1/2

φ(x)dx (2.103)

Substituting the cell averaged value into the Taylor series φ = φi+1/2 + xφ′
i+1/2 +

x2/2φ′′
i+1/2 + x3/6φ′′′

i+1/2 + x4/24φ′′′′
i+1/2 + · · · , we can express the cell averaged value

with the values defined at cell interfaces (Lacor et al., 2004). For example,

φ̄i = φi+1/2 − Δx

2
φ′

i+1/2 +
Δx2

6
φ′′

i+1/2 −
Δx3

24
φ′′′

i+1/2 + · · · (2.104)

where subscript i is the index of a cell and i + 1/2 is the index of the right-side

cell interface. Through manipulations of Taylor series expansions, the following dis-

cretization equations can be derived and used for the discretization of the dispersion
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terms:

φi+1/2 =
7
(
φ̄i+1 + φ̄i

)− (
φ̄i+2 + φ̄i−1

)
12

+O
(
Δx4

)
(2.105)

φ′
i+1/2 =

15
(
φ̄i+1 − φ̄i

)− (
φ̄i+2 − φ̄i−1

)
12Δx

+O
(
Δx4

)
(2.106)

φ′′
i+1/2 =

(
φ̄i+2 + φ̄i−1

)− (
φ̄i+1 + φ̄i

)
2Δx2

+O
(
Δx2

)
(2.107)

II.5. Validations and Results

II.5.1. Solitary Wave Propagation

First, the model will be tested for the relatively simple solitary wave propagation

over constant depth. This is primarily a check of the numerical accuracy and the

effects of the limiter. For a model to predict a permanent-form solitary wave over a

long distance of propagation, it must be free of numerical truncation errors. Here,

the weakly-dispersive and inviscid model, equations (2.45) and (2.46), are used. The

initial wave height is a = 0.5m, wave length L = 14.7m, and water depth is h = 1.0m.

The grid size Δx = 0.1m and the time step is based on the CFL condition:

Δt = CFL× min

(
Δx

|u| + √
gH

)
(2.108)

with a CFL = 0.5. The time step is constant throughout the simulation, with

the maximum velocity taken from the initial condition. Four different solitary wave

simulations are run, one with no limiter used, and three with varying limiter values

from small (large expected numerical dissipation) to high.
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Table 1. Properties of the solitary wave simulations, for various limiter coefficient

choices. In the table, ζ1 is the wave height after 15 wavelengths of prop-

agation and ζ2 is the height after approximately 100 wavelengths. Phase

speed error is relative to the no limiter solution.

ζ1 ζ2
(ζ1−ζ2)

ζ1
×100% phase speed error (%)

b1 = 1.1 0.514 0.496 3.5 -0.24

b1 = 2.0 0.517 0.517 0.0 0.06

b1 = 3.0 0.518 0.518 0.0 0.03

b1 = 4.0 0.518 0.517 0.2 0.13

no limiter 0.518 0.518 0.0 0.00
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Figure 2. Solitary wave profiles after 104.1 wavelengths of propagation. The various

profiles are for different limiter values, shown in the legend.
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Figure 2 and Table 1 show the computed results after the solitary wave travels

approximately 100 wavelengths. In Table 1, ζ1 is the computed wave height after

the wave travels about 15 wavelengths, or 220 water depths. This value, after 15

wavelengths, is chosen as a reference value due to the well known initial, unsteady

behavior of the weakly nonlinear analytical solitary wave solution in the fully nonlin-

ear Boussinesq numerical model (e.g. Wei et al., 1995). The ζ2 are the computed wave

heights after approximately 100 wavelengths of propagation. Although a = 0.5m was

used as the initial wave height, as shown in the table, the wave heights increased

to a = 0.514m − 0.518m at the beginning of the simulations; again this is expected

due to the initial behavior mentioned above, but is also apparently dependent on the

limiter. After this initial transition period, the waves maintain a near-constant wave

height.

The waves have traveled more than 100 wave lengths in the snapshot shown in

Figure 2, 85 after the initial, unsteady period, and so the phase error shown in Figure

2 needs to be divided by 85 to provide a relative value. The maximum phase error

is about 20% (0.24% error in phase speed) and the maximum change in free surface

height over the 85 wavelengths of travel is 3.5% (or 0.04% per wave period) for the

most dissipative limiter.

The solitary phase errors shown in the figure are driven by amplitude differences.

When smoothing the solution, the limiters have different behaviors in terms of how

they re-distribute the mass of the initial condition. The various limiter choices per-

form this re-distribution differently, leading to slightly dissimilar wave heights and

wave speeds. Thus, while the phase errors provide a good depiction of how the lim-

iter errors can accumulate, the decrease in wave height during the propagation yields

a more direct quantification of the dissipative effect of the limiters. The decreases in

wave height here are 0.002% per period or less for all but the most dissipative limiter
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(b=1.1), and indicate a high level of accuracy and minimal error introduced by the

limiters, even for this very nonlinear, steep wave.

II.5.2. Velocity Profile of Uniform and Steady Flow

In weakly varying shallow flows, such as those driven by a small potential head dif-

ference, the horizontal velocity component Uφ
1 becomes very small as ∇S ≈ 0 and

∇T ≈ 0. Hence the vertical profile of the horizontal flow velocity becomes almost

constant unless the viscous correction terms are included. A vertically constant ve-

locity profile is unphysical for a steady flow with any bottom shear; such a flow can be

described with the well known log-law profile. By including the horizontal vorticity

terms, that is, using the equation (2.49), a parabolic velocity profile can be obtained.

In this section, the derived horizontal velocity profile will be analytically com-

pared with the log-law for boundary flows. For this limiting case, the total water

depth is assumed constant in time, and the bottom slope is nonzero but negligible.

With a steady, uniform, and 1D flow, the depth-integrated velocity profile reduces to:

U(z) = Uα +
τb

2ρνv
t h

(
z2

α − z2
)

(2.109)

The conventional log-law profile can be presented in a similar format (e.g. Wang

et al., 2001)

Ulog(z) = Umax +
uτ

κ
ln

(
z + h

h

)
(2.110)

The Uα in the depth-integrated profile and the Umax in the log profile repre-

sent free parameters and are chosen to enforce equal vertically-integrated mass flux

between the two relations:
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∫ 0

−h

Udz =

∫ 0

z0

Ulogdz = hUDA (2.111)

where UDA is the depth-averaged horizontal velocity and z0 is the near-bottom eleva-

tion where the log-law velocity goes to zero. For completeness, the various turbulence

parameters for this simplified setup are given as follows:

τb = ρcfU
2
DA (2.112)

νv
t =

κ

6
huτ (2.113)

uτ =

√
τb
ρ

= UDA
√
cf (2.114)

where the origins of the κ/6 coefficient in the equation (2.113) can be found in Elder

(1959). With substitution of these expressions in the profile equations, the resulting

vertical profiles become a function of only the bottom friction coefficient, cf . Com-

parisons between equations (2.109) and (2.110) are given in Figure 3 for four different

cf values. In Figure 3(a), for a small cf value, the profile through most of water col-

umn matches very well. Only near the bottom, where the log law quickly approaches

zero velocity, is there visible error. The obvious reason for this discrepancy very near

to the bottom is that the model derived here does not attempt to resolve the inner

boundary layer, which would require a rapidly vertically varying eddy viscosity and

enforcement of a no-slip bottom boundary condition. While such modifications are

possible, they would make for a significantly more complex equation model. It is reit-

erated here that the focus of this study was to derive a simple model which explicitly
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Figure 3. Comparisons of velocity profiles for horizontal uniform flows for four different

values of bottom roughness coefficient, cf . In each subplot, the solid line is

the velocity profile predicted by equation (2.109), the dashed line is the

log-law profile, and the dotted line shows the depth-averaged velocity for

reference.
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contained the quadratic bottom friction term.

Looking back to Figure 3 and the other presented comparisons, it is clear that the

depth-integrated profile error, relative to the total velocity, increases with increasing

cf . This is expected under the weakly turbulent assumption, whereby any change

to the mean profile due to turbulence should be small. However, even when using a

large cf value, as shown in Figure 3(d), where the turbulence-induced changes to the

profile are large, the depth-integrated model provides a reasonable prediction above

the inner boundary layer.

II.5.3. Vortex Street Simulation on a Submerged Conical Island

Lloyd and Stansby (1997b) performed experiments using shallow flows around sub-

merged conical islands with small side slopes. The geometry used in the experiments

and inflow and outflow conditions were very simple. However, the flow becomes com-

plex as, on the top of the island, the water surface and velocity varied rapidly and a

vortex street was generated at the lee side of the island. In addition, they observed

strong vertical mixing just downstream of the apex of the island. As mentioned above,

the experimental setup was simple: a conical island was installed 5.0m downstream

of the inlet in a channel 9.75m in length and 1.52m in width, and a steady discharge

was released at the upstream boundary. The channel and the island were made of

marine quality plywood and aluminium, respectively, and the channel bottom was

painted to produce uniform surface roughness. More details of the experiments are

described in Lloyd and Stansby (1997b).

In this study, the steady discharge velocity is U = 0.115m/s, water depth is

h = 0.054m and the Reynolds number of the mean flow is Re = 6210 so the flow is

in the fully turbulent region. The height and outer radius of the island are 0.049m

and 0.75m. Along the upstream numerical boundary an internal source generates the



43

flow; at the downstream end a sponge layer is used to absorb all outgoing momentum

and mass. Convergency of the grid size was tested and when Δx = 0.01 ≈ 0.2h,

the computational results were unaffected by further grid reductions. A CFL = 0.5

was used. A sensitivity analysis was conducted and ks = 0.3mm showed the best

fit with the experimental data. The ks of the plywood is 0.6mm (French, 1994) and

considering the smoothing by the paint, it is a reasonable value. Note that cf values

throughout the domain for this simulation are near 0.01.

Figure 4 shows the water surface elevations and the vorticity distributions at

z = zα. The circles depict the submerged island. The coherent structures of the flow

seem to be generated reasonably well by the numerical model. Figure 5 shows the

numerical velocity field at z = ζ as well as the experimental field at approximately

the same time. In this figure, the equally distributed vertical lines are for reference

with the experimental data. Figure 6 shows the measured and computed time series

of velocities at the g1 and g2 locations given in Figure 5. The u1 and v1 components

are measured at g1, which is at 1.02m downstream of the center of the island, and u2

and v2 are measured at g2, which is at 1.02m downstream of the island and 0.27m

away from the centerline. Both cases show good agreement for the period and the

magnitude of the velocities. However, for u1, the computed velocity is smaller than the

measured data. This numerical model error is also observed in Lloyd and Stansby’s

3D computational results. At this location, strong vertical mixing was observed at

the downstream of the apex of the island in the experiments, and it is possible that

the numerical models are not properly simulating these effects completely.

Figure 7 shows the velocity field at the free surface, z = ζ, and at the bottom, z =

−h. There are clearly some differences in the velocity patterns, most notably in the

magnitude of the velocity vectors, which is expectedly larger at the free surface. There

are also some slight differences in the vector directions, although the centers of the
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Figure 4. Computed results for Lloyd and Stansby’s (1997b) experiment over a sub-

merged island; top: water surface elevations(m), bottom: vorticity distribu-

tion (1/s) at z = zα.
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g
2

g
1

Figure 5. Velocity vector field for Lloyd and Stansby’s (1997b) flow over a submerged

island at z = ζ; top: experimental, bottom: numerical. The two circled

points shown in the numerical plot are the locations of time series shown in

figure 6.
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Figure 6. Comparisons of time series of velocities for Lloyd and Stansby’s (1997b)

experiment over a submerged island; circle: experimental data, solid line:

computed velocity at z = zα, dash-dot line: computed velocity at z = ζ.

The time series locations are shown in figure 5.
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Figure 7. Computed horizontal velocity field for Lloyd and Stansby’s (1997b) flow

experiment a submerged island; top: at z = ζ, bottom: at z = ζ −H.
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eddies do not change location with depth. For evaluation of transport, bed load, etc.,

it is important that a model be able to predict such vertical changes in the horizontal

velocity. Without the horizontal vorticity included here, the velocity profiles would

be everywhere almost uniform in the vertical, because the spatial variation of the

water surface and horizontal velocity is small.

Figure 8 shows the comparison of the computational results of the fully nonlinear

Boussinesq with and without horizontal vorticity effects, as well as the results from the

shallow water model, also without horizontal vorticity terms. All results here include

the quadratic bottom friction term, with ks = 0.3mm. Thus this comparison will

provide some insight into the importance of the high-order dispersive terms and the

terms appearing due to the inclusion of the high-order rotational Ω correction in the

horizontal velocity profile, equation (2.49). Comparing the Boussinesq results with

and without horizontal vorticity, it is clear that the vorticity terms do not significantly

impact the shedding frequency, although they do have a small to moderate effect on

the amplitude of the velocity fluctuations. This fluctuation varies from 5% to 50% of

the local amplitude.

To assess the importance of frequency dispersion, the Boussinesq and shallow

water models should be compared. Here, it is evident that by neglecting the dispersive

terms, the shedding frequency changes. The difference is not large; the shallow water

model predicts a period approximately 3% shorter than the Boussinesq. This level of

error is expected in light of the free surface features shown in Figure 4, which have

characteristic length scales on the order of 10 water depths (shallow water wave speed

4% larger than Airy wave speed) and have propagated about one length scale before

reaching the measurement locations g1 and g2.

Horizontal vorticity distributions through the center of island in the x-z and y-z

plane are described in Figure 9. Similar to the vertical vorticity shown in Figure
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Figure 8. Comparisons of Boussinesq and shallow water model results at time series

locations shown in figure 5; solid line: Boussinesq model results with horizon-

tal vorticity terms, dash line: Boussinesq model results without horizontal

vorticity terms, dash-dot line: shallow water equations model results.



50

Figure 9. Computed horizontal vorticity distributions (1/s) for Lloyd and Stansby’s

(1997b) flow experiment a submerged island; top: in the x-z plane, bottom:

in the y-z plane. Both profiles intersect the crest of the island.
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4, the magnitude of the horizontal vorticity is largest around the apex of the island

and decreases downstream. At the downstream end of the island, the horizontal

vorticity begins to show a wavy pattern. The pattern matches the pattern of the

vertical vorticity in the Figure 4 and it can be regarded as an interaction between the

horizontal and vertical vorticity. Generally, because turbulence is mainly generated

at the bottom in shallow flows, the magnitude of horizontal vorticity near the bottom

will be larger than near the water surface. The numerical results show this pattern.

Finally, from the results, it can be concluded that the effects of bottom-induced

turbulence in an energetic flow field can be reasonably evaluated with the equations

derived here.

II.5.4. Oscillatory Flow Simulations through Tidal Inlets

Nicolau (2007) and Nicolau et al. (2009) conducted experiments in a laboratory

shallow tidal basin in order to characterize the large-scale jet vortices forced by a tidal

cycle. At each end of the basin, hydraulic head was given in an oscillatory manner,

creating a controlled seiche in the basin. Vortices were created as the flow exited

the inlet structures. The width and the length of the basin are 5.48m and 14.6m.

At 0.55m from both ends, floaters for water surface damping and flow straighteners

were installed. The bottom roughness of the basin is given as ks = 0.05mm− 0.1mm

(Carmer, 2005), and correspond to cf values ranging from 0.007-0.008 for the flows

examined here. The tidal period was 55 seconds and the initial water depth h was

0.1m. The tidal flow discharge varied sinusoidally and the maximum was designed to

be 23	/s in the laboratory experiments. The Reynolds number of the time averaged

flow for the half tidal cycle is about 13000. The inlet structures used in the experiment

are shown in Figure 10. More details about the basin are described in Carmer (2005)

and Nicolau (2007).
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Figure 10. Tidal inlet channels investigated in Nicolau (2007); top: Layout D, bottom:

Layout C.



53

0 20 40 60 80 100 120 140 160

−0.2

−0.1

0

0.1

0.2

0.3

0.4

V
el

o
ci

ty
 (

m
/s

)

Second

 

 

0 20 40 60 80 100 120 140 160

−0.2

−0.1

0

0.1

0.2

0.3

V
el

o
ci

ty
 (

m
/s

)

Second

 

 

Experimental(Layout−C)
Numerical(Layout−C)

Experimental(Layout−D)
Numerical(Layout−D)

Figure 11. Width-averaged velocity at the mouth of the inlet structures shown in figure

10; top: Layout C, bottom: Layout D.
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In this simulation, the numerical seiche is generated by internal source generators

placed at both ends of the channel. However, as there were obstacles like screens and

floaters at the end sides of the basin, it is difficult to reproduce the experimental flows

precisely with a depth-integrated numerical model. Thus to compare the numerical

model with the experiment, the computed width-averaged velocity at the mouth of the

inlet structure was made similar to the experimental width-averaged velocity, through

tuning of the numerical boundary forcing. These velocity comparisons are shown in

Figure 11. CFL = 0.5 and Δx = 0.2h = 0.02m were used in this simulations. The

grid size always is smaller than the total water depth, therefore it is expected that

the numerical grid is fine enough for the 2D motion to be well resolved (Hinterberger

et al., 2007). In the numerical simulations, ks = 0.0mm − 0.2mm were tested and

showed negligible differences, so ks = 0.1mm was used for all numerical tests, which

is also the value recommended by Carmer (2005) for this basin.

Figure 12 shows the computed vorticity and velocity distributions before and

after the first tidal period for Layout D. Figure 13 provides a similar series of images

taken during the laboratory experiments. Although the timing between the numerical

and experimental snapshot are likely slightly different, the overall appearance of the

patterns are similar before and after the first tidal period.

Figure 14 shows the traces of the center of first-shed vortex of the experiments and

the computed results with respect to time. The x and y locations given in this figure

are relative to the inlet corner at which the vortex is generated. The comparisons

were done for the vortex generated during the first tidal cycle, as this was the focus

of the experiment. The overall agreement is excellent.

As shown in the results, for both types of the inlets examined, it can be concluded

that the numerical model can describe the generation mechanism of 2D coherent

structures created by a tidal jet, and can predict the flow patterns under unsteady
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(a) (b)

(c) (d)

Figure 12. Computed vertical vorticity (absolute value) and free surface horizontal

velocity vector distribution at (a)t = 39, (b)t = 90, (c)t = 117, (d)t = 142

second, Layout D.
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(a) (b)

(c) (d)

Figure 13. Dye distributions of experiments from Nicolau (2007), Layout D.
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Figure 14. Traces of centers of vortexes, top: Layout D, bottom: Layout C. x-dir:

longitudinal dir. y-dir: width dir. Experimental data from Nicolau (2007).
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flow conditions.

II.6. Summary

From the Navier-Stokes equations, a set of fully nonlinear Boussinesq equations for

weakly dispersive, weakly turbulent and rotational fluid flows were derived in con-

servative form. The model includes the approximate effects of bottom-induced tur-

bulence, in a depth-integrated sense, as a high-order correction. Associated with

this turbulence, vertical and horizontal rotational effects are captured. From the

derivation interesting results were observed; one should take care when adding ad-

hoc models to the flow equations, because it is clear from this exercise that the terms

can be included through a consistent derivation from the viscous primitive equations

and one cannot properly add the quadratic bottom friction term without also adding

a number of additional terms to the depth-integrated governing equations.

A highly accurate and stable numerical model based on the finite volume ap-

proach was developed to solve the equations. The numerical method uses a fourth-

order MUSCL-TVD scheme to solve the leading order terms. For the high-order

terms, a cell averaged finite volume method was implemented.

To verify the derived equations and the numerical model, four verification trials

were completed. First, solitary wave propagation was tested as a basic yet fundamen-

tal test of the model’s ability to predict dispersive and nonlinear wave propagation

with minimal numerical error. The computed results showed very small to negligible

error in the wave amplitude and phase speed. Thus the finite volume numerical model

seems to be able to predict nonlinear and dispersive wave motions very accurately. In

the case of steady and uniform flow, the effects of bottom-induced turbulence on the

horizontal velocity profile compared well with the log-law boundary velocity profile,
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but with increasing error for higher bottom shear stress.

As a more applied validation, flow generating a vortex street was investigated.

The computed results seemed to be very reasonable on average, so it can be concluded

that the model can analyze the interaction between bottom and flow very reasonably.

The last comparison examined the vortex motions created by a tidal jet; simulations

showed good overall agreement with the experimental data. Finally, it can be con-

cluded that the provided results show the possible importance of frequency dispersion

and horizontal vorticity in turbulent shallow flows, and the derived depth-integrated

equations can predict flow patterns, vertical velocity profiles, and coherent structures

well.
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CHAPTER III

TURBULENT TRANSPORT

III.1. Introduction

In nature, flows are 3D phenomenon. However, in many cases of the geophysical flows,

the water depth is limited relative to the horizontal scale so that the horizontal 2D

motions dominate the flow structures. In those cases, especially in large domains, the

horizontal 2D numerical model can be a practical and accurate tool if the 3D physical

properties can be reflected properly into the 2D model. One of the 2D approaches

mostly wide spread are the Boussinesq equations and shallow water equations with

the long wave scaling derived by perturbation approach or depth averaging.

The Boussinesq equations model can account the dispersive, turbulent and rota-

tional flow properties frequently observed in nature (Kim et al., 2009). Also it has the

ability of coupling the currents and waves (Yoon and Liu, 1989) and can predict the

nonlinear wave propagations over uneven bottom from deep (or intermediate) water

area to shallow water area (Nwogu, 1993 and Wei et al. 1995).

However, during the derivations of a 2D horizontal equation set, some 3D flow

features such as the dispersive stresses (Kuipers and Vreugdenhill, 1973) and the

effects of the unresolved small scale 3D turbulence are excluded. Consequently, there

must be some limitations for predicting the horizontal flow structures which can be

originated by the neglected 3D effects. Naturally, the inaccuracy of the flow model is

reflected in the results of a transport model.

In order to incorporate the 3D turbulence effects into 2D horizontal flow models,

various approaches were proposed. For example, Nadaoka and Yagi (1998) incorpo-

rated a subdepth scale turbulence model based on an eddy viscosity into the shallow
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water equations. A stochastic BSM proposed by Hinterberger et al. (2007) can ac-

count the mechanism of the inverse energy transfer from the unresolved 3D turbulence

to the resolved 2D flow motions. Reasonable results were obtained by the proposed

methods.

Similar to the flow model, it is required to develop a 2D horizontal scalar trans-

port model that can account the vertical deviations of the concentration and velocity.

Taylor (1953) firstly proposed a brilliant method how to reflect the effects of the

vertical nonuniformity into the 2D horizontal model. His result, commonly called

‘dispersion’, was extended to various environmental flow fields by many researchers

(Fischer et al., 1979).

For the accurate prediction of transport, an accurate transport numerical solver

which can minimize the numerical dispersion, dissipation and diffusion should be de-

veloped. Recently, the FVM using approximate Riemann solvers has been developed

and applied successfully, for example, Mingham and Causon (2008). The FVM has

many advantages. Especially, in the view of eigen structure, the advection equation

has the same approximate Riemann solver with the equation of tangential velocity of

homogeneous shallow water equations (Toro, 2002). Hence, the exactly same numer-

ical method for the leading-order terms of the Boussinesq equations can be used for

the advection terms of the transport equation with consistency.

In this chapter, the turbulent transports by the long waves and currents is inves-

tigated. In section 2, the Boussinesq equations with subgrid turbulence closure are

introduced. In the next section, a depth-integrated transport equation is introduced.

The numerical methods for the transport equation and the test results are briefly pre-

sented. The turbulent transport by a plane mixing layer and by bottom topography

are presented in the following sections.
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III.2. Depth-Integrated Flow Model for Turbulent Transport

III.2.1. Dispersive Stress by Velocity Fluctuation u′ for Boussinesq Equa-

tions

In the 3D space, the filtered continuity and the Navier-Stokes equations for incom-

pressible flow are given by

∂u∗i
∂x∗i

= 0 (3.1)

∂u∗i
∂t∗

+
∂u∗iu

∗
j

∂x∗j
+

1

ρ

∂p∗

∂x∗i
=

∂

∂x∗j

(
2νS∗

ij − τ ∗ij
)

(3.2)

where the overbar ‘¯’ means the filtering operator. The subscripts i, j = (1, 2, 3).

The x∗i = (x∗, y∗, z∗), where the (x∗, y∗) denote the horizontal axes and the z∗ is the

vertical axis. The t∗ is time and the u∗i is the velocity tensor, where the (u∗, v∗) are

the horizontal velocities and the w∗ is the vertical velocity. The p∗ is the pressure

and the ρ is the density of water. The ν is the kinematic viscosity of water, the S∗
ij

is a strain rate tensor and the τ ∗ij is the residual stress tensor.

In this study, for the derivation of the depth-integrated flow equations including

the 3D turbulence effects, the perturbation approach with the long wave scaling is

used: A typical water depth ho, a horizontal length 	o, and a time scale 	o/
√
gho.

With these variables, the following dimensionless variables and a parameter can be

introduced.
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(x, y) =
(x∗, y∗)
	o

, z =
z∗

ho

, t =
t∗
√
gho

	o
, h =

h∗

ho

, ζ =
ζ∗

ho

,

(u, v) =
(u∗, v∗)√
gho

, w =
w∗

μ
√
gho

, p =
p∗

ρgho

, μ =
ho

	o
(3.3)

where the h∗ is the water depth and the ζ∗ is the water surface elevation. The μ is the

standard parameter for a scale analysis of long waves and its magnitude is assumed

to be O (μ2) � 1.0.

As commonly done in shallow flows studies, the turbulent eddy viscosity ν∗t is

separated into the horizontal and the vertical eddy viscosities. The nondimensional

horizontal eddy viscosity is given by

νh
t =

νh
t
∗

αho

√
gho

(3.4)

where the α = C2
s Δ2 is resulted from the νh

t
∗

= (CsΔ
∗)2√2S∗

ijS
∗
ij, (Smagorinsky,

1963) in which the Cs = 0.2 is a constant, and the Δ∗ is the grid size. Considering

that the vertical turbulence is mainly driven by the bottom shear in shallow flows,

the vertical eddy viscosity νv
t
∗ = ChH

∗u∗τ is used, in which the constant Ch is given by

Ch = κ/6 following Elder (1959), the κ is the von Karman constant, theH∗ is the total

water depth, and the u∗τ is the friction velocity. The typical magnitude of the Ch is

O (Ch) ∼ 0.1 and it is expressed with β. From the relation u∗τ =
√
cf |u∗| =

√
gH∗S∗

f ,

the typical magnitude of the roughness coefficient cf can be determined as O (cf ) ∼ μ,

in which the S∗
f is the energy slope (Chaudhry, 1993). Finally, the nondimensional

vertical eddy viscosity is given by

νv
t =

νv
t
∗

βμho

√
gho

(3.5)
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With the variables and parameters, the filtered dimensionless form of the conti-

nuity equation and the Navier-Stokes equations in the horizontal directions are given

by

∂ui

∂xi

+
∂w

∂z
= 0 (3.6)

∂ui

∂t
+
∂uiuj

∂xj

+
∂uiw

∂z
+
∂p

∂xi

= αμ
∂

∂xj

(
2νh

t Sij

)
+ β

∂

∂z

(
2νv

t Sik

)
(3.7)

henceforth, the index i, j = (1, 2) and the k = 3.

A 2D horizontal equations set can be derived by applying depth averaging oper-

ator φ̃ = 1
H

∫
H
φdz to the equations (3.6) and (3.7). However, during the derivations,

the dispersive stresses are usually ignored with the assumption of constant velocity

profile into the vertical direction like the depth-averaged velocity ũ in the Figure

15. Even in the Boussinesq equations that assume the depth-varying velocity like

the U(z) in the Figure 15, the fluctuation component u′i that is important for the

prediction of the kinetic energy transport or environmental flows is ignored usually.

In order to consider the 3D turbulence effects by the u′i, Hinterberger et al.

(2007) proposed a stochastic BSM for the shallow water equations. The effects can

be incorporated into the Boussinesq equations as followings. At first, by integrating

the filtered Navier-Stokes equations over the depth, the following equation is obtained.

∂Hũi

∂t
+

∂Hũiũj

∂xj

+H
∂̃p

∂xi

= αμ
∂

∂xj

(
2Hνh

t S̃ij

)
+ β

[
2νv

t Sik

]
H
− γ2∂HDij (u)

∂xj

(3.8)
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Figure 15. Definitions of velocity notations. ũ: depth averaged velocity, u: real ve-

locity including fluctuating velocity component, u′: spatially fluctuating

velocity component, U(z): velocity profile neglecting the u′.

where the depth averaged velocity is given by

ũi =
1

H

∫
H

(
Ui + μ2uφ

i + βμur
i + γu′i

)
dz +O

(
μ4, β2μ2

)
(3.9)

in which the Ui is the horizontal velocity at an arbitrary water depth zα. The ur
i

and the uφ
i are the higher-order rotational and irrotational velocity components, re-

spectively (Kim et al., 2009). The newly introduced γ is a scale parameter and

its magnitude will be determined in a later part. The pressure term is given by

p̃ = 1
H

∫
H
p(z)dz, and the p(z) can be obtained by integrating the vertical momentum

equation. The dispersive stress Dij (u) is given by
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Dij (u) =
1

H

∫
H

(
ui − ũi

)(
uj − ũj

)
dz

= μ2γ

(
ũφ

i u
′
j + ũ′iu

φ
j

)
+ βμγ

(
ũr

iu
′
j + ũ′iu

r
j

)
+ γ2ũ′iu

′
j (3.10)

Finally, the momentum equations of the Boussinesq equations that include the

dispersive stresses are given by

∂Hũi

∂t
+

∂Hũiũj

∂xj

+H
∂̃p

∂xi

= αμ
∂

∂xj

(
2Hνh

t S̃ij

)
+ βμ22νv

t

∂

∂xi

(
∂uj

∂xj

)
+ βμ2τ b

i

+
∂

∂xj

[
H

{
μ2γ

(
ũφ

i u
′
j + ũ′iu

φ
j

)
+ βμγ

(
ũr

iu
′
j + ũ′iu

r
j

)
+ γ2ũ′iu

′
j

}]
+ O

(
μ4, αμ3, βμ4

)
(3.11)

Considering the typical magnitude of the shear stress τ b
i which is directly related

to the Reynolds stress, we can deduce γ2 = βμ2 from the equation (3.11). Sequently,

in the dispersive stresses terms of the equation (3.11), the first and the second terms

are relatively smaller than the last term so that only the last term is sustained as

below and used for turbulence modeling in this study.

βμ2 ∂

∂xj

(
Hũ′iu

′
j

)
(3.12)

III.2.2. Depth-Integrated Model including Subgrid Scale Turbulence Ef-

fects (DISGS)

For the convenience of expression, all the dimensional variables are expressed without

the superscript ‘∗’ after the dimensions are recovered. The overbar ‘¯’ for the notation
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of the filtering is not expressed from here on either.

Including the dispersive stress terms above derived, the conservative form of the

Boussinesq equations with subgrid turbulence closure are given by

∂ζ

∂t
+
∂HUi

∂xi

+ M + Mν = 0 (3.13)

∂HUi

∂t
+

∂HUiUj

∂xj

+ gH
∂ζ

∂xi

+H
(
Di + ξi +Dν

i + ξν
i

)
+ Ui (M + Mν)

− H
∂

∂xj

(
2νh

t Sij

)
+ 2Hνv

t

∂

∂xi

(
∂Uj

∂xj

)
+
τ b
i

ρ
−HFi = 0 (3.14)

in which, the M and the Mν are the second-order terms of the continuity equation.

In the momentum equations, the Di is the dispersion term, the Dν
i is the horizontal

vorticity effect terms, the ξi is the vertical vorticity term and the ξν
i is the vertical

vorticity term combined with the horizontal vorticity. More detail expressions of the

higher-order terms can be found in the chapter I or Kim et al. (2009).

The HFi representing the equation (3.12) is implemented by a stochastic BSM

proposed by Hinterberger et al. (2007). They assumed that the production rate of

2D kinetic turbulent energy P2D were represented as

P2D ∼ P3D

Reτ

=
|ui|2ν√cf

H2
(3.15)

where the Reτ = uτH/ν. It can be also expressed like (Alvelius, 1999)

P2D ∼ F 2
rmsΔt (3.16)
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where Δt is the time step, F = Frms × r, and the r is a random number with zero

mean. Finally, from the relation of the two equations and by introducing a model

constant CB, the stochastic BSM model is implemented like

Fi = CB

√
ũ2 + ṽ2

H

√
ν
√
cf

Δt
ri (3.17)

III.3. Depth-Integrated Transport Equation

Basically, the Taylor’s analysis is followed to derive the depth-integrated transport

equation and the long wave scaling is used for the consistency with the depth-

integrated flow equations.

Firstly, by using that the turbulent diffusion can be given by ν∗t /σt and the

magnitude of turbulent Schmidt number isO (σt) ∼ 1.0, the nondimensional turbulent

diffusion coefficients can be given by

(Dx, Dy) =

(
D∗

x, D
∗
y

)
αho

√
gho

, Dz =
D∗

z

βμho

√
gho

(3.18)

where the Dx and the Dy are the nondimensional horizontal turbulent diffusion co-

efficients, and the Dz is the nondimensional vertical turbulent diffusion coefficient.

Applying the perturbation approach with the equations (3.3) and (3.18), the 3D

transport equation is expressed as below on the transformed coordinate (τ, ξ, η, z).
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∂
(
C̃ + εC ′′

)
∂τ

+ μ2u′′φ
∂
(
C̃ + εC ′′

)
∂ξ

+ βμu′′r
∂
(
C̃ + εC ′′

)
∂ξ

+ μ2v′′φ
∂
(
C̃ + εC ′′

)
∂η

+ βμv′′r
∂
(
C̃ + εC ′′

)
∂η

+ w
∂
(
C̃ + εC ′′

)
∂z

= αμ
∂

∂ξ

⎧⎨⎩Dx

∂
(
C̃ + εC ′′

)
∂ξ

⎫⎬⎭+ αμ
∂

∂η

⎧⎨⎩Dy

∂
(
C̃ + εC ′′

)
∂η

⎫⎬⎭
+ β

∂

∂z

⎧⎨⎩Dz

∂
(
C̃ + εC ′′

)
∂z

⎫⎬⎭+O
(
μ4, β2μ2

)
(3.19)

where C ′′ is the deviation of the concentration and the ε is a small number used for

the scale analysis. The C̃ is the depth averaged concentration so the concentration C

is expended as C = C̃ + εC ′′. The velocity deviation u′′ is defined as u′′ = U(z) − ũ

and has the magnitude of O (μ2, βμ). The (τ, ξ, η) means the transformed coordinate

and has the relations with the (t, x, y) as followings

ξ = x− ũt, η = y − ṽt, τ = t (3.20)

Applying depth averaging operator to the equation (3.19) leaves

∂C̃

∂τ
+

εμ2

H

∫
H

u′′φ
∂C ′′

∂ξ
dz +

εβμ

H

∫
H

u′′r
∂C ′′

∂ξ
dz

+
εμ2

H

∫
H

v′′φ
∂C ′′

∂η
dz +

εβμ

H

∫
H

v′′r
∂C ′′

∂η
dz +

ε

H

∫
H

w
∂C ′′

∂z
dz

= αμ
∂

∂ξ

(
Dx

∂C̃

∂ξ

)
+ αμ

∂

∂η

(
Dy

∂C̃

∂η

)
+O

(
μ4, β2μ2

)
(3.21)

Subtracting the equation (3.21) from the equation (3.19) results in
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ε
∂C ′′

∂τ
+ μ2u′′φ

∂C̃

∂ξ
+ βμu′′r

∂C̃

∂ξ
+ μ2v′′φ

∂C̃

∂η
+ βμv′′r

∂C̃

∂η

+ εμ2u′′φ
∂C ′′

∂ξ
+ εβμu′′r

∂C ′′

∂ξ
+ εμ2v′′φ

∂C ′′

∂η
+ εβμv′′r

∂C ′′

∂η

=
εμ2

H

∫
H

u′′φ
∂C ′′

∂ξ
dz +

εμ2

H

∫
H

v′′φ
∂C ′′

∂η
dz

+
εβμ

H

∫
H

u′′r
∂C ′′

∂ξ
dz +

εβμ

H

∫
H

v′′r
∂C ′′

∂η
dz

+
ε

H

∫
H

w
∂C ′′

∂z
dz − εw

∂C ′′

∂z

= αμε
∂

∂ξ

(
Dx

∂C ′′

∂ξ

)
+ αμε

∂

∂η

(
Dy

∂C ′′

∂η

)
+ βε

∂

∂z

(
Dz

∂C ′′

∂z

)
+ O

(
μ4, β2μ2

)
(3.22)

Unfortunately, no general solution of the C ′′ of the equation (3.22) can be found

because the deviation of the velocity varies into the vertical direction (Fischer et al.,

1967). At this point, Taylor (1957) assumed that the balance would be reached so

that he could truncate almost of the terms except the second-order advection and

the vertical diffusion terms in the equation (3.22). However, in this derivation, all

terms are kept temporary and the smaller terms will be truncated based on the scale

analysis. Hence, for the brevity, the equation (3.22) is rearranged as following

μ2u′′φ
∂C̃

∂ξ
+ μ2v′′φ

∂C̃

∂η
+ βμ

(
u′′r
∂C̃

∂ξ
+ v′′r

∂C̃

∂η

)
− εβ

∂

∂z

(
Dz

∂C ′′

∂z

)
= O1 (ε) + O2

(
εμ2

)
+ O3 (εβμ) +O

(
μ4, β2μ2

)
(3.23)

By integrating the equation (3.23) twice, the C ′′ becomes
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βεC ′′ = μ2

∫ z

−h

1

Dz

∫ z

−h

(
u′′φ
∂C̃

∂ξ
+ v′′φ

∂C̃

∂η

)
dzdz

+ βμ

∫ z

−h

1

Dz

∫ z

−h

(
u′′r
∂C̃

∂ξ
+ v′′r

∂C̃

∂η

)
dzdz

+ O1 (ε) + O2

(
εμ2

)
+ O3 (εβμ) +O

(
μ4, β2μ2

)
(3.24)

Substituting the C ′′ into the equation (3.21), we obtain

∂C̃

∂τ
= ε

∂

∂ξ

(
DL11

∂C̃

∂ξ
+DL12

∂C̃

∂η

)
+ ε

∂

∂η

(
DL21

∂C̃

∂ξ
+DL22

∂C̃

∂η

)

+ αμ
∂

∂ξ

(
Dx

∂C̃

∂ξ

)
+ αμ

∂

∂η

(
Dy

∂C̃

∂η

)
− ε

H

∫
H

w
∂C ′′

∂z
dz

+ O1

(
εμ2

β

)
+ O1 (εμ) + O2

(
εμ4

β

)
+ O2

(
εμ3

)
+ O3

(
εμ3

)
+ O3

(
εβμ2

)
+O

(
μ4, β2μ2

)
(3.25)

where the DLij = − 1
H

∫
H
u′′i
∫ z

−h
1

Dz

∫ z

−h
u′′jdzdzdz is commonly called ‘dispersion coef-

ficient’, in which the u′′i is the u′′φi or u′′ri. The ε is given by ε = (μ4/β, βμ2, μ3, βμ2)

by the derivation.

As mentioned above, it is not possible to get a general solution for the C ′′.

However, under the case of O (ε) � O (μ2, βμ), all the O terms can be neglected

fortunately. If O (ε) ∼ O (μ2, βμ) then the O1 term has the same magnitude with

the ε terms. Thus, only when the spatial distribution of the C̃ is steady state and

vertically well mixed, the O1 can be removed, which results in Taylor’s analysis.

When O (ε) ∼ O (μ, β), the O1 terms become bigger than ε terms so that should be

considered.

Finally, by recovering the dimensions and depth averaging, the depth-integrated
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transport equation can be given on the original coordinate as following.

∂HC̃

∂t
+

∂HũiC̃

∂xi

=
∂

∂xi

(
HDLij

∂C̃

∂xj

)
+

∂

∂xi

(
HDxi

∂C̃

∂xi

)
(3.26)

where the horizontal diffusion coefficients are given by Dxi = ν
Sc

+
νh

t

σt
with the Schmidt

number Sc = 1000 (Hinterberger et al., 2007). The DLij can be derived based on the

vertical velocity profile of the Boussinesq equations. After mathematical exercise, it

is given by

DLij = − σt

ChH2uτ

[
1

336

(
ψi +

∂S

∂xi

)(
ψj +

∂S

∂xj

)(
ζ7 + h7

)
+

1

48

(
ψi +

∂S

∂xi

)(
∂T

∂xj

− ζψj

)(
ζ6 − h6

)
+

1

30

(
∂T

∂xi

− ζψi

)(
∂T

∂xj

− ζψj

)(
ζ5 + h5

)
− 7

120

(
∂S

∂xi

+ ψi

)
(C4j − C2ψj)

(
ζ5 + h5

)
−1

6

(
∂T

∂xi

− ζψi

)
(C4j − C2ψj)

(
ζ4 − h4

)
−1

8

(
∂S

∂xi

+ ψi

)
(C5j − C3ψj)

(
ζ4 − h4

)
+

1

6
(C4i − C2ψi) (C4j − C2ψj)

(
ζ3 + h3

)
−1

3

(
∂T

∂xi

− ζψi

)
(C5j − C3ψj)

(
ζ3 + h3

)
−1

6

(
∂S

∂xi

+ ψi

)
C1j

(
ζ3 + h3

)
+

1

2
(C5i − C3ψi) (C4j − C2ψj)

(
ζ2 − h2

)
−1

2

(
∂T

∂xi

− ζψi

)
C1j

(
ζ2 − h2

)
+C1i (C4j − C2ψj) (ζ + h)

]
(3.27)
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where the C1i ∼ C5i are given by

C1i = h (C5i − C3ψi) − 1

2
h2 (C4i − C2ψi)

+
1

6
h3

(
ζψi − ∂T

∂xi

)
+

1

24
h4

(
∂S

∂xi

+ ψi

)
C2 =

1

6

(
2ζ2 − 2ζh− h2

)
C3 =

1

6
ζh (h+ 2ζ)

C4i =
1

6

(
ζ2 − ζh+ h2

) ∂S
∂xi

+
1

2
(ζ − h)

∂T

∂xi

C5i = −1

6
h3 ∂S

∂xi

+
1

2
h2 ∂T

∂xi

+ C4ih (3.28)

If the flow is uniform and the κ/6 = 0.0667 then the σt = 0.8302 (∼ O(1)) makes

the dispersion coefficient approach to the DL = 5.93huτ proposed by Elder (1959) for

turbulent flow. It may be a validation for the proposed dispersion coefficient.

III.4. Numerical Method for the Transport Equation and Verifications

III.4.1. Fourth-Order Accurate FVM

If the diffusion coefficient is zero, the transport equation becomes a hyperbolic partial

differential equation mathematically. Thus the equation should be able to solve a

continuous or a discontinuous concentration problem. However, it is hard to solve

it numerically without dissipation or dispersive errors if the concentration profile

is discontinuous or has a steep gradient. The FVM coupled with Riemann solvers

is a good strategy for solving the discontinuous and continuous problems together.

Moreover, in the view of eigen structure, the advection equation should have the same

approximate Riemann solver with the equation of tangential velocity of homogeneous

shallow water equations (Toro, 2002). Hence, the exactly same numerical method for
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the flow equations can be used for the transport equation solver.

By integrating the transport equation over a cell, the equation becomes

∂HCi,j

∂t
+

1

A

∑
F k ·Lk = 0 (3.29)

where the subscripts (i, j) are the cell index. The A is a cell area, F is a flux vector

evaluated at the cell interface, which is defined as F = CHU , U = (U, V ), and L is a

cell side vector defined as the cell side length multiplied by the outward unit normal

vector. In order to construct the C at the interface, a fourth-order compact MUSCL

TVD scheme (Yamamoto and Daiguji, 1993) is used as followings.

CL
i+1/2 = Ci +

1

6

{
Δ∗Ci−1/2 + 2Δ∗C̃i+1/2

}
(3.30)

CR
i+1/2 = Ci+1 − 1

6

{
2Δ∗Ci+1/2 + 2Δ∗C̃i+3/2

}
(3.31)

where subscript i + 1/2 and i − 1/2 mean the interfaces and L and R mean the left

and right sides of a cell interface and

Δ∗Ci−1/2 = minmod
(
Δ∗Ci−1/2, bΔ

∗Ci+1/2

)
(3.32)

Δ∗C̃i+1/2 = minmod
(
Δ∗Ci+1/2, bΔ

∗Ci−1/2

)
(3.33)

Δ∗Ci+1/2 = minmod
(
Δ∗Ci+1/2, bΔ

∗Ci+3/2

)
(3.34)

Δ∗C̃i+3/2 = minmod
(
Δ∗Ci+3/2, bΔ

∗Ci+1/2

)
(3.35)
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Δ∗Ci+1/2 = ΔCi+1/2 − 1

6
Δ3Ci+1/2 (3.36)

Δ3Ci+1/2 = ΔCi−1/2 − 2ΔCi+1/2 + ΔCi+3/2 (3.37)

ΔCi−1/2 = minmod
(
ΔCi−1/2, b1ΔCi+1/2, b1ΔCi+3/2

)
(3.38)

ΔCi+1/2 = minmod
(
ΔCi+1/2, b1ΔCi+3/2, b1ΔCi−1/2

)
(3.39)

ΔCi+3/2 = minmod
(
ΔCi+3/2, b1ΔCi−1/2, b1ΔCi+1/2

)
(3.40)

minmod(i, j) = sign(i) max [0,min {|i|, sign(i)}] (3.41)

minmod(i, j, k) = sign(i) max [0,min {|i|, sign(i), sign(i)k}] (3.42)

in which the coefficients b1 = 2 and 1 < b ≤ 4 and more details of this numerical

scheme are described in Yamamoto and Daiguji (1993).

By using the constructed interface values, the numerical fluxes are computed by

the HLL approximate Riemann solver (Toro, 1997) because in preliminary tests, the

HLL solver showed more stable results than the HLLC solver on complex topography

if moving boundary is included in the computational domain. The HLL numerical

flux is given by
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F i+1/2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F L, 0 ≤ SL

F ∗, SL ≤ 0 ≤ SR

FR, 0 ≥ SR

(3.43)

where

F ∗ =
SRF L − SLFR + SRSL (UR −UL)

SR − SL

(3.44)

and the SL and SR are wave speed, and more details of the HLL approximate Riemann

solver is well explained in Toro (1997) and Toro (2002).

For the discretization of the diffusion terms, a FVM is used also. A cell averaged

value Ci is defined as

Ci =
1

Δx

∫ xi+1/2

xi−1/2

C(x)dx (3.45)

and by substituting the cell averaged value into the Taylor series C = C1+1/2 +

xC ′
1+1/2 + x2/2C ′′

1+1/2 + x3/6C ′′′
1+1/2 + x4/24C ′′′′

1+1/2 + · · · , then the cell averaged value

can be expressed with the values defined at cell interfaces (Lacor et al., 2004). For

example,

Ci = Ci+1/2 − Δx

2
C ′

i+1/2 +
Δx2

6
C ′′

i+1/2 −
Δx3

24
C ′′′

1+1/2 + · · · (3.46)

where, the subscript i means the index of a cell and i + 1/2 means the index of

a cell interface. By the combinations of the Taylor series expansions, fourth-order

accurate discretization equations can be obtained and used for the discretization of

the diffusion terms.

Ci+1/2 =
7
(
Ci+1 + Ci

)− (
Ci+2 + Ci−1

)
12

+O
(
Δx4

)
(3.47)
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C ′
i+1/2 =

15
(
Ci+1 − Ci

)− (
Ci+2 − Ci−1

)
12Δx

+O
(
Δx4

)
(3.48)

III.4.2. Time Integration

Third-order Adams-Bashforth predictor and the fourth-order Adams-Moulton correc-

tor scheme are used for the time integration.

In predictor step,

Cn+1 = Cn +
Δt

12

(
23T n − 16T n−1 + 5T n−2

)
(3.49)

In corrector step,

Cn+1 = Cn +
Δt

24

(
9T n+1 + 19T n − 5T n−1 + T n−2

)
(3.50)

where T is given by

T = −∂HCUi

∂xi

− Φ − Φν +
∂

∂xi

{
DLijH

∂C

∂xj

+

(
ν

Sc

+
νh

t

σt

)
H
∂C

∂xi

}
(3.51)

where the Φ and Φν are the products by the dispersion and vorticity effects of the

Boussinesq equations. They are given by

Φ = − ∂

∂xi

[
HC

{(
ζ2 − ζh+ h2

6
− z2

α

2

)
∂

∂xi

(
∂Uj

∂xj

)
+

(
ζ − h

2
− zα

)
∂

∂xi

(
∂hUj

∂xj

)}]
(3.52)

Φν =
∂

∂xi

[
ψiHC

{
z2

α

2
− zαζ +

(2ζ2 − 2ζh− h2)

6

}]
(3.53)
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The convergence error is defined as
∑ |Cn+1−Cn+1

∗ |/∑ |Cn+1| and it is required

to be less than 10−4 to be converged in this study.

III.4.3. 1D Linear Pure Advection

As a basic test, 1D linear pure advection problem was tested. A composite initial

concentration profile is given by

Co(x,0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, 1 ≤ x ≤ 3

x− 4, 4 ≤ x ≤ 5

−x+ 6, 5 ≤ x ≤ 6

cos {0.5π(x− 8)} , 7 ≤ x ≤ 9

exp {−4.5(x− 11)2} , 10 ≤ x ≤ 12

0, elsewhere

and it is advected by a uniform velocity of 1.0m/s. The uniform grid size Δx = 0.05m

and the courant number Cr = 0.5 were used. Figures 16 show the comparisons of the

computed results and the analytical solutions at t = 20 second, that is after it was

advected 10 time length of the each profile. In the simulation without the limiter,

unphysical numerical oscillations were created at the edge of the rectangular shape

concentration profile. However, the computed results agree well with the analytic

solutions entirely and very limited undershoot below than zero was observed. With

the limiter, the unphysical oscillations disappeared from the square shaped concen-

tration. However, the sharp peaks were damped slightly by the limiter in the other

profiles.

III.4.4. 2D Advection and Diffusion

A pure advection problem was tested in a 2D space where the flow is rotating about

the center of the domain with a constant angular velocity 0.314rad/hr. Thus it
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Figure 16. 1D linear advection results at t = 20s. Upper: without limiter, lower: with

limiter.
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rotates one circle per 20 hours. The initial concentration is given by

Co(x, y) = exp

{
−(x− xc)

2 + (y − yc)
2

2σ2

}
(3.54)

where xc and yc are 1250m and 2500m and the σ = 220m. This advection problem was

solved by Man and Tsai (2008) and the same numerical mesh size and computational

time step were used here; 100 × 100 grids with Δx = Δy = 50m and Δt = 40

second. The Figure 17 shows the initial conditions and the computed results at t = 5

hour, 30 hour and 55 hour. All the shapes look quite similar and sustained very well

for about three circulations. After one circulation (at t = 20 hour), the maximum

and minimum values are 0.9945 and −9 × 10−10. At t = 60 hour, that is, after

three circulations, the maximum and minimum values are 0.9828 and −6 × 10−8,

respectively. With smaller size grid Δx = Δy = 25m, the maximum and minimum

values are 0.9997 and −1× 10−10 at t = 20 hour and 0.9979 and −7× 10−9 at t = 60

hour, respectively. Very small error, especially very small undershoot, was observed,

thus it means excellent conservation property of the proposed numerical scheme. The

Figure 18 shows the contour of the concentrations at the end of the one and three

circulations and with different grid sizes and with different Δt. All the results are very

similar, so it can be concluded that the proposed numerical scheme is not affected by

the courant number and the grid size much. In addition, though the flow direction is

not parallel or perpendicular to the grids, quite similar agreements with the analytical

solutions were obtained. Therefore, the proposed model is expected to produce a good

result under complex flow fields with cartesian grid system.

In the same flow field, advection-diffusion problem was tested. In this problem,

the σ = 200m and the diffusion coefficients Dx = Dy = 0.1m2/s. The Δt = 40 second

and Δx = Δy = 50m were used as conducted by Man and Tsai (2008). Because the
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Figure 17. 3D view of computed results of pure advection test.
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Figure 18. Contours of the concentrations with different computational conditions.
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Figure 19. 3D view of computed concentrations of the 2D advection-diffusion test.

diffusion is included, the peak should decrease and the distribution should spread

wider as time marches as shown in the Figure 19. The Figure 20 shows the computed

and analytical profiles of the concentrations at the end of each circulation. The

agreements are pretty good. Therefore the proposed numerical model seems to be

good for the prediction of combined advection and diffusion in 2D spaces.

III.5. Numerical Simulations for Turbulent Transport

Three typical generation mechanisms in shallow flows that lead to the development

of 2D coherent structures were identified by Jirka (2001): ‘topographical forcing’,

‘internal transverse shear instabilities’ and ‘secondary instabilities of base flow’. This
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Figure 20. Concentration profiles of the 2D advection-diffusion test.

category is very useful for the validations of a numerical model for the turbulent

transport. Especially, for the first two mechanisms, several experiments were studied

well and so the results are used in this section. For the verification of quantity, a

comparison study with a laboratory experiment is presented, too.

III.5.1. Turbulent Transport by Internal Transverse Shear Instability

For the validation of the internal transverse shear instabilities, a flow in a plane

mixing layer experimentally investigated by Babarutsi and Chu (1998) is simulated

with the DISGS model. The dimension of the channel was 0.61m wide, 7m long and

the water depth h = 0.0296m. The inflow section was divided halfway by a plate as

shown in the Figure 21. At the upstream boundary, the velocity on one side of the

plate was u1 = 0.111m/s and the velocity on the other side was u2 = 0.264m/s, so

the overall Reynolds number was about Re = 5550. For the numerical simulation,
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Figure 21. Mixing layer channel (plan view).

the grid size Δx = Δy = 0.2h, the Cr = 0.5 and the CB = 100 were used. To

minimize the downstream boundary effects, a sponge layer was added additionally at

the downstream.

The Figure 22 shows the 〈u〉 (time mean velocity) and the u′rms (root mean square

value of the velocity fluctuation in the streamwise direction) by the DISGS and the

measurement. The discrepancy around the downstream end mainly resulted from the

different downstream boundary conditions between the experiment and the numerical

simulations, and from the freeslip condition at the side walls in the numerical model.

However, the computed 〈u〉, the slope of the 〈u〉 profile into the transverse direction

and the spreading rate of the mixing layer agree well with the experimental data in

overall sense. These good agreements are observed again in the comparison of the

u′rms, so reasonable prediction of the energy transport and scalar mixing by turbulent

flow are expected.

However, without the BSM, that is only with the hydrodynamic model, the

spreading rate and the slope of the 〈u〉 do not agree with the experimental data as

shown in the Figure 23. Especially, the value of the u′rms is too small and even the

tendency is absolutely different: The computational results are continuously getting
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bigger as flows toward the downstream unlike the experimental data. The main

reason of the overall discrepancies resulted from that the strength of the horizontal

shear of the numerical model without BSM is not strong enough to destabilize in

the mixing layer. Therefore the 3D turbulence effects that has the magnitude of γ2

in the equation (3.11) should be included in the case of destabilization by internal

transverse shear.

By the visualization, the transformations of eddies which are physically related

with the energy transport are observed. As shown in the Figure 24, the relatively

large eddies begin to be generated from about x = 0.2m and they grow bigger till

about x = 1.0m. After they pass the section x = 1.5m, the large eddy is not created

any more, the shape of the eddies is not sustained, and its structure becomes very

irregular. These development of the eddies can be validated by looking into the 2D

turbulent kinetic energy transfer in the Figure 25: In the upstream region, because

the eddies coalesce each other around the centerline of the channel, the energy is

extracted from the mean flow and it transfers to the large eddies located in the

mixing layer. In the downstream region, the eddies break down and the turbulent

kinetic energy is spread and dissipated. Considering the Figures 22 (u′rms), 24 and 25

together, the validity of the present DISGS model can be recognized. Without the

BSM, however, very regular eddy-shaped concentration distribution is observed as

depicted in the Figure 24 and the size of the eddies are getting larger as flows to the

downstream. In addition, the computational results without the BSM shown in the

Figures 23 (u′rms) and 25 are inconsistent with the experimental data quantitatively

and even qualitatively as well. In conclusion, it is apparent that the BSM plays an

important role for the turbulent transport in mixing layers, so it should be included

to account the 3D turbulence effects for these cases.
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Figure 22. Comparisons of the DISGS results and experimental data. Left: time mean

velocity (m/s). Right: root mean square velocity (m/s). Circle: experi-

mental data (by Babarutsi and Chu ,1998), line: numerical results.
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Figure 23. Comparisons of the numerical results without BSM and experimental data.

Left: time mean velocity (m/s). Right: root mean square velocity (m/s).

Circle: experimental data (by Babarutsi and Chu, 1998), line: numerical

results.
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Figure 24. Computed concentration. Upper: by DISGS, lower: without BSM. x = 0

represents the locations of the end of the splitting plate.
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Figure 25. Computed 2D turbulent kinetic energy. Left: DISGS, right: without BSM.
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III.5.2. Comparison to Taylor’s Theorem

Rummel et al. (2005) presented the results of an experimental study to determine the

magnitude of mixing coefficient for a passive tracer plume in shallow open channel

flow. Also they presented two analytical solutions for the near field and far field

mixing based on the Taylor’s theorem (1921). These results are compared with the

numerical simulation results quantitatively in this section.

In the experiment done by Rummel et al. (2005), the channel length was 13.5m

and the width was 5.5m. The water depth was h = 0.025m and the velocity was

U = 0.16m/s, resulting in the Re = 4000. The bed friction coefficient was given by

f = 0.029 from the experiment. The dye was injected through a 0.001m diameter

tube into the streamwise direction constantly at the middepth. In near field, the

analytical solution for lateral diffusion is given by

〈σ2
y〉 =

〈v′2〉
U2

x2 (3.55)

and in far field, it is given by

〈σ2
y〉 = 2〈v′2〉tiL x

U
(3.56)

where the σ2
y is the lateral variance of the concentration and the 〈v′2〉tiL is the turbu-

lent diffusion coefficient.

From the solutions, we can see that the σy/h is a function of the transverse

turbulent intensity iy = (〈v′2〉/U2)
0.5

and proportional to (x/h) in the near field and

proportional to (x/h)0.5 in the far field. Hence, numerical results should be related

with the iy and should show the similar proportionality with the analytical solutions in
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Figure 26. Instantaneous plot of the computed results by DISGS. Upper: turbulent

intensity, lower: scalar concentration.

the near and far fields, respectively. In the laboratory experiment, the flow conditions

resulted in the iy = 0.06. In the numerical simulation, the CB = 70 resulted in the

iy = 0.06 and randomly distributed scalar distribution as shown in the Figure 26.

The Figure 27 shows the characteristic plume half widths by the experiment and

the numerical simulation with the Δx = Δy = h/3. In far field (x/h > 10), the

slope (qualitative characteristic) and the width (quantitative characteristic) agree

well each other. In near field, the slopes of the analytic solution and the numerical

and experimental data show a little difference. It resulted from the limitation of

2D horizontal model. That is, in near field, the flow in numerical model is still 2D
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Figure 27. Normalized standard deviation σy/h of the transverse concentration pro-

files (Logarithmic plot). Line: analytic (by Rummel et al, 2005), circle:

computed, cross: measured (by Rummel et al, 2005).

motion in overall sense, but contains highly 3D small scale turbulence in real spaces

which cannot be resolved by a 2D horizontal model. Looking back to the derivation

of the depth-integrated transport equation, the O1 terms in the equation (3.25) were

neglected with the assumption of O (ε) � 1.0. However, this assumption is not valid

physically in the near field. Therefore, a different dispersion model specialized for the

near field or a 3D model is required for more accurate near field mixing simulations.

III.5.3. Mixing by Topographical Forcing

It is greatly important to investigate the effects of topography like islands to flows,

because their effects that can cause instability and coherent structures are very strong

(Jirka, 2002). Thus in this section, the mixing by the 2D coherent structures generated
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by the typical islands is investigated.

For the investigation, the flows studied by a laboratory experiment and numerical

model were selected. The laboratory experiment was conducted by Lloyd and Stansby

(1997a, 1997b). The experimental setup was: The 0.049m high island with 8 degree

side slope was installed at the 5.0m downstream from the inlet. The channel length

was 9.75m and the width was 1.52m. The outer radius and the inner radius of

the island were 0.375m and 0.025m, respectively. A steady streamwise flow with

velocity 0.115m/s was released at the upstream boundary. Two different cases were

tested. For the surface piercing island case, the water depth was 0.045m and for the

submerged island case, it was 0.054m. Thus the Reynolds numbers are Re = 5175

and Re = 6210, respectively. For the numerical simulation, the grid size Δx = Δy =

0.01m, the CB = 70 and the Cr = 0.5 were used. For the scalar transport simulations,

the numerical dye is injected at the 0.5m upstream of the island.

The computed results for the surface piercing island by the DISGS model are

plotted in the Figure 28. The proposed model generated the large 2D coherent struc-

tures very well and their patterns look similar to the snapshot of the dye distributions

in the Figure 29. However, in these cases named ‘topographical forcing’, the main

generation mechanism of the 2D coherent structures is the separation from the topog-

raphy. Thus the 2D coherent structures were also generated very reasonably without

the BSM as shown in the Figure 30. Of course, into the Boussinesq equations model

without BSM, the subdepth scale turbulence effects by the bottom friction such as

the vertical eddy viscosity and the vorticity terms were incorporated.

For the submerged island case, the water depth was so shallow at the apex of the

island that the separation was observed at the downstream lip of the horizontal apex

and across the upper shoulder (Lloyd and Stansby, 1997b). Thus, the 2D coherent

structure can be generated by the topographical forcing. The Figure 31 shows the
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Figure 28. Computed results for surface piercing case by DISGS. (a) water surface

elevation, (b) scalar concentration, (c) vertical vorticity.
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Figure 29. Dye visualization of wakes (by Lloyd and Stansby, 1997a). Surface piercing

island case.

computed results by the DISGS model and the computed concentration looks similar

to the experimental data in the Figure 32. Similar to the surface piercing case, the

2D coherent structures were generated very reasonably without the BSM as shown

in the Figure 33. However, it will be very hard to decide whether the effects of the

3D turbulence is important or not in real applications, because the topography is so

arbitrary. Hence it is recommended include the BSM for an important simulation. In

conclusion, the proposed DISGS model is expected to be able to predict the mixing

by topographical change under and over water surfaces which are very commonly

observed in nature.

III.6. Summary

For the turbulent transport by long waves and currents, the 3D turbulent effects

were incorporated by a perturbation approach into the fully nonlinear Boussinesq
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Figure 30. Computed results without BSM for surface piercing island case. (a) scalar

concentration, (b) vertical vorticity.
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Figure 31. Computed results for submerged case by DISGS. (a) water surface eleva-

tion, (b) scalar concentration, (c) vertical vorticity.
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Figure 32. Dye visualization of wakes (by Lloyd and Stansby, 1997b). Submerged

island case.

equations which are for weakly dispersive and rotational flow.

A depth-integrated scalar transport equations were derived by the same per-

turbation approach based on the long wave scaling for consistency. The dispersion

coefficient was derived based on the vertical velocity profile of the Boussinesq equa-

tions.

The proposed equations were solved by a fourth-order accurate FVM. Several

typical tests for the verifications of the scalar transport solver showed very good

agreements with analytical solutions. Especially, very little error by numerical dis-

persion, dissipation and diffusion were detected.

From the mixing layer simulation with the stochastic BSM, the importance of

the 3D turbulence effects to the turbulent transport was apparently proved. The

comparisons with the Taylor’s theorem showed that the proposed depth-integrated

transport model coupled with the DISGS model has the consistency with the analytic
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Figure 33. Computed results without BSM for submerged island case. (a) scalar con-

centration, (b) vertical vorticity.
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solutions and the experimental data in far field. From the comparison in near field,

the inherent limitation of the 2D horizontal model was recognized. In the simulations

of the mixing by the bottom topography, the effects of the 3D turbulence effects were

less important than the other cases.
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CHAPTER IV

TOWARDS ENGINEERING APPLICATIONS: COMPLEX

TOPOGRAPHY AND SHOCK CAPTURING

IV.1. Introduction

In natural environment, somewhere the boundary of water body must interact dy-

namically with the dry land where we live on. One extreme example is the tsunami.

When it is generated by an earthquake, a long wave propagates across the ocean

and approaches to nearshore region while transforming itself by interacting with the

bottom bathymetry. Over the shorelines, it runs up and sometimes overtops levees

or islands, resulting in new waves or shocks regenerated by the overtopped waters or

levee breaches. To model such a complex motion of flows, two requisites should be

satisfied; a stable moving boundary scheme and a shock capturing scheme.

By many researchers, various moving boundary schemes for shallow water equa-

tions models were proposed and compared with experimental data and analytical

solutions, for example, Liu et al (1995), Titov and Synolakis (1995), Kim et al.

(2004), Kobayashi and Wurjanto (1989) and Hu et al. (2000). Commonly very good

agreements were observed in the results. The numerical solvers of the shallow water

equations are very stable and accurate for the very long waves within short propaga-

tion distance. However, we cannot expect reasonable prediction unless the waves are

nondispersive, the waves travel short distance or the pressure is hydrostatic. Hence,

we have to seek another solution, the Boussinesq equations model.

Unfortunately, only a few moving boundary schemes focused to runup studies

were developed for the Boussinesq equations model and tested, for example, Mad-

sen et al. (1997) and Lynett et al. (2002). Moreover, for the overtopping which



103

includes run down or re-entrance process, only more limited studies were done like

Stansby (2003), who proposed 1D Boussinesq equations model equipped with mov-

ing boundary scheme. One possible reason for this is that the Boussinesq equations

model, with its attractive ability to simulate dispersive wind waves, generally requires

a complex numerical scheme for accuracy, a numerical scheme that does not readily

lend itself to capturing the complex flow patterns (e.g flow re-entrance on the lee side

of a levee) common with overtopping. Finally, it resulted in the limitations of the

practical applications of the Boussinesq modeling.

The undular bores observed at the front of a tsunami or tide in nearshore area

can be generated by a collapse of a dam, too. The dam-break flow, usually very

long wave, has been important issue to hydraulic engineers from very long time ago,

because it can cause a catastrophic disaster. To find the countermeasures, lots of

laboratory experiments, mathematical and numerical studies were done by many

research groups, for example the IMPACT project (2004), Toro (2002) and Kim et

al. (2008).

In a typical study for the dam-break flows, the initial condition is given like the

Figure 34(a): Where two stationary water bodies are separated by a dam and the

dam is assumed to be removed instantaneously. For the numerical simulation of the

dam-break flows, the shallow water equations set was the most popular choice. The

shallow water equations model assumes that the pressure is propositional only to

the water depth and the vertical velocity is small enough to be ignored. With those

assumptions, the shallow water equations model can predict a surge and a rarefaction

wave as shown in the Figure 34(b).

However, the undular bores in the Figure 34(c) which cannot be predicted by

the shallow water equations model are frequently observed in nature. For example,

in the Main-Danube navigation canal, secondary waves with a wavelength of about
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Dam
(a)Initial Condition

(b)by Hydrostatic

surge(primary wave)
rarefaction wave

(c)by Nonhydrostatic

undular bore(secondary wave)

Figure 34. Schematics of water surface profiles in a typical dam-break problem, (a)

initial condition, (b) profile by hydrostatic theory, (c) profile by nonhydro-

static theory.
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100m and amplitudes of up to ∓0.5m produced by the operation of lock gates were

observed (Treske, 1994). By nature, undular bores can be generated and observed

in coastal areas frequently. Tidal bores are regularly observed at many estuaries

like the Qiantang River in China and the tsunami wave fission has been observed

occasionally. These undular motions can arise many practical engineering problems

of the freeboard height, overtopping or inundation. Besides, in the view of numerical

methods, its computational condition can be so severe due to the shock.

To simulate the undular bores, the nonhydrostatic effects and shock capturing

technique should be considered. Soares (2002) described how the nonhydrostatic

effects can generated the undular bores conceptually. Here, it is explained math-

ematically. During the derivation of the fully nonlinear Boussinesq equations, the

pressure term is expressed as

p

ρ
= ζ − z +

1

2

(
z2 − ζ2

) ∂S
∂t

+ (z − ζ)
∂T

∂t

+
1

2

(
z2 − ζ2

)
U · ∇S + (z − ζ)U · ∇T

+
1

2

(
ζ2 − z2

)
S2 + (ζ − z)TS (4.1)

As can be seen from the equation (4.1), the pressure depends not only on the

water depth but also on the spatial and time variations of many variables like the

water velocity and the water depth. Because the dam-break flows and the tidal

bores are strongly transient and nonuniform, all the terms of the right hand side of

the equation (4.1) cannot be negligible but can be significant under some specific

situations.

For the case of the typical dam-break flows which is induced by sudden removal

of dam, Mohapatra and Chaudhry (2004) investigated the effect of nonhydrostatic
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pressure distribution with a Boussinesq equations model. They solved the equations

with a fourth-order explicit FDM. In their results, the computed water surface profiles

had undulations when the depth ratio εr (initial downstream water depth/initial

upstream water depth) was greater than 0.4. Carmo et al. (1993) conducted dam-

break flow experiments with the condition of εr > 0.5 and observed undular bores at

the downstream of the dam. They compared the experimental data and the computed

results based on a Serre equations model. Mignot and Cienfuegos (2008) applied a 1D

Boussinesq equations model including wave breaking energy dissipation to the flows

including a shock. However, their applications were not for undular bores.

Undular bores generated by a sudden release of a constant discharge were investi-

gated by Soares and Zech (2002b) with an experiment and a numerical method. They

solved the 1D Boussinesq equations with a hybrid (FVM/FDM) numerical scheme.

Soares and Guinot (2008) proposed a modified hybrid scheme to solve the Boussinesq

equations in 1D space on a horizontal bed. Good agreements were obtained.

Soares and Zech (1998, 2002a) presented a 2D experimental data set and numer-

ical results of a dam-break flow in a channel with a 90-degree bend. Their numerical

model was based on the shallow water equations and solved by a FVM. They showed

that the 1D approach revealed the expected limitations, while the 2D approach pro-

vided more physical prediction and rather satisfactory information. Naturally, as a

next progress, a 2D Boussinesq modeling which is stable enough to be applied the

dam-break flows is investigated in this study.

In this chapter, a simple but robust moving boundary scheme for Boussinesq

modeling is presented. Various verification tests are conducted and the results are

discussed. For the test of the applicability to the dam-break flows and undular bores,

several benchmark problems are simulated using a fully nonlinear Boussinesq equa-

tions model in 1D and 2D spaces.
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IV.2. Moving Boundary Scheme

In this section, a new moving boundary scheme based on simple physical conditions

is proposed. Essentially it follows the approach proposed by Liu et al. (1995) except

for one condition described below. As shown in Figure 35(a), if the water surface

level at i is lower than the level of the dry bed at i+ 1, then the variables at i+ 1/2

are evaluated by assuming that there is a wall at i+ 1. Here the i index represents a

spatial cell location. On the other hand, if the water surface level at i is higher than

the level of the dry bed at i + 1, as in Figure 35(b), the water is supposed to flow

into the cell i + 1. Note that this moving boundary scheme assumes discontinuous

bottom topography, so the modified surface gradient method that can be applied

on discontinuous bottom topography should be used (Kim et al., 2008). Without

employing such a method, nonphysical oscillations can be created at the boundary of

the wet and dry bed.

A physical constraint is added to the scheme, determined largely from experience

in using it. Similar to other moving boundary schemes (e.g. Lynett et al. 2002), some

minimum allowable total water depth must be chosen. When the total water depth

is very small, the computed velocity can become very large, often due to a poor

representation of bottom friction for these cases, causing the required time step for

stability to plummet. Here, if the total water depth is less than εh, then the computed

velocity is set to zero. For idealized flow simulations on a simple bottom, εh can be less

than 1 × 10−6m or less. However, for complex flow simulations, εh = 1 ∼ 2 × 10−4m

is recommended.

However, for a particular situation, a disconnected case, shown in Figure 36,

nonphysical and unstable computations can occur even if the above described moving

boundary scheme is implemented correctly. In Figure 36(a), physically, the water at
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(a)

(b)

Figure 35. Schematic diagram of moving boundary scheme.

(a) (b) (c)

Figure 36. Schematic diagram of moving boundary scheme for disconnected case.
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cell at i must not affect the flow at i+ 1, but the water at i+ 1 can affect the flow at

i. Therefore, in order to reflect this particular situation in the numerical model, the

flux at i+1/2 is divided into two parts following the Figure 36(b) and (c). The fluxes

for each interface side are calculated independently, and then combined. In detail, in

one-dimensional space,

1. Divide the case (a) into (b) and (c) as in figure 36.

2. For the case of (b), compute the fluxes for cell i as if there was a vertical wall

at i+ 1/2.

3. For the case of (c), assume the bottom level of cell i to be the same with the

bottom level of cell i+ 1, and compute the fluxes of the cell i+ 1 (as if on flat

bed).

4. Sum the computed fluxes at i + 1/2 from case (b) and (c), and use that total

flux in the application of the governing equations for cells i and i+ 1.

With this moving boundary scheme, all equations are solved directly without

extrapolations as used in Lynett et al., (2002), for example. Thus, it is anticipated

that physical solutions with less loss of mass can be obtained and overtopping of steep

walls can be solved as well.

Small numerical oscillations may be still created at the shoreline where flow is

particularly energetic, and is typically due to the dispersive terms, and their high-

order expression. To get rid of the unwanted numerical oscillations, a combination

of shallow water equations and Boussinesq equations is used. In this study, if one or

more of the three cells to the left or three cells to the right have the total water depths

less than εh, the shallow water equations are solved; otherwise Boussinesq equations

are employed. This criterion is physically reasonable as, in shallow water, that is
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near the shoreline, depth-integrated flow properties can be reasonably predicted by

the conventional nonlinear shallow water models. Note that this moving boundary

scheme can be applied to the transport equation as well.

IV.3. Tests of the Moving Boundary Scheme

In this section the performance of the proposed moving boundary scheme is tested.

Note that no modification and smoothing of the bathymetry were done for all numer-

ical simulations in this dissertation.

IV.3.1. Solitary Wave Runup and Rundown

For the verification of the moving boundary scheme, one of the most commonly-

compared solitary wave runup and rundown data set, investigated experimentally by

Synolakis (1987), is used. In Synolakis’ experiments, the beach slope was 1:19.85

and various wave nonlinearities εn, the wave height to depth ratio, were tested. To

compare with the measurement data, a nonbreaking wave with εn = 0.04 and a

breaking wave with εn = 0.28 are simulated; this solitary wave breaks before reaching

the shoreline. For the numerical simulations, Δx = 0.3m, Cr = 0.5 and, for the

bottom friction, ks = 0.1mm were used. During the breaking wave runup simula-

tion, the breaking dissipation term Rb (Kennedy et al, 2000) is incorporated into the

momentum equations. The computed results are compared with the measured data

by Synolakis (1987) in Figure 37 and Figure 38. The proposed moving boundary

scheme produces very good agreement and stable results for both the runup and run-

down process. These comparisons provide a measure of confidence that the moving

boundary scheme can reproduce well-controlled, small-scale measurements.
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Figure 37. Water surface profiles for runup and rundown process. Nonbreaking case

(εn=0.04). Line: numerical results, dot: experimental data (by Synolakis,

1987).
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Figure 38. Water surface profiles for runup and rundown process. Breaking case

(εn=0.28). Line: numerical results, dot: experimental data (by Synolakis,

1987).
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Figure 39. Laboratory experiment setup of BEB.

IV.3.2. Sinusoidal Wave Overtopping

Here, overtopping experimental data reported in Saville (1955) are compared with

computational results. The experiment was conducted by the Beach Erosion Board

(BEB). The flume was made of concrete and was 36.6m long, 1.52m wide, and 1.52m

deep. At upstream side, a wavemaker was used for sinusoidal wave generation. At

the downstream end of the flume, levee structures were built. A structure with slope

1 : s was fronted by a fixed 1 : 10 sloped floor. The setup of the waves and the

structures are summarized in the table 2 and the Figure 39.

In the numerical simulations, the sinusoidal wave is generated using an inter-

nal source generator combined with the sponge layer on the upstream boundary.

Δx = 0.05m, Cr = 0.5, and ks = 0.0006m are used and the overtopping fluxes

are evaluated on the levee crest. The breaking dissipation terms are included in all

the computations. For the comparisons, other computed results by the shallow wa-

ter equations models of Kobayashi and Wurjanto (1989) and Dodd (1998), and the
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Table 2. Experimental setup of the BEB sinusoidal wave overtopping.

Test no. h (m) hs (m) hc (m) H (m) T (s) s

1 0.529 0.081 0.054 0.107 1.549 3.0

2 0.529 0.081 0.107 0.107 1.549 3.0

3 0.609 0.161 0.054 0.107 1.549 3.0

4 0.609 0.161 0.107 0.107 1.549 3.0

5 0.609 0.161 0.054 0.081 1.858 3.0

6 0.529 0.081 0.054 0.107 2.616 3.0

7 0.529 0.081 0.107 0.107 2.616 3.0

8 0.529 0.081 0.161 0.107 2.616 3.0

9 0.609 0.161 0.054 0.107 2.616 3.0

10 0.609 0.161 0.107 0.107 2.616 3.0

11 0.609 0.161 0.161 0.107 2.616 3.0

12 0.529 0.081 0.054 0.081 3.634 3.0

13 0.609 0.161 0.054 0.081 3.634 3.0

14 0.609 0.161 0.107 0.081 3.634 3.0

15 0.609 0.161 0.161 0.081 3.634 3.0

16 0.609 0.161 0.215 0.081 3.634 3.0

17 0.529 0.081 0.054 0.107 2.616 1.5

18 0.529 0.081 0.161 0.107 2.616 1.5

19 0.448 0.000 0.054 0.107 2.616 1.5

20 0.448 0.000 0.107 0.107 2.616 1.5
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Figure 40. Overtopping fluxes over of the levees. In each group of bars, from left to

right, Exp: Saville (1955), K&W: Kobayashi and Wurjanto (1989), Dodd:

Dodd (1998), I&L: Sitanggang & Lynett (inpress), Bous: Present study.

Reynolds averaged Navier-Stokes model by Sitanggang and Lynett (inpress) are com-

pared together in Figure 40. In general, all the computed fluxes are in good agreement

with the experimental data and consistent with the previously published results.

IV.3.3. Overtopping and Wave Regeneration at Lee Side

HR Wallingford performed a set of experiments on solitary wave overtopping of levees

in 1996. The wave flume used in the experiments was 40m long and 0.5m wide and

filled with water to h1 = 0.7m at the seaward side of the breakwater and h2 = 0.3m

behind the levee. A levee with 1 : 4 seaward slope and 1 : 2 leeward slope was built

at the right end of the flume, as shown in Figure 41. The height of the levee was
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Figure 41. Laboratory experiment setup of HR Wallingford.

0.5m and the width of the crest was 0.16m, and it was fronted by a 1:50 inclined floor

of height 0.4m. Five gauges were installed on the top of and behind the levee. The

first wave gauge (13) was located 0.015m behind the leading edge (A), the second

gauge (14) and third gauge (15) were installed 0.055m and 0.11m from the first gauge

respectively. The fourth gauge (16) was located 0.72m behind the backside edge (B)

of the levee. The last gauge was installed 0.44m behind the back toe (C) of the levee

as given in Figure 41. More details of the experimental setup are given in Dodd

(1998).

With the wave gauges located behind the structure, this data set provides the

rare opportunity to compare not only the overtopping wave, but the regenerated wave

behind. Correct simulation of this regenerated wave is considerably more difficult

than capturing runup or even overtopping rates. It requires that the model properly

simulate the flow down the backface of the structure as well as the re-entrance of
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the overtopping flow into the calm backside water. This latter aspect is the most

challenging, and requires a robust and stable method of determining water fluxes in

and out of a numerical cell.

Two wave height cases are simulated with the numerical model. The Δx =

0.04m, Cr = 0.5 and ks = 0.0006m for plywood were used. The computed profiles of

the wave overtopping simulation data are shown in Figure 42. The left side figures

show the profiles when the waves begin overtopping and the right side figures show

the small regenerated wave profiles behind the levee. These profiles are verified by the

comparison with the laboratory experimental time series data in Figure 43. Overall

agreements of overtopping with gauges 13, 14 and 15 are good. At gauges 16 and 17,

on the lee side of the levee, the proposed numerical model predicts the dispersive wave

motions accurately, which cannot be observed in shallow water equation based model

as described in Dodd (1998). With the comparisons presented here, it is expected

that the model will provide high confidence nearshore transformation and overtopping

estimates for variable, complex, and steep bathymetry and topography.

IV.4. Dam-Break Flow Simulations

IV.4.1. Undular Bore Generation by Sudden Discharge Release

The ability of the Boussinesq equations model for the prediction of the undular bore

generated by a sudden release of discharge is investigated. For the verification pur-

pose, a laboratory experiment conducted by Soares and Zech (2002b) was chosen. In

the experiment, a sluice gate was installed between the upstream reservoir and the

downstream channel as described in the Figure 44. In the downstream channel, six

water surface elevation gauges (C0 · · · C5) were installed. The initial downstream

water depth was h = 0.251m. They opened the sluice gate partially from the bottom,
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Figure 42. Snapshot of computed water surface profiles. (b) wave heights = 0.10m,

(c) wave height = 0.12m.
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Figure 43. Time series of the water surface elevations. Solid: numerical results, dotted:

experimental data, upper: wave height = 0.10m, lower: wave height =

0.12m.
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Figure 44. Experimental setup for undular bore propagation (Soares and Zech, 2002b).

All units are in meter.

thus a sudden discharge was pushed into the downstream channel instantaneously

and constantly. For the numerical simulation, this sudden release from the gate was

modeled as a unit discharge 0.059m2/s at the upstream boundary condition as done

by Soares and Guinot (2008). The grid size Δx = 0.05m, the Cr = 0.5 and the

ks = 0.0003m were used for the numerical simulation.

The time series of the water surface elevations at the each gauge are plotted in

the Figure 45. As can be seen from the figures, the physical properties of the undular

bores were captured very reasonably. In addition, the amplitudes and the periods of

the waves agree very well with the experimental data quantitatively. Although both

numerical models reproduced the undular bores very accurately, the present model
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Figure 45. Time series of water surface at each gauge. Present: present study, Exper-

iment: measured data, S.F.: computed by Soares and Guinot (2008).
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Figure 46. Time series of water surface at gauges. SWE: by shallow water equations

model, Experiment: measured data.

showed better agreements with the experimental data for the period, which can be

seen clearly at the gauge C2, C3 and C4. It should be mentioned that the time series

of the measured data were shifted −0.1 second in the figures for easier comparison.

The shallow water equations model was applied to solve the same flow. However, as

expected, the shallow water equations model failed to generate the secondary waves.

As can be seen in the Figure 46, it could generate only the surge. The magnitude

of the difference is about 10% based on H and about 40% based on ζ, which values

are not negligible in practices. Note that all shallow water equations model used in

this study were solved by the exactly same numerical method with the Boussinesq

equations model, that is, a fourth-order MUSCL scheme with the HLL approximate

Riemann solver.
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IV.4.2. Dam-Break Flows Simulations

In this test, the gate is fully opened instantaneously so that a rarefaction wave is

generated and propagates toward the upstream reservoir, which is different with the

previous test case. For the verification purpose, an experimental case that showed

undular bores (Carmo et al., 1993) was chosen. The experiment was conducted in

a 7.50m long and flat channel. One water surface level gauge (G1) was installed

in the upstream reservoir at x = 3.85m from the upstream end. The other three

gauges (G2-G4) were located at x = 5.25m, 6.25m, and 7.25m, respectively in the

downstream channel. The initial upstream reservoir water depth was 0.099m and

the downstream channel water depth was 0.051m. For the numerical simulations,

Δx = 0.025m, Cr = 0.5 and ks = 0.0001m were used.

The time series of the water surface elevation are shown in the Figure 47. For

the measured data, the numeric values of the ζ are not given because they were not

reported in Carmo et al. (1993). However, it seems that the Boussinesq equations

model predicted the oscillatory patterns and the periods of the secondary waves very

well. While the shallow water equations model shows different physics with the exper-

imental data due to the inherent limitation, the hydrostatic pressure assumption. The

small discrepancy of the arrival timing mainly resulted from the gate opening time

(top). To be regarded as an ‘instantaneous’ opening, the top should satisfy (Vischer

and Harger, 1998).

top ≤ 1.25

√
Hu

g
≈ 0.13 (4.2)

where the Hu is the initial upstream water depth, or should be in the range (by

Lauber and Harger, 1998)



124

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

time (second)

ζ 
(m

)

G1

G2

G3

G4

(a) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (second)

ζ 

G1

G2

G3

G4

(b) 

Figure 47. Time series of water surface elevation. (a) computed results. Solid line:

by Boussinesq equations model, dotted line: by shallow water equations

model. (b) measured data (Carmo et al., 1993). The G1, G2, G3, and G4

are the gauge numbers.
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top ≤
√

2Hu

g
≈ 0.14 (4.3)

In the numerical simulations top was assumed to be 0.0 second, but it took about

top = 0.5 second in the laboratory experiments, which number is much bigger than

the estimated values by the equations (4.3) and (4.4).

The spatial water surface profiles and the velocity distributions are plotted in

the Figure 48 and the Figure 49, respectively. The arrival times by the Boussinesq

equations model and by the shallow water equations model are very similar. However,

there exist non-negligible differences of the water surface elevations and the velocities

around the fronts. One more different pattern is detected around the end of the

rarefaction wave. As explained with the equation (4.1), the unsteady and nonuniform

curvatures shown in the Figures 48 and 49 can cause the nonhydrostatic pressure

effects. However, after many simulations it was found that its effect to the flow is not

important in overall sense, though not printed here.

IV.4.3. 2D Dam-Break Flows in a L-Shaped Channel

The dam-break flow experiments in a L-shaped channel conducted by Soares and Zech

(1998, 2002a) have been used as a typical benchmark data set for the 2D dam-break

flow studies in many literatures. The experimental channel shown in the Figure 50

was composed of a 2.44 × 2.37m size upstream reservoir and a downstream channel

with a 90-degree bend. The bottom of the reservoir and the channel were flat but the

bottom level of the downstream channel was 0.33m higher than the reservoir bottom.

The initial water surface elevation of the reservoir was 0.2m higher than the channel

bottom. For the wet bed case, the total water depth at the downstream channel

was 0.01m. For the dry bed case, it was 0.0m. For the numerical simulation, the
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Figure 48. Computed water surface profiles. Solid line: by Boussinesq equations

model, dotted line: by shallow water equations model.
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Figure 49. Computed velocity profiles. Solid line: by Boussinesq equations model,

dotted line: by shallow water equations model.
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Figure 50. Experimental set up of the L-shaped channel. Upper: side view, lower:

plan view. All units are in meter.

Δx = Δy = 0.0495m and a uniform value of Manning coefficient n = 0.011 were used

for the entire computational domain as proposed by Soares and Zech (2002a). The

Manning friction formula can be applied with cf = gn2/H1/3. It should be mentioned

that the shallow water equations were solved at the dam location for the stability.

The time series of water surface elevations at the gauges are plotted in the Figures

51. Reasonable agreements were obtained as shown in the figures though there are

small differences between the measured data and the computed results. There are

various reasons that can cause the errors. Firstly, the friction term based on the steady

state, that is, Manning’s formula was used in the numerical simulations. As tested by

Soares and Zech (1998), the computed results were sensitive to the Manning n value.
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The use of a frictionless side walls condition can contribute to the discrepancy, too.

Especially, the energy losses that can occur at the abrupt contraction between the

channel and the reservoir, and at the 90 degree bend were not accounted properly in

these simulations. Lastly, because the flows in 3D space were modeled in 2D space in

the present modeling, it is natural that there are differences between the computed

results and the experimental data.

The second undular peaks at the gauges G2, G3 and G4 in the time series can

be explained by the Figure 52 and Figure 53: The suddenly released water flows

straightly at the beginning and then blocked by the wall in the bend. For a while,

the water is temporary stored and the water surface is increased in the bend. After

soon, the part of the stored water in the bend is reversely released to the upstream

reservoir. Consequently, the undular bores can be created like the figures. After the

part of the flow passes the 90-degree bend, the 2D secondary shocks generated by the

reflections between the side walls were captured as shown in the Figure 52 and Figure

53. These patterns are similar to the 2D secondary shock captured in the experiments

(by Soares and Zech, 2002a) like the Figure 54. However, in the similar computational

studies like Zhou et al. (2004) and Soares-Fraza and Zech (2002a), the 2D secondary

shocks were not captured. It should be noted that the secondary shocks are not

directly related with the nonhydrostatic pressure effects of the Boussinesq equations.

In the numerical results by the shallow water equations model solved by the present

numerical method, the 2D secondary shocks were captured also though not printed

here. It seems reasonable because, if the ratio εr is very small like in the downstream

of the 90-degree bend then the nonhydrostatic effects become negligible (Mohapatra

and Chaudhry, 2004).
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Figure 51. Time series of water surface elevations in the L-shaped channel. left: wet

bed case, right: dry bed case. Solid line: numerical results, dotted line:

measured data.
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Figure 52. Snapshots of the computed water surfaces of dam break flows (wet bed

case). All units are in meter.
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Figure 53. Snapshots of the computed water surfaces of dam-break flows (dry bed

case). All units are in meter.
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Figure 54. Secondary shock captured in the experiment (Soares and Zech, 2002a).

IV.5. Undular Bore Simulations

IV.5.1. Undular Bores Generated by Tsunami Wave Fission

Tsunami, a very long wave, can occur one of the most serious disasters to human soci-

ety. When it approaches shores, the curvature of the water surface is getting steeper

due to the celerity, so the nonhydrostatic pressure effects may become important.

Sequently, the undular bores like the soliton fission can be generated in nearshore

areas. For example, a fission was observed during the 1983 Nihonkai-Chubu earth-

quake tsunami in Japan (Shuto, 1985). These waves can occur the harbor oscillation

problems or can affect to the runup height which is critical to the evacuation.

An undistorted experimental study on the tsunami soliton fission was carried

out in the Large Wave Flume located at Central Research Institute of Electric Power

Industry in Japan (Matsuyama et al, 2007). The dimensions of the channel were

205m long, 3.4m wide and 6.0m deep. The bottom geometry of the experiment is

depicted in the Figure 55. The tsunami was generated with a sinusoidal wave form

at the left boundary like
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Figure 55. Experimental setup for tsunami wave fission.

ζ =

⎧⎪⎨⎪⎩ Asin
(

2πt
T

)
, 0 ≤ t ≤ T

0, T > t
(4.4)

where A = 0.03m and the T = 20 second. For the numerical simulation, the Δx =

0.075m, the ks = 0.0003m and the Cr = 0.5 were used.

During the long wave is approaching the shore, the transformation processes of

the soliton fission is captured reasonably by the proposed Boussinesq equations model

as shown in the Figure 56. For the validation, the time series of the water surfaces

were compared in the Figure 57. Very good agreements with the measured data were

obtained. The error resulted from mainly the discrepancy of the wave source between

the numerical model and the laboratory experiment.

IV.5.2. Okushri Island Tsunami

On July 12, 1993, a tsunami was generated and attacked the south-west coast of

Hokkaido in Japan including Okushri island. Matsuyama and Tanaka (2001) repro-
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Figure 56. Computed water surface profiles of tsunami wave fission.
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Figure 57. Time series of water surface elevations. Solid line: numerical results. Dot-

ted line: measured data (by Matsuyama et al, 2007).
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duced the tsunami in a laboratory for the investigation of the mechanism and the

maximum runup height of Okushri tsunami. This experimental data set is a very

good benchmark problem in the view of theory and application because the physics

and the topography are complex together. Thus, their results (time series of wa-

ter surface, animation of runup process, boundary condition and bathymetry) were

widely spread and used as a benchmark problem.

The topography given by the laboratory data is plotted in the Figure 58. In

the domain, there are a submerged (Hira island) and a surface piercing island (Muen

island). A complex topography comprised of two small valleys (Monai valley) is lo-

cated on the shore, where the maximum runup was observed. About 2m off from the

offshore boundary, there is a submerged vertical cliff, which may create a numerical

oscillation in numerical simulation. As shown in the figure, the shoreline is not uni-

form and so the runup and the rundown processes should be affected by the particular

topography. More details about the experiment are in the Matsuyama and Tanaka

(2001).

Note that, for the numerical simulations, the topography data were used without

any modifications. The boundary conditions given by the experimental data are

generated by using internal source and sponge layer at left boundary. At the other

boundaries, there are walls. The grid size Δx = Δy = 0.014m, ks = 0.001m and

Cr = 0.5 were used, and the breaking terms are included in the numerical simulations.

The computed water surface elevations are shown in the Figure 59. At the

beginning, withdrawal seaward direction is observed due to the left side boundary

condition. Thus the water surface elevation descends and Muen island is bridged

to the shoreline as shown in the figure at t = 12.9 second. Next wave from the

seaward boundary is propagating toward shoreline and it is separated and bended by

Muen island. The dried pathway between Muen island and the shoreline becomes
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Figure 58. Topography data (Matsuyama and Tanaka, 2001). All units are in meter.

submerged again. After the wave reaches the shoreline, it is reflected and scattered.

As shown in the figures from at t = 16.2 second, the secondary wave that can be

captured by dispersive wave model, is propagated into the entire domain. Note that

the wiggle that is parallel to the longshore axis is generated by the submerged vertical

cliff located 2m off the left boundary.

These secondary waves can be seen obviously in the time series at three locations,

(4.521m,1.196m), (4.521m,1.696m) and (4.521m,2.196m). As shown in the Figure

60, the numerical results and the measured data are within good agreements. In the

time series, for the first 10 seconds, there are discrepancy between the numerical and

experimental data, because the water surface and velocity in the laboratory tank were

not zero.

Next, the detail inundation mechanism on Monai valley is described, on which

the maximum runup was observed. In the Figure 61(a), the current and wave front

are flooding on the dry land. The front reaches firstly just above area of Monai valley

like the Figure 61(b). Next, it runs up Monai valley and makes the valley inundated
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Figure 59. 3D view of the computed water surface elevations. All units are in meter.
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Figure 60. Time series of water surface levels. Solid line: numerical results, dot-

ted: experimental data (Matsuyama and Tanaka, 2001), upper: at gauge

no.5 (4.521m,1.196m), middle: at gauge no.7 (4.521m,1.696m), bottom: at

gauge no.9 (4.521m,2.196m).
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as shown in the Figure 61(c). At final stage, the water retreats as shown in the Figure

61(d). Quite similar runup procedure was observed in the laboratory experiment like

the photos in the Figure 61.

Liu et al. (1995) investigated a general process of long wave propagation and

transformation around a conical island. When a long wave propagates through an

island, it is separated into two parts and the separated waves are partly trapped by

shallow water depth area, and so the wave crests bend. The separated waves may

collide again at the lee side of the island, and a second runup can be occurred at

the lee side of the island. These processes are modeled quite well with the proposed

model around Muen island as shown in the Figure 62. In addition, it shows the strong

coherent structures at the lee sides of the island during the tide (upper figures) and

the ebb (lower figures).

The coherent structure is expressed with vertical vorticity in the Figure 63. As

described above, around the surface piercing Muen island strong vertical vorticity

is generated mainly by the topography itself. On the submerged Hira island, the

strength of the vertical vorticity becomes weaker when the water depth is deep (at

t = 18.6sec).

IV.6. Summary

A robust moving boundary scheme based on simple physical conditions was developed.

With several experimental data sets, the numerical results showed good agreements.

Especially, the re-entrance of the overtopped flow into the lee side of levees, one of

the most challenging problem of moving boundary scheme, showed very reasonable

agreements with experimental data.

Several typical undular bores generated by dam-break flows and tsunamis were
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Figure 61. Inundation process around Monai valley. Color represents the water depth.

left: numerical results, right: photographs of experiment (by Matsuyama

and Tanaka, 2001).
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Figure 63. Computed depth-integrated vertical vorticity (m/s).
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simulated with the nonlinear Boussinesq equations model that can consider the non-

hydrostatic pressure effects. From the numerical simulation results, the importance

of the nonhydrostatic pressure effects was recognized. In overall sense, accurate and

stable computational results were obtained. Thus, it can be regarded as a good tool

for the wave and current interaction including shocks and undular bores. In Okushri

tsunami simulations, widely used as a benchmark data set, the complex physics and

topography of the laboratory experimental flow were very well dealt with the proposed

model.

Therefore, with the comparisons presented here, it is expected that the model can

provide high confidence wave and flow transformations including shocks and undular

bores on complex topography.
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CHAPTER V

NEAR FIELD TRANSPORT MODELING

V.1. Introduction

The scalar transport is strongly dependent on flow structures, and so the accurate

prediction of the flow structures is critically important for the accurate scalar trans-

port predictions. Various numerical methods for the prediction of free surface flows

have been developed and applied as described in the previous chapters. Firstly, the

shallow water equations models and the coupled depth-averaged transport equation

models are most widely used for large domain problems. They can be solved very

efficiently and accurate horizontal flow and concentration fields are obtained by them

if the shallow water assumption is valid. However, they can lose the accuracy when

the flow field is dispersive or under nonhydrostatic pressure conditions. For those flow

fields, 3D Navier-Stokes equations with turbulent closures and 3D transport equation

models are the most physical and accurate numerical approach. However, even till

these days, they demand huge computational resources so that they are not practical

for large domain problems. Especially, in cartesian coordinate system, the free surface

crosses the computational grid perpendicularly, and so it brings the difficulty of apply-

ing the pressure boundary condition precisely on the free surface (Lin and Li, 2002).

To solve this kind of problem, the σ-coordinate system can be used (Phillips, 1957),

which maps a nonuniform vertical domain into a rectangular domain. Thus, if the

water surface and the bottom bathymetry are smooth, then it can make the boundary

conditions simple and possible for the computational accuracy to be improved.

Using the σ-coordinate system, Stansby (1997) developed a 3D semi-implicit

FVM for shallow water flow with the hydrostatic pressure assumption. Stansby and
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Zhou (1998) developed a numerical scheme incorporating nonhydrostatic pressure and

they obtained reasonable agreements with experimental data. Lin and Li (2002) de-

veloped a 3D numerical model based on the Navier-Stokes equations in a σ-coordinate

system. They reported that some minimum resolution was needed to get accurate

results. Yuan and Wu (2004) developed an implicit FDM model in vertical 2D σ-

coordinate. For the real field prediction of saline in a estuary and river, Lee et al.

(inpress) developed a width-averaged 2D σ-coordinate flow and transport models.

Their application showed good agreement with the observed field data.

However, the numerical flow model based on σ-coordinate still requires expensive

computational cost and they are restricted by stability criterion originated by the

coordinate transformation (Haney, 1996, Lin and Li, 2002). It makes hard to apply

the σ-coordinate model to moving boundary problems like tidal flat and surf zone

where the water depth approaches to zero. In addition, the free surface elevation and

the bottom bathymetry must be a single function on a horizontal plane even though

it solves all three momentum equations for 3D cases. Consequently, it will be very

hard to solve accurately the wave breaking and the related strong vertical mixing

which are relevantly observed in coastal areas or near hydraulic structures.

Comparing to the σ-coordinate flow model, the Boussinesq equations model can

calculate much efficiently the 3D information of water surface and velocity with con-

tinuity equation and only two momentum equations provided that the water depth is

not deep. Thus the combination of the Boussinesq equations model and the depth-

integrated transport model is very good for the far field prediction. However, the

limitation for the near field prediction recognized in the chapter III also exists in the

combination of the 2D horizontal models. Therefore, a new combination comprised

of the Boussinesq equations model and a σ-coordinate transport model can be useful

for the near field and far field problems in large domain.
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In this study, a 3D σ-coordinate transport model coupled with the Boussinesq

equations model is developed. In the next section, the advection-diffusion equation

in the σ-coordinate is derived. Next, the brief explanation about the Boussinesq

equations model and the numerical methods are following. In the last part, the

validations and various numerical simulations of the developed model are presented.

V.2. Advection-Diffusion Equation in σ-Coordinate

V.2.1. Transformed Advection and Diffusion Terms

In a physical domain (t∗, x∗, y∗, z∗), the advection-diffusion equation is given by

∂C

∂t∗
+

∂Cu

∂x∗
+
∂Cv

∂y∗
+
∂Cw

∂z∗

=
∂

∂x∗

(
Dx

∂C

∂x∗

)
+

∂

∂y∗

(
Dy

∂C

∂y∗

)
+

∂

∂z∗

(
Dz

∂C

∂z∗

)
(5.1)

where the (x∗, y∗) represents the horizontal axes and the z∗ is the vertical axis. The

t∗ is the time and the C is the concentration. The (u, v) are the horizontal velocities

and the w is the vertical velocity. The Dx, Dy, and Dz are the diffusion coefficients

into the x∗, y∗ and z∗ directions, respectively.

The σ-coordinate space (t, x, y, σ) is defined as followings (Blumberg and Mellor,

1983).

t = t∗, x = x∗, y = y∗, σ =
z∗ + h

H
(5.2)

The grid systems before and after the coordinate transformation by the equation

(5.2) are shown in the Figure 64.

To transform the advection-diffusion equation from the physical coordinate to
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Figure 64. Grid systems in physical domain (left) and σ-coordinate system (right).

the σ-coordinate, the chain rule is used as followings

∂f

∂t∗
=
∂f

∂t
+
∂f

∂σ

∂σ

∂t∗
∂f

∂x∗
=
∂f

∂x
+
∂f

∂σ

∂σ

∂x∗
∂f

∂y∗
=
∂f

∂y
+
∂f

∂σ

∂σ

∂y∗

∂f

∂z∗
=
∂f

∂σ

∂σ

∂z∗
(5.3)

where the f = f(t∗, x∗, y∗, z∗) is a function in the physical domain and the differenti-

ation terms in the right hand side are expressed as
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∂σ

∂t∗
= − σ

H

∂H

∂t
∂σ

∂x∗
=

1

H

∂h

∂x
− σ

H

∂H

∂x
∂σ

∂y∗
=

1

H

∂h

∂y
− σ

H

∂H

∂y
∂σ

∂z∗
=

1

H
(5.4)

Substituting the equation (5.3) and the equation (5.4) into the advection terms

in physical domain, the advection terms are transformed like

∂C

∂t
+
∂Cu

∂x
+
∂Cv

∂y
+
∂Cwσ

∂σ
(5.5)

where

wσ = − σ

H

∂H

∂t
+
u

H

∂h

∂x
− u

σ

H

∂H

∂x
+

v

H

∂h

∂y
− v

σ

H

∂H

∂y
+
w

H
(5.6)

By applying the chain rule to the diffusion terms, the diffusion terms on the

σ-coordinates can be expressed as

∂

∂x∗

(
Dx

∂C

∂x∗

)
=

∂

∂x

(
Dx

∂C

∂x

)
+

∂

∂x

{
Dx

H

(
∂h

∂x
− σ

∂H

∂x

)
∂C

∂σ

}
+

1

H

(
∂h

∂x
− σ

∂H

∂x

)
∂

∂σ

(
Dx

∂C

∂x

)
+

1

H

(
∂h

∂x
− σ

∂H

∂x

)
∂

∂σ

{
Dx

H

(
∂h

∂x
− σ

∂H

∂x

)
∂C

∂σ

}
(5.7)
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∂

∂y∗

(
Dy

∂C

∂y∗

)
=

∂

∂y

(
Dy

∂C

∂y

)
+

∂

∂y

{
Dy

H

(
∂h

∂y
− σ

∂H

∂y

)
∂C

∂σ

}
+

1

H

(
∂h

∂y
− σ

∂H

∂y

)
∂

∂σ

(
Dy

∂C

∂y

)
+

1

H

(
∂h

∂x
− σ

∂H

∂y

)
∂

∂σ

{
Dx

H

(
∂h

∂x
− σ

∂H

∂y

)
∂C

∂σ

}
(5.8)

∂

∂z∗

(
Dz

∂C

∂z∗

)
=

1

H2

∂

∂σ

(
Dz

∂C

∂σ

)
(5.9)

Multiplying the transformed advection terms and diffusion terms by H, the

advection-diffusion equation becomes conservative form which has the same numerical

property with the Boussinesq equations model proposed in this study.

∂HC

∂t
+

∂uHC

∂x
+
∂vHC

∂y
+
∂wσHC

∂σ

= H
∂

∂x

(
Dx

∂C

∂x

)
+H

∂

∂x

{
Dx

H

(
∂h

∂x
− σ

∂H

∂x

)
∂C

∂σ

}
+

(
∂h

∂x
− σ

∂H

∂x

)
∂

∂σ

(
Dx

∂C

∂x

)
+

(
∂h

∂x
− σ

∂H

∂x

)
∂

∂σ

{
Dx

H

(
∂h

∂x
− σ

∂H

∂x

)
∂C

∂σ

}
+ H

∂

∂y

(
Dy

∂C

∂y

)
+H

∂

∂y

{
Dy

H

(
∂h

∂y
− σ

∂H

∂y

)
∂C

∂σ

}
+

(
∂h

∂y
− σ

∂H

∂y

)
∂

∂σ

(
Dy

∂C

∂y

)
+

(
∂h

∂x
− σ

∂H

∂y

)
∂

∂σ

{
Dx

H

(
∂h

∂x
− σ

∂H

∂y

)
∂C

∂σ

}
+

1

H

∂

∂σ

(
Dz

∂C

∂σ

)
(5.10)
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V.2.2. Boundary Conditions

Applying the chain rule to boundary conditions results in that Dirichlet boundary

condition remains the same, but Neumann boundary condition is changed. At the

bottom and at the water surface, it is changed like

∂C

∂z∗
=

1

H

∂C

∂σ
= 0 (5.11)

and at the side walls, it is changed to

∂C

∂x∗
=
∂C

∂x
+

(
1

H

∂h

∂x
− σ

H

∂H

∂x

)
∂C

∂σ
= 0 (5.12)

Note that the variables in cartesian coordinate will be expressed without the ‘ ∗ ’

from the following section for the convenience of expression.

V.3. Numerical Methods and Tests for σ-Coordinate Transport Model

V.3.1. Numerical Methods

Basically, the same numerical methods for the depth-integrated flow equations and

depth-integrated transport equation are used again to solve the 3D σ-coordinate trans-

port equation.

By integrating the equation over a cell, the equation becomes

∂HC

∂t
+

1

V
∑

F · A = 0 (5.13)

where V is a volume of a computational cell, F is a flux vector evaluated at the cell

interface, which is defined as F = CHU , the U = (u, v, ωσ), and the A is a cell side
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vector defined as the cell side area multiplied by the outward unit normal vector. To

solve the advection terms, the fourth-order accurate MUSCL finite volume method

(Yamamoto and Daiguji, 1993) with HLL Riemann solver (Toro, 1997) is used. To

solve the diffusion terms, fourth-order finite volume discretization equations is used.

The third-order Adams-Bashforth predictor and the fourth-order Adams-Moulton

corrector scheme are used for the time integration as followings.

In predictor step,

Cn+1 = Cn +
Δt

12

(
23T n − 16T n−1 + 5T n−2

)
(5.14)

In corrector step,

Cn+1 = Cn +
Δt

24

(
9T n+1 + 19T n − 5T n−1 + T n−2

)
(5.15)

where the T is given by

T = −∇ ·HCU + ∇ ·
(
νt

σt

H∇C
)

(5.16)

The convergence error is defined as
∑ |Cn+1−Cn+1

∗ |/∑ |Cn+1| and it is required

to be less than 10−4 to be converged in this study. More details can be referred to

the chapters II and III.

V.3.2. Advection-Diffusion Tests in σ-Coordinate System

As a basic numerical test, a pure advection problem is tested. In physical space, the

gird has two vertical side boundaries and flat water surface boundary. However, as

shown in the Figure 65, the bottom boundary has a sinusoidal curve of
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Figure 65. Non-rectangular physical domain for test problem.

h (x) = 250 × sin (0.002x) − 5000 (5.17)

so, the wave height of the bathymetry is 10% of the median water depth and the

maximum bottom slope becomes Sb = 0.5.

The flow is rotating about the center of the domain with a constant angular

velocity 0.314rad/hr, so it rotates one circle per 20 hours. The initial concentration

is given by

Co(x, y) = exp

{
−(x− xc)

2 + (z − zc)
2

2θ2

}
(5.18)

where xc = 1250m and zc = −2500m and the θ = 220m. The computational domain

is composed of 125×125 grids with Δx = Δy = 40m and the Δt = 40 second is used.
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Figure 67. Advection-diffusion test results. Solid line: computational results, dotted

line: analytical solutions.
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The Figure 66 shows the initial condition and the computed result at t = 20

hour. Very close agreement with the analytical solution is obtained.

An advection-diffusion problem was tested in the same flow field and the same

computational grid. For the diffusion, the Dx = Dz = 0.1m2/s were given. In

the initial concentration profile equations, the θ = 200m was used. The Figure 67

shows the comparisons between the analytical solutions (Wang et al., 1999) and the

computed results at t = 5, t = 10, t = 15, and t = 20 hour. Good agreements with

the analytical solutions are obtained in the advection-diffusion test, too.

V.4. Velocity Profiles and Coupling

In many literatures, successful applications of the Boussinesq equations models have

been reported. However, usually the successes were focused to the water surface

profiles, not to the vertical profiles of the currents. In near shore areas, although the

water depth scale is relatively small to the horizontal length scale, the variations of the

velocity into the vertical direction like undertow is not small enough to be neglected.

However, it was recognized that the many Boussinesq equations models yielded very

poor prediction of undertow flow (Lynett, 2006). Even in a steady flow in a prismatic

channel, they would predict vertically constant velocity profiles, physically which is

not true. In this study, by including the horizontal vorticity, physically reasonable

velocity profile into the vertical direction could be estimated in open channel flows as

shown in the section II.5.2.

Based on the (ζ, U, V ) resulted from the Boussinesq equations model, the hori-

zontal velocity at z can be obtained by
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u = U +
1

2

(
z2

α − z2
) ∂

∂x

(
∂U

∂x
+
∂V

∂y

)
+ (za − z)

∂

∂x

(
∂hU

∂x
+
∂hV

∂y

)
+ ψx

{
1

2

(
z2

α − z2
)

+ ζ (z − zα)

}
(5.19)

v = V +
1

2

(
z2

α − z2
) ∂

∂y

(
∂U

∂x
+
∂V

∂y

)
+ (za − z)

∂

∂y

(
∂hU

∂x
+
∂hV

∂y

)
+ ψy

{
1

2

(
z2

α − z2
)

+ ζ (z − zα)

}
(5.20)

and the vertical velocity at z is given by

w = −z
(
∂u

∂x
+
∂v

∂y

)
−
(
∂hu

∂x
+
∂hv

∂y

)
(5.21)

These equations (5.19), (5.20) and (5.21) are transferred to the transport equa-

tion solver.

For the verifications of the velocity profile in surf zone where undertows are

strong, two comparisons will be presented in this section. Firstly, the laboratory

experimental data by Ting and Kirby (1994) are compared with the velocity profile

by the equation (5.19). In their experiment, wave train with 0.089m wave height and

5.0 second period was generated on horizontal plane with h = 0.4m. On opposite

side, a 1/35 sloped bottom was installed. For another comparison, the experimental

data by Nadaoka and Kondoh (1982) is used. In their experiment, the wave height

was 0.219m, the wave period was 2.34 second, and the water depth was h = 0.7m
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Figure 68. Comparison of the crest level based on the phase averaged water surface

elevation. Dots: measured data (by Ting and Kirby, 1994). Line: numerical

results.

at the offshore site. The slope of the shore was 1/20. More details of the laboratory

experiments are well described in the two literatures.

The Figure 68 shows the crest elevation of the waves based on the phase averaged

water surface elevation. As can be seen from the figure, good agreements were ob-

tained. Based on the numerical results, the 3D velocity information can be estimated

by the equations (5.19), (5.20) and (5.21). The results are plotted in the Figure 69:

Here, the comparisons between the measured data, computed results by Boussinesq

equations model and Navier-Stokes equations model with k − ε turbulence closure

(Lin and Liu, 1998) are presented. For the undertow profiles, acceptable agreements

with the measured data were obtained. For the wave parts above undertow layer,

also good agreements with the Navier-Stokes equations model were obtained. For the

Nadaoka and Kondoh’s case, the measured data and the numerical results are plot-

ted in the Figure 70. Although some disagreements are observed at x = 2.14m and

x = 3.14m, they are within good agreements from the bottom to the water surface
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in overall sense.

In conclusion, the proposed Boussinesq equations model can present good infor-

mation of the vertical structure of velocity. Hence good scalar transport prediction

is expected by coupling with the σ-coordinate transport model.

V.5. Turbulent Transport Simulation in Near Field

V.5.1. Quantitative Verification in Open Channel Flow

For the quantitative validation purpose, two laboratory experimental cases were simu-

lated numerically with the proposed model. The experiments were done by Nokes and

Wood (1988) in a 12m long, 0.56m wide and 0.43m deep channel. The cross section

was rectangular and the slope of the bottom was 0.00047. The water depth was 0.05m

and the streamwise direction velocity was 0.236m/s resulting in the Re = 10700. The

friction factor was estimated f = 0.0282 by the experiment.

For all the turbulent transport simulation, the turbulent diffusion coefficients are

assumed to be the same with the turbulent eddy viscosities, that is, Dx = Dy = νh
t /σt

and Dz = νv
t /σt, where the turbulent Schmidt number σt = 1.0.

Similar to the results in the section II.5.2, the horizontal vorticity effects related

with the bottom shear stress make the horizontal velocity variant into the vertical

direction as shown in the Figure 71. The computational results in the Figure 71

are the time averaged data with Δx = Δy = 0.025m and Δσ = 1/21. Of course,

the Boussinesq equations models which are based on potential flow theory or which

do not consider the horizontal vorticity effects should have almost constant velocity

profile.

At the two different levels (at σ = 0.24 or σ = 0.57), the contaminants were

released continuously. The instantaneous scalar distribution by the numerical sim-
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Figure 69. Vertical profiles of phase averaged horizontal velocity. (a)x = 6.3m,

(b)x = 7.8m, (c)x = 8.3m, (d)x = 8.8m, (e)x = 9.3m, (f)x = 10.4m.

Dots: experimental data (by Ting and Kirby, 1994). Solid line: numeri-

cal results. Dotted lines: Navier-Stokes equations model (by Lin and Liu,

1998).
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Figure 70. Vertical profiles of phase averaged horizontal velocity. (a)x = 6.94m,

(b)x = 6.04m, (c)x = 5.14m, (d)x = 4.14m, (e)x = 3.14m, (f)x = 2.14m.

Dots: experimental data (by Nadaoka and Kondoh, 1982). Solid line: nu-

merical results.



161

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

velocity (m/s)

no
rm

al
iz

ed
 w

at
er

 d
ep

th

Figure 71. Time averaged velocity distribution, circle: experimental data (by Nokes

and Wood, 1988), line: computational result.

ulations were described in the Figure 72. Definitely, the injection location affected

to the concentration distribution greatly. The parabolic structures can be observed

clearly in the figures, which are captured by the turbulence based on the stochastic

BSM and the effects of the horizontal vorticity.

For the quantitative verification, time averaged concentration data at various

locations and levels were compared. As in the Figure 73 and Figure 74, the measured

concentration data and the computed concentration results are within very good

agreements. Especially, even in the near field (x/h <∼ 10), the computational results

are closely matched to the measured data, which is beyond of the inherent limitations

of the 2D horizontal transport model. Therefore it can be concluded that the proposed

σ-coordinated transport model coupled with the Boussinesq model is good for both

near field and far field transport predictions.
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Figure 72. Instantaneous computed concentration distribution (black color means

higher concentration). Upper: injection level σ = 0.24, lower: injection

level σ = 0.57.
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Figure 73. Time averaged concentration distributions at various level (source height

σ = 0.24). (a) at σ = 0.9, (b) at σ = 0.7, (c) at σ = 0.5, (d) at σ = 0.3,

(e) at σ = 0.1. Circle: measured data (Nokes and Wood, 1988). Line:

computational results.
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Figure 74. Time averaged concentration distributions at various level (source height

σ = 0.57). (a) at σ = 0.9, (b) at σ = 0.7, (c) at σ = 0.5, (d) at σ = 0.3,

(e) at σ = 0.1. Circle: measured data (Nokes and Wood, 1988). Line:

computational results.
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Figure 75. Schematic of sinusoidal bathymetry channel. Red spots are the sources of

the passive scalar. (A) σ = 0.16, (B) σ = 0.32, (C) σ = 0.48.

V.5.2. Transport Simulation in Open Channel with Wavy Bottom

For a test of computational aspect of the σ-coordinate, a similar test with the previous

simulation is conducted on wavy bathymetry. The length of channel is 40ho and the

amplitude of the bottom bathymetry is 0.25ho, where the ho is the water depth at inlet

section. A constant flow with U = 0.12m/s is released at the upstream boundary,

resulting in the Reynolds number Re = 11800. The scalar sources are released at

three different levels on the first crest section as shown in the Figure 75.

The Figures 76 show the instantaneous concentration distribution of the numer-

ical simulation. For the clear description of the results, the each of the iso-surfaces

of concentration are sliced out above from σ = 0.48 (for the case C), from σ = 0.32
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(for the case B), and from σ = 0.16 (for the case A). As can be seen clearly from

the Figures 76, the depth dependent results, important characteristic of the near field

mixing, were captured well by the proposed model.

V.5.3. Transport in Surf Zone

In this section, the applicability to a surf zone of the proposed model is tested. The

surf zone is composed of a beach with a constant slope of 1/35 and a horizontal plane

with h = 0.4m. The wave source is located at x = 10m and a sponge layer is installed

at the left boundary, as shown in the Figure 77. Close to the breaking point, two

initial contaminants are located at two different locations, one on the bottom (case

A) and the other beneath the water surface (case B). The two cases are simulated

separately.

A regular wave series with the 0.086m amplitude, the period of 3.33 second and

the wave length of L = 6.44m were generated at the source. For the calculations

of the bottom friction terms, ks = 0.0001m was used. The breaking eddy viscosity

term is added to the turbulent eddy viscosity terms for these simulations. The whole

computational domain is composed of 600× 30 cells. These input conditions resulted

in the vertically varying flow structures as plotted in the Figure 78.

The Figures 79 show the computed scalar distributions for the case A. By the

vertical velocity components the scalar is partially advected from the bottom to the

water surface and carried toward the shore by the waves as can be seen at the Figures

79 (a), (c), (e) and (g). However, the scalar which is transported to the water surface

by the advection and diffusion does not follow the progressive wave. Soon, as can be

seen the Figures 79 (b), (d), (f) and (h), the cloud of the scalar is detached from the

peaks of the waves. Near the bottom, the cloud of the scalar moved seaward direction

in overall sense. Similar phenomenon was observed in the numerical simulation by
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Figure 76. Instantaneous relative concentration (C/Csource). The iso-surfaces of con-

centration are sliced at (a) σ = 0.16, (b) σ = 0.32, (c) σ = 0.48.
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Figure 77. Schematic of the surf zone transport test problem.

a Navier-Stokes equations model with k − ε turbulence closure (Lin and Liu, 1998).

For the case B, near the surface, the cloud of the scalar is transported to shoreline

as shown in the Figure 80. These opposite movements of the case A and B could

be expected by looking the velocity distributions in the Figure 69 and Figure 70.

However, also in this case B, the scalar was detached from the progressive wave like

the case A.

V.6. Summary

For the accurate near field mixing prediction, a 3D σ-coordinate transport model

coupled with Boussinesq equations model was developed. Basic advection test and

advection-diffusion test showed good agreements with analytic solutions. The velocity

information estimated by the Boussinesq equations model agreed with the measure-

ments in open channel flow and surf zone reasonably. From the comparisons with the

dispersion experiments data, quantitative verification of the proposed model for the

near field and far field mixing was recognized. From the simulations in open channel
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Figure 78. Snapshot of velocity distributions by Boussinesq equations model. (a) hori-

zontal velocity (m/s), (b) vertical velocity (m/s). Positive value represents

shoreward direction.
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Figure 79. Scalar concentration by the numerical simulation for case A. (a)t = 25.4s,

(b)t = 27.0s, (c)t = 28.8s, (d)t = 30.4s, (e)t = 32.3s, (f)t = 33.8s,

(g)t = 55.0s, (h)t = 57.3s.
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Figure 80. Scalar concentration by the numerical simulation for case B. (a)t = 25.4s,

(b)t = 27.0s, (c)t = 28.8s, (d)t = 30.4s, (e)t = 32.3s, (f)t = 33.8s,

(g)t = 55.0s, (h)t = 57.3s.
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flow and surf zone, physically reasonable results were obtained. Therefore, it can

be concluded that the proposed model is good for the near field and far field scalar

transport predictions together.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORKS

VI.1. Conclusions

In the first part of this dissertation a set of weakly dispersive Boussinesq equations,

derived to include viscosity and vorticity terms in a physically consistent manner,

was presented in conservative form. The model includes the approximate effects of

bottom-induced turbulence, in a depth-integrated sense, as a high-order correction.

Associated with this turbulence, vertical and horizontal rotational effects are cap-

tured. While the turbulence and horizontal vorticity models are simplified, a model

with known physical limitations has been derived that includes the quadratic bottom

friction term commonly added in an ad-hoc manner to the inviscid equations. An

interesting result of this derivation is that one should take care when adding such

ad-hoc models; it is clear from this study that:

(i) it is not necessary to do so - the terms can be included through a consistent

derivation from the viscous primitive equations, that is Navier-Stokes equations.

(ii) one cannot properly add the quadratic bottom friction term without also

adding a number of additional terms in the integrated governing equations.

To solve these equations numerically, a highly accurate and stable model was

developed. The numerical method uses a fourth-order MUSCL-TVD scheme to solve

the leading order (shallow water) terms. For the dispersive terms, a cell averaged

finite volume method was implemented.

To verify the derived equations and the numerical model, four cases of verifi-

cations were given. First, solitary wave propagation was examined as a basic, yet

fundamental, test of the models ability to predict dispersive and nonlinear wave
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propagation with minimal numerical error. Vertical velocity distributions of spa-

tially uniform flows were compared with existing theory to investigate the effects of

the newly included horizontal vorticity terms. Other test cases include comparisons

with experiments that generate obvious coherent structures by the change of bottom

bathymetry as well as by tidal jets through inlet structures. Very reasonable agree-

ments were observed for the four cases, and the results provide some information as

to the importance of dispersion and horizontal vorticity.

For the simulations of the turbulent transport by long waves and currents, a

depth-integrated model for turbulent flow and transport was presented. Based on

the depth-integrated flow equations derived in the first part, the 3D turbulent ef-

fects were included by the consistent perturbation approach. The same approach

was applied to derive a depth-integrated scalar transport equation based on the same

scaling. The proposed transport equation was solved by a fourth-order accurate fi-

nite volume method. The numerical solver of transport equation showed very small

error of numerical dispersion, dissipation and diffusion. The depth-integrated flow

and transport models were applied to typical problems which have different mixing

mechanisms. Four important conclusions were obtained from the numerical simula-

tions:

(i) From the mixing layer simulation, it was revealed that the 3D turbulence

effects implemented with a stochastic BSM played an important role for the energy

transfer.

(ii) The proposed transport model coupled with the depth-integrated flow model

can predict the passive scalar transport physically (based on the turbulent intensity)

not by relying on an empirical constant.

(iii) The 2D horizontal transport model has an inherent limitation for near field

mixing prediction.
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(iv) In the mixing simulations by the topographical forcing, the effects of the 3D

turbulence effects were less important relative to the other cases because the main

mechanism of the instability were originated from the bottom topography.

To extend the applicable areas, a robust moving boundary scheme based on a

simple physical condition was developed and verified. Several typical benchmark

problems such as dam-break flows and tsunami wave fission were tested in the 1D

and 2D spaces. Generally, the computed results by the Boussinesq equations model

based on the nonhydrostatic pressure assumption seemed to be more accurate and

physical than the results by the shallow water equations model based on the hydro-

static pressure assumption. One of the most challenging cases, the re-entrance flow

into the lee side of a surfacing piercing structure showed very reasonable agreements

with experimental data. In the Okushri tsunami simulations, complex physics and

topography of the experiment were very well dealt with the proposed model. There-

fore, it can be concluded that the proposed numerical model is able to provide very

reliable results of the wave and current transformations including shocks and undular

bores on complex bathymetry and topography.

For the near field mixing prediction, a σ-coordinate transport model coupled with

Boussinesq equations model was developed. The irregular physical domain between

the uneven bottom bathymetry and water surface are transformed to the rectangular

shaped σ-coordinate. The velocity information estimated by the Boussinesq equa-

tions model agreed with the experimental data in open channel flow and surf zone

reasonably. Basic advection test and advection-diffusion test were done and good

agreements with analytic solutions were obtained. From the comparisons with the

dispersion experiments, quantitative verification of the proposed model for near field

and far field mixing was recognized. From the other simulations in open channel

flow and surf zone, physically reasonable results were obtained. Finally, it can be
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concluded that the proposed model is good for both the near field and far field scalar

transport predictions.

VI.2. Future Works

Numerous works can improve the products proposed by this study. In the view of

physics, to add the mechanism of the stratified flow will be a valuable achievement.

More general shear stress model including the boundary layer effects can make the

vorticity effects physically meaningful much more. Possibly, it may be able to link to

the development a new wave breaking mechanism for depth-integrated flow model.

To couple with a sediment transport and morphology change model will be a

very interesting and practical topic.

In the view of computational methods, more robust and efficient numerical solver

should be pursued. The numerical model using the boundary fitted grid system or

unstructured grid system should be developed for the complex geometry applications.

An explicit solver for the depth-integrate equations solution or the parallel solver can

save the computational time greatly.

All these would require great efforts but appreciable greatly.
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