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ABSTRACT

Structure of Partially Premixed Flames Using Detailed Chemistry Simulations.

(August 2009)

Celine Delphine Kluzek, B.S., Florida Institute of Technology;

M.S., Purdue University

Chair of Advisory Committee: Dr. Adonios N. Karpetis

State-of-the-art reacting-flow computations have to compromise either on the

detail of chemical reactions or on the dimensionality of the solution, while experiments

in flames are limited by the flow accessibility and provide at best a limited number

of observables. In the present work, the partially premixed laminar flame structure

is examined using a detailed-chemistry, one-dimensional simulation. The compu-

tational results are compared to unpublished single-point multiscalar measurements

obtained at Sandia National Labs in 2001. The study is focused on axisymmetric lam-

inar partially-premixed methane/air flames with varying premixture strength values

of 1.8, 2.2, and 3.17. The combination of computational and experimental results is

used to analyze the spatial and scalar flame structure under the overarching concept of

flamelets. The computations are based on the Cantera open-source software package

developed at CalTech by D. Goodwin, and incorporating the GRI 3.0 chemical kinetic

mechanism utilizing 325 chemical reactions and 53 species for methane combustion.

Cross-transport effects as well as an optically-thin radiation model are included in

the calculations. Radiation changes the flame profiles due to its effect on tempera-

ture, and the attendant effects on a number of species. Using the detailed analysis



iv

of different reaction rates, the adiabatic and radiative nitric oxide concentrations are

compared. The cross-transport effects, i.e. Soret and Dufour, were studied in detail.

The Soret term has a small but important effect on the flame structure through a

reduction of the hydrogen mass fraction, which changes the conserved scalar values.

Based on the flamelet approach and a unique formulation of the conserved scalar,

the flame thermochemistry can be analyzed and understood. A number of interest-

ing effects on the flame thermochemistry can be discerned in both experiments and

computations when the premixture strength is varied. An increase in premixing re-

sults in a counterintuitive decrease in intermediate species such as carbon monoxide

and hydrogen, as well as an expected increase in nitric oxide concentrations. Good

agreement is found between experiments and calculations in scalar space, while the

difference in dimensionality between axisymmetric measurements and opposed jet

computations makes comparison in physical space tentative.
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CHAPTER I

INTRODUCTION

Reacting flows in practical applications such as burners, powerplant combustors,

or aircraft engines are often complex in nature. Such engineering systems combining

unsteady, turbulent or rotating flows with multiple chemical reactions are difficult

to study experimentally as well as computationally. Researchers are limited by the

physical enclosure of combustion chambers and the use of non-intrusive measurement

techniques. Even with the latest laser diagnostic systems, experiments are resolved

in one dimension sometimes in two dimensions and the number of species studied is

limited. The complexity of reaction mechanisms makes the 2-dimensional (2-D) and

3-dimensional (3-D) simulations unaffordable with present day computational capa-

bilities, while detailed-chemistry calculations in one spatial dimension (1-D) are easily

achieved. Combustion researcher have to compromise either on the dimensionality of

the problem or the detail of the chemical kinetics.

At the same time, experimental investigation of reacting flows in a closed com-

bustion chamber is only possible with the use of complicated and expensive laser

diagnostics, which gives at best 1-D or 2-D results and provides information on a lim-

ited number of species. At present, detailed-chemistry simulations in two dimensions

are rarely attempted (e.g. Bennett et al. (2000)). In order to understand combustion

and optimize the process for more efficient, cleaner automotive and aircraft engines,

scientists have to compromise either on the dimensionality of the problem or the de-

tail of the chemical kinetics. Without the hindrance of enclosures and windows, the

The journal model is Combustion Science and Technology.
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fundamentals of combustion can be studied in open air using the existing state of the

art measurement techniques in simpler laboratory flames.

Although what follows is not an exhaustive review, some previous literature

concerning experiments, simulations, and theory of flames will be discussed here as

background for the present work. Some of the first experiments on laminar flames

were performed by Yamaoka and Tsuji in the late 70s (Yamaoka and Tsuji, 1974,

1976). While studying flammability limits of partially premixed methane-air flames,

they were the first to mention a double flame, i.e. the flames portrayed two distinct

combustion zones, a subject that will be discussed in later chapters. Numerous ex-

periments on laminar as well as turbulent flames were also performed over the years

at the Combustion Research Facilities1 (CRF). Noticeably, Tsuji burner experiments

were performed in 2001 by Barlow et al. (2001) to study partially premixed methane-

air flames. The authors applied multi-scalar laser diagnostic techniques to measure

major and some minor species. Experimental results which included nitric oxide (NO)

were compared to detailed chemistry computations using Chemkin (Kee and Miller,

1978).

Most often, experiments are used to validate the computational calculations.

Development of the latter involves the precise understanding of detailed-chemistry

mechanisms. As explained in Glassman (1996) the results of these studies enabled

the understanding of initiation, oxidation, branching and termination reactions, and

the tabulation of reaction-rate parameters for various fuels. Several researchers have

tried to minimize the number of chemical reactions used in the simulations in order

to reduce the computational time. Westbrook and Dryer (1981) were the first to

1The Sandia National Laboratories CRF is funded by the Department of Energy. It furthers
research in basic as well as applied combustion science and technology.
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systematically develop reduced chemical mechanisms for various hydrocarbon fuels2.

Work by Seshadri and Peters (1990) examined the structure of partially premixed

methane flames using a four-step reaction mechanism. Among others, Xue and Ag-

garwal (2001) investigated the effects of various reaction mechanisms on the structure

of partially premixed methane-air flames. More recently, Sutton and Fleming (2008)

modified the GRI 3.0 (Smith et al., Accessed July 2008) reaction mechanism to include

several more reactions leading to NO formation. The simulations were performed with

ChemKin using a burner stabilized flame configuration with a premixed methane-air

system. Their calculations were compared to experimental data from other studies

such as Berg et al. (2000); Pillier et al. (2005); Gasnot et al. (1999); Williams and

Fleming (2007); Van Essen et al. (2007).

Efficiency and pollutant emission control for engines is also a primary objective

for a lot of combustion studies, driven by the increasing regulations on automotive

and aircraft engine exhausts. A consequential work by Li and Williams (1999)3 used

partially premixed methane-air flames to study a two stage combustion process. By

adding water or carbon dioxide to the partially premixed methane flames, a reduction

in NO was achieved for certain equivalence ratios. This work used ChemKin and a

chemistry mechanism including 31 elementary steps and 177 reactions, adapted from

earlier studies (Rightley and Williams, 1997). An optically-thin radiation model

including emission of CO2 and H2O was used.

During the last decade the scientific community, guided by the International

workshop on measurement of Turbulent Non-premixed Flames (TNF), investigated

the effect of radiation in flames in an attempt to improve the numerical simulations.

2Lawrence Livermore National laboratory, California, and the Department of Mechanical and
Aerospace engineering at Princeton University respectively.

3University of California, San Diego, La Jolla.
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Radiation emission and self-absorption in flames were studied in detail by Zhu et al.

(2002) in partially premixed methane-air flames. The calculations were compared

to Tsuji-type flame experiments from Sandia (Barlow et al., 2001). An important

study of radiative transfer in premixed flames was conducted by Daguse et al. (1996).

During that work two types of non-premixed flames were studied in detail, namely

H2-O2 and propane-air systems. Work at Purdue University, e.g. Kim et al. (2003),

studied non-premixed and partially premixed opposed jet flames. Using an optically-

thin radiation model that accounts only for emission they proved that self-absorption

had a negligible effect on flame structure even at low strain.

To investigate the effect of gravity and radiation in non-premixed methane flames

Charest (2008) used the Cantera thermodynamic transport and chemical managers

into a solver for the governing equations that was developed in-house. The reaction

mechanism used, i.e. GRI 3.0, was modified to 219 equations and 36 species and

excluded the NO reaction pathway. The solution was found with a 2-D scheme and

in many respects this study points to a possible continuation of the present work.

The capabilities of software packages such as ChemKin and Cantera are con-

stantly improved, more recently with the inclusion of kinetics for soot formation.

This is due to a combination of increasing regulation and advances in computational

capabilities to treat more complex systems. Several recent studies at Stanford Uni-

versity concentrated on soot formation and its inclusion in reacting flow simulations

of turbulent flames for fire suppression (Pepiot-Desjardins et al., 2008; Pitsch et al.,

2009; Blanquart et al., 2009; Mueller et al., 2009). A group from University of Michi-

gan Ann Arbor (Mungekar and Atreya, 2006) investigated soot emission and NOx

levels in partially premixed methane flames in an opposed-jet configuration. More

recently, Dworkin et al. (2009) used numerical simulations to analyze the effect of

thermal diffusion on soot formation in ethylene-air flames.
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In an attempt to include more physical effects in the reacting flow simula-

tions, a number of studies examined thermal diffusion and cross-transport effects

in flames (Vranos and Hall, 1993; Pitsch and Peters, 1998; Rosner et al., 2000; Palle

et al., 2005). The work of Grçar et al. (2008) continued this line of research with

calculations of lean premixed hydrogen-air propagating flames.

A brief review of the literature shows that hydrogen-fuel related research is promi-

nent in the field. The reason behind this is the simplicity of the hydrogen oxidation

reactions compared to hydrocarbon fuels. For example, twenty reactions suffice to

capture hydrogen combustion while the simulations of the simplest hydrocarbon fuel,

methane, may require more than tree hundred. Despite rapid advances in computer

development, present-day combustion researchers still have to compromise between

a complete reaction mechanism which is currently feasible only in 1-D and a skeletal

or reduced chemical mechanism in more than one spatial dimension.

The group at Yale University (Smooke et al., 1992) made a consequential con-

tribution on methane-air flames by computing, for the first time, a non-premixed

laminar flame in two dimensions. Ern and Giovangigli (1998) investigated the cross-

transport effects and thermal diffusion using 2-D calculations. At that time, a low-

level kinetics mechanism was used that included only hydrogen and oxygen bearing

species. The more recent studies by (Bennett et al., 2000) used a similar simplified

reaction mechanismto compare calculations with experiments of axisymmetric coflow

partially-premixed methane-air flames. The latest two dimensional computational

research was performed by Grçar et al. (2008) who studied axisymmetric jet flames

in two dimensions, as well as Dworkin et al. (2009) who studied soot formation in

ethylene flames including thermal diffusion and multicomponent ransport4.

4Ethylene chemistry was studied using the modified GRI mechanism previously used by Sung
et al. (1996).
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The Cantera software package that will be used in the present study has also

been used in the past for the calculation of various reacting flows. Work at Cali-

fornia Institute of Technology by Bergthorson (2005) and Benezech (2006) used the

code for jet impinging reacting flows. Bergthorson (2005) used experimental data

to validate certain reaction mechanisms with premixed methane-air, ethane-air and

ethylene-oxygen-nitrogen flames. The San Diego mechanisms (Williams, Accessed

March 2008) were compared to GRI 3.0 (Smith et al., Accessed July 2008) and the

C3-Davis mechanisms (Davis et al., 1999). Later Benezech (2006) researched the ex-

tinction of planar methane-air flames with the same three reaction mechanisms, this

time including a variation in premixture strength. Bergthorson compared experimen-

tal results from particle-streak velocimetry and planar laser-induced fluorescence to

the Cantera calculations (Bergthorson et al., 2005a,b; Bergthorson and Dimotakis,

2007). Cantera is an open source software package recently developed and yet rarely

used in research publications. The aforementioned publications from Caltech and the

following studies are the only ones currently available: a proton-exchange membrane

hydrogen fuel cell (Shields, 2007); a catalytic converter application (Arrighetti et al.,

2007); and the previously cited work in 2-D microgravity flames (Charest, 2008).

To the best of my knowledge this study represents the first time Cantera is used

to compare detailed-chemistry calculations to multi-scalar experiments of laminar

axisymmetric flames from Sandia Nat’l Labs. Partially premixed methane-air flames

were chosen in order to contribute to the literature where simulations including both

radiation and cross-transport effects are lacking. The state-of-the-art software pack-

age provides a chemical manager that can use detailed chemical kinetics, such as GRI

3.0, with 53 species and 325 reactions, and an advanced transport manager for multi-

component diffusion. I augmented the calculations with an optically-thin radiation

model using emission from only four species (CH4, H2O, CO, CO2). In order to com-
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plete the full transport properties calculation, I included the higher order Soret and

Dufour terms. The main novelty of the present work lies in the detailed-chemistry

calculations including radiation and higher order cross-transport effects. Although

the physical problem is solved in one dimension the experimental data are two di-

mensional. Indeed, the dimensionality of the axisymmetric flames will be discussed

in later chapters and future work will include a boundary-layer 2-D scheme using

detailed-chemistry and full transport.

In the present work, the theory of flamelets will also be discussed. The flamelet

approach enables the examination of the scalar flame structure and its character-

istics. It was originally developed for the understanding of turbulent flames. The

flamelet mappings were introduced in combustion by Peters (1984, 1998, 1988) based

on theoretical developments by Bilger (1976a,b, 2000). Pitsch and Peters (1998) stud-

ied laminar non-premixed hydrogen-air flames using transient flamelets. Unsteady

flamelet models have also been used to simulate turbulent non-premixed jet flames

and to compared with experimental results (Pitsch and Steiner, 2000; Pitsch et al.,

2009). The results of the former study showed that the conditional statistics in the

turbulent flow field (temperature and mass fractions) were strongly dependent on the

level of partial premixing in the flame. Motivated by this finding, the present work

will utilize the flamelet approach to analyze the flame scalar structure under varying

premixture.

Partially premixed flames have attracted a lot of attention because they combine

some of the positive aspects of both premixed and non-premixed flames. The choice

of partially premixed flames will be explained in more detail in the first chapter. The

experimental data set will then be introduced. The physics of the reacting flow and the

governing equations will be discussed, followed by the subset of equations pertinent

to the 1-D opposed jet flames. The software package, as well as the modifications to
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the existing code will be described. Lastly, the results of simulations and experiments

are divided in two chapters: the spatial and scalar structure of the flame. The effects

of radiation and cross-transport will be discussed. The novelty of this study is based

on the fact that for the first time high-quality multi-scalar measurements in partially

premixed flames are compared to accurate Cantera calculations in 1-D.
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CHAPTER II

LAMINAR PARTIALLY PREMIXED METHANE-AIR FLAMES

Experiments are easier to set up as open system compared to a closed, complex-

geometry, 3-D combustion system such as an engine combustion chamber. The dif-

ferent type of flames are obtained with different geometrical arrangements, and the

manner of mixing between fuel and oxidizer. This results in various thermodynamic

properties and velocity for each flame type. The flames may be premixed or non-

premixed, laminar or turbulent. The specific subject of the present work is laminar

partially premixed methane-air flames. I will explain the choice of partially premixed

flames. Briefly, I will introduce the experimental apparatus, data set and laser diag-

nostics used on laminar flames at Sandia National Laboratories. Finally, I will explain

the one-dimensional flame representation.

Non-premixed versus premixed flames

There are different reasons to choose a partially premixed flame over a non-premixed

or premixed flame. As seen in figure 1, non-premixed flame, the fuel stream comes

from the center of a burner, nozzle1 and air takes the role of oxidizer supplied by

entrainment or by a co-flowing stream. The ignition is usually produced by an initial

spark at the base of the stream and then the flames are self-sustained. The reaction

zone (represented by a red line in figure 1) is located around the maximum tem-

perature where the fuel and air react at the stoichiometric value. The oxidizer/air

concentration is decreasing from the outside towards the flame front while the fuel

1A candle is an example of a non-premixed flame where the wax is the fuel.
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concentration is decreasing from the center of the stream to meet in the reaction zone

where the product concentration peaks.

Oxidizer

YFYO

Fuel

T,YP

φ = φst

Figure 1. Non-premixed flame schematic.

In figure 1, Y’s represent mass fraction, mi/
∑
mi, where mi is the mass of species i

over the total mass. To characterize the richness of the flame, the equivalence ratio

or premixture strength is defined as:

φ =
(Fuel/Air)

(Fuel/Air)stoichiometric
(2.1)

Represented in Figure 2, are the two other types of flames. In the premixed flame,

case c, fuel and oxidizer are mixed together at the molecular level before ignition. The

best example of premixed flames is found in the carburetor engines. The partially

premixed flame set up, case b, is achieved by premixing fuel and oxidizer before

ignition and adding oxidizer/air by entrainment or with a co-flow. It combines some

of the advantages of non-premixed and premixed flames:

- Robustness: the partially premixed flame is slightly more robust than the non-
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Fuel Fuel + Oxidizer

   φ > φ flamable

Fuel

Oxidizer

Premixing

OxidizerOxidizer

Non-premixed

DIFFUSION

Partially-premixed Premixeda.       b.                  c. 

Figure 2. Flame types classification.

premixed flame. The non-premixed flame has heat loss both towards the oxi-

dizer and the fuel side. It is easily extinguished. While the premixed flame is

considered more robust than the non-premixed system because the heat loss is

directed only towards the fuel side.

- Economy: in a laboratory, a careful variation of the fuel and air mass flows is

necessary in order to stay within the flammability limits of the non-premixed

flame. This process is not economical. In contrast the premixed and partially

premixed set up can achieved a better fuel economy.

- Safety: the partially premixed flames are considered safer than the premixed

flames which are susceptible to backfire, when the flame front reaches back to

the fuel source.

The fundamental difference between the three flames is the equivalence ratio, φ.

For a partially premixed flame, φ is too rich and above the rich flammability interval
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of a premixed flame. For example the flammability limit for methane-air combustion

is experimentally determined in the range: 0.53 < φ < 1.6 (Glassman, 1996). If a

premixed flame is set up with an equivalence ratio of 1.8, with a co-flow of inert gas

such as Argon, the mixture would not burn. But if the same flame allows for air

entrainment it will survive. The richness of the mixture creates a special condition

for a second reaction zone in the flame. In the even more advanced configuration

where fuel is injected in the co-flow three reaction zones appears, giving rise to the

triple flame structure introduced by Plessing et al. (1998); Aggarwal et al. (2001);

Qin et al. (2004). The second reaction zone is represented here in Figure 2b by the

second red line lying inside the line of stoichiometric value, in the rich zone. The

careful examination and detailed understanding of this second reaction zone are some

of the major motivating factors for the present study.

As explained by (Xue and Aggarwal, 2001) partially premixed flames are relevant

and useful for engine combustion since “a partially premixed flame is capable of

achieving both high-energy supply and low pollutant emissions simultaneously”.

The choice of methane as fuel is motivated by the scientific community under-

standing of the methane oxidation characteristics. Methane reaction mechanisms are

fairly well modeled2 compared to more complex higher order hydrocarbons. Although

hydrogen fuel would be simpler to model and analyzed, experimentalist prefer using

methane for its minimal soot formation.

Experimental approach

The following section will describe the laboratory experiments to obtain laminar

flames and the chemical species measured. Experiments were conducted at the Com-

2Certain reaction mechanisms are still under investigation such as higher order hydrocarbon
formation, cabonaceous chains C-1 to C-6, and oxidation mechanisms.
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bustion Research Facilities (CRF), Sandia National Laboratories by Karpetis and

Barlow (2003); Kluzek, Karpetis and Barlow (2009). A previously unpublished data

set will be used in the present work for comparison with the numerical calculations.

Fuel + Oxidizer

Oxidizer

Air
small co-flow

Laser beam’s height

100 mm

50mm

25mm

x

         

               d

Figure 3. Schematic of laminar flame experimental set up used in Sandia Nat’l Lab.

Table I. Flow parameters of the three jet flames used in the present study

φ Air-in-Fuel (slm) Fuel (slm) Co-flow (slm)

1.80 6.73 1.27 0.9

2.20 6.50 1.50 0.9

3.17 6.00 2.00 0.9

Figure 3 is a schematic of the generic experimental set up used in Sandia for

measurements in laminar axisymmetric flames. In the original experimental set up,
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the annular piloted burner had a main jet diameter of 7.72 mm. The jet was located

in the center and slightly above the exit of a wind tunnel of section 30x30 cm (exit

of a contraction ratio of 9:1). The jet velocity was in the order of 2 m/s, and the

co-flow velocity approximately 0.9 m/s. The volumetric flow-rates issuing from the

nozzle exit are listed in Table I. The purpose of the co-flowing air was to stabilize

the flame, by reducing the variation or flickering of the flame-tip. The flames were

attached to the nozzle exit thus premixing with coflow air was negligible. The level

of premixing (air-in-fuel) was accurately controlled by using mass-flow controllers to

achieve equivalence ratios of φ = 1.8, 2.2, 3.17 for the three flames under study. The

cold Reynolds number for the jet was approximatively 1100, ensuring a laminar jet

flow. More detail of the experimental set-up as well as a discussion of measurement

accuracies can be found in Barlow et al. (2001, 2000).

φ = 1.8    φ = 2.2                      φ = 3.17

Figure 4. Photograph of Sandia laminar flames at varying premixing strength. With
permission of Adonios Karpetis.
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Figure 4 shows a composite image of chemiluminescence emanating from the

three flames. The double zone structure, which will be discussed in Chapter IV is

evident for both of the leaner flames (φ = 1.8, 2.2).

The main limitation of experiments is the number of species that can be mea-

sured. A more complete picture of the combustion process can be obtained by using

detailed-chemistry computations. The specific reaction mechanism used here, GRI

3.0 (Smith et al., Accessed July 2008), will give information on 53 species and 325

reactions simultaneously. It will enable the extraction of reaction rates and analysis

of detailed thermochemistry.

Oxidizer

YFYO

Fuel

T,YP

φ = φst

Oxidizer

Fuel 

+ 

Oxidizer

O             F+O

O
             F+O

Figure 5. Flame representation in 1-D. The figure on the left represent an axisymmetric
flame which contains several flames. The reaction can be seen as a fuel jet
opposing an oxidizer jet, leading to the representation of the flame with an
opposed jet flame.

A 2-D configuration is needed to increase the fidelity of the computations and to

better match the experimental data . A 2-D treatment has been accomplished in the

past by Smooke and co-workers, e.g. Bennett et al. (2000). Due to the computational

cost of detailed chemistry calculation, skeletal mechanisms are often use instead. To

keep the numerical solutions within runtime of one hour or less, a 1-D treatment
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is preferred. As depicted by figure 5, oxidizer and fuel/air mixture face each other

everywhere. As a result, the flame can be seen as a collection of laminar opposed jet

flames. This assumption is valid locally but we will see in the results section how

difficulties arise with this approach and investigate in more detail the differences and

improvement possible with a 2-D simulation.
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CHAPTER III

NUMERICAL CALCULATIONS

The opposed jet flow configuration takes advantage of the existence of a similar-

ity solution which reduces the 2-D system to an 1-D problem. Numerically solving

the reacting-flow equations in 1-D allows for the use of detailed chemistry and full

transport in reasonable computational time. The physics and equations are described,

and the numerical code and modifications are explained throughout the chapter. The

calculations are augmented with a radiation treatment and the inclusion of cross-

transport effect.

Reacting flow equations

In vector form, the conservation equations that apply to the general reacting flow are:

Mass conservation:

∂ρ

∂t
+∇ · (ρū) = 0 (3.1)

Species conservation:

ρ
∂Yi
∂t

+∇ · (ρūYi − ρD∇Yi) = ω̇i (3.2)

where ū is the flow velocity, Yi the mass fraction, ω̇i the net mass production/destruction

rate of species i, D the diffusion coefficient.

Momentum conservation:

ρ
Dū

Dt
= −∇ · ¯̄P + ρ

N∑
i=1

Yif̄i (3.3)
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Energy conservation:

ρ
De

Dt
= −∇ · q̄ − ¯̄P : ∇ū+ ρ

N∑
i=1

Yif̄i · V̄i (3.4)

where ¯̄P is the pressure tensor, f̄i are external body forces, e the internal energy and

q̄ the heat flux vector. The presence of chemical reaction is denoted in the species

equation by the source term ω̇i. All of the reacting flow equations are implicitly

affected through the change in density.

The caloric and thermal equations of state are respectively:

h =
N∑
i=1

Yihi =
N∑
i=1

Yih
o
i +

N∑
i=1

Yih
s
i (3.5)

P = ρRoT
N∑
i=1

Yi
MWi

(3.6)

For the present case the governing equations are specialized for a cylindrical

coordinate system. The opposed jet configuration leads to an axisymmetric problem

where the flow is considered in the (z,r) plane only (figure 6). The flow is assumed in

steady state and isobaric. Figure 6 illustrates the opposed jet flow configuration.

Stagnation plane

Flame

.

.

.

.

.

.

     Fuel               Oxidizer
+ Oxidizer z(m), u

ρ  uf   f
ρ    uox   ox

r, v

Figure 6. Schematic of opposed jet flow configuration. The flame is represented as
an opposed jet where the stream of fuel impinges on a stream of air. A
stagnation plane is formed in the center, when the mass flow are equal. The
flame is located towards the oxidizer side.
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The continuity equation becomes:

∂(ρu)

∂z
+

1

r

∂(rρv)

∂r
= 0

where (ū, v̄) are the two components of velocity in the (z,r) plane. As explained in

the literature, e.g. Kee et al. (2003), a streamfunction can be defined for the flow field

in cylindrical coordinates:

Ψ(z, r) = r2U(z)

where U is an unspecified function of z alone. The stream function has to satisfy the

definition dΨ = 0. Thus two relationship are obtained:

∂Ψ

∂r
= ρur = 2rU(z)

−∂Ψ

∂z
= ρvr = −r2 ∂U

∂z

These relationships are used in the radial momentum equation, which is then

combined with the continuity equation, and after some simplifications1, the momen-

tum equation becomes an eigenvalue problem for the pressure curvature. The term

∂p/∂z is a function of z alone so its radial derivative must vanish:

∂

∂r
(
1

r

∂p

∂z
) =

∂

∂z
(
1

r

∂p

∂r
) = 0 =⇒ 1

r

∂p

∂r
= Λr (3.7)

Derivation of the 1-D equations

The preceding derivation leads to a significant simplification of the reacting flow

equations from two dimensions to one dimension. The similarity solution is an exact

solution of the stagnation flow problem. The final equations for this configuration

read as follows:

1For more detail on the derivation see Kee et al. (2003), chapter 6.2.
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Mass conservation:

d(ρu)

dz
+ 2ρV = 0 (3.8)

From this point on, the physical velocities are function of z alone and the vector signs

are omitted: u the flow velocity, and V a scaled velocity which is related to strain by

equation 3.8.

V (z) =
u

r
(3.9)

Species Conservation:

ρu
dYi
dz

= − d

dz
(ρYiVi) + ω̇i (3.10)

where Vi is the molecular or diffusion velocity of species i (Vi is the magnitude of

V̄i) which is defined as the peculiar velocity minus the flow velocity (Williams, 1985;

Law, 2005):

V̄i = v̄i − ū

The radial momentum equation is reduced to an eigenvalue problem:

ρu
dV

dz
+ ρV 2 =

d

dz
(µ
dV

dz
)− Λr (3.11)

For chemically reacting flow the energy equation has the general vector form:

ρ
De

Dt
= −∇ · q̄ − ¯̄P : ∇ū+ ρ

N∑
i=1

Yif̄i · V̄i (3.12)

where e is the internal energy, q̄ the heat flux vector, ¯̄P the pressure tensor, ū the mass-

average velocity, V̄i the molecular diffusion velocity, Yi the mole fraction of speciesi,

and f̄i external body forces. In order to explain some of the assumptions used in

this problem, a short derivation of the conservation of energy is given here to obtain

the final scalar form used by the numerical calculation. The following derivation,

is based on the nomenclature of Williams (1985) and following Law (2005). In the
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present problem external body forces such as gravity are neglected. The contraction

of the pressure tensor with the velocity gradient is replaced by:

¯̄P : ∇ū = −p(∇ · ū)

Based on the approximation of low speed flow, energy dissipation through viscous

effect is assumed negligible. In the inviscid momentum equation:

ρu
du

dz
= −dp

dz

Each variable is nondimensionalized by an equivalent reference value, e.g. û = u/uo,

to obtain:

ρou
2
o

po
(ρ̂û

dû

dz
) = −dp̂

dz

The Mach number is introduced as M = u/a where a is the isentropic speed of sound,

a2
o = γpoρo.

γM2
o (ρ̂û

dû

dz
) = −dp̂

dz

In low-speed subsonic flows, M2
o � 1, and the changes in pressure are of the same

order as the Mach number squared, thus the pressure variation can be considered

negligible when compared to temperature, density, and concentration variation (see

Kee et al. (2003) for a detailed explanation).

∆p̂ ∼ O(M2
o )

Using the enthalpy definition:

e = h− p

ρ

and the total derivative definition to separate ρDe/Dt into two terms, the energy
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equation becomes:

ρ
∂e

∂t
+∇ · (ρūe) = −∇ · q̄ − p(∇ · ū)

∂

∂t
(ρh)− ∂p

∂t
+∇ · (ρūh) +∇ · (ūp) = −∇ · q̄ − p(∇ · ū)

Using the isobaric assumption one can prove after some rearrangement that:

∂

∂t
(ρh) +∇ · (ρūh) = −∇ · q̄

The caloric equation of state defines the enthalpy as being composed of sensible and

formation parts:

h =
N∑
i=1

Yihi =
N∑
i=1

Yih
o
i +

N∑
i=1

Yih
s
i (3.13)

The energy equation then becomes:

∂

∂t
(ρ

N∑
i=1

Yih
o
i ) +

∂

∂t
(ρ

N∑
i=1

Yih
s
i ) +∇ · (ρū

N∑
i=1

Yih
o
i ) +∇ · (ρū

N∑
i=1

Yih
s
i ) = −∇ · q̄

In order to eliminate some terms, the species conservation equation 3.10 is multiplied

by hoi and summed over all species to obtain:

∂

∂t
(ρ

N∑
i=1

Yih
o
i ) +∇ · (ρū

N∑
i=1

Yih
o
i ) =

N∑
i=1

hoi ẇi

Replacing the first and third term in the energy equation:

∂

∂t
(ρ

N∑
i=1

Yih
s
i ) +∇ · (ρū

N∑
i=1

Yih
s
i ) = −∇ · q̄ −

N∑
i=1

hoi ẇi

In the present problem, for multi-component transport in which radiation is impor-

tant, the heat flux vector can be written as:

q̄ = −λ∇̄T + ρ
N∑
i=1

hsiYiV̄i +RoT

N∑
i=1

N∑
j=1

(
XjDT,i

WiDi,j

)(V̄i − V̄j) + q̄r (3.14)
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This constitutive equation includes Fourier heat flux, heat transfer due to prop-

erty variation, Dufour cross-transport term, and radiative heat flux respectively. The

multi-component diffusion coefficients, Di,j and thermal diffusion coefficient DT,i, as

well as the Dufour effect, will be discussed in section . For the present derivation the

Dufour term will be neglected.

Replacing q̄ in the energy equation, the following form is obtained:

∂

∂t
(ρ

N∑
i=1

Yih
s
i ) +∇ · (ρū

N∑
i=1

Yih
s
i ) = −∇ · (−λ∇̄T + ρ

N∑
i=1

hsiYiV̄i + q̄r)−
N∑
i=1

hoi ẇi

Using the following assumptions:

- Steady state

- Species-independent specific heat: cp,i = cp

it leads to two identities:

∇hsi = ∇hs = cp∇T (3.15)
N∑
i=1

YiV̄i = 0 (3.16)

The energy equation then becomes:

∇ · (ρūhs) = ρūcp∇T = −∇ · (−λ∇̄T + q̄r)−
N∑
i=1

hoi ẇi

After re-arranging the terms:

−ρūcp∇T +∇ · (λ∇̄T )−∇ · q̄r −
N∑
i=1

hoi ẇi = 0 (3.17)

The first term is heat transfer due to convection. The second term is heat transfer

due to conduction, or Fourier heat flux. The third term is molecular energy transfer

due to enthalpy fluxes. The fourth is heat transfer due to radiation, and the fifth is
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the energy produced from the chemical reactions of all species i. In the simplified

1-D form used here, the derivatives are taken with respect to the z flow axis with the

units of W/m3.

Energy equation:

−ρucp
∂T

∂z
+

∂

∂z
(λ
∂T

∂z
− ∂qr
∂z

)−
N∑
i=1

hoi ẇi = 0 (3.18)

Chemistry source term

The complexity of the calculations comes from the source term. To understand the

formulation of this highly non-linear term a derivation is presented here. Starting

from the Arrhenius formulation of the reaction rate (forward):

kf = Ak,fT
ne−

Ea
RT

where k = 1,2,3...M number of elementary reactions, Ak,f is the pre-exponential factor,

n the temperature exponent, Ea the activation energy, R the universal gas constant

and T the gas temperature. For multiple reversible reactions with Mi molecules:

N∑
i=1

ν
′

i,kMi �
N∑
i=1

ν”
i,kMi

The progress of reaction variable, in kmol/m3s, is calculated:

w
′

k = wk,f − wk,b = [kk,f

N∏
j=i

C
ν

′
j

j − kk,b
N∏
j=i

C
ν”

j

j ]

where i = j = 1,2,3...N species, Cj the concentration of the jth species, ν
′
j the stoichio-

metric coefficient of the jth reactant species, ν
′′
j the stoichiometric coefficient of the

jth product species. It is multiplied by the product of the stoichiometric coefficients
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to give the molar reaction rate of species i for reaction k:

ŵi,k = (ν”
i − ν

′

i)[kk,f

N∏
j=i

C
ν

′
j

j − kk,b
N∏
j=i

C
ν”

j

j ]

The result is summed up for each reaction giving the molar production/destruction

rate of species i in kmol/m3s:

ŵi =
M∑
k=1

(ν”
i − ν

′

i)[kk,f

N∏
j=i

C
ν

′
j

j − kk,b
N∏
j=i

C
ν”

j

j ]

The equation is multiplied by the molecular weight. The final equation for net

mass production/destruction rate of species i, ẇi in kg/m3s, is:

ẇi = MWi

M∑
k=1

(ν”
i − ν

′

i)[kk,f

N∏
j=i

C
ν

′
j

j − kk,b
N∏
j=i

C
ν”

j

j ]

The final term is evaluated for each species. Its non-linearity is source of complexity

in reacting flow problems.

Boundary conditions

The flanges, where the fuel and oxidizer are issued from, are separated by a distance

d. The origin of the physical axis is z, at the fuel side. The following boundary

conditions apply:

z = 0, u = ufuel, V = 0, T = Tfuel

z = d, u = uoxidizer, V = 0, T = Toxidizer

In addition, gradient of velocity, mass flux, and temperature are all forced to zero at

the boundaries.
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Numerical code

The reacting flow problem is solved using Cantera, an open-source software package

developed by David Goodwin at California Institute of Technology (Goodwin, 2003).

The equations, seen above, are discretized and derivatives are calculated with

finite differences. The solution propagates forward from j to j+1 in the domain (j =

0, 1, 2....n ), i.e. from the left boundary to the right. Only the continuity equation

is solved using backward differences and the derivatives of the momentum equation

are calculated using central differences. When the gradient and curvature of the

dependent variables exceeds certain refinement criteria, an adaptive grid algorithm

is used to refine the solution and to increase the number of grid points. A damped

Newton method is used to solve the steady-state boundary value problem. If no

steady solution can be found, a time marching scheme is used to achieve a solution.

Both steady state and time step tolerances can be controlled by the user (see table

page 44).

Thermodynamics properties such as temperature, pressure, and chemical poten-

tials are calculated by the appropriate equations of state. The mixture gas properties

are computed constantly throughout the iterations and the final solution gives the

properties at each grid point.

The transport manager evaluates viscosity, thermal conductivity, diffusion coeffi-

cients, etc. The user has the choice between a mixture average or a multi-component

transport manager. Using the former give a draft solution. Using the later subse-

quently, gives a refined solution.

The kinetics are also calculated simultaneously for each iteration and each grid

point. Kinetics properties such as reaction rates of progress (ωk) and equilibrium

constants are calculated for each reactions. Here the GRI 3.0 (Smith et al., Accessed
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July 2008) chemical mechanism2 is used for methane oxidation which includes kinetics

for 325 reactions and 53 species.

Past research has showcased the capability of the softare package to simulate

impinging flows and stagnation flames in a premixed configuration (Bergthorson,

2005; Bergthorson et al., 2005a,b; Benezech, 2006). To my knowledge, this study

marks the first time that the modified code has been used for the calculation of

non-premixed flames using radiation and cross-transport effects.

C++ Program Python Script Matlab m-file

USER LEVEL

User- Interface
layer 

API layer

C layer

Kernel

C++ Interface
(header files, cxxlib)

Cantera Python Pkg. 
(classes and functions)

Matlab toolbox
(m-files, classes)

Python Extension 
module

Matlab MEX file

C-lib library
C-callabe function

Cantera Kernel
C++ classes, functions and constants

External C/Fortran numerical libraries
CVODE, BLAS, LAPACK, DASPAK...

PROGRAMER LEVEL

Figure 7. Cantera program layering (Goodwin, 2003).

The kernel of the program was written in C++. The user has a choice of interface:

Python, Matlab or Fortran. Figure 7 illustrates the different layers of the program.

During the present work, the original kernel was modified to include radiation in the

energy equation. Additionally cross-transport terms were included in the transport

2Chemical mechanisms can be interchanged easily in the user code, allowing for different fuel or
reduced mechanism to be used.
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manager. The code was compiled using the Mac OS X Leopard, version 10.5, on a

personal computer. In the following sections the different inclusions and modifications

to the original source code will be explained.

Inclusion of radiation model

For different reacting flow problems, the code solves a set of PDEs equations 3.8, 3.10,

3.11 and 3.18. A precise solution to the opposed-jet reacting flow is progressively

found using transport models of varying complexity: a mixture averaged diffusion

followed by a multi-component diffusion model. In the same way the solution is first

found without calculating the energy equation followed by a full calculation. The

energy equation is discretized in the exact same terms as equation 3.18 but for the

divergence of the radiation heat transfer term. As of the latest code compilation

(version 1.7, 2007), radiative heat flux was not included.

As shown in past studies, radiation, i.e. absorption and/or emission through the

flame has a strong effect on flame temperature (Grosshandler, 1990), as well as certain

species concentrations and overall flame structure (Daguse et al., 1996; Barlow et al.,

2001; Zhu et al., 2002; Kim et al., 2003; Sutton and Fleming, 2008). The study of Zhu

et al. (2002), concluded that a simulation including radiative heat transfer provided

a better match to experimental data than the adiabatic calculations. The study

examined flames with an equivalence ratio of φ = 1.8. Three different models were

compared: adiabatic, optically thin and optically thick. A noticeable radiation effect

was observed in the flame spatial structure. When examining species concentrations

such as NO and CO, these models provided an over-prediction, under-prediction and

good prediction of thermochemistry respectively. While analyzing scalar profiles of

NO formation in partially premixed methane/air flame Barlow et al. (2001) also
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stressed the significance of including radiation effect in order to capture the partially

premixed flame structure. It should be noted that these previous studies compared

experimental data set from Sandia laminar flames to numerical simulations using

Chemkin with the GRI 2.11 detailed-chemistry mechanism. The present study was

motivated by the need of an open-source software to substitute Chemkin in similar

detailed-chemistry/multiscalar measurements comparisons.

In order to provide a more accurate simulation that better matches the experi-

mental data, I include in the code the calculation of radiative heat transfer, i.e. the

third term in the energy equation 3.18. Two models were implemented, one that

treated the radiative heat flux as a function of temperature only, while the other

included species dependency. Both models calculated radiative heat loss using an

optically-thin aproximation for the flame.

Temperature-dependent radiation model

The first model uses the simple radiation law, radiative heat loss from every grid cell

to the environment is accounted for the mixture in general without any consideration

of the particular chemical composition. The Stefan-Boltzmann law describes the

divergence of heat transfer as:

∇ · q̄r = εσ(T 4 − T 4
b ) (3.19)

where σ is Stefan Boltzmann constant (σ = 5.6704 × 10−8Wm−2K−4). Background

temperature (Tb = 300K) is included in order to avoid the unrealistic effect of tem-

perature dropping below its boundary value. The mixture is treated as a grey body,

i.e. 0 ≤ ε < 1. The emissivity (ε) of the mixture signifies the portion of radiation

emitted when compared to the equivalent black-body emission. An ethane flame, for

example, will have a value of ε varying from 0.4 to 0.7, based on the CO2 absorption
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band at 4.3 µm for the following range of temperature: 800 to 1100 K. This was found

by Brahmi et al. (1999) while performing experiments in microgravity to determine

global emissivity for thin laminar diffusion flame and validate IR images against ther-

mocouple readings. As a first approximation and to induce a small effect, a small

constant value of ε = 0.2 was chosen. Results of this radiation model are detailed in

Chapter V.

RADCAL-based model

Guided by the proceeding of the Turbulent Non-premixed Flames workshop (Smith

et al., Accessed November 2008), model 2 is formed based on radiation loss due to

specific species i. Emission from the following main species is considered: H2O, CO2,

CO, CH4. The model for this approach is based on the narrow band model RAD-

CAL (Grosshandler, 1993) with the assumption that self-absorption is negligible in

the flame. Past studies (Zhu et al., 2002) have shown that this assumption pro-

duces an adequate description of the flame. Also the results of this model produce a

somewhat lower temperature than the physical reality.

The RADCAL model was originally developed by W.L. Grosshandler (1993).

The original code calculates spectral intensity from four select species, includes soot,

and calculates emission and absorption in a finite element volume. Instead of using

the original RADCAL Fortran code, it is easier here to integrate the divergence of

heat flux in the energy equation as described below, where the coefficients ai are curve

fits of the original RADCAL routine:

∇ · q̄r = 4σ
∑

ap,ipi(T
4 − T 4

b ) (3.20)

where ap,i is the Planck mean absorption coefficient of species i, which is in general
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dependent on temperature and wavelength3. The curve fits of the coefficients ap,i

have been published for the main emitters in the flame, i.e. methane, water, carbon

monoxide and carbon dioxide, on the Turbulent Non-premixed Flames (TNF) work-

shop web-site (Smith et al., Accessed November 2008). They are reproduced here

(Table II) and can be seen as a function of temperature in figure 8. The curve fit are

valid from 300 K to 2500 K below a pressure of 1 MPa (9.8 atm). Partial pressure

of species, pi, can be replaced by the local pressure times the mole fraction of the

species, XiP . Since the problem is isobaric, the pressure P is one atmosphere.

Table II. Temperature polynomials and coefficients from Turbulent Non-premixed
Flames (Smith et al., Accessed November 2008)

CH4

ap,CH4 = 6.6334− 0.0035686T + 1.6682E−8T 2 + 2.5611E−10T 3 − 2.6558E−14T 4

H2O and CO2

ap,CO2 = ap,H2O = co + c1(1000/T ) + c2(1000/T )2+
+c3(1000/T )3 + c4(1000/T )4 + c5(1000/T )5

Coefficients: H2O CO2

co -0.23093 18.741
c1 1.12390 -121.310
c2 9.4153 273.500
c3 -2.998800 -194.050
c4 0.51382 56.310
c5 -1.86840e−5 -5.8169

CO
ap,CO = co + c1T + c2T

2 + c3T
3 + c4T

4

300 ≤ T ≤ 750K 750 < T ≤ 2500K
Coefficients: co 4.7869 10.09

c1 -0.06953 -0.01183
c2 2.95775E−4 4.7554E−6

c3 -4.25732E−7 -5.87209E−10

c4 2.02894E−10 -2.5334E−14

3The Planck coefficients have been determined for a temperature range and integrated over the
broad-band of wavelengths leading to ai = f(T ).
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Figure 8. Planck mean absorption coefficients dependency on Temperature, curve fits
based on RADCAL (Smith et al., Accessed November 2008).

The numerical solution of the energy equation includes the extra term for radia-

tive heat flux4. As will be shown in Chapter V, the radiation effects are important

for the calculation of flame thermochemistry.

Higher order cross-transport terms

Another area where previous research has indicated that numerical simulations should

be expended is the physics of cross-transport phenomena. These higher-order terms

are sometimes neglected in reacting-flow computations, even though they may affect

heat and mass transport in certain flame types (Giovangigli, 1999), such as premixed

and non-premixed flames with hydrogen fuel (Ern and Giovangigli, 1998; De Charente-

nay and Ern, 2002; Arias-Zugasti and Rosner, 2008; Grçar et al., 2008). This study

4A copy of the implementation of this model in the source code is available upon request to the
author.
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will demonstrate their effects on laminar partially premixed methane-air flames.

The different processes that take place in flames are accumulation, convection,

diffusion and reaction. For high speed flow, in the main reaction zone convection

balances reaction. For low speed laminar flames diffusion is essential. Indeed in

subsonic processes, in the main reaction zone convection balances reaction. This is

apparent in the species conservation equation 3.2:

ρ
∂Yi
∂t

+∇ · (ρūYi − ρD∇Yi) = ẇi

accumulation + convection + diffusion = reaction

Siimilarly, the conservation energy equation 3.17 shows similar balancing terms:

−ρūcp∇T +∇ · (λ∇̄T )−∇ · ρ
N∑
i=1

hsYiV̄i −∇ · q̄r −
N∑
i=1

hoi ẇi = 0

convection + diffusion + reaction = 0

Kinetic theory of gases (Hirschfelder et al., 1954; Vincenti and Kruger, 1965;

Chapman and Cowling, 1970; Williams, 1985) defines energy transfer to be dependent

on molecules collision processes. A summary of the major and minor gradients, mass,

momentum and energy transfer equations is given in Table III.

The thermal diffusion coefficient, DT,i, the binary Di,j, and the multi-component

diffusion coefficient, Di,j of species i into j, units are m2/s. Dynamic viscosity (µi,j)

units are kg.m−1s−1, and thermal conductivity (λ) units are Jm−1K−1s−1. The term

V̄i denotes the molecular velocity of species i. The numerical simulations models the

multi-component diffusion coefficient Di,j after the binary diffusion coefficient Di,j

which itself is based on the kinetic theory of gases. Multi-component diffusion coeffi-

cients are difficult to observe and/or measure, even for the simplest multi-component

system, the ternary system. Thus approximations are made from the well-known
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Table III. Molecular transport phenomena

Diffusion Gradients Fluxes Equation

Mass Concentration Fick’s law Γ̄i = −Di,j
dNi

dx

Temperature Soret effect

Γ̄S =
∑N

j=1
XiXj

Di,j

1
ρ
(
DT,j

Yj
− DT,i

Yi
)∇T
T

Momentum Velocity Newton’s law τ = −µi,j dvdx
Energy Temperature Fourier’s law q̇F = −λdT

dx

Concentration Dufour effect

q̄D = RoT
∑N

i=1

∑N
j=1(

XjDT,i

MWiDi,j
)(V̄i − V̄j)

binary diffusion coefficients. Another diffusion coefficient available through the sim-

ulations, is the mixture average coefficient Di,mix calculated for diffusion of a species

i into the mixture.

Dufour term

Usually a temperature gradient gives rise to energy transfer from hot to cold region.

The heat flux, or conduction, is usually described by Fourier’s constitutive law. This

is considered the main energy transfer in the flame, yet in certain cases when heat

transfer driven by concentration gradient or mass flux is possible (hence the term

cross-tranpsort). This physical effect is called the Dufour effect. The term may work

with or against the Fourier term. The equation used for the Dufour effect, q̄D (see

Table III) appears in the total heat flux vector (section , equation 3.14):

q̄ = −λ.∇̄T + ρ
N∑
i=1

hsiYiV̄i +RoT
N∑
i=1

N∑
j=1

(
XjDT,i

MWiDi,j

)(V̄i − V̄j) + q̄r
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The Dufour effect arises when there is difference in molecular velocity between species.

Molecules with a higher molecular velocity, or kinetic energy, will tend to move to-

wards a region where the kinetic energy is low. Thus molecules in high-concentration

cold region could rise to low concentration warm regions, a process which opposes

the Fourier heat flux from hot to cold. The following schematic (figure 9) shows the

gradient of temperature ∇T and the Dufour counter-gradient.

Y
Y

F

Ox

0     0.02            

YOx

 Distance from fuel flange, z(m)

Y  , Ti flame

T∆

Dufour

Figure 9. A schematic of Dufour effect in 1-D flame geometry. The spatial structure
shows simplified temperature, fuel and oxidizer profiles. The gradient of
temperature is counter to the “Dufour” heat transfer.

The term is usually assumed to be negligible in the flame compared to the Fourier

diffusion term. I implemented the Dufour term into the energy transport equation of

the code for completeness. It is necessary to solve the energy equation with multi-

component transport in order for the routine to go through the calculation of the

Dufour term. The results will be presented in Chapter V.

Soret term

The major mass diffusion process is due to concentration gradients, and results in

species moving from region of high to low concentration. This is Fick’s law as de-

scribed in Table III. In the case where the temperature gradient gives rise to mass
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flux, a cross-transport effect arises. This is also a higher order term called Soret ef-

fect (Rosner, 1986) or thermophoretic force5. Depending on the flame configuration,

the Soret flux term can be parallel or opposite to the Fick diffusion flux. As stated

before, this is a higher order term because in proportion to the main flux, it is of a

smaller order of magnitude.

The temperature difference drives light molecules (such as hydrogen) to hot re-

gion and heavy molecules to cold regions, i.e. temperature gradients induce molecular

transport. The effect is dependent on species molecular weight. As shown in figure 10

high hydrogen concentration is present in the fuel side just before the temperature

peak. The concentration gradient will tend to drive molecules towards the lowest

concentration, while the Soret effect will drive the light hydrogen molecules towards

the hottest region of the flame peak. The Soret effect will contributes or counteract

the main Fick diffusion depending on the magnitude of the temperature gradient and

the direction of the concentration gradient.

T
Y
Y

F

Ox

∆

0     0.02          

YOx

 Distance from fuel flange, z(m)

Y  , Ti flameH2

∆[Ni]

Figure 10. A schematic of Soret effect in a 1-D flame geometry. The simplified flame
spatial structure shows temperature, fuel and oxidizer profiles. The gra-
dient of concentration may be countered by the mass transport due to
temperature gradient.

5Thermal diffusion is a physical process not to be confused with thermal conduction. Ther-
mophoresis is defined as the movement of particles due to temperature gradient.
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The thermal diffusion effect is included in the calculation of diffusion mass flux

vector for each species (Γ̄i) using a multi-component formulation. Neglecting pressure

diffusion (Kee et al., 2003; Williams, 1985):

Γ̄i = ρYiV̄i

V̄i =
1

XiMWi

N∑
j 6=i

MWiDi,j∇Xi −
1

ρT

DT,i

Yi

∇T
T

(3.21)

where the first term is the multi-component diffusion and the second term represents

the Soret effect. The first term gives rise to the classic Fick diffusion in the mixture-

average formulation:

V̄i = −Di,mix∇Xi/Xi (3.22)

As the equation 5.10 shows, the term is important whenever molecular weight dispari-

ties - species having disparate molecular weights MWi- coexist with large temperature

gradients. The Soret effect is additionally dependent on the thermal diffusion coef-

ficients of the species i. For most species, thermal diffusion and mixture average

coefficient are of a different order of magnitude with the former being subsequentially

lower than the latter. This is verified here by extracting both mixture average and

thermal diffusion coefficients from one simulation.

Figure 11 shows the results for a test case calculation at an equivalence ratio of

1.8. The variation of diffusion coefficients is shown against the spatial axis. Figure 11a

shows the mixture-average diffusion coefficients of species i into the mixture. They

are assumed to be equal to the binary diffusion coefficient of species i in Nitrogen,

since N2 is abundant in the flame. Most of the 53 species have similar coefficients with

values less than 2× 10−4m2/s even at high temperature, hence only the species with

large coefficients are plotted. Figure 11b shows that the thermal diffusion coefficient
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Figure 11. Comparison of diffusion coefficients. Case(b), d= 1.95 cm, φ=1.8. The
absolute values of thermal coefficients are plotted on the right.

for some specific species such as CO2, H2O, H2 are in the order of magnitude 10−6 to

10−7 m2/s, most species coefficients are not plotted here (the threshold for the figure

is DT,i ≥ 10−9 m2/s). The figure shows the magnitude difference between thermal

diffusion and Fick diffusion. The magnitude of the thermal coefficients justifies the

usual assumption of negligible thermal diffusion in flames employed in computations.

Yet some species, such as hydrogen, water, and carbon dioxide, have much higher

thermal diffusion coefficients (order of 10−6 m2/s). This implies that the Soret effect

is most important when hydrogen is used as fuel, but may also be important in the

case of hydrocarbon fuels in regions where hydrogen is generated as the intermedi-

ate product of fuel decomposition, as well as in regions where the high-molecular

weight fuel experiences high temperature gradients (Rosner et al., 2000). Examining

equation 5.10, the Soret effect will be important when DT,i and/or ∇T are large.

Furthermore, when hydrogen is taken into consideration, its small molecular weight
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leads to a smaller gradient diffusion term (first term in equation 5.10) and to an

increased importance of the Soret term (second term in equation 5.10).

As explained by Williams (1985), the higher order terms are very often assumed

to be negligible in flame calculations reported in the literature. This assumption

has facilitated the development of the simulations until recent times. Analytically

and computationally it is easier to neglect these terms and the solutions found for

free propagating flames, jet and counterflow flames showed good agreement with

experiments. Since the computational cost has decreased for systems involving multi-

component transport schemes, Ern and Giovangigli (1998) have studied the effect of

the both Soret and Dufour effect in hydrogen-air and methane-air laminar flames with

a simplified mechanism. The inclusion of cross-transport had a higher effect on the

hygrogen-air and in the methane-air rich burner stabilized flame than on the jet flame

configuration, or a counterflow stoichiometric methane-air flame under high stretch:

a ' 500s−1. Later, De Charentenay and Ern (2002) studied the effect of multi-

component transport schemes on 2-D turbulent flames. The dimensionality led to

an expected increased in computational time, affected the turbulent flame properties

such as laminar flame speed by 50 %, but when considering mean quantities, the

effects were lower (7 % increase only)6. Palle, Nolan and Miller (2005) examined

the effect of cross-transport on laminar flames at high pressures (between 10 to 100

atmospheres) using a single-step reaction. The study concluded on the importance

of including both cross-transport terms when the molecular weights of species in the

flame were disparate. Arias-Zugasti and Rosner (2008) have studied the Soret effect

on laminar flames for non-unity Lewis number cases. One interesting finding was that

the flame temperature structure, both the maximum as well as the whole profile, was

6The origin of this work is due to the theoretical study of the cross-transport phenomena by Ros-
ner and Gomez (1993).
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affected by the molecular weight of the fuel investigated. For light fuel when mass

diffusion coefficient Di,j is larger than the thermal diffusion coefficient, the structure

was shift towards the oxidizer side, which reinforced the effect of nonunity Lewis

number fuel.

More recently, Grçar, Bell and Day (2008) investigated the effect of full multi-

component transport (including multi-component diffusion coefficients and higher

order diffusion terms) on free propagating hydrogen-air flame. The study implication

was the cross-transport processes, involving hydrogen, greatly enrich the fuel zone,

affect extinction and division of flame structure, and provide better estimate of flame

speed. The effect of the new computations seems greater on propagating flames

than planar or conical flames. The latest work on the subject was demonstrated

by Dworkin, Smooke and Giovangigli (2009) on ethylene/air flames. While most of

the previous examples concerned premixed flames, the present study contributes to

the understanding of cross-transport effect on partially premixed methane-air flame.

Results of the augmented simulations for the opposed jet flow configuration, are

described in the following chapter. It will be shown how the Soret effect had a

significant impact on certain mass fraction profiles through the flame, and a lesser

but substantial effect on the conserved scalar (ZH) profile.

Convergence study

A convergence study was performed to examine the solution dependency on grid

refinement. The software package uses a grid refinement that is controlled by three

criteria: the ratio, slope, curve and prune. The ratio controls the maximum cell-

length ratio between adjacent cells. When the ratio is decreased, the number of grid

points increases. The slope and curve criteria add grid points when the difference in
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slope and curve between two adjacent cells exceed the value selected by the user. The

prune criterion removes points when slope and curve arguments are satisfied. The

last criterion is not used in the present simulations.

Several test cases are computed with different grid refinement criteria for a par-

tially premixed methane air flames at equivalence ratio of 2.2, and fuel/oxidizer inlet

distance of 1.95 cm. Simulation output parameters such as maximum flame tem-

perature, maximum mass fraction were compared to the final temperature and mass

fraction of best resolved calculation with 186 grid points. The temperature as well as

the mass fraction errors of methyl radical (%error of YCH), and formyl radical (%er-

ror of YHCO) are calculated. Their values are 1.3× 10−7 and 5.7× 10−7 respectively.

These species were chosen for comparison to evaluate the effect of grid refinement

on minor species concentrations. In addition, the formyl radical was chosen because

its profile shows two peaks: one in the rich premixed zone, and one before the main

reaction zone. The distance between the two zone is only slightly affected by the grid

refinement process.

In figure 12, some error metrics are plotted as functions of the number of grid

points. The solution for temperature is always constrained within 1 %, regardless

of grid choice and the final calculated maximum flame temperature is within 1.7

% of the experimental determine values. The minor species CH and HCO fall in

the 2 % error band if grids with more than 100 points are used. The simulation

resulting in a 100-point grid had the following criteria: ratio of 3, slope of 0.2, and

curve of 0.8, while the solution was obtained in 14 minutes. The final calculations

were achieved with a grid of less than 100 points (80-90 points in general) due to

the overhead computational time necessary for the Soret and radiation routines at

lower equivalence ratios, especially φ of 1.8. Keeping a short run time allows the

computations to be used for industrial applications where hundreds of iterations are
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necessary to cover different combustion regimes.
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Figure 12. Computational convergence study. Case (b), d= 1.95cm, φ = 2.2.

Finer grid resolution were not selected because of the cost on computational time.

Although a solution falling within the one percent error band would have been more

precise, the run time reaches 40 minutes for a 150-point grid and up to 60 minutes for a

200-point grid. Besides run time, convergence failure also increases as the complexity

of the physical flame problem increases. The simulations tends to be longer and

less likely to converge as the fuel amount in the air decreases (low φ) and the flame

becomes closer to being premixed. The solution convergence is also dependent on the

time steps for the time integration method. As the number of grid point increased,

it was necessary to lower the time-step size or the simulation would fail to converge.

Grid refinement problems and computational expense for each code modification that

included Radiation, Soret and Dufour terms will be examined in detail in the following

chapters.
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CHAPTER IV

FLAME SPATIAL STRUCTURE

The inclusion of an optically-thin radiation model and the cross-transport effects

calculations allow for detailed-chemistry computations that can be compared favor-

ably to experimental data. The structure of partially premixed methane-air flames

can be studied by presenting results in physical space. The goal of the present study

is to analyze the structure of the flames at different equivalence ratios and explore

their similarities. In this section, numerical results are validated with the experi-

mental data presented in Chapter III. The comparison between the two is based on

the assumption that an opposed jet flow (1-D) can reproduce the results obtained

with single-point measurements in an axisymmetric laminar flame, as described in

Chapter II. A discussion of the limitations of the 1-D numerical scheme when used

to simulate a 2-D axisymmetric flame follows.

Stagnation plane

Flame

.
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ρ  uf   f
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Figure 13. Opposed jet flow configuration.
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Table IV. Cantera simulations parameters. Flange distance is specified for each case

Parameters Case a Case b Case c
2 [cm] 1.95 [cm] 8 [cm]

Premixture (methane and air)
Mass flow rate [kg/m2s] 0.084 0.084 0.18
Jet initial temperature[K] 294 294 294

Oxidizer
Mass flow rate [kg/m2s] 0.084 0.084 1.02
Jet initial temperature [K] 300 300 300

Cold strain rate [1/s][φ=1.8, 2.2, 3.17 ]
αo [7.54, 7.42, 7.56] [7.73, 7.61, 7.37] [14.11, 13.75, 13.58]
aox [7.2, 7.25, 7.27] [7.37, 7.4, 7.46] [13.05, 13.12, 13.3]
V [27.6, 24, 22] [23.7, 21.8, 20.8] [28.1, 28.4, 30.6]

GRID
Initial grid 10 points 10 points 40 points
Final grid 86 points 84 points 88 points
Tolerance

Steady state problem [10−5; 10−6] [10−5; 10−6] [10−5; 10−6]
Time stepping [10−5; 10−2] [10−5; 10−9] [10−4; 10−9]

Grid refinement criteria, [ratio, curve, slope ]
Without the energy equa-

tion selected
[3, 1, 1] [50, 0.4, 0.8] [10, 0.3, 0.6]

With the energy equation [3, 0.1, 0.1] [10, 0.1, 0.2] [20, 0.4, 0.8]
With Soret option none none none

In the opposed jet flow configuration (figure 13) methane and air at an equiv-

alence ratio φ are injected in the domain from the left side. It is opposed on the

right side by a jet of air. The temperature and the composition at the two inlets

are matched to the experimentally determined values. The mass flow rate of each

stream as well as the distance between the jets or flange can be varied, and is ad-

justed to match at best the expected cold strain from the experiments1. The baseline

1The cold strain in axisymmetric flames is not easily determined from available experimental
data
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computations in this work are carried out in a spatial domain of 2 cm. The main

reaction zone, as indicated by high temperatures, spans only a few millimeters. All

the parameters for the calculations are reported in Table IV.

Strain rate parameter

The strain rate is usually the parameter of choice to match the experimental data

with the computations. The strain rate tensor has nine components in a cylindrical

coordinate system (r, θ, z). Since the flow is one dimensional, the strain rate here is

a scalar. It can be defined as the gradient of the velocity in the z direction.

Figure 14 shows the variation of the velocity u and the location of the stagnation

line and flame (location of maximum temperature). By definition of the flow axis z,

the velocity is positive at the left boundary. In the cold flow case where no ignition

is possible, it is easy to see that the velocity profile from one inlet to the other is

continuous and monotonic. For the reacting case, the flow field is modified due to

the presence of chemical reactions in the flame as displayed in figure 14. The effect

of heat release and density variation in the flame creates a displacement (Kim et al.,

1992) that affect the velocity and the strain rate. Recalling the mass conservation

equation 3.1 in vector form:

∇ · (ρū) = ū · ∇ρ+ ρ∇ · ū

where the second term (dilatation) balances the change in density due to the reactions.

Figure 14, shows the displacement in the stagnation line or the effect of dilatation

from the cold flow case to the reacting flow case.



46

-0.1

-0.05

0

0.05

0.1

u1 
u2

0 0.005 0.01 0.015 0.02

  u
(m/s)

z (m)

Stagnation line 1 Reacting flow 
                             2 Cold flow
  
  Flame

Figure 14. Opposed jet velocity profile. Cold flow velocity profile and stagnation line
1 are depicted in grey. Reacting flow velocity profile and stagnation line
are depicted in black. Case (b), d=1.95 cm, φ=3.17.

The choice of a strain parameter is not unique as it is hardly possible to define a

single strain rate applicable to the whole flame. Kim et al. (1992) proposed a cold-

strain value for the counterflow configuration that takes into account the boundary

(inlet) densities:

aox =
uox
d

(1 +
uf
√
ρf

uox
√
ρox

) (4.1)

where d is the distance between the inlets. The value determined from equation 4.1

applies to the oxidizer side of the flame, yet a similar value can be determined for the

fuel side. A simpler formula where the strain in dependent on both velocity fuel and

oxidizer jets is found by setting ρf equal to ρox, and used in the present work:

αo ∼
|ufuel|+ |uox|

d
(4.2)

It has been used in previous study to describe laminar flames (Barlow et al., 2001).

I used a parametric variation of the mass flow rate to obtain the closest fit of the
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temperature profile to the experimental data for the richest flame at φ = 3.17. The

final simulations (Case(c), d=8 cm, φ = 3.17) correspond to a cold strain rate of 14

s−1 and a peak value of scaled velocity (V) of 30 s−1 at the maximum temperature in

the flame.

Flange separation distance

The first cases studies were computed with a distance of 2 cm between the fuel and

oxidizer stream (figure 15 case a). Several case studies were performed by varying

the distance between the inlets, keeping the calculated cold strain value constant and

changing the mass flow rates. In case b, the inlets are separated by 1.95 cm and

in case c and d by 8 cm. Increasing the separation between the inlets simulates a

potential flow condition near the flame instead of the original plug flow formulation.

Moving the stagnation line away from the oxidizer or fuel inlet eliminates possible

computations errors (unrealistic concentrations values) at the boundary. Yet the

physical manipulations of the inlet distance does not succeed in representing the

flame temperature and chemistry profile of the axisymmetric flame. For example,

the experiments temperature profile on the rich side exhibits a steeper gradient than

the calculations. The best calculation results that matches the experiments on the

physical axis are achieved with configuration case (c). The comparison between the

experiment data of axisymmetric flames and the simulation of opposed jet flames

can be seen in Appendix A where the nine species and temperatures are plotted in

physical space. The examination of the physical profiles of temperature and species

shows more discrepancy at lower φ.
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Figure 15. Flange distance variation to change the velocity profile.

The flame structure is affected by both the variation of φ and the variation of strain

rate. The latter has a direct effect on the flame structure by reducing the distance

between the reaction zones (main reaction corresponding to the maximum peak and

second reaction zone in the rich premixed zone corresponding to the curvature change

in the temperature profile). When the strain is increased, both the temperature profile

and the temperature gradients are affected on both side of the flame. The variation

of equivalence ratio naturally affects the chemical reactions everywhere thus changing

the flame structure when fuel is added to the premixture. This confirms the findings

of Xue and Aggarwal (2001).

Experimental results

The experimental data-set is detailed here in order to highlight the salient thermo-

chemistry features of the flame. The data points were obtained with high-precision
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laser diagnostics. Single-point multiscalar measurements were taken in the three par-

tially premixed laminar jet flames of table I. The experimental apparatus consisted of

a Raman/Rayleigh system for the measurement of major species (CH4, CO2, H2, CO,

O2, H2O, N2) concentration and temperature. A two-photon Laser-Induced Fluores-

cence (LIF) system was used for an independent measurement of carbon monoxide

concentrations with high accuracy, while additional LIF systems were used for the

simultaneous measurement of OH and NO species concentrations. CO measurements

were redundant but more accurate with the use of two-photon LIF than with the Ra-

man system. The single-point measurements were taken at three different locations

as shown in chapter II figure 3, i.e. at 25, 50 mm, and 100 mm above the nozzle

exit. The optical resolution of the multi-scalar measurements was 500 µm. A full

description of the system and a discussion of experimental accuracies as determined

by calibration against known flames can be found in the references (Barlow et al.,

2000, 2001). For complete detail on the measurement techniques and laser set up

see Masri, Dibble and Barlow (1996).

In figure 16 through 19, the flames are photographed from the leaner (φ = 1.8)

on the left to the richer (φ = 3.17). Only measurements at 50 mm and 100 mm are

shown in the figures. Superposed on each image are the experimental measurements of

thermochemistry. The first relationship that can be induced from theses figure relates

the flame length to the equivalence ratios φ. With increasing premixture strength, the

amount of air needed to diffuse inward to reach the stoichiometric value increases, the

axial distance for the necessary diffusion increases, thus increasing the flame height

as found by Bennett et al. (2000). In other words as the fuel axial convective flux

increases while the oxygen radial flux remains constant, the axial distance needed

to reach a stoichiometric mixture increases. Similar trends have been observed in

laminar Gore and Zhan (1996) and turbulent Lyle et al. (1999) partially premixed
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flames. In all cases, the flame length increases with φ for small values of φ. The trend

disappears and the flame height remains constant for values of φ larger than some

value (close to 3.) Such a ‘transition’ in flame behavior has been found in all aspects of

partially premixed flames in the past. It is intuitively expected, since with increasing

φ the flames should recover all the characteristics of non-premixed flames. The blue

flame color seen in each flame is due to chemiluminescence, i.e. emissions from species

such as OH, CH, C2 and CO2. When examining the reactants methane and oxygen

(figure 16) the main reaction zone is marked by the fuel mass fraction going to zero and

the oxygen being depleted for the combustion. At the 50 mm location for increasing

premixture strength, the fuel mass fraction shows a flatter profile in the middle of

the jet of the rich flame compared to the leaner flame. A similar trend can be seen

when looking at the temperature profile (figure 17), demonstrating how the flame

structure becomes thinner with increasing φ. Examining the OH profile (figure 17)

the peak in concentration is located just outside the temperature peak of each flames.

Hydroxyl radicals (OH) are good markers of heat release, thus indicating the outer

region of the flame or primary non-premixed reaction zone. Similarities arise when

comparing H2O mass fractions (figure 18) and temperature profiles. Both profiles

are wider at low equivalence ratios and include a change in curvature in the rich

premixed zone. This leads to a double flame structure. Equivalently, the peak in

CO and H2 concentrations (figure 18 and figure 19) at that same location in the

rich premixed zone seems to indicate the presence of another reaction. This second

reaction zone is possibly due to the partial oxidation of methane to produce CO

and H2 as previously mentioned in the studies by Bennett et al. (2000) and Barlow

et al. (2001). The change in temperature profile between the rich and lean flames

demonstrates the change in flame structure. As the premixing strength is increased,

the partial oxidation of methane in the rich premixed zone decreases and the two
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zones merge. Furthermore, in the non-premixed zone while CO and H2 are depleted,

H2O and CO2 concentrations stay high or slightly increase. It is possible that CO and

H2 are converted to H2O and CO2 through the equilibrium water-gas shift reaction.

The water-gas shift reactions are defined as:

CO +OH ↔ CO2 +H

H +H2O ↔ OH +H2

Combined to produce the following reaction:

CO +H2O ↔ CO2 +H2

In summary, the analysis of experimental results (figures 16 to 19) enables the

visualization of the flame structure and the identification a second reaction zone in

leaner flame as well as the species involved.
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Axial convection

Nonetheless, the comparison of the experimental data and calculations in the phys-

ical space have some limitations. As seen above, the experiments are limited to

phenomenology on a fixed number of species in the flow. The simulations are also

limited as differences arise at low equivalence ratio. The differences between the op-

posed jet problem in one dimension and the axisymmetric flame from experiments are

not due to the initial parameter such as cold strain rate, but to the neglected axial

convection present in the axisymmetric case.

The similarity solution reduces the problem to one dimension. In the flame

reactions are balanced with diffusion. Again examining the species equation from

Chapter III, equation 3.10:

ρu
dYi
dz

+
d

dz
(ρYiVi) = ω̇i

convection + diffusion = reaction

Outside the flame convection balances diffusion. This is illustrated here with

figure 20.

Convection

Diffusion

1D Flame

.

.

.

Stagnation plane

Reaction zone

     Fuel                                 Oxidizer
+ Oxidizer

z(m), vz

Figure 20. Convective and diffusive fluxes in a 1-D opposed jet flame. Convection
balances diffusion outside the flame region.

When looking at the axisymmetric jet (figure 21), the fuel jet as a greater velocity

than the oxidizer entrained from the outside. In two dimensions, convection and

diffusion outside of the reaction zone are present in both the axial and radial direction.
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Axial convection neglected with the 1D similarity solution may play an important role

in the flame structure. It may be the reason why the temperature gradient on the

fuel side could not be captured with the present 1D simulations.

Oxidizer
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Figure 21. Convective and diffusive fluxes in a 2-D axisymmetric jet flame. Relative
importance of convection versus diffusion in both axial and radial direction.

The equations in 2-D show convection and diffusion terms as function of both

radial and axial direction. Using dimensional scaling arguments, it is shown that the

axial diffusion can be neglected as well as radial pressure variations, Kee et al. (2003).

The species conservation equation in axisymmetric coordinate system is:

ρu
∂Yk
∂z

+ ρv
∂Yk
∂r

+
1

r

∂(rρYkVk,r)

∂r
= ω̇i (4.3)

axial convection + radial convection + radial diffusion = reaction

where (u, v) are the two component of velocity in the (z,r) plane.

Originally, Burke and Schumann (1928) started to studied non-premixed flames

in a coflow. In their experimental set up, the co-flow of air was varied to create over

or under-ventilated flames. The analytical solution of this 2-D problem confirmed
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that the flame height would vary with Peclet number, i.e. the ratio of convective to

diffusive transport in the flame. When the mass flux of the jet stream is increased,

convection in the streamwise direction dominates the diffusion in that direction. In the

original Burke-Schumman formulation, the streamwise diffusion was simply neglected.

Later, Chung and Law (1984) performed the same analysis without that assumption

and achieved the same conclusions.

The ultimate treatment for axisymmetric flames would be to solve the PDEs in

a two dimensional system. Excellent work has been done in this area by Bennett

et al. (2000). Altough one of the disadvantages is the computational time, e.g. it

would take a few days to run only one case. To analyze the engine performance

under varying conditions requires a parametric variation and thus several cases to be

run in a short time. Moreover, the 2-D treatments use simplified or skeleton reaction

mechanisms. The advantages of the present simulations are the short computational

time and the detailed-chemistry mechanism.

As suggested by B. Kee (Kee et al.; Minh et al., 2008), the compromise would

be to solve the problem of axisymmetric flames in two dimensions using boundary

layer approximation techniques. The Differential Algebraic Equations (DAE) will be

solved and the present simulations used for the detailed-chemistry calculations. This

approach is left for future work.

In conclusion, the similarity solution in one dimensional solution allows for fast

computations with detailed chemistry. The main benefit of computational time en-

ables studies with wide parametric variation. Yet the comparison of axisymmetric

laminar flames experiments to opposed jet flow simulations does not yield satisfactory

results in physical space.
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CHAPTER V

FLAME SCALAR STRUCTURE

While the comparison of 2-D experiments to 1-D computations proves somewhat

problematic in physical space, a better agreement can be achieved by examining the

scalar structure of the flame, i.e. by examining the thermochemistry results in a

scalar axis.

Flamelet approach

The equations describing the reacting flow problem in chapter III are highly non-

linear PDEs. The source terms ω̇i are mainly responsible for the complexity of the

problem. With the present state of the calculations, this term is a vector of 53 species

by 325 reactions.

Recalling the species conservation equation in vector form:

ρ
∂Yi
∂t

+ ρū.∇Yi −∇.(ρDi∇Yi) = ẇi (5.1)

Choosing a variable ξ, conserved scalar that does not react in the flame, the dependent

variable Yi is replaced and the reaction terms ω̇i are identically zero, realizing here

the separation of the fluid flow from the chemistry problem.

ρ
∂ξ

∂t
+ ρū.∇ξ −∇.(ρDξ∇ξ) = 0 (5.2)

Without the source term, the equation is easily solved. The change in variables can

be summarized as:

£(Yi) = ω̇i ←→ £(ξ) = 0
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where the linear operator £ acting on Y is:

£(·) = [
∂ρ

∂t
+ ρū

∂

∂z
− ∂

∂z
(ρDξ

∂

∂z
)](·) (5.3)

The main assumption is the equal diffusivities of chemical speces i : Di = Dξ.

The flamelet mapping is a non-unique ad hoc relationship. The originality of the

present work is in the formulation of the conserved scalar. The variable ξ could be a

combination of elemental mass fraction or a single element such as ZH :

ρ
∂ZH
∂t

+ ρū.∇ZH −∇.(ρDZH
∇ZH) = 0 (5.4)

using the assumption of a single diffusivity DZH
for the non-reactive scalar. The

conserved scalar ZH is defined in the present study as the atom of hydrogen. At any

point in the flame the number of hydrogen atoms should vary from the maximum value

at the fuel inlet to zero at the oxidizer inlet1. The value of ZH should be conserved,

meaning no atom would be created, or destroyed. The atoms are transfered from the

fuel molecules to the intermediates species containing hydrogen, and finally to water

molecules in the products (Rosner, 1986).

Past studies have used the Bilger mass fraction, where the conserved scalar,

ξB is a combination of the mass fractions of different elements such as the carbon,

hydrogen, and oxygen atoms (Bilger et al., 1990):

ξB =
2(YC − YC,2)/wC + (YH − YH,2)/2wH − (YO − YO,2)/wO

2(YC,1 − YC,2)/wC + 2(YH,1 − YH,2)/2wH − 2(YO,1 − YO,2)/wO
(5.5)

where Y are elemental mass fractions of carbon, hydrogen and oxygen, w are the

respective atomic weights, and subscripts 1 and 2 refer to the fuel and co-flowing air

1On the oxidizer side, there is no atoms of hydrogen. I assume here that there is no humidity
and the oxidizer is air composed of pure oxygen and nitrogen.
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streams respectively. The variable ξB takes values between zero at the oxidizer side

and one at the fuel side. Later Barlow et al. (2005) modified Bilger’s formulation by

eliminating the atomic oxygen mass fraction.

I define the conserved scalar, ξ as a single element mass fraction: ξ = ZH .

Unlike past studies, the scalar is not normalized. This scalar definition brings out the

similarities of flames with different equivalence ratio. The term flamelet is used here

for every mapping between the thermochemistry (temperature and chemical species)

and the conserved scalar ZH . Figure 22 shows the comparison between normalized

and primitive scalar: the data collapses on the lean side of the flame and differences

appear only on the rich side of the flame. The variation of fuel in the partially-

premixed jet results in different final values of ZH .

400

800

1200

1600

2000

0 0.2 0.4 0.6 0.8 1
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Figure 22. Flamelet profile comparing the normalized with primitive scalar. The three
flamelets plotted are for φ of 1.8, φ of 2.2, and φ of 3.17. Simulations case
(c), d=8 cm.
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The scalar dissipation is defined as:

χ = 2Dξ(∇ξ · ∇ξ) (5.6)

It quantifies the rate of molecular mixing of the scalar (ξ) and is similar to a time

scale: the inverse of the diffusion time. The scalar dissipation appears in the flamelet

equation originally derived by Bilger in 1977 (Bilger, 1976a). The derivation starts

with the species conservation equation for the scalar ξ or for the temperature, T,

using the assumption of unity Lewis-number (Lei = λ/cpρDi) = 1).

ρ
∂ξ

∂t
+ ρū.∇ξ −∇.(ρDξ∇ξ) = 0 (5.7)

ρ
∂T

∂t
+ ρū.∇T −∇.(ρDξ∇T ) =

M∑
k=1

qkω̇k
cp

(5.8)

where qk is the heat of reaction k. The time derivatives are assumed to vanish as well

as the radiation term. The independent variables (x,y,z) are transformed with a new

coordinate system normal to the surface of the stoichiometric mixture.

∂

∂x
=
∂ξ

∂x

∂

∂ξ

As explained by (Peters, 1998), the Crocco transformation is used to formulate a new

set of equations:

−ρχ
2

d2T

dξ2
=

M∑
k=1

qkω̇k
cp

(5.9)

If the reactions are assumed to be infinitely fast, the second derivative is negative

and indicates a maximum as shown in figure 23. This single point correspond to the

flame temperature of a single equilibrium reaction. For regions where there is no

reaction, i.e. the source term ω̇k is equal to zero, the second derivative is zero and the
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solution should show a linear relationship between the temperature and the scalar.

ω̇k →∞ ⇒ d2T
dξ2
→ −∞ ⇒ reaction

ω̇k = 0 ⇒ d2T
dξ2

= 0 ⇒ T = f(ξ)

In general the flamelet will lead to this simple description of the flame structure: a

straight line represents the absence of reaction; the regions with curvature represents

a reaction.

Y
Ox

Y

Y

F

Ox

1            3
0                 ξ            ξ

Y  , T

T

Scalar

i

Figure 23. Schematic of an equilibrium flamelet.

In the present case the scalar is zero on the oxidizer side, where no hydrogen

atoms are present. The last value of the scalar (ξ3) varies with the amount of fuel in

the mixture. This position can be determine using the stoichiometric rich premixture

value:

φCH4 + 2O2 + 7.43N2

where

ξ3 = ZH,3 =
4φ

16φ+ 272

The position (ξ1) corresponding to the peak flame temperature can be determined by
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the overall stoichiometric methane oxidation

CH4 + 2O2 + 7.43N2 −→ CO2 + 2H2O + 7.43N2

ξ1 = Zeq
H,1 =

4

16 + 272
= 0.0138

To continue building the flamelet mapping, the position of the second reaction zone

needs to be calculated with a simple reaction. Examining the water-gas-shift reaction

described in chapter IV as:

CO +H2O ↔ CO2 +H2

it should produce CO or H2 depending on the sign of the progress of reaction variable

ω
′

or direction of the reaction. Using the calculations and extracting the progress

of reaction variable of the water-gas-shift reaction2 (ω
′
WGSR) this hypothesis is not

fully confirmed. Figure 24 shows the progress of variable in scalar space. The first

maximum corresponds to the main reaction zone, indicating that the reaction would

increasingly shift to the right as φ increases. The minima corresponds to the re-

action shifting to the left, or producing CO and H2O. The CO production should

subsequently increase as φ increases, but this is refuted by the CO trend seen in the

experimental and computational results (see figure 25 and 26). The second maxima

corresponds approximately to the second reaction zone (as defined by the bend in

temperature profile) and indicates a shift of the reaction to the right or production

of CO2 and H2. Indeed this time the trend is confirmed by the H2 concentrations.

The decrease in production with increasing φ might be related to the decreases in H2

mass fraction as will be seen in figure 25.

2The net progress of reaction variable ω
′

WGSR is determined by adding the net progress of reaction
variable for the CO oxidation reaction (CO+OH ↔ CO2 +H) to the shuffle reaction: H +H2O ↔
OH +H2.
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Figure 24. Net progress of reaction variable for the water-gas-shift reaction in scalar
space.

Although the water-gas-shift reaction might be involved, it does not explain all

the trends seen in the second reaction zone. Both the experiments and simulations

show concentration of intermediate species peaking in the rich premixed zone before

the main reaction zone. Figure 25 and figure 26 show the simulation and experimental

results for the three flames under study. In both cases CO, H2 and H2O flamelets show

a bend. The curvature seen in the figure around ZH,2 ≈ 0.018 points to a reaction as

described by the flamelet equation. It is possible that the partial oxidation of methane

is responsible for the production of intermediate species and the displacement of the

temperature profile. As shown in the schematic figure 27, the heat released from this

partial oxidation would increase the temperature.
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Figure 26. Flamelet of species CO, H2 and H2O, experimental results.
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Figure 27. Schematic of the second reaction zone (ξ2) in scalar space.

Li & Williams Li and Williams (1999) propose an overall order of that reaction

in the form:

φCH4 + 2O2 + 7.43N2 −→ φCO + (3φ− 4)H2 + (4− φ)H2O + 7.43N2

Upon full completion, that reaction would predict an increasing equilibrium mass

fraction for CO with increasing φ, while the opposite trend can be seen in the mea-

surements. We identify another global reaction step as the most likely candidate for

a unique second premixed zone, namely the reaction Peters (2000):

CH4 +
3

4
(2O2 + 7.43N2) −→ CO + 2H2O +

3

4
7.43N2

This predicts a position for the rich premixed zone at Z2 ≈ 0.018 for all flames in

agreement with the experimental data. Yet another advantage of the global step

mentioned above is the correct prediction of the maximum CO production in the

flames, taking place at the same location in scalar space. Its main drawback is the

inherent lack of H2 production, since all hydrogen is supposed to be converted to
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water by the above chemical reaction. It should be emphasized that such extremely

reduced representations of the complicated chemical kinetics that take place in a

flame would be useful for industrial-type computations, where only few major species

would be accounted for, and where multiscalar experiments and/or detailed-chemistry

computations such as the ones presented here are completely impractical. This simple

scalar structure enables the visualization of the double flame structure3. Ultimately

the flamelet mapping will enable the resolution of the thermochemistry in the flame

(Yi = f(ξ)) when given the variation of the scalar in space (Yi = f(ξ(z, t)). So when

non-reactive species are traced in a complex geometry flow, the thermochemistry may

be inferred from the scalar variation through the flamelet mapping and for example

the amount of CO might be predicted. With the available flamelet mapping of the

partially premixed flames under study, radiation and cross-transport effects can now

be analyzed in scalar space.

Results of radiation models on the scalar structure

The first simulations using the partially-premixed flame examples from Cantera showed

a difference in the peak temperature of 90 K. Figure 28 shows the differences in tem-

perature profile between the experimental data from Sandia laminar flames and Can-

tera simulation case4 (b) with a value of φ=3.17. The radiative numerical results are

plotted with a dashed line. They show a better fit to the experimental data which is

plotted with red dots. In agreement with past research, figure 28 shows a net decrease

in temperature throughout the flame and a maximum decrease in peak temperature

by 110 K, as compared to the adiabatic calculations, previous simulation are plotted

3If fuel was added to the oxidizer side, this would lead to the triple flame structure as described
by Qin et al. (2004).

4See chapter IV for the parameters tabulation.
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with a dashed line. The optically-thin radiative model show closer results than an

optically-thick model which would show somewhat higher temperatures overall.
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Figure 28. Comparison of radiation models adiabatic simulations. Case (b), d= 1.95
cm, φ=3.17, and experimental data in scalar space.

The radiative heat flux equation from chapter III evidently exhibits a strong

dependence on temperature, yet the additional effect of the mole fractions and the

Planck mean absorption coefficients should not be overlooked.

∇.q̄r = 4σ
∑

ap,ipi(T
4 − T 4

b )

In order to examine that effect, opposed-jet simulations results for two adiabatic

flames are used to calculate each term of the heat flux equation. These simulation

results do not include the radiation model described above, rather the radiative terms

are calculated from the adiabatic solution. When the radiative heat loss shown in the

example below (figure 29) is calculated through the flame domain two factors affect

its value: the temperature and the product of mole fractions with Planck coefficients.
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Results are plotted in physical space with the fuel side on the left and the oxidizer

side on the right. The temperature peak location is shown by the black vertical

line at z=10 mm. Acknowledging that the dependency of radiation on wavelength is

already accounted for, notice the Planck mean absorption coefficient dependency on

temperature, figure 8 in chapter III. The four species have a higher coefficient for

temperature below 1500 K. Therefore, the term
∑
aiPi has stronger effect outside of

the peak flame temperature, as seen in figure 29b. The main products, CO2 and H2O,

will play a greater role on the outside of the thin flame region because of their larger

mass fraction. CO and CH4 mole fraction add to the effect on the rich premixed

side of the flame. In the radiative flux equation the temperature is raised to the

forth power thus will have the strongest effect with the maximum temperature at the

location of the flame front. Figure 29c, shows the total heat of radiation. Due to

high temperature at the flame peak, previous trends are undermined. This example

illustrates the combined effect of Planck’s mean-absorption coefficient and the flame

peak temperature on radiative flux. The resulting total reduction in temperature and

unequal decrease in flame thickness will be seen in both physical space and scalar

space.
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Comparison of the two radiation treatments

Radiative heat flux for model 1 (plotted with square symbols) and 2 (dashed line)

are shown in figure 29c. Comparing the peak value of qr, model 2 radiative heat loss

should be three times larger than model 1. A few test cases have been used to verify

the validity of the models. A burner stabilized ethane flame was studied as well as an

opposed-jet methane-air non-premixed flame. The different flame configurations have

in common the numerical solution that employs the stagnation flow configuration.

Indeed the modification in Cantera software package was included in the stagnation

flow routine only and not in propagating flame solutions.

The effects of the radiation model and adiabatic simulations are shown in table V

and briefly discussed.

Table V. Comparison of radiative treatment for different test cases. Cantera simula-
tions results. Peak temperature of the flame is given in Kelvin. The solution
grid points are indicated in parenthesis

Flame type Adiabatic Case Radiation
Model 1

Radiation
Model 2

Burner stabilized
C2H6 flame

1990 (177) 1989 (182) 1989 (182)

Opposed jet non-
premixed methane/air
flame

2063 (199) 2058 2001(187)

Opposed jet partially-
premixed methane/air
flame φ = 3.17

2061 (41) 2052 (41) 1950 (41)

2066 (173) 2057 (173) 1955 (173)

Radiative heat transfer shows a small effect for the ethane burner stabilized.

For the opposed-jet methane flames, both non and partially-premixed flames, the
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radiative heat flux effects are more pronounced with the RADCAL-based model,

particularly in the case of the partially premixed flames where the peak flame tem-

perature decreases by 110 K (figure 28). The inclusion of a RADCAL-based heat loss

model yields a better agreement between numerical and experimental results. The

importance of grid refinement should not be overlooked as a under-resolved grid may

lead to erroneous temperatures.

Major results
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Figure 30. Comparison of the scalar structure from experimental data, adiabatic and
radiative simulations. Case (b), d= 1.95 cm, variation of φ, radiation model
2.

Not only the maximum temperature but the structure of the flame itself is affected:

- The peak temperature moves slightly toward the rich side, i.e the left side in

physical space;

- The whole temperature profile shrinks;

- The second reaction zone appears further away from the rich side and closer to

the main reaction zone.
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When examining the scalar structure, the radiative treatment provides a better com-

parison with the experimental data. Figure 30 shows the change in the temperature

profile of the flame as premixture strength increases. One can see the effect on flame

width and peak temperature.

A similar effect can be identified when examining the spatial structure, as shown

in figure 31 where the temperature and water mass fraction results are plotted against

the flow axis. For all three premixture strength, the profile width decreases. H2 and

CO are markers of the second reaction zone. One can see a small shift in the location

of the peaks as the general structure of the radiative flame shrinks.
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Figure 31. Comparison of flame spatial structure from adiabatic and radiative calcula-
tions. Case (b), d= 1.95 cm, variation of φ, radiation model 2. The x-axis
is the flow axis with fuel premixture on the left side and oxidizer on the
right side.
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The radiation-treatment improvement on the double flame structure can be seen

in the scalar space with a plot of the variation of premixing strength as illustrated by

figure 32. The second reaction zone is slightly shifted closer to the flame, or farther

from the rich side to ZH = 0.018.
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Figure 32. Parametric variation of φ with adiabatic and radiative Cantera simulations.

Examining figure 31, the effect of radiation in the rich partially premixed zone

is larger at low φ but not enough to perfectly match the data. At larger φ, the

effect is smaller but almost underpredicts the data. The curvature on the rich side at

φ=1.8, is diminished due to the inclusion of species-dependent radiation as explained

in section . It confirms the findings of Barlow et al. (2001) and Zhu et al. (2002)

with respect to Sandia Tsuji flames. The study used ChemKin as a simulation tool.

In a few references (Barlow et al., 2001; Daguse et al., 1996) self-absorption in this

type of flame was considered of importance and was assumed responsible for the

discrepancy at low strain. But a later study by Kim et al. (2003) investigated

different radiation model including self-absorption, such as weighted sum of gray
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gas model and made a comparison with the optically-thin model. The opposed-jet

reacting flow problems studied were methane diffusion flames at varying flow rates

and partially premixed flames at φ of 2 and 4. Their conclusion indicated clearly

that self-absorption does not affect the flame structure. If self-absorption is ruled

out, the questions still remains as to why the radiation treatment is less effective on

the rich side at low equivalence ratios. Based on figure 29b, it is possible that the

product of mole fractions and Planck’s mean absorption coefficients is responsible. It

is left to future work to investigate a different radiation heat loss equation or different

radiation model.

Discussed in the literature, radiation models might have either a direct effect on

species concentration or an effect on their formation rates (Zhu et al., 2002). This

radiation effect was explored here for CO and NO concentrations specifically. The

production rate of both species and reaction rates will be used to explain the effect

of radiation on the NO and CO reaction mechanisms. From figure 31, it was noted

that CO mass fraction decreases and shift. In figure 33 results for CO and CO2 mass

fraction are plotted in scalar space. The latter figure shows the effect of RADCAL-

based radiation model on the intermediate species and the trend when the equivalence

ratio φ is varied.



77

0

0.02

0.04

0.06

0.08

CO

0

0.02

0.04

0.06

0.08

0.1

CO2

Exp. Data 
GRI 3.0 Adiabatic
GRI 3.0 Radiation

φ = 1.8                  φ = 2.2      φ = 3.17

0 0.01 0.02 0.03 0.04
Scalar ZH

0 0.01 0.02 0.030 0.005 0.015 0.025

400

800

1200

1600

2000

T(K)

0
Scalar ZHScalar ZH

Y

Y

Figure 33. Effect of radiation model on intermediate species: temperature profile, CO,
and CO2 mass fraction in scalar space. Numerical simulation Case (b),
d=1.95 cm, varying φ.

In agreement with previous studies, e.g. Barlow et al. (2001), we find that the

GRI 3.0 mechanism over-predicts CO in adiabatic calculations. The implementation

of radiative loss produces a better agreement between computations and experiments

at least for the leaner flames, as shown in figure 33. As the premixture strength is

increased, i.e. less air is added to the fuel in the partially premixed stream, the CO

mass fraction tends to decrease. This is a counter-intuitive trend that has been shown

in past studies (Karpetis and Barlow, 2003; Datta et al., 2004) and which is qualita-

tively captured by the GRI 3.0 calculations, both adiabatic and radiative. Including
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radiation preserves this trend of decreasing CO for increasing φ, and produces a bet-

ter quantitative agreement for the flames (excluding the richer case φ = 3.17). At

richer φ, CO is under-predicted as noted by Zhu et al. (2002). The question arises as

of why the radiative heat loss has such a strong effect on the CO species at φ = 3.17.

Examining the CO formation by plotting the net molar production/destruction rate,

ω̂CO, versus the scalar axis in figure 34, shows the same counterintuitive trend, i.e.

CO production decreasing with increasing premixture strength, and the same general

effect of the radiation model, i.e. decreasing the net CO production and shift in the

second reaction zone. For the three equivalence ratios, the net production/destruction

rate of CO has 3 peaks (figure 34): a first minima corresponding to the main reaction

zone (where CO is consumed); a second peak between the main reaction zone and the

second reaction zone; and a third maxima corresponding to the second reaction zone.

As the premixing strength is increased the production of CO in the rich premixed

zone decreases, resulting in the counterintuitive trend of decreasing CO mass fraction.

It might be postulated that there exist a reaction responsible for the production of

CO in the rich premixed zone and it has the time to occur at low equivalence ratios,

when the two reaction zones are separated, and it is inhibited due to the increase in

destruction rate at higher equivalence ratios.
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Figure 34. Effect of radiation model on intermediate species: net molar produc-
tion/destruction rate of CO in scalar space. Case (b), d=1.95 cm, varying
φ.

Another minor species of interest here is the pollutant NO. It exists in flames

in small concentrations and it is rather difficult to measure experimentally, hence

detailed-chemistry calculations such as the ones presented here are important for NO

prediction. Nitric oxide (NOx) formation and the reaction mechanisms involved in

its generation have been the subject of numberous past studies (e.g. Li and Williams

(1999); Kim et al. (2002); Ravikrishna and Laurendeau (2003)). At the beginning

of this work, calculations with GRI 3.0 adiabatic mechanism over-predicted NO con-

firming the work by Zhu et al. (2002). As is evident from figure 35, the radiative

calculations produce a better match with the experimental data, in the non-premixed

high-temperature zone of the flame. Net molar production/destruction rates of species

can be extracted from the flame results. In figure 36, ω̂NO is plotted versus scalar

space. A slight decrease in NO production can be seen at the peak flame temperature

location. in between the two zone the minima, denoting a re-burn mechanism, in-

creases with increasing φ. From the flamelet equation, this bend or curvature shown

in scalar space (figure 35) could be associated with a reaction. As φ increases, the
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reaction burning NO seems to be more and more pronounced: the difference between

the maximum and minimum production/destruction rate increases.
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Figure 35. Effect of radiation model on intermediate species: temperature profile, NO
mass fraction in scalar space. Case (b), d=1.95 cm, varying φ.
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Figure 36. Effect of radiative treatment on intermediate species: net molar produc-
tion/destruction rate of NO in scalar space. Case (b), d=1.95 cm, varying
φ.
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The global production of NO does not give enough information on the effect of the

radiation treatment. By plotting the progress variables of the reactions responsible

for NO formation, it is possible to better understand which reactions are affected

by the decrease in temperature. The following figures show NO formation via the

thermal (Zel’dovich) mechanisms (figure 37) and the prompt (figure 38). The thermal

mechanism for NO formation consists of the following three main reactions. Once

again progress of reaction variable (ω
′

k) is plotted for each reaction producing NO

(reaction T1: backward; reaction T2: forward; reaction T3: forward).

N +NO � N2 +O (T1)

O2 +N � O +NO (T2)

OH +N � H +NO (T3)

While reaction T3 is only slightly affected, reaction T1 of the thermal mechanism is

largely affected. The adiabatic trend of this reaction is a decrease with increasing φ,

while the radiative reaction T1 has approximately the same value for all φ. In contrast,

the reaction T2 adiabatic and radiative trend is an increasing positive progress of

reaction variable with increasing φ. The effect of the radiation treatment is more

pronounced in this reaction at low φ and inversely effective at larger value φ = 3.17.

One can deduce that in the radiative calculations, the initial reaction T1 is reduced

for all equivalence ratio but the conversion of oxygen and nitrogen atoms to NO via

the reaction T2 is only reduced at low equivalence ratio. For φ = 3.17 the progress

of reaction variable for reaction T2 is actually increased and responsible for NO

formation resulting in an over-prediction of NO mass fraction.
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Figure 37. Progress of reaction variables for NO thermal reaction mechanism. Vertical
line marks the location of peak flame temperature. Numerical simulation
Case (b), d=1.95 cm, varying φ.
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Figure 38. Progress of reaction variables for NO prompt mechanism. The vertical
line marks the location of peak flame temperature. Case (b), d=1.95 cm,
varying φ.

The prompt mechanism as described in Li and Williams (1999) takes two reac-

tions to initiate the formation of NO:

N2 + CH � N +HCN (P1)

O +HCN � H +NCO (P2)
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The reaction rate or progress of reaction variable ω
′

k, in kmol/m3s, is plotted for each

reaction forward. The prompt mechanism shown in figure 38 shows an increase with

increasing equivalence ratio and the production peak moves closer to the main reaction

zone. Noticeably, NO production shows a local maxima before the main reaction zone

at low φ. The radiative calculations show a slight decrease in production rate.

Figure 39 shows the nitrous oxide reaction5:

N2O +O → 2NO

The reaction occurs in the lean side of the flame. The progress of reaction variable

shows an increase with increasing φ and the radiative calculation conserve this trend.
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Figure 39. Progress of reaction variables for NO formation, Nitrous oxide mechanism.
Case (b), d=1.95 cm, varying φ.

It is safe to conclude that the decrease in temperature affects the levels of NO

in the flame mostly through the thermal (Zel’dovich) mechanism of NO formation.

Confirming the findings of Zhu et al. (2002), NO mass fraction values are still over-

5Also not considered a principal mechanism in NO formation, it is included here to show the
effect of radiation.
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predicted for the richer flame (φ=3.17). Similarly, the CO mass fraction values are

under-predicted for the richer flame, where the radiation model has stronger effect.

The problem of over-prediction of NO has been attacked in a different manner by

Sutton and Fleming (2008). By modifying GRI 3.0 to include intermediate reactions

for a new prompt NO formation pathway, several reaction for NCN consumption

were included. The simulations were performed for three different flames at lean,

stoichiometric and rich φ. The results of the modified GRI 3.0 mechanism show

little improvement from the original case, leaving the causality of the over-prediction

unknown.

Although it is beyond the scope of the present work, it would be possible to

investigate different Arrhenius coefficients for the reaction responsible for NO for-

mation. The present work augmented the calculations with a radiation model, it is

conceivable to improve and fine tune the reaction mechanism in the future.

To conclude, the software package with GRI 3.0 reaction mechanism is augmented

with a radiation model based on RADCAL. The final simulations are in good agree-

ment with experimental results, and the software might be use to confidently predict

certain pollutants such as NO where they cannot be measured. The new results agree

with the scientific community assumption (Zhu et al., 2002) that an optically-thin

model is a reasonable assumption for thin laminar flames, a self-absorption model is

unnecessary, but the radiative model provides better results. Questions remain about

the under-prediction of intermediate species for richer flames.

Computation run time

The inclusion of the radiation treatment obviously increases run times compared to

earlier computations. The increase in computational time is due two phenomena:
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- The radiation model add to the complexity of the equation

- Grid refinement at low strain increases the computational time considerably,

due to the thickness of the lean flame structure

A comparison of run time between different flames (Table VI) shows the richer flames

run faster, or the solution is easier to find due to the thin or simple structure of

the flame, but for lower strain or leaner flame at φ =1.8, the run times become

considerably expensive. The grid refinement increased the computational time and

for low strain flames convergence was not always achieved. For these flames, some

adjustment to the initial grid was necessary to obtain more than 60 to 80 points

in the solution. Indeed the solution for flames simulations are more expensive with

the radiation treatment, but the run time is keep within one hour and still around

10 minutes for the richer flames. Thus the advantages of a radiation treatment as

explained in the sections above are worth the penalty when considering industrial

scale parametric variation with detailed chemistry for different combustion regimes.

Table VI. Computational time for adiabatic and radiative models. Simulation results
from Case (b), d=1.95 cm. Computational time is shown in min, the number
of grid point is shown in parenthesis

Simulation case No Radiation Radiation Model 2 Grid refinement

φ = 3.17 4 min (41) 10 min (41) no
φ = 3.17 7 min (153) 49 min (68) yes
φ = 1.8 10 min (40) 68 min 41) no

Dufour effect

After the Dufour effect is included in the calculations, the computational time is

greatly increased (see table VIII on page 92) up to one hour for the lean flame. The
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results both on the physical and scalar axis are negligible as can be seen in figure 40.

Dufour effect is often neglected for this reason (Williams, 1985), the computational

time is not worth the minor effect in partially premixed flames. This confirms the

work of Ern and Giovangigli (1998) and the same outcome from hydrogen-oxygen

counterflow-flames study by Ribert et al. (2008).
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Figure 40. Simulation comparison with Dufour effect.

Soret effect

The Soret effect was examined for the three laminar partially premixed methane-air

flame with equivalence ratios of 1.8, 2.2 and 3.17. When the temperature profile

is plotted in physical space, very subtle changes in the flame structure are noticed.

Contrary to the findings of Ern and Giovangigli (1998), the maximum temperature

was unchanged. This might be attributed to the fact that the Ern and Giovangigli

computations were adiabatic.
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Since water and hydrogen have a large thermal diffusion coefficient, their mass

fraction are plotted (figure 41) to observe the Soret effect on chemical composition.

At lower equivalence ratio, water is slightly affected on the rich side. The profile is

slightly thinner and the maximum of water mole fraction increased by 8 %. Species

such as CO and NO also show a small change in mass fraction (figure 42) and their

trends with varying φ are conserved.
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Figure 41. Soret effect on hydrogen species, water and hydrogen mole fraction.
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More interesting is the shift in hydrogen mass fraction profile on the rich side

(figure 43). With the Soret effect hydrogen was reduced by 3.5 % (see Table ??).

The Soret effect is a combination of both the temperature gradient and the molecular

weight of hydrogen as seen in the equations from chapter III:

Γ̄i = ρYiV̄i

V̄i =
1

XiMWi

N∑
j 6=i

MWiDi,j∇Xi −
1

ρT

DT,i

Yi

∇T
T

(5.10)

where the first term is the multi-component diffusion and the second term represents

the Soret effect. While the temperature gradient is steeper on the rich side of the

second zone (figure 43), the Soret term will become more important. Mass diffusion

of hydrogen and the temperature gradient are combined in this region (both terms in

equation 5.10 have identical signs) thus the Soret effect is a co-gradient to Fick diffu-

sion. While the temperature gradient is smaller on the right of the second zone, closer

to the maximum temperature, the Soret effect will be smaller too. Mass diffusion of

hydrogen in that region actually counteracts the temperature gradient. Because the

Soret term is less the effect is not as effective as on the rich side and no noticeable

change in hydrogen mass fraction is seen.
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Figure 43. Soret effect on the hydrogen mass fraction.

This effect seems negligible, but when the scalar ZH is plotted in physical and

scalar space (figure 44 and 45) the change in hydrogen values has a clear effect. For

the case of φ = 1.8 especially, on the rich side, the curvature is reduced and the

problem that would arise with double value of ZH is avoided. Figure 44 shows in

detail the value of scalar ZH changing to a monotonic curve after the Soret effect

is included. For each value of ZH there is only one value of temperature. After the

inclusion of the higher order term, the relationship between ZH and the temperature

profile is finally a one-to-one mapping, a valid flamelet.
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Table VII. Effect of cross-transport terms on species H2, CO, and NO. Simulations
results. Percentage difference of mole fraction at maximum value

Intermediate species H2 CO NO
φ = 3.17 -3.5% -5.3% -2.1%
φ = 2.2 -0.1% -2.4% -1.9%
φ = 1.8 -2% -1.9% +0.5%

Table VIII. Computational time for different transport models

Simulation Radiation Radiation Radiation, Grid
case and Soret Soret and Dufour refinement
φ = 3.17 6 min (51) 4 min (51) 11 min(51) no
φ = 3.17 14 min, 5min (172) 29 min, 21min (172) yes
φ = 2.2 9 min (51) 16 min (51) 54 min(51) no
φ = 1.8 6 min, 12s (41) 7 min, 1min 41) 56 min (51) no

Computation run time

The multi-component transport increases computational time. Table VIII shows a

comparison of simulations with and without the multi-component transport and the

Soret option. The total time followed by the multi-component-transport fraction of

computational time are indicated. The number of grid points in the solution is shown

in parenthesis. Run times are doubled when grid refinement is used. The multi-

component transport option takes 37 % more time of the total computation with

Soret included. When the grid is fixed, run time barely increases. Only for lower

strain flames, when φ decreases, it becomes noticeable. In this case the computational

time increases by 16 % and the contribution of multi-component transport with Soret

is increased by 11 %. De Charentenay and Ern (2002) report a contribution of 3 %

to the overall CPU time but does not specify the total increase in CPU time due
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to the inclusion of multi-component model on H2-O2 turbulent flames. With only

this information, the increase seems comparable. For the present work the relative

computational time expense is judged reasonable since most computation falls well

within one hour and parametric variations are needed.

Scalar axis: comparison between experiments and simulations

The comparison on the scalar axis between the experimental laminar flames and the

opposed jet simulations yields very good results. The temperature profile can be

match precisely and the species profile too. This was possible with simulations case

(b) and case (c). A complete series of graph is included in Appendix A. Graphs for all

species (from experiments evaluation) and temperature are plotted for case (c). The

effect of partial premixing on the flame structure can be analyzed with a parametric

variation of the equivalence ratio φ. More importantly the formulation of the flamelet

with a primitive scalar enables a clear visualization of the second reaction zone in the

rich side of the partially premixed flame. Both the experiments and simulations

temperature flamelets show this results. The discussion of the reaction responsible

for the second reaction zone started in the present work may lead to future research

with the new and future computations.
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CHAPTER VI

CONCLUSIONS

Through the combination of previously unpublished data with simulations in-

cluding detailed reaction mechanism and full transport scheme, the flame structure

was compared in both physical and scalar space.

- The experimental data set is a series of single-point multi-scalar measurements

which include nine species and temperature. They validated the 1-D simulations

performed with the Cantera software package.

- The advantage of the numerical simulations relies in the detailed-chemistry

kinetics which gives access to 53 species and 325 reactions.

- The computations are augmented to include a radiation treatment for an optically-

thin model. Two models were tested here, a model similar to RADCAL was

finally implemented. Radiative heat flux was characterized and the emission of

the following species taken into account: CH4, H2O, CO2 and CO. Adiabatic and

radiative calculations were compared to each other. The radiation model affect

maximum flame temperature as well as the whole flame profile. Species concen-

trations such as CO and NO are also affected. The NO production is reduced

through the thermal mechanism. NO mass fraction is adequately predicted at

low equivalence ratios with the radiative Cantera but still over-predicted at

higher equivalence ratios. Nonetheless the decreasing trend in NO mass frac-

tion with decreasing φ shown by the experiments is captured with the adiabatic

and radiative computations. In the same manner, the counter-intuitive trend

of decreasing CO mass fraction as the flame becomes richer is observed in both
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experiments and computations. In summary, the radiative calculations capture

most of the trends observed in experiments in a more precise manner than the

adiabatic calculations.

- As past studies have shown cross-transport effects such as Soret and Dufour may

be important in certain flames. The inclusion of both cross-transport terms in

the calculations shows that only the Soret effect, i.e. temperature gradient

giving rise to mass flux, is important. The Dufour term, i.e. concentration

gradient giving rise to heat flux, has no results on the flame structure or species

concentrations in the flames studied here. The Soret effect is noticeable in the

rich zone of the flames due to a combination of reasons: large temperature

gradients; low molecular weights; the relatively high concentration of hydrogen

molecules; and large thermal diffusion coefficients. Even though the Soret term

is proven to be rather small, it has a profound effect on the spatial profile of the

conserved scalar through the hydrogen mass fraction. Specifically, the presence

of cross-transport makes the conserved scalar behavior monotonic and allows

for a unique one-to-one flamelet mapping transformation.

- A single-element mass fraction, namely ZH , was chosen as the conserved scalar.

The present study differs from past research by the fact that the scalar was not

normalized. This primitive scalar actually produces a better flamelet mapping,

and allows for the identification of the flame scalar structure. A second premixed

zone can be discerned in the partially premixed flame structure by examination

of both major and intermediate species scalar profiles such as CO, H2 and H2O.

- The 1-D opposed jet flame calculations give very good and fast comparison to

the axisymmetric flame experimental results in scalar space. Nevertheless the

comparison between experiments and simulations in physical space proves to
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be difficult and incomplete. The differences are attributed to the inherent 2-D

nature of the axisymmetric flames. Solving the problem in 2-D requires either

a full solution to the 2-D equations -which is time consuming and involves a

reduced mechanism- or a boundary-layer approximation solution using detailed

chemistry. In the latter, axial diffusion would be neglected compared to axial

convection and a computational scheme would resolve the problem in 2-D. This

is an exciting potential route for future research.
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APPENDIX A

FLAMES PROFILES IN SCALAR AND PHYSICAL SPACE

A.1 Flame profiles: comparison in physical space

Comparison of numerical simulations with experimental data. The measurements

from Sandia Nat’l Labs constitute of the temperature flame profile and mass fraction

profiles for 9 species (CH4, N2, O2, CO,CO2, H2O,H2, OH,NO) at 25 mm above noz-

zle exit. The simulation results are from case (c), d= 8 cm, varying φ, low strain rate

a ∼ 14. The results are plotted with respect to the physical space, the top x-axis

for the experimental data and the bottom x-axis for the simulation results. The first

figure A.1 shows the comparison of temperature profiles for all three φ and the error

bars or RMS values of the experiment’s temperature profile.
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Figure A.1. Comparison of experimental data with simulations temperature profiles
in physical space. Experimental results are plotted with error bars.
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Figure A.2. Species N2, O2, CH4 mass fractions, and temperature in physical space.
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Figure A.4. Species CO, CO2, NO mass fractions in physical space.

A.2 Flame profiles: comparison in scalar space

Comparison of numerical simulations with experimental data. The measurements

from Sandia Nat’l Labs constitute of the temperature flame profile and mass fraction

profiles for 9 species CH4, N2, O2, CO,CO2, H2O,H2, OH,NO at 25 mm above nozzle

exit. The simulation results are from case (c), d= 8 cm, varying φ, low strain rate
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a ∼ 14.
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Figure A.5. Species and temperature in scalar space. Major species mass fractions are
plotted under the temperature profiles with respect to the scalar ZH .
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Figure A.6. Species H2O, H2, OH mass fractions in scalar space.

A.3 Reaction rate for CO and NO in scalar space

The simulation results presented here are from case (c), d= 8cm, varying φ, low strain

rate a ∼ 14.
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Figure A.7. Effect of radiation model on intermediate species: net molar produc-
tion/destruction rate of CO in scalar space
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