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ABSTRACT 

 

Development of Algorithms to Estimate Post-Disaster Population Dislocation—A 

Research-Based Approach. (August 2009) 

Yi-Sz Lin, B.S., National Cheng Kung University, Taiwan;  

M.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Walter Gillis Peacock 
                                                     Dr. Michael K. Lindell 

 

 This study uses an empirical approach to develop algorithms to estimate 

population dislocation following a natural disaster. It starts with an empirical re-

examination of the South Dade Population Impact Survey data, integrated with the 

Miami-Dade County tax appraisal data and 1990 block group census data, to investigate 

the effects of household and neighborhood socioeconomic characteristics on household 

dislocation. The empirical analyses found evidence suggesting that households with 

higher socio-economic status have a greater tendency to leave their homes following a 

natural disaster. Then one of the statistical models is selected from the empirical analysis 

and integrated into the algorithm that estimates the probability of household dislocation 

based on structural damage, housing type, and the percentages of Black and Hispanic 

population in block groups.  

This study also develops a population dislocation algorithm using a modified 

Hazard-US (HAZUS) approach that integrates the damage state probabilities proposed 

by Bai, Hueste and Gardoni in 2007, accompanied with dislocation factors described in 
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HAZUS to produce structural level estimates. These algorithms were integrated into 

MAEviz, the Mid-American Earthquake Centers Seismic Loss Assessment System, to 

produce post-disaster dislocation estimates at either the structure or block group level, 

whichever is appropriate for the user’s planning purposes. Sensitivity analysis follows to 

examine the difference among the estimates produced by the two newly-developed 

algorithms and the HAZUS population dislocation algorithm. 
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1. INTRODUCTION 

 

The estimation of population dislocation following a major natural disaster is 

critical in at least two aspects. First, it provides planners with the fundamental 

information to determine the immediate demand for temporary shelter, described by 

Quarantelli (1982a) 1as the second of the four phases of housing recovery. This piece of 

information is valuable for designation and establishment of shelters, as well as the 

requirement of staff and nursing personnel to operate these shelters (Quarantelli, 1982a). 

Second, the estimation of this population loss—which could be temporary or 

permanent—is one of the important factors to assess the indirect loss of local economy. 

This economic impact mainly comes from the disruption of money flow because of the 

sudden loss of people conducting the economic activities such as consumptions and 

services. The decline in economic activities also reduces the financial sources available 

to local governments because of the loss of tax in sales, business, property and personal 

income (Lindell & Prater, 2003; Lindell et al., 2006).  For the sake of these planning 

issues, it is therefore essential to develop algorithms that can provide appropriate 

measurement of population dislocation.  
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Population dislocation is a form of mass population movement attributed to 

natural disasters. Disaster research suggests that the pattern of post-disaster population 

dislocation is influenced by factors including the structural damage to housing, housing 

type, disaster type, weather, infrastructure disruption, job loss, and socioeconomic 

characteristics of households and their surrounding neighborhoods (Baker, 1991; 

Belcher & Bates, 1983; FEMA, 2003; Fried, 1966; Gladwin & Peacock, 1997; Haas et 

al., 1977; Heller, 1982; Lindell & Prater, 2003; Lindell et al., 2006; Morrow-Jones & 

Morrow-Jones, 1991; Peacock & Girard, 1997; Whitehead et al., 2000; Whitehead, 

2005). However, the only existing algorithmic model to estimate population 

dislocation—the HAZUS model—relies solely on the structural damage to different 

housing types, without considering the other factors in play. In addition, the HAZUS 

population dislocation model produces census tract level estimates which in many cases 

are inappropriate for users’ specific planning purposes. 

In this context, this dissertation attempts to improve on the HAZUS model by 

producing population dislocation estimates at the structure level that may be aggregated 

at any larger unit of analysis depending on specific users’ needs. It also seeks to develop 

population dislocation algorithm that further incorporates human socioeconomic 

characteristics in addition to housing structural damage and housing type as employed in 

the HAZUS model. This study utilizes a research-based approach that extends 

empirically based statistical models to the formulation of population dislocation 

algorithm. In particular, three research questions are the emphasis of this study. First, 

how do household and neighborhood socioeconomic characteristics influence post-
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disaster household dislocation? Second, how can the population dislocation algorithm be 

specified to incorporate socioeconomic factors and produce structural level estimates 

that allow flexibility in aggregation to meet a user’s specific planning purposes? Third, 

how does the dislocation algorithm developed in this study perform differently from the 

HAZUS model?  

This dissertation is structured in the following sections. Section 2 is the literature 

review that defines the scope of this study and summarizes previous research on the 

post-disaster population dislocation. The conclusion of literature review suggests seven 

research hypotheses. Section 3 explains the measurement, method, data source, data 

management, independent and dependent variables, and analytical approach employed in 

this study. Section 4 describes the major analyses for hypothesis testing and algorithm 

development. Section 5 describes the formulation of population dislocation algorithms 

and examines the sensitivity of the algorithms. Section 6 summarizes the major research 

findings and also discusses the study’s limitations, as well as its theoretical and practical 

implications. 
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2. LITERATURE REVIEW 

 

2.1 Defining Population Dislocation 

 As mentioned by Quarantelli (1995), the scientific jargon in a specific field has 

to avoid imprecision and vagueness to allow knowledge and understanding of the 

phenomena involved. It is therefore important to eliminate any ambiguity associated 

with the term population dislocation. In the field of sociological research, population 

dislocation has some synonyms being used interchangeably, such as forced migration, 

forced displacement, population transfer and displaced person (Davenport et al., 2003). 

Specifically, different types of population dislocation are often classified according to 

the causes of displacement, including conflict-induced, development-induced and 

disaster-induced, and the scale of movements, based upon whether or not people cross 

international borders (Eschenbächer, 2007; Mason, 2006). The term population 

dislocation in this study, to be precisely described from a taxonomic perspective, 

represents a post-disaster socio-demographic impact in which households are forced to 

move—domestically in most cases—because of the damage to structures and 

infrastructures caused by the natural hazards (Lindell & Prater, 2003).  

In order to better understand the scope of this study, it is important to distinguish 

population dislocation from other types of disaster-induced population movement. Perry 

et al. (1981) proposed a systematic scheme to classify different types of evacuation 

based on the timing and duration of the evacuation event, as shown in Table 2.1. This 

classification scheme can also be employed as the criterion to differentiate varieties of 

disaster-induced population moves. 
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Table 2.1 Classification Scheme Based on Timing and Duration of Evacuation 

 

Period of evacuation 

Short-Term Long-Term 

Timing of 

evacuation 

Pre-impact Preventive Protective 

Post-impact Rescue Reconstructive 

Source: Perry et al. (1981). 

   

Some studies consider both evacuation and dislocation as human migration 

related to environmental hazards without a clear distinction between them. Plenty of the 

existing literatures dedicated to hazard-related population moves have focused on either 

preventive evacuation specifically (e.g., Baker, 1991; Dow & Cutter, 1997; Landry et al., 

2007; Mileti et al., 1992; Whitehead et al., 2000; Whitehead, 2005) or a broad picture of 

disaster-induced migration as a whole (e.g., Belcher & Bates, 1983; Hunter, 2005; 

Morrow-Jones & Morrow-Jones, 1991), whereas very few have focused on population 

dislocation. The differences and similarities found between evacuation and dislocation 

can be described as the following. 

 The first difference is that evacuation is usually a pre-impact emergency 

preparedness practice adopted to protect the population while population dislocation is a 

socio-demographic impact regarded as a result of the structural damage caused by the 

natural hazards (Lindell & Prater, 2003; Perry et al., 1981). In most disaster research the 

term evacuation often has a narrower sense that represents the pre-impact preventive 
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measure to minimize the negative effects of a natural disaster on the population rather 

than their property. In this study, population dislocation means that residents stay away 

from their homes after the disaster event for at least some period of time (versus those 

who never left). As a result, population dislocation may also include those who left 

during the pre-impact evacuation. To clearly demonstrate the scope of this study, the 

evacuation classification scheme can be modified as the following Table 2.2 to 

distinguish disaster-induced population moves. 

 

Table 2.2 Topology Modified from Perry et al. (1981) to Distinguish Population Moves 

 

Period of population movement 

Short-Term Long-Term 

Timing of 
population 
movement 

Pre-impact Preventive evacuation Protective evacuation 

Post-impact 
Population dislocation  

(People who leave home for at least some time) 

Source: Modified from Perry et al. (1981). 

 

 Second, evidence in the literature suggests that population evacuation is 

essentially driven by a physical threat including the potential intensity of the event and 

evacuation orders. This is very different from population dislocation that is essentially 

driven by the level of housing damage as well as disaster types, weather, infrastructure 

disruption, and job loss (Baker, 1991; FEMA, 2003; Gladwin & Peacock, 1997; 

Whitehead et al., 2000; Whitehead, 2005).  
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On the other hand, the similarity found in these literatures is that both evacuation 

and dislocation are influenced by the socioeconomic characteristics of the households 

and their surrounding neighborhoods (Baker, 1991; Belcher & Bates, 1983; FEMA, 

2003; Fried, 1966; Gladwin & Peacock, 1997; Haas et al., 1977; Heller, 1982; Morrow-

Jones & Morrow-Jones, 1991; Whitehead et al., 2000; Whitehead, 2005). The 

socioeconomic characteristics of a household and its neighborhood are closely related to 

the household’s mobility in terms of facing the natural disasters. In fact, evacuation-

related topics have drawn much more attention than dislocation issues have in the 

disaster research. The way in which the socioeconomic characteristics affect population 

dislocation is similar to that found in evacuation studies, which is discussed with further 

details in section 2.3.4. 
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2.2 The HAZUS Multi-Hazard Population Dislocation Model 

 The HAZUS Earthquake Model is designed by Federal Emergency Management 

Agency (FEMA) to produce loss estimates for use by different levels of governments for 

planning purposes. The algorithm to estimate the number of displaced households is 

derived from several pieces of research including Harrald et al. (1990a, 1990b), Harrald 

et al. (1992), Perkins (1992), and Perkins et al. (1996) that utilizes housing damage data 

collected from Hurricane Hugo, the Loma Prieta Earthquake, and the Northridge 

Earthquake to compute uninhabitable units and affected population.  

To produce estimates of population dislocation, HAZUS first uses building 

functions that include fragility curves and building capacity curves to model residential 

structural damage in an earthquake scenario. The fragility curves are in the form of 

lognormal functions that relate the probability of being in, or exceeding, a building 

damage state to for a given response spectrum displacement.  Median spectral 

displacement values and the total variability are developed for each of the model 

building types and damage states of interest by the combination of performance data 

from tests of building elements, earthquake experience data, and expert judgment. Figure 

2.1 shows the fragility curves for different damage states. Each curve indicates the 

probability of a structure being in a particular damage state with a given level of ground 

shaking. The capacity curves are utilized to characterize building response with respect 

to ground acceleration. They describe the push-over displacement of each building type 

and seismic design level as a function of laterally-applied earthquake load.  
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Figure 2.1 Example Fragility Curves for Slight, Moderate, Extensive and Complete 
Damage (Source: HAZUS-MH technical manual). 
 

 

Input required to estimate building damage using fragility and capacity curves 

includes model building type (including height) and seismic design level that represent 

the building of interest, and the response spectrum at the building’s site or at the centroid 

of the census tract where the building is located. The cost of damage is expressed as a 

percentage of the complete damage state.  The assumed relationship between damage 

states and repair costs for both structural components is listed in Table 2.3.  
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Table 2.3 Percentage of Repair Cost for Damage States in HAZUS 

Damage state Percent of complete damage 

Slight damage 2% 

Moderate damage 10% 

Extensive damage 50% 

 

 

 Table 2.4 lists all types of residential structures included in the HAZUS. In the 

population dislocation algorithm, HAZUS only includes the RES1 and RES3 occupancy 

classes as shown in the table. 

 

Table 2.4 Residential Building Occupancy Classes in HAZUS 

No. Label Occupancy Class Description 

1 RES1 Single-Family Dwelling Detached House 

2 RES2 Mobile Home Mobile Home 

3 RES3 Multi-Family Dwelling Apartment/Condominium 

4 RES4 Temporary Lodging Hotel/Motel 

5 RES5 Institutional Dormitory Group Housing (military, 
college), Jails 

6 RES6 Nursing Home  

 

 

After acquiring the structural damage of all single-family and multi-family 

buildings, HAZUS estimates the number of displaced households in a census tract with 

the following equations. 

[1]
 

[2]
 

[3] ( ) 








+
××+×=

MFUSFU

HH
MFMFUSFSFUDH

##

#
%#%##

SFCWSFEWSFMWSF SFCSFESFM %%%% ×+×+×=

MFCWMFEWMFMWMF MFCMFEMFM %%%% ×+×+×=
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Where %SF: Percent of displacement for single-family residential occupancy class; 

WSFM: Weighting factor for moderate structural damage in the single-family 

residential occupancy class; 

%SFM: Damage state percentage for moderate structural damage in the single-

family residential occupancy class; 

WSFE: Weighting factor for extensive structural damage in the single-family 

residential occupancy class; 

%SFE: Damage state percentage for extensive structural damage in the single-

family residential occupancy class; 

WSFC: Weighting factor for complete structural damage in the single-family 

residential occupancy class; 

%SFC: Damage state percentage for complete structural damage in the single-

family residential occupancy class; 

%MF: Percent of displacement for multi-family residential occupancy class; 

WMFM: Weighting factor for moderate structural damage in the multi-family 

residential occupancy class; 

%MFM: Damage state percentage for moderate structural damage in the multi-

family residential occupancy class; 

WMFE: Weighting factor for extensive structural damage in the multi-family 

residential occupancy class; 

%MFE: Damage state percentage for extensive structural damage in the multi-

family residential occupancy class; 
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WMFE: Weighting factor for complete structural damage in the multi-family 

residential occupancy class; 

%MFC: Damage state percentage for complete structural damage in the multi-

family residential occupancy class; 

#DH: Total number of displaced households in the census tract; 

#SFU: Total number of single-family dwelling units in the census tract; 

#MFU: Total number of multi-family dwelling units in the census tract; 

#HH: Total Number of Households in the census tract; 

 

The default values for WSFM, WSFE, WSFC, WMFM, WMFE and WMFC are specified as 

the following Table 2.5. These values may be changed by users if warranted by local 

conditions. 

 

Table 2.5 Default Values for Damage State Percentages (Dislocation Factors) 
 

 

 

 

 

 

  

 

Weight Factor Default Value 

WSFM 0.0 

WSFE 0.0 

WSFC 1.0 

WMFM 0.0 

WMFE 0.9 

WMFC 1.0 
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By default, the HAZUS model assumes that all residents in completely damaged 

single-family structures and completely damaged multi-family structures, and 90 percent 

of residents in extensively damaged multi-family structures will leave their homes after a 

natural disaster.  

This dissertation seeks to develop population dislocation algorithms that address 

two major weaknesses found in the HAZUS algorithm. First, HAZUS assumes that all 

buildings in a census tract are located on the centroid of that census tract. Under this 

assumption it can only produce population dislocation estimates at census tract level, 

which could be inappropriate for some planning purposes. Second, HAZUS assumes that 

population dislocation is only affected by building structural damage and housing type. 

In fact, the disaster literature suggests that household dislocation involve complex 

interactions of many additional factors including disaster type, weather condition, 

infrastructure disruption, job loss and socioeconomic characteristics of households and 

their surrounding neighborhoods. Thus, this study will develop new population 

dislocation algorithms that further include the household and neighborhood 

socioeconomic characteristics and produce structure level estimates for aggregation at 

whatever unit requested by users. 
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2.3 Factors Affecting Population Dislocation Following Natural Disasters 

Figure 2.2 is a conceptual diagram that describes the scope of population 

dislocation and its relationships with evacuation and housing recovery, based on 

different types of natural hazards. Evacuation is possible only when the natural hazard 

has environmental cues (Lindell & Prater, 2003; Lindell et al., 2006). Evacuation action 

is directly affected by evacuation orders and risk perception, with the influence of 

certain human socioeconomic characteristics. If the disaster does happen and cause 

damages in a designated area, then people are forced to leave their homes because of the 

damage to the residential structures and the involvement of the socioeconomic patterns 

in the area, as well as disaster type, weather conditions, infrastructure disruption, and job 

loss. Literature discussing the factors that influences the pattern of population 

dislocation as shown in the figure is summarized in the following sections. This study is 

focusing on the human socioeconomic characteristics, in addition to the housing 

structural damage and housing types as employed in the HAZUS model, for the 

development of population dislocation algorithms.  

 

 



 
1
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Figure 2.2 Conceptual Diagram Representing the Scope of Population Dislocation in this Study 
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2.3.1 Housing Structural Damage 

Numerous studies point out that the level of housing structural damage is a 

dominant factor in influencing population dislocation (Comerio, 1998; FEMA, 2003; 

Harrald et al., 1992; Peacock & Girard, 1997; Quarantelli, 1982a; Smith & McCarty, 

1996). These studies provide either qualitative or quantitative evidence to show that 

households suffering more severe housing damage have a greater tendency to leave their 

damaged homes. 

The assessment of housing damage after a disaster is typically conducted in two 

steps. First, a preliminary assessment of damage is conducted by a “windshield survey” 

of the impacted area. This assessment provides state and local officials a basic 

knowledge of the extent of damage in the area so they can decide whether to ask for a 

presidential disaster declaration. Following the preliminary assessment, local building 

departments dispatch their own staffs of inspectors and engineers as well as volunteer 

engineers and architects provided by professional associations to conduct detailed safety 

assessments (Comerio, 1998).   

The measurement of housing damage is also an important issue to determine its 

effect on population dislocation. There are several schemes to measure the level of 

housing damage. In most cases inspectors classify buildings into three categories based 

on the severity of structural damage (Comerio, 1998; Harrald et al., 1992; Perkins et al., 

1996). Buildings with heavy damage and/or clear hazard are red tagged, meaning no 

entry is allowed. Buildings with some structural damage are yellow tagged, meaning that 

permission of the local building officials is required to enter the buildings. Buildings 
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found to have minimal or no structural damage are given green tags that mean they are 

safe to enter. A problem associated with this classification is that inconsistencies tend to 

occur as structures are assessed and reported by inspectors in different jurisdictions 

where different criteria are employed (Comerio, 1998). The other common classification 

approach is the HAZUS scheme which classifies damage into four categories namely 

slight, moderate, extensive, and complete, based upon the percent of building repair cost.  

The logic that housing damage affects population dislocation is straightforward 

as households have to stay away from their homes because of the loss of housing 

habitability and safety concerns. However, in many cases, the level of housing damage is 

not the only factor to influence a household’s decision to leave. A household may want 

to leave because of the aftershocks of a major earthquake, undesirable weather 

conditions, infrastructure disruption, and so on. The most important of all, the household 

must have the ability to leave and stay away from home, which is determined by its 

internal and external resources, and its social networks (Bolin, 1982). 

 

2.3.2 Housing Type 

Households’ dislocation patterns also vary significantly across housing types. 

The HAZUS model for estimating the number of dislocated households has different 

rules for single-family and multi-family housing types (Harrald et al., 1990a, 1990b; 

Harrald et al., 1992; Perkins, 1992; Perkins et al., 1996). As noted in Table 2.5, 

households in multi-family structures will leave if the structures are extensively or 

completely damaged while single-family households will only leave completely 
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damaged structures. Thus, it assumes that households in multi-family units have higher 

dislocation rates than those in single-family units. In addition, Peacock and Girard’s 

(1997) study shows that households inhabiting multi-family structures and mobile homes 

are 2.76 to 10.72 times more likely to leave their damaged residences than households 

living in single-family units.  

 

2.3.3 Disaster Type  

 Household dislocation after a natural disaster is also influenced by different types 

of disaster. For example, in the case of a flood disaster, households living in the flooded 

area have to leave and stay away from their homes for an extended period of time even 

though their houses are not seriously damaged. They are not able to return until the 

retreat of the flood and the granting of permission to reenter the area (Quarantelli, 

1982b). In this case all households in the area have to leave regardless of the level of 

housing damage. A similar situation is also observed in the post-earthquake period when 

many people stay away from their slightly-damaged houses because of the fear of 

aftershocks. The frequency and magnitude of aftershocks may delay a household’s 

reoccupancy decision. They may stay in commercial facilities (hotels or motels) close to 

their homes or, in most cases, with friends or relatives outside the impacted area as long 

as this social network is available (Bolin, 1982).  
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2.3.4 Weather Condition and Infrastructure Disruption 

 Infrastructure disruption could involve discontinuation of water, sewer, electric 

power, fuel, telecommunication, and/or transportation. In addition, unavailable 

groceries, supplies, schools/education, and hospital/healthcare may also increase the 

duration of household dislocation. The influence of weather condition on population 

dislocation is often interrelated with infrastructure disruption. Extreme weather 

conditions may increase the likelihood of household dislocation, especially when utilities 

are disrupted at the same time. In very cold or hot weather conditions it is difficult for 

households to stay in houses without heating or air conditioning even though the 

structures are not or only slightly damaged. People tend to seek better arrangements 

instead of staying in their houses during these situations. However, this type of 

household dislocation is also dependent upon the level of economic resource and social 

network available to the household.  

 

2.3.5 Job Loss 

 Job loss in a disaster impact area is inevitable as businesses usually have to close 

if they have direct physical damage to structures, equipment, inventories, and/or 

disruption of infrastructure such as electric power, water/sewer, fuel, transportation and 

telecommunications (Lindell et al., 2006). Alesch et al. (1993), Dahlhamer & D’Souza 

(1997), Lindell et al. (2006), and Tierney (1997) reported that small businesses are more 

physically and economically vulnerable than large businesses because they are more 

likely to be located in non-engineered buildings, less likely to have the capacity to 
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design and implement hazard adjustment programs, and less likely to have resources for 

business recovery. In addition, owners and employees of small businesses are more 

likely to be socially vulnerable groups such as ethnic minorities or members of low 

socioeconomic status. Job loss could compound the difficulty of the household recovery 

process especially for those of high social vulnerability.  Searching for new jobs may be 

an incentive to out migration in this situation. 

 

2.3.6 Human Socioeconomic Characteristics 

The human social system had not yet begun to play an important part in the study 

of disaster impacts until White and Haas (1975) suggested that the people factors such as 

social, economic, and political dimensions of disasters be included in the field of hazard 

research. Since then the social aspect of disaster research and planning has been getting 

more attention. Recently, the development of the social vulnerability perspective has 

become popular in disaster planning both among academics and practioners (Blakie, 

1994; Lindell et al., 2006). The social vulnerability model in general suggests that 

disaster impacts on social units with different characteristics vary, depending on the 

level of their social vulnerability (Blakie, 1994; Cutter et al., 2000, 2003; Lindell & 

Prater, 2003; Lindell et al., 2006; Peacock & Bates, 1982; Peacock & Girard, 1997). The 

term social vulnerability was defined by Blakie (1994) as “the characteristics of a person 

or group in terms of their capacity to anticipate, cope with, resist, and recover from the 

impact of a natural hazard”. Mileti (1999) proposes a similar concept in which he 
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characterizes the disaster impact as the consequence of interactions of three systems—

the natural system, the human system, and the constructed system. 

In the case of a natural disaster, population dislocation can be described as a 

socio-demographic impact after a natural hazard causes physical damage in a community 

(Lindell & Prater, 2003; Smith & McCarty, 1996; Smith, 1996). The degree of this 

impact is essentially a function of the severity of physical damage caused by the natural 

hazard and pre-impact conditions including hazard exposure and physical vulnerability 

(Blakie, 1994; Cutter et al., 2000, 2003; Lindell & Prater, 2003, Lindell et al., 2006). 

The way in which the human social system affects population dislocation is through its 

effect on household mobility, which has been shown to be a result of socioeconomic 

status or social vulnerability of the household (Fried, 1966; Haas et al., 1977; Heller, 

1982; Morrow-Jones & Morrow-Jones, 1991). In previous research socioeconomic 

factors affecting population dislocation can be summarized as two categories—

household socioeconomic characteristics and neighborhood socioeconomic 

characteristics. This section of review is the focus of this study as these factors are 

empirically re-analyzed and then incorporated in the population dislocation algorithm. 
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Household Socioeconomic Characteristics 

Income is one of the most common indicators to represent the socioeconomic 

status of a household (Blakie et al., 1994; Cutter et al., 2003; Lindell et al., 2006; 

Peacock & Girard, 1997). The ability of a household to get away from the disaster-

damaged home is associated with its mobility, which is closely related to its 

socioeconomic status (Fried, 1966; Haas et al., 1977; Heller, 1982; Morrow-Jones & 

Morrow-Jones, 1991). Households with higher socioeconomic status often possessed 

favored accessibility to internal resources such as savings and insurance, and external 

resources such as credit and governmental aid, which provide them more opportunities 

during the difficult post-disaster situations (Drabek & Key, 1984; Hartman, 1964). 

Quarantelli’s Wilkes-Barre flood case study (1982b) also found that upper-middle class 

people were more likely to leave their homes after the disaster than those of middle and 

working classes.  

In the United States, the socioeconomic status of a household can also be 

explained by ethnicity/race as minorities tend to have limited access to social, economic 

and political resources (Blakie et al., 1994; Cutter et al., 2003; Lindell & Prater, 2003; 

Lindell et al., 2006; Peacock & Girard, 1997). Peacock and Girard’s (1997) migration 

study provides consistent quantitative evidence to reveal the adversity faced by Black 

households that tried to relocate following Hurricane Andrew. However, this study did 

not show significant difference in post-hurricane migration for Hispanic households. 

This phenomenon is a result of the heterogeneity among Hispanics; Cubans in Dade 

County possess social, economic and political power similar to Anglos that is very 
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different from non-Cuban Hispanics (Grenier & Morrow, 1997; Peacock & Girard, 

1997).  

The effect of home ownership on household dislocation remains unclear in the 

existing literature. Peacock and Girard’s (1997) study shows inconsistent effects of 

home owners or renters on household relocation. Studies by Fried (1966), Anderson and 

Weinberg (1979), and Belcher and Bates (1983) also found inconsistent results on how 

home ownership affects post-disaster population moves.  Morrow-Jones and Morrow-

Jones’ (1991) explanation of this contradiction was that home owners are usually more 

emotionally tied to their properties even though they also have greater access to the 

resources needed to relocate. Renters tend to leave once the residential structures are 

damaged but they also tend to have fewer transportation options and fewer resources to 

support relocation. The available evidence suggests that the factors promoting home 

owners’ dislocation are almost exactly balanced by the factors inhibiting their 

dislocation.  

In addition to income, ethnicity/race, and home ownership, household 

characteristics such as having homeowner’s insurance, presence of the elderly, or female 

headed households are also indicated by past research as having a connection with 

households’ socioeconomic status or social vulnerability (Blakie et al., 1994; Cutter et 

al., 2003; Lindell et al., 2006). However, the nature in which these factors affect 

population dislocation has not been addressed in the research. Peacock and Girard’s 

(1997) study partly supports the proposition that insured owners are more likely to leave 

while insured renters are less likely to relocate after Hurricane Andrew. There do not 
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appear to be any other factors on household dislocation that have been reported in the 

research. 

 

Neighborhood Socioeconomic Characteristics 

Neighborhood characteristics also affect on social impacts after a major disaster 

as residential segregation of ethnic minorities and low-income households has been a 

major component in the American urban development history (Burgess, 1928; Clark, 

1986, 1989; Cowgill, 1956; Massey & Denton, 1987; Peacock & Girard, 1997; Peacock 

et al., 2007; Zhang, 2006). Even though progress has been made in residential 

integration during the past few decades, segregation still remains at high levels 

according to the 1990 and 2000 census data (Iceland et al., 2002).   

Peacock and Girard (1997) analyzed the effects of ethnicity and residential 

segregation on population relocation after Hurricane Andrew. Their findings show that 

predominantly Black neighborhoods consistently have significantly lower rates of 

household dislocation. The study also points out that, with the presence of segregation, 

Hispanic ethnicity consistently shows no significant effects on household relocation. 

Peacock and Girard (1997) attribute this result to the formation of a “Cuban Enclave” as 

Cubans in the Miami-Dade area were better able to attain social, economic and political 

power than other Hispanic groups. This created heterogeneity among Hispanics and 

further marginalization of Blacks and Mexican Americans. The dislocation pattern of 

Cuban neighborhoods has not been studied in previous research. 
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In addition to ethnicity, neighborhoods also differ in median income, percent of 

renters, vacancy rate, and percent of single-family housing units. No previous research 

has examined the relationships between these neighborhood characteristics and 

household dislocation. Nevertheless, as these social characteristics of a neighborhood 

might also be related to its social vulnerability, it is reasonable to infer that these 

neighborhood characteristics might affect post-disaster household dislocation.  

 

2.4 Research Hypotheses 

As summarized in the literature review, post-disaster population dislocation is 

affected by the level of housing structural damage, housing type, disaster type, weather 

conditions, infrastructure disruption, and socioeconomic characteristics of the household 

and its neighborhood. The algorithms developed in this dissertation seek to improve on 

the HAZUS model in two ways. The first improvement is to produce structural level 

dislocation estimates that allow aggregation at whatever unit of analysis requested by 

users. Second, it attempts to include socioeconomic characteristics in addition to housing 

structural damage and housing type as employed in the HAZUS model. As a result, it is 

imperative to examine the significance of effects that these socioeconomic factors have 

on household dislocation. Specifically, this study addresses seven research hypotheses 

derived from the literature review. 

The research hypotheses are presented in two groups. The first group—consisting 

of H1, H2, and H3—examines how household dislocation is affected by the household 

characteristics including building damage, household ethnicity, home ownership, and 
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housing type. The second group—consisting of H4, H5, H6, and H7—examines how 

household dislocation is affected by neighborhood socioeconomic and housing 

characteristics. These hypotheses are presented individually below. 

 

H1: Building damage will significantly increase the likelihood of household dislocation 

following a disaster. 

Studies by Harrald et al. (1990a, 1990b), Harrald et al. (1992), Peacock and Girard 

(1997), Perkins (1992), and Perkins et al. (1996) all showed that building damage 

significantly increases household dislocation following a disaster. However, the degree 

of building damage in these studies is measured using an ordinal scale. This dissertation 

uses a ratio scaled variable, percent building value loss, to measure the degree of 

building damage. It assumes that the loss of value equals the loss of function. A ratio 

scaled variable is more accurate than an ordinal variable in reflecting the state of 

building damage, and thus may improve the precision of the statistical analysis and 

estimates produced by the population dislocation algorithms. Of course, this advantage 

in accuracy would be lost if the building inspectors cannot reliably discriminate damage 

levels beyond the four basic categories. 

 

H2: Ethnic minority status of households will significantly decrease the likelihood of 

household dislocation following a disaster. 

Households of lower socioeconomic status tend to have less access to internal or 

external resources that affect their post-disaster mobility.  Evidence in disaster research 
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indicates that the socioeconomic status of a household can partially be explained by 

ethnicity/race, as minorities tend to have limited access to social, economic and political 

resources (Blakie et al., 1994; Cutter et al., 2003; Lindell & Prater, 2003; Lindell et al., 

2006; Peacock & Girard, 1997).  

 

H3: Households living in single-family housing units will have a significantly lower 

level of household dislocation following a disaster. 

This hypothesis is based on Peacock and Girard’ study (1997) and the studies on 

which the HAZUS model is based, which both showed that households living in multi-

family units or mobile homes are more likely to leave their homes than those living in 

single family units following a disaster. 

 

H4: Neighborhood minority composition will significantly decrease the likelihood of 

household dislocation following a disaster. 

H5: Neighborhood income level will significantly increase the likelihood of household 

dislocation following a disaster. 

H6: Neighborhood renter composition will significantly increase the likelihood of 

household dislocation following a disaster. 

H7: Neighborhood single-family housing composition will significantly decrease the 

likelihood of household dislocation following a disaster. 

The rationale for H4, H5, H6, and H7 is that households of similar socioeconomic 

status such as ethnicity, income, tenure, and type of housing are often clustered because 
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of the residential segregation as described in the literature review. Households living in 

neighborhoods predominantly occupied by minorities, the poor, and renters tend to have 

less access to resources and networks required to leave disaster-damaged homes. In 

addition, Peacock and Girard (1997) also found that neighborhoods predominantly 

occupied by ethnic minorities or population of lower socioeconomic status tend to suffer 

greater levels of housing damage. 
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3. METHODS 

 

 This study develops two population dislocation algorithms. The first algorithm 

utilizes a modified HAZUS approach that bases the estimation on structural damage and 

anticipated variations in dislocation between single and multi-family structures. The 

second algorithm is formulated in the following steps known as the research-based 

approach. First, it utilizes the South Dade County Population Impact Survey (SDPIS) 

integrated with the 1990 Miami-Dade County Census Data and Housing Tax Appraisal 

Database to empirically examine the effects of household and neighborhood 

socioeconomic characteristics on household dislocation. Logistic regression models are 

employed to test the research hypotheses. Then the socioeconomic factors are selected to 

formulate the algorithm based on their statistical significance, overall model 

performance, empirical meaningfulness, and availability of data in the MAEviz system. 

Finally both algorithms are implemented in MAEviz—a seismic loss assessment system 

developed by Mid-America Earthquake (MAE) Center at University of Illinois-Urbana 

Champaign and National Center for Supercomputing Applications (NCSA)—which 

allows sensitivity analysis and evaluation of population dislocation estimates computed 

according to various earthquake scenarios. This chapter introduces the data sources, data 

preparation, and analytical approach to be employed in the analyses and algorithm 

formulation. 
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3.1 Data Preparation  

3.1.1 Datasets 

South Dade County Population Impact Survey 

 The SDPIS was conducted by means of face-to-face interviews during the late 

summer and early fall of 1993, with a supplemental interviews conducted during 

December. In this survey, 248 Census blocks (218 regular and 30 special) were selected, 

mapped, and sampled, resulting in 2,990 housing units being selected (Peacock et al., 

1997). Multiple visits were made to ensure that the household occupying each housing 

unit was interviewed to gather information on ethnic/racial status, movement by 

household members following the storm, insurance coverage, and residency status of 

each occupant for various time periods during 1993 (Peacock et al., 1997).  

 

1990 Census Data for Miami-Dade County 

Census data complement the SDPIS by providing population and housing 

information at multiple levels of aggregation, including states, counties, cities and towns, 

ZIP codes, census tracts, and census blocks. Integration of census and SDPIS data 

provides the survey observations with neighborhoods’ population and housing 

characteristics. This makes it possible to assess the effects of households’ and 

neighborhoods’ socioeconomic characteristics on population dislocation. Table 3.1 

summarizes the information available from two census survey forms. The short form 

asks a limited number of questions of every person and housing unit in the United States. 
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The long form has additional questions that were asked of a sample of households 

(generally 1 in 6). 

 

Table 3.1 Information Available from Census Data 

Survey Type 

100-percent characteristics (short 
form) 

Sample characteristics (long form) 
Population Housing 

 
-Age 
-Hispanic or Latino origin 
-Household relationship 
-Race 
-Sex 
-Tenure (whether the home is 
owned or rented) 
-Vacancy characteristics 

-Ancestry 
-Disability 
-Grandparents as 
caregivers 
-Income in 1999 
-Labor force status 
-Language spoken at 
home and ability to 
speak English 
-Marital status 
-Migration (residence in 
1995) 
-Occupation, industry, 
and class of worker 
-Place of birth, 
citizenship, and year of 
entry 
-Place of work and 
journey to work 
-School enrollment and 
educational attainment 
-Veteran status 
-Work status in 1999 

 
-Farm residence 
-Heating fuel 
-Number of rooms and 
number of bedrooms 
-Plumbing and kitchen 
facilities 
-Telephone service 
-Units in structure 
-Utilities, mortgage, 
taxes, insurance, and 
fuel costs 
-Value of home or 
monthly rent paid 
-Vehicles available 
-Year moved into 
residence 
-Year structure built 

Source: U.S. Census Bureau (2007b) 
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Housing Tax Appraisal Database 

 These data provide a basis for computing the level of housing damage for each 

structure in terms of percent building value loss due to the hurricane impact. The 

housing tax appraisal database provides the housing values before (1992) and after 

(1993-1996) Hurricane Andrew. The use of these tax appraisal values is justified 

because the tax assessor’s office starts the appraisal process in the beginning of every 

year to appraise the value of each structure and land parcel in the county. Hurricane 

Andrew hit Miami-Dade County on August 24, 1992 when the appraisal process for the 

year was already finished and property tax notices were on the way to owners. In the 

following year, the tax assessor’s office re-appraised the properties to estimate the actual 

values of land and structures from about 5 to 10 months after the hurricane. The 

appraisal values in 1993 can properly reflect the state of damaged housing because the 

findings of Wu and Lindell’s (2004) study of housing recovery after Northridge 

Earthquake suggests that mass reconstruction starts 4 to 5 months or more after the 

disaster. As a result, it is reasonable to justify the use of the housing value loss from 

1992 to 1993 to represent the level of housing damage caused by Hurricane Andrew.  

 

 

 

 

 

 



 33

3.1.2 Data Integration 

 Figure 3.1 shows the geographic locations of SDPIS interviews in relation to the 

Hurricane Andrew track and the Miami-Dade County boundaries. A geographic 

information system (ArcGIS 9.2) and the Statistical Package for the Social Sciences 

(SPSS 15) were utilized to integrate the three datasets. First, the population survey data 

and housing tax appraisal data were geo-coded in ArcGIS. Then the point-to-point 

spatial join function was performed to link the two geo-coded datasets so the 

observations in the output dataset would have information from both the population 

survey data and the tax appraisal data. Second, as the population survey dataset already 

has variables that identify blocks and block groups in which particular observations are 

located, the census dataset therefore could be merged into the abovementioned output 

dataset in SPSS by using these identification variables as key variables. The final version 

of the output dataset has all the information in the housing tax appraisal data and census 

data at both block and block group levels. 

 



 
3
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Figure 3.1 SPDIS Interviews and the Miami-Dade County Study Area 
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Dependent and Independent Variables 

 Two pieces of information collected in the SDPIS are integrated to create the 

dependent variable. They are the last result code indicating the final status of all 

interviews in the SDPIS and a question asking whether or not the household left their 

home due to the housing damage caused by Hurricane Andrew. The dependent variable 

is binary indicating whether (=1) or not (=0) household had been dislocated after 

Hurricane Andrew. 

 The independent variables are split into two major categories. The first one 

contains the household-level information mainly acquired from the SDPIS and tax 

appraisal database. These variables include household ethnic status, home ownership, 

housing type, and percentage of housing value loss due to damage caused by Hurricane 

Andrew. The qualitative information about households is coded as dummy variables. 

The second category has neighborhood-level information such as percentages of Black, 

Hispanic, Cuban, non-Cuban Hispanic, renters, vacant housing units, and single-family 

detached homes, as well as median household income in block groups. The independent 

variables to be employed in this study are listed in Table 3.2. 
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Table 3.2 List of Variables and Descriptions 

Concept Variable Description Data Source 

 

Household Level Variables 

Dependent 
variable 

d_dislocation  
Household dislocation status: dislocated =  1; 
never dislocated = 0 

SDPIS 

Housing 
structural 
damage 

pvloss_bldg  
Building appraisal value loss: 
(BuildingValue93-BuildingValue94) / 
(BuildingValue93) * 100 

Tax appraisal 
data 

Household 
housing and 
socioeconomic 
characteristics  

d_sfd  
Housing structure type: single-family 
detached home= 1; others = 0 

SDPIS 

d_white Ethnic status: White = 1; others = 0 SDPIS 

d_black  Ethnic status: Black = 1; others = 0 SDPIS 

d_hispanic  Ethnic status: Hispanic = 1; others = 0 SDPIS 

d_other 
Ethnic status: Ethnicity other than White, 
Black or Hispanic = 1; White, Black or 
Hispanic = 0 

SDPIS 

d_renter  
Home ownership status: Renters = 1; owners 
= 0  

Tax appraisal 
data 

 

Neighborhood Level Variables 

Neighborhood 
housing and 
socioeconomic 
characteristics 

p_sfd_bg Percentage of single-family detached homes 
1990 block 
group census 
data 

p_whitenh_bg 
Percentage of non-Hispanic White 
population 

1990 block 
group census 
data 

p_blacknh_bg Percentage of non-Hispanic Black population 
1990 block 
group census 
data 

p_hispanic_bg Percentage of Hispanic origin population 
1990 block 
group census 
data 

p_cuban_bg Percentage of Cuban population 
1990 block 
group census 
data 

p_ncubanh_bg 
Percentage of non-Cuban Hispanic 
population 

1990 block 
group census 
data 

p_renter_bg Percentage of renter occupied units 
1990 block 
group census 
data 

p_vacant_bg Percentage of vacant units 
1990 block 
group census 
data 

mhhinc_bg Block group median household income 
1990 block 
group census 
data 
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3.2 Analytical Approach 

 In a quantitative study, the analytical approach to be adopted is primarily based 

on the nature of the dependent variable. Ordinary least squares (OLS) regression is the 

most widely employed approach to analyze pooled cross-sectional data in the social 

sciences studies because of its direct logic and easily comprehensible principles 

(Wooldridge, 2005). However, in many cases the dependent variable has substantively 

restricted range of values. These types of dependent variable are called limited 

dependent variables (LDV), such as a binary variable, a count variable, or a multi-

categorical variable (Wooldridge, 2005). One frequently adopted approach to model 

these limited dependent variables is the use of an underlying unobserved latent variable 

that is specified as a linear function of one or more independent variables. The 

relationship between the observed and latent variables is specified based on the nature of 

the response variable. Commonly used examples of these relationships include the logit 

or probit function for binary responses, Poisson function for count responses, or Tobit 

function for non-negative responses.  

 In this study the logit model is the most appropriate approach because the 

dependent variable is dichotomous indicating whether (=1) or not (=0) the household 

was dislocated after the disaster. The logit model assumes that the natural logarithm of 

odds of event 1 is a linear function of a set of independent variables, which can be 

specified as the following equation. 
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 Here the latent variable is the logit function shown as the left part of the 

equation. The error component µ  represents all the other factors, including unobserved 

and random errors or factors, which might be influencing the logit. The parameters 0β , 

1β , 2β , ..., kβ  are estimated by the maximum likelihood method which is different from 

the least squares method in the OLS model. The independent variables to be employed in 

the population dislocation algorithm will be selected through an empirical examination. 

Then the algorithm predicting the probability of household dislocation can be formulated 

as the following equation.  

 

[5] 

 

 The default probability cutoff value is .5 which means that the households have 

probabilities of .5 or more are classified as dislocated households. The number of 

dislocated households can then be calculated at the level of aggregation based on 

specific planning purposes. 
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4.  DATA ANALYSIS 

 

4.1 Preliminary Analysis 

 Table 4.1 presents the descriptive statistics for the household variables from 

SDPIS and the neighborhood variables from the 1990 block group census data for 

Miami-Dade County. Several points in the descriptive statistics are worth mentioning. 

First, the mean of the dependent variable shows that 53.8% of the surveyed households 

had ever been dislocated after Hurricane Andrew. Second, the average building value 

loss for the surveyed households is 61.5%. These two numbers indicate that there will be 

enough variance in the dependent variable and one of the primary independent variables 

to avoid range restrictions (Lindell, 2008). Moreover, 42.07%, 24.01% and 31.06% of 

the surveyed households are White, Black and Hispanic respectively, which are similar 

to the mean White (47.86%), Black (22.77%) and Hispanic (27.20%) percentages as 

shown in the census data. The single-family detached housing percentage in the SPDIS 

(56.64%) and census data (60.70%) are also similar. These numbers show that the 

SDPIS sample is representative of the Miami-Dade county population at large.  
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Table 4.1 Descriptive Statistics of Variables 

Household level variables (N=1329 when missing values excluded listwise) 

Variable Mean 
Standard 

Deviation 
Minimum Maximum 

d_dislocation (N=2108) .5380 .4987 .00 1.00 

d_white (N=1645) .4207 .4938 .00 1.00 

d_black (N=1645) .2401 .42729 .00 1.00 

d_hispanic (N=1645) .3106 .46290 .00 1.00 

d_other (N=1645) .0286 .1667 .00 1.00 

d_sfna (N=2754) .5664 .49565 .00 1.00 

d_renter (N=2406) .5702 .49514 .00 1.00 

pvloss_bldg (N=2924) 61.4962 32.9098 .01 100.00 

     

Neighborhood level variables (N=85) 

Variable Mean 
Standard 

Deviation 
Minimum Maximum 

p_whitenh_bg 47.8597 25.9407 .68 87.39 

p_blacknh_bg 22.7680 28.0552 .39 97.62 

p_hispanic_bg 27.1956 16.1492 .67 68.00 

p_cuban_bg 9.4068 7.8533 .00 35.47 

p_ncubanh_bg 17.7888 12.6038 .67 61.99 

p_renter_bg 30.6062 20.5815 2.36 82.58 

p_vacant_bg 8.9794 8.0284 1.24 59.79 

p_sfna_bg 60.6958 28.2967 0.5362 100.00 

mhhinc_bg 37.6827 22.9650 8.1610 150.0010 
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As to the neighborhood ethnic characteristics, Black percentage has a maximum 

of 97.62% and a standard deviation of 28.06, which indicates a high concentration of 

Blacks in some block groups and a large variation among block groups. The Hispanic 

percentage has a lower maximum (68.00%) and standard deviation (16.15), which means 

predominant Hispanic neighborhoods are more mixed with non-Hispanics and thus less 

segregated than Blacks. Similar patterns are found when Hispanics are divided into 

Cuban and non-Cuban ethnic groups. Cubans are the least segregated ethnic group 

among the three. Regarding other neighborhood characteristics, renter percentage has a 

maximum of 82.58% meaning that renters in some block groups are considerably 

segregated. Vacant housing percentage has a mean of 8.98%, which indicates a rough 

90% housing occupancy rate in this area. In addition, the majority of the housing stock 

in the area is single family detached housing (60.70%). Finally, the block group median 

household income has a mean of $37,683, a minimum of $8,161, and a maximum of 

$150,001, showing a large income inequality among neighborhoods in this area. 

  Table 4.2 lists the cross-tabulations between the dependent variable and the 

dummy independent variables. The table further reveals the dislocation patterns across 

ethnicities, tenure statuses, and housing types. Among the Black households 32.3% 

experienced dislocation. A similar pattern is found in Hispanic households where only 

38.3% were able to leave. With regard to the home ownership, 51.2% dislocated 

households were renters while the rest 48.8% were owners. Finally, as to the housing 

types, 45.8% dislocated households were living in single-family detached homes while 

54.2% of them were living in other housing types. 
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Table 4.2 Cross-tabulation of Variables 

 
 

 

 
d_dislocation 

0 1 Total 

d_white 

0 
Count 
% within d_white 

584 
64.8% 

317 
35.2% 

901 
100.0% 

1 
Count 
% within d_white 

367 
58.0% 

266 
42.0% 

633 
100.0% 

Total 
Count 
% within d_white 

951 
62.0% 

583 
38.0% 

1534 
100.0% 

d_black 

0 
Count 
% within d_black 

700 
60.2% 

463 
39.8% 

1163 
100.0% 

1 
Count 
% within d_black 

251 
67.7% 

120 
32.3% 

371 
100.0% 

Total 
Count 
% within d_black 

951 
62.0% 

583 
38.0% 

1534 
100.0% 

d_hispanic 

0 
Count 
%within  d_hispanic 

653 
62.1% 

398 
37.9% 

1051 
100.0% 

1 
Count 
%within  d_hispanic 

298 
61.7% 

185 
38.3% 

483 
100.0% 

Total 
Count 
%within  d_hispanic 

951 
62.0% 

583 
38.0% 

1534 
100.0% 

d_other 

0 
Count 
%within  d_other 

916 
61.6% 

571 
38.4% 

1487 
100.0% 

1 
Count 
%within  d_other 

35 
74.5% 

12 
25.5% 

47 
100.0% 

Total 
Count 
%within  d_other 

951 
62.0% 

583 
38.0% 

1534 
100.0% 

d_renter 

0 
Count 
%within  d_renter 

401 
55.7% 

319 
44.3% 

720 
100.0% 

1 
Count 
%within  d_renter 

475 
48.8% 

499 
51.2% 

974 
100.0% 

Total 
Count 
%within  d_renter 

876 
51.7% 

818 
48.3% 

1694 
100.0% 

d_sfd 

0 
Count 
%within  d_sfd 

379 
45.8% 

449 
54.2% 

828 
100.0% 

1 
Count 
%within  d_sfd 

580 
54.2% 

491 
45.8% 

1071 
100.0% 

Total 
Count 
%within  d_sfd 

959 
50.5% 

940 
49.5% 

1899 
100.0% 
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To preliminarily identify the relationships between the explanatory factors and 

their effects on population dislocation, Table 4.3 lists the bivariate pairwise correlations 

for all variables. Amid the household characteristics summarized in the literature review, 

housing structural damage has the largest with household dislocation (r = .637). As 

expected, this correlation is positive and statistically significant. 

Regarding the household ethnicity, White ethnicity has a significantly positive 

correlation with household dislocation (r = .069). This is consistent with previous 

findings that White households generally have a higher socioeconomic status that 

provides them more options and greater mobility to leave their homes after the disaster. 

The significantly negative correlation between Black ethnicity and household dislocation 

(r = -.066) shows that Blacks are less likely to leave their homes after the disaster. In 

addition, Black ethnicity also has a significantly positive correlation with housing 

structural damage (r = .205). The two correlations indicate that Blacks suffered more 

severe housing damage but, nonetheless, they were less able to leave damaged homes. 

As a result, Blacks could be the major population who are in dire need of shelter after 

the disaster. By contrast, however, Hispanic ethnicity does not have a significant 

correlation with household dislocation (r = .004). This nonsignificant correlation could 

be a result of the mix of Cubans and non-Cubans in the Hispanic ethnicity. As noted 

earlier, Peacock and Girard (1997) identified a specific “Cuban Enclave” in the Miami 

area where Cubans have much stronger economic and political powers than other 

Hispanics. 



 
4
4
 

Table 4.3 Correlations of Variables 

  1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 

1. d_dislocation                  

2. pvloss_bldg .367**                 

3. d_sfd -.083** -.010                

4. d_white .069** -.067** .201**               

5. d_black -.066** .205** -.052* -.479**              

6. d_hispanic .004 -.091** -.155** -.572** -.377**             

7. d_other -.046 -.075** -.027 -.146** -.096** -.115**            

8. d_renter .069** .081** -.510** -.214** .134** .107** -.009           

9. p_sfd_bg -.123** -.063** .564** .174** -.021 -.157** -.025 -.370**          

10. p_whitenh_bg .167** -.033 .156** .490** -.492** -.069** .001 -.246** .160**         

11. p_blacknh_bg -.110** .149** -.042* -.369** .642** -.188** -.031 .151** -.005 -.760**        

12. p_hispanic_bg -.061** -.164** -.160** -.112** -.297** .377** .044 .106** -.222** -.227** -.457**       

13. p_cuban_bg -.059** -.236** .018 -.033 -.289** .300** .004 -.092** .049** -.072** -.418** .706**      

14. p_ncubanh_bg -.045* -.076** -.222** -.129** -.218** .318** .056* .195** -.325** -.258** -.357** .906** .340**     

15. p_renter_bg .007 .020 -.434** -.310** .218** .126** .009 .392** -.661** -.484** .320** .191** -.142** .338**    

16. p_vacant_bg .042 .162** -.356** -.191** .120** .093** .000 .291** -.537** -.164** .120** .069** -.121** .164** .169**   

17. mhhinc_bg -.048* -.297** .294** .356** -.360** -.060* .034 -.319** .523** .612** -.517** -.079** .196** -.222** -.645** -.381**  

Note:  1. ** Correlation is significant at the .01 level (2-tailed); * Correlation is significant at the .05 level (2-tailed). 
2. Sample sizes range from 1465 to 2994. 
3. Household-level variables:  d_dislocation = dislocated; pvloss_bldg = percentage of building appraisal value loss; d_sfd = single family detached home; d_white = White 
ethnicity; d_black = Black ethnicity; d_hispanic = Hispanic ethnicity; d_other = other ethnicity. 
4. Neighborhood (block group) -level variables: p_sfd_bg = percentage of single family detached homes; p_whitenh_bg = percentage of non-Hispanic Whites; p_blacknh_bg = 
percentage of non-Hispanic Blacks; p_hispanic_bg = percentage of Hispanics; p_cuban_bg = percentage of Cubans; p_ncubanh_bg = percentage of non-Cuban Hispanics; 
p_renter_bg = percentage of renters; p_vacant _bg = percentage of vacant housing units; mhhinc_bg = median household income. 
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 Households living in single-family detached homes are significantly less likely to 

experience dislocation (r = -.083). This finding coincides with the assumption of 

HAZUS model and Peacock and Girard’s (1997) finding that households living in multi-

family homes were more likely to leave after the disaster. As to tenure status, renters 

have a significantly higher likelihood of household dislocation (r = .069). This is 

understandable as renters would escape without worrying about damage to the properties 

they occupy. However, owners are more emotionally tied to their properties than renters 

because they are more likely to spend time designing or remodeling their homes to 

create specific aesthetics or functions for their needs. 

 When it comes to neighborhood characteristics, the block group White 

percentage has a significantly positive correlation with household dislocation (r = .167). 

On the other hand, the block group Black percentage also has a significantly negative 

correlation with household dislocation (r = -.110). Both of them are consistent with the 

corresponding correlations at the household level. However, the neighborhood Hispanic 

percentage has a significantly negative correlation with household dislocation (r = -.061), 

which is inconsistent with the result found at the household level. It might be interpreted 

that households living in predominant Hispanic neighborhoods experience more 

difficulty in leaving homes after the disaster. In this case, the effect of neighborhood 

ethnic percentage is stronger than the effect of household ethnicity. This pattern is also 

found in Whites and Blacks as the magnitudes of correlations between neighborhood 

ethnic percentages and household dislocation are stronger than those between household 

ethnicities and dislocation.  
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 When the Hispanics are divided into Cubans and non-Cubans, the correlations 

turn out to be inconsistent with previous findings. Both Cuban percentage (r = -.059) and 

non-Cuban Hispanic percentage (r = -.045) have significantly negative correlations with 

household dislocation. The “Cuban Enclave” effect on population dislocation is not 

observed in the correlation analysis. Nevertheless, it will be further tested in the logistic 

regression analysis. 

 In addition to the correlations between neighborhood ethnic percentages and 

household dislocation, the correlations among neighborhood ethnic percentages imply 

several ethnic segregation phenomena in this area. First, the significantly negative 

correlation between White and Black percentages (r = -.760) indicates that Whites and 

Blacks are extremely segregated from each other. Second, Whites are less segregated 

from Hispanics (r = -.227), especially Cubans (-.072). On the other hand, Blacks are 

highly segregated from Hispanics (r = -.457), as well as Cubans (r = -.418). Finally, 

Cubans and non-Cuban Hispanics are integrated but not especially strongly(r = .340). 

As for home ownership, block group renter percentage has a positive correlation 

with household dislocation (r = .007), which is similar to the earlier finding at the 

household level except the correlation is weak and insignificant here. The percentage of 

single-family detached dwelling units in block groups has a significantly negative 

correlation with household dislocation (r = -.123). This is also consistent with the 

correlation found between single-family detached home and household dislocation. 

Finally, block group median household income—the essential factor that represents 

neighborhood socioeconomic status—has a significantly negative correlation with 
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household dislocation (r = -.048). This result contradicts the findings summarized in the 

literature review. However, the preliminary zero-order correlation analysis explores only 

the relationship between each independent variable and the dependent variable. It cannot 

identify the causal effects or differentiate between indirect effects and direct effects. As 

a result, further analyses are needed to assess the unique contribution of each predictor 

and determine each individual variable’s effect on population dislocation.  

 

4.2 Analysis with Logistic Regression Model 

 To further understand the unique effect of each household or neighborhood 

characteristic on household dislocation when controlling for other variables, we utilize 

logistic regression analysis, which employs a latent logit function to transform the binary 

dependent variable into a continuous and unbounded variable that can be specified as a 

linear function of a set of independent variables.  

Two sets of logistic regression models are analyzed to separately assess the 

effects of household and neighborhood characteristics on household dislocation. In 

addition to the empirical examination, the analysis also seeks to find out a model for 

algorithm development where a set of independent variables is selected based on the 

model R-square, significance of the coefficient, empirical meaningfulness of variables, 

and availability of building inventory and census data in the MAEviz package. 
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4.2.1 The Effects of Household Characteristics 

The logistic regression analysis starts with the base model Model 1, which 

includes only housing structural damage as the independent variable. Then each of the 

household and neighborhood characteristics is examined controlling for housing 

structural damage and the other characteristics. The correlation analysis already indicates 

that housing structural damage is the primary factor to influence household dislocation. 

Model 2 studies the effects of household characteristics on population dislocation. 

The independent variables employed in the analysis include percentage of building value 

loss, and qualitative dummy variables representing single-family detached homes, 

Blacks, Hispanics, and renters. Model 1 and Model 2 are specified as the following 

equations respectively.  

 

[6] 

 

 

[7] 

 

  

 Table 4.4 lists the result of the logistic regression models using housing structural 

damage and household characteristics as independent variables to predict the logarithm 

of odds of household dislocation. The logistic regression result for Model 1 show that 

housing structural damage has a significantly positive effect on household dislocation. 
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For every percent increase in building value loss, the odds for household dislocation 

increases by 2.4 percent. However, when the household characteristics are added in the 

analysis, the R-square of Model 2 as well as the effect of housing structural damage 

decrease considerably comparing to those found in Model 1. The decrease of R-square 

could be a result of the huge drop in the number of valid cases in the analysis after 

adding the household characteristics. The household ethnic information is available 

mostly from completed interviews, which account for only 54% of total interview 

attempts in the SDPIS. The huge drop of valid cases largely decreases the strong 

contribution of housing structural damage to the R-square of Model 2 even though more 

variables are added. A further forward selection analysis reveals that all household 

characteristics but d_black in Model 2 have insignificant increase in the R-square.   

 

Table 4.4 Results of Logistic Regression Models Examining the Effects of Housing 
Structural Damage and Household Characteristics 

Variable 

Categories 
Variables 

Model 1 Model 2 

β EXP(β) p β EXP(β) p 

Housing 

structural 

damage 

pvloss_bldg 0.024 1.024 0.000 0.018 1.018 0.000 

Household 

characteristics 

d_black    -0.661 0.517 0.000 

d_hispanic    -0.076 0.927 0.593 

d_sfd    -0.207 0.813 0.131 

d_renter    0.196 1.215 0.193 

Constant 1.384 0.251 0.000 -1.423 0.241 0.000 

N (Total N: 2994)  2038 1329 

Nagelkerke R-square 0.174 0.114 

Cox & Snell R-square 0.130 0.084 
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Black ethnicity is the only household characteristic having a significant effect on 

household dislocation. As shown in Model 2, the d_black has an odds ratio of 0.517 

indicating that being Black households decreases the odds of dislocation by 48.3%, 

compared to non-Black households. As to Hispanic ethnicity, single-family detached 

housing and renter status, no significant effect is found for any of the three variables 

even though the directions of their effects are consistent with the findings in the 

literature.  

 

4.2.2 The Effects of Neighborhood Characteristics 

 Models 3 and 4 analyze the effects of neighborhood characteristics on household 

dislocation, controlling for the hosing structural damage. Model 3 includes the 

percentages of non-Hispanic Blacks, Hispanics, renters, vacant housing units and single-

family detached homes as well as median household income in block groups. Model 4 is 

essentially identical to Model 3 except for splitting Hispanics into Cubans and non-

Cubans. The two models are specified as follows. 

  

 

 

[8] 
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[9] 

  

Table 4.5 lists the results of the two logistic regression models. In Model 3, all 

neighborhood factors are shown to have negative effects on household dislocation. 

Specifically, three factors including percentages of non-Hispanic Blacks, renters, and 

single-family detached homes, have significant effects on household dislocation. Every 

percent increase in non-Hispanic Black population in a block group decreases the odds 

of household dislocation by 1%. Similarly, every percent increase in single-family 

detached homes in a block group decreases the odds of household dislocation by 2.4%. 

Results for both factors are consistent with findings in the literature. Surprisingly, the 

renter percentage decreases the odds of household dislocation, which obviously conflicts 

the findings in earlier studies. For every percent increase in renters in a block group, the 

odds of household dislocation decreases by 2.7%.  The discrepancy might be a result of 

the strong positive correlation of percentages between Hispanics and renters. The 

percentage of renters might therefore pick up the negative effect that the percentage of 

Hispanic has on household dislocation because of the correlation. 
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Table 4.5 Results of Logistic Regression Models Examining the Effects of Housing 
Structural Damage and Neighborhood Characteristics 

Variable 

Categories 
Variables 

Model 3 Model 4 

β EXP(β) p β EXP(β) p 

Housing 

structural 

damage 

pvloss_bldg 0.027 1.027 0.000 0.027 1.027 0.000 

Neighborhood 

characteristics 

p_blacknh_bg -0.010 0.990 0.002 -0.011 0.989 0.001 

p_hispanic_bg -0.005 0.995 0.239    

p_cuban_bg    0.004 1.004 0.622 

p_ncubanh_bg    -0.011 0.989 0.064 

p_renter_bg -0.027 0.974 0.000 -0.024 0.976 0.000 

p_vacant_bg -0.019 0.981 0.076 -0.015 0.985 0.190 

mhhinc_bg -0.001 0.999 0.745 -0.002 0.998 0.637 

p_sfd_bg -0.024 0.976 0.000 -0.023 0.977 0.000 

Constant 1.266 3.547 0.008 1.185 3.271 0.013 

N (Total N: 2994)  2038 2038 

Nagelkerke R-square 0.245 0.246 

Cox & Snell R-square 0.184 0.185 

 

 

When the Hispanics are divided into Cubans and non-Cubans, as shown in Model 

4, the coefficients for percentages of non-Hispanic Blacks, renters, vacant units and 

single-family detached houses, as well as median household income, are very close to 

those found in Model 3. Furthermore, when we conduct a 1-tailed test, the non-Cuban 

Hispanic percentage has a significantly negative effect on household dislocation, which 

is consistent with the findings in literature. However, the Cuban percentage still has no 

significant effect on household dislocation. 
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For the purpose of algorithm development, this study further analyzes two 

models that include the household dummy variable representing single-family detached 

housing and neighborhood characteristics, as housing type is a valuable piece of 

structure-level information available from the building inventory data in MAEviz. 

Similar to the earlier Models 3 and 4, Model 5 treats Hispanics as a single group while 

Model 6 splits them into Cubans and non-Cubans. Models 5 and 6 are specified as the 

following equations. 

 

 

[10] 

 

 

[11] 

  

Table 4.6 lists the results of the logistic regression Models 5 and 6. As shown in 

Model 5, the effect of household single-family detached housing surprisingly becomes 

significant (p < .001) with the presence of neighborhood characteristics in the model. For 

households living in single-family detached homes, the odds of dislocation decreases by 

47.1%.  Results for the other neighborhood variables, including the percentages of renter 

and vacant housing units, and median household income, are similar to those found in 

Model 3. 
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Table 4.6 Results of Logistic Regression Models Examining the Effects of Housing 
Structural Damage, Single-Family Detached Homes and Neighborhood Characteristics 

Variable 

Categories 
Variables 

Model 5 Model 6 

β EXP(β) p β EXP(β) p 

Housing 

structural 

damage 

pvloss_bldg 0.024 1.025 0.000 0.025 1.025 0.000 

Household 

characteristics 
d_sfd -0.637 0.529 0.000 -0.611 0.543 0.000 

Neighborhood 

characteristics 

p_blacknh_bg -0.015 0.985 0.000 -0.017 0.984 0.000 

p_hispanic_bg -0.007 0.993 0.1002    

p_cuban_bg    0.009 1.009 0.209 

p_ncubanh_bg    -0.018 0.982 0.002 

p_renter_bg -0.011 0.989 0.006 -0.008 0.992 0.083 

p_vacant_bg 0.001 1.001 0.946 0.007 1.007 0.504 

mhhinc_bg -0.004 0.996 0.492 -0.004 0.996 0.407 

p_sfd_bg       

Constant -0.067 0.935 0.873 -0.155 0.857 0.713 

N (Total N: 2994)  1899 1899 

Nagelkerke R-square 0.210 0.214 

Cox & Snell R-square 0.157 0.161 

 

 
 In Model 6, when the Hispanics are divided into Cubans and non-Cubans, the 

effect of non-Cuban Hispanic percentage on household dislocation becomes significant 

(p=0.002). The effect of Cuban percentage remains insignificant. The other three 

variables, percentage of renters, percentage of vacant housing units, and median 

household income, continue to have insignificant effects on household dislocation. 
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4.2.3 Model Selection for Algorithm Development 

 This study employs two criteria to select a set of independent variables for use in 

the algorithm to predict the probability of household dislocation. First, the selection of 

independent variables is based on the statistical significance of variables, as well as the 

model R-square, which represents the performance of the overall model. In this case all 

the independent variables have been tested for their incremental contribution to 

predicting household dislocation. Second, in order to provide policy implications, the 

selection of variables has to be theoretically meaningful and supported by the disaster 

research. 

 The selection process starts by placing two structural level variables, housing 

structural damage and the single-family housing dummy variable, as well as all 

neighborhood variables except for the percentage of single-family housing units which 

has been represented by the single-family housing dummy variable. Then a forward 

selection procedure is applied to add variables that have statistically significant effects 

and increase in R-square when they are placed in the model. The result shows that four 

variables—housing structural damage, household single-family housing, percentage of 

non-Hispanic Blacks, and percentage of renters—are selected by this approach. However, 

the significantly negative effect of renter percentage on household dislocation is 

inconsistent with the disaster research. Further examination reveals this is a result of the 

strong correlation between percentage of Hispanics and percentage of renters. Renter 

percentage has a stronger effect and decreases the effect of Hispanic percentage when 

both variables are placed into the model. When renter percentage is removed, housing 
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structural damage, household single-family housing, percentage of non-Hispanic Blacks, 

and percentage of Hispanics have significant effects that increase R-square. Moreover, 

all the effects of these variables are all consistent with the findings in disaster literature. 

Model 8, which includes these four independent variables, is specified as the following 

equation. 

  

  

[12] 

 

The result of logistic regression Model 8 is listed in Table 4.7. In the next chapter, 

Model 8 will be extended to the population dislocation algorithm.  

  

Table 4.7 Result of the Logistic Regression for Algorithm Development 

Variable Categories Variables 
Model 8 

β EXP(β) p 

Housing structural 

damage 
pvloss_bldg 0.025 1.025 0.000 

Household 

characteristics 
d_sfd -0.502 0.606 0.000 

Neighborhood 

characteristics 

p_blacknh_bg -0.018 0.082 0.000 

p_hispanic_bg -0.012 0.988 0.000 

Constant -0.425 0.654 0.027 

N (Total N: 2994)  1899 

Nagelkerke R-square 0.205 

Cox & Snell R-square 0.154 
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5. ALGORITHM DEVELOPMENT 

 

 This section introduces the concept of incorporating the two improvements in the 

algorithm development. As structural damage is one of the basic inputs to estimate 

population dislocation, the chapter begins with the introduction of the MAEviz structural 

damage model and its differences from the HAZUS model. Then the development of 

two population dislocation algorithms—the modified HAZUS approach and logistic 

regression approach—is discussed. The chapter concludes with an examination of 

sensitivity of the algorithms. 

 

5.1 MAEviz Seismic Structural Damage Model 

The probabilistic approach employed in the MAEviz to assess the structural 

seismic damage is based on the study of Bai et al. (2007), which modified the damage 

state classification proposed by the Applied Technology Council (ATC) and then 

assigned damage factors to each damage state to quantify structural damage as a 

percentage of structural replacement cost. Similar to the HAZUS, the damage factors are 

calculated by a probabilistic approach that relies on the building damage functions, 

which include fragility curves describing the probability of reaching or exceeding 

different states of damage given peak building response, as well as building capacity 

curves used to determine peak building response. 
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However, two major differences are found between the MAEviz and HAZUS 

approaches. First, as noted in Section 2.2, the HAZUS assumes that all structures in a 

census tract are located on the centroid of that census tract. The assumption substantially 

decreases the computational complexity, but it also allows the damage estimates at the 

census tract level. In this case, the estimates are useless for many sub-census tract 

planning purposes. In the MAEviz, each structure has a unique location geographically 

coded by its longitude and latitude. When a user-defined earthquake scenario creates a 

seismic impact raster containing a distribution of peak ground acceleration (PGA) 

values, each structure is seismically impacted by the PGA at its geographical location. 

MAEviz then computes damage estimates for each individual structure.  

Second, MAEviz uses a damage state scheme modified from the ATC-38. The 

difference in damage state schemes between the MAEviz and HAZUS could result in 

very different population dislocation estimates. The comparison of HAZUS and MAEviz 

damage state schemes is listed in Table 5.1. 

 

Table 5.1 Comparison of HAZUS and MAEviz Damage State Schemes 

HAZUS MAEviz 

Damage state 
Percent of building 
replacement cost 

(%) 
Damage State 

Range of 
percent 

damage (%) 

Midpoint of 
damage 
range 

Slight 2 Insignificant (I) [0, 1] 0.5 
Moderate 10 Moderate (M) [1, 30] 15.5 
Extensive 50 Heavy (H) [30, 80] 55 
Complete 100 Complete (C) [80, 100] 90 
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The two population dislocation algorithms developed in this chapter are using the 

structural damage estimates generated by the MAEviz as one of the inputs. Typically, 

each damage state is translated into a percent of the building’s value that would be lost. 

This is then weighted by the expected probability for each damage state. The resulting 

expected damage ratio is then multiplied by the value of the building to estimate repair 

costs. The direct economic damage to a structure is expressed as the following equation.  

 

[13] 

 

Where kDED  is the direct economic damage to building k; )( iDSp is the probability of 

building k being in damage state i; iDF  is damage factor i, or percent of building value 

loss in damage state i;  and kValBldg _  is the value of building k. 

Both algorithms developed in this study only consider population dislocation in 

single and multi-family structures, represented by RES1 and RES3 respectively in the 

MAEviz building inventory data. MAEviz also adopts the HAZUS occupancy categories 

for all seismic damage analyses. Table 5.2 lists all residential structures in the Memphis 

Test Bed building inventory used in MAEviz for sensitivity analysis. As the table 

indicates, occupancy types other than RES1 and RES3 only account for 0.19% of the 

total residential structures in Memphis area. Similarly, some information for these types 

of residential structures in the SDPIS database is either unavailable or limited for 

population dislocation analysis. As a result, this study only includes RES1 and RES3 in 

the population dislocation algorithms. 
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Table 5.2 MTB Residential Building Inventory Data in MAEviz 

HAZUS 
occupancy 

HAZUS occupancy description 
Number of 

buildings 
Percent of 
buildings 

RES1 Single-family residential 269,442 93.52% 

RES2 Mobile home 43 0.015% 

RES3A Multi-family residential (2 units) 7,026 2.44% 

RES3B Multi-family residential (3-4 units) 1,441 0.50% 

RES3C Multi-family residential (5-9 units) 1,972 0.68% 

RES3D Multi-family residential (10-19 units) 2,100 0.73% 

RES3E Multi-family residential (20-59 units) 3,132 1.09% 

RES3F Multi-family residential (50+ units) 2,464 0.86% 

RES3 (Total)  18,135 6.29% 

RES4 Temporary lodging (Hotel/Motel) 331 0.115% 

RES5 Institutional dormitory 59 0.021% 

RES6 Nursing home 87 0.030% 

Total 288,097 100% 

 

 

In addition to the difference in the estimation process, the residential building 

inventory data in the HAZUS and MAEviz are also different. The residential structures 

in HAZUS were acquired from two major sources, the Census 2000 and Department of 

Energy (DOE) reports (FEMA, 2003). The key information including square footage by 

occupancy, building count by occupancy, and general occupancy mapping was derived 

from the population and housing data in Census 2000. Then three reports from the DOE 

were used in defining regional variations in characteristics such as number and size of 

garages, type of foundation, and number of stories.  The inventory’s baseline floor area 

is based on a distribution contained in the DOE’s Energy Consumption Report. On the 
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other hand, the residential building inventory data utilized in MAEviz is directly 

acquired from the Shelby County Tax Assessor’s Database in 2007. Therefore, MAEviz 

has a later version of building count and information. In addition, the HAZUS residential 

building inventory data only contains building characteristics aggregated at census tracts 

while each residential building in MAEviz has a unique location as well as structural and 

non-structural information associated with the building. The difference in numbers of 

residential buildings between HAZUS and MAEviz is listed in Table 5.3. With regard to 

the two occupancy types, RES1 and RES3, used for calculating population dislocation, 

MAEviz has 5.11% and 25.05% more structures respectively than the HAZUS does. 

This is one of the major factors contributing to the differences in population dislocation 

estimates between the MAEviz and HAZUS algorithms. 

 

Table 5.3 Difference in Numbers of Residential Buildings between HAZUS and 
MAEviz Inventory Data 

Occupancy 
type 

Number of 
buildings in 

HAZUS 
building 

inventory 
(2000) 

Number of 
buildings in 

MAEviz 
building 

inventory 
(2007) 

Difference in 
number of 
buildings 

(MAEviz - 
HAZUS) 

Percent increase 
in MAEviz 

building 
inventory 

RES1 256,335 269,442 13,107 5.11% 

RES2 4140 43 -4,097 -98.96% 

RES3 14,502 18,135 3,633 25.05% 

RES4 99 331 232 234.34% 

RES5 367 59 -308 -83.92% 

RES6 118 87 -31 -26.27% 

Total 275,561 288,097 12,536 4.55% 
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5.2 Modified HAZUS Population Dislocation Algorithm 

The first modification transforms the HAZUS algorithm so it can produce 

structural level dislocation estimates. This modified HAZUS approach bases its 

estimation on structural damage and anticipated variations in dislocation between single 

and multi-family structures. It employs damage state probabilities ( )( iDSp ) proposed by 

Bai et al. (2007) weighted by dislocation factors ( DisF ) described in HAZUS and more 

refined estimates of the number of households per dwelling unit based on US block 

group census data. Displaced households for single-family structure m (
msfHhD  ) and 

multi-family structure n (
nmfHhD ) are estimated using the following equations 

respectively2. 

 

 

[14] 

 

[15] 

 

 

Where 
kbgAveHhDU  is the average number of households per dwelling unit in block 

group k and jkDUNO _  is the number of dwelling units of multi-family residential 

structure j in block group k. The dislocation factors ( DisF ) for various damage states 

                                                 
2 See APPENDIX A for example calculations using modified HAZUS algorithm. 
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that are utilized in the above equations are listed in Table 5.4. The users may aggregate 

msfHhD and 
nmfHhD  to any meaningful level such as block group, tract, or jurisdiction 

level based upon their specific planning purposes or needs. 

 

Table 5.4 Dislocation Factors by Damage States (Modified from Table 2.5) 

Proposed MAE Damage 
States 

Dislocation factors 

Single Family 
( )sfDisF  

Multi-family 
( )

mfDisF  

Insignificant (I) 0.0 0.0 

Moderate (M) 0.0 0.0 

Heavy (H) 0.0 0.9 

Complete (C) 1.0 1.0 

 

 

5.3 Logistic Regression Population Dislocation Algorithm 

The second modification to the population dislocation algorithm is developed by 

extending empirically based statistical models predicting population dislocation 

following Hurricane Andrew. As noted previously, disaster research suggests that 

population dislocation is driven not only by building damage and housing type as 

employed by the HAZUS population dislocation model, but also by household and 

neighborhood socioeconomic characteristics, weather, infrastructure disruption, disaster 

type, and job loss (Baker, 1991; FEMA, 2003; Gladwin & Peacock, 1997; Whitehead et 

al., 2000; Whitehead, 2005). While not all of these factors were available to this 

research, the modified algorithm does utilize a logistic regression model that includes 

neighborhood socioeconomic characteristics in addition to structural damage and type of 
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residential buildings as independent variables to predict the probability that residents in a 

given structure be dislocated. The probability that residents of structure j in block group 

k will be dislocated (
jkDisPr ) is calculated by the following equations. 

 

  

[16] 

  

Where 
jkVLOSS%  represents the percent value loss of residential structure j in block 

group k. It uses the same logic employed in the DED measure calculated in section 5.1, 

but does not need to use economic values directly. It is calculated as follows. 

 

  

[17] 

 

In addition, jkSFD _  is a qualitative dummy variable where 1 represents single-family 

structures and 0 represents multi-family structures. The variables 
kbgBLACK%  and 

kbgHISP% are simply the percent Black and Hispanic sub-population in block group k 

respectively. The default coefficient values (b1, b2, b3, and b4) are listed in Table 5.5 and 

were developed from the empirical data. 
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Table 5.5 Default Values of Coefficients 

Coefficients Default Values 

0b  -0.42523 

1b  0.02480 

2b  -0.50166 

3b  -0.01826 

4b  -0.01198 

 

 

The dislocation factor ( jkDisF ) for the structure is then calculated from 

probability of dislocation ( jkDisPr ) by the following default operation: jkDisF  = 1 if 

jkDisPr >= .5; jkDisF  = 0 otherwise; where one (1) means the household is predicted to 

be dislocated. The default probability cutoff value of .5 can be adjusted based on 

different circumstances such as hazard characteristics, weather conditions, and 

infrastructure disruptions. The MAEviz implementation of this algorithm also allows 

users to aggregate household dislocation at block group, neighborhood, census tract, or 

other jurisdiction level for their specific planning purposes3. For example, the number of 

dislocated households for block group k (
kbgDisHh ) can be estimated as follows. 

  

[18] 

 

 

                                                 
3 See APPENDIX B for example calculations using logistic regression algorithm. 
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5.4 Sensitivity of Algorithms 

The estimation of population dislocation in MAEviz is conducted through the 

procedure as shown in Figure 5.1. The hazard data—created by inputting earthquake 

scenario information including location (longitude and latitude), magnitude, depth, 

spectrum method, attenuation and other site factors—is in the form of a raster grid 

containing the PGA values covering the study area. Then, the building structural damage 

map is created as a shape file by inputting the hazard and building inventory data. The 

building direct economic damage is estimated by inputting the building structural 

damage data as well as tables for nonstructural damage, inflation and occupancy damage 

multipliers. The population dislocation estimates, however, are not calculated from the 

building direct economic damage and census data as shown in the figure. In fact, when 

the two algorithms are estimating population dislocation, nonstructural damage is not 

included as one of the inputs. Instead, the modified HAZUS algorithm uses damage state 

probability, HAZUS dislocation factor, and average number of households per dwelling 

unit to estimate population dislocation. On the other hand, the logistic regression 

algorithm uses the building structural damage as calculated in equation [17], as well as 

building type, Black and Hispanic percentages, and average number of households per 

dwelling unit to estimate population dislocation. In this section, all three algorithms, 

including the two in MAEviz and one in HAZUS, use the same set of scenarios to 

produce population dislocation estimates for sensitivity analysis.  



 
6
7

 

Figure 5.1 Population Dislocation Estimation Procedure in MAEviz 
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5.4.1 Earthquake Scenarios 

 This study employs 18 earthquake scenarios to examine the sensitivity of the two 

algorithms. These earthquake scenarios are also established in HAZUS to calculate 

population dislocation estimates to compare with the MAEviz results. As listed in Table 

5.6, these 18 earthquake scenarios are created by combining three earthquake locations 

with six earthquake magnitudes. Blytheville and Marked Tree are both in the New 

Madrid seismic zone and located 55 miles north of and 34 miles northwest of downtown 

Memphis, respectively. Both locations have a history of high-magnitude earthquake 

events. The downtown Memphis location, where the probability of have a high 

magnitude event is extremely low, is intentionally created inside the study area to 

compare with the other two outside locations. 

 

Table 5.6 Description of the Earthquake Scenario Locations 

 Blytheville Marked Tree 
Downtown 
Memphis 

Longitude -89.919 -90.43 -90.078 
Latitude  35.927  35.535  35.177 
Depth (km)  10.0  10.0  10.0 
Magnitude (Richter 
scale) 

5.5; 6.0; 6.5; 7.0; 
7.5; 8.0 

5.5; 6.0; 6.5; 7.0; 
7.5; 8.0 

5.5; 6.0; 6.5; 7.0; 
7.5; 8.0 

 

 

 Several factors are also required to create the hazard data in addition to the 

information described in Table 5.6. The National Earthquake Hazards Reduction 

Program (NEHRP) designed spectrum and Central and Eastern United States 

characteristic event are selected for the period spectrum method and attenuation 
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relationship as the other two required inputs. As for optional inputs, site class D, NEHRP 

site factor and HAZUS liquefaction method are selected for site class, soil factor 

method, and liquefaction type, respectively. Population dislocation estimations in 

MAEviz and HAZUS both use the same set of parameters as described above. 

 

5.4.2 Sensitivity Analysis of Estimation Results 

 The Shelby County population dislocation estimates calculated by the three 

algorithms using 18 earthquake scenarios are listed in Table 5.7. A preliminary 

examination of the estimates indicates some noticeable points. First, the modified 

HAZUS algorithm tends to produce the highest population dislocation estimates. It has 

the highest dislocation estimates in all earthquake scenarios except for the earthquake of 

magnitude 5.5 in Blytheville. 

Second, the original HAZUS algorithm tends to produce lower estimate of 

population dislocation, especially in high-magnitude earthquakes. For example, an 

earthquake of magnitude 7.0 in downtown Memphis only results in dislocation of 32,566 

households, or 9.62% of total households in Shelby County. The HAZUS dislocation 

numbers are not reasonable, especially because this same analysis shows an average of 

52.46% building value loss for all residential structures in the area. Similar situations are 

found in high-magnitude earthquakes at all three scenario locations.



 
7
0

Table 5.7 Shelby County Population Dislocation Estimates Calculated by the Three Algorithms Using 18 Earthquake 
Scenarios 

 

Blytheville Marked Tree Downtown 

Dislocated 
households 

Percent of 
total 

households 

Average 
percent of 
structural 
damage 

calculated by 
MAEviz 

Dislocated 
households 

Percent of 
total 

households 

Average 
percent of 
structural 
damage 

calculated by 
MAEviz 

Dislocated 
households 

Percent of 
total 

households 

Average 
percent of 
structural 
damage 

calculated by 
MAEviz 

M=5.5 
Original HAZUS 16.7 0.00% 

0.51% 
34.7 0.01% 

0.54% 
1,743.0 0.51% 

9.19% Modified HAZUS 6.4 0.00% 51.5 0.02% 21,745.7 6.42% 
Logistic 0 0.00% 0 0.00% 13,042.1 3.85% 

M=6.0 
Original HAZUS 81.2 0.02% 

0.79% 
191.2 0.06% 

1.44% 
7,593.7 2.24% 

24.87% Modified HAZUS 210.9 0.06% 952.0 0.28% 62,485.5 18.46% 
Logistic 0 0.00% 0 0.00% 37,319.6 11.02% 

M=6.5 
Original HAZUS 282.5 0.08% 

2.65% 
608.7 0.18% 

5.28% 
17,579.6 5.19% 

38.77% Modified HAZUS 3,328.4 0.98% 8,979.9 2.65% 113,071.6 33.40% 
Logistic 0 0.00% 0 0.00% 94,225.6 27.83% 

M=7.0 
Original HAZUS 820.8 0.24% 

8.17% 
1,962.5 0.58% 

13.45% 
32,566.5 9.62% 

52.46% Modified HAZUS 18,480.2 5.46% 34,478.5 10.18% 165,649.0 48.93% 
Logistic 5,700.6 1.68% 15,377.8 4.54% 156,605.2 46.26% 

M=7.5 
Original HAZUS 3,475.3 1.03% 

16.17% 
9,731.0 2.87% 

23.15% 
79,848.6 23.58% 

64.90% Modified HAZUS 41,404.3 12.23% 63,377.5 18.72% 221,068.7 65.30% 
Logistic 24,477.8 7.23% 54,486.4 16.09% 210,216.2 62.09% 

M=8.0 
Original HAZUS 12,447.0 3.68% 

25.56% 
21,872.8 6.46% 

32.89% 
122,846.6 36.29% 

74.98% Modified HAZUS 69,302.8 20.47% 93,419.8 27.59% 274,811.9 81.17% 
Logistic 68,763.9 20.31% 82,911.3 24.49% 244,857.2 72.32% 

Note: Total households in Shelby County as of Census 2000: 338,560. 
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 Figures 5.2, 5.3 and 5.4 show the sensitivity of the three algorithms with regard 

to six earthquake magnitudes at Blytheville, Marked Tree and downtown Memphis 

respectively, controlling for the other factors. As shown in Figure 5.2, the HAZUS 

algorithm is the least sensitive of the three to changes in magnitudes when earthquakes 

take place at Blytheville. All three algorithms produce very few dislocated households at 

magnitudes of 5.5 and 6.0. The modified HAZUS algorithm starts at magnitude of 6.5 to 

produce higher estimates than the other two algorithms. The logistic regression 

algorithm begins to increase significantly at M = 7.0 and catches up at magnitude of 8.0. 

The number of dislocated households calculated by the original HAZUS algorithm stays 

at very low level comparing to the other two algorithms.  

 

 

Figure 5.2 Sensitivity of the Three Algorithms in Blytheville Scenarios. 
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 When the earthquakes are taking place at Marked Tree, the relationships between 

the numbers of dislocated households and earthquake magnitudes look similar to those 

found in the Blytheville scenarios. Both Figures 5.2 and 5.3 indicate that dislocation 

estimates produced by all three algorithms increase at a higher rate when the magnitude 

passes 6.5. This is particularly obvious in the estimates calculated by the logistic 

regression algorithm when the number of dislocated households starts to converge on the 

modified HAZUS estimate at M = 7.5. Unlike the Blytheville analysis, the Marked Tree 

analysis results do not converge at M = 8.0. However, the original HAZUS results are 

very low here, as well.   

 

 

Figure 5.3 Sensitivity of the Three Algorithms in Marked Tree Scenarios. 
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 When the earthquakes are taking place in the downtown Memphis, the 

relationships between the number of dislocated households and magnitudes are closer to 

linear for the three algorithms, compared with the other two scenario locations. An 

earthquake of magnitude 5.5 in downtown Memphis is sufficient to produce a damage 

level that forces people to leave because of the loss of building function and daily 

routines. Unlike the previous two cases, the modified HAZUS and logistic regression 

algorithms are extremely similar for all magnitudes. Original HAZUS is somewhat more 

similar to the other two algorithms in this case, but is still substantially lower at the 

higher magnitudes. 

 

 

 

Figure 5.4 Sensitivity of the Three Algorithms in Downtown Memphis Scenarios. 
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 Overall, the modified HAZUS and logistic regression algorithms produce similar 

dislocation estimates in most of the 18 earthquake scenarios. The estimates calculated by 

the two algorithms are obviously higher than those calculated by HAZUS especially in 

high-magnitude scenarios.  

Finally, it is also important to address the uncertainties and the propagation of 

uncertainties in the estimation process that may influence the sensitivity of the 

algorithms and population dislocation estimates. Building structural damage is the major 

factor that influences the dislocation estimates. The uncertainties in modeling building 

structural damage include period spectrum method, attenuation relationship, site class, 

soil factor method and liquefaction method, all of which may propagate into the 

estimation process of population dislocation. It is therefore essential for users to be 

aware of the presence of these uncertainties when they are using these algorithms to 

estimate population dislocation under any circumstances. 

 



 75

6. DISCUSSION AND CONCLUSIONS 

 

6.1 Discussion 

This dissertation uses an empirical approach to develop algorithms to estimate 

population dislocation following a natural disaster. It starts with an empirical re-

examination of the SDPIS data, integrated with the Miami-Dade County tax appraisal 

data and 1990 block group census data, to investigate the effects of household and 

neighborhood socioeconomic characteristics on household dislocation. Then one of the 

statistical models is selected from the empirical analysis and integrated into the 

algorithm that estimates the probability of household dislocation based on structural 

damage, housing type, and the percentages of Black and Hispanic population in block 

groups. This study also develops another population dislocation algorithm using a 

modified HAZUS approach that integrates the damage state probabilities proposed by 

Bai et al. (2007) and dislocation factors described in HAZUS to produce structural level 

estimates. Sensitivity analysis follows to examine the difference among the estimates 

produced by the two MAEviz algorithms and the HAZUS population dislocation 

algorithm. These analyses allow this dissertation to answer the following three research 

questions. First, how do household and neighborhood socioeconomic characteristics 

influence post-disaster household dislocation? Second, how can the population 

dislocation algorithm be specified to incorporate socioeconomic factors and produce 

structural level estimates that allows flexibility in aggregation to meet a user’s specific 

planning purpose? Third, how does the dislocation algorithm developed in this study 

perform differently from the HAZUS model? 
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The empirical test of the seven research hypotheses answers the first research 

question. Hypothesis 1 is fully supported. Results in all statistical models indicate that 

building structural damage significantly increased the likelihood of household 

dislocation after Hurricane Andrew. Moreover, building structural damage has the 

strongest magnitude of effect among all the variables investigated in the study. This 

result is consistent with the earlier research finding that housing structural damage is the 

most dominant factor that affects post-disaster population dislocation (Comerio, 1998; 

FEMA, 2003; Harrald et al., 1992; Peacock & Girard, 1997; Quarantelli, 1982a; Smith 

& McCarty, 1996). 

 Hypothesis 2, that ethnic minority status of households will significantly 

decrease the likelihood of household dislocation following a disaster, is partially 

supported. The analysis indicates that Black ethnicity has a significantly negative effect 

on household dislocation. However, Hispanic ethnicity is found to have no significant 

effect on household dislocation. The difference between Cuban and non-Cuban Hispanic 

households suggested by the literature is not investigated because of the unavailability of 

information in the SDPIS data. Only one of the two ethnic minorities shows a 

significantly negative effect on household dislocation suggested by the literature. 

 The evidence for Hypothesis 3, that households living in single-family housing 

units will have a significantly lower level of household dislocation following a disaster, 

is mixed. Single-family detached housing does have a significantly negative effect on 

household dislocation when investigated together with neighborhood characteristics. 

However, the negative effect weakens and becomes insignificant when it is investigated 
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with the other household level variables. This finding might be a result of the strong 

intercorrealtions among the household level variables. Nevertheless, results from the 

analysis show mixed evidence and do not fully support this hypothesis suggested by the 

literature. 

Hypothesis 4, that neighborhood minority composition will significantly decrease 

the likelihood of household dislocation following a disaster, is partially supported. Black 

neighborhood composition consistently shows a significantly negative effect on 

household dislocation. When Hispanics are investigated as a group, the analysis has 

mixed results. Hispanic neighborhood composition has no significant effect on 

household dislocation when investigated with all neighborhood variables. However, the 

negative Hispanic neighborhood composition effect becomes significant when the renter 

composition is excluded from the analysis. This might be a result of the strong 

correlation between Hispanic and renter compositions. Furthermore, when Hispanics are 

divided into Cubans and non-Cubans, the non-Cuban composition consistently has a 

significantly negative effect on household dislocation. The results that predominant 

Black and non-Cuban Hispanic neighborhoods have significantly negative effects on 

household dislocation are consistent with the literature. However, the effects of Hispanic 

and Cuban compositions suggested by the literature are not fully supported by the 

analysis. 
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Hypothesis 5, that neighborhood income level will significantly increase the 

likelihood of household dislocation following a disaster, is not supported. The 

neighborhood median household income consistently shows no significant effect on 

household dislocation. Hypothesis 6, that neighborhood renter composition will 

significantly increase the likelihood of household dislocation following a disaster, is not 

supported. To the contrary, neighborhood renter composition consistently has a 

significantly negative effect on household dislocation. A further examination shows that 

renter composition has a strong correlation with Hispanic composition but is not 

correlated with household dislocation. Renter composition might therefore pick up the 

negative effect of Hispanic composition. Hypothesis 7, that neighborhood single-family 

housing composition will significantly decrease the likelihood of household dislocation 

following a disaster, is supported. The percentage of single-family housing units in block 

groups consistently shows a significantly negative effect on household dislocation, 

which is consistent with the finding suggested by the literature. 

With regard to the second research question, this dissertation utilizes an 

empirical data to develop a logistic regression algorithm that includes the socioeconomic 

characteristics supported by the research literature and the empirical analysis conducted 

in this study. As illustrated in the earlier sections 3.2 and 5.3, the algorithm to predict the 

probability of household dislocation is actually the opposite form of the logistic 

regression model with the coefficients derived from the empirical data. As a result, this 

algorithm produces population dislocation estimates at the structure level, which is also 

the unit of analysis used in the empirical analysis. In the case of the modified HAZUS 
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algorithm that has been discussed in section 5.2, it directly applies the HAZUS 

dislocation factor to the MAEviz damage state probability as the estimated proportion of 

households to be dislocated from the structure. MAEviz calculates damage state 

probabilities for each individual structure at its unique location, which is different from 

the HAZUS assumption that all structures in a census tract are located at the centroid of 

that census tract. Therefore, the modified HAZUS can also produce population 

dislocation estimates for individual structures. The MAEviz implementation of both 

algorithms allows aggregation of dislocation estimates at block group, neighborhood, 

census tract, or other jurisdiction level for a user’s specific planning purposes. 

As to the third research question, there are three ways in which the MAEviz and 

HAZUS algorithms perform differently. The first difference arises from the differing 

assumptions about the structure locations adopted by the MAEviz and HAZUS, as 

mentioned in the earlier paragraph. The HAZUS assumption substantially decreases the 

computational complexity and the time requirement for calculating the estimates. 

However, it ignores the variations in PGA and structural damage among buildings with 

respect to their locations in a census tract. MAEviz does provide estimates for each 

individual structure but requires a very large amount of time to perform the calculation. 

Second, MAEviz and HAZUS adopt different damage state schemes as noted in Table 

5.1. HAZUS assumes that all households would leave completely damaged single- and 

multi-family structures and 90% of the affected households would leave extensively 

damaged multi-family structures. However, very few structures actually have 100% 

damage unless a catastrophic event happens. As a result the HAZUS algorithm 
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consistently produces dislocation estimates that are much lower than those calculated by 

the other two algorithms. Finally, MAEviz allows later versions of building inventory 

data, period spectrum method, attenuation relationship, site class, soil factor method and 

liquefaction method to be imported for analysis while the HAZUS only allows updates 

of the building inventory data.  

 

6.2 Limitations and Future Research 

 Like every other research, this dissertation has limitations. First, the SDPIS data 

was collected after a major disaster that damaged 135,446 housing units, and caused an 

estimated $15.9 billion housing-related loss in Miami-Dade County (Comerio, 1998). 

Therefore one should be cautious when applying the empirically based algorithm to 

events of minor to moderate severity. It is suggested that future studies attempting to 

develop population dislocation algorithms should include data collected after less severe 

events to increase the applicability of the algorithm to disasters having a wider range of 

intensities. 

 Second, the empirically based algorithm was developed by using data collected 

in Miami-Dade County that, in many respects, has unique social patterns. One also has 

to be cautious when applying the algorithm in a jurisdiction that has more variations in 

socioeconomic and/or socio-demographic patterns than Miami-Dade County. Future 

studies should include data from other areas with more variations in social patterns to 

enhance the applicability of the algorithm. 



 81

Finally, disaster research suggests that the pattern of post-disaster population 

dislocation is influenced by factors including housing structural damage, housing type, 

disaster type, weather, infrastructure disruption, job loss, and socioeconomic 

characteristics of households and their surrounding neighborhoods (Baker, 1991; 

Belcher & Bates, 1983; FEMA, 2003; Fried, 1966; Gladwin & Peacock, 1997; Haas et 

al., 1977; Heller, 1982; Lindell & Prater, 2003;Lindell et al., 2006; Morrow-Jones & 

Morrow-Jones, 1991; Peacock & Girard, 1997; Whitehead et al., 2000; Whitehead, 

2005). This dissertation advances current algorithms by including socioeconomic 

characteristics in the estimation of population dislocation. However, the effects of 

disaster type, weather, infrastructure disruption and job loss have not been investigated 

and included in the modified algorithms. Thus, future studies should examine the effects 

of these factors and incorporate them into the population dislocation algorithm when 

supported by the empirical analysis. 

 

6.3 Theoretical Contribution and Practical Implication 

 Despite its limitations, this dissertation has made theoretical contribution to 

population dislocation and housing recovery literatures. First, it provides quantitative 

evidence to support the previous anecdotal finding that households with higher 

socioeconomic status often possess greater mobility as a result of their favored 

accessibility to internal and external resources, transportation, and social networks, 

which allows better adjustment to forced movements due to natural disasters (Bolin, 

1982; Drabek & Key, 1984; Hartman, 1964; Fried, 1966; Haas et al., 1977; Heller, 1982; 
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Morrow-Jones & Morrow-Jones, 1991). Second, the empirical findings in this 

dissertation echo Peacock and Girard’s (1997) study, in which the marginalization of 

Blacks and Hispanics is found to have a negative effect on the mobility of households to 

leave disaster damaged homes. In addition, non-Cuban Hispanics experienced 

difficulties similar to Blacks in terms of leaving damaged homes after a natural disaster. 

Third, the findings in this study also have implications for housing recovery literature. 

Households of low socioeconomic status are less likely to leave damaged homes after a 

disaster. In addition, Morrow-Jones and Morrow-Jones’s (1991) study noted that the 

most costless alternative for a homeowner may be to move back in the damaged house 

and repair it. In this context, these households are more likely stay after a disaster and 

experience all four phases of housing recovery, as proposed by Quarantelli (1982a). 

Contrarily, households of higher socioeconomic status may be freer to move or stay to 

rebuild as they choose. Therefore, they may not have to experience emergency shelter, 

temporary shelter, and/or even temporary housing in the recovery process. 

This dissertation also has practical implications. First, disaster research indicates 

that Black and Hispanic households tend to suffer higher levels of housing damage in 

natural disasters because they tend to live in structures that were built according to 

outdated building codes, use inferior designs and construction materials, and were poorly 

maintained (Bolin, 1994; Bolin & Stanford, 1998; Peacock & Girard, 1997). In addition, 

this study found that Blacks and Hispanics, especially non-Cuban Hispanics, 

experienced more difficulties when trying to leave damaged homes after a natural 

disaster. In this context, Blacks and non-Cuban Hispanics tend to be those who most 
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need shelter following the natural disasters. Therefore, it is particularly important to 

address the needs of these population segments in terms of locations, supplies and 

services in the provision of temporary shelter. 

Second, this study establishes an example of transforming the results of 

quantitative empirical research into a practical planning tool, which is rarely found in 

disaster research. This research-based approach may also be used to extend other 

quantitative studies into useful tools for planning purposes, such as Zhang’s (2006) study 

in single family housing recovery following Hurricane Andrew and Lu’s (2007) 

comparative study of single family and multi-family housing recovery after Hurricane 

Andrew.  

 Finally, this dissertation successfully improves on the HAZUS population 

dislocation algorithm in two aspects as mentioned earlier. The finer spatial resolution of 

dislocation estimates increases the applicability of the algorithm for many planning 

purposes. In addition, the logistic regression algorithm is developed based on the 

empirical evidence, compared to HAZUS, which predicts the number of dislocated 

households based on inhabitable residential units under unreasonable dislocation factor 

assumptions.  
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APPENDIX A 

 
Example Calculations Using Modified HAZUS Algorithm: 
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APPENDIX B  

 

Example Calculations Using Logistic Regression Algorithm: 
 
The following is the hypothetical damage and social characteristic for a block group 
containing 5 structures: 
 

Structure 

Direct 
Economic 
Damage 

to the 
Building  

Pre-impact 
Building 

Value 
jkVLOSS%
 

jkSFD _
 

NO_DU TOT_POP  TOT_HU TOT_HH kbgAveHhDU
 

1 30,000 50,000 60 1 1 

54     24 18 0.75 
2 350,000 500,000 70 0 20 

3 30,000 120,000 33.3 1 1 

4 30,000 50,000 60 1 1 

5 12,000 40,000 30 1 1 

 

 
1. Calculate number of dislocated households for block group k: 
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2. Calculating percent of dislocated households for block group k 

100
_

×=
k

k

k

bg
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HHTOT

DisHh
PDisHh  = 15 / 24 * 100 = 62.5% 

 

3. Calculating total number of dislocated households for a jurisdiction covering p 
block groups: 

∑
=

=
p

k

bg k
DisHhTotDh
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Structure 
jkVLOSS%

 
jkSFD _

 
kbgBLACK%

 kbg
HISP%

 
jkDisPr  jkDisF

 

kbgAveHhDU

 
( ) ( ) (

kbgjkjk AveHhDUDUNODisF ×× _

 
bgDisHh

 

1 60 1 

54.7743    25.911 

0.320934 0 

0.75 

0 * 1 * 0.75 = 0 

15 

2 70 0 0.500044 1 1 * 20 * 0.75 = 15 

3 33.3 1 0.195975 0 0 * 1 * 0.75 = 0 

4 60 1 0.320934 0 0 * 1 * 0.75 = 0 

5 30 1 0.1834 0 0 * 1 * 0.75 = 0 
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APPENDIX C 

 

Glossary of Symbols: 
 
%SF: Percent of displacement for single-family residential occupancy class; 
 
WSFM: Weighting factor for moderate structural damage in the single-family residential 

occupancy class; 
 
%SFM: Damage state percentage for moderate structural damage in the single-family 

residential occupancy class; 
 
WSFE:  Weighting factor for extensive structural damage in the single-family residential 

occupancy class; 
 
%SFE: Damage state percentage for extensive structural damage in the single-family 

residential occupancy class; 
 
WSFC: Weighting factor for complete structural damage in the single-family residential 

occupancy class; 
 
%SFC: Damage state percentage for complete structural damage in the single-family 

residential occupancy class; 
 
%MF: Percent of displacement for multi-family residential occupancy class; 
 
WMFM: Weighting factor for moderate structural damage in the multi-family residential 

occupancy class; 
 
%MFM: Damage state percentage for moderate structural damage in the multi-family 

residential occupancy class; 
 
WMFE: Weighting factor for extensive structural damage in the multi-family residential 

occupancy class; 
 
%MFE: Damage state percentage for extensive structural damage in the multi-family 

residential occupancy class; 
 
WMFE: Weighting factor for complete structural damage in the multi-family residential 

occupancy class; 
 
%MFC: Damage state percentage for complete structural damage in the multi-family 

residential occupancy class; 
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#DH: Total number of displaced households in the census tract; 
 
#SFU: Total number of single-family dwelling units in the census tract; 
 
#MFU: Total number of multi-family dwelling units in the census tract; 
 
#HH: Total Number of Households in the census tract; 
 

kDED : Direct economic damage to building k; 

 

)( iDSp : Probability of building k being in damage state i; 

 

iDF  : Damage factor i, or percent of building value loss in damage state i; 

 

kValBldg _ : Value of building k; 

 

msfHhD : Displaced households for single-family structure m; 

 

nmfHhD : Displaced households for multi-family structure n; 

 

kbgAveHhDU : Average number of households per dwelling unit in block group k; 

 

jkDUNO _ : Number of dwelling units of multi-family residential structure j in block 

group k; 
 

sfDisF : Dislocation factor for single-family structure; 

 

mfDisF : Dislocation factor for multi-family structure; 

 

jkDisPr : Probability that residents of structure j in block group k will be dislocated; 

 

jkVLOSS% : Percent value loss of residential structure j in block group k; 

 

jkSFD _ : Qualitative dummy variable where 1 represents single-family structures and 0 

represents multi-family structures; 
 

kbgBLACK% : Percent Black sub-population in block group k; 

 

kbgHISP% : Percent Hispanic sub-population in block group k; 
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jkDisF : Logistic regression dislocation factor for structure j in block group k; 

 

kbgDisHh : Number of dislocated households for block group k. 
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