
  

 

 

THE SAFE STORAGE STUDY OF AUTOCATALYTIC REACTIVE 

CHEMICALS 

 

 

A Dissertation 

by 

LIJUN LIU  

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

 

 

August 2009 

 

 

Major Subject: Chemical Engineering 



  

 

 

THE SAFE STORAGE STUDY OF AUTOCATALYTIC REACTIVE 

CHEMICALS 

 

A Dissertation 

by 

LIJUN LIU  

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

Approved by: 

Chair of Committee,  M. Sam Mannan 
Committee Members, Kenneth R. Hall 
 Rayford Anthony 
 Debjyoti Banerjee 
Head of Department, Michael Pishko 

 

August 2009 

 

Major Subject: Chemical Engineering 



 iii

ABSTRACT 

 

The Safe Storage Study of Autocatalytic Reactive Chemicals. (August 2009) 

Lijun Liu, B.S., Tianjin University; 

M.S., Tianjin University 

Chair of Advisory Committee: Dr. M. Sam Mannan 

 

In the U.S. Chemical Safety and Hazard Investigation Board (CSB) report, 

Improving Reactive Hazard Management, there are 37 out of 167 accidents, which 

occurred in a storage tank or a storage area. This fact demonstrates that thermal runaway 

problems in chemical storage processes have not been give enough attention. 

Hydroxylamine Nitrate (HAN) is an important member of the hydroxylamine 

compound family and its diluted aqueous solution is widely used in the nuclear industry 

for equipment decontamination. It is also used as a solid or aqueous propellant. Due to 

its instability and autocatalytic behavior, it has been involved in several incidents at the 

Hanford and Savannah River Sites (SRS). Much research has been conducted on HAN 

in different areas, such as combustion mechanism, decomposition mechanism, and 

runaway behavior. However, the autocatalytic behavior of HAN at runaway stage has 

not been fully addressed due to its highly exothermic and rapid decomposition behavior. 

This work focuses on extracting its autocatalytic kinetics mechanism and 

studying its critical behavior from adiabatic calorimetry measurements. The lumped 

autocatalytic kinetics model, the associated model parameters and HAN critical 
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condition are determined for the first time. The contamination effect of iron ions and 

nitric acid on diluted hydroxylamine nitrate solution is also studied. 

This work also identified the safe storage conditions for a small quantity HAN 

diluted solution with thermal explosion theory. Computational Fluid Dynamics (CFD) 

was used to further study the influence of natural convection and system scale on the 

critical behavior for a large quantity of chemical and thus proposed the practical storage 

guidelines for industrial practice. 
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1. INTRODUCTION 

 

Chemical reactions are the cornerstone of modern chemical, biochemical and 

petroleum chemical industries. Many products used daily are manufactured via chemical 

reactions by using all kinds of chemicals. Most of these chemicals are stable and can be 

safely used in the normal storage and handling conditions. However some chemicals can 

undergo uncontrolled reactions within a slight deviation from the normal conditions to 

release a large amount of energy and incur a catastrophic consequence. In 2002, the US 

Chemical Safety and Hazard Investigation Board (CSB) published an investigation 

report on 167 serious incidents from 1980 to 2001 involving uncontrolled chemical 

reactions. These incidents caused 108 deaths as well as significant property and 

environmental loss. CSB recommends government agencies and industries should 

improve their practice on reactive chemicals hazard management 1. 

Figure 1.1 illustrates the statistics of runaway reaction incidents investigated by 

CSB. Thermal runaway causes almost 35% incidents and is the second leading cause. 

This indicates that thermal runway hazard control still needs to be improved to ensure 

safe production in chemical industries. 

 

 

 

 

____________ 
This dissertation follows the style of Industrial & Engineering Chemistry Research. 
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Figure 1.1 Runaway reaction classification due to reactive hazards 

 
 
 

The definition of uncontrolled chemical reaction by CSB is the reactions with 

significant increases in temperature, pressure and/or gas evolution. Because of the self-

regulatory characteristics of endothermic and reversible reactions, exothermal and 

irreversible reaction is the principle source of uncontrolled reactions. Although this fact 

has been accepted by academia and industry for years, the potential thermal runaway 

hazards for exothermal, irreversible, and autocatalytic reactions still tend to be neglected 

by the industrial practices. 

Several explosion incidents involving autocatalytic chemicals happened recently 

in the storage process, such as hydroxylamine nitrate (HAN) explosion at Hanford and 

Savannah River Sites (SRS) and Methyl Ethyl Ketone Peroxide (MEKPO) explosions in 

China, Taiwan, and Japan 1, 2. In current chemical storage practices, reactive chemicals 
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are normally stored in proper conditions and they seem to be safe. However a reactive 

chemical storage vessel is a special batch reactor. When unanticipated situations or 

conditions happen in the storage area or vicinity, this “reactor” may introduce severe 

hazards to its surrounding equipment and personnel. The explosion of HAN at Hanford 

was thoroughly investigated by the Department of Energy (DOE). DOE concluded that 

the leading cause was HAN and nitric acid solution was not drained in time and the 

solution concentration increased about 25% due to water evaporation. Eventually the 

explosion occurred at ambient temperature and pressure four years later after the 

solution was prepared. DOE also concluded most accidents related with HAN had some 

common issues, including accidental concentration increase, acid addition, and metal 

ions contamination. The higher the concentration of HAN, nitric acid, and metal ions, 

the higher the possibility the autocatalytic decomposition will be initiated. Overall these 

accidents demonstrated the reactive hazards of autocatalytic chemicals has not been fully 

understood and given enough attention during the storage operation. 

Runaway reactions related with reactive chemicals are often initiated by several 

factors, including apparent activation energy reduction, energy addition, reaction 

pathway change, and heat removal rate reduction. Any of these factors or their 

combination may affect the system behavior and result in undesired consequence. 

Therefore, the current approach in preventing chemical runaway reactions includes 

reaction rate control, cooling capacity enhancement, and decontamination. 

To develop effective reactive hazards control strategies, the accurate 

decomposition kinetics must be determined at the first step. Although the detailed 
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chemical kinetics is very useful and desired, uncertainties and cost involved in its 

development is also very high. It is only possible for very limited cases.  Traditionally, 

overall reaction/decomposition kinetics of reactive chemical can be obtained by using 

thermal analysis techniques, including differential scanning calorimetry (DSC) and 

adiabatic calorimetry etc. The overall reaction kinetics can be derived from temperature 

and pressure profiles. The obtained reaction kinetics can be used in the critical behavior 

analysis to seek safe storage and handling conditions. Thermal analysis techniques are 

still widely used today and provided conservative and valuable information for current 

reactive hazards control with relatively low cost. 

Hydroxylamine nitrate or hydroxylammonium nitrate (HAN) is the salt of 

hydroxylamine and nitric acid. It is an energetic material with the chemical formula 

NH2OH•HNO3. It is normally used in aqueous solution, which is colorless, odorless, 

homogenous, toxic and corrosive. In pure form, it is a hygroscopic solid. Diluted 

aqueous HAN solution is mainly used as the plutonium reductant in nuclear industry. It 

also has some application in rocket propellant in either solid form, where it is a 

propellant oxidizer, or aqueous form, where it functions as monopropellant. 

Furthermore, it is also a reagent for preparing various industrial specialty and 

pharmaceutical chemicals. 

Due to its instability, HAN has been involved in several incidents at Hanford and 

Savannah River Sites (SRS). The incidents investigation report reveals that introduction 

of heat, acids, and unanticipated concentration are the root causes of past HAN 

explosion incidents 3. Mary Kay O’Connor Process Safety Center (MKOPSC) of TAMU 
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and other research institutions have conducted extensive research on its thermal stability, 

decomposition mechanism and the effect of metal ion catalysis by using various 

techniques at different conditions 4-6. Significant amount of knowledge and data of HAN 

were accumulated, which can be used to improve HAN processing safety. 

Previous studies of HAN decomposition kinetics either used oversimplified 

assumptions or were obtained for highly concentrated HAN solutions or for its solid. For 

example, Zhang and Schoppelrei independently obtained HAN decomposition kinetic 

parameters by assuming the decomposition reaction is first order 4, 5. Lee et al. obtained 

the decomposition kinetic parameter of HAN at very high temperatures and 

concentrations 6. All these work had their limitations and did not provide insightful 

information for practical storage operation and transportation. This work uses a 

traditional thermal analysis technique, adiabatic calorimetry, to study the autocatalytic 

decomposition kinetics of hydroxylamine nitrate. 

One critical issue in storage of HAN is contamination of iron ions by leaching 

from the storage vessel. Most commercial storage and transportation vessels are made 

with stainless steel. Nitric acid, HNO3, will be dissociated from HAN and exacerbate the 

iron ion leaching from the steel vessel into the solution. As concluded by DOE, the 

higher the concentration of iron ions, the higher the instability of HAN solution. 

However the influence of iron ions on the diluted HAN solution has not been 

quantitatively studied. This work uses adiabatic calorimeter to systematically study their 

influences. 



 6

In the industrial practice, reactive chemicals are often stored in bulk quantities, 

which causes more severe problem than storage process of small quantity chemical. 

Volume to surface area ratio can significantly affect energy balance of storage system. 

Accumulated excess energy may slowly increase system temperature over time. 

Consequently, chemical reactivity hazard increase with material quantity and non-

hazardous materials in small quantity may become hazardous when its quantity becomes 

larger. The storage and handling conditions derived from small-scale system, which 

normally is non-convective or pure heat conduction system, can not be simply scaled up 

and directly applied to industrial practices. The influence of system size on the cooling 

capacity must be carefully examined. Although this issue is well known, current research 

has not given enough attention to the system size issue. 

Chemical reactivity hazard evaluation procedure, including the widely used 

thermal analysis techniques, is briefly reviewed in Section 2. Classical theories used to 

study critical behavior of reactive chemical are reviewed in Section 3. Thermal 

decomposition behavior and kinetics of diluted HAN solution are studied and presented 

in Section 4. An improved Semenov Theory is used to study critical behavior of small 

quantity diluted HAN solution. This result is presented in Section 5 and can be used to 

provide guidance for small quantity reactive chemical storage and handling. In Section 

6, Computational Fluid Dynamics (CFD) is used to conduct critical behavior analysis for 

large quantity diluted HAN solution. The system size issue is carefully examined. 

The objective of this work includes: a) determination of autocatalytic 

decomposition kinetics of diluted HAN solution, b) determination of the influence of 
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iron ions and nitric acid on thermal stability of diluted HAN solution, c) critical behavior 

analysis for small quantity diluted HAN solution, d) critical behavior analysis for large 

quantity diluted HAN solution and system size issue discussion. 
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2. REACTIVE HAZARDS EVALUATION PROCEDURE 

 

Reactive hazards arise from the reactions associated with the rapid exothermic 

and/or gas generation processes. Rapid exothermic reactions can quickly raise the 

system temperature and cause the whole system to boil violently. It can lead to 

mechanical explosion, such as the boiling liquid expanding vapor explosion (BLEVE), 

which is possibly followed by combustion or explosion of the combustible contents. If a 

reaction releases a large amount of gases in a short period, a mechanical or chemical 

explosion may occur. 

Experimental methods are always the most reliable and accurate method to 

conduct reactivity hazard evaluation. However it is clearly not realistic or safe to 

conduct full size tests for unknown or new compounds. First, such a test can not be 

conducted in the early stage of a new compound because of their availability. Secondly, 

vigorous exotherm or gas evolution hazard may overwhelm an available protection 

system. Therefore, various small-scale tests, theoretical, and numerical techniques have 

been proposed to provide data and estimation for the likelihood and consequence of 

runaway reactions. Although there is no standard evaluation procedure, the commonly 

accepted procedure and techniques are briefly reviewed in this Section. The typical 

testing procedure includes following steps: 

• Reactivity information collection and theoretical calculation 

• Reactivity hazard screening tests 

• Reaction rate and kinetics parameter measurements 
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• Thermal runaway hazard evaluation 

2.1 Reactivity information collection and theoretical calculation 

2.1.1 Reactivity information collection 

Although available reactivity information can never replace reactivity hazard 

testing, reactivity hazard assessment always benefits from the available literature from 

many aspects, such as safety, time and cost saving. One widely used information source 

would be the material safety data sheet (MSDS). There are also other excellent resources 

and handbooks compiled to provide guidance on reactivity hazard assessment, such as 

Lees' Loss Prevention in the Process Industries and Bretherick's Handbook of Reactive 

Chemical Hazards 7, 8. 

2.1.2 Thermodynamic calculation 

Heat of reaction is the enthalpies difference between products and reactants at 

constant pressure and a definite temperature. Heat of reaction determination is always 

the first step of reaction hazard identification. There are a variety of methods for 

measuring or estimating heat of reactions, including calorimeters, literature resources, 

and thermodynamic estimation techniques. 

Adiabatic temperature increase, ∆Tad， and maximum adiabatic temperature， 

Tmax, are two important indicators for reactivity hazard evaluation. They can be 

calculated by using the heat of reaction and the specific heat for the reaction mixture 

with equations 2.1 and 2.2. 

)/( pad mCHT ∆=∆         (2.1) 

adTTT ∆+= 0max         (2.2) 
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where m is reactant mass, Cp is heat capacity of reactant, T0 is initial temperature, and 

∆H is heat of reaction. If maximum adiabatic temperature is above reactants or products 

boiling point or decomposition temperature of any individual reactant, product or the 

mixture, appropriate safeguards, such as pressure relief valves, have to be installed to 

mitigate the potential overpressure hazard or prevent uncontrolled thermal runaway 

reactions. The disadvantages of this approach are mainly the uncertainties involved in 

the determination of the decomposition temperature, enthalpy of formation, and specific 

heat for the reacting mixture. For example, the decomposition temperature normally is 

not a definite temperature because it highly depends on the measurement apparatus 

sensitivity. 

Heat of reaction data for many standard reactions, such as nitration, 

sulphonation, and hydrogenation are available in literature 9. Whenever heat of reaction 

data is not available in the literature, they can be calculated by using their enthalpies of 

formation 10. In addition, some other semi-empirical or theoretical methods can also be 

used to estimate exothermicity for chemical reactions, such as average bond energy 

summation method 11, molecular group contribution method 12, 13, and quantum 

chemistry 14. 

The average bond energy summation method relies on knowledge of molecular 

structures of the involved chemicals and average bond energy. Although it can not 

provide very accurate result, it is very useful for preliminary evaluation and screening. 

The Benson method of group additivity has several improvements over the 

average bond energy summation method, including consideration of rings and isotopic 
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effects and so on. When applying this method to the chemicals with elements, C, H, N, 

and O, the uncertainty is normally between 9 and 13 kJ/mol. 

The most widely used program for the preliminary screening of reactivity hazard 

is ASTM Computer Program for Chemical Thermodynamic and Energy (CHETAH) 15. 

CHETAH includes the most extensive database of Benson groups. However this 

program has several limitations. First, all calculated thermodynamic data is only for gas 

species. This drawback may limit its applicable area because most organic reactions are 

carried out in condense phase. Second, it does not include some organic functional 

groups. 

Quantum chemistry method theoretically can describe the behavior of all 

chemical system. In reality, only the simplest chemical system can be studied in pure 

quantum-mechanical terms and different level approximations must be made to solve 

real problems. The optimum molecular structures of reactants, possible intermediates, 

and possible products can be obtained by using the appropriate level of theory. Then, 

frequency calculations can be conducted on these molecular structures to determine their 

thermochemical properties. 

2.1.3 Chemical dynamics calculation 

Arrhenius’s law is a simple and fairly accurate empirical formula and is widely 

used to describe temperature dependence behavior of reaction rate. Its rate constant is 

shown as below. 

RTEaAek /−=          (2.3) 



 12

where A is the pre-exponential factor, R is the gas constant, Ea is the activation energy, 

and T is the absolute temperature. Arrhenius’s law is one of the milestones of modern 

physical chemistry and is still widely used in today’s reaction kinetics study. Collision 

theory and transition state theory are proposed to calculate the rate constant. 

2.1.3.1 Collision theory 

Collision theory originated from the kinetic theory of gases. Original collision 

theory proposed that reaction only occurs between collided reactant particles. And only 

those effective collisions exceeding activation energy can make the reaction happen. 

Reaction rate can be determined by multiplying total number of collision and reaction 

probability, which is a function of energy. For example, the rate of reaction for a 

bimolecular reaction is given by 

pfZr AB=          (2.4) 

where ZAB is the collision frequency, p is the steric factor describing the collision 

orientation, f is the fraction of effective collisions. With kinetic theory and Maxwell 

Boltzmann distribution, the rate of a bimolecular reaction for ideal gases can be 

represented as follows. 

BA
RTE

AB

B
AB CCeTkpr a /2 8 −=

µ
πσ       (2.5) 

where σAB is mean molecular diameter, kB is Boltzmann constant, µAB is reduced mass, 

CA and CB are concentration for species A and B, respectively. Therefore, concentration 

and temperature are the two important factors that determine the reaction rate. The 

collision theory can also be extended to unimolecular and trimolecular reactions. 



 13

2.1.3.2 Transition state theory 

Transition state theory was a significant advancement over collision theory on 

predicting the preexponential factor for Arrhenius’s law. Transition state theory aims to 

identify the energy barrier that must be overcome before a reaction could happen. The 

barrier lays on the potential energy surface and separates reactants and products. This 

barrier is corresponding to a molecular configuration, activated complex, which is in 

dynamic equilibrium with reactant molecules. With the aid of statistical mechanics, the 

probability that the molecule stays in certain states is proportional to its partition 

function, which is shown in equation (2.6). 

qeg
i

kT
E

i

i

=∑
−

         (2.6) 

where gi is statistical weight, Ei is energy of a particular state, and q is the partition 

function per unit volume. The equilibrium constant for any arbitrary reaction is 

represented as below by using the thermodynamic equation, ∆G = -RTlnKP, with Gibbs 

free energy change described by partition functions. 

RTUN
b
B

a
A

d
D

c
Cdcba

Ap
Ae

qq
qq

VNK /...)...( 0

...

...
)( ∆−−−++

⎥
⎦

⎤
⎢
⎣

⎡
••
••

=      (2.7) 

where NA is the Avogadro constant and V is the system volume. The term, NA∆U0, is 

standard increase of system internal energy per mole at absolute zero temperature. After 

determination of partition function, the equilibrium constant can be calculated with 

equation (2.7). Although total partition function includes translational, rotational, 

vibrational, and electron energy terms, only the first three partition functions are used in 
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kinetic application. With conventional transition state theory, general rate constant of an 

elementary process can be expressed as follows. 

RTUN
b
B

a
AA

ba
Ap

Ae
qq
q

hN
RTVNK /)1...( 0

...
)( ∆−±−++

••⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=     (2.8) 

where h is Planck constant and q± is partition function of the activated complex. The rate 

constant can be determined once the partition function of the activated complex is 

determined. Theoretically, the partition function can be determined if an accurate 

potential-energy surface, which normally is hard to get, is available. An alternative is to 

estimate the molecular structure and vibrational frequencies of the activated complex on 

the basis of a similar stable molecule. Therefore, it is more realistic to make estimation 

for rate constant by using mere order-of-magnitude values of partition functions. 

2.2 Reactivity hazard screening test 

Several small-scale screening tests are available to provide preliminary results 

and information on thermal stability, heat of reaction, gas evolution and so on. Those 

techniques have several advantages, such as quick screening, wide temperature 

measurement range, and small sample requirement etc. 

2.2.1 Differential scanning calorimetry and differential thermal analysis 

Both Differential Thermal Analysis (DTA) and Differential Scanning 

Calorimetry (DSC) are concerned with measurement of energy changes in materials. 

With DTA, temperature difference between sample and reference is obtained as a 

function of time or temperature. Whereas, DSC curve describes heat flux versus 

temperature or time. In order to reduce the influence of sample properties on the 
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integrated area under DTA curve, thermocouples are rarely placed in the sample. 

Modern DSC normally places the thermocouple under the sample furnace. DTA 

instruments are still valuable, particularly at higher temperatures (>1000°C), or in 

aggressive environments, where true heat-flux DSC instruments may not be able to 

operate. 

Differential scanning calorimetry (DSC) is a widely used thermoanalytical 

technique. DSC not only can be used to study phase transition, but also provide thermal 

stability information and reaction kinetics. It also can be used to easily determine the 

exothermicity and significant decomposition temperature range for a reactive chemical. 

A modern DSC apparatus normally used a small quantity of sample (1-20mg). 

The sample normally is placed in a metal capsule and heated at a constant rate (1-10K 

min-1) in the temperature range from –20oC to +500oC. There are two types of DSC 

apparatuses available. The power-compensation DSC uses independent furnaces to 

match the temperature of the sample and reference by varying furnace energy input. The 

energy input difference provides information of enthalpy or heat capacity of sample 

relative to the reference. The heat-flux DSC has only one furnace, where the sample and 

reference are connected together with a low-resistance metal disc. The temperature 

difference between sample and reference indicates enthalpy or heat capacity changes. 

Both sketches of these two types of DSC are shown in Figure 2.1. Although most 

modern DSC instruments are of the heat-flux design, power-compensation DSC can give 

equivalent results to heat-flux designs in most practical cases. 
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Typical DSC curve for an exothermic reaction is illustrated in Figure 2.2. There 

are three dash lines shown in the figure. The cross section with lower temperature 

represents the onset temperature for the sample. Normally detected onset temperature is 

used to determine reaction kinetics and serve as a stability indicator. The exothermicity 

or heat of reaction can be determined by integrating the area below heating curve. 

 
 
 

 

Figure 2.1 Sketch of DSC (a) heat-flux (b) power-compensation 
(a) (b)
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Figure 2.2 Exothermal reaction DSC curve 

 
 
 

Traditional DSC can not provide pressure measurement and their applicable area 

is limited. Recently, some advanced DSC was released to provide more information 

about the kinetics and gas evolution for reaction chemicals, such as the SENSYS evo 

DSC 16. Its pressure measurement and controllable range is up to 500 bars at 600 oC. 

2.2.2 Reactive System Screening Tool (RSST) 

The Reactive System Screening Tool (RSST) manufactured by Fauske & 

Associates is another commonly used reactivity hazard screening tool and illustrated in 

Figure 2.3 17. RSST uses a 10 ml glass cell as the reaction vessel and a 350 ml stainless 

steel containment. One significant feature of RSST is its low thermal inertia, 1.04, that it 

can provide quasi-adiabatic data. Magnetic stirring can be used to enhance the mixing 
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effect. Because the original RSST is operated at open cell mode, heat loss due to solvent 

evaporation may affect the result accuracy. However it does provide pressure vs. 

temperature, temperature vs. time, pressure vs. time, and Arrhenius plots with a relative 

low cost. It normally serves as a fast screening tool for reactivity hazard assessment. 

 
 
 

  

Figure 2.3 Schematic drawing of reaction vessel and containment of RSST 

 
 
 
2.2.3 Thermogravimetric Analysis (TGA) 

Thermogravimetry (TG) measures mass changing while the sample is subjected 

to a controlled heating or cooling. The data is recorded as a function of time or 

temperature. It normally includes thermobalance, furnace, temperature control system, 

and containment. Its typical operating temperature is up to 2400 oC, with heating rate up 
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to 100 oC/min, and sample mass is up to 100 g. Operation of thermogravimetry requires 

an inert atmosphere to ensure the data quality. Because thermogravimetry gives absolute 

changes in sample weight, calculated extent of reaction is not affected by heating rate 

used. It is another screening tool widely used to test thermal stability and conduct kinetic 

studies for reactive chemicals 18. 

2.3 Reaction rates and kinetic parameters determination 

Reaction kinetics and thermodynamics of chemical reaction are essential 

information to characterize chemical reactivity hazards. This information plays a crucial 

role on scaling-up, determination of reactor constructing materials, feeding concentration 

and residence time determination etc. The essential information for determining safe 

operating conditions on commercial reactor includes following data: 

• heat of reaction; 

• heat generation rate; 

• physical properties of reactant mixture, such as density, heat capacity etc; 

• reaction kinetic model; 

• impurities and contaminants study; 

• effects of mis-charging; 

• decomposition conditions, such as temperature range, contaminant 

concentration etc; 

• amount and rate of gas generation 

Because most chemical reaction processes are associated with heating or cooling 

effects, calorimetry is a unique technique to obtain both reaction kinetics and 
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thermodynamics information simultaneously. Since heat flow rate is proportional to the 

conversion rate, calorimetry normally uses differential kinetic analysis method to get 

kinetic parameters and thermodynamic information. Several types of calorimetry, such 

as isothermal calorimetry and adiabatic calorimetry can be used to achieve this objective. 

Isothermal calorimetry is operated at constant temperature and is the easiest in 

application because of absence of heat accumulation. Therefore, system properties, such 

as heat capacity, density, and viscosity, and reactor inert parts do not need to be 

considered as a function of temperature. Isothermal calorimeter can be categorized into 

heat-flow, power-compensation, heat-balance, and Peltier ones on the basis of their 

measurement and control principles. Isothermal calorimeter generates process power 

output versus time, which allows determination of required cooling capacity for a given 

condition or vice versa. The data can also be used to examine whether there is any 

accumulation of dangerous reagents or reaction intermediates, which may violently 

release their stored energy in a later stage and cause catastrophic consequences. 

Isothermal calorimeter is also the most widely used apparatus to determine the cooling 

capacity for a chemical manufacturing process. 

Adiabatic calorimetry is another calorimetry technique that is widely used to 

determine reaction kinetics, thermodynamics, and pressurization information. Typical 

adiabatic calorimeter, such as accelerating rate calorimetry (ARC), has a detection limit 

of 0.02 K/min. This effective sweep rate allows much broader exothermic reaction 

testing range. Adiabatic calorimeter also provides gas evolution information, which can 

also be used to validate reaction kinetics obtained from thermal analysis. 
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2.4 Thermal runaway hazard evaluation 

Adiabatic calorimetry is not only able to provide kinetic information, but also is 

the most important experimental tool to conduct chemical thermal safety analysis. 

Adiabatic calorimetry can allow the reaction to safely proceed at thermal runaway stage, 

which is normally characterized by high temperature, high pressure, and extremely high 

heating and pressurization rates. The information obtained in runaway stage is very 

useful for emergency relief system design. Because the research is focused on thermal 

runaway hazard evaluation of reactive chemicals in storage practice, adiabatic 

calorimeter is the primary experimental tool used in this work. Fundamental principles 

of adiabatic calorimeter and the one used in this research are briefly summarized as 

follow. 

2.4.1 Fundamental principles of adiabatic calorimeter 

Adiabatic condition is applied to the reactor of calorimetry to prevent any heat 

flow from the reaction system to its surrounding environment. In the reality, all adiabatic 

calorimeters are operated in quasi-adiabatic mode, where ambient temperature is 

controlled to follow and match that of reactive samples. Normally the heat loss is quite 

small due to the very small temperature difference and small heat transfer coefficient of 

surrounding inert gases. As a consequence, released energy can be almost completely 

accumulated in the system and drive temperature increase and decomposition. With 

Arrhenius’s law, energy balance of the adiabatic reactor is represented as follows. 

)()exp( cf
RT
EHA

dt
dTC a

p −∆=ρ       (2.9) 
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where f(c) is an appropriate reaction model for the sample. With this equation, adiabatic 

temperature increase and adiabatic induction time can be estimated. It is generally 

accepted that this adiabatic induction time and maximum adiabatic temperature can be 

extrapolated to other temperatures and give conservative estimations of storage time and 

temperature. 

At any temperature, T, or time, t, reactant conversion is approximately 

proportional to temperature changing. 

adT
TT

∆
−

= 0α          (2.10) 

where ∆Tad is the adiabatic temperature increase, Tf – T0, and α is the reactant 

conversion. With α equal to (C0-C)/C0, reaction order, preexponential factor, and 

activation energy could be determined with equation (2.9) and temperature versus time 

data or self-heating rate versus time data. 

2.4.2 Automatic Pressure Tracking Adiabatic Calorimeter (APTAC) 

Accelerating Rate Calorimeter (ARC) was originally developed in Dow 

Chemical and then commercialized by Columbia Scientific Industries (CSI). Because 

original ARC uses thick wall vessel, vessel wall absorbs most of the energy released by 

decomposition reaction and it normally has a large thermal inertia, vvbb MCCM /1+=φ , 

where Mb and Cvb are reactor mass and heat capacity, Mb and Cvb are sample mass and 

heat capacity. This makes it very different from an industrial reactor, which normally has 

a small thermal inertia, close to 1. In addition, original ARC does not have pressure 
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compensation capability so reaction vessel can be broken due to fast pressure increase 

and can not be used to study highly gasified chemicals. 

Later on, several advanced calorimeters, such as Automatic Pressure Tracking 

Adiabatic Calorimeter (APTAC), PHI-TEC II, and Venting Size Package (VSP), 

adopted pressure compensation method of DIERS (the Design Institute for Emergency 

Relief Systems) technology to overcome the limitation of high pressure and fast 

pressurization rate in the original ARC. Their advantages are listed as follows. 

• Use thin wall reaction vessel to generate low thermal inertia data  

• Have very high heat generation rate tracking capability 

• Have fast pressurization tracking capacity 

APTAC is used in the present research. APTAC can also add reagents to the 

reaction vessel during the experiment to simulate a semi-batch or continuous semi-batch 

process. This feature endows the reactivity hazard test more flexibility and the capability 

to simulate the behavior of some real reaction process. APTAC has several operation 

modes, such as heat-wait-search, isoaging, heat ramp, and isothermal modes. Its 

temperature measurement ranges is up to 500oC and pressure tracking range from 

vacuum to 2000 Pisa. It can detect exotherm with heat generation rates from 0.04 to 400 

°C/min. Heat-Wait-Search (HWS) operation mode was proved to be the most suitable 

mode to study thermal runaway hazard of reactive chemicals and this mode is used 

throughout the experimental work of the present research 19. The typical heat-wait-

search mode temperature changing profile is illustrated in Figure 2.4. 
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Figure 2.4 Illustration of heat-wait-search mode 



 25

3. CRITICAL BEHAVIOR ANALYSIS OF REACTIVE CHEMICALS 

 

3.1 Introduction 

Because every exothermic reaction has potential fire or explosion hazard, thermal 

runaway hazard must be paid particular attention. Thermal runaway represents rapid 

energy buildup due to exothermic reactions. Thermo kinetic research reveals that 

thermodynamic data, kinetic parameters and physical properties are key parameters to 

assess thermal runaway or thermal explosion hazards of reactive chemicals 20. The key 

parameters are summarized in Table 3.1. 

Thermal runaway or thermal explosion is generally characterized by self-heating 

before larger amount of explosion energy is released. Once energy removal rate is less 

than self-heating rate, accumulated energy will exponentially accelerate the reaction. 

Thermal runaway can happen even at low temperatures. Although its occurrence 

probability is less than that at high temperatures, special attention should be given to this 

particular danger of low temperature thermal explosions because they are normally 

neglected. Thermal explosion theory is very useful for development of safe operating 

conditions for reactive chemicals in storage, manufacture, and transportation practices.  

Primary goal of thermal explosion theory is to identify the parameter condition 

where the system exhibits thermal runaway. Near the critical magnitude of several 

process parameters, such as temperature and heat transfer coefficient, a small 

perturbation may significantly change system status. To adhere to the original work of 

Semenov, the term “explosion” in thermal explosion theory means reaction kinetics and 
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not the gas dynamics. Furthermore the explosion regime is defined as the rapid process 

of converting reactants into final products. 

 
 
 

Table 3.1 The key parameters for reactive chemicals hazards assessment 

Thermodynamic data Heat of reaction 

 Adiabatic temperature increase 

 Specific quantity of gas generated 

 Maximum pressure in a closed vessel 

Kinetic parameters Reaction rate 

 Rate of heat production 

 Rate of pressure increase in closed vessel 

 Adiabatic time to maximum rate 

 Apparent activation energy 

 Initial temperature of detectable exothermic reaction 

Physical properties Heat capacity 

 Thermal conductivity 

 
 
 

3.2 Classic thermal explosion theory 

The theory of thermal explosion begins with work of Le Chatelier and van’t Hoff 

in the 19th century. Then this theory was further developed by numerous researchers. 

Several milestones of thermal explosion theory are briefly introduced as follows. 
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3.2.1 Semenov Theory 

The foundation of thermal explosion theory is built upon the original work of 

Semenov and collaborators 21. Several fundamental assumptions of this original work are 

summarized as follows. 

• Uniform temperature distribution in the reactant volume; 

• A single temperature-dependent zero-order reaction; 

• All process parameters remain constant. 

Energy balance of reactant system can be described by the following equation 

with the above assumptions. 

)()exp( S
a

p TT
V
hS

RT
EQA

dt
dTC −−−= ρρ      (3.1) 

where T: the reacting system temperature, 

TS: the environmental temperature,  

t: time, 

ρ: reacting system density, 

Cp: heat capacity of the reacting system, 

Q: heat of reaction, 

A: pre-exponential factor, 

Ea: reaction activation energy, 

h: heat transfer coefficient, 

S: heat transfer area, 

R: gas constant, 
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V: reacting system volume. 

Mathematical analysis on the heat conservation equation used by Semenov laid 

the foundation of thermal explosion theory. Temperature-dependence diagrams of heat 

generation, QAexp(-Ea/RT), and heat loss, hS(T-Ts)/V, gives the definition of subcritical 

and supercritical regimes and is often called a Semenov diagram as illustrated in Figure 

3.1, where heat loss is represented by a series of straight lines and heat generation is 

denoted by the curve. In Figure 1, lines 1, 2 and 3 illustrate the heat loss, hS(T-Ts)/V , for 

different surround temperatures and their intercepts on the temperature axis represent 

different surround temperatures and the slope of the lines is hS/V.  

 
 
 

 

Figure 3.1 Semenov diagram 
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In Figure 3.1, the critical point of thermal explosion is defined as the tangency 

between the heat generation curve and heat loss straight line, which also defines the 

critical temperature T*. And T0,cr defines the critical surrounding temperature. When the 

heat generation curve has two intersections with the heat loss curve, line 1 with 

surrounding temperature T0, the reactant system is in the subcritical regime and the 

reactant temperature always remain around temperature T1. When they do not have any 

intersection, the reacting system enters the supercritical regime and will be exponentially 

self-heated. This self-heating eventually leads to thermal explosion or runaway. System 

criticality can be altered by changing some process variables, such as surrounding 

temperature or the heat transfer coefficient, as well as reactant concentration. However 

the influence of concentration is not included in this least sophisticated model and will 

be discussed later in this work. The influences of a process parameter variation on 

explosion limits are demonstrated in Figure 3.2 and Figure 3.3. As shown in Figure 3.2, 

an increase of surrounding temperature will make the system become supercritical. 

Figure 3.3 shows that the decrease of heat transfer coefficient will also enlarge the 

thermal runaway region. 
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Figure 3.2 The effect of ambient temperature changes on the critical conditions for a thermal 

explosion 

 
 
 

 

Figure 3.3 The effect of the heat transfer coefficient reduction on the critical conditions for a 

thermal explosion 
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The Semenov Theory provides a straightforward method for calculation of the 

critical temperature by equating the rates of energy generation and energy removal as 

well as their derivatives with respect to temperature T at the critical temperature T*. 

S
a TT
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)exp(ρ

       (3.2) 
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        (3.3) 

Only one root of equation (3.3) is feasible and as follows, the other root is not 

physically possible. 

)411(
2*

a

Sa

E
RT

R
ET −−=

       (3.4) 

Because the term RTS normally is far less than Ea for explosives and propellants, 

equation (3.4) can be further simplified with a Taylor series expansion to give the 

following approximate solution for the critical temperature. 
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With equation (3.5), another approximation could be made and derived as 

follows. 
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Substituting equation (3.5) and first two terms of (3.6) into equation (3.2) gives 

the following equation. 
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Equation (3.7) defines the critical condition of thermal explosion for the 

Semenov problem. Its left-hand side includes all principal process parameters that 

determine the reacting system criticality and normally is defined as Semenov parameter, 

Se, in recognition of Semenov’s great contribution to thermal explosion theory 

development. The right-hand side, 1/e, is the critical Semenov value. 
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And the time it takes to reach the critical temperature T* can be obtained by 

integrating equation (3.1) from TS to T*. However an analytical expression is not 

possible without using some approximation, such as the Frank-Kamenetskii 

approximation or quadratic approximation. 

3.2.2 Frank-Kamenetskii theory 

Semenov’s theory is valid as long as no temperature gradients exists inside the 

reactant mixture, which is possible when heat transfer at the interface is dominant or the 

sample size is fairly small. But in other circumstances, the heat of reaction normally 

generates temperature gradient in the reacting system. Frank-Kamenetskii theory was 

proposed to deal with this situation. 

With Semenov’s assumptions 2, 3 and heat conduction, governing energy 

balance equation gives following result. 
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where λ represents thermal conductivity and x represents the reacting system 

dimensions. With the boundary condition of 

)(
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and several dimensionless quantities are defined as follows. 
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where r is the dimension of the reaction vessel and φ is a small dimensionless 

temperature difference measured from ambient temperature. 

θ
φ

+= 1*T          (3.11) 

In Frank-Kamenetskii theory, Frank-Kamenetskii approximation was made and 

widely used in its follow up research to get an analytical solution. The 

approximation,
)exp()exp()1(exp)exp( 1

* φθ
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T , is valid for small φ  (T 

≈ TS) and the reaction has a very large activation energy. The dimensionless variables 

transform equations (3.9) and (3.10) to the following equations. 
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ST
Ar

λ
θθρ )exp(2 −

 is defined as the Frank-Kamenetskii constant, δ, which is a 

measure of the reactivity of chemicals, the dimension of the reacting system, and the 

effect of surrounding temperature. Bi is the Biot number and its magnitude determines 

the main resistance to heat transfer. However analytical solutions could be obtained only 

for symmetric shapes, such as a sphere, an infinitely long cylinder and infinite slab, 

which are defined by a single coordinate and belongs to “class A geometries”. The 

dimensionless temperature profiles for an infinite slab with different Frank-Kamenetskii 

constants and Bi equal to infinity are illustrated in Figure 3.4. The critical values of 

Frank-Kamenetskii constant for three major types of vessel are summarized in Table 3.2 

22. Therefore, the critical volume for reactive storage vessel can be estimated with the 

critical Frank-Kamenetskii constant and this is extremely useful for storage practices of 

highly explosive chemicals.  
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Table 3.2Critical values of Frank-Kamenetskii constant for three main types of vessels 

Shape Energy equation 

Critical 

Frank-

Kamenetskii 

constant 

Critical 

dimensionless 

temperature 

Characteristic 

dimension 

Infinite 

slab 
)exp(2*

2

φδφ
=−

dx
d  0.88 1.12 

Half-width of 

slab 

Infinite 

cylinder 

)exp(1
*

*
** φδφ

=⎟
⎠
⎞

⎜
⎝
⎛−

dr
dr

dr
d

r
 

2.00 1.39 
Cylinder 

radius 

Sphere 
)exp(1

*

2*
*2*

φδφ
=⎟

⎠
⎞

⎜
⎝
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dr
dr

dr
d

r
 

3.32 1.6 Sphere radius 

 
 
 

 

Figure 3.4 Dimensionless temperature profiles for infinite slab 



 36

Similar to the Semenov diagram, thermal runaway events under Frank-

Kamenetskii conditions can be illustrated by plotting maximum dimensionless 

temperature versus Frank-Kamenetskii constants as shown in Figure 3.5. 

 
 
 

 

Figure 3.5 Maximum dimensionless temperature versus Frank-Kamenetskii number 

 
 
 

As illustrated in Figure 3.5, there are three possible behaviors for a reactive 

chemical subjected to Frank-Kamenetskii conditions. The system is subcritical when its 

Frank-Kamenetskii constant is less than the critical value, δcritical. The system will be 
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heated up and the maximum dimensionless temperature inside reactive chemical due to 

self-heat is the corresponding φm1 unless extra energy is provided to the system by 

heating to φm2, which will make thermal runaway occur. 

When the system Frank-Kamenetskii constant is larger than the critical value, 

δcritical, system does not have a stable status and its temperature continues to increase. In 

the last case, the system is at a critical status with Frank-Kamenetskii constant equal to 

critical value, δcritical. The system will be heated to φcritical and then undergo rapid self-

heating. 

3.3 Limitations of Semenov and Frank-Kamenetskii theories 

Semenov and Frank-Kamenetskii theories are the foundation of the thermal 

explosion theory. However their basic assumptions impair their accuracy and applicable 

scope.  

First of all, Semenov Theory assumes no reactant consumption. This assumption 

impairs their capability of describing real circumstances that reactants are always 

continually consumed until completely used up. The system with reactant consumption 

always shows a unique steady state where the reactant conversion is one and the system 

temperature, after passing through a maximum value, is equal to that of surrounding 23. 

The system temperature will no longer reach an infinite value. so it is not possible to 

detect the supercritical behavior with temperature stability criteria. Instead, sensitivity 

approach, such as geometric sensitivity and normalized sensitivity, was proposed to 

distinguish subcritical and supercritical behavior 23-25. 
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Another significant limitation is that the heat transfer in Semenov Theory is only 

Newtonian cooling type, while several heat transfer modes exist in real situations. Frank-

Kamenetskii theory made some improvement over Semenov Theory by considering the 

temperature gradient inside the reacting system. But this theory did not consider 

convection or buoyancy force that occurs in fluids. Both of these two fundamental 

theories encounter some difficulties for fluid systems, especially for a large quantity 

fluid, although they could give comparably satisfactory results for small systems 26, 27. 

To get reliable result for a real situation, CFD simulation is needed to study the heat 

transfer phenomena for fluid systems. 

3.4 Current thermal explosion study progress 

3.4.1 Sensitivity approach for small-scale system 

Bilous and Amundson proposed to use a parametric sensitivity concept, which 

measures the  system response output for a small change of external parameters, instead 

of temperature stability to describe the behavior of tubular reactor, which is well-known 

to be sensitive to small inlet parameters variation 26. The comparison between the 

governing equations of explosion theory and those of classical homogeneous tubular 

reactors indicates that parametric sensitivity concept is also applicable for the 

improvement of thermal explosion theory. Therefore several parametric sensitivity 

definitions were proposed to study the critical condition of thermal explosion with 

reactant consumption considered.  

Bilous et al. defined sensitivity as the first order derivative of the temperature 

with respect to its initial value. Gray et al. adopted this approach for thermal explosion 
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theory 28. However this approach requires a fixed sensitivity value to distinguish 

subcritical and supercritical behavior. Several other researchs also proposed some 

similar intuitive definitions based on the geometric characteristics of the temperature 

profile 24.  

Several researchers claimed that it would be more convenient to develop an 

intrinsic parametric sensitivity definition. For example Lacey defined the sensitivity as 

the derivative of the maximum temperature value with respect to the Semenov number 

Se. The value of maximum sensitivity, the critical Semenov number, was used to 

distinguish subcritical and supercritical regions 25. Morbidelli and Varma used the 

normalized sensitivity concept to include any independent process parameters and 

demonstrated this definition is more rigorous and can be applied to thermal explosion 

and chemical reactors 29. 

 Rice et al. defined the criticality or sensitivity as the inflection before the 

maximum in temperature-time trajectories 30, which is widely accepted by most 

researchers 31. Recently Shouman and El-Sayed published a series of papers on the 

discussion of thermal explosion with reactant consumption from inflection point 

viewpoint 31-36. In the work of Shouman and El-Sayed, the criticality or sensitivity was 

defined by the inflection point on the temperature-time and temperature-concentration 

planes. With consideration of reactant consumption, the critical condition not only is a 

function of temperature, but also a function of reactant concentrations. So the rigorous 

critical condition should be defined on the temperature-concentration plane. Shouman 
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and El-Sayed also proved that the critical condition defined on temperature-

concentration plane includes the critical condition defined in previous works 25, 29.  

In the work of Shouman and El-Sayed, the inflection point was determined by 

solving ( 0/ 22 =dZd θ ) and ( 0/ 33 =dZd θ ), where θ and Z are defined as 

dimensionless temperature and reactant concentration, respectively. The possible 

behaviors of ( 0/ 22 =dZd θ ) and ( 0/ 33 =dZd θ ) for nth
 order reaction on temperature-

concentration plane are illustrated in Figure 3.6. As shown in Figure 3.6, system with 

two inflection points is supercritical and system without any inflection point is 

subcritical. The system with only one inflection point is at critical condition. 

 
 
 

 

Figure 3.6 Mathematical behavior of nth order reaction on temperature-concentration plane 
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However a sufficient condition of inflection point existence is where the second 

derivative of the curve changes sign and the curve tangent exists 37. With this rigorous 

definition, in order to get true inflection point, higher order derivatives need to be 

checked when the third order derivative is equal to zero. Therefore setting the third 

derivative to zero may omit some solutions. In this present work, the rigorous definition 

of inflection point is used to study the critical behavior of HAN. 

3.4.2 Application of CFD into thermal explosion 

Most research mainly focuses on experimental test on reactive chemicals and 

numerical regression of experimental data, which are mainly obtained from small scale 

experimental systems. Therefore, the neglect of convection and buoyancy will not 

significantly affect the correlation and analysis result accuracy. However in the practical 

fluid storage vessels, mass and heat transfer caused by convection can not be neglected 

for the spatial segregation of temperature and concentration, which may have significant 

influence on critical behavior of reactive chemicals. 

CFD simulation technology has been widely used in polymerization reactors, 

combustors, and engines studies for many years 38-41. Those studies prompted the 

understanding on the behavior and stability issues inside all these reactors and their 

design, control etc. Furthermore CFD is also capable to assist in the simulation and 

design of multiphase microreactors 42. Although CFD has been widely used in industries 

and research institutes, applying CFD to thermal explosion phenomena is still at its very 

beginning stages. 
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Unlike the decomposition kinetics, which remains the same regardless of the 

storage quantity, heat and mass transfer mechanism is significantly affected by the 

system scale. Recently Sheu et al. conducted numerical analysis on the hot spot 

distribution for reactive chemical whose reaction mechanism follows zero order reaction 

43. Campbell et al. compared the experimental temperature distribution and numerical 

analysis results with natural convection considered 44. Both the work of Sheu et al. and 

Campbell et al. used Boussinesq approximation to represent the buoyancy force. 

Although Boussinesq approximation has been widely used to describe the natural 

convective flow in many cases and given faster convergence and reasonable results, it is 

not applicable for the reacting flow problem 45. 

In the work of Sheu et al., a modified Rayleigh number was used to characterize 

the natural convection developed inside a cylinder storage tank. However this modified 

Rayleigh number is related to the apparent activation energy and is not equivalent to the 

commonly used Rayleigh number. And the application of their results to other chemicals 

is not straightforward or convenient. Besides, they did not consider an important fact that 

most storage vessels are installed in air. The fluid inside the tank will be cooled by the 

surrounding fluid, which typically is air. The heat transfer resistance for such a storage 

tank includes fluid-film resistance, vessel-wall resistance, and the air-film resistance. 

The air-film resistance normally is the dominant term among the three and the heat 

transfer coefficient of air typically is in the range of 10-100 W/m2/K 46. And the ratio of 

volume to surface area also impacts the system energy balance,  which subsequently 

affects the system temperature. So the study of Sheu et al. may not sufficiently describe 
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the real phenomena. This present work revisits this problem by taking into account air-

film thermal resistance. 

Traditional analytical and numerical methods are not capable to solve those 

partial differential equations (PDE) for a large quantity of fluid. CFD simulation utilizes 

Finite Volume Method (FVM) or Finite Element Method (FEM) to solve the Navier-

Stokes equation for a fluid system. This method is beyond the scope of this work and its 

detail could be referenced from software vendor websites as well as CFD textbooks. In 

the present work, this sophiscated solver engine combining with traditional thermal 

explosion theory is used to study the critical behavior for a large quantities of a HAN 

aqueous solution. The present work focuses on storage critical conditions determination 

for a large quantity HAN aqueous solution and aim to improve HAN related process 

safety as well as other reactive chemicals. 



 44

4. HYDROXYLAMINE NITRATE THERMAL DECOMPOSITION 

STUDY 

 

4.1 Introduction 

Hydroxylamine nitrate is an onium salt, whose specific feature is its dynamic 

equilibrium status between initial salt-forming compounds and the salt. Hydroxylamine 

nitrate is commercially available as a clear and colorless aqueous solution. It has been 

used as a reductant in nuclear industry and also considered for use as a liquid propellant 

or oxidizer for hybrid rockets. Its main advantages are high energy density and 

environmental friendliness. 

Poor thermal stability and contamination issue of this compound have caused 

several incidents in the past 3. Mary Kay O’Connor Process Safety Center (MKOPSC) 

and other research institutions and groups have conducted extensive research on its 

thermal stability, decomposition mechanism, and the effect of metal ion catalysis by 

using various techniques under different conditions 5, 6, 47-51. These works have 

accumulated significant amount of knowledge and data on HAN that can be used to 

improve HAN processing safety. However more information is needed to ensure safe 

HAN storage and processing.  

Previous research attempted to correlate the self-catalytic kinetic parameters with 

nth order reactions even though the self-catalytic behavior of HAN had been confirmed 

by adiabatic decomposition tests and modeling. So the work reported here aims to 

explore HAN autocatalytic parameters using adiabatic calorimetry data. Several 
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researchers proposed to explore the decomposition reaction network of reactive 

chemicals by measuring concentration of reactants, intermediates and products during 

the reaction with analytical instruments, such as IR spectroscopy, GC, and HPLC 5, 6, 49, 

51. The drawback of this approach is the concentrations of decomposition intermediates, 

such as HNO and HNO2, still cannot be accurately determined. The obtained reaction 

pathway and associated kinetic parameters are not easy to apply to the thermal 

runaway/explosion stages study because problem independent variables increase 

dramatically and it is beyond the capability of current numerical methods. Although the 

decomposition process of HAN consists of many consecutive and competitive reaction 

steps, the work reported here proves that the observed thermal behavior could still be 

modeled well with a single overall reaction. 

Past research and industrial practices have demonstrated the kinetic parameters 

obtained from adiabatic calorimeters are reliable, conservative, and widely accepted for 

practical application 48, 52, 53. HAN adiabatic decomposition experiments were conducted 

to estimate its autocatalytic reaction kinetic. The contamination effect of nitric acid and 

iron ions are also investigated in this work. This work could be used to provide guidance 

on determining safety margins for storage and manufacture conditions. 

4.2 Experimental setup and method 

4.2.1 Reagents 

Hydroxylamine nitrate (24 mass%, Aldrich catalog number 438235) aqueous 

solution was used in this work. Nitric acid (68 mass%, EMD catalog number NX0409-2) 

was used to study the contamination effect of nitric acid and the coexistence effect of 
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nitric acid and iron ions. Ferrous Sulfate (1 mol/L, Fisher catalog number S74262-1) and 

Ferric Nitrate (1 mol/L, Fisher catalog number S74200-1) were used to determine the 

effect of contamination by iron ions and coexistence of nitric acid and iron ions. All of 

these chemicals were used without further purification or analysis.  

4.2.2 Automatic Pressure Tracking Adiabatic Calorimeter (APTAC) 

Adiabatic calorimeter is the most important apparatus to obtained reaction 

kinetics and conduct thermal hazard evaluation for a reactive chemical in safety analysis. 

Automatic Pressure Tracking Adiabatic Calorimeter (APTAC) is the most advanced 

apparatus in this area. APTAC calorimeter can be operated in a variety of test modes, 

such as Heat-Wait-Search, and isothermal mode with temperatures up to 500°C and 

pressures ranging from vacuum to 2,000 Pisa. It can detect the exotherm with heat 

generation rates from 0.04 to 400°C/min. It can also produce low thermal inertia data 

with the DIERS pressure compensation technique, in which the pressure outside the 

sample cell is controlled to match the pressure inside the sample cell. APTAC and its 

Heat-Wait-Search (HWS) were used to perform thermal decomposition studies on HAN. 

Glass sample cells and Teflon coated thermocouples were used to reduce the catalytic 

and contamination effect of thermocouple metals.  The detailed introduction about 

APTAC equipment and its HWS mode are described in the references 48, 53. 

Although the specific heat of a reacting system changes with the solution 

composition and temperature during the decomposition process, the specific heat of 

diluted HAN solution was assumed to be constant (4.3 kJ/kg/K) in the analysis for the 

similarity of diluted aqueous HAN solution to water 5, 48. 
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4.2.3 Kinetics analysis method 

The classic kinetics analysis method for adiabatic calorimeter was developed by 

Townsend et al 54. The general principles of kinetic analysis method of Townsend et al. 

are energy conservation equation under adiabatic condition. And one important 

assumption of this method is that reactant concentration at any temperature or time is 

approximately proportional to reactant temperature. This method can be summarized by 

following equations. 
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With an appropriate overall reaction, heating rate or temperature can be 

correlated with temperature measurement in adiabatic tests by using equation (4.2) and 

(4.3). Then the reaction order, apparent activation energy, and preexponential factor can 

be determined with equations (4.1-4.3). For example, the self-heating rate of a nth order 

reaction is related to onset temperature as follows. 
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With equation (4.4), all kinetic parameters can be obtained from adiabatic 

calorimeter measurements. Other important reactivity hazard indicators, such as time to 
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maximum rate, can also be estimated with this method. This method is widely accepted 

and used in current adiabatic calorimeter analysis and thermal safety analysis area. 

However the applicability of this method is highly affected by thermal inertia, 

applicable model for reactive chemical, and instrument accuracy and sensitivity. This 

method is not able to describe the decomposition behavior of certain reactive chemical 

with complicated reaction networks, such as hydroxylamine nitrate with an autocatalytic 

reaction 4, 47. 

Because self-heating data actually is obtained from temperature data by 

numerical differential method, it may not be able to accurately describe the self-heating 

behavior due to numerical error. Therefore, direct temperature prediction using an 

appropriate reaction model may give better result. It is also able to eliminate numerical 

error induced by numerical differentiation. Wilcock et al. proposed and applied this 

approach to methanol/Acetic anhydride system, which also undergoes autocatalysis 

reaction 55. This method obtains very good results and has proved to be an effective 

kinetic analysis method for adiabatic calorimeter measurements. This approach will be 

adopted in this present work. 

4.3 Experimental results 

4.3.1 HAN decomposition behavior study 

The APTAC HWS mode was utilized to determine the decomposition behavior 

of HAN. The pressure and temperature profiles of HAN decomposition of two identical 

tests using about 6 gram HAN under the HWS mode of the APTAC are shown in Figure 

4.1 and Figure 4.2. 
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Figure 4.1Temperature evolution profile of HAN decomposition at HWS mode 

 

  

Figure 4.2 Pressure evolution profile of HAN decomposition at HWS mode 
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As shown in Figure 4.1, the reactant in the reaction vessel will first be heated to 

the start temperature, such as 120oC, with the heating rate of 2oC/min. Then the reactant 

will be stabilized for about 15 minutes. Afterwards, APTAC goes to search mode to see 

whether there is an exothermal phenomena. If not, the reactant will be heated to the next 

target temperature, 130oC, which is 10oC higher than the previous target temperature. 

This procedure will be reproduced until thermal runaway is detected and the APTAC 

then enters the adiabatic operation mode. 

With the assistance of heating rate and pressurization rate profiles, which are 

shown in Figure 4.3, the onset temperature (T0) and maximum temperature (Tmax) etc. 

can be determined and summarized in Table 4.1. As shown in Figure 4.3, the initial 

heating rate continues to increase to the preset value, 2oC/min. Then the heating rate 

maintains at 2oC/min until reaching preset start temperature, 120oC. Meantime, the 

system is slowly pressurized due to steam and possible evaporated nitric acid pressure. 

After reaching 120oC, APTAC enters wait-search mode and tries to maintain the 

temperature at 120oC. Because hydroxylamine nitrate does not have significant 

decomposition at this stage yet, system temperature and pressure does not change very 

much. So both heating rate and pressurization rate decrease until wait-search mode is 

terminated and enter next heat stage. This procedure is repeated until an exotherm is 

detected. Heat of reaction of HAN decomposition measured by APTAC is about 118 ± 

20 kJ/mol. 
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Figure 4.3 Heating rate and pressurization rate of HAN decomposition process 

 
 
 

Table 4.1 APTAC Heat-Wait-Search results of HAN thermal decomposition 

 T0 (oC) Tmax (oC) Pmax (psi) 
dT/dt0 

(oC/min) 

dT/dtmax 

(oC/min) 

dP/dtmax 

(psi/min) 

Phi 

factor 

(φ) 

∆Hr×n 

(kJ/mol) 

Glass 
cell 181.6±2.0 201.6±1.8 410.6±1.0 0.08±0.004 33.1±13.2 429.6±43.2 2.80 118±20 

 
 
 

The system pressure-temperature profile is illustrated in Figure 4.4. After the 

runaway reaction, the system pressure cannot return to the original pressure. This 

indicates that there are non-condensable gases generated in this system, probably 

including nitrogen and nitrogen oxide. This phenomenon demonstrates that HAN could 
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release large amount of gases at thermal runaway stage and has severe explosion hazard. 

The pressure profile of the system passes the saturated steam profile around 180oC. This 

may indicate the occurrence of significant exothermal phenomena and some heat loss 

due to solvent evaporation. 

 
 
 

 

Figure 4.4 Experimental pressure changing profile with temperature 

 
 
 

Because the final gas phase pressure is not very high as illustrated in Figure 4.4, 

idea gas law can be used to roughly estimate the amount of gases generated in the 

decomposition process of hydroxylamine nitrate. The moles of non-condensable gases is 

estimated as follows. 
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RT
PVn ∆

=∆          (4.5) 

where ∆P=3.85e5 Pa, V=100ml, and T=50oC. Gas generation of HAN in current 

experimental conditions is 0.95 mol-gases/mol-HAN. In the work of Wei, 4.2 g HAN 

was used to conduct similar adiabatic decomposition test with APTAC 56. With her 

result, gas generation of HAN in similar experimental conditions is 0.98 mol-gases/mol-

HAN. Therefore, both tests give consistent results about gas generation capability of 

HAN in adiabatic condition. Although decomposition reaction stoichimometry is 

significantly affected by experimental conditions, non-condensable gas generation 

profile under adiabatic condition is an important indicator to evaluate an explosion 

hazard for reactive chemicals because adiabatic condition normally represents the worst-

case scenario. The overall decomposition mechanism of HAN proposed in the past is 

summarized in Table 4.2. Only the mechanism proposed by Schoppelrei et al is able to 

explain observed gas release capability of hydroxylamine nitrate 51. However this 

mechanism is different from all other proposed mechanism. Further research is needed to 

propose appropriate mechanism under adiabatic condition. 
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Table 4.2 Overall decomposition mechanisms of HAN 

Researcher Overall decomposition mechanism Condition 

Wei 56  
OHHNONONNOOHNH 232233 523 +++→•  

OHHNOONNOOHNH 23233 7234 ++→•  

Adiabatic 

24 mass% 

HAN 

Amariei et al. 49 

OHHNONNONOOHNH 23233 104326 +++→•  

OHHNONONNOOHNH 232233 104226 +++→•  

200oC 

80 mass% 

HAN 

Oxley et al. 57 
OHHNONONNOOHNH 232233 523 +++→•  

OHHNOONNOOHNH 23233 7234 ++→•  

140oC 

24 mass% 

HAN 

DOE 3 
OHHNONNOOHNH 23233 8435 ++→•  

OHHNOONNOOHNH 23233 7234 ++→•  
N/A 

Sugikawa et al. 
58 

OHHNONONNOOHNH 232233 523 +++→•  N/A 

Schoppelrei et 

al. 51 
OHHNOOONNOOHNH 232233 2.76.14.02.34 +++→•  

Adiabatic 

0.2M, 0.1M 

463K-523K 

 
 
 
Although evaporated nitric acid may also contribute to pressure increases in this 

process, Amariei et al. conducted HAN decomposition test in a dynamic reactor at 200oC 

and their results show the major gas products are NO, NO2, and N2O 49. Because gas 

phase cannot be analyzed with current APTAC configuration, current gas products were 

not subjected to any analysis. Overall further work needs to be conducted to determine 

decomposition stoichimometry for hydroxylamine nitrate. 
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4.3.2 The effect of nitric acid on the HAN decomposition behavior 

Nitric acid plays a very important role in the application and manufacture of 

HAN. For example, nitric acid is used in the manufacturing process of HAN from 

hydroxylamine sulfate or hydrochloride by an electrolysis method, which uses cation 

and anion exchange resins and a double decomposition reaction. However the 

appearance of nitric acid does accelerate the decomposition process of HAN 3. 

Therefore, it is necessary to understand the decomposition behavior of HAN mixed with 

nitric acid. The temperature changing profiles of HAN/nitric acid solution are shown in 

Figure 4.5, where the phi factor, φ, is about 3.3. 

Figure 4.6 illustrates that the onset temperature of HAN under adiabatic 

condition significantly decreases with increasing nitric acid concentration. The onset 

temperatures were significantly decreased from 171oC to 147oC by increasing nitric acid 

concentrations from 0 mol/L to 1.38 mol/L. Current work did not further increase nitric 

acid concentration to avoid changing thermal inertia. The result reported here is also 

compared with other available literature. Although the results are not completely same 

for different apparatus used, they have the same trend and comparable magnitude. 
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Figure 4.5 Temperature profiles of HAN contaminated by nitric acid 

 

 

Figure 4.6 Influence of nitric acid on the onset temperature of HAN 
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In the decomposition process of HAN, HAN will first dissociate to nitric acid 

and hydroxylamine. Thereafter, hydroxylamine can be oxidized by nitric acid and 

nitrous acid. The oxidation mechanism of hydroxylamine by nitric acid and nitrous acid 

is as follows 59, 60. 

OHHNOOHNHOHHAN 2322 ++→+      (4.6) 

OHHNOHNOOHNH 2232 32 +→+       (4.7) 

OHONHNOOHNH 2222 2+→+       (4.8) 

 
 
 

 

Figure 4.7 Effect of nitric acid concentration on heat of reaction 
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With increasing concentrations of nitric acid, oxidation process will accelerate 

and heat release rate will increase. Therefore, the onset temperature will decrease with 

the increase of nitric acid concentration. However the increase of nitric acid 

concentration may exacerbate the leaching of iron from practical stainless steel storage 

vessels. The coexistence effect of nitric acid and iron ions is studied in Section 4.3.4. 

Figure 4.7 illustrates that heat of reaction increases with nitric acid concentration, 

which indicates the reaction pathway changes with addition of nitric acid. Addition of 

nitric acid may affect the disassociation equilibrium of HAN and the following oxidation 

pathway. Liquid phase analysis is needed in the future to study the function of nitric 

acid. Furthermore, gas generation amount per mole HAN with contaminant, nitric acid, 

is 1.08 mol-gases/mol-HAN, which is higher than that of pure HAN. This indicates the 

mixture of HAN and nitric acid has more severe explosion hazard than HAN solution 

does in two aspects. One is poorer thermal stability and the other is higher gas 

generation capability. 

4.3.3 Effect of iron ions on the HAN decomposition behavior 

Because hydroxylamine nitrate is an onium salt, it will disassociate to nitric acid 

and hydroxylamine in water solution. Both nitric acid and hydroxylamine stay at 

ionization status. Hydroxylamine can easily react with transition metals for its chemical 

structure. Both nitrogen and oxygen atom of hydroxylamine can donate their electron 

lone pairs to transition metals. This feature not only provides oxidization or reductive 

capability, which endow hydroxylamine nitrate many applications in nuclear and rocket 
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industries, but also impairs hydroxylamine nitrate thermal stability and compatibility 

with contaminants.  

On the other hand, most storage vessels are made with stainless steel, which will 

leach iron ions into hydroxylamine nitrate solution at acid environment. Ferric ion 

probably is the most common contaminant for hydroxylamine nitrate. Therefore, it is 

necessary to study the influence of iron ions on the thermal stability of hydroxylamine 

nitrate for safe storage, transportation, and handling. 

Ferric nitrate and ferrous nitrate are added into hydroxylamine nitrate solution, 

respectively, and then heat-wait-search mode is used to examine the influence of Fe2+ 

and Fe3+. Temperature and pressure changing profiles for hydroxylamine nitrate 

contaminated with iron ions are similar to Figure 4.1 and Figure 4.2 and not going to be 

shown here. 
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Figure 4.8 Effect of iron ions on the onset temperature of HAN decomposition 

 
 
 

As illustrated in Figure 4.8, onset temperature of hydroxylamine nitrate 

contaminated by iron ions is significantly lower than that of pure hydroxylamine nitrate. 

The iron-catalyzed hydroxylamine nitrate decomposition reaction mechanism is as 

follows 3.  

++++ +++→+ HOHONFeFeOHNH 6442 22
23

3     (4.9) 

OHHNOFeHHNOFe 22
3

3
2 222 ++→++ +++     (4.10) 

As shown in Figure 4.8, ferrous ion and ferric ion do not have any significantly 

different influence on the onset temperature-decreasing trend and magnitude and this 

fact is consistent with iron-catalyzed hydroxylamine nitrate decomposition mechanism, 
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which indicates both ions only participate in the reaction loop consisted of reaction (4.9) 

and (4.10). 

 
 
 

 

Figure 4.9 Heating rate profile for HAN and contaminated HAN decomposition 

 
 
 

Figure 4.9 illustrated the influence of iron contamination on self-heating rate and 

decrease of onset temperature of HAN decomposition process. Not only onset 

temperature of contaminated hydroxylamine nitrate is much lower than that of pure 

hydroxylamine nitrate, but also maximum self-heating rate of contaminated HAN is 

much bigger than that of pure hydroxylamine nitrate. As shown in Figure 4.10, 

pressurization rate of contaminated hydroxylamine nitrate is also higher than that of pure 
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HAN. Overall, iron contaminant not only decreases thermal stability but also increases 

explosion hazard of hydroxylamine nitrate. Therefore, iron concentration must be strictly 

controlled to ensure safe application of hydroxylamine nitrate. 

 
 
 

 

Figure 4.10 Pressurization rate profile for HAN and contaminated HAN decomposition 

 
 
 

Figure 4.11 is used to compare the cool down pressure after the decomposition. It 

indicates the quantity of generated non-condensable gases remain the same regardless of 

the presence and quantity of iron ions. Therefore, hydroxylamine nitrate decomposition 

reaction pathway does not change under contamination of iron ions. Heat of reaction for 

contaminated hydroxylamine nitrate is 113±8 kJ/mol, which is almost the same 
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magnitude to that of pure hydroxylamine nitrate. It further confirms decomposition 

pathway of hydroxylamine nitrate is not affected by the presence of iron ions. Liquid and 

gas phase composition analysis may need to be conducted to further investigate the 

function of iron ions. 

 
 
 

 

Figure 4.11 Pressure versus temperature profile for contaminated HAN and pure HAN solution 

 
 
 
4.3.4 Coexistence effect of iron ion and nitric acid 

Because most storage vessels are made with stainless steel, it is very common 

that iron ions are present in stored hydroxylamine nitrate solution because of the 

dissociated nitric acid. As reported by Sugikawa et al., a stainless steel reactor vessel 
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does leach iron ion into the sample solution during thermal analysis and iron ion 

concentration is as high as 0.14 g-Fe/L 58. Furthermore, hydroxylamine nitrate and nitric 

acid solution is always prepared before the start of Plutonium Uranium Extraction 

(PUREX) process. This solution normally is stored in a stainless steel vessel. Therefore, 

the influence of coexistence of iron ion, nitric acid, and hydroxylamine nitrate on the 

mixture thermal stability must be examined to avoid similar accident occurring at DOE 

Hanford site 3. 

Figure 4.12 illustrates influence of coexistent iron ion and nitric acid on thermal 

stability of HAN and shows that onset temperature of hydroxylamine nitrate 

decomposition further decrease with nitric acid concentration increase. 

 
 
 

 

Figure 4.12 Influence of coexistent iron ion and nitric acid on thermal stability of HAN 
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4.3.5 Autocatalytic reaction model and its parameter determination 

4.3.5.1 Hydroxylamine nitrate decomposition kinetics 

The first step of HAN decomposition process is generally agreed to be the 

disassociation of HAN to hydroxylamine and nitric acid. This dissociation step has been 

confirmed to be very fast when the temperature is above 450K 5, 6 and that subsequent 

HAN decomposition becomes the hydroxylamine oxidation by nitric acid and nitrous 

acid at current experimental conditions. Therefore nitrous acid actually functions as the 

catalyst in this process. Although several works proposed that hyponitrous acid, HNO, 

could generate and oxidize hydroxylamine 59, 60, it was neglected in this work because of 

its extreme instability and limited information obtained from an adiabatic calorimeter. 

Among several lumped autocatalytic models developed to describe autocatalytic reaction 

behavior 55, 61, 62, the model developed at the Technical University of Berlin was adopted 

here for its better regression and prediction capabilities compared to the other models 55. 

With this model the conversion rate can be expressed as follows. 

)1()1)(exp(1
0
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RT
EAC

dt
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+−−= −      (4.11) 

where p and m are the parameters used to describe the catalytic effect of HNO2.  

Most of the data points recorded by APTAC are in the heat/wait/search stage. 

Only data points following detection of an appreciable exothermic reaction rate are kept 

to clearly show the HAN self-heating behavior and displayed in Figure 4.13. The result 

of experiment 1 was used to regress the five kinetic parameters. Several other 

experimental results were used to validate the model and its parameters. Both regression 

and prediction results for these experiments are also shown in Figure 4.13. With the 
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Matlab® ODE solver and optimization toolbox, the autocatalytic reaction model, 

equation (4.11) was used to regress the five parameters used in this model, which are 

summarized in Table 4.3. As shown in Figure 4.13, the prediction quality is fairly good 

and demonstrates that this model can accurately describe the decomposition behavior of 

HAN obtained with adiabatic calorimeter, APTAC. 

 
 
 

Table 4.3 Nominal decomposition model parameters of hydroxylamine nitrate 

Frequency factor Activation energy (kJ/mol) n p m 

7.0e5 ± 2.3e3 82 ± 0.4 0.55 ± 0.06 165.2 ± 22.4 3.3 ± 0.21

 
 
 

 

Figure 4.13 Self-heating curves of HAN and their regression/prediction results 
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Pembridge and Stedman reported that the activation energy for oxidation of 

hydroxylamine (HA) by nitric acid and by nitrous acid are 107 kJ/mol and 65 kJ/mol, 

respectively 63. In addition, Shaw and Williams concluded that the activation energy of 

HAN decomposition is between 61 and 71 kJ/mol 64. Furthermore, Schoppelrei used a 

lumped first order reaction to simulate the decomposition of HAN under similar 

conditions. Also they proposed that the apparent activation energy of HAN 

decomposition depends on the aqueous solution concentration. They reported that the 

activation energies for 0.92-1.52 M and 1.58-1.74 M HAN are 129 and 66 kJ/mol, 

respectively 5. However Lee reported much smaller activation energies for the apparent 

elementary reactions of the HAN decomposition process for highly concentrated HAN 

solutions and solid HAN 6. Comparison between result of this work and past research 

results is summarized in Table 4.4. 

 
 
 

Table 4.4Comparison of apparent activation energy of present work and past research work 

Activation 

Energy(kJ/mol) 

Hydroxylamine 

oxidation by nitric 

acid 

Hydroxylamine 

oxidation by nitrous 

acid 

HAN decomposition 

This present work N/A N/A 82 ± 0.4 

Shaw et al. N/A N/A 61 < Ea < 71 

Pembridge et al. 107 65 N/A 

Schoppelrei et al. N/A N/A 129 ±29(0.92-1.52M) 
66 ±8(1.58-1.74M) 
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The apparent activation energy reported in this work has the same magnitude as 

those for diluted HAN solution. The obtained apparent activation energy lies between 

the activation energies of oxidation of HA by nitric acid and by nitrous acid. This 

indicates that the self-heating stage of HAN may consist of oxidation of HA by nitric 

acid and nitrous acid. 

4.3.5.2 Iron-catalyzed hydroxylamine nitrate decomposition kinetics 

As discussed in Section 4.3.3, presence of iron ions does not change 

decomposition pathway of hydroxylamine nitrate. Reaction model (4.11) can also be 

used to simulate the temperature changing profile of contaminated hydroxylamine nitrate 

by iron ions. Both regression and prediction results for iron-catalyzed hydroxylamine 

nitrate decomposition are shown in Figure 4.14 and all parameters are summarized in 

Table 4.5. 

 
 
 

Table 4.5 Nominal decomposition model parameters of iron contaminated hydroxylamine nitrate 

Frequency factor Activation energy (kJ/mol) n p m 

7.0e5 ± 1.0e3 62 ± 0.2 0.54 ± 0.02 164.7 ± 10.2 3.3 ± 0.1
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Figure 4.14 Self-heating curves of contaminated HAN by iron ion and their regression/prediction 

results 

 
 
 

Comparison between Table 4.3 and Table 4.5 shows that most kinetic parameters 

except activation energy do not change much. Iron presence reduces activation energy of 

hydroxylamine nitrate decomposition about 18 kJ/mol. Therefore, appreciable 

exothermic decomposition of contaminated hydroxylamine nitrate occurs at much lower 

temperature than that of pure hydroxylamine nitrate as illustrated in Figure 4.8. 

4.4 Conclusions 

Hydroxylamine nitrate thermal decomposition was studied with heat-wait-search 

mode of Automatic Pressure Tracking Adiabatic Calorimeter (APTAC). Onset 

temperature and heat of reaction of hydroxylamine nitrate decomposition under adiabatic 



 70

condition are obtained. It is worth noting that the amount of generated non-condensable 

gas during hydroxylamine nitrate decomposition cannot be explained by most current 

proposed mechanisms. Further research is needed to discover hydroxylamine nitrate gas 

generation capability under adiabatic condition. This information is very important in 

pressure relief design because adiabatic decomposition represents worst-case scenario. 

Influence of most common contaminants, including iron ions and nitric acid, on 

thermal stability of hydroxylamine nitrate are carefully examined. Pressurization profile 

and heat of reaction indicate iron ion may not change HAN decomposition pathway, it 

only reduces the decomposition activation energy. This fact is further confirmed by 

regressing temperature changing profile by using the same decomposition model as 

hydroxylamine nitrate. Iron ions contamination also increases energy and gas releasing 

rate during adiabatic decomposition of hydroxylamine nitrate. Therefore, iron ion 

concentration must be strictly controlled in storage and production process. 

Hydroxylamine nitrate directly stored in a stainless steel vessel must be inspected 

periodically to monitor the concentration of iron ions. 

Influence of nitric acid on thermal stability and gas generation of hydroxylamine 

nitrate is also studied with APTAC by varying its concentration. Both heat of reaction 

and gas generation amount of hydroxylamine nitrate contaminated by nitric acid are 

higher than those of pure hydroxylamine nitrate. Potential causes include decomposition 

pathway changing and contribution of nitric acid decomposition. Further research is 

needed to determine the effect of nitric acid to provide guidance for industrial practices, 

such as hydroxylamine nitrate/nitric acid mixing and hydroxylamine nitrate production 
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with nitric acid. Coexistence of nitric acid and iron ion further reduce thermal stability of 

hydroxylamine nitrate. Nitric acid and hydroxylamine nitrate mixture cannot be stored in 

long term and storage temperature must be carefully controlled. 

Autocatalytic kinetic model and associated parameters for hydroxylamine nitrate 

adiabatic decomposition is determined for the first time. This model and its parameters 

can accurately predict temperature-changing profile of hydroxylamine nitrate and 

contaminated hydroxylamine nitrate by iron ions under adiabatic condition. This model 

could be used to provide guidance on operation procedure development and so on. 

Furthermore, critical behavior of hydroxylamine nitrate can also be analyzed with this 

model and will be further discussed in Section 5 and Section 6. 
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5. HYDROXYLAMINE NITRATE CRITICAL BEHAVIOR ANALYSIS 

OF SMALL-SCALE BATCH SYSTEM 

 

5.1 Introduction 

Storage process typically is a batch process and its behavior is very similar to 

that of batch reactors used in the chemical industries. It is worth noting that batch 

processes may be very dangerous as reported by Barton et al.24. About 45% accidents 

reported to UK’s Health and Safety Executive (HSE) between 1986 and 1990 are related 

to batch or semi-batch processes. By using the incidents data of U.S. Chemical Safety 

and Hazard Investigation Board (CSB) report, Improving Reactive Hazard Management, 

those incidents can be further classified according to the involved equipments and its 

statistics is illustrated in Figure 5.1, where there are 37 out of 167 accidents occurred in 

storage tank or storage area. Because CSB did not specify the operation mode of 

reported incidents, this statistics does not include other batch processes, which occurred 

in process tank, reactor, and separation equipment etc. However batch reactors or 

processing is widely used in the chemical industry, it is believed that about 50% percent 

of runaway incidents occurred in batch processing processes, including batch reactors 

and storage tanks. 
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Figure 5.1 Runaway reaction classification according to involved equipment 

 
 
 

One of the recent biggest batch process explosion occurred in a hydroxylamine 

batch reactor at Concept Science Inc. There were five fatalities and fourteen injuries in 

this explosion. Therefore the safety of storage tanks, batch reactors, and other batch 

processing must be improved to avoid similar tragedies. Furthermore CSB also 

postulated that many small-scale equipments are typically “over-designed’ and used for 

multipurposes. So critical behavior analysis for small-scale batch systems is urgently 

needed to prevent thermal runaway incidents. 

5.2 HAN critical behavior analysis 

Following the determination of a HAN autocatalytic reaction model, the critical 

behavior of HAN was studied with this validated model. Traditional Semenov Theory 

remains the basis of sensitivity analysis for small-scale batch system over the decades 24, 
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31-36. Shouman et al. recently made the most significant improvement for Semenov 

Theory 31 by proposing that critical point should be defined on a temperature-

concentration plane by using the inflection point concept. Therefore Semenov Theory 

combined with inflection point concept is used to determine the critical behavior for 

small quantities of hydroxylamine nitrate. 

5.2.1 Mathematical formulation and derivation 

The fundamental principles of the Semenov Theory are energy conservation and 

mass conservation, which are represented as follows for the autocatalytic reaction 

discussed in this work for small-scale system.  
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(5.1) and (5.2) can be written in dimensionless form as follows: 

 
ψ

θθ
τ
θ θ smn epxx

d
d −

−+−= − /1)1()1(       (5.3) 

 
B

epxx
d
d mn θ

τ
α /1)1()1( −+−

=        (5.4) 

Equations (5.3) and (5.4) were combined as equation (5.5) to study the critical 

behavior on the temperature-concentration plane.  
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To determine a meaningful inflection point, appropriate parameters for the 

thermal explosion model must be chosen. So far the undetermined model parameters are 

the overall heat transfer coefficient, h, and the vessel dimension radius (a spherical 

vessel was used in this work). To obtain a conservative estimate, the overall heat transfer 

coefficient, h, of 15~75 W/m2/K 65, was used, and the vessel radius was 0.05 m. 

Because the critical region is determined by inflection points as shown in the 

previous work 31, the critical behavior analysis is equivalent to the determination of the 

inflection points. The inflection points on the temperature-concentration plane are 

determined by selecting the roots of the second order derivative d2θ/dα2 = 0 and 

checking whether the first non-zero higher order derivative has an odd order. The second 

derivative on the temperature-concentration plane is written as follows. 
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5.2.2 Critical point determination 

The roots of the second order derivative d2θ/dα2 = 0 and the first order derivative 

dθ/dα = 0 for surrounding temperature, 25oC, were superimposed on the temperature-

concentration plane as illustrated in Figure 5.2, where there are two roots for the first and 

second order derivatives, respectively. Solid lines and dash lines represent the two roots 

for the first and the second order derivates, respectively, in Figure 5.2. Because the third 

order derivatives for both roots of the second order derivative d2θ/dα2 = 0 are nonzero, 

both of these two roots are inflection points on the temperature-concentration plane. The 

temperature changing profiles with different initial reactant temperature were also 

superimposed on the temperature-concentration plane as in Figure 5.3 to study the 

system critical behavior. The system enters the non-return status when its temperature 

profile has an intersection with or is above the large root trajectory of inflection points. 

So the root with large value of inflection point defines the critical behavior for diluted 

HAN solution, and the temperature-concentration plane is separated to subcritical, 

critical, and supercritical regions by the root trajectory of the inflection point with large 

value.  The root of extreme temperature with small value defines a stable status for the 

system, which is determined by the surrounding temperature. The system temperature 

eventually develops to this stable status if it is in the subcritical region. 
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Figure 5.2 Roots of extreme temperature and inflection points on temperature-concentration plane 

 

 

Figure 5.3 Critical behavior demonstrations on temperature-concentration plane 
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5.2.3 Lowest storage temperature for small quantity hydroxylamine nitrate 

Because storage environment temperature always varies in practice, influence of 

temperature variation on critical behavior should be examined to give a complete picture 

about the safety margin. 

Influence of surrounding temperature was analyzed and shown in Figure 5.4. To 

clearly show the result, the roots with large value of the second order derivative d2θ/dα2 

= 0 and the first order derivative dθ/dα = 0 for the 45oC and 65oC cases are not shown in 

Figure 5.4, because they exhibit similar behavior to those of 25oC. As in Figure 5.4, the 

two roots for the second order derivative d2θ/dα2 = 0 have an intersection, which defines 

the lowest critical temperature, for the high temperature cases. For high temperature 

cases larger or equal to 90oC as shown in Figure 5.4, the subcritical region is the part 

below the large root trajectory of the inflection point. The other regimes are the critical 

or supercritical regions, where the system temperature will continuously increase until 

the reactant is completely consumed. This fact demonstrates that the feasible storage 

regime becomes smaller with the increase of surrounding temperature. Furthermore, 

connecting these intersections and extending to zero conversion obtained an estimate of 

187oC for the critical temperature of fresh diluted HAN solution. This prediction result is 

consistent with the adiabatic test results as well as result of other researchers 5. On the 

other hand, the critical temperature lower boundary, which is also illustrated in Figure 

5.4, also defines the highest feasible storage temperature for diluted hydroxylamine 

nitrate solution. 
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As illustrated in Figure 5.4, the critical trajectory is a function of temperature and 

concentration, and it could enter the low temperature regime for the non-zero conversion 

system. The critical temperature is higher when the reactant is fresh, where the catalytic 

intermediates or products have not accumulated significantly in the solution, but 

becomes smaller with the continuation of reaction and the accumulation of catalysts. 

This fact confirms that thermal explosion/runaway reactions can occur at low 

temperature. However, this important behavior attribute of autocatalytic reactions may 

not be known or identified. 

 
 
 

 

Figure 5.4 Different surrounding temperature influences on critical behavior development 
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5.2.4 Sensitivity analysis of heat transfer coefficient 

So far all analysis has been conducted with an overall heat transfer coefficient 15 

W/m2/K. Figure 5.5 shows the influence of the overall heat transfer coefficient on the 

temperature changing profile with surrounding temperature of 25oC and initial reactant 

temperature of 200oC. Figure 5.5 demonstrates effective heat transfer can significantly 

reduce the thermal runaway hazard of HAN. However for certain operations, such as 

storage, the heat transfer condition is comparably harder to improve. An easier and cost-

effective solution may be to maintain the reactive chemical surrounding temperature 

well below its critical temperature.  

 
 
 

 

Figure 5.5 The influence of overall heat transfer coefficient on temperature-concentration plane 
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5.3 Conclusions 

Critical behavior of hydroxylamine nitrate is analyzed by using the improved 

Semenov Theory and most rigorous definition for critical point. The highest feasible 

storage temperature for diluted hydroxylamine nitrate solution is identified through 

critical behavior analysis. This methodology can also be applied to other concentration 

hydroxylamine nitrate. The highest feasible storage temperature for fresh hydroxylamine 

nitrate also coincides with its onset temperature, which is consistent with adiabatic 

calorimeter test results. 

Because the thermal runaway reaction may occur at low temperatures for 

autocatalytic chemical systems due to generation and accumulation of catalytic 

intermediates, autocatalytic reactive chemicals must be inspected periodically to insure 

that catalytic intermediate accumulation is sufficiently below critical conditions within 

the low temperature region. 
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6. HYDROXYLAMINE NITRATE CRITICAL BEHAVIOR ANALYSIS 

FOR LARGE-SCALE SYSTEM 

 

6.1 Introduction 

Critical behavior of small quantity diluted hydroxylamine nitrate solution has 

been analyzed with the Semenov Theory and the inflection point concept. Because heat 

transfer model used by traditional thermal explosion theory, including Semenov and 

Frank-Kamenetskii theories, is fairly simple, it is only applicable to solid or small 

quantity fluid systems. Most of following research aims to consider reactant 

consumption and analyze critical behavior for more complex reaction mechanism. Very 

few works have been conducted to improve heat transfer model used in traditional 

thermal explosion theory until recently. However chemicals are normally stored in bulk 

quantity and many chemicals are liquid in ambient conditions. Heat and mass transfer 

mechanism in bulk liquid system is much more complicated than those of small-scale 

system. Conduction, diffusion, and convection should be considered simultaneously to 

describe bulk system behaviors. 

Convection modes involved in fluid flow can be divided into two types according 

to fluid motion driving forces. If an external device drives fluid flow, such as fan or 

agitator, the pressure difference drives the flow and this type of flow is called forced 

convection. On the other hand, fluid flow driven by density difference is called natural 

convection or free convection. The density difference is normally generated by 

temperature or concentration gradient in gravity force field. Free convection is more 
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likely to occur in storage practices and there is growing interest in thermal safety area to 

address its influence on critical behavior of reactive chemicals 43, 44, 66-70. 

6.1.1 Rayleigh-Benard convection 

Rayleigh-Benard convection is also called thermal convection and normally 

describes heat transfer through fluid flow. When the fluid is heated from the bottom, 

liquid at the bottom tends to expand and produce a downward density gradient because 

of its positive thermal expansion coefficient. However, convective motion only occurs 

when density gradient is high enough to overcome its opposite processes, including 

viscous damping and thermal diffusion. 

6.1.2 Boussinesq approximation 

Boussinesq approximation is widely used in buoyancy-driven flow problem 

given that temperature variation is very small. It normally gives faster convergence than 

setting up a temperature-dependent density. If temperature variation is very small, 

density variation can also be neglected in the governing equations except in the 

buoyancy term of the momentum equation, which is as follows. 

gTTg )()( 000 −−≈− βρρρ        (6.1) 

where β is the thermal expansion coefficient. Equation (6.1) is obtained by using 

Boussinesq approximation, )1(0 T∆−= βρρ , to replace ρ in the buoyancy term. It is 

valid as long as β∆T<<1. However, Boussinesq approximation can not used in cases 

when chemical reaction involved, such as combustion and reacting flow problem 45. 
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6.2 Theory and calculation method 

6.2.1 CFD governing equations 

The HAN storage vessel and its surrounding air are studied in this work and they 

are two concentric cylinders. Considering the symmetry of the problem, only half of the 

cylinders are adopted as the computational domain. The storage tank is a vertical 

cylinder and the ratio of height to radius is one, which is same as that used by Sheu et al. 

43. 

The governing equation for the conservation of HAN can be written as Eq. (6.2), 

where average diffusivity is used to reduce the problem complexity. 
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Because low flow is encountered in natural convection, viscous heating will be 

extremely small and thus can be neglected. Eq. (6.3) represents the energy conservation 

equation in the HAN storage vessel 
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The energy source term, Sf, is due to the decomposition reaction of HAN and 

described by Eq. (6.4). 
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The Navier-Stokes equation describing the momentum conservation in the HAN 

storage vessel is represented by using Eq. (6.5). 
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The continuity equation in the HAN storage vessel is written as Eq. (6.6). 
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        (6.6) 

Due to difficulties encountered by the Boussinesq approximation in reacting flow 

problem, temperature-dependent density is used in the present analysis to describe the 

buoyancy force. Pressure increasing effects and molar density change are neglected to 

adhere to the original thermal explosion definition of Semenov 71, even though HAN 

decomposition generates gases, including N2 or nitrogen oxide, and other liquid 

products, such as nitric acid 6, 49. The energy, mass, and momentum conservation 

equations are also solved for the surrounding fluid, air. The equations are similar to 

those of HAN except that there are no source terms. 

The initial concentration of HAN is assumed to be uniform in the HAN zone and 

the initial fluid temperature and velocities are assumed to be zero in both HAN and air 

zones. Heat transfer inside the vessel wall is not considered in this work to simplify the 

calculations by assuming vessel wall thickness is zero. It is assumed that no-slip 

condition, zero mass and momentum flux applies at the storage tank wall, and the 

coupled thermal transfer condition applies on the storage vessel walls. The temperature 

on the outer surface of air cylinder is assumed to be fixed at 298K. The initial reactant 

temperature is set to be 460K, which is a subcritical temperature for a small quantity of 

diluted HAN solution72, to examine whether the heat transfer enhancement induced by 

natural convection can significantly reduce thermal runaway hazard. Initial conditions 

and boundary conditions are summarized as follows.. 
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6.2.2 Transport process dimensionless analysis 

Both temperature and concentration gradients can induce natural convection. The 

thermal Grashof number (Gr) and the Prandtl number (Pr) are used to characterize 

natural convection induced by a temperature gradient. The diffusional Grashof number 

(Grw) and the Schmidt number (Sc) are used to characterize natural convection induced 

by concentration inhomogeneities73. Their definitions are summarized as follows. 
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The dominant transport process in the HAN storage tank is determined by 

comparing these dimensionless variables. 

6.2.3 Calculation method 

The governing equations for continuity, momentum, energy, and species 

conservation are solved by ANSYS Fluent 6.3.26. The standard k-ε model is employed 
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as the turbulent model for turbulent flow with consideration of full buoyancy effect. The 

Reynolds-averaged Navier-Stokes equations are solved in conjunction with mass and 

heat transfer equations for turbulent kinetics energy and dissipation rate. The standard 

wall function is used in the present analysis. An unsteady segregated solver is used with 

a second order upwind scheme for convective terms in the mass, momentum, energy, 

species, and turbulence equations. For pressure discretization, the PRESTO scheme is 

employed and the PISO-algorithm is used for pressure-velocity coupling discretization.  

The mesh for a storage tank and surrounding air are created with a tetrahedral 

cell of Gambit 2.3.16. The details of the computational domain and the system 

coordinates are shown in Figure 6.1. The radius and height of HAN storage tank are both 

1 m. The height and the radius of surrounding air are 7 m and 4 m, respectively. The 

origin of coordinate is at the center of the bottom surface of the tank. 

 
 
 

(a) Top view (b) Side view (c) 3D view 

Figure 6.1 Computational domain for the storage tank 
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The reaction kinetics used in the present analysis was obtained from 24% mass 

HAN solution, the physical properties of which, such as density and heat conductivity, 

are very similar to those of water74. Furthermore, the physical properties of HAN 

solution at high temperatures are difficult to measure due to its vigorous reactivity. 

Therefore, the physical properties of water were used in the simulation to replace the 

corresponding properties of diluted HAN solution. The ideal gas density is used to 

simulate the transport phenomena of surrounding air. Other air properties, such as heat 

capacity and conductivity, are assumed to be constant throughout the simulation because 

the temperature variation is very small in the air zone. 

A grid independence study was conducted using five different interval sizes for 

the tank and four different interval sizes for air. The velocity magnitudes at different 

times are calculated and compared to choose the appropriate mesh interval size. Figure 

6.2 illustrates the velocity magnitude of HAN solution and air for different mesh interval 

sizes at 0.5 second along the center line illustrated in Figure 6.1, at y = 0.5 m. As 

illustrated in Figure 6.2, when the tank and air mesh interval size is around 0.04 and 0.3, 

the average difference of velocity magnitude is within 10%. Thus, 0.04 and 0.3 are 

chosen as the tank and air mesh interval size, respectively. 
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Figure 6.2 Tank and air grid independence test illustration 
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6.3 Results and discussions 

6.3.1 Temperature distribution and fluid flow in air zone 

 
 
 

 
Figure 6.3 Side view of air and tank fluid temperature 

 
 
 

First of all, side view of temperature distributions in storage tank and air zone are 

illustrated in Figure 6.3. Even though thermal radiation becomes important in current 

setup, its effect is not included in current simulation for divergence problem. 

Furthermore, major objectives of this work are to study heat transfer enhancement 

induced by natural convection and obtain reasonable heat transfer coefficient for storage 
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tank installed in air. In addition, heat radiation in normal storage practices is too small to 

affect storage behavior. Overall, neglect of heat radiation will not affect the accuracy of 

the current work. 

Although the temperature of most air still maintains around 25oC as illustrated in 

Figure 6.3, the temperature of air near the tank is much higher than 25oC. The major 

cause of this phenomenon is due to small heat conductivity of air and heat transfer in 

theair zone is fairly slow. Therefore, previous boundary conditions setup of Sheu et al. 

and Vyn 43, 69, where they set tank boundary temperature to a constant value on all tank 

surfaces, is not an appropriate setup and can not describe the real situation. In addition, 

they did not specify what fluid is used to cool the tank. Subsequently, they did not 

consider heat transfer resistance in that fluid. Due to the above two limitations, they 

significantly overestimate cooling capacity for reactant system and probably obtain 

overoptimistic conclusion. 
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Figure 6.4 Side view of fluid velocity distribution 

 
 
 

Figure 6.4 illustrates the fluid flow pattern and distribution in air zone. Most of 

air is heated up and flow up by buoyancy force. As shown in Figure 6.4, air near tank 

sidewall has maximum velocity because of less resistance. The velocity of air under tank 

is the smallest one because of blocking effect of tank bottom surface. A vertex forms 

above the tank and create some turbulence there. Heat transfer coefficients on tank 

sidewall, top, and bottom are different because of intensity of turbulence. Heat transfer 

coefficient of sidewall is the biggest. 
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6.3.2 System critical behavior and the influence of system scale 

Figure 6.5 illustrates the evolution profile for the temperature at the tank center 

and the tank average temperature when the initial reactant temperature is set to be 460 K, 

which is a sub-critical temperature for small-scale system. It can be observed that the 

temperature at the tank center is slightly higher than the tank average temperature and 

exponentially increases with time. The system enters the thermal runaway regime 

whereas the small-scale system does not.  

Generated energy from the decomposition reaction is proportional to reactant 

quantity, which is proportional to reactant volume. Because the available heat transfer 

area is proportional to the square of equivalent radius, the increase of heat transfer area 

may lag behind the increase of reactant volume given a large enough radius. Therefore, a 

chemical that is not hazardous in small quantity may become hazardous when stored in 

bulk quantity. Scaling up of storage and handling condition obtained from small-scale 

test must be carefully examined. CFD simulation may need to be conducted to safely 

scale up the storage process. 

It is worth noting that the average heat transfer coefficients obtained from CFD 

simulation for the top, side, and bottom wall of the tank are 61.8, 96.3, and 39.6 

W/(m2•K), respectively, which are around the heat transfer coefficient upper limit of 

heat exchanger with liquid inside and atmospheric gas outside, 75 W/(m2•K) 65. The 

system for heat transfer coefficient of air-film, which typically is between 10 and 100 

W/(m2•K) 46, does dominate the overall heat transfer coefficient. 
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The applicability of Semenov Theory for a large-scale system is also examined. 

The temperature changing profile for the tank is calculated by substituting heat transfer 

coefficients obtained from CFD simulation into equations (5.1) and (5.2). The result is 

also illustrated in Figure 6.5, which demonstrates that the predictive quality of Semenov 

Theory is fairly good and conservative. This demonstrates the Semenov Theory with 

appropriate reaction kinetics can be used to conduct preliminary critical behavior 

analysis for large quantity reactive chemicals given that appropriate heat transfer 

coefficient is used and system size is considered. 

 
 
 

 
Figure 6.5 Comparison temperature-changing profiles obtained from improved Semenov Theory 

and CFD simulation 
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6.3.3 Fluid flow field 

In the previous work 43, 44, because the initial reactant temperature is the same as 

the boundary temperature, the fluid at the center will first be heated up and will rise 

upward due to density decrease. Once the fluid hits the cold top surface, the fluid will 

cool and flow downward along the sidewall. In order to study the critical behavior of a 

reactive chemical, the initial reactant temperature is set higher than that of the 

surrounding air in this present work. Therefore, the fluid flow pattern obtained from 

analysis could be different from that of referenced works. 

The evolution of an average thermal Grashof number and a diffusional Grashof 

number are calculated, respectively, and illustrated in Figure 6.6, which indicates that 

the thermal Grashof number is much larger than the diffusional Grashof number 

throughout the simulation. The average Prandtl and Schmidt number are 0.96 and 83.2, 

respectively. The comparison of these dimensionless numbers demonstrates that the 

thermal buoyant force dominates the convective flow development and drives heat and 

mass transfer in this present problem75.  
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Figure 6.6 Evolution of average thermal and diffusional Grashof number 

 
 
 

The evolution of an average Nusselt number at the tank sidewall and tank center 

velocity is illustrated in Figure 6.7 and a fluid flow-developing pattern is shown in 

Figure 6.8, respectively. Fluid development can be divided into three stages on the basis 

of Nusselt number.  

In the first stage, 2000 ≤≤ t second, the fluid flow develops because of the self-

heating of the decomposition reaction and the cooling of the cold vessel wall. The fluid 

near the sidewall is cooled down first and flows downward.  The fluid near the tank 

center begins to rise due to self-heating and the nearly incompressible characteristics of 

liquid. So a convective cell is formed near the tank sidewall as illustrated in Figure 6.8 

(a). With reaction continuing, this single convective cell becomes larger and extends to 
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the tank center as shown in Figure 6.8 (b, c). Meanwhile, the fluid velocity at the tank 

center also increases and reaches a maximum velocity at about 40 seconds as shown in 

Figure 6.7. Thereafter, the fluid experiences an oscillation process, which is illustrated in 

the velocity changing profile at the tank center (Figure 6.7) and this oscillation process 

continues until the average Nusselt number reaches its equilibrium value at about 200 

second. The period of oscillation is about 50 second as shown in Figure 6.7, which is the 

similar order of magnitude to the time of fluid circulation along the axial direction. 

 
 
 

 
Figure 6.7 Evolution of the tank sidewall average Nusselt number 
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(a) t = 10 s 
 
 
 

 

(b) t = 20 s 
Figure 6.8 Fluid flow pattern development with time 
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(c) t = 40 s 
 

 

 

(d) t = 50 s 
Figure 6.8 continued 
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(e) t = 100 s 
 
 

 

(f) t = 200 s 
Figure 6.8 continued 
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(g) t = 300 s 
 
 

 

(h) t = 1000 s 
Figure 6.8 continued 
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(i) t = 1020 s 
 
 

 

(j) t = 1040 s 
Figure 6.8 continued 
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(k) t = 1060 s 
 
 

 

(l) t = 1070 s 
Figure 6.8 continued 
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In the second stage, 1000200 ≤≤ t  seconds, the average Nusselt number reaches 

its quasi-equilibrium value and the fluid demonstrates a quasi steady state flow even 

though it is an unsteady process.  Although the Nusselt number still increases slowly at 

this stage, the change of its magnitude is so small that fluid flow pattern is not 

significantly affected as shown in Figure 6.8 (f-h). At this stage, there are two convective 

cells existing inside the tank. One is the cell formed in the first stage, and the other is a 

heart shaped cell formed near the tank top wall as shown in Figure 6.8 (f-h). Velocity 

near the heart center is almost zero due to the two opposite flows from the left and right 

shoulder of the heart. The fluid velocity at the tank center maintains around 0.01 m/s as 

shown in Figure 6.7.  

In the third stage, 1000>t  second, the system is in the thermal runaway regime 

and its fluid flow pattern is illustrated in Figure 6.8 (i-l). At this stage, the heart shape 

convective cell formed in the second stage begins to relocate and separate.  In the 

previous two stages, the fluid rises in tank center part and flow back to the tank bottom 

near the tank sidewall as shown in Figure 6.8 (a-h). However at this stage, fluid velocity 

near the center first drops to zero and then flows downward, which is illustrated in 

Figure 6.7. This is due to the rapid temperature increase at thermal runaway stage, which 

drives more fluid rise, and the fluid has to find a new path to go back. Furthermore, 

several circulation cells develop in the tank and fluid flow becomes more violent as 

shown in Figure 6.8 (l). 

Overall oscillating flow is only observed in the fluid flow developing stage and 

there is no significant oscillating flow observed in the later stages. Furthermore, natural 
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convection induced by concentration gradient does not play a significant role in the 

reacting flow in aqueous solution. 

6.3.4 Temperature field 

Figure 6.9 illustrates the isotherms of HAN in the tank for fluid flow 

development process. Although there is no obvious oscillating flow observed in fluid 

flow field, reactant temperature distribution shows a periodical developing pattern as 

shown in Figure 6.9.  At 540 second, a new isotherm, 463.51 K, is formed near the 

upper-left corner of Figure 6.9 (a). Then another one appears near the up-right corner of 

Figure 6.9 (b) at 550 second. Thereafter, these two isotherms grow inside the tank as 

illustrated in Figure 6.9 (c-e). At 590 second, these two isotherms merge together as 

shown in Figure 6.9 (f). After they merge, this isotherm continues to grow and a new 

isotherm with higher temperature forms at 610 second as shown in Figure 6.9 (h) and 

repeats the same cycle described above. The period of this cycle decreases with the 

temperature increase. The birth locations of new isotherms are corresponding to the top 

part of the two convective cells existing in the second stage respectively, which are 

shown in Figure 6.8 (f-h). Since temperature difference between the isotherms is fairly 

small (normally less than 2 K except in the thermal runaway stage), a pseudo-uniform 

temperature distribution may be a reasonable approximation for tank of HAN stored in 

air. 
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(a) t = 540 s 
 
 
 

 

(b) t = 550 s 
Figure 6.9 Illustration of isotherms in HAN storage tank 
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(c) t=560s 
 
 
 

 

(d) t = 570s 
Figure 6.9 continued 
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(e) t = 580 s 
 
 
 

 

(f) t = 590 s 
Figure 6.9 continued 
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(g) t = 600 s 
 
 
 

 

(h) t = 610 s 
Figure 6.9 continued 
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Temperature distribution evolution along radial direction at different heights, 

0.1m, 0.5m, and 0.9m, and axial direction, are also examined and shown in Figure 6.10. 

Comparison of Figure 6.10, a, b, and c, indicates there is no significant temperature 

difference at different heights of the tank, especially in the first two stages of fluid flow 

developing process (t < 200 second). Figure 6.10 (d) illustrates the temperature 

distribution along the tank axial direction and there is no significant temperature 

difference other than near the top and bottom tank wall or in the thermal runaway stage. 

 
 
 

 

(a) y = 0.1 m 
Figure 6.10 Temperature distributions along the radial directions and axial direction 
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(b) y = 0.5 m 
 
 

 

(c) y = 0.9 m 
Figure 6.10 continued 
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(d) x = 0, z = 0 
Fig 6.10 Continued 

 
 
 
Previous research reported the hot spot distribution for two cases, stable steady 

state and stable oscillatory state 43. In the first case, the hot spot has a flat disk shape and 

is near the upper wall of the storage tank. In the second case, the hot spot has a donut 

shape and has a cycling life pattern, which includes growing, breaking-up, and merging. 

According to Figure 6.9 and Figure 6.10, the temperature distribution of a tank stored in 

air is almost uniform and significant hot spot formation is not observed. 

6.4 Conclusions 

This present work presents a theoretical study on the influence of natural 

convection on the critical behavior of a reactive chemical in a vertical cylinder tank 

installed in air. 
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Simulation results in the air zone demonstrate constant tank boundary 

temperature, which actually assumes an existence of an infinite heat sink surrounding 

storage tank, is not realistic. In addition, simulation conducted to study heat transfer of 

storage tank should specify cooling fluid used and consider heat transfer resistance of 

that specific fluid. Otherwise heat removal rate will be overestimated and the conclusion 

obtained may mislead engineering practices. 

For the reason of the large thermal resistance of air, there is no significant hot 

spot formation inside the tank and the feasible storage region of the large-scale system is 

smaller than that of small-scale system, where reactant temperature is assumed to be 

uniform. Although natural convection induced by temperature and concentration 

gradients do enhance both heat and mass transfer, the increase of heat generation with 

increasing quantity overwhelms the heat transfer enhancement due to natural convection 

and heat transfer area increase 

Traditional Semenov Theory is proved to be able to provide screening analysis 

on critical behavior of large-scale system by using appropriate overall heat transfer 

coefficient and taking account of the system size. The results show that the critical 

condition obtained from non-convective system cannot be directly applied to the 

practical reactive chemical storage. System size issue and overall heat transfer 

coefficient must be carefully examined to obtain the appropriate storage and handling 

conditions. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Conclusions 

Reactivity hazard and critical behavior analysis was conducted for 

hydroxylamine nitrate. This reactivity hazard evaluation procedure includes adiabatic 

calorimeter measures, small-scale system critical behavior analysis with thermal 

explosion theory, and bulk chemical critical behavior analysis with computational fluid 

dynamics. The obtained results not only are applicable to safe usage of small quantity 

hydroxylamine nitrate, such as in academic unit and research laboratory, but also 

applicable to bulk quantity practices, such as manufacture, storage, and transportation. 

The first overall autocatalytic decomposition model of hydroxylamine nitrate was 

proposed and validated by adiabatic calorimeter measurements. The contamination 

effects of nitric acid and/or iron ions were studied for diluted hydroxylamine nitrate 

solution. The results demonstrate that thermal stability of hydroxylamine significantly 

decreases with the presence of metal ions and acids. The results also demonstrate 

hydroxylamine nitrate must be periodically inspected to ensure it is not near it critical 

conditions. The obtained data fills some empty area for current hydroxylamine nitrate 

thermal stability database and can be used to improve related process safety. 

Highest storage temperature for small quantity diluted hydroxylamine nitrate is 

determined for the first time by using thermal explosion theory. The result is consistent 

with adiabatic calorimeter measurements and can be used to provide guidance for safe 

handling of hydroxylamine nitrate. Computational fluid dynamics demonstrates thermal 



 115

stability data obtained from small-scale system cannot be directly applied to large 

quantity chemical system because increase of volume to surface ratio can easily 

overwhelm the associated heat transfer enhancement. This indicates fluid system also 

has a critical volume as solid system does. 

7.2 Recommendations 

All experiments and theoretical analysis are conducted on the commercially 

available hydroxylamine nitrate, the highest concentration of which is only 24 mass%. 

Experimental data are urgently needed for higher concentrations of hydroxylamine 

nitrate, which is mainly used in gun propellant or rocket industries. Vacuum distillation 

or laboratory synthesis may need to be conducted to achieve this objective. 

Currently proposed hydroxylamine nitrate decomposition mechanism still cannot 

accurately describe decomposition behavior under adiabatic conditions, which represent 

the worst-case scenario for pressure relief design. In-situ measurements, including GC 

and HPLC should be integrated to explore decomposition mechanism and its parameters. 

In addition, current commercial adiabatic calorimeter introduces some uncertainty due to 

thermal inertia issue. Flow-cell calorimeter should be built to eliminate the influence of 

thermal inertia and provide more accurate data. 

Large-eddy turbulence and thermal radiation model should be included in CFD 

simulation, which requires more computer resource to conduct more accurate large-scale 

system critical behavior analysis. 
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