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ABSTRACT

Systems Medicine:

An Integrated Approach with Decision Making Perspective. (August 2009)

Babak Faryabi, B.S., Sharif University of Technology;

M.S., Sharif University of Technology

Co–Chairs of Advisory Committee: Dr. Edward R. Dougherty
Dr. Aniruddha Datta

Two models are proposed to describe interactions among genes, transcription

factors, and signaling cascades involved in regulating a cellular sub-system. These

models fall within the class of Markovian regulatory networks, and can accommo-

date for different biological time scales. These regulatory networks are used to study

pathological cellular dynamics and discover treatments that beneficially alter those

dynamics. The salient translational goal is to design effective therapeutic actions that

desirably modify a pathological cellular behavior via external treatments that vary

the expressions of targeted genes. The objective of therapeutic actions is to reduce

the likelihood of the pathological phenotypes related to a disease. The task of finding

effective treatments is formulated as sequential decision making processes that dis-

criminate the gene-expression profiles with high pathological competence versus those

with low pathological competence. Thereby, the proposed computational frameworks

provide tools that facilitate the discovery of effective drug targets and the design of

potent therapeutic actions on them. Each of the proposed system-based therapeutic

methods in this dissertation is motivated by practical and analytical considerations.

First, it is determined how asynchronous regulatory models can be used as a tool

to search for effective therapeutic interventions. Then, a constrained intervention
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method is introduced to incorporate the side-effects of treatments while searching for

a sequence of potent therapeutic actions. Lastly, to bypass the impediment of model

inference and to mitigate the numerical challenges of exhaustive search algorithms, a

heuristic method is proposed for designing system-based therapies. The presentation

of the key ideas in method is facilitated with the help of several case studies.



v

To My Love, Golnaz.
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CHAPTER I

INTRODUCTION

In biology, there are numerous examples where the (in)activation of one gene or

protein can lead to a certain cellular functional state or phenotype. For instance, in

a stable cancer cell line, the reproductive cell cycle is repeated and cancerous cells

proliferate with time in the absence of intervention. One can use the p53 gene if the

intervention goal is to push the cells into apoptosis, or programmed cell death, to

arrest the cell cycle. The p53 gene is one of the most well-known tumor suppressor

gene, encoding a protein that regulates the expression of several genes such as Bax and

Fas/Apo1, whose function is to promote apoptosis [1] [2]. In cultured cells, extensive

experimental results indicate that when p53 is activated, e.g. in response to radiation,

it leads to cell growth inhibition or cell death [3]. The p53 gene is also used in gene

therapy, where the target gene (p53 in this case) is cloned into a viral vector. The

modified virus serves as a vehicle to transport the p53 gene into tumor cells to generate

intervention [4,5]. As this and many other examples suggest, it is prudent to use gene

regulatory models to design therapeutic interventions that expediently modify the

cell’s dynamics via external signals. These system-based intervention methods can

be useful in identifying potential drug targets and discovering treatments to disrupt

or mitigate the aberrant gene functions contributing to the pathology of a disease.

In [6] and [7], few methods to design therapeutic interventions are discussed.

Some of these methods are intended to reduce the likelihood of the gene-expression

profiles associated with aberrant cellular functions via manipulation of a control gene.

In a nutshell, whenever changing the expression level of a control gene is perceived

This dissertation follows the style of IEEE Journal of Selected Topics in Signal Pro-
cessing.
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as a therapeutic option, e.g. p53 in the above scenario, these system-based thera-

pies identify for the most effective sequence of such changes to beneficially alter cell

dynamics. The resulting intervention strategy specifies the appropriate expression of

the control gene in order to reduce the likelihood of pathological cellular functions.

In the case of a cancerous tumor, the objective of treatment could be to diminish

the long-run likelihood of metastasis. In this scenario, one may consider the corre-

lation between metastasis and the abundances of messenger RNA for certain genes.

For instance, the abundance of messenger RNA for the gene Wnt5a has been found

to be highly discriminating between cells with properties typically associated with

high versus low metastatic competence [8]. The messenger RNA level of the gene

Wnt5a can therefore be used to annotate profiles of gene expressions as desirable and

undesirable. One partition of gene-expression profiles corresponds to high, while the

other to low, metastatic competence. Having defined a cost function to discriminate

between the two sets of gene-expression profiles, the task of finding an effective inter-

vention strategy can be mathematically formulated as a sequential decision making

problem for a pre-defined cost of intervention. The objective of the decision maker

is to identify a strategy that minimizes a well-defined function of the accumulated

cost over time. Such a strategy can be seen as a system-based treatment to avoid

undesirable gene-expression profiles contributing to the pathology of a disease.

These intervention design methods utilize the information in an inferred regula-

tory network to devise a sequence of actions on control genes. Thus, modeling the

regulatory processes in the cells is a first step toward a systematic approach toward

treatment discovery. Constructing complex regulatory models that finely describe

the interactions among biological components related to a disease requires precise

understanding of the underlying biological processes and extensive amounts of exper-

imental data. Although genetically pathological cells, such as cancer cells, have been
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extensively studied, we still lack sufficient knowledge and data sets to construct such

complex models. Meanwhile, it is equally important, especially from a translational

perspective, to discover effective drug targets and devise therapeutic strategies with

the help of simpler regulatory models, such as Markovian regulatory models.

In Chapter II, we describe two classes of Markovian networks: synchronous and

asynchronous. Major efforts have been focused on devising intervention strategies that

affect the dynamics of synchronous Markovian networks. The effect of an intervention

strategy that is beneficial in the short-term may wear out over time. Thus, it is

important to look for intervention strategies that consider the long-run effects. In the

framework of synchronous networks, the theory of infinite-horizon Markovian decision

processes can be employed to find optimal intervention strategies with respect to the

defined objective functions [6]. An optimal strategy determines the actions to be

taken using the external signal in response to each gene-expression profile.

Formulating the problem of intervention in a regulatory network as a classical

infinite-horizon decision making process is introduced in Chapter IV. We refer to

this intervention method as classical intervention throughout this dissertation. A

classical intervention scheme introduces an elegant analytical framework that may be

instrumental to enhance our understanding of treatment discovery.

Despite its conceptual benefits, classical intervention fails to address many practi-

cal and technical issues. In this volume, we extend the classical framework in several

directions to improve system-based intervention schemes. To achieve this goal, we

have envisaged a number of objectives for which both methodology and techniques

must be improved. The proposed analytical methods provide insight into the design

of effective therapeutic interventions, and strive to address some of the practical con-

cerns that are brought up by medical practitioners. In each chapter, we strive to

highlight the objectives behind each proposed method and explain it via a biological
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case study. Before proceeding further, we briefly discuss the motivation behind each

of the schemes discussed in this volume.

The scheme to update the gene values in a regulatory model plays a crucial role

in its ability to describe the dynamics of gene interactions and thereby influences the

effectiveness of designed therapies. In Chapter II, we describe context-sensitive prob-

abilistic Boolean networks. These are a class of synchronous Markovian regulatory

networks that allow the incorporation of uncertainty into the inter-gene relationships.

Synchronous Boolean networks are a class of discrete-time discrete-space Markovian

regulatory networks in which all the elements in the model are assumed to be updated

simultaneously [9–11]. In the same chapter, we derive a closed-form representation

for the transition probability matrix that describes the dynamics of this category of

regulatory models.

From a biological perspective, interactions among genes and proteins causing

various processes, such as transcription, translation, and degradation, occur over a

wide range of time-scales [12, 13]. In a synchronous model, the tacit assumption is

that asynchronous updating will not unduly alter the presented biological proper-

ties central to the application of interest. This assumption may not generally hold.

Various potential issues with synchronous networks have been raised [14–16].

These observations motivate us to study intervention based on discrete state-

space models that can capture timing information in gene interactions. An asyn-

chronous Markovian regulatory model, suited to our intervention objective, should

poss four characteristics: (1) it should be inferable from the empirical time-course

measurements; (2) it should accurately represent relations among macromolecules

of interest; (3) it should enable us to analytically study the temporal behavior of

relevant phenomena; and (4) the model should be appropriate for the study of ther-

apeutic intervention. With these conditions in mind, we propose two asynchronous
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Markovian regulatory networks in Chapter II. In the first asynchronous framework,

the updating period of each gene is fixed, but can differ from one gene to another. The

second asynchronous regulatory model introduces asynchronism relative to the state-

space of gene-expression profiles. This approach is more suitable from an inference

perspective.

After introducing these models in Chapter II, we propose computational tools

that search for effective therapeutic interventions using the information in these mod-

els. In Chapter V, we show how the decision making problem in an asynchronous

regulatory network can be reformulated as a synchronous decision making problem

similar to the one formulated in Chapter IV. Hence, it would be sufficient to study the

intervention techniques described in the later chapters only in the framework of syn-

chronous models. These asynchronous models can potentially provide more effective

intervention strategies, depending on our ability to perform satisfactory inference.

Sequential decision making techniques can be categorized into two classes. The

first class of schemes, such as classical intervention, requires exact optimization of a

cost function by the decision maker to find an effective treatment within the space of

all possible treatments. It is well-known that the exact solution of such a search prob-

lem is not robust relative to inaccuracy of the underlying network. The procedures

for regulatory network inference are prone to modeling errors. They suffer from insuf-

ficient empirical measurements and computational complexity [17]. In addition, the

computational complexity of the optimization at the heart of the classical intervention

prohibits its use with regulatory models possessing large numbers of components. To

bypass the impediment of model inference and to mitigate the numerical problems

associated with the exact optimization approach, heuristic schemes can be used to

design system-based therapies.

Some heuristic intervention methods estimate insightful statistics of the regu-
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latory network from empirical measurements and utilizes these statistics to greedily

search the space of all strategies for an effective one. Typically, effective heuristic

methods provide lower computational complexity, and also adapt to changes in the

underlying biological system.

In Chapter VII, we introduce a heuristic intervention scheme based on reinforce-

ment learning. Given the cost structure, the reinforcement intervention estimates the

statistics of the cost function and uses this information to learn an effective strat-

egy. This heuristic strategy progressively improves its performance as more empirical

measurements become available.

Besides confronting inferential, complexity, and robustness problems, which are

essentially engineering issues, one also needs to take into account practical medical

issues. Consider the fact that medicine is able to exploit the biochemical differences

between bacteria and human cells so as to achieve toxic drug concentrations in the

former while sparing the latter. This selectivity largely contributes to the success in

treating bacterial infections. Unfortunately, such high selectivity is at present elusive

in the treatment of human cancers. Hence, great efforts are required to determine

dose schedules that maximize the benefit to toxicity ratio in cancer therapy [18].

Dose intensity is a measure of treatment delivery that looks at the amount of drug

delivered per unit of time. To mitigate the detrimental side effects of a treatment in

general, we should account for dose intensity in a system-based intervention method.

A therapeutic intervention should avoid undesirable gene-expression profiles while

accounting for the quantity and/or frequency of applied drugs. A higher drug dose

intensity can be delivered by increasing the dose per cycle (dose escalation) or by

reducing the interval between cycles (dose density).

Dose intensity can be regulated by the number of interventions in a therapeutic

strategy. A treatment based on estrogen is often used by women after menopause
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to alter their accelerated aging trend. The amount of estrogen received during this

treatment should not exceed a threshold. An overdose may increase the chance of de-

veloping breast and ovarian cancers. While this phenomenon is not fully understood,

it is conceivable that estrogen therapy may have side effects on gene regulation. Es-

trogen generates two types of complexes through binding to two classes of receptors.

The generated complexes are transported into the nucleus to bind to the enhancer

elements on the target genes with the help of a coactivator. The coactivator is also

required for efficient transcriptional regulation by estrogen. This function, in coop-

eration with a coactivator acts like a transcription factor, affecting target genes such

as the PENK gene [19]. Two types of receptors are competing for binding to the

estrogen received via treatment [20]. The first type of complex binds DNA better but

performs less efficiently to bind the coactivator; the second type of complex binds

the coactivator better but performs poorly when binding DNA. When the level of

estrogen is below a threshold, there is no competition for DNA binding. Hence, the

second type of complex also binds DNA and activates the downstream target gene

PENK, with the help of the coactivator. However, when the estrogen level is high,

both types of complexes exist at high concentrations and the second type of complex

binds and depletes the coactivator. The level of coactivator available to complex type

one drops. Hence, the complex type one does not have necessary coactivator, and has

a small chance to bind to DNA and causes activation of gene PENK. If the PENK

gene plays a role in tumor suppression, for instance, then this could explain why

high levels of estrogen have a tumorigenic effect. An appropriate treatment strategy

mitigates this problem by bounding the expected number of treatments received by

a patient and, as a result, limits the dose intensity of estrogen.

In general, the likelihood of eradicating pathological cell functions is maximized

by delivering the most effective dose intensity of a drug whose toxicity can be tol-
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erated by the patient. In addition, levels higher than a certain concentration may

not increase the killing rate of cancer cells. The dose intensity of a drug is directly

related to the number of interventions in a therapeutic strategy. Constrained inter-

vention is introduced in Chapter VI to incorporate the aforementioned concern in the

system-based therapy design paradigm. Using constrained intervention methods, we

seek an effective regulatory treatment that reduces the likelihood of visiting undesir-

able gene-expression profiles in the long run while providing an upper bound on the

expected number of interventions a patient may receive [21].
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CHAPTER II

MARKOVIAN REGULATORY NETWORKS ∗

Systems biology studies the multivariate interaction among biological components,

e.g. genes and proteins. From a translational perspective, the ultimate objective

of regulatory modeling is to use the model to design intervention strategies that

beneficially alter the dynamics of inter-gene interactions, for instance, to reduce the

likelihood of states favorable to metastasis in cancer cells.

We study regulatory intervention in the framework of Markovian regulatory net-

works. Constructing complex regulatory models that finely describe the interactions

among biological components related to a disease requires precise understanding of

the underlying biological processes and extensive amounts of experimental data. Al-

though genetically pathological cells, such as cancer cells, have been extensively stud-

ied, we still lack sufficient knowledge and data sets to construct such complex mod-

els. Meanwhile, it is equally important, especially from a translational perspective,

to discover effective drug targets and devise therapeutic strategies with the help of

simpler regulatory models, such as Markovian regulatory models. To this end, prob-

abilistic Boolean networks [22], which compose a class of discrete-time discrete-space

Markovian regulatory networks have been utilized to devise system-based therapeutic

interventions [6, 7]. These classes of rule-based models, which allow the incorpora-

∗ c© 2009, EURASIP. Reprinted, with permission, from EURASIP Journal on Bioin-
formatics and Systems Biology, Intervention in context-sensitive probabilistic Boolean
networks revisited, B. Faryabi, G. Vahedi, J.-F. Chamberland, A. Datta, and E. R.
Dougherty.
c© 2008, IEEE. Reprinted, with permission, from IEEE Journal of Se-
lected Topics in Signal Processing, Optimal intervention in asynchronous
genetic regulatory networks, B. Faryabi, J.-F. Chamberland, G. Va-
hedi, A. Datta, and E. R. Dougherty. For more information go to
http://thesis.tamu.edu/forms/IEEE%20permission%20note.pdf/view.
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tion of uncertainty into inter-gene relationships, are probabilistic generalizations of

classical Boolean networks [9–11].

In rule-based regulatory networks, such as Boolean networks, a regulatory graph

defines the multivariate interactions among the components. From here on, we use the

term gene in place of any general biological components, e.g. genes and transcription

factors, involved in a regulatory network. The vertices of a regulatory graph are

the genes. A directed edge starts from a predictor vertex and ends at an influenced

vertex. All the vertices directly connected to a gene are its predictors. A regulatory

rule defines the multivariate effects of predictors on the vertex. The gene values

are selected from a set of possible quantization levels to facilitate the modeling of

gene interactions by logical rules. The discrete formalism of rule-based regulatory

networks is plausible for many classes of biological systems. Strong evidences suggest

that the input-output relations of regulatory interactions are sigmoidal and can be

well approximated by step functions [23, 24].

If gene values are quantized to two levels, then the rule-based networks are de-

scribed by a collection of Boolean functions, with 0 or 1 meaning genes are OFF

or ON, respectively. Ternary quantization arises when we consider individual genes

to be down-regulated, up-regulated, or invariant. This situation commonly occurs

with cDNA microarrays, where a ratio is taken between the expression values on the

test channel (red) and the base channel (green) [25]. In this thesis, we develop the

methodology for d = 2, so that gene values are either 0 or 1. The methodology can

be extended to other finite quantization levels, albeit at the expense of tedious math-

ematical expressions. All the binary operations in this dissertation would need to be

replaced by case statements and the perturbation process should be articulated on a

case by case basis.

Figure 1 shows the regulatory graph of a hypothetical three-gene network. There
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is a unidirectional relation between genes x1 and x2. The relation between genes x2

and x3 is bidirectional.

X1 X2 X3

Fig. 1. Presentation of a regulatory graph for an arbitrary 3-gene Boolean network.

To completely specify dynamics of inter-gene interactions, we need to adopt an

updating scheme in a class of regulatory networks. The choice of the updating scheme

plays a crucial rule in the dynamical behavior of the network. Given the updating

scheme, we can depict the dynamical evolution of genes by translating the information

of the regulatory graph and the regulatory rules into an oriented graph. The vertex

of an oriented graph represents a state, which is the vectored values of all the genes

at a given time. An edge traverses from one state to another if a transition can occur

in the direction of the edge from one vertex to the other.

The choice of the updating scheme plays a crucial role in the dynamical behavior

of the network. In Boolean networks, the values of genes are updated synchronously

at equally distant updating epochs. For instance, Figure 2 shows the oriented graph

corresponding to the regulatory graph in Figure 1. According to this oriented graph,

whenever the aggregate value of the three genes in the network is (x1 = 0, x2 = 1,

x3 = 0) and if all the genes are updated synchronously, then the next state is (x1 = 0,

x2 = 0, x3 = 1).

A regulatory graph is a static representation of interactions among biological
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components, whereas an oriented graph shows the dynamics of interactions among

these components. A key point concerning Boolean networks is that, in the long

run, the network will settle into an attractor cycle (e.g “000”, or “110” and “101” in

Figure 2), meaning that the network will endlessly cycle through some set of states.

We can practically observe timing information related to the dynamical representation

of biological component interactions, that is, timing relative to the oriented graph.

Fig. 2. Presentation of the oriented graph corresponding to a regulatory graph for the

3-gene Boolean network in Figure 1.

To incorporate the effects of latent variables outside the model, whose behaviors

influence regulation within the system, stochasticity is introduced into the Boolean

model by allowing several possible regulatory functions for each gene and allowing

random modification of the genes [22]. The resulting model is called a probabilistic

Boolean network (PBN), where the terminology Boolean refers to the logical character

of the relations, not that they are necessarily binary. If the regulatory functions are

allowed to change at every time point, then the PBN is said to be instantaneously

random [22]. On the other hand, in a context-sensitive PBN, function updating only

occurs at time points selected by a Bernoulli random switching process [26, 27]. In

essence, a PBN is composed of a collection of networks (oriented graphs); between
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switches it acts like one of the constituent networks (oriented graphs), each being

referred to as a context. The switching frequency of the context differentiates the

instantaneously random PBN from the context-sensitive PBN. The PBN model also

allows random perturbation of genes at each updating instant. By definition, the

attractors of a PBN consist of the attractors of its constituent contexts.

Under appropriate assumptions, a Markov chain models the dynamical behavior

of an instantaneously random PBN [28]. Hence, the oriented graph of an instanta-

neously random PBN can be represented by a Markov chain. The associated Markov

chain to an instantaneously random PBN has been used to develop effective interven-

tion strategies. The transition probability distributions associated with a PBN act

on its states and describe their trajectories over time.

The transition probability distributions of an instantaneously random PBN are

derived in [28]. In this chapter, we derive a closed-form representation for transition

probability distributions among the states of a context-sensitive PBN. This expression

of transition probability distribution is in concert with the original definition of this

class of Markovian networks in [27] and [26].

From a biological perspective, interactions among genes causing transcription,

translation, and degradation occur over a wide range of time-scales. Earlier studies

suggest that asynchronously updating the genes alters the global behavior of syn-

chronous networks due to the change in their oriented graph, which models the dy-

namics of the system [14–16]. Synchronous abstraction is used under the implicit

assumption that asynchronous updating will not unduly alter the properties of a sys-

tem central to the application of interest [14]. Clearly, some properties will be altered.

For instance, in Figure 2, if all the genes are not simultaneously updated, then state

“001” may transition to some other state instead of transitioning to the attractor

state “000”.
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In this chapter, we further relax the synchronism assumption in Markovian reg-

ulatory networks such as PBN and consider asynchronous networks. This involves

defining asynchronous Markovian regulatory networks and treating the intervention

problem in the framework of asynchronous processes as covered in Chapter V.

Two new asynchronous Markovian networks and methods to derive effective in-

tervention strategies for each one of them are proposed. The first model introduces

asynchronism into Markovian regulatory networks by updating each gene based on its

timing information period. This approach of introducing asynchronism into networks

extends the previously favored approach of studying asynchronism in regulatory net-

works. The proposed model, called a deterministic-asynchronous probabilistic Boolean

network, is an extension of context-sensitive PBNs in which the time scales of various

biological updates can be different.

The second model extends synchronous networks by considering asynchronism

at the state level. Assuming asynchronism at the gene level for Boolean networks has

practical and theoretical impediments that may prevent independent gene updating to

serve as a basis for designing effective therapeutic intervention strategies [14, 29, 30].

To this end, we propose semi-Markov asynchronous regulatory networks. In this

regulatory model the asynchronism is at the gene-expression profile level.

In semi-Markov asynchronous regulatory networks, the empirically measurable

timing information of biological systems is incorporated into the model. This tem-

poral information determines the typical time delay between transitions from one

gene-expression profile to another. Since the order of updating genes and their rel-

ative time delays depend on the levels of other regulatory components, time-course

data enable the estimation of inter-transition times between gene-expression profiles,

not the updating time of each gene. It is then natural to introduce asynchronism at

the gene-expression profile level.
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This approach is resourceful from a translational perspective. While the physical

evolution of the biological network occurs over continuous time, the PBN records only

the state transitions and contains no information on the time between the individual

transitions. The PBN model inherits this property from the Boolean model, which

it generalizes. Hence, the problem can be explained in the framework of the Boolean

model. Figure 3 shows two continuous-time realizations that are equivalent from the

point of view of the model of Figure 2. In both figures 3(a) and 3(b), the initial

state is “100”. We observe the evolution “100”→“010”→“001”, at which point there

are no other changes because “001” is an attractor of the network. While equivalent

from the perspective of the Boolean model, from the perspective of continuous time

observation, the realizations of Figures 3(a) and 3(b) are not the same. For instance,

in the second realization, the sojourn time in state “010” is much longer than in the

first realization. This may be of no concern if we are only interested in tracking the

state transitions. On the other hand, suppose we are considering intervention and

penalizing undesirable phenotypes. Then, if “010” is an undesirable state, the penalty

should be greater in the second realization; that is, the penalty needs to account for

the sojourn time in a state. This problem has been addressed in the framework of

asynchronous Markovian regulatory networks by considering the process to be defined

over continuous time.

A. Synchronous Markovian Regulatory Networks

In this Section, we review the definition of a context-sensitive PBN [27]. We derive a

new expression for the transition probability matrix that specifies its oriented graph.

This expression for the transition probability matrix is in concert with the original

definition of context-sensitive PBNs [27].
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Fig. 3. Two realizations of trajectories for the oriented graph in Figure 2.

PBNs are a class of discrete-time discrete-space Markovian regulatory networks

that allow the incorporation of uncertainty into the inter-gene relationships. In a

PBN model, gene values are quantized into some finite range. The values are up-

dated synchronously at each time step according to regulatory functions. Stochastic

properties are introduced into the model by allowing several possible regulatory func-

tions for each gene and allowing random modification of the activity factors. In

essence, a PBN is composed of a collection of networks; between switches it acts like

one of the constituent networks, each being referred to as a context. The switching

frequency of the context differentiates the instantaneously random PBN [22] from the

context-sensitive PBN [26,27].

The context switching that occurs at every time step in an instantaneously ran-

dom PBN corresponds to changing the wiring diagram of the system at every instant.

In contrast, context-sensitive PBNs can better represent the stability of biological sys-

tems by capturing the period of sojourning in constituent networks [26]. Hence, this

class of models is more suitable for the analysis of gene regulation and the design of

intervention methods. To formulate the problem of intervention in a context-sensitive
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PBN, a transition probability matrix must be derived. This transition matrix acts

on the possible states of the system. Once this is accomplished, the task of finding

the most effective intervention strategy can be formulated as a classical sequential

decision making problem. The latter is covered in Chapter IV, here we compute the

transition probability matrix of a context-sensitive PBN.

It is evident that the intervention strategy specified by a sequential decision

maker is directly affected by the form of the transition probability matrix asso-

ciated with a PBN. For an instantaneously random PBN, the state consists of a

gene-expression profile; while for a context-sensitive PBN, the state includes a gene-

expression profile and a context. The effectiveness of an intervention strategy de-

pends, partly, on how accurate the model represents the reality of the underlying

pathological cellular functions. It is therefore important to adopt a model that cap-

tures the subtleties of the biological system of interest. In the framework of context-

sensitive PBNs, this entails defining a transition probability matrix that is an accurate

representation of system dynamics [31].

1. Context-Sensitive Probabilistic Boolean Networks: Definition

A context-sensitive probabilistic Boolean network consists of a sequence V = {xi}
n
i=1

of n nodes, where xi ∈ {0, 1}, and a sequence {fff l}
k
l=1 of vector-valued functions

defining constituent networks. In the framework of gene regulation, each element

xi represents the expression value of a gene. It is common to abuse terminology

by referring to xi as the ith gene. Each vector-valued function fff l = (fl1, . . . , fln)

represents a constituent network of the context-sensitive PBN. The function fli :

{0, 1}n → {0, 1} is the predictor of gene i, whenever context l is selected.

At each updating epoch a random variable determines whether the constituent

network is switched or not. The switching probability q is a system parameter. If
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the context remains unchanged, then the context-sensitive PBN behaves like a fixed

Boolean network where the values of all the genes are updated synchronously accord-

ing to the current constituent network. On the other hand, if a switch occurs, then

a constituent network is randomly selected from {fff l}
k

l=1 according to the selection

probability distribution {rl}
k

l=1. Once the predictor function fff l is determined, the

values of the genes are updated using the new constituent network; that is, according

to the rules defined by fff l.

We focus on context-sensitive PBNs with perturbations, meaning that each gene

may change its value with small probability p at each epoch. If γi(t) is a Bernoulli

random variable with parameter p and the random vector γγγ at instant t is defined as

γγγ(t) = (γ1(t), γ2(t), . . . , γn(t)), then the value of gene i is determined at each epoch t

by

xi(t+ 1) =111(γγγ(t+ 1) 6= 000) (xi(t)⊕ γi(t+ 1))

+ 111(γγγ(t+ 1) = 000)fli(x1(t), . . . , xn(t)),

(2.1)

where operator ⊕ is component-wise addition in modulo two and fli is the predictor of

gene i according to the current context of the network l. Such a perturbation captures

the realistic situation where the activity of a gene is subject to random alteration.

As we will see in the next section, in addition, it guarantees that the Markov chain

associated to the oriented graph of a PBN attain a unique steady-state distribution.

The gene-activity profile (or GAP) is an n-digit binary vector

xxx(t) = (x1(t), . . . , xn(t)), giving the expression values of the genes at time t. Here,

xi(t) ∈ {0, 1}. We denote the set of all possible GAPs by X = {0, 1}n.

The dynamic behavior of a context-sensitive PBN can be modeled by a Markov

chain whose states are ordered pairs consisting of a constituent network κ and a GAP

xxx. The evolution of the context-sensitive PBN can therefore be represented using a
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stationary discrete-time equation

zzz(t+ 1) = f(zzz(t), w(t)) t = 0, 1, . . . (2.2)

where state zzz(t) is an element of the state-space Z = {(κ,xxx) : κ ∈ {1, . . . , k},xxx ∈ X}.

The disturbance w(t) is the manifestation of uncertainties in the biological system,

due either to context switching or a change in the GAP resulting from a random gene

perturbation.

It is assumed that both the gene perturbation distribution and the network

switching distribution are independent and identically distributed over time.

We note that a bijection can be drawn between the gene-activity profile xxx(t) or

the states zzz(t) and their decimal representations x(t) and z(t) based on their binary

expansion. The integers x(t) and z(t) take values in X = {0, 1, . . . , 2n− 1} and

Z = {0, 1, . . . , k × 2n−1}, respectively. These decimal representations facilitate the

depiction of our numerical results in the next chapters.

2. Context-Sensitive Probabilistic Boolean Networks:

Transition Probability Matrix

The oriented graph of a context-sensitive PBN can be represented by a Markov chain

[31]. The transition probability distributions associated with a context-sensitive PBN

act on its states and describe their trajectories over time.

The latter can be found by observing that two mutually exclusive events may

occur at any epoch: the current context of the network remains the same for two

consecutive instants, or the context of the network changes to a new one at the time

instant t+1. Moreover, the context may remain unchanged in two mutually exclusive

ways: the binary switching variable is 0, which means that no change is possible, or

the binary switching variable is 1 and the current network is picked again through
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random selection [26, 27]. In particular, when the switching variable is 1, a new

context is selected independent of the current system state. Thus, the same network

can be active twice in a row. This interpretation of switching the context in a PBN

is in concert with the original definition of context-sensitive PBNs in [27]. Before

proceeding, we note that transitioning was defined differently in [32] and [33], where

it was assumed that, whenever the switching variable is 1, a change of context must

occur; the result being that context selection is conditioned on the current context.

Letting zzz1 = (κ1,xxx1) and zzz2 = (κ2,xxx2) be two states in Z, we derive the transition

probability

Pzzz1
(zzz2)

△
= Pr (zzz(t+ 1) = (κ2,xxx2)|zzz(t) = (κ1,xxx1)) , (2.3)

from zzz1 to zzz2 in Z. Note that we can rewrite expression (2.3) as

Pzzz1
(zzz2) = Pr (xxx(t+ 1) = xxx2, κ(t+ 1) = κ2|xxx(t) = xxx1, κ(t) = κ1) · (2.4)

Using the Bayes theorem, we get

Pzzz1
(zzz2)

= Pr (xxx(t+ 1) = xxx2|κ(t+ 1) = κ2,xxx(t) = xxx1, κ(t) = κ1)

× Pr (κ(t+ 1) = κ2|xxx(t) = xxx1, κ(t) = κ1)

= Pr (xxx(t+ 1) = xxx2|κ(t+ 1) = κ2,xxx(t) = xxx1, κ(t) = κ1)

× Pr (κ(t+ 1) = κ2|κ(t) = κ1)

= 111(κ2 = κ1) Pr (κ(t+ 1) = κ1|κ(t) = κ1)

× Pr (xxx(t+ 1) = xxx2|κ(t+ 1) = κ(t) = κ1,xxx(t) = xxx1)

+ 111(κ2 6= κ1) Pr (κ(t+ 1) = κ2|κ(t) = κ1)

× Pr (xxx(t+ 1) = xxx2|κ(t+ 1) = κ2,xxx(t) = xxx1, κ(t) = κ1) ,

(2.5)
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where 111(·) is the indicator function. Furthermore, we have

Pr (κ(t+ 1) = κ1|κ(t) = κ1) = (1− q) + q rκ1
, (2.6)

and when κ1 6= κ2, we get

Pr (κ(t+ 1) = κ2|κ(t) = κ1) = q rκ2
. (2.7)

Here, q is the probability of switching context, and rκi
is the probability of selecting

context κi during a switch.

A transition from GAP xxx1 to GAP xxx2 may occur either according to the con-

stituent network at instant t+ 1, or through an appropriate number of random per-

turbations, but not both.

Let us define Fl by

Fl(xxx1,xxx2)
△
= 111(fff l(xxx1) = xxx2). (2.8)

Then, we have

Pr (xxx(t+ 1) = xxx2|κ(t+ 1) = κ(t) = κ1,xxx(t) = xxx1) =
[

(1− p)nFκ2
(xxx1,xxx2) + (1− p)(n−D(xxx1,xxx2))pD(xxx1,xxx2)111(D(xxx1,xxx2) 6= 0)

] (2.9)

and, for κ1 6= κ2, we obtain

Pr (xxx(t+ 1) = xxx2|κ(t+ 1) = κ2,xxx(t) = xxx1, κ(t) = κ1) =
[

(1− p)nFκ2
(xxx1,xxx2) + (1− p)(n−D(xxx1,xxx2))pD(xxx1,xxx2)111(D(xxx1,xxx2) 6= 0)

] (2.10)

where D(xxx1,xxx2) is the Hamming distance between two gene-activity profiles xxx1 and

xxx2. The first parts of (2.9) and (2.10) corresponds to the probability of transition from

GAP xxx1 to GAP xxx2 according to the predictor functions defined by the constituent

network at time instant t + 1. The remaining terms account for transition between

GAPs that are due to random gene perturbation.
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By replacing the terms of expression (2.5) by their equivalents from (2.6), (2.7),

(2.9) and (2.10), it can be shown that the probability of transition from any state

zzz1 = (κ1,xxx1) to any other state zzz2 = (κ2,xxx2) in Z is given by

Pzzz1
(zzz2) =

[

(1− p)n111(fffκ2
(xxx1) = xxx2) + (1− p)(n−D(xxx1,xxx2))pD(xxx1,xxx2)111(D(xxx1,xxx2) 6= 0)

]

× [111(κ2 = κ1)((1− q) + q rκ1
) + 111(κ2 6= κ1)q rκ2

] ·

(2.11)

Gene perturbation ensures that all the states in the Markov chain of context-

sensitive PBN oriented graph communicate; hence, the finite-state Markov chain has

a unique steady-state distribution [34].

3. Instantaneously Random Probabilistic Boolean Networks

As we mentioned earlier, The switching frequency of the context differentiates the

instantaneously random PBN from the context-sensitive PBN. If the contexts change

at every instant, i.e. q = 1, then the PBN is instantaneously random [22].

For an instantaneously random PBN, the state of the oriented graph only consists

of a GAP. Hence, an instantaneously random PBN with n genes has 2n states, as

opposed to 2n × k states for a context-sensitive PBN with n genes and k contexts.

By the Markovian property, the dynamic behavior of an instantaneously random

PBN whose states are in the set of all GAPs X can be represented as a stationary

discrete-time equation

xxx(t+ 1) = f(xxx(t), w(t)) t = 0, 1, . . . (2.12)

where xxx(t) is the GAP at the updating epoch t. The disturbance w(t) is the mani-

festation of uncertainties in the biological system, due either to context switching or

change in the genes resulting from random gene perturbation.
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The transition probability distributions of an instantaneously random PBN is

derived in [22]. Here, we can obtain the transition probability matrix of the instanta-

neously random PBN oriented graph corresponding to a context-sensitive PBN with

similar parameters from expression (2.11), when the context is allowed to switch at

each epoch by setting q = 1. In this case, we can rewrite expression (2.11) as

P (xxx1,xxx2) = (1− p)n





(

p

1− p

)D(xxx1,xxx2)

111 (D(xxx1,xxx2) 6= 0) +
∑

κ2

rκ2
111 (fffκ2

(xxx1) = xxx2)





(2.13)

for the transition probability distribution between any two states of instantaneously

random PBN xxx1 and xxx2 in X .

B. Asynchronous Markovian Regulatory Networks

Two factors motivate the adoption of synchronous updating schemes in Markovian

regulatory networks: (1) they are more mathematically tractable; (2) they require

significantly less data for inference. In particular, substantial time-course data are

required to characterize asynchronism.

On the other hand, the synchronous abstraction is used under the implicit as-

sumption that asynchronous updating will not unduly alter the properties of a system

central to the application of interest [35]. Clearly, some properties will be altered.

Various potential issues with synchronous networks have been noted. For instance,

synchronous abstraction may produce spurious attractors in networks [15]. In the

same vein, deviation from synchronous updating modifies the attractor structure of

Boolean networks [16] and can change their long-run behavior [36]. From a biological

perspective, interactions among genes causing transcription, translation, and degra-

dation occur over a wide range of time-scales [12, 13]. These observations suggest
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that we should relax the synchronism assumption in regulatory networks to provide

a better description of underlying biological processes.

In this section, we propose two new asynchronous Markovian regulatory net-

works. The first model introduces asynchronism in regulatory networks at the gene

level. The second model extends this approach by considering asynchronism at the

state level. Whereas the first method is akin to currently proposed asynchronous

models, we will argue that the second approach is more suitable from a translational

perspective.

The first proposed asynchronous model introduces asynchronism into Marko-

vian regulatory networks by updating each gene based on its period. This ap-

proach of introducing asynchronism into networks extends the currently favored ap-

proach of studying asynchronism in regulatory models. The proposed model, called a

deterministic-asynchronous probabilistic Boolean network (DA-PBN), is an extension

of probabilistic Boolean networks in which the time scales of biological updates at

various genes can be different.

A DA-PBN is an extension of PBN in which different time-scales for various

biological processes are allowed. Each gene, or biological component, is updated

based on an individual period, which may differ from one component to another.

Yet, the updating period of each gene is fixed given the context of the network.

The intent of context-sensitivity is to incorporate the effects of latent variables not

directly captured in the model. The behavior of these latent variables influences both

regulation and updating periods of genes. The uncertainty about the context of a

regulatory network resulting from latent variables is captured through a probability

measure on the possible contexts. The exact updating periods and functions of genes

cannot be practically specified. At best, we can estimate the set of possible updating

periods and corresponding updating functions for each gene. As a stochastic Boolean
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network with asynchronous updates, a DA-PBN expands the benefits of traditional

PBNs by adding the ability to cope with temporal context as well as regulatory

context.

Our objectives for introducing asynchronism via the DA-PBN model are twofold.

First, we show that the synchronous formalism of PBNs can be relaxed to introduce

asynchronous PBNs. Second, we provide a methodology to derive optimal interven-

tion strategies for the DA-PBN model, which will be discussed in Chapter V.

The delay and the updating order of a given gene are only observable with respect

to the activity levels of other genes and proteins involved in the regulation process [14].

Thus, it is impractical to study the alteration of one specific gene over time, while

keeping the levels of all other genes in the model constant. Practically, we can measure

the gene-expression profile (or states) at each observation instant. The inter-transition

interval between two states can then be modeled by a random variable.

In [29] and [30], experimentally validated Boolean rules are considered. Under a

synchronous assumption, the oriented graphs can accurately determine the phenotypic

behavior of the underlying biological processes. However, these studies suggest that

asynchronously updating the genes when utilizing the same Boolean rules generates

very complex pathways which possess many incompatible and unrealistic phenotypes.

Although not mentioned explicitly in [29] and [30], it is evident that asynchronously

updating the genes changes the global behavior of regulatory networks by changing

their oriented graphs.

The results of [29] and [30] indicate that rule-based regulatory models should

maintain the topology of the oriented graph generated by experimentally validated

predictor rules, as if the genes are coupled. In other words, regulatory models should

accurately translate the logical relationships, i.e. the regulatory graph, governing the

inter-gene interactions into the oriented graph specifying the dynamics of the model.
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Moreover, they should enable the analysis of the temporal behavior of biological

systems. Since our objective is to alter the long-run behavior of biological systems

via effective intervention strategies, not only should our regulatory models possess

the previous two attributes, but these models should also be inferable from empirical

data.

Having these in mind, we propose another asynchronous regulatory network

model: semi-Markov asynchronous regulatory networks (SM-ARN). In the SM-ARN,

the asynchronism is at the state level. In this model, the empirically measurable tim-

ing information of biological systems is incorporated into the model. This temporal

information determines the typical time delay between transitions from one state to

another. Since the order of updating genes and their relative time delays depend

on the levels of other regulatory components, estimating the updating time of each

gene in isolation, and independent of the values of other genes, is highly problematic,

if not impossible. Time-course data enable the estimation of inter-transition times

between states, not the updating time of each gene. It is then natural to introduce

asynchronism at the state level.

An SM-ARN is specified with two sets of information. The first set determines

the rule-based multivariate interactions between genes. Considering simultaneous

updating, we can specify the oriented graph of the model based on this information.

In other words, the first set of information specifies a PBN, which is generated from

a given set of Boolean functions for updating each gene. The generated oriented

graph guarantees the predictability of the rule-based topology. The second set of

information consists of the distributions of inter-transition intervals between any two

states that are directly connected. These values can be empirically inferred from

time-course data.
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1. Deterministic-Asynchronous Probabilistic Boolean Networks

To date, asynchronism has been introduced into Boolean networks by updating each

gene based on its period. These studies try to understand generic characteristics

of asynchronous updating schemes in randomly generated Boolean networks. To

accomplish this aim, a wide range of artificial asynchronous updating protocols with

different degrees of freedom in the selection of the updating period for each gene has

been postulated.

We categorize previously proposed asynchronous protocols into two groups. In

the first category, termed stochastic asynchronous protocols, the updating period of

each gene is randomly selected based on a given distribution [16,36,37]. In the second

category, termed deterministic asynchronous protocols, the updating period of each

gene is fixed, but can differ from one gene to another [35, 36, 38]. There have also

been studies that consider both stochastic and deterministic asynchronous protocols

in an effort to investigate the predictability of Boolean networks when asynchronous

updating schemes are used instead of synchronous ones [29, 39].

The study of both randomly generated and experimentally validated Boolean

networks reveals that stochastic asynchronism has some limitations. Stochastic asyn-

chronous updating methods can significantly change the properties of oriented graphs

[35,38]. Starting from wild-type gene expressions, neither the Boolean networks of [39]

or [29] successfully predict the anticipated long-run attractors of their networks. Ear-

lier studies indicate that constraining the degrees of freedom in the asynchronous

protocols can improve the predictability of Boolean networks. More structured asyn-

chronous protocols predict the long-run behavior of Boolean networks more effectively

by representing their cyclic attractors [29,37]. It must be recalled that in all of these

studies of asynchronism the timing protocols have been modeled mathematically with-
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out biological verification. At this point, perhaps all we can say is that synchronism

or asynchronism are modeling assumptions and the choice in a specific circumstance

depends upon the available data and application.

When the context of a biological system is known, there is a consensus that asyn-

chronism in regulatory networks is deterministic rather than random [35]; however,

deterministic asynchronous Boolean networks pose practical challenges. Even if we

can measure the level of each gene in isolation while the other genes remain constant,

at best, we could produce estimates for updating periods. Owing to the effects of

measurement noise and the existence of latent variables, we cannot exactly specify

them.

Focusing on the effects of latent variables, as is customary when considering

probabilistic networks, at best we can estimate a set consisting of the most probable

updating periods for each gene in the network; each set depending on the status of

latent variables. A set of updating periods, whose members are the deterministic

periods of each gene in the regulatory network, defines the updating protocol of

a deterministic-asynchronous Boolean network. This means that there is a finite

collection of deterministic asynchronous Boolean networks that defines the dynamics

of the system. The updating periods of genes depend on the temporal context of the

biological system, which can be influenced by latent variables.

Having the probabilities of selecting each context, the model selects one of the

constituent deterministic asynchronous Boolean networks at each updating instant.

The system evolves according to the selected constituent deterministic asynchronous

Boolean network until its constituent network changes. This approach of introducing

asynchronism into PBNs extends the currently favored approach of studying asynchro-

nism in regulatory models. The proposed model, called a deterministic-asynchronous

probabilistic Boolean network, is an extension of probabilistic Boolean networks in
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which the time scales of various biological updates can be different. The term “prob-

abilistic” emphasizes the random selection of a context, while the term “deterministic”

refers to the asynchronous protocol within each context of the regulatory network.

For consistency with context-sensitive PBN, we use the same notation to define

DA-PBN. As with a synchronous PBN, in a DA-PBN, gene values are quantized to

two levels. A DA-PBN consists of a sequence V = {xi}
n
i=1, of n nodes, where xi ∈

{0, 1}. Each xi represents the expression value of a gene, which is either ON or OFF.

A DA-PBN is composed of a collection of k constituent deterministic-asynchronous

Boolean networks (DA-BNs). In a DA-PBN, the active DA-BN changes at updating

instants selected by a binary switching random variable. A DA-PBN acts like one of

its constituent DA-BNs, each being referred to as a context, between two switching

instants.

The l-th DA-BN (V,fff l,ΘΘΘl) is defined by two vector-valued functions. The vector-

valued function fff l consists of n predictors, fff l = (fl1, . . . , fln), where fli : {0, 1}n →

{0, 1} denotes the predictor of gene i, whenever context l is selected. The vector-

valued function ΘΘΘl consists of n updating components, ΘΘΘl = (θl1, . . . , θln). Each

function θli : N → {0, 1} is defined with a pair of fixed parameters, (ali, bli). The

parameter ali ∈ N specifies the updating period of gene i, when context l is selected.

The parameter bli ∈ {0, . . . , ali−1} further differentiates the exact updating instant of

each gene within its updating period. The two degrees of freedom in θli are sufficient

to assign any instant of time t ∈ N as the updating epoch of gene i:

θli(t)
△
=



















1, if t ≡ bli (mod ali)

0, otherwise.
(2.14)

Similar to context-sensitive PBN, we focus on DA-PBN with perturbations, in

which each gene may change its value with small probability p at each epoch.
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At each updating instant a decision is made whether to switch the current con-

stituent DA-BN. The switching probability q is a system parameter. If the current

DA-BN is not switched, then the DA-PBN behaves as a fixed DA-BN and genes are

updated synchronously according to the current constituent network:

xi(t+1) =



































111(γγγ(t+ 1) 6= 000) (xi(t)⊕ γi(t+ 1))

+111(γγγ(t+ 1) = 000)fli (x1(t), . . . , xn(t)) , if θli(t+ 1) = 1

xi(t), if θli(t+ 1) = 0

(2.15)

where γi(t) is a Bernoulli random variable with parameter p and the random vector γγγ

at instant t is defined as γγγ(t) = (γ1(t), γ2(t), . . . , γn(t)). The operator⊕ is component-

wise addition in modulo two and fli is the predictor of gene i according to the DA-BN

l.

If a switch occurs, then a new constituent network is randomly selected according

to a selection probability measure {rl}
k
l=1. After selecting the new constituent network

l̂, the values of the genes are updated using (2.15), but with fff l̂ and ΘΘΘl̂ instead.

2. Semi-Markov Asynchronous Regulatory Networks

Although DA-PBN can be used to model biological systems, earlier research suggests

that the assumption of asynchronism at the gene level has a number of drawbacks.

Asynchronously updating the genes changes the global behavior of regulatory net-

works due to changing their oriented graph, which models the dynamics of the sys-

tem [14]. Along this line, it has been shown that small perturbations do not settle

down in a random Boolean network with gene-level asynchronism. Consequently,

the asynchronous network is in the chaotic regime while its synchronous counterpart

is in the critical regime [40]. The studies of experimentally validated Boolean net-

works in [29] and [30] suggest that oriented graphs of given Boolean networks provide
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accurate predictability, whereas the oriented graphs of networks utilizing the same

Boolean rules with asynchronously updated genes are very complex and possess many

incompatible or unrealistic pathways.

From these observations, we gather that an asynchronous regulatory model should

maintain the topology of the oriented graph as specified by the logical rules governing

the interactions between genes. In other words, regulatory models should accurately

translate the logical relationships, i.e. the regulatory graph, governing the interac-

tions of genes to the oriented graph specifying the dynamics of the model. Moreover,

they should enable the analysis of the temporal behaviors of biological systems.

Due to the aforementioned observations, we propose semi-Markov asynchronous

regulatory networks. For consistency with previous networks, we use the same no-

tation to define SM-ARNs. We consider a sequence of n genes, V = {xi}
n
i=1, repre-

senting the expression values of genes involved in the model. The expression value

of gene i at time t xi(t) is selected from two quantization levels. The states of an

SM-ARN are defined as the ordered pairs consisting of a constituent network κ and

a gene-activity profile xxx. As in Section II.A, the GAP can be considered to be an

n-tuple vector xxx(t) = (x1(t), . . . , xn(t)) giving the values of genes at time t, where

xxx(t) ∈ X = {0, 1}n. At each time t ∈ R
+, the state of SM-ARN zzz(t) is selected from

the set of all possible states

Z = {(κ,xxx) : κ ∈ {1, . . . , k},xxx ∈ X} · (2.16)

Considering two consecutive epochs tk and tk+1 per Figure 4, the state of the

SM-ARN for all the times tk ≤ t < tk+1 is zzz(tk) = zzzk. At tk+1, the model enters a

new state zzz(tk+1) = zzzk+1. If τk+1 is the time spent in state zzzk prior to transition to

state zzzk+1, then we have τk+1 = tk+1−tk. In the SM-ARN model, this inter-transition
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interval is modeled with a non-negative random variable with probability distribution

Pzzzkzzzk+1
(τ)

△
= Pr (τk+1 ≤ τ |zzz(tk) = zzzk, zzz(tk+1) = zzzk+1) , (2.17)

where zzzk and zzzk+1 are in Z. According to (2.17), the probability distribution of

sojourn time in the current state zzzk prior to transition to the successive state zzzk+1

could depend on both states. We require the inter-transition interval distributions,

Pzzzkzzzk+1
(τ), for any two directly connected states as one of the two sets of information

needed to define an SM-ARN. Time-course data could provide the information leading

to these distributions.

Fig. 4. A schematic of transition in SM-ARN with two consecutive epoch times tk and

tk+1. The inter-transition interval, τk+1, is the sojourn time in state zzzk prior

to the transition to state zzzk+1.

In the SM-ARN model, the empirically measurable timing information of bio-

logical systems is incorporated into the model. This measurable timing information

determines the typical time delay between transitions from state zzzk to state zzzk+1.

Since the order of updating genes and their relative time delays depend on the lev-

els of other regulatory components, we are able to estimate the joint distribution

of updating time of vectored value of genes, and not their marginal distributions.

The estimation of the latter requires measurements providing information on the up-

dating time of each gene in isolation, and independent of the values of other genes.
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Design of experiments that provide this temporal information is highly problematic,

if not impossible. Time-course data enable the estimation of inter-transition times

between states in Z, not the updating time of each gene. It is at the state level that

asynchronism is introduced in an SM-ARN, and not the gene level.

Borrowing the methodology proposed in Section II.A, we proceed to define the

embedded-PBN of an SM-ARN. The embedded-PBN of an SM-ARN models the prob-

abilistic rule-based connections of gene interactions and constitutes the other set of

information required for specification of an SM-ARN. The embedded-PBN specifies

the oriented graph of the SM-ARN based on the predictors of the genes. The oriented

graph of an SM-ARN is a directed graph whose vertices are the states of the SM-ARN

in Z, and for which there is an edge between any two directly connected states. The

weight of each edge is the transition probability between two vertices connected by

that edge.

Let {fff l}
k
l=1 be the set of k realizations of the embedded-PBN. If the genes are

coupled, then at each simultaneously updating instant, one of the k possible realiza-

tions of the embedded-PBN is selected. Each vector-valued function fff l has the form

fff l = (fl1, . . . , fln). Each function fli : {0, 1}n → {0, 1} denotes the predictor of gene

i, when the realization l is selected. At each simultaneous updating instant a decision

is made whether to switch the context of the network. If at a particular updating

instant, it is decided that the realization of the network should not be switched, then

the embedded-PBN behaves as a fixed Boolean network and simultaneously updates

the values of all the genes according to their current predictors. If it is decided that

the network should be switched, then a realization of the embedded-PBN is randomly

selected according to a selection distribution {rl}
k
l=1. After selecting the vector-valued

function fff l, the values of the genes are updated according to the predictors deter-

mined by fl. We assume that the probability of selecting the ith realization of the
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embedded-PBN ri is known. In addition, we allow perturbations in the embedded-

PBN, whereby each gene may change its value with a small probability p at each

updating instant.

The graph specifying the relationships among the states of an embedded-PBN,

defined as above, can be represented as a Markov chain whose transition probability

is given by (2.11). On the other hand, the graph of the relationships among the states

specified by the embedded-PBN is the regulatory graph of the SM-ARN. Originating

from a state zzz(tk) = zzzk, the successor state zzz(tk+1) = zzzk+1 is selected randomly within

the set Z according to the transition probability pzzzk
(zzzk+1) defined by regulatory graph

of the SM-ARN:

pzzzk
(zzzk+1)

△
= Pr (zzz(tk+1) = zzzk+1|zzz(tk) = zzzk) , (2.18)

for all zzzk, zzzk+1 ∈ Z. In other words, the oriented graph of an SM-ARN is the same as

its regulatory graph. However, the update of states in the oriented graph of an SM-

ARN occurs on various time-scales according to inter-transition interval distributions.

Therefore, the oriented graph of the SM-ARN defined by the embedded-PBN main-

tains the topology of the oriented graph generated by the experimentally validated

predictors of genes.

Gene perturbation ensures that all the states of a SM-ARN communicate in its

oriented graph. Hence, the fraction of time that the SM-ARN spends in state zzz ∈ Z

in the long run can be computed [41]:

p(zzz) =
π(zzz)τ (zzz)

∑

zzz∈Z π(zzz)τ(zzz)
, (2.19)

with probability one. Here, {π(zzz)}zzz∈Z is the steady-state distribution of the states in

the Markov chain representing the oriented graph of the SM-ARN, and {τ(zzz)}zzz∈Z is
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the expected sojourn time in state zzz, which can be computed from the information

in (2.18) and (2.17). One can easily verify that p(zzz), the fraction of time spent in

state zzz in the long run, will be equal to π(zzz), which is the fraction of the transitions

to state zzz if all the nodes are synchronously updated.
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CHAPTER III

MARKOVIAN REGULATORY MODELS: CASE STUDIES ∗

In this chapter, we present two case studies which are used throughout this volume.

We construct four regulatory models based on these case studies. First, we con-

struct PBNs using gene-expression data collected in a profiling study of metastatic

melanoma [31, 42]. We utilize the profiling study of metastatic melanoma to infer

a 10-gene instantaneously random PBN as well as a 7-gene context-sensitive PBN.

Second, a context-sensitive PBN is obtained by suitably extending a Boolean model

proposed in [29] for modeling mammalian cell cycle regulation in Section III.B. This

network postulates a generic mammalian cell cycle with a mutated phenotype [14].

At last in Section III.C, an SM-ARN is devised using the regulatory model in Section

III.B as its embedded-PBN.

A. Metastatic Melanoma Gene Expression: Probabilistic Boolean Network

In this section, we construct a 10-gene instantaneously random PBN and a 7-gene

context-sensitive PBN based on data collected in a profiling study of metastatic

melanoma in which the abundance of messenger RNA for the gene Wnt5a was found

to be highly discriminating between cells with properties typically associated with

∗ c© 2009, IET. Reprinted, with permission, from IET Journal of Systems Biology,
On approximate stochastic control in genetic regulatory networks, B. Faryabi, A.
Datta, and E. R. Dougherty.
c© 2008, IEEE. Reprinted, with permission, from IEEE Journal of Se-
lected Topics in Signal Processing, Optimal intervention in asynchronous
genetic regulatory networks, B. Faryabi, J.-F. Chamberland, G. Va-
hedi, A. Datta, and E. R. Dougherty. For more information go to
http://thesis.tamu.edu/forms/IEEE%20permission%20note.pdf/view.
c© 2009, EURASIP. Reprinted, with permission, from EURASIP Journal on Bioin-
formatics and Systems Biology, Optimal constrained stationary intervention in gene
regulatory networks, B. Faryabi, G. Vahedi, J.-F. Chamberland, A. Datta, and E. R.
Dougherty.
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high metastatic competence versus those with low metastatic competence [8].

These findings were validated and expanded in a second study, in which experi-

mentally increasing the levels of the Wnt5a protein secreted by a melanoma cell line

via genetic engineering methods directly altered the metastatic competence of that

cell as measured by the standard in vitro assays for metastasis [43]. A further finding

of interest in this study is that an intervention that blockes the Wnt5a protein from

activating its receptor, with the help of an antibody that binds the Wnt5a protein,

can substantially reduce Wnt5a’s ability to induce a metastatic phenotype. This

suggests intervention based on a strategy that alters the contribution of the Wnt5a

gene to biological regulation. Disruption of this influence can potentially reduce the

chance of a melanoma metastasizing, a desirable outcome.

Ten genes, including the Wnt5a gene, were selected in [25] based on the predic-

tive relationships among 587 genes: Wnt5a, pirin, S100p, Ret1, Mmp3, Phoc, Mart1,

Hadhb, Synuclein, and Stc3. We apply a modification of the design procedure pro-

posed in [44] to generate a 10-gene instantaneously random PBN possessing four

constituent BNs [42]. The method of [44] generates BNs with given attractor struc-

tures and the overall PBN is designed so that the data points, which are assumed to

come from the steady-state behavior of the network, are attractors in the designed

PBN. However, this method doesn’t consider the distribution of attractors in the em-

pirical data. Considering the available data, we have to modify this method to arrive

at a PBN resembling a cancerous situation. The modified method searches in the

set of possible Boolean networks generated by the method of [44], and finds Boolean

networks whose states with up-regulated Wnt5a possess larger aggregated probabil-

ity than the states with down-regulated Wnt5a. The attractors with up-regulated

Wnt5a are only %16 of all the observed attractors in the metastatic melanoma data-

set in [42].
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The regulatory graphs of these 10-gene BNs are given in Figure 5. In binary

representation of the GAPs, the order of the genes is as listed earlier with Wnt5a

being the most significant bit and Stc3 being the least significant bit.

Constituent BN1 Constituent BN2

Constituent BN3 Constituent BN4

Fig. 5. The regulatory graphs of the four constituent Boolean networks used to con-

struct a 10-gene instantaneously random PBN for the metastatic melanoma

data.

We also inferred a 7-gene context-sensitive PBN from the same profiling study

of metastatic melanoma by considering genes: Wnt5a, pirin, S100p, Ret1, Mart1,
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Hadhb, and Stc3. Computational limitations forced us to consider the 7-gene context-

sensitive PBN with 512 states, instead of 10-gene networks with 4096 states. We use

the same procedure explained above to infer the constituent Boolean networks. To

generate the context-sensitive PBN based on the inferred Boolean networks, we set

both the switching and perturbation probabilities to 0.01. The selection probability

distribution is assumed to be uniform {rl = 0.25}4l=1. The constituent networks

{fff l}
4
l=1 are reported in tables I, II, III and IV, respectively.

Each of Table I to Table IV has 2pred + n rows and n columns. Variable pred

denotes the maximum number of predictors for each of the n genes in the network.

We set pred = 3 in this study. The top 2pred rows depicts the predictor functions

of the genes. We separate the top part of each table from its lower part with a

horizontal line to increase the readability. The lower n rows of each table provide

the predictors for the genes in the Boolean network. For example, genes 3, 5, and 7

are the predictors of gene 1 in the constituent network fff l according to the 9-th row

of Table I. Hence, f11(x3, x5, x7), the predictor function of gene 1, can be specified

by its 8 possible outcomes enumerated in the first column of Table I. Whenever the

number of predictors is less than pred = 3 the outcomes of the predictor function can

be enumerated with less than 2pred values. For instance, gene 3 in Table I has two

predictors (refer to row 23 + 3 of Table I), so its predictor function f13(x3, x1) can be

fully specified with 4 values. According to the the upper part of the third column of

Table I, the value of gene 3 is set to 0 when the values of genes x3(t) and x1(t) are 0

and 0, respectively.

The intervention objective for these two networks is to down-regulate the Wnt5a,

because this gene ceasing to be down-regulated is strongly predictive of the onset of

metastasis. We will present two intervention methods using the constructed PBNs,

with the aim of down-regulating the Wnt5a gene. These models are used because the
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Table I. Constituent network fff1.

1 1 0 1 0 0 1

1 0 0 0 0 0 0

1 1 1 1 1 0 1

1 1 1 1 1 0 1

1 1 0 1 0

0 0 0 1 1

0 1 0 1 1

0 1 0 1 0

3 5 7

2 6 1

3 1

2 4 7

3 7

5 7 1

3 7 1

Table II. Constituent network fff 2.

0 0 0 1 1 0 1

1 0 0 1 0 0 1

0 1 1 1 1 1 0

1 1 1 1 1 1 1

1 0 0

0 1 1

0 0 1

0 1 1

2 6 1

2 6

2 5

2 4 7

3 4

2 5

5 7
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Table III. Constituent network fff 3.

1 0 0 0 1 0 1

1 1 0 0 0 0 0

1 1 1 0 0 1 0

0 0 0 0 0 1 1

1 1 1 1 1

1 0 1 1 1

0 0 0 1 0

1 0 1 1 1

4 5 6

4 5

2 4 1

4 7 1

3 7 1

3 5 6

4 6

Table IV. Constituent network fff4.

1 1 0 0 1 1 1

1 0 0 1 0 0 1

1 1 1 1 1 1 0

1 0 0 1 1 1 1

0 1 0 0 0

0 1 0 0 1

1 1 0 0 1

0 1 1 1 1

2 5 6

2 4 7

2 5 7

2 6

3 6 7

3 6 1

6 7
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relation of Wnt5a to metastasis is well established and the binary nature of the up

or down regulation suits a binary model.

The first step in devising any therapeutic intervention is to designate desirable

and undesirable states. This depends upon the existence of relevant biological knowl-

edge. In these particular examples, our prior knowledge indicates that the status of

Wnt5a relates to metastasis in melanoma tumors. A state is desirable if Wnt5a is 0

and undesirable if Wnt5a is equal to 1.

B. Mutated Mammalian Cell Cycle: Context-Sensitive Probabilistic Boolean Net-

work

We consider a context-sensitive PBN that is a probabilistic generalization of the

Boolean model proposed in [29] for mammalian cell-cycle regulation. This context-

sensitive PBN postulates the mammalian cell cycle with a mutated phenotype. Mu-

tated cells grow in the absence of extra-cellular growth factors [14].

During the late 1970s and early 1980s, yeast geneticists identified the cell-cycle

genes encoding for new classes of molecules, including the cyclins (so-called because

of their cyclic pattern of activation) and their cyclin dependent kinase (cdk) partners

[29]. Our model is rooted in the work of Faure et al., who have recently derived and

analyzed the Boolean functions of the mammalian cell cycle [29]. Using these Boolean

functions, the authors have been able to quantitatively reproduce the main known

features of the wild-type biological system, as well as the consequences of several

types of mutations.

Mammalian cell division is tightly controlled. In a growing mammal, the cell

division should coordinate with the overall growth of the organism. This coordination

is controlled via extra-cellular signals. These signals indicate whether a cell should
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divide or remain in a resting state. The positive signals, or growth factors, instigate

the activation of Cyclin D (CycD) in the cell.

The key genes in this model are CycD, retinoblastoma (Rb), and p27. Rb is a

tumor-suppressor gene. This gene is expressed in the absence of the cyclins, which

inhibit Rb by phosphorylation. Whenever p27 is present, Rb can be expressed even

in the presence of CycE or CycA. Gene p27 is active in the absence of the cyclins.

Whenever p27 is present, it blocks the action of CycE or CycA. Hence, it arrests

the cell cycle. Table V summarizes the Boolean functions of the wild-type cell cycle

network, and Figure 6 depicts its regulatory graph.

Table V. Wild-type Boolean functions of mammalian cell cycle.

Product Predictors

CycD Input

Rb (CycD ∧ CycE ∧ CycA ∧ CycB) ∨ (p27 ∧ CycD ∧ CycB)

E2F (Rb ∧ CycA ∧ CycB) ∨ (p27 ∧Rb ∧ CycB)

CycE (E2F ∧ Rb)

CycA (E2F ∧ Rb ∧ Cdc20 ∧ (Cdh1 ∧ UbcH10)) ∨ (CycA ∧Rb ∧ Cdc20 ∧ (Cdh1 ∧ UbcH10))

p27 (CycD ∧ CycE ∧ CycA ∧ CycB) ∨ (p27 ∧ (CycE ∧ CycA) ∧ CycB ∧ CycD)

Cdc20 CycB

Cdh1 (CycA ∧ CycB) ∨ (Cdc20)

UbcH10 (Cdh1) ∨ (Cdh1 ∧ UbcH10 ∧ (Cdc20 ∨ CycA ∨ CycB))

CycB (Cdc20 ∧ Cdh1)

The preceding explanation represents the wild-type cell-cycle model. Following

one of the proposed mutations in [29], we assume that p27 is mutated and its logical

rule is always zero (OFF). In this cancerous scenario, p27 can never be activated.

As we mentioned earlier, whenever p27 is present, Rb can be expressed even in the

presence of CycE or CycA. For the mutated cell-cycle network, however, p27 is always

zero and Rb cannot be expressed in the case where CycD is not present but CycE or
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Fig. 6. The regulatory graph of the mammalian cell cycle network as it was presented

in Faure et al. Each node represents the activity of a key regulatory element.

Blunt arrows stand for inhibitory effects, normal arrows for activations.

CycA is active. This mutation introduces a situation where both CycD and Rb might

be inactive. As a result, in this mutated phenotype, the cell cycle continues in the

absence of any growth factor. In other words, we consider the states in which both

Rb and CycD are down-regulated as undesirable states, when p27 is mutated. Ta-

ble VI summarizes the mutated Boolean functions, governing the interactions among

components in the regulatory graph in Figure 7.

The Boolean functions in Table VI are used to construct a context-sensitive PBN
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Table VI. Mutated Boolean functions of mammalian cell cycle.

Product Predictors

CycD Input

Rb (CycD ∧ CycE ∧ CycA ∧ CycB)

E2F (Rb ∧ CycA ∧ CycB)

CycE (E2F ∧ Rb)

CycA (E2F ∧ Rb ∧ Cdc20 ∧ (Cdh1 ∧ UbcH10)) ∨ (CycA ∧Rb ∧ Cdc20 ∧ (Cdh1 ∧ UbcH10))

Cdc20 CycB

Cdh1 (CycA ∧ CycB) ∨ (Cdc20)

UbcH10 (Cdh1) ∨ (Cdh1 ∧ UbcH10 ∧ (Cdc20 ∨ CycA ∨ CycB))

CycB (Cdc20 ∧ Cdh1)

model for the cell cycle [14]. The extra-cellular signal to the cell-cycle model is con-

sidered to be a latent variable. The growth factor is not part of the cell and its value

is determined by the surrounding cells. The expression of CycD changes indepen-

dently of the cell’s content and reflects the state of the growth factor. Depending on

the expression status of CycD, we obtain two constituent Boolean networks for the

PBN. As shown in Figure 8, the first constituent Boolean network is determined from

Table VI when the value of CycD is equal to zero. Similarly, the second constituent

Boolean network is determined by setting the value of CycD to one according to Fig-

ure 8. To completely define the context-sensitive PBN, the probability of switching

the context, the probability that a gene perturbs, and the probability distribution of

selecting each constituent network have to be specified. We assume that these are

known. Here, we set the switching and the perturbation probabilities each equal to

0.001, and assume that the two constituent networks are equally likely.

According to Table VI, the mutated cell-cycle PBN consists of nine genes: CycD,

Rb, E2F, CycE, CycA, Cdc20, Cdh1, UbcH10, and CycB. The above order of genes is

used in the binary representation of the states of the context-sensitive PBN, with the
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context of the networks, CycD, as the most significant bit. Rb is in the most significant

position in the gene-activity profiles and CycB is placed at the least significant bit.

Choosing CycD and Rb as the most significant bits in the state representation

of the context-sensitive PBN facilitates the characterization of the undesirable states.

We assume that the simultaneous down-regulation of CycD and Rb, i.e. the cell

growth in the absence of growth factors, is undesirable. Consequently, the state-space

is readily partitioned into undesirable and desirable states. As mentioned earlier,

application of any system-based therapeutic method with external control requires the

designation of desirable and undesirable states, and this depends upon the existence

of relevant biological knowledge. In the cell-cycle example when p27 is mutated, the

functionality of the network suggests that the states in which both Rb and CycD are

down-regulated should be avoided. Hence, in the binary representation of states in

Z, a state is undesirable if its two most significant positions have value 1, otherwise

it is a desirable state.

C. Mutated Mammalian Cell Cycle: Semi-Markov Asynchronous Regulatory Net-

work

In this section, we present an SM-ARN that is devised using the context-sensitive

PBN of mammalian cell cycle in Section III.B. The constructed SM-ARN postulates

the cell-cycles with mutated phenotype in which cell cycle cannot be arrested in the

absence of extra-cellular growth factors.

The Boolean functions in Table VI are used to construct the embedded-PBN of

the cell-cycle’s SM-ARN. The defined embedded-PBN maintains the topology of the

oriented graph generated by the predictors in Table VI. To this end, we assume that

the extra-cellular signal to the cell-cycle model is a latent variable. The growth factor
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is not part of the cell and its value is determined by the surrounding cells. The ex-

pression of CycD changes independently of the cell’s content and reflects the state of

the growth factor. Depending on the expression status of CycD, we obtain two real-

ization networks for the embedded-PBN. The first realization network is determined

from Table VI when the value of CycD is equal to zero. Similarly, the second real-

ization network is determined by setting the variable of CycD to one. To completely

define the embedded-PBN, the switching probability, the perturbation probability,

and the probability of selecting each constituent Boolean network have to be speci-

fied. We assume that these are known. Here, we set the switching probability and

the perturbation probabilities equal to 0.001, and assume that the two constituent

Boolean networks are equally likely.

We also have to specify the inter-transition interval distributions between the

states to fully define the cell-cycle’s SM-ARN. Although to date, the lack of sufficient

time-course data has prohibited the inference of any realistic asynchronous networks;

the situation is expected to improve in the future with the advent of new experimental

technique. Here, we simply assume that all inter-transition intervals between states

are exponentially distributed. If τ(zzz1, zzz2) is the sojourn time in state zzz1 ∈ Z before

transition to state zzz2 ∈ Z, then we need the rate of the transition from state zzz1 to

state zzz2 to specify its distribution. We use the gene-expression data to determine

the probability of the transition from state zzz1 to state zzz2 in the embedded-PBN in

Equation (2.18). We assume that the rate of the transition from state zzz1 to state zzz2

is assigned such that

Pr
{

τ(zzz1, zzz2) < min
zzz∈Z
zzz 6=zzz1

τ(zzz1, zzz)
}

= pzzz1
(zzz2). (3.1)

In other words, the probability of the first transition out of state zzz1 to state zzz2 is

equal to the transition probability pzzz1
(zzz2). The left side of Equation (3.1) can be
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determined for exponentially distributed sojourn times.
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Fig. 7. The regulatory graph for the postulated mammalian cell cycle network with

mutation. It is assumed that p27 is mutated and its logical state is always zero

(OFF). Each node represents the activity of a key regulatory element. Blunt

arrows stand for inhibitory effects, normal arrows for activations.
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Constituent BN1 Constituent BN2

Fig. 8. The regulatory graphs of the two constituent Boolean networks used to con-

struct a context-sensitive PBN for the mutated mammalian cell cycle.
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CHAPTER IV

INTERVENTION IN SYNCHRONOUS MARKOVIAN REGULATORY

NETWORKS ∗

The main objective of intervention in a regulatory network is to reduce the likelihood

of encountering the undesirable states associated with aberrant cellular functions. To

formulate the problem of intervention in a synchronous Markovian regulatory network,

its transition probability matrix must be derived. This has been accomplished for

PBNs in Chapter II. In this chapter, the task of finding the most effective intervention

strategy is formulated as a classical sequential decision making problem, which is

referred to as classical intervention.

For a pre-defined cost of intervention and a cost-per-stage function that discrim-

inates between the states of the system, the objective of the decision maker becomes

minimizing the expected total cost associated with the progression of the system.

That is, given the state of the system, an effective intervention strategy identifies

which action to take so as to minimize the overall cost. Consequently, the devised

intervention strategy can be used as a therapeutic strategy that alters the dynamics

of aberrant cells to reduce the long-run likelihood of undesirable gene-activity profiles

favorable to the disease. It is evident that the intervention strategy specified by the

sequential decision maker is directly affected by the form of the transition probability

matrix associated with a synchronous Markovian network.

In PBNs, where genes are updated simultaneously, appropriate transition prob-

ability matrices that act on the states of the oriented graphs are sufficient to fully

∗ c© 2009, EURASIP. Reprinted, with permission, from EURASIP Journal on Bioin-
formatics and Systems Biology, Intervention in context-sensitive probabilistic Boolean
networks revisited, B. Faryabi, G. Vahedi, J.-F. Chamberland, A. Datta, and E. R.
Dougherty.
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describe the dynamics in equations (2.12) and (2.2). For an instantaneously random

PBN, the state-space consists of gene-activity profiles while for a context-sensitive

PBN, the state-space composed of ordered pairs of context and gene-activity profile.

Methods have been proposed that use information in these transition probability

matrices to devise effective therapeutic strategies [6, 7]. The first proposed interven-

tion strategies involve resetting the state of the regulatory graph of an instantaneously

random PBN, as necessary, to a more desirable initial state and letting the network

evolve from there [28], or changing the steady-state (long-run) probability distribu-

tion of the network by minimally altering its rule-based structure [45]. Subsequent to

these early proposals, the major effort has focused on manipulating external (control)

variables that affect the transition probability distributions of the regulatory graph

of PBN and can, therefore, be used to desirably affect its dynamical evolution [6].

An effective intervention strategy specifies how control variables should be ma-

nipulated. The effects of an intervention strategy that is beneficial in the short-term

may wear out over time. Thus, it is important to look for intervention strategies that

consider the long-run effects. In the framework of PBNs, the theory of infinite-horizon

Markov decision process has been employed to find optimal intervention strategies

with respect to the defined objective functions [6]. Throughout this volume, we refer

to this method as classical intervention.

A. Classical Intervention in Context-Sensitive Probabilistic Boolean Networks

We can formulate the task of finding the most effective intervention strategy as a

sequential decision making problem, when the dynamics of a context-sensitive PBN

are expressed according to (2.2). Altering the long-run likelihood of states favorable

to a pathological cell functionality is the objective of the decision maker. For a pre-
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defined cost of intervention and a cost-per-stage function that discriminates between

the states of the system, the objective of the decision maker is to minimize the

accumulated expected cost associated with the progression of the system. That is,

given the state of the system, an effective intervention strategy identifies which action

to take so as to minimize the overall expected cost.

To be more precise, in the presence of an external regulator, we suppose that

the context-sensitive PBN has a binary intervention input ug(t) on the control gene

g. The intervention input ug(t), which takes values in set C = {0, 1}, specifies the

action on the control gene g. Treatment alters the status of the control gene g, which

can be selected from all the genes in the network. If treatment is applied, ug(t) = 1,

then the state of the control gene g is toggled; otherwise the state of the control gene

g remains unchanged.

For the case of a single control gene g, the system evolution is represented by a

stationary discrete-time equation

zzz(t+ 1) = f(zzz(t), ug(t), w(t)) t = 0, 1, . . . (4.1)

where the state zzz(t) is an element of Z; and similar to the context-sensitive PBN

without control, w(t) is the manifestation of uncertainties in the model.

The transition probability matrix for the controlled context-sensitive PBN can

be defined easily, once the transition probability matrix of the uncontrolled system

is known. Originating from a state zzz1, the successor state zzz2 is selected randomly

within set Z according to the transition probability distribution

Pzzz1
(zzz2; u)

△
= Pr(zzz(t+ 1) = zzz2|zzz(t) = zzz1, ug(t) = u) (4.2)

for all zzz1, zzz2 ∈ Z and all u ∈ C.

The elements of the transition probability matrix of the controlled context-
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sensitive PBN given by (4.2) can then be expressed through (2.11). The value of

state after intervention zzz1 = (κ1,xxx1) can be determined according to the status of the

control signal and the value of the state prior to the intervention ẑzz1 = (κ̂1, x̂xx1). Here,

κ1 is equated to κ̂1, and the value of the GAP is updated according to the value of

the control signal in the devised strategy according to

xxx1 = (x̂xx1 ⊕ eg)111(ug(ẑzz1) = 1) + x̂xx1111(ug(ẑzz1) = 0)· (4.3)

All the 2n elements of vector eg are zeros except the element at the gth position,

which is set to one.

To define the problem of intervention in a context-sensitive PBN, we associate

a cost-per-stage c(zzz1, zzz2, u) to each possible event. In general, the cost-per-stage can

depend on the origin state zzz1, the successor state zzz2, and the control input u. We

define the average immediate cost in state zzz1, when control u is selected, by

c(zzz1, u) =
∑

zzz2∈Z

Pzzz1
(zzz2; u)c(zzz1, zzz2, u). (4.4)

We consider a discounted formulation of the expected total cost. The discounting

factor, λ ∈ (0, 1), ensures convergence of the expected total cost over the long-run [46].

In the case of cancer therapy, the discounting factor also emphasizes that obtaining

treatment at an earlier stage is favored over later stages.

Given the system is initiated from state zzz0, the sequential decision maker searches

for an optimal strategy π∗, one that minimizes the expected total discounted cost over

the long-run progression of the PBN:

Jπg
(zzz0) = lim

N→∞
E

[

N−1
∑

t=0

λtc(zzz(t), zzz(t+ 1), µg(zzz(t), t))
∣

∣

∣

∣

zzz(0) = zzz0

]

· (4.5)

A strategy πg = {µµµg(·, 0),µµµg(·, 1), . . .} is a sequence of decision rules µµµg(·, t) for

each updating epoch t acting on control gene g, given that the initial state is zzz0. In
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general, a decision rule µµµg(·, t) at updating epoch t selects action ug(t) according to

the history of the system as well as the current state. The history h(t) at the updating

epoch t is composed of the sequence of previous states and actions. If the history

h(t) is observed at the updating epoch t, then the decision rule µµµg(·, t) determines

the probability of selecting action u conditioned on the history h(t) and the current

state z(t). We denote the set of all such strategies by Πg, when gene g is selected as

the control gene. The set Πg(M) is the subset of Markovian strategies within the set

of all strategies Πg defined above. A strategy is Markovian if given the current state

zzz(t) the decision rule µµµg(·, t) = µµµg(zzz(t), t) : Z → C is independent of all the previous

states and actions h(t), and selects action u with probability µµµg(t, u|zzz(t)) at decision

epoch t. We denote the set of all stationary strategies by Πg(S), where a stationary

strategy for control gene g is an admissible intervention strategy in Πg(M) of the form

πg = {µµµg(·),µµµg(·), . . .}. Here, µµµg denotes a time invariant decision rule. A stationary

strategy is also a deterministic strategy if decision rule µµµg : Z → C is deterministic

and time invariant for each updating epoch t. The set of all deterministic strategies

is represented by Πg(D).

The sequential decision maker in the classical intervention seeks an admissible

deterministic intervention strategy π∗
g = {µµµ∗

g(.),µµµ
∗
g(.), . . .} in Πg(D) that minimizes

the expected total cost Jπg
(zzz0) for each initial state zzz0 ∈ Z. Mathematically, an

optimal classical strategy π∗
g is a solution of the optimization problem

π∗
g(zzz0) = arg min

πg∈Πg(D)
Jπg

(zzz0), ∀zzz0 ∈ Z. (4.6)

An optimal strategy π∗
g is a time-invariant sequence of decision rules for each updating

epoch t acting on the control gene g.

For the specifics of our formulation, an optimal strategy always exists [46]. It is
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given by the fixed-point solution of the Bellman optimality equation

J∗(zzz1) = min
u∈C



c(zzz1, u) + λ
∑

zzz2∈Z

Pzzz1
(zzz2; u)J

∗(zzz2)



 . (4.7)

Moreover, this optimal strategy is stationary and independent of the initial state

zzz0 [46]. In general, a decision rule at updating epoch t selects action ug(t) according

to the history of the system as well as the current state, but for the specifics of classical

intervention an optimal strategy resides in the set of deterministic strategies Πg(D).

Standard dynamic programming algorithms can be used to find a fixed-point of the

Bellman optimality equation. In our model, gene perturbation ensures that all the

states communicate with one another. Hence, the Markov decision process associated

with any stationary strategy is ergodic and has a unique invariant distribution equal

to its limiting distribution [34].

B. Classical Intervention in the Metastatic Melanoma Context-Sensitive Probabilis-

tic Boolean Network

In this section, the strategy designed by classical intervention is employed to control

the Wnt5a-related context-sensitive PBN in Chapter III. As noted in Section III.A,

the intervention objective is to down-regulate Wnt5a. The gene Wnt5a ceasing to be

down-regulated is strongly predictive of the onset of metastasis.

Here, we also compare the performance of intervention strategies designed based

on the instantaneously random PBN and context-sensitive PBN when they are used to

control the dynamics of context-sensitive network. If the active constituent network of

the context-sensitive PBN is not observable at each instant, then one may simply use

the intervention strategy design based on the equivalent instantaneously random PBN

to intervene in a context-sensitive PBN. This Markov approximation to the hidden-
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Markov model of context-sensitive PBN approximates the design of an intervention

strategy by removing the context from the state-space of dynamic system. This

means that decisions must be made without explicit knowledge of the context, and

therefore without full knowledge of the system state, which is composed of a context

and a gene-activity profile. As such, we would like to evaluate the effectiveness of the

intervention strategy based on the instantaneously random PBN when it is used to

control the actual context-sensitive PBN. This approach simplifies the task of finding

intervention strategies by describing the dynamics of a context-sensitive PBN via the

instantaneously random PBN with similar parameters, whose state space takes values

from the set of all possible GAPs X . We expect that the intervention devised based

on instantaneously random PBN be mostly accurate when contexts switch frequently.

A number of other intervention studies based on the same data have aimed to

down-regulate Wnt5a. This model has been used since the discovery of the relation

between Wnt5a and metastasis. The binary nature of the up or down regulation

suits our binary model. A state is desirable, i.e. belongs to D, if Wnt5a = 0, and

undesirable, i.e. belongs to U , if Wnt5a = 1. As we mentioned earlier, application

of intervention requires the designation of desirable and undesirable states, and this

depends upon the existence of relevant biological knowledge. The use of Wnt5a is one

such example where the knowledge of practitioners is incorporated in a theoretical

framework. Based on our objective, the states are assigned penalties according to the

cost-per-stage

c(zzz, u) =



















































0 if u = 0 and zzz ∈ D,

10 if u = 0 and zzz ∈ U ,

c if u = 1 and zzz ∈ D,

10 + c if u = 1 and zzz ∈ U .

(4.8)
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where c is the cost of control; and U , D are the sets of undesirable and desirable

states, respectively. We set c = 1 to make the application of intervention more

plausible compared to visiting undesirable states.

Since our objective is to down-regulate Wnt5a, a higher penalty is assigned for

states having Wnt5a up-regulated. Also, for a given Wnt5a status, a higher penalty

is assigned when the control signal is active versus when it is not. In practice, the

cost values have to mathematically capture the benefits and costs of intervention and

the relative preference of states. They must be set with the help of physicians in

accordance with their clinical judgement. Although this is not feasible within the

realm of current medical practice, we believe that such an approach will become

feasible when engineering approaches are integrated into translational medicine.

Different genes in the network (except Wnt5a itself) are employed as control

genes. Two intervention strategies are computed by solving the Bellman optimality

equation in (4.7): (1) an optimal strategy based on the transition probability dis-

tributions of context-sensitive PBN in (2.11); (2) an approximate strategy from the

equivalent instantaneously random PBN described by distributions in Equation (2.13)

are derived.

The devised strategy from the transition probability distributions of context-

sensitive PBN µµµ∗
g : Z → C specifies the action that should be taken at each time step.

The second strategy, which is based on the instantaneously random PBN, only takes

the GAP as its input. Since the performance of the latter strategy must be evaluated

with respect to the dynamics specified by the context-sensitive PBN, we need to

extend it to elements of Z. This is achieved by simply disregarding the context

element of state zzz(t), and determining the action based on its GAP element. We

denote the resulting intervention strategy obtained through instantaneously random

PBN by µ̂µµg : Z → C.
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The effectiveness of an intervention strategy can be evaluated by computing the

difference between its induced cost and the cost accumulated in the absence of inter-

vention. For the Wnt5a-related context-sensitive PBN, we estimate the expected total

discounted cost J̄µµµ∗
g
induced by the given optimal strategy µµµ∗

g. To this end, we generate

synthetic time-course data for a number of time steps from the transition probability

matrix of the Wnt5a-related context-sensitive PBN, while intervening based on op-

timal strategy µµµ∗
g. We estimate the total cost by accumulating the discounted cost

of each state given the action at that state. This procedure is repeated for a num-

ber of random initial states, and the average of the induced total discounted costs is

computed. Following a similar procedure, the approximate strategy µ̂µµg is applied to

the system, and the average total discounted cost J̄µ̂µµg
is computed. Finally, we com-

pute the average total discounted cost J̄ for time-course data when no intervention

is applied.

We consider the percentage of reduction in the average total discounted cost as

a performance metric. The normalized gain obtained by each intervention strategy

is taken as the immediate consequence of the intervention formulation. This metric

is defined as the difference between the average total discounted cost before and

after intervention, normalized by the cost before intervention. The normalized gain

corresponding to the optimal strategy µµµ∗
g is

∆JE
g =

J̄ − J̄µµµ∗
g

J̄
, (4.9)

and the normalized gain corresponding to the strategy derived from the approximate

method µ̂µµ is

∆JA
g =

J̄ − J̄µ̂µµg

J̄
· (4.10)

Figure 9 depicts the normalized gains when the optimal and approximate strate-
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gies for each control gene are used to intervene in the context-sensitive PBN. To

compute the normalized gains, we computed the costs for ten thousand trajectories

of length two hundred thousand. As we expected, the optimal strategy outperforms

the approximate strategy significantly for all the control genes. Moreover, for the

best control gene S100p, the difference between the two strategies is the greatest.
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Fig. 9. ∆JE
g and ∆JA

g are computed for the Wnt5a network for various control genes.

As a byproduct of the intervention formulation, we also consider the effect of

an intervention strategy µµµg on the amount of change in the steady-state probability

of undesirable states before and after the intervention. For each set of constituent
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networks and for a given switching probability, we compute ∆PE
g and ∆PA

g . These

are the normalized reduction in the total probability of visiting undesirable states in

the long run for a given context-sensitive PBN when strategies µµµ∗
g and µ̂µµg are applied

to the context-sensitive PBN, respectively. In other words, we define

∆PE
g =

∑

zzz∈U π(zzz)−
∑

zzz∈U πµµµ∗
g
(zzz)

∑

zzz∈U π(zzz)
, (4.11)

and

∆PA
g =

∑

zzz∈U π(zzz)−
∑

zzz∈U πµ̂µµg
(zzz)

∑

zzz∈U π(zzz)
, (4.12)

where πµµµ∗
g
(zzz) is the probability of being in state zzz in the long run under optimal strat-

egy µµµ∗
g; πµ̂µµg

(zzz) is the probability of being in state zzz in the long run under approximate

strategy µ̂µµg; and π(zzz) is the probability of being in state zzz in the long run when no

control is applied.

Figure 10 depicts the effects of the optimal and approximate strategies on the

normalized reduction in the aggregated long-run probability of visiting undesirable

states ∆PE
g and ∆PA

g , respectively. Here, the strategy based on the S100p outperforms

the strategies devised for other control genes. Note that the performance differences

are not significant for most of the control genes. In particular, one should not draw

any conclusions from the fact that ∆PE
g is slightly less than ∆PA

g in a couple of cases.

The intervention strategy is designed to minimize the total cost and the improvement

in the steady-state behavior is a side effect of our method.

In practice, treatment options, such as chemotherapy, have detrimental side ef-

fects. A large number of interventions can cause collateral damage that reduces a

patient’s quality of life. Thus, we define the quantity Γµµµg
as the expected number

of interventions when the strategy µµµg is applied in the long run to gauge these side

effects. In particular, ΓE
g and ΓA

g are the expected numbers of executed interven-
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Fig. 10. ∆PE
g and ∆PA

g are computed for the Wnt5a network for various control genes.

tions in the long run using the optimal strategy µµµ∗
g and the approximate strategy µ̂µµg,

respectively. We define

ΓE
g =

∑

zzz∈Z

πµµµ∗
g
(zzz)111

(

µ∗
g(zzz) = 1

)

, (4.13)

and

ΓA
g =

∑

zzz∈Z

πµ̂µµg
(zzz)111

(

µ̂g(zzz) = 1
)

, (4.14)

where πµµµ∗
g
(zzz) and πµ̂µµg

(zzz) have similar definitions as in (4.11) and (4.12).
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We compare the expected number of executed interventions using the difference

in empirical averages, denoted by ∆Γg = ΓA
g − ΓE

g . Figure 11 shows the difference

between the expected number of executed interventions for the optimal strategy and

the one derived from the approximating the network by its equivalent instantaneously

random PBN. Note that the approximate strategy µ̂µµg based on the most effective

control gene S100p applies 35% more interventions compared to the optimal strategy,

while its performance is still worse.
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Fig. 11. ∆Γg is computed for the Wnt5a network for various control genes.
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CHAPTER V

INTERVENTION IN ASYNCHRONOUS MARKOVIAN REGULATORY

NETWORKS ∗

As it was elaborated in Chapter II, the asynchronous regulatory networks can poten-

tially provide more effective intervention strategies. They enable us to more accu-

rately describe the pathological cellular function of interest given our ability to per-

form satisfactory inference. However, we cannot readily apply classical intervention

to search for effective therapeutic interventions in asynchronous networks. We intro-

duce alternative sequential decision making techniques in this chapter. These com-

putational tools enable us to find intervention strategies based on the asynchronous

networks introduced in Chapter II.

First, we provide a methodology to derive effective intervention strategies for DA-

PBNs. We show that the design of optimal intervention strategies for DA-PBNs can

be mapped to the classical intervention method, although its corresponding oriented

graph has a larger state space.

We resort to a synchronization method to intervene in a DA-PBN defined in

Section II.B. A price in terms of computational complexity has to be paid for syn-

chronizing the model. This synchronization procedure translates the problem of in-

tervention in a DA-PBN to infinite-horizon discrete-time sequential decision making.

This mapping augments the state-space of a PBN, specified by the logical rules of the

DA-PBN, with the necessary timing history of the DA-PBN. The augmented state-

∗ c© 2008, IEEE. Reprinted, with permission, from IEEE Journal of Se-
lected Topics in Signal Processing, Optimal intervention in asynchronous
genetic regulatory networks, B. Faryabi, J.-F. Chamberland, G. Va-
hedi, A. Datta, and E. R. Dougherty. For more information go to
http://thesis.tamu.edu/forms/IEEE%20permission%20note.pdf/view.
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space has a considerably higher dimension. Once the oriented graph of a DA-PBN is

represented by a Markov chain with augmented state-space, the classical intervention

is applicable to this asynchronous model with slight modifications.

Appropriately formulating the problem of intervention in an SM-ARN, we devise

an effective intervention strategy that minimizes the time that the system spends in

undesirable states. Designing optimal intervention strategies based on the SM-ARN

model involves results from the theory of continuous-time Markov decision processes.

We formulate the problem of intervention in SM-ARN with an arbitrary inter-

transition interval distribution in Section V.B. We find optimal strategies with respect

to well-defined cost functions that minimizes the duration that the system spends in

undesirable states specified by rate-of-cost functions.

A. Intervention in Deterministic-Asynchronous Probabilistic Boolean Networks

Although the definition of a DA-PBN enables us to study the behavior of a regulatory

network in the long run, it does not provide a systematic means for its alteration.

We propose a synchronization method for DA-PBNs. The synchronization method

provides a synchronous version of a DA-PBN’s oriented graph. The synchronized

oriented graph sets the stage for designing optimal intervention strategies to effectivey

alter the dynamical behavior of DA-PBNs.

As we explained in Chapter II, to study the dynamical behavior of an instanta-

neously random PBN, the gene-activity profile is considered as the state of its oriented

graph. The state space of a context-sensitive PBN is composed of ordered pairs of

context and gene-activity profile in the set Z.

In the synchronization of a DA-PBN, we augment the state of the oriented graph

and define the augmented logical state ẑzz(t). To synchronize the oriented graph of a
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DA-PBN, we encode all the dynamic steps within an interval of duration equal to the

least common multiple (LCM) of all the updating periods. The least common multiple

of all the updating periods ali in {ΘΘΘl}
k
l=1, for l ∈ {1, . . . , k} and i ∈ {1, . . . , n},

ξ = LCM (a11, . . . , a1n, . . . , ak1, . . . , akn) (5.1)

defines the number of a new elements m added to the vector of oriented graph state

zzz ∈ Z. The integer m is the smallest integer larger than the logarithm to the base 2

of ξ:

m = ⌈log2(ξ)⌉ . (5.2)

The value of m determined by equation (5.2) is a non-optimal number of elements

required to distinguish all the time steps within one ξ. Hence, the augmented logical

state of a DA-PBN at each time step t is composed of the context of the DA-PBN κ(t),

the GAP (x1(t), . . . , xn(t)), and additional m new elements (xn+1(t), . . . , xn+m(t)):

ẑzz(t) = (κ(t), x1(t), . . . , xn(t), xn+1(t), . . . , xn+m(t)) . (5.3)

Figure 12 shows the time instants at which the genes of a hypothetical three-

gene DA-PBN are updated. The updating function θl1 of x1 has the parameters

(al1 = 2, bl1 = 1). Similarly, the parameters of the updating functions of genes x2 and

x3 are (al2 = 2, bl2 = 0) and (al3 = 3, bl3 = 0), respectively. The pattern of updates is

repeated after each 6 updating instants. We can use three extra elements to code all

the instants in the duration of ξ = 6.

The evolution of a synchronized oriented graph with its augmented logical state-

space can be modeled by a stationary discrete-time equation

ẑzz(t+ 1) = f (ẑzz(t), w(t)) , (5.4)
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for t = 0, 1, . . ., where the augmented logical state ẑzz(t) is an element of the state-space

Ẑ = {(c, s) : c ∈ {1, . . . , k}, s ∈ {0, 1}n+m}. The disturbance w(t) is the manifesta-

tion of uncertainties in the DA-PBN. It is assumed that both the gene perturbation

distribution and the network switching distribution are independent and identical for

all time steps t.
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Fig. 12. Schematic of updating instants of genes of a DA-PBN with (al1 = 2, bl1 = 1),

(al2 = 2, bl2 = 0) and (al3 = 3, bl3 = 0). The pattern of updates is repeated at

each LCM ξ shown with a dashed-line box. Each marker indicates the instant

in which the corresponding gene updates its value.

Hence, an n-gene DA-PBN is modeled as a synchronous context-sensitive PBN

with the augmented state-space. The oriented graph of the synchronous context-

sensitive PBN with n+m elements is a Markov chain with (2n+m × k) states. Hence,

the oriented graph of the system described by equation (5.4) can be represented by a

Markov chain [31]. Originating from an augmented logical state ẑzz1 ∈ Ẑ, the successor
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augmented logical state ẑzz2 ∈ Ẑ is selected randomly within the set Ẑ according to

the transition probability

Pẑzz1
(ẑzz2)

△
= Pr (ẑzz(t+ 1) = ẑzz2|ẑzz(t) = ẑzz1) , (5.5)

for all ẑzz1 and ẑzz2 in Ẑ. Gene perturbation insures that all the states in the Markov

chain communicate with one another. Hence, the finite-state Markov chain is ergodic

and has a unique invariant distribution equal to its limiting distribution [34].

Now that the dynamical behavior of a DA-PBN is described by a Markov chain,

the theory of Markov decision processes can be utilized to find an optimal sequence

of actions similar to the method developed in Section IV.A.

Reducing the likelihood of visiting undesirable augmented logical states in the

long-run is the objective of the intervention problem. We suppose that the DA-

PBN has an external binary control inputs ug. The control ug(t) takes value in set

C = {0, 1} at each updating instant t. In the presence of external control, the system

evolution in (5.4) can be modeled by a discrete-time equation

ẑzz(t+ 1) = f (ẑzz(t), u(t), w(t)) for t = 0, 1, . . . (5.6)

Optimal intervention in the DA-PBN is then modeled as a classical intervention

with (2n+m × k) states, the state ẑzz(t) at any time step t being an augmented logical

state. Originating from state ẑzz1, the successor state ẑzz2 is selected randomly within

the set Ẑ according to the transition probability

Pẑzz1
(ẑzz2; u)

△
= Pr (ẑzz(t+ 1) = ẑzz2|ẑzz(t) = ẑzz1, ug(t) = u) . (5.7)

We associate a cost-per-stage c(ẑzz1, ẑzz2, u) to each intervention in the system. The

cost-per-stage could depend on the origin state ẑzz1, the successor state ẑzz2, and the

control input u. We also assume that the cost-per-stage is stationary and bounded
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for all states ẑzz1, ẑzz2, and all controls u ∈ C. The cost of a transition from a desirable

state to an undesirable state is the highest, and the cost of a transition from an

undesirable state to a desirable state is the lowest.

To define the intervention problem, we consider the discounted cost formulation,

per argument in Chapter IV. An optimal intervention strategy is then determined

applying the same procedure described in Section IV.A to the Markov decision process

defined here.

The intervention problem in a DA-PBN has a discrete-time formulation. On the

contrary, as we will show in the next section, the intervention problem in an SM-ARN

has a continuous-time formulation. The objective of intervention in the discrete-time

problem is to reduce the chance of visiting undesirable states. Since the time between

two consecutive epochs of a DA-PBN is fixed, the effect of intervention is equivalent

to the reduction of the time spent in undesirable states.

B. Intervention in Semi-Markov Asynchronous Regulatory Networks

In considering the stochastic control of an SM-ARN, we suppose that the SM-ARN

has a binary control input, so ug(t) ∈ C = {0, 1} describes the complete status of

the control input affecting the control gene g at time t. In the presence of external

control, the SM-ARN is modeled as a semi-Markov decision process.

At any time t, the state zzz(t) is selected from the set Z. Originating from state

zzz1, the successor state zzz2 is selected randomly within the set Z according to the

transition probability

pzzz1
(zzz2; u)

△
= Pr (zzz(tk+1) = zzz2|zzz(tk) = zzz1, ug(tk) = u) , (5.8)

for all zzz1 and zzz2 in Z and for all u in C. Moreover, the inter-transition interval



70

distribution is also a function of control ug(t):

Pzzz1zzz2
(τ ; u)

△
= Pr (τk+1 ≤ τ |zzz(tk) = zzz1, zzz(tk+1) = zzz2, ug(tk) = u) , (5.9)

for all states zzz1 and zzz2 in Z, and all actions u in C. The expressions (5.8) and (5.9)

are defined based on expressions (2.18) and (2.17), respectively.

We associate a rate-of-cost c(zzz(t), ug(t)) for sojourning in state zzz(t) per unit of

time while the action ug(t) is selected. Considering consecutive epoch times tk and

tk+1, the rate-of-cost c(zzz(t), ug(t)) is constant for all tk ≤ t < tk+1. It is equal to

c(zzz, u), whenever zzz(tk) = zzz and ug(tk) = u. The rate-of-cost of undesirable states is

higher than those for desirable states. We also consider the cost of applying a control

action, which increases the rate-of-cost of each state.

Figure 13 shows several epoch times of a hypothetical three-gene SM-ARN. We

assume that the undesirable states are the ones with an up-regulated gene in the most

significant position in the GAP. We then assign lower rate-of-costs to desirable states

0 through 3 compared to the undesirable states 4 through 7. Given that r1 and r2 are

the rate-of-costs when the model is in undesirable and desirable states, respectively,

the cost (t2 − t1)r2 gained between two epoch times t1 and t2 is higher than the cost

(t6 − t5)r2 gained between the two epoch times t5 and t6.

We desire an effective intervention policy that minimizes the accumulated cost

over time. In other words, we seek an intervention strategy to reduce the time spent

in undesirable states with higher rate-of-cost compared to desirable states with lower

rate-of-cost. In practice, the rate-of-cost have to capture the relative preferences for

the different states. For instance, the cost gained between the two epoch times t6 and

t7 may need to be greater than the cost gained between the two epoch times t1 and

t2. In order to penalize the sojourn time in undesirable states, the ratio of r1 to r2

should be large enough to capture the relative preference for the desirable states.
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If the intervals between any two epoch times in Figure 13 were equal, then the

problem of intervention in an SM-ARN would reduce to the intervention problem in

PBNs. In this intervention problem, the objective is to reduce the number of visits

to undesirable states, because the sojourn time in all states is the same, so that

reducing the number of visits to undesirable states is directly equivalent to reducing

the amount of time spent in these states.
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Fig. 13. Schematic of transitions in a hypothetical three-gene SM-ARN along with

their epoch times and cost during each sojourn interval. The total cost be-

tween two epoch times t1 and t2 is less than the total cost between two epoch

times t5 and t6.

For the reasons articulated in Chapter IV, we consider a discounted cost formu-

lation to define the expected total cost. If λ ∈ (0, 1) is the discounted factor per

unit time and we divide the time unit to small intervals δ, then at each interval the

discount is λ/δ, given the initial value is 1. Hence, (1− λ
δ
)δt represents the discount
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over t units of time. As δ goes to zero, the discount goes to e−λ t.

Among all admissible deterministic strategies Πg(D), the decision maker finds a

strategy πg = {µµµg(·),µµµg(·), . . .}, where µµµg : Z → C is the decision rule at time t, that

minimizes the expected total discounted cost. The expected total discounted cost,

given the policy πg and the initial state zzz0, is

Jπg
(zzz0) = lim

N→∞
E
[
∫ tN

0
e−λ tc (zzz(t), µg(zzz(t))) dt

∣

∣

∣

∣

zzz(t0) = zzz0

]

, (5.10)

where tN is the N -th epoch time. We seek a strategy π∗
g that minimizes the value

function for each state zzz0. An optimal intervention strategy is a solution of the

continuous-time decision making problem

π∗
g(zzz0) = arg min

πg∈Πg(D)
Jπg

(zzz0), ∀zzz0 ∈ Z. (5.11)

Intervention using the strategy π∗
g increases the time spent in desirable states de-

termined through appropriate assignment of rate-of-costs c(zzz(t), u(t)) to each state-

action pair (zzz(t), u(t)). We next present the solution to the optimization problem

(5.11).

Using the inter-transition interval distributions in (5.9) and the transition prob-

ability distributions in (5.8), one can define the joint transition distribution of an

inter-transition interval and the successor state, given the current state and control:

Qzzz1
(τ,zzz2; u)

△
= Pr (τk+1 ≤ τ,zzz(tk+1) = zzz2|zzz(tk) = zzz1, ug(tk) = u) . (5.12)

Consequently, the expected cost of a single transition from state z(tk) = zzz1 and

control ug(tk) = u

C(zzz1, u)
△
= E

[
∫ τ

0
e−λ tc(zzz1, u)dt

]

(5.13)

can be computed. Here, we have
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C(zzz1, u) = c(zzz1, u)E
[
∫ τ

0
e−λtdt

]

· (5.14)

Furthermore, we get

C(zzz1, u) = c(zzz1, u)Ezzz2

[

Eτ

[
∫ τ

0
e−λtdt

]
∣

∣

∣

∣

zzz2

]

, (5.15)

which in turn can be written as

C(zzz1, u) = c(zzz1, u)
∑

zzz2∈Z

pzzz1
(zzz2; u)

∫ ∞

0

(
∫ τ

0
e−λtdt

)

dQzzz1
(τ,zzz2; u)

pzzz1
(zzz2; u)

, (5.16)

that can be simplified as

C(zzz1, u) = c(zzz1, u)
∑

zzz2∈Z

∫ ∞

0

1− e−λτ

λ
dQzzz1

(τ,zzz2; u)· (5.17)

A recursive relation exists between the value function JN
πN

of stage N

JN
πN

(zzz0) =
N−1
∑

k=0

E
[
∫ tk+1

tk

e−λ tc (zzzk, µg(zzz(tk))) dt|zzz(t0) = zzz0

]

(5.18)

and the value function JN−1
πN−1

of stage (N − 1) based on the definition (5.10), given

the (N − 1)-stage policy πN−1 is the subset of the N -stage policy

πN = {µµµg(·, 0),µµµg(·, 1), . . . ,µµµg(·, N − 1)} when µµµg(·, 0) is excluded. We can express

(5.18) as

JN
πN

(zzz0) = C (zzz0, µg(zzz0)) + E
[

e−λτJN−1
πN−1

(zzz1)
∣

∣

∣

∣

zzz(t0) = zzz0, µg(zzz(t0)) = µg(zzz0)
]

(5.19)

using expression (5.17). This expression can be further modified to
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JN
πN

(zzz0) = C (zzz0, µg(zzz0)) + Ezzz1









Eτ

[

e−λτ

∣

∣

∣

∣

zzz1

]

JN−1
πN−1

(zzz1)

∣

∣

∣

∣

zzz(t0) = zzz0, µg(zzz(t0)) = µg(zzz0)









,

(5.20)

given τ is the first random inter-transition interval and zzz1 is the successor state. Then

we can rewritten (5.20) as

JN
πN

(zzz0) = C (zzz0, µg(zzz0))+
∑

zzz1∈Z

pzzz0
(zzz1;µg(zzz0))

(

∫ ∞

0
e−λτ dQzzz0

(τ,zzz1;µg(zzz0))

pzzz0
(zzz1;µg(zzz0))

)

JN−1
πN−1

(zzz1)·

(5.21)

Finally, by simplifying expression (5.21), we obtain a recursive relation between the

value function JN
πN

of stage N and the value function JN−1
πN−1

of stage (N − 1);

JN
πN

(zzz0) = C (zzz0, µg(zzz0)) +
∑

zzz1∈Z

∫ ∞

0
e−λτdQzzz0

(τ,zzz1;µg(zzz0))J
N−1
πN−1

(zzz1). (5.22)

where zzz(tk) = zzzk. Equation (5.22) can be rewritten as

JN
πN

(zzz0) = C (zzz0, µg(zzz0)) +
∑

zzz1∈Z

m(zzz0, zzz1, µg(zzz0))J
N−1
πN−1

(zzz1), (5.23)

where m(zzz0, zzz1, u) is defined as

m(zzz0, zzz1, u)
△
=
∫ ∞

0
e−λτdQzzz0

(τ,zzz1; u). (5.24)

Equation (5.23) is similar to the Bellman optimality equation in dynamic pro-

gramming algorithms, in which the expected immediate cost is replaced by C(zzz0, u),

which is the expected cost of a single transition from state zzz0 under control µg(zzz0, 0) =

u, and λ× pzzz0
(zzz1; u) is replaced by m(zzz0, zzz1, u). Hence, the optimal value function is
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the unique fixed-point of the Bellman optimality equation

J∗(zzz0) = min
u∈C



C(zzz0, u) +
∑

zzz1∈Z

m(zzz0, zzz1, u)J
∗(zzz1)



 . (5.25)

Using (5.17) and (5.24), we can compute the expected single transition cost

C(zzz0; u) and m(zzz0, zzz1, u), respectively, for any SM-ARN. These values define the

Bellman optimality equation (5.25). Any numerical method that solves the classical

intervention optimization, e.g. value iteration, can be used to find the fixed-point

of (5.25), and also provides an optimal intervention strategy which is a solution to

optimization (5.11). Here, we consider three hypothetical cases for the inter-transition

interval distribution. For each case, we formulate the Bellman optimality equation

(5.25).

1. Discrete Distribution

We postulate that the duration of the transcription of a specific gene is almost fixed,

given the expression status of other genes in the network. Due to latent variables, we

assume that this value is drawn from a set of possible values {τzzz0zzz1
(k, u)}k=1,...,m with

probabilities {̺zzz0zzz1
(k, u)}k=1,...,m. Using (5.17), we have

C(zzz0, u) = c(zzz0, u)
∑

zzz1∈Z

m
∑

k=1

1− exp (−λ τzzz0zzz1
(k, u))

λ
pzzz0

(zzz1; u) ̺zzz0zzz1
(k, u). (5.26)

The value of C(zzz0, u) can easily be computed.

Using (5.24), we have

m(zzz0, zzz1, u) =
m
∑

k=1

pzzz0
(zzz1; u) ̺zzz0zzz1

(k, u) exp (−λ τzzz0zzz1
(k, u)), (5.27)

so m(zzz0, zzz1, u) can also be computed. Having (5.26) and (5.27), we appropriately

formulate the Bellman optimality equation (5.25) for inter-transition interval with

discrete distribution.
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2. Uniform Distribution

We assume that, given the expression status of other genes in the network, we can

measure the maximum and the minimum duration of transcription of a specific gene.

We postulate that the inter-transition interval between two states can take any value

within the range from the maximum value to the minimum value with an equal

probability. The inter-transition interval between two states zzz0 and zzz1 has a uniform

distribution in the interval [czzz0zzz1
(u), dzzz0zzz1

(u)].

Using (5.17), we have

C(zzz0, u) =
c(zzz0, u)

λ

∑

zzz1∈Z

(

1−
exp (−λ czzz0zzz1

(u))− exp (−λ dzzz0zzz1
(u))

λ (dzzz0zzz1
(u) − czzz0zzz1

(u))

)

pzzz0
(zzz1; u).

(5.28)

Again the value of C(zzz0, u) can easily be computed.

Using (5.24), we have

m(zzz0, zzz1, u) =
exp (−λ czzz0zzz1

(u))− exp (−λ dzzz0zzz1
(u))

λ (dzzz0zzz1
(u) − czzz0zzz1

(u))
pzzz0

(zzz1; u), (5.29)

som(zzz0, zzz1, u) can also be computed. Having (5.28) and (5.29), we again appropriately

formulate the Bellman optimality equation (5.25) for inter-transition interval with

uniform distribution.

3. Exponential Distribution

The amount of data observed from a biological system is usually limited. Instead of

using the data to estimate an arbitrary inter-transition interval distribution, we can

postulate a class of parametric distributions whose members can be defined with the

first few moments, e.g. the expected value.

Here, we assume that the distribution of the inter-transition interval follows

an exponential distribution. If all the inter-transition intervals of state zzz are ex-
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ponentially distributed, then the sojourn time of state zzz possesses an exponential

distribution:

Pzzz(τ, u) = 1− e−νzzz(u) τ τ ≥ 0. (5.30)

In (5.30), νzzz(u) is the rate of transition from state zzz whenever the action is u. Prac-

tically, the rates νzzz(u) are bounded for all states zzz ∈ Z, and all controls u ∈ C.

Assuming the inter-transition interval is exponentially distributed, we use an

alternative approach of uniformization to derive the Bellman optimality equation

(5.25). Uniformization speeds up transitions that are slow on the average by allowing

fictitious transitions from a state to itself, so sometimes after a transition the state

may stay unchanged [46].

In uniformization, a uniform transition rate ν is assigned to all the states. The

uniform transition rate ν is selected such that νzzz(u) ≤ ν for all zzz ∈ Z and u ∈ C.

Using the uniform transition rate ν, we define the set of new transition probabilities

for each state of the uniformed decision making process by

p̃zzz1
(zzz2; u) =























νzzz1
(u)

ν
pzzz1

(zzz2; u), if zzz1 6= zzz2

νzzz1
(u)

ν
pzzz1

(zzz2; u) + 1−
νzzz1

(u)

ν
, if zzz1 = zzz2.

(5.31)

It can be shown that leaving state zzz at a rate νzzz(u) in the original continuous-

time decision making process is statistically identical to leaving state zzz at the faster

rate ν, but returning back to zzz with the probability (1 − νzzz(u)/ν) in the uniformed

decision making process with transition probability distributions defined in (5.31).

Since states of the continuous-time decision making process remain constant

between two consecutive updating epochs, the expected total discounted cost in (5.10)
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can be expressed as

Jπg
(zzz0) =

∞
∑

k=0

E
[
∫ tk+1

tk

e−λ tc(zzz(tk), µg(zzz(tk))) dt

∣

∣

∣

∣

zzz(t0) = zzz0

]

. (5.32)

Considering the memoryless property of the exponential distribution, we can express

(5.32) as

Jπg
(zzz0) = E

[

∞
∑

k=0

(

ν

ν + λ

)k c(zzz(tk), µg(zzz(tk)))

λ+ ν

]

. (5.33)

According to the latest form of the expected total discounted cost in (5.33), we

can exploit the classical Markov decision process to determine the Bellman optimality

transformation (5.25). The expected cost of a single transition is

C(zzz, u) =
c(zzz, u)

λ+ ν
, (5.34)

and the value of parameter m(zzz1, zzz2, u) is determined by

m(zzz1, zzz2, u) =
ν

λ+ ν
p̃(zzz1, zzz2, u). (5.35)

C. Intervention in the Mutated Mammalian Cell Cycle Semi-Markov Asynchronous

Regulatory Network

In Section III.C, an SM-ARN is designed that models a mutated mammalian cell-

cycle regulations. Our objective here is to avoid states with simultaneously down-

regulated CycD and Rb. To this end, a sequential decision process based on the

method presented in Section V.B is defined to determine intervention strategies for

the SM-ARN of the mutated cell-cycle.

The rate of penalizing the states with down-regulated Rb and CycD is set to

be higher than those for the states in which these two genes are not simultaneously
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down-regulated. We postulate the following rate-of-cost function:

c(zzz, u) =



















































0, if u = 0 and zzz ∈ D

5, if u = 0 and zzz ∈ U

1, if u = 1 and zzz ∈ D

6, if u = 1 and zzz ∈ U ,

(5.36)

where U and D are the sets of undesirable and desirable states, respectively. A state

zzz is desirable, i.e. belong to D, if (CycD,Rb) 6= (0, 0); and undesirable, i.e. belong

to U , if (CycD,Rb) = (0, 0). We select an arbitrary rate-of-cost; however, the state

cost and the control cost are selected so that applying the control to prevent the

undesirable states is preferable in comparison to not applying control and remaining

in an undesirable state. In practice, the cost values have to capture the benefits and

side effects of the intervention and the relative preference of the states.

Figure 14 depicts the fraction of time that the SM-ARN spends in each state

when there is no intervention. According to this figure, the aggregated fraction of

time that the mutated cell-cycle SM-ARN spends in the states with simultaneously

down-regulated CycD and Rb is 49%.

We define ∆pg to be the percentage of the change in the fraction of time that

the SM-ARN spends in the states with simultaneously down-regulated CycD and Rb

before and after the intervention with control gene g. In other words, we have

∆pg =

∑

zzz∈U p(zzz)−
∑

zzz∈U pµµµ∗
g
(zzz)

∑

zzz∈U p(zzz)
, (5.37)

where similar to (2.19) p(zzz) is the fraction of time that the SM-ARN spends in state

zzz in the long run when no control is applied; and pµµµ∗
g
(zzz) is the fraction of time being

in state zzz in the long run under intervention with an optimal strategy µµµ∗
g. As a



80

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

State

F
ra

ct
io

n
 o

f 
ti

m
e 

in
 e

ac
h

 s
ta

te
   

  

Without Intervention

Fig. 14. The fraction of time that the SM-ARN of mammalian cell cycle spends in

each state prior to intervention. The vertical line separates the undesirable

states in U from the desirable states in D.

performance measure, ∆pg indicates the percentage of the reduction in the fraction

of time that the model spends in undesirable states in the long run.

If we assume that we can target any gene in the network as a therapeutic method,

then it is natural to ask which gene should be used as a control gene to alter the

behavior of the model. To this end, we find an intervention strategy for each of the

genes in the network using the intervention method explained in Section V.B. Table

VII lists the value of ∆pg corresponding to each control gene in the network. Among

all the genes, Rb and E2F have the best performance.

Table VII. The ∆pg for the intervention strategy based on various control genes.

Control Gene g Rb E2F CycE CycA Cdc20 Cdh1 UbcH10 CycB

∆pg 94.2% 89.1% 71.1% 62.1% 63.5% 68.4% 59.7% 75.2%
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Intervention with Rb

Fig. 15. The fraction of time that the SM-ARN of mammalian cell cycle spends in

states after intervention using Rb as the control gene. The vertical line sepa-

rates the undesirable states in U from the desirable states in D.

The fraction of time that the SM-ARN of mutated mammalian cell cycle spends

in states after Rb-based intervention is shown in Figure 15. It is clear that after

intervention using Rb as the control gene, the fraction of time that the model spends

in the undesirable states is significantly reduced. Directly using Rb as the control

gene, the fraction of time that the model spends in the undesirable states is reduced

to less than 2%.

If direct intervention based on Rb is not feasible, then one can use E2F as the

control gene. According to Fig.16, in this case the system spends slightly more time

in the undesirable states, but even this value is still less than 4.5%. Practically,

the difference between the performances of these two control genes is insignificant.

Figures 14 and 15 lead us to the conclusion that the intervention method proposed
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Intervention with E2F

Fig. 16. The fraction of time that the SM-ARN of mammalian cell cycle spends in

states after intervention using E2F as the control gene. The vertical line

separates the undesirable states in U from the desirable states in D.

in Section VB effectively alters the dynamics of the mutated cell-cycle SM-ARN.
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CHAPTER VI

INTERVENTIONS WITH LIMITED SIDE-EFFECTS ∗

In classical intervention, at each epoch a devised strategy dictates whether to inter-

vene or not in order to reduce the likelihood of undesirable states without imposing

any restrictions on the quantity of applied treatments. In medical practice, however,

dose intensity in a treatment is limited to mitigate the detrimental side-effects of

therapy.

Here, we describe an approach that amends the unrestricted classical intervention

strategy with the goal of accommodating such constraints. In the proposed approach,

referred to as constrained intervention, the side-effects are controlled by bounding the

quantity of the prescribed interventions [21].

To determine the best integrated effect consistent with a reasonable quality of life,

we seek an effective therapeutic method that reduces the likelihood of states related

to an undesirable cell functionality by minimizing the associated cost function, while

providing an upper bound on the expected number of interventions received by a

patient. As an example, we explain how to design an effective constrained intervention

strategies for the mutated cell-cycle network in Section III.B.

The complete treatment of the constrained intervention is presented in the next

section. To this end, we define the total constraining cost given a strategy and

an initial state. Having this new constraining cost function, we reformulate the

unconstrained classical intervention problem formulated in optimization (4.6) as a

constrained intervention. It is shown that the objective cost function and the con-

∗ c© 2009, EURASIP. Reprinted, with permission, from EURASIP Journal on Bioin-
formatics and Systems Biology, Optimal constrained stationary intervention in gene
regulatory networks, B. Faryabi, G. Vahedi, J.-F. Chamberland, A. Datta, and E. R.
Dougherty.
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straining cost function can be presented as a linear combination of the occupation

measure and the cost-per-stage functions. The occupation measure can be inter-

preted as the probability of occupying state-action pairs in the long run, given the

initial state of the PBN and the intervention strategy. Consequently, the expected

number of interventions in the long run can be constrained by an upper-bound if the

constrained cost-per-stage for each state-action pair is assigned as follows: r(zzz, u) = 0

if no intervention is applied and r(zzz, u) = 1 otherwise. This enables us to redefine the

sequential decision making problem of constrained intervention as a linear program.

An optimal constrained intervention strategy can then be found based on a solution

of this linear program.

A. Constrained Intervention in Context-Sensitive Probabilistic Boolean Networks

Cancer treatment may include the use of chemotherapy, radiation therapy, targeted

gene therapy, etc. All of these treatment options are directed at killing or eradicating

cancerous cells. Unfortunately, cancer treatments may also damage healthy cells.

This results in complications and harmful side-effects. It is therefore desirable to

restrain the side-effects of a treatment. This goal can be achieved by enforcing an

upper bound on the expected number of treatments a patient may receive during

therapy.

A classical intervention strategy, devised by solving the unconstrained optimiza-

tion problem (4.6), reduces the chances of visiting undesirable states; however, it

does not provide a mechanism for constraining the frequency of applying treatments

within the resulting intervention strategy. To address this shortcoming, constrained

intervention is introduced by imposing an appropriate constraint on the optimization

problem (4.6).
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This is accomplished by associating constrained cost-per-stage r(zzz, u) with each

state-action pair (zzz, u) ∈ Z ×C. This new cost-per-stage should be defined to appro-

priately reflect the intended constraint. Specifically, we bound the expected number

of interventions in the long run to limit the dose intensity of an intervention within

a prescribed treatment.

Using constrained intervention methods, we seek an effective regulatory treat-

ment that reduces the likelihood of visiting undesirable states in the long run, while

providing an upper bound on the expected number of interventions a patient can

receive. Instead of introducing a single cost function whose minimization reduces

the likelihood of entering undesirable states, we consider a situation where one type

of cost is minimized while keeping the other cost function below a given threshold.

Posed this way, the intervention problem can be viewed as a constrained Markov

decision process.

So far, a regulatory network has been modeled as a dynamic system in which

decisions regarding treatment are taken sequentially. In this section, we wish to de-

sign an intervention strategy that selects treatments (actions) as a function of time

and available information. For a given intervention strategy, the choice of treatments

at different decision epochs may depend on the whole observed history. The choice

of an intervention strategy will determine the evolution of the state of an intervened

biological system in some probabilistic sense. The trajectories of the states together

with the choice of treatments determine the expected cost in conjunction with the

expected constrained cost that we encounter. Hence, the proposed method enables

us to design therapeutic intervention strategies by defining problem dependent con-

straints. Although various forms of constraints are plausible, hereafter, we focus on

the expected number of treatments.

The normalized expected total discounted cost, given strategy πg, initial state
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zzz0, and control gene g, is denoted by

JJJπg
(zzz0) = (1− λ)× lim

N→∞
E

[

N−1
∑

t=0

λt c (zzz(t), zzz(t+ 1), µg (zzz(t), t))

∣

∣

∣

∣

zzz(0) = zzz0

]

· (6.1)

In the previous chapters, the discounted cost was defined without the normal-

izing constant (1 − λ). This constant does not change the method and the solution

of the intervention strategy. However, using the normalizing constant has several

advantages. First, it prevents the total cost from growing excessively for values of

λ close to one. Second, the use of the normalization constant provides an interest-

ing interpretation for the total cost in the constrained intervention design. This will

become clear later in this section.

The vector of normalized expected total discounted costs JJJπg
∈ R

|Z| is called

the value function. In the classical intervention problem, we seek an admissible in-

tervention strategy π∗
g that minimizes the value function for each initial state zzz0,

i.e.,

π∗
g(zzz0) = arg min

πg∈Πg

JJJπg
(zzz0) ∀zzz0 ∈ Z. (6.2)

A deterministic intervention strategy devised by solving the unconstrained op-

timization (6.2) reduces the chance of visiting undesirable states; however, this in-

tervention strategy does not provide a way to constrain the frequency of applying

treatments within a prescribed intervention strategy. To address this shortcoming,

we impose an appropriate constraint on the optimization problem (6.2) by introducing

constrained intervention in Markovian regulatory networks.

For the same reasons articulated in Chapter IV, we consider a discounted formu-

lation to define both the objective cost function and constrained cost function. To

restrict the frequency of applying intervention, we associate a constrained cost-per-

stage r(zzz, u) to each state-action pair (zzz, u) in the constrained formulation. The set
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of all possible state-action pairs is denoted by K = {(zzz, u) : zzz ∈ Z, u ∈ C}.

A constrained cost-per-stage should be defined to appropriately reflect the con-

straint. Here, we bound the discounted expected number of interventions in the long

run. Accordingly, the normalized expected total discounted cost of the constraint,

given strategy πg, initial state zzz0, and control gene g is denoted by

HHHπg
(zzz0) = (1− λ)× lim

N→∞
E

{

N−1
∑

t=0

λt r (zzz(t), µg (zzz(t), t))

∣

∣

∣

∣

zzz(0) = zzz0

}

· (6.3)

Having the constrained cost function defined this way and the objective cost function

as in (6.1), we can state the constrained intervention problem as

min
πg ∈Πg

JJJπg
(zzz0) such thatHHHπg

(zzz0) ≤ Ctotal, (6.4)

where Ctotal is the upper bound on the discounted expected number of interventions

in the long run, and zzz0 is the initial state.

We wish to find an optimal intervention strategy π∗
g within the set of admissible

strategies Πg (not just Markovian strategies) that minimizes the value function while

satisfying the constraint imposed on the discounted expected total cost. Interven-

tions using strategy π∗
g increase the time spent in desirable states, while limiting the

discounted expected number of treatments. The intervention strategy is determined

through the appropriate assignments of objective cost-per-stage and constrained cost-

per-stage to each state-action pair in the set K.

Given an arbitrary strategy πg and starting from initial state zzz0, the state tra-

jectories and selected actions over time are probabilistic. Our objective is to find the

expectation of the number of times that state-action pairs (zzz, u) ∈ K with active in-

tervention decision, u = 1, occur over the progression of the regulatory network. This

value corresponds to the expected number of treatments in an intervention strategy.

To this end, we denote the probability that a state-action pair (zzz, u) in the set of all
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possible state-action pairs K occurs at updating epoch t as

Υπg

(

zzz(t) = zzz, µg (zzz(t), t) = u

∣

∣

∣

∣

zzz(0) = zzz0

)

· (6.5)

We further define the normalized discounted total expected time spent in the state-

action pair (zzz, u) in the long run as

fλ(zzz, u;zzz0, πg)
△
= (1−λ)× lim

N→∞

N−1
∑

t=0

λtΥπg

(

zzz(t) = zzz, µg (zzz(t), t) = u

∣

∣

∣

∣

zzz(0) = zzz0

)

(6.6)

for all (zzz, u) ∈ K, where zzz0 is an initial state and πg is a strategy in Πg. The set

fλ(zzz0, πg) =
{

fλ(zzz, u;zzz0, πg)

∣

∣

∣

∣

(zzz, u) ∈ K
}

(6.7)

denotes a probability measure over the set of state-action pairs K. The numbers

of states and actions of regulatory networks are finite and the discounting factor λ

guarantees uniform convergence of expression (6.6). The set fλ(zzz0, πg) for any initial

state zzz0 and strategy πg is called an occupation measure [47]. The occupation measure

can be interpreted as the probability of occupying state-action pairs (zzz, u) in the long

run, given that the regulatory network is initially in state zzz0 and strategy πg is used

throughout.

The normalized discounted objective cost function (6.1) can be expressed as the

expectation of the average immediate cost c(zzz, u), defined in (4.4), over the probability

distribution defined in (6.5).

JJJπg
(zzz0) = (1− λ)× lim

N→∞

N−1
∑

t=0







λt
∑

(zzz,u)∈K

c (zzz(t) = zzz, µg (zzz(t), t) = u)

× Υπg

(

zzz(t) = zzz, µg (zzz(t), t) = u

∣

∣

∣

∣

zzz(0) = zzz0

)}

(6.8)

The normalized discounted objective cost function in (6.8) can be equivalently ex-
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pressed as

JJJπg
(zzz0) =

∑

(zzz,u)∈K















(1− λ)×

lim
N→∞

N−1
∑

t=0

[

λt c(zzz(t) = zzz, µg (zzz(t), t) = u)×

Υπg

(

zzz(t) = zzz, µg (zzz(t), t) = u
∣

∣

∣

∣

zzz(0) = zzz0

) ]















·

(6.9)

Using definition (6.6) and probability measure (6.7), we can express the latest form

of the normalized discounted objective cost in Eq. (6.9) as the expectation of the

average immediate objective cost with respect to the occupation measure,

JJJπg
(zzz0) =

∑

(zzz,u)∈K

fλ(zzz, u;zzz0, πg) c(zzz, u)· (6.10)

Similarly, we can express the normalized discounted constrained cost corresponding

to strategy πg as the expectation of the constrained cost-per-stage with respect to the

occupation measure

HHHπg
(zzz0) =

∑

(zzz,u)∈K

fλ(zzz, u;zzz0, πg) r(zzz, u)· (6.11)

Using (6.10) and (6.11), we can rewrite the constrained optimization problem (6.4)

as

min
πg∈Πg

∑

(zzz,u)∈K

fλ(zzz, u;zzz0, πg) c(zzz, u),

such that
∑

(zzz,u)∈K

fλ(zzz, u;zzz0, πg) r(zzz, u) ≤ Ctotal·

(6.12)

It is evident that the constraint in (6.12) prevents the discounted expected number

of interventions in the long run from exceeding the upper-bound Ctotal if we assign
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the constrained cost-per-stage for each state-action pair in K as

r(zzz, u) =















0, if u = 0 and zzz ∈ Z

1, if u = 1 and zzz ∈ Z.

(6.13)

In other words, using the definition of constrained cost-per-stage in (6.13), the left

side of the inequality constraint in (6.12) corresponds to the total discounted expected

number of times that state-action pairs with active treatment, u = 1 , occur under

control strategy πg. Equivalently, we can interpret this as the discounted frequency

of applying treatments given a therapeutic strategy.

Several solutions for the constrained optimization problem of (6.4) are presented

in [48]. We next briefly present a method to solve this constrained Markov decision

process using the equivalent problem formulation of (6.12). In [48], it is shown that

the set of stationary strategies Πg(S) is complete. In other words, if

LU =
{

fλ(zzz0, πg) | πg ∈ Πg

}

(6.14)

denotes the set of all the occupation measures and

LU(S) =
{

fλ(zzz0, πg) | πg ∈ Πg(S)
}

(6.15)

denotes the set of occupation measures generated by stationary strategies only, then

LU = LU(S). Further, let Ξλ(zzz0) be defined as the set of R
|K| vectors

ααα = (α(0, 0), α(0, 1), · · · , α(k × 2n − 1, 0), α(k × 2n − 1, 1)) that satisfy

∑

(zzz,u)∈K

α(zzz, u)
(

111(zzz = zzz′)− λPzzz(zzz
′; u)

)

= (1− λ)111(zzz0 = zzz′) for all zzz′ ∈ Z,

α(zzz, u) ≥ 0 ∀(zzz, u) ∈ K,

(6.16)

where 111(·) is indicator function. Ifααα ∈ Ξλ(zzz0), then one can verify that
∑

(zzz,u)∈Kα(zzz, u) =

1 by summing the first constraint on ααα in the definition of Ξλ(zzz0) over all zzz′ ∈ Z.
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Hence, the elements of any ααα satisfying the constraints in (6.16) constitute a proba-

bility measure on K.

It has been shown that LU(S) = LU(D), where LU(D) =
{

fλ(zzz0, πg)|πg ∈ Πg(D)
}

and LU(D) is the closed convex hull of deterministic strategies [48]. Moreover, the

closed convex hull of deterministic strategies LU(D) is equal to the closed polytope

specified by Ξλ(zzz0). Hence, from the definition in (6.16) and the constrained cost

formulation (6.11), we can find an optimal strategy that satisfies (6.12) by solving

the following linear program:

min
ααα∈R|K|

∑

(zzz,u)∈K

α(zzz, u) c(zzz, u),

such that

∑

(zzz,u)∈K

α(zzz, u)
(

111(zzz = zzz′)− λPzzz(zzz
′; u)

)

= (1− λ)111(zzz0 = zzz′) for all zzz′ ∈ Z,

∑

(zzz,u)∈K

α(zzz, u) r(zzz, u) ≤ Ctotal,

α(zzz, u) ≥ 0 ∀(zzz, u) ∈ K.

(6.17)

This linear program is called the primal problem.

In [48], it is shown that an optimal stationary strategy π∗
g of the constrained opti-

mization problem (6.12) exists if and only if the primal problem (6.17) has a solution

ααα∗ = {α∗(zzz, u)|(zzz, u) ∈ K}. Moreover, an optimal solution of (6.17) uniquely deter-

mines an optimal stationary strategy π∗
g ∈ Πg(S). An optimal stationary strategy π∗

g ,

thus selects action u ∈ C at state zzz ∈ Z with probability

π∗
g(zzz, u) =

α∗(zzz, u)
∑

u∈Cα
∗(zzz, u)

· (6.18)

We should point out that an optimal strategy devised by (6.18) is not necessarily a

deterministic strategy, in contrast to a strategy that minimizes the cost function (6.1)
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without limitations.

Depending on the utilized numerical method, the computational complexity of

finding a solution for the linear program in (6.17) varies. It is known that the com-

plexity of the interior-point method increases polynomially with the number of states

in K, where the exponent of the complexity polynomial is not large [49]. Moreover, it

is known that the number of iterations required for the numerical method to converge

is in the order of O(log(1/ǫ)), where ǫ is the accuracy of the outcome of the numer-

ical method. Here, the size of K increases exponentially with the number of genes

n in the PBN model with control. The goal, in the application of interest, is not to

model fine-grained molecular interactions among a host of genes, but rather to model

a limited number of genes, typically with very coarse quantization, whose regulatory

activities are significantly related to a particular aspect of a specific disease. Hence,

the proposed method is easily up to the task of handling the limited size networks

with which we are dealing.

B. Constrained Intervention in a Mutated Mammalian Cell Cycle

Probabilistic Boolean Network

In this section, we utilize the context-sensitive PBN for the mutated mammalian cell

cycle regulation proposed in Section III.B. This context-sensitive PBN postulates

the mammalian cell cycle with a mutated phenotype. Our proposed constrained

intervention method is then applied with various bounds on the frequency of applying

treatments; the therapeutic intervention seeks to hinder cell growth in the absence of

growth factors.

Preventing the states with simultaneously down-regulated CycD and Rb is the

objective of intervention. In a devised constrained intervention strategy, if the control
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is high, u = 1, then the state of the control gene is reversed; if u = 0, then the state

of the control gene remains unchanged. The control gene can be any of the genes in

the model except CycD.

We assume that the cost of the states with down-regulated Rb and CycD is

higher than those for the states in which these two genes are not simultaneously down-

regulated. We also consider the cost of applying a control action, which increases the

cost of each state. We postulate the following cost-per-stage function:

c(zzz, u) =



















































0, if u = 0 and zzz ∈ D

9, if u = 0 and zzz ∈ U

1, if u = 1 and zzz ∈ D

10, if u = 1 and zzz ∈ U ,

(6.19)

where U and D are the sets of undesirable and desirable states, respectively. A state zzz

is desirable, i.e. belongs to D, if (CycD,Rb) 6= (0, 0); and undesirable, i.e. belongs to U ,

if (CycD,Rb) = (0, 0). We select an arbitrary objective cost-per-stage; however, the

cost function is selected so that applying the control to prevent the undesirable states

is preferable in comparison to not applying control and remaining in an undesirable

state. Assuming the preceding cost-per-stage function, we can compute intervention

strategies for the context-sensitive PBN associated to the cell-cycle network according

to various constraints.

Figure 17 depicts the steady-state distribution of the states when there is no

intervention. According to this figure, the aggregated probability of the states with

simultaneously down-regulated CycD and Rb is close to 0.2. In other words, the

model predicts that the mutated cell-cycle will be in the cancerous states nearly 20%

of its time in the long run.

Similar to (4.11), we define ∆Pg to be the percentage change in the aggregated
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Fig. 17. The steady-state probability of states of the context-sensitive PBN associated

with the mammalian cell-cycle network before intervention. The vertical line

separates the undesirable states in U from the desirable ones in D.

probability of undesirable states with simultaneously down-regulated CycD and Rb

with and without intervention when gene g is selected as the control gene. As a

performance measure, ∆Pg indicates the percentage of the reduction in the likelihood

of cancerous situations in the long run.

If we assume that we can alter the expression level of any gene in the network as

a therapeutic method, then it is natural to ask which gene should be used to alter the

behavior of the model. To this end, we find a constrained intervention strategy for

each gene in the network using the intervention method explained in Section VI.A,

while limiting the expected number of times treatment can be applied. First, we



95

assume that the PBN’s initial state is the undesirable state in U with the highest

probability in the steady-state distribution of states prior to intervention. Table VIII

lists the value of ∆Pg corresponding to each control gene in the network. Here, we vary

the upper bound on the frequency of applying intervention and find the corresponding

constrained strategies.

Table VIII. The ∆Pg for the intervention strategy based on various control genes and

various constraint bounds.
Control Gene g Ctotal

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Rb 61.96 98.32 98.33 98.33 98.33 98.33 98.34 98.34 98.34 98.34

E2F 57.43 97.36 98.00 98.00 98.00 98.01 98.01 98.02 98.02 98.02

CycE 28.37 28.41 28.41 28.44 28.44 28.46 28.46 28.47 28.49 28.51

CycA 16.56 16.59 16.60 16.61 16.62 16.64 16.65 16.65 16.69 16.69

Cdc20 39.15 41.44 41.47 41.48 41.48 41.50 41.51 41.52 41.53 41.61

Cdh1 27.55 40.58 41.51 41.56 41.56 41.57 41.62 41.62 61.63 41.65

UbcH10 6.49 6.50 6.52 6.56 6.57 6.59 6.61 6.64 6.66 6.69

CycB 39.33 41.85 41.86 41.89 41.91 41.92 41.92 41.96 41.99 41.99

Among all the genes, Rb offers the best performance when control can be applied

without any constraint, based strictly on minimization of the objective cost function,

Ctotal = 1. After applying the unconstrained control strategy designed for Rb, the

aggregated probability of undesirable states is significantly altered (Figure 18). To

avoid the undesirable states in U , we utilize the intervention strategy devised by

the proposed method in Section VI.A for the case when there is no bound on the

expected number of treatments. In this scenario, let us assume that the state at a

decision epoch indicates that CycD = 0, Rb = 1, E2F = 1, CycE = 1, CycA = 0,

Cdc20 = 0, Cdh1 = 1, UbcH10 = 0, and CycB = 0. The devised stationary inter-

vention strategy, which is a mapping from the states to the action set C, indicates
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that, for the observed state, the value of control gene Rb should be toggled with

probability one. Consequently, we should use an appropriate inhibitor to forcefully

down regulate the control gene Rb. Hence, the state would be forced from state

(0, 0, 1, 1, 0, 0, 1, 0, 0) to state (0, 1, 1, 1, 0, 0, 1, 0, 0) after this intervention. Although

the techniques to implement such a strategy, i.e. effectively altering the expression of

gene Rb, using its enhancers and inhibitors may not be fully understood within the

domain of current medical practice, almost surely these techniques will have detri-

mental side-effects. The constrained stationary intervention designed by the proposed

procedure enables us to restrict the expected number of interventions a patient may

receive during therapy. Hence, we could accordingly adjust our intervention strategy

when the side-effects of drugs effecting the regulation of gene Rb are known.

Figure 19 indicates that, by using a constrained stationary intervention strategy

for the control gene Rb, we can reduce the aggregated probability of the undesirable

states to less than 12%, while restricting the number of interventions to at most 10%.

We could translate this to restricting the dose of prescribed drugs once knowledge of

their side-effects is available. If we only wish to limit the expected number of applied

interventions to less than 20%, then we can reduce the chance of the cancerous states

by 98%.

According to Table VIII, intervention strategies based on gene E2F performs

almost as well as Rb when the constraint is not too tight, Ctotal ≥ 0.2. This suggests

that, given the side effects of treatments, we may need to consider alternative control

genes. The steady-state probability distributions of states after intervention based on

E2F are presented in Figure 20 and Figure 21.

Comparing Figure 18 and Figure 20, one can observe that although the final

performances of intervening based on these two genes are close, the probability mass of

the most probable states after intervention with Rb differs from the one in E2F -based
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Fig. 18. The steady-state probability of states of the context-sensitive PBN associ-

ated with the mammalian cell-cycle network after intervention using Rb as

the control gene, when the frequency of applying control is unconstrained,

Ctotal = 1.0. The vertical line separates the undesirable states in U from the

desirable ones in D.

intervention. This observation suggests that one should utilize systematic analysis

along with experimental studies to obtain more effective lever points.

The results of Table VIII indicate that some genes are more sensitive to the

bound on the frequency of control. Relaxing the constraint will not improve the

result of intervention when the gene UbcH10 is selected as the control gene. It is

simply not an effective lever point. Genes CycB and Cdc20 perform relatively well for

tightly constrained intervention strategies, but relaxing the limitation on the expected

number of treatments does not significantly improve the performance of the strategies
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Fig. 19. The steady-state probability of states of the context-sensitive PBN associated

with the mammalian cell-cycle network after intervention using Rb as the

control gene, when the frequency of applying control is upper bounded by

Ctotal = 0.1. The vertical line separates the undesirable states in U from the

desirable ones in D.

based on these genes.

Furthermore, if we do not assume that the PBN’s initial state is the undesirable

state with the highest probability in the steady-state distribution of states prior to

intervention, but instead initialize the PBN from an arbitrary undesirable state, we

observe that the strategies are robust to the initial state unless the constraint is too

tight. For Ctotal ≥ 0.2, the values of ∆P do not alter significantly; the performance of

the intervention strategy varies more for different initial states when the constraint

is tight, Ctotal = 0.1.
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Fig. 20. The steady-state probability of states of the context-sensitive PBN associ-

ated with the mammalian cell-cycle network after intervention using E2F as

the control gene, when the frequency of applying control is unconstrained,

Ctotal = 1.0. The vertical line separates the undesirable states in U from the

desirable ones in D.
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Fig. 21. The steady-state probability of states of the context-sensitive PBN associated

with the mammalian cell-cycle network after intervention using E2F as the

control gene, when the frequency of applying control is upper bounded by

Ctotal = 0.1. The vertical line separates the undesirable states in U from the

desirable ones in D.



101

CHAPTER VII

MODEL-FREE INTERVENTION IN MARKOVIAN REGULATORY

NETWORKS∗

The classical intervention described in Chapter IV requires exact optimization of the

cost function (4.5). The effectiveness of a strategy devised from the solution of the

optimization (4.6) depends on the accuracy of the underlying regulatory network.

Moreover, the computational complexity of optimization problem (4.6) increases ex-

ponentially with the number of genes in the model. To mitigate this numerical chal-

lenge and bypass the impediment of model estimation, a heuristic method is proposed

in this chapter. In the framework of Markovian regulatory networks, this heuristic

intervention learns effective strategies from a statistics of a pathological cellular be-

havior using a reinforcement learning scheme [42].

Earlier works reveal the limitation of Markovian decision processes in large net-

works. In [50], it is noted that designing an intervention strategy for the original

network with ten genes is beyond their available computational capacity. Thereafter,

they resorted to a reduced model with seven genes. Owing to the same limitation,

the numerical experiments in [50] and [6] are also designed for a seven-gene instanta-

neously random PBN similar to the one presented in Chapter III.

Subsequently, it has been demonstrated that the finite-horizon decision making

in a PBN is an NP-hard problem [51]. In general, it is well-known that the direct ap-

plication of Markov decision making methods is limited by the size of the state-space;

that is known as the curse of dimensionality [46]. More precisely, It is known that

∗ c© 2009, IET. Reprinted, with permission, from IET Journal of Systems Biology,
On approximate stochastic control in genetic regulatory networks, B. Faryabi, A.
Datta, and E. R. Dougherty.
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the complexity of these kinds of sequential decision making methods increases expo-

nentially with the cardinality of model state-space. Hence, the intervention methods

such as the ones proposed in [6] and [7] are only applicable to networks with small

state-spaces. To address this complexity issue, we propose a heuristic method based

on a reinforcement learning algorithm.

Given the cost structure, the reinforcement intervention learns an effective strat-

egy based on several generated trajectories of states and applied actions. These

empirical measurements are used to estimate the average total cost with respect to

various actions and observed states. The reinforcement intervention yields an effec-

tive therapeutic strategy, while possessing constant complexity with respect to the

number of genes [42]. It has been shown that in the scenario where a large number

of measurements is available the reinforcement intervention strategy converges to the

strategy devised by the classical intervention.

A salient feature of the reinforcement intervention is that it is model-free, i.e. it

does not require perfect knowledge of the model parameters. We should point out

that it is still assumed that the dynamics of the underlying system are modeled as

a Markovian process. The term model-free implies that it is not required to esti-

mate the parameters of the underlying PBN explicitly. As explained in the previous

chapters, the intervention methods proposed so far are model dependent, requiring at

least knowledge of the transition probability matrix associated with the underlying

Markovian regulatory network. This can be derived from the PBN if the latter is

known. Since in practice PBNs are not known except via system identification from

experimental data, one is faced with a difficult inference problem [17]. This problem

can be avoided by directly inferring the transition probability matrix; however, this

is still a formidable task because the complexity of estimating the transition prob-

ability distributions of a Markov chain increases exponentially with the number of
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genes in the model. When time-course measurements are available, a reinforcement

intervention strategy can be implemented directly from the empirical measurements.

This intervention method has low complexity, is robust to modeling errors, and is

also adaptive to changes in the underlying biological system.

The reinforcement intervention is employed to control the Wnt5a-related network

described in Section III.A. The performances of the heuristic intervention is com-

pared to that of the classical intervention. As noted in Chapter III, down-regulation

of Wnt5a is a reasonable objective for an intervention strategy. A reinforcement

intervention strategy is applied to the inferred instantaneously random PBN in Sec-

tion III.A.

A. Reinforcement Intervention in Markovian Regulatory Networks

If the system and cost structure can be simulated, then it is possible to use repeated

simulations to calculate approximate transition probability distributions and an ex-

pected immediate cost. Thereafter, classical intervention can be applied to find an

optimal intervention strategy.

In the absence of time-course measurements, and for our numerical study we

assume that the distributions governing the PBN, the switching probability, the per-

turbation probability and the probability distribution of selecting constituent net-

works, are known. However, this assumption is not necessary in practice whenever

time-series data set are available.

The complexity of estimating the transition probability distributions and the

complexity of classical intervention exponentially increase as the number of genes

increases. If we contemplate approximation to reduce the complexity, then reinforce-

ment intervention can be used. Given the time-series measurements, the reinforce-
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ment intervention progressively computes an approximation of the value function in

Equation (4.6) by observing several sample trajectories of the regulatory network and

their associated costs. Hence, it eliminates the computational complexity associated

with the explicit estimation of the transition probability distributions.

The fixed-point of Bellman optimality equation is achieved at an optimal strategy

of classical intervention, so for each zzz ∈ Z the optimal value function is the solution

of Equation (4.7) that is

J∗(zzz) = min
u∈C



c(zzz, u) + λ
∑

zzz′∈Z

Pzzz(zzz
′; u)J∗(zzz′)



 . (7.1)

The classical intervention iteratively apply the transformation derived by the

Bellman optimality equation to each element of the value function until a fixed-point

of (7.1) is found [46]. Therefore, the complexity of value iteration is exponential in

the number of genes in the PBN. The computational complexity of each iteration of

the value iteration is O(22n), with respect to the number of genes in the network n.

Using the definition of expected immediate cost in expression (4.4), the Bellman

optimality equation (7.1) can be rewritten as

J∗(zzz) = min
u∈ C





∑

zzz′∈Z

Pzzz(zzz
′; u) (c(zzz,zzz′, u) + λ J∗(zzz′))



 , (7.2)

for each state zzz ∈ Z. Accordingly, we can define the Q-factor for each state-action

pair (zzz, u) ∈ Z × C by

Q(zzz, u)
△
=
∑

zzz′∈Z

Pzzz(zzz
′; u) (c(zzz,zzz′, u) + λ J∗(zzz′)) . (7.3)

The relation between the optimal value function of a state zzz and the Q-factors

of the same state is given by

J∗(zzz) = min
u∈ C

Q(zzz, u). (7.4)
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To compute the Q-factor iteratively, the Bellman optimality equation can be

written for the Q-factor as

Q(zzz, u) =
∑

zzz′∈Z

Pzzz(zzz
′; u)

[

c(zzz,zzz′, u) + λ min
u′∈ C

Q(zzz′, u′)
]

. (7.5)

Using Equation (7.5), one can find the solution of the classical intervention with

Algorithm 1, in which the value function is replaced by the Q-factor vector.

Algorithm 1 Q-factor version of the classical intervention

k ← 0

Setting ǫ > 0

Selecting an arbitrary initial Q-factor vector, Q0

repeat

k ← k + 1

Q-factors updating: Computing the transformation (7.5) for all zzz ∈ Z.

Q(k)(zzz, u)←
∑

zzz′∈Z

Pzzz(zzz
′; u)

[

c(zzz,zzz′, u) + λ min
u′∈ C

Q(k−1)(zzz′, u′)
]

Checking the convergence: Computing the following for all zzz ∈ Z

J (k)(zzz) = min
u∈ C

Q(k)(zzz, u)

J (k−1)(zzz) = min
u∈ C

Q(k−1)(zzz, u)

until ‖ J (k) − J (k−1) ‖∞< ǫ

Finding an optimal strategy: Choose the intervention strategy for all zzz ∈ Z

µg(zzz) = arg min
u∈ C

Q(k)(zzz, u)

Estimation of the Q-factor is the objective of Algorithm 1, in which a Q-factor
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is an average of a random variable Ψ(zzz, u). The equation (7.3) can be expressed as

Q(zzz, u) = E
[

c(zzz,zzz′, u) + λ min
u′∈ C

Q(zzz′, u′)
]

= E [Ψ(zzz, u)] .

(7.6)

If the samples of Ψ(zzz, u) are generated within the system’s simulator or obtained from

time-series measurements, then one can estimate its expected value. Let

Ψk(zzz, u) =

∑k
i=1 ψi

k
(7.7)

denote the time average estimation of the ensemble average E [Ψ(zzz, u)] using k sam-

ples, where ψi is the ith sample of the random variable Ψ(zzz, u). Upon a new obser-

vation of Ψ(zzz, u), the value of Ψk(zzz, u) can be updated by

Ψk+1(zzz, u) = Ψk(zzz, u)−
Ψk(zzz, u)

k + 1
+
ψk+1

k + 1
· (7.8)

If αk+1 = 1
k+1

, then we have

Ψk+1(zzz, u) = Ψk(zzz, u)
(

1− αk+1
)

+ αk+1ψk+1. (7.9)

Hence, given a new system observation, the Q-factor is iteratively updated for the

specific state-action pair (zzz, u) ∈ Z × C according to the transformation

Q(k+1)(zzz, u)← (1− α)Q(k)(zzz, u) + α
[

c(zzz,zzz′, u) + λmin
u′∈ C

Q(k)(zzz′, u′)
]

. (7.10)

In general, the revised value iteration algorithm in which the Q-factors are up-

dated according to (7.10) is called the Q-learning algorithm [52]. Since the transfor-

mation (7.10) is independent of the transition probability distributions of the system,

the reinforcement intervention is a model-free method. In reinforcement intervention,

the value of the Q-factor for a state-action pair (zzz, u) is updated whenever a transition
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from state zzz to state zzz′ occurs in the system’s simulator or observed in the time-course

data set, given the action u is selected randomly among all the possible actions C.

In the reinforcement intervention, the time-course measurements generate tra-

jectories of state-action pairs; hence, some Q-factors may be updated more often than

others. An appropriate step-size αk is needed to guarantee the convergence of the re-

inforcement intervention to an optimal intervention strategy despite the asynchronous

updating of the Q-factors [52]. Several step-sizes are proposed with the general form

C
a+k

, where C and a can be any positive constants [52]. As a general rule, the step-size

should be small, and diminish to zero at a suitable rate [53].

Here, we assume a simple form for the step-size inspired mainly by the argument

that the ensemble average can be estimated using the time average of the sample

data. We denote the number of times the state-action pair (zzz, u) is visited by v(zzz, u).

We use v(zzz, u) to define the step-size αk equal to C
k
, where C is a positive constant

in the interval (0, 1) and k is v(zzz, u), whenever the state-action pair (zzz, u) occurs.

The reinforcement intervention is summarized as Algorithm 2. The complexity

of each iteration in Algorithm 2 is O(1) with respect to the number of genes in the

network n. Hence, the reinforcement intervention runs in polynomial time complexity

with respect to the number of genes in the network.

Moreover, the reinforcement intervention reduces the memory complexity of the

classical intervention. In Algorithm 2, the values of the Q-factors are stored explicitly

in a tabular form. The algorithm requires O(2n) memory units; whereas in the clas-

sical intervention the required memory is O(22n) memory units. This latter quantity

stems from the fact that we must store 2n values of the value function for 2 actions

along with 22n entries of the transition probability matrices at each iteration of the al-

gorithm. Hence, the required memory of the classical intervention O(22n +2×2n) has

a growth of O(22n). Consequently, the memory complexity is considerably reduced
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using the reinforcement intervention instead of the classical intervention. The high

memory complexity of the classical intervention contributes to its limited applicability

to large regulatory networks.

If all the state-action pairs (zzz, u) are visited infinitely often then for each state-

action pair the estimated expected value Ψk(zzz, u) converges to its ensemble average

E [Ψ(zzz, u)] with probability one. Hence, we expect that a heuristic strategy computed

by the reinforcement intervention converges to the optimal strategy devised by the

classical intervention. The convergence of a heuristic strategy to the optimal one

is proved in [53] for the general Q-learning method, and our numerical results in

Section VII.B support this fact for our case study. In other words, the learning

duration of the reinforcement intervention should increase as the number of genes in

the network increases in order to obtain a heuristic strategy close to an optimal one.

Therefore, the reinforcement intervention, as any other learning algorithm, may not

be suitable for extremely large networks.

The maximum size of the intervention problem which can be solved by our heuris-

tic method is hardware dependent. For instance, our current hardware configuration

(single Xeon processor and one-GB memory) can obtain near optimal intervention

strategy within 107 learning periods for a synthetic 15-gene regulatory network. Given

more memory and processing power, an accurate intervention strategy can be deter-

mined for significantly larger networks within reasonable time. Hence, the compu-

tation time is not an issue for us. In the application of interest the goal is not to

model fine-grained molecular interactions among a host of genes, but rather to model

a limited number of genes, typically with very coarse quantization, whose regulatory

activities are significantly related to a particular aspect of a specific disease, such as

metastasis in melanoma [7]. The proposed reinforcement intervention is easily up to

the task of handling the limited size networks with which we are dealing.
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B. Reinforcement Intervention in a Metastatic Melanoma Instantaneously Random

Probabilistic Boolean Network

In this section, we apply reinforcement intervention to control the instantaneously

random PBN related to metastasis in melanoma constructed in Chapter III, and

compare the performance of the heuristic strategy to that of exact one devised by the

classical intervention. We consider a ten-gene instantaneously random PBN with 1024

states because our objective is to investigate how an approximate strategy performs

in comparison to an optimal strategy. Computing optimal strategies for networks

beyond ten genes is not practical with our current computational capability.

After quantifying the multivariate relationships of 587 genes among a sample of

melanoma patients, [25] constructed a ten-gene regulatory network involving Wnt5a.

Using instantaneously random PBNs consisting of seven of these genes, subsequent

studies developed finite-horizon [32] and infinite-horizon [33] intervention strategies.

The reduction to seven genes was dictated by computational requirements. In par-

ticular, the transition probability distributions of the Markov chain associated with

an instantaneously random PBN are required in the classical intervention presented

in these studies. Owing to the exponentially increasing complexity of the classical

intervention with the number of genes, approximation of a ten-gene instantaneously

random PBN with a seven-gene instantaneously random PBN is a way to make the

computations feasible. Moreover, the complexity of estimating transition probability

distributions restricts the number of constituent networks in the regulatory network.

This is the main reason behind using instantaneously random networks in most of

the earlier studies in [6].

We consider a ten-gene instantaneously random PBN consisting of Wnt5a, pirin,

S100p, Ret1, Mmp3, Phoc, Mart1, Hadhb, Synuclein, and Stc3 as explained in Sec-
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tion III.A. The above order of genes is used in the gene-activity profile, with Wnt5a

as the most significant bit and Stc3 as the least significant bit. This order of genes in

the gene-activity profile facilitates the presentation of our results and does not affect

the computed intervention strategy.

As before, having the down-regulation of Wnt5a as the objective, we apply the

reinforcement intervention of Algorithm 2 to the inferred Wnt5a-related instanta-

neously random PBN. If the action is high, u = 1, then the state of gene Pirin is

reversed; if u = 0, then the state of Pirin remains unchanged. Pirin has been chosen

as the control gene to make a fair comparison with the previous studies for down-

regulating the expression of Wnt5a [6]; otherwise, as we showed in Chapter IV, S100p

is the most effective control gene for the context-sensitive PBN of this case study with

identical parameters.

A cost-per-stage c(zzz,zzz′, u) is used to compare the reinforcement intervention

strategy with the classical intervention strategy. It is assumed that the cost-per-stage

is higher, if in the successor state zzz′ Wnt5a is up-regulated. It is also assumed that

whenever the intervention is applied, given Wnt5a in the successor state remains un-

changed, the cost-per-stage is higher in comparison to when the intervention is not

applied. The cost are assigned in a way such that applying the intervention to pre-

vent the undesirable gene-activity profiles is preferable in comparison to not applying

intervention and transiting to an undesirable gene-activity profile. We postulate the

following cost-per-stage function:

c(zzz,zzz′, u) =



















































0, if u = 0 and zzz′ ∈ D

5, if u = 0 and zzz′ ∈ U

1, if u = 1 and zzz′ ∈ D

6, if u = 1 and zzz′ ∈ U ,

(7.11)
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where U and D are the sets of undesirable and desirable states, respectively. A state

zzz is desirable, i.e. belong to D, if Wnt5a= 0; and undesirable, i.e. belong to U , if

Wnt5a= 1. The values of cost-per-stage function have been chosen to be in line with

the earlier studies [6]. Assuming the cost-per-stage function (7.11), we compute an

optimal intervention strategy for the ten-gene instantaneously random PBN. With

four constituent Boolean networks, estimation of the transition probability distribu-

tions takes more than three days with our current hardware configuration (single

Xeon processor and one-GB memory). In this hardware configuration, going beyond

the binary-valued instantaneously random PBN with 1024 states to a ternary-valued

instantaneously random PBN with 59049 states or a context-sensitive PBN with 4096

states enormously increases the estimation time of the transition probability distri-

butions.

Figure 22 depicts the steady-state distribution of the gene-activity profiles when

there is no intervention. According to Figure 22, the aggregated probability of the

gene-activity profiles with up-regulated Wnt5a is higher than the gene-activity profiles

with down-regulated Wnt5a. Also, the most probable undesirable gene-activity profile

(1, 0, 1, 0, 1, 0, 0, 1, 0, 0) has the highest probability.

After intervention in the Wnt5a-related instantaneously random PBN based on

an optimal intervention strategy, the steady-state distribution of the gene-activity

profile is modified. According to Figure 23, the probability of desirable gene-activity

profiles with down-regulated Wnt5a is increased, and the probability of the most

probable undesirable gene-activity profile (1, 0, 1, 0, 1, 0, 0, 1, 0, 0) is reduced to 0.007.

After intervention with an optimal intervention strategy, the most probable gene-

activity profile is (0, 1, 1, 0, 0, 0, 1, 1, 1, 1), which has down-regulated Wnt5a.

Similar to expression (4.11), we define ∆P to be the percentage of change in the

aggregated probability of the gene-activity profiles with Wnt5a= 1 before and after
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Fig. 22. Steady-state distribution of gene-activity profile of the ten-gene instanta-

neously random PBN prior to intervention.

the intervention. As a performance measure, ∆P indicates the percentage of reduction

in the total probability of the undesirable gene-activity profiles in the steady-state.

For an optimal intervention strategy, determined by the classical intervention, we

have ∆P = 23.1%.

In order to compare the reinforcement intervention with the classical interven-

tion, we execute the reinforcement method for different learning durations kmax. An

approximate intervention strategy is used to find the steady-state distribution of the

gene-activity profile.

Figure 24 and Figure 25 show the steady-state distributions of the gene-activity

profile when kmax = 103 and kmax = 105, respectively. The computed strategy after

only a short learning duration, kmax = 103, does not reduce the likelihood of unde-
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Fig. 23. Steady-state distribution of gene-activity profile after intervention with an

optimal intervention strategy.

sirable gene-activity profiles, but when the algorithm’s learning duration increases to

kmax = 105 the aggregated probability of undesirable gene-activity profiles is reduced.

Comparing Figure 25 and Figure 23, we observe that the probability distributions

of the gene-activity profile are similar after intervention with an optimal strategy and

a heuristic strategy with long enough learning duration.

Table IX compares the steady-state probabilities of the two most probable gene-

activity profiles before and after intervention. The steady-state probability of the

gene-activity profile (1, 0, 1, 0, 1, 0, 0, 1, 0, 0) with the highest probability prior to any

intervention reduces by almost the same amount when either an optimal intervention

strategy or a heuristic intervention strategy computed after a sufficiently long learning

duration is used. Moreover, after intervention with either an optimal or a reinforce-



114

0 200 400 600 800 1000 1200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Gene−activity profile

S
te

ad
y−

st
at

e 
P

ro
ba

bi
lit

y

Fig. 24. Steady-state distribution of gene-activity profile after applying an approxi-

mate intervention strategy computed by the reinforcement intervention with

kmax = 103.

ment intervention strategy, the desirable gene-activity profile (0, 1, 1, 0, 0, 0, 1, 1, 1, 1)

has the highest steady-state probability.

As the duration of learning in the reinforcement intervention increases, its perfor-

mance gets closer to that of the classical intervention. Figure 26 shows the value of ∆P

for an optimal intervention strategy, as well as this value for reinforcement interven-

tion strategies derived by the reinforcement method with various learning durations.

The performance of the reinforcement intervention converges to the optimal inter-

vention devised by the classical method. We expect to observe this behavior because

as the learning duration increases, the estimate of the Q-factor vector becomes more

accurate.
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Fig. 25. Steady-state distribution of gene-activity profile after applying an approxi-

mate intervention strategy computed by an reinforcement intervention with

kmax = 105.

Moreover, we observe that the time-complexity of the reinforcement interven-

tion increases linearly with the number of iterations. Figure 27 depicts the time it

takes to run the reinforcement intervention with our current hardware configuration.

The execution time of the reinforcement intervention is still tolerable when the learn-

ing duration is increased to achieve an acceptable performance for the algorithm.

Hence, the melanoma case study reveals that not only the reinforcement intervention

does provide near-optimal performance, but considerably reduces the time complexity

and the memory complexity of classical intervention. Through selecting an appro-

priate learning duration, we can have a tradeoff between the desirable accuracy of

the approximate intervention strategy and the execution time of the reinforcement
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Table IX. Steady-state probability of the most probable gene-activity profile prior and

after intervention. The gene-activity profiles

(1, 0, 1, 0, 1, 0, 0, 1, 0, 0) and (0, 1, 1, 0, 0, 0, 1, 1, 1, 1) are represented by their

binary bijections 676 and 399, respectively.

Gene-expression No-Cont Opt-Cont kmax

103 104 105 107

Max Prob Gene-Exp 676 399 676 399 399 399

Gene-Exp 676 Prob 0.07 0.007 0.05 0.02 0.01 0.009

Gene-Exp 399 Prob 0.01 0.07 0.02 0.04 0.07 0.07

intervention.

C. Reinforcement Intervention Versus Mean First-Passage Time Intervention

The Mean first-passage time intervention (MFPT) is a heuristic method that deter-

mines an effective intervention policy for PBN in a model-free fashion [42]. Similar to

the reinforcement intervention, the model-free MFPT intervention runs in constant

time complexity with respect to the number of genes in the network. Moreover, the

learning duration of the MFPT intervention, similar to that of the reinforcement in-

tervention, should increase as the number of genes in the network increases in order

to obtain a heuristic strategy close to an optimal strategy.

We compare the performance of the reinforcement and MPFT interventions. To

this end, we apply the reinforcement and MFTP strategies to control the instanta-

neously random PBN related to a melanoma case study inferred in Chapter III, and

compare the performance of the two methods to that of an optimal strategy.

We postulate an appropriate cost-per-stage function similar to expression (7.11).

The desirable states are assigned lower cost compared to the undesirable states. For
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Fig. 26. ∆P of an approximate intervention strategy versus an optimal intervention

strategy as a function of logarithm of learning duration.

fair comparison of the two algorithms, the cost of control is considered negligible

compared to the cost of undesirable states. Having the down-regulation of Wnt5a

as the objective, we apply the reinforcement and MFPT strategies to the inferred

instantaneously random PBN. Again, Pirin has been chosen as the control gene.

As a performance measure, ∆P opt, ∆PRL, and ∆PMFPT indicate the percentages

of reduction in the total probability of the undesirable states in the steady-state

when the classical, reinforcement, and MFPT intervention strategies are applied,

respectively. These three performance metrics are computed similar to expression

(4.11).

We generate time-course data for 106 time-steps from the existing model. We

apply reinforcement and MFPT strategies after each 10k time-steps, for k = 3, . . . , 6.
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Fig. 27. Execution time of the reinforcement intervention versus learning duration.

Hence, ∆PRL and ∆PMFPT are functions of the learning duration. On the other hand,

∆P opt is computed from the instantaneously random PBN by directly solving the

classical intervention optimization.

Figure 28 shows ∆P opt−∆PRL and ∆P opt−∆PMFPT as a function of the logarithm

of the learning duration. After 103 time-course data points, ∆P opt − ∆PMFPT is

0.114 while ∆P opt −∆PRL is 0.166. In particular, for lower numbers of observations,

which correspond better to feasible experimental conditions, the approximation by the

MFPT intervention outperforms the reinforcement intervention. On the other hand,

after 106 time-course data points, ∆P opt − ∆PMFPT is 0.003 while ∆P opt − ∆PRL is

0.002. As the size of the training data increases, the performance of the reinforcement

intervention seems to overtake that of the MFPT intervention.
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learning duration.

As we mentioned earlier, in the reinforcement intervention, the value of the Q-

factor for a state-action pair (zzz, u) ∈ Z × C is updated given the action u is selected

randomly among all the possible actions. To this end, in the reinforcement interven-

tion, the two possible values of action u ∈ C should be applied to the model with equal

probability. In contrast, the MFPT intervention does not require any application of

the intervention for obtaining the MFPT intervention strategy.

In the presented comparison, the MFPT intervention does not take into account

the cost of intervention. Therefore, this comparison is valid when the cost of inter-

vention is negligible compared to the cost of undesirable states. A situation that

does not necessarily hold in everyday applications. This comparison suggests that

a combination of heuristic intervention methods may achieve a better intervention

strategy in a real treatment discovery.
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Algorithm 2 Reinforcement Intervention

Q(zzz, u)← 0 for all zzz ∈ Z, u ∈ C

v(zzz, u)← 0 for all zzz ∈ Z, u ∈ C

Setting 0 < C < 1

Setting kmax

Selecting an arbitrary initial state zzz.

for k = 0 to kmax do

Action Selection: Selecting action u ∈ C randomly, given the current state is

zzz.

Extracting information from time-series data: According to the transition

in a time-course measurements of the system’s simulator, the successor state zzz′

as well as the earned cost-per-stage c(zzz,zzz′, u) are determined in a transition from

state zzz to state zzz′ under action u. Hence, the following updates are performed:

v(zzz, u)← v(zzz, u) + 1

α← C
v(zzz,u)
·

Updating Q(zzz, u) : The value of Q(zzz, u) is updated according to transformation

(7.10).

Q(zzz, u)← (1− α)Q(zzz, u) + α
[

c(zzz,zzz′, u) + λ min
u′∈ C

Q(zzz′, u′)
]

Setting zzz ← zzz′

end for

Finding the heuristic strategy: Choose the heuristic strategy for all zzz ∈ Z

µg(zzz) = arg min
u∈ C

Q(zzz, u)
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CHAPTER VIII

CONCLUDING REMARKS

Traditionally, drug and treatment discoveries are performed by identifying individual

components and studying their specific functionalities, rather than relating molecular

components to their systemic functions. Looking at a few aspects of an organism

at a time has shown limited success in devising effective treatments for complex

diseases such as cancer. The advent of new technologies in recent years has enabled

us to catalog the human genome, and has placed us in a position to amend the

traditional methods to remedy complex health problems. Now that it is evident

that many uncured diseases are almost never caused by a single gene, protein, or

biochemical reaction, we should seek to investigate treatments as actions on integrated

and interacting networks of biological components.

Regulatory networks that represent such biological systems are highly structured

but incredibly complex. We developed systems-based methods that allow us to un-

derstand the interplay between an organism’s genome and environmental factors as

they relate to a disease. This integrative knowledge is crucial to understand how the

human body operates, and how we can best cure complex diseases such as cancer.

In this volume, we proposed several algorithmic approaches to design systems-

based therapies based on the information delineated in regulatory networks. The

proposed schemes aim to overcome engineering issues related to complexity, inference,

and robustness, and also aim to develop intervention strategies commensurate with

practical medical constraints.

First, we proposed two asynchronous regulatory network frameworks and demon-

strated how they can be used to design effective intervention strategies. The DA-PBN

model extends the benefits of context-sensitive PBNs by adding the ability to cope



122

with temporal context as well as structural context. Since asynchronism at the gene

level has practical limitations, we introduced the SM-ARN model, in which the asyn-

chronism is at the gene-expression profile level. Empirically measurable timing infor-

mation of biological systems can be directly incorporated into the SM-ARN model to

determine the time-delay distributions between transitions from one gene-expression

profile to another. Using the SM-ARN model, we have modeled the dynamics of a mu-

tated mammalian cell cycle regulatory network. The proposed intervention method

for the SM-ARN is then used to design a strategy to influence the dynamics of the

SM-ARN constructed for the mutated mammalian cell cycle. The goal of the inter-

vention is to reduce the long-run likelihood of undesirable cell growth. The presented

numerical studies strongly suggest that our intervention method effectively alters the

dynamics of the cell cycle model.

Then, we formulated the constrained intervention method in probabilistic Boolean

networks and demonstrated that one can reduce the likelihood of a subset of unde-

sirable states while bounding the expected number of interventions in a therapeutic

strategy using the proposed method. We have considered a mutated mammalian cell-

cycle network in which the cell growth does not stop in the absence of growth factors.

We have then utilized the proposed intervention method to design constrained inter-

vention policies to influence the dynamics of the PBN constructed for the mutated

mammalian cell cycle. The goal of intervention is to reduce the chance of undesirable

cell proliferation in the long run, while maintaining a bound on the expected number

of interventions. The presented numerical studies strongly suggest that constrained

intervention can effectively alter the dynamics of the cell-cycle model. Various control

genes can be considered given different constraints. The most effective control gene

may vary depending on the restrictions imposed on the intervention policies.

At the end, we formulated a model-free algorithm to find an effective interven-
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tion strategy. The proposed reinforcement intervention not only lowers computational

complexity in comparison to the classical intervention method, it also performs virtu-

ally the same as the optimal method when the learning duration is long enough. As

shown in the case of a melanoma-related regulatory network, applying the heuristic

strategy designed by the reinforcement intervention has the same effect in reducing

the likelihood of visiting undesirable gene-expression profiles. The time complexity

of the reinforcement intervention is polynomial, whereas the time complexity of the

classical intervention is exponential in the number of genes. We can have a trade

off between the desirable accuracy of the reinforcement strategy and its computation

time. Since the proposed reinforcement intervention is a model-free algorithm, the es-

timation of transition probabilities for the Markov chain modeling the dynamics of a

context-sensitive PBN is not required. Consequently, the proposed method also elim-

inates the time complexity of estimation processes prior to control, and can further

devise an effective intervention strategy directly from time-series measurements.

The proposed systems-based therapeutic methods have only begun to deal with

technical and practical issues; much remains to be accomplished relative to these

two aims before system-based therapeutic design can be fully integrated into medical

practice. There are many directions in which future work can proceed. Following is

a few immediate avenues of research.

• Long-run probability distribution of expression profiles: Our studies

indicate that the current intervention methods, which are derived by mini-

mizing different performance metrics, also reduce the long-run probability of

undesirable expression profiles as a byproduct. Alternative intervention design

procedures that directly consider the probability of expression profiles as a per-

formance metric should be formulated. Moreover, the outcome of a devised
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therapy should produce a biologically viable genotype beside avoiding undesir-

able cellular phenotypes. This fact is often overlooked in current algorithms,

and will be addressed in my future research.

• Intervention without explicit cost function: The current methods are in-

tended to reduce the likelihood of the gene-expression profiles associated with

aberrant cellular functions. This has been accomplished by avoiding undesir-

able gene-expression profiles. To this end, cost values are needed to capture the

benefits and costs of intervention, and the relative preference of gene-expression

profiles. Setting these values in a biologically meaningful way is a daunting task,

so it is of practical interest to design intervention methods based on some par-

tial ordering of states. I believe that alternative decision making processes can

be used to formulate the latter paradigm of intervention design. For instance,

given the current medical technology, it would be advantageous to design inter-

ventions that eliminate tumors by guiding the trajectory of the diseased cells

toward gene-expression profiles that initiate programmed cell-death rather than

attempting to restore a particular cellular behavior by avoiding a class of expres-

sion profiles. This method only requires a partial ordering of gene-expression

profiles, not an explicit definition of the cost function.

• Protein reporters as the only observable information: The only observ-

able variables in time-series experiments are a number of reporters. The state

of observable variables provide imperfect state information relative to the full

state-space of the underlying regulatory system. In this case, the lever points

for intervention and their therapeutic effectiveness will depend on a probabilis-

tic mapping between the full state vector and the measurement vector for the

observable variables. Since such a mapping is not known apriori, I conjecture
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that an adaptive method inspired by the Certainty Equivalence Principle could

be utilized in this context; and plan to explore it in the future.
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