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ABSTRACT

Masas and Bimodule Decompositions of

II1 Factors. (August 2009)

Kunal Krishna Mukherjee, B.Sc., Calcutta University, Calcutta;

M.Stat., Indian Statistical Institute, Bangalore;

M.Tech., Indian Institute of Technology, Kharagpur

Chair of Advisory Committee: Dr. Kenneth Dykema

The measure-multiplicity-invariant for masas in II1 factors was introduced by

Dykema, Smith and Sinclair to distinguish masas that have the same Pukánszky

invariant. In this dissertation, the measure class (left-right-measure) in the measure-

multiplicity-invariant is studied, which equivalent to studying the structure of the

standard Hilbert space as an associated bimodule. The focal point of this analysis

is: To what extent the associated bimodule remembers properties of the masa. The

structure of normaliser of any masa is characterized depending on this measure class,

by using Baire category methods (Selection principle of Jankov and von Neumann).

Measure theoretic proofs of Chifan’s normaliser formula and the equivalence of weak

asymptotic homomorphism property (WAHP) and singularity is presented. Stronger

notions of singularity is also investigated. Analytical conditions based on Fourier

coefficients of certain measures are discussed, that partially characterize strongly

mixing masas and masas with nontrivial centralizing sequences. The analysis also

provide conditions in terms of operators and L2 vectors that characterize masas whose

left-right-measure belongs to the class of product measure. An example of a simple

masa in the hyperfinite II1 factor whose left-right-measure is the class of product

measure is exhibited. An example of a masa in the hyperfinite II1 factor whose left-

right-measure is singular to the product measure is also presented. Unitary conjugacy
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of masas is studied by providing examples of non unitary conjugate masas. Finally,

it is shown that for k ≥ 2 and for each subset S ⊂ N, there exist uncountably many

non conjugate singular masas in L(Fk) whose Pukánszky invariant is S ∪ {∞}.
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CHAPTER I

INTRODUCTION

The moral of this dissertation is: ‘The phenomena - regularity, semiregularity,

singularity, weak asymptotic homomorphism property (WAHP), asymptotic homo-

morphism property (AHP) and strong mixing of masas in finite von Neumann al-

gebras, can all be explained by measure theory ’. Throughout the entire manuscript

M will always denote a separable II1 factor. Let A ⊂ M be a maximal abelian

self-adjoint subalgebra, henceforth abbreviated as a masa. It is a theorem of von

Neumann that A is isomorphic to L∞([0, 1], dx). So the study of masas in type II1

factors is understanding its position up to automorphisms of the ambient von Neu-

mann algebra. For a masa A ⊂ M, Dixmier in [7] defined the group of normalizing

unitaries (or normaliser) of A to be the set

N(A) = {u ∈ U(M) : uAu∗ = A} ,

where U(M) denotes the unitary group of M. He called

(i) A to be regular (also Cartan) if N(A)′′ = M,

(ii) A to be semiregular if N(A)′′ is a subfactor of M,

(iii) A to be singular if N(A) ⊂ A.

He also exhibited the presence of all three kinds of masas in the hyperfinite II1 factor.

Two masas A,B of M are said to be conjugate if there is an automorphism θ of

M such that θ(A) = B. If there is an unitary u ∈ M such that uAu∗ = B then A

and B are called unitarily (inner) conjugate.

Feldman and Moore in [12], [13] characterized pairs A ⊂ M, where A is a Car-

The journal model is Journal of Functional Analysis.
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tan subalgebra, as those coming from r-discrete transitive measured groupoids with

a finite measure space X as base. Given such a groupoid, the algebra A is L∞(X)

and the group of bisections of the groupoid injects into U(M) as the normaliser of A.

It is a remarkable achievement of Connes, Feldman and Weiss [5] that any countable

amenable measured equivalence relation is generated by a single transformation of

the underlying space. When translated into the language of operator algebras via

the Feldman-Moore construction, this theorem together with a theorem of Krieger

[22] says that, if M is injective then any two Cartan subalgebras are conjugate by

an automorphism of M. However it follows from their theorem that, there are un-

countably many equivalence classes of Cartan masas up to unitary conjugacy in the

hyperfinite II1 factor. See [28] for more examples. There exist II1 factors with non

conjugate Cartan masas (see [6]). These masas were distinguished with the presence

or absence of nontrivial centralizing sequences. Recently Ozawa and Popa have ex-

hibited examples of II1 factors with no or at most one Cartan masa up to unitary

conjugacy (see [27]).

The absence of Cartan masas in II1 factors was first due to Voiculescu in [46]. In

fact, it was his amazing discovery that, for any diffuse abelian algebra A ⊂ L(Fn), the

standard Hilbert space l2(Fn) as a A, A-bimodule contains a copy of L2(A)⊗ L2(A).

His result was improved by Dykema in [10] to rule out the presence of masas in free

group factors with finite multiplicity.

Getting back to singular masas, in 1960 Pukánszky showed in [37] that there are

countable non conjugate singular masas in the hyperfinite II1 factor by introducing an

algebraic invariant for masas in II1 factors, today known as the Pukánszky invariant.

In 1983 Popa [33] succeeded in showing that all separable continuous semifinite

von Neumann algebras and all separable factors of type IIIλ, 0 ≤ λ < 1 have singu-

lar masas. Although they exist, citing explicit examples is a very hard job. In this
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direction, Smith and Sinclair in [42] have given concrete examples of uncountably

many non conjugate singular masas in the hyperfinite II1 factor. Their examples

come from analyzing the double coset structure of abelian subgroups of amenable icc

groups. White and Sinclair [41] have given explicit examples of a continuous path

of non conjugate singular masas (Tauer masas) in the hyperfinite II1 factor. All the

masas in this path have the same algebraic invariant of Pukánszky. They were once

again distinguished by the presence or absence of nontrivial centralizing sequences

in appropriate compressions. Subsequently, White in [49] proved that, any possible

value of the Pukánszky invariant can be realized in the hyperfinite II1 factor, and any

McDuff factor which contains a masa of Pukánszky invariant {1}, contains masas of

any arbitrary Pukánszky invariant.

Singularity is often quite hard to check (see [38]). In order to check if a masa is

singular, analytical properties ‘asymptotic homomorphism property ’ (AHP) and ‘weak

asymptotic homomorphism property ’ (WAHP) were discovered in [39], [40]. Subse-

quently Smith, Sinclair, White and Wiggins in [44] characterized pairs A ⊂ M,

where A is a singular masa in a II1 factor M to be precisely those for which A sat-

isfies ‘WAHP ’. All the theories that we have outlined have a common theme namely,

‘What is the structure of the standard Hilbert space as a w∗ A, A-bimodule’?

Although many invariants of masas in II1 are known, the first successful at-

tempt to distinguish masas with a natural invariant, which have the same Pukánszky

invariant, was due to Dykema, Smith and Sinclair in [11]. We call this the measure-

multiplicity-invariant. This invariant has two main components, a measure class and

a multiplicity function. This invariant is not a new one and has existed in the litera-

ture for quite some time. For Cartan masas this invariant has very deep meaning and

it is very hard to distinguish Cartan masas with this invariant. The term multiplic-

ity in the measure-multiplicity-invariant is actually the Pukánszky invariant of the
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masa, making it a stronger invariant. A slightly different invariant was considered by

Neshveyev and Størmer in [24].

Our intention is to study singular masas and distinguish them. In order to do

so, it is necessary to think of singularity from a different point of view. The theory of

Cartan masas and singular masas has so far been viewed from two different angles.

While Cartan masas fit to the theory of orbit equivalence on one hand [13], singular

masas fit to the intertwining techniques of Popa on the other [44]. But we would like

to have an unique approach that explains all these phenomena. This is the primary

goal of this study. In this work, we characterize masas by studying the structure of

the standard Hilbert space as their associated bimodule.

Our second goal is to investigate that, after such a theory is outlined, whether

it is possible to obtain proofs of important theorems regarding masas, that were

obtained by a number of researchers using different ideas. Many old theorems can

indeed be proved but we will mainly prove Chifan’s result on tensor products [3] and

the equivalence of WAHP and singularity [44]. In fact, it seems that studying the

bimodule is the most natural way to approach these problems, as one can exploit a

lot of results from Real Analysis.

In order to distinguish singular masas which have the same multiplicity, under-

standing the measure in the measure-multiplicity-invariant is the most important

task. So we study this invariant thoroughly throughout this manuscript.

We have learnt later that Popa and Shylakhtenko in [35] have results of simi-

lar flavor in this direction. However our approach is completely different. We think

that what is really involved in understanding the types of masas are the measurable

selection principle of Jankov and von Neumann and a generalized version of Dye’s

theorem on groupoid normalisers. This is evident from [5], [12] and [13]. We present

completely measure theoretic proofs based upon Baire category methods (selection
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principle). As an outcome of our approach, many theorems related to structure the-

ory of masas proved by different techniques just follow easily from our technique.

Singular masas are often constructed by considering weakly or strongly mixing

actions of infinite abelian groups on finite von Neumann algebras. We will show that

the definition of WAHP can be strengthened by considering Haar unitaries and Cesàro

sums which exactly resemble the definition of weakly mixing actions. Weakly mixing

actions are characterized by null sets of certain measures. The story of singular masas

is also similar.

Feldman and Moore constructed von Neumann algebras from Borel or measur-

able equivalence relations with countably many elements in each equivalence class,

on standard Borel spaces. So, firstly, it is important to understand, how an equiv-

alence relation is related to a masa or why is it so natural to consider any kind of

Borel equivalence relations. Most papers on singular masas will have the following

statement: ‘Singular masas are hard to construct’. We give the reasons for it in this

work.

The moral is, while Cartan masas correspond to countable equivalence relations,

singular masas correspond to continuous equivalence relations. This is the precise

reason, singular masas are so hard to construct, as there is no counterpart of Feldman-

Moore theory for continuous equivalence relations.

There are stronger notions for singularity of masas. One such phenomenon is

called strongly mixing which appeared in [18]. An even more stronger notion exists,

which we call uniformly mixing. Mixing is a term that has its roots in measure the-

ory and we will justify that the study of strongly mixing or uniformly mixing masas

can be linked to that of Fourier coefficients of certain measures. Thus, our analysis

will show that masas which do not arise from dynamical systems possess properties

similar to the ones arising from ergodic theory.
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We will also present measure theoretic properties of masas that possess nontriv-

ial centralizing sequences. We will discuss conditions that prevent a masa to possess

nontrivial centralizing sequences. In this direction, the examples in [6] suggest that

through our approach, a complete characterization is not possible.

It is a long standing open problem in Ergodic Theory and Dynamical Systems

that :‘Is there a simple W ∗-dynamical system with pure Lebesgue spectrum’? Trans-

lated to the theory of von Neumann algebras, it asks :‘Is there a Lebesgue probability

space (X,µ) and an infinite discrete abelian group G that implements a (free) weakly

mixing action onX by measure preserving transformations so that the group von Neu-

mann algebra L(G) inside the crossed product factor has multiplicity 1 (equivalently

the Pukánszky invariant of L(G) = {1}) and the spectrum is Lebesgue measure on

[0, 1]× [0, 1]’? An example of a masa with the properties ‘simple and Lebesgue spec-

trum’ is not known. We will exhibit that the hyperfinite II1 factor has such a masa.

In fact, it a masa constructed by White and Sinclair [41]. Thus there is a chance that

the conjecture of simple dynamical system with pure Lebesgue spectrum might have

an affirmative answer.

The question of unitary conjugacy of masas and subalgebras has been investi-

gated by a number of experts. Although we can provide independent proofs of similar

conditions through our techniques, i.e, Baire category methods, we refrain from doing

so. Instead, we will use results from [36] to produce uncountably many non inner con-

jugate singular masas in the hyperfinite II1 factor with identical bimodule structure.

Finally, borrowing ideas from [11], [41] we will show that, given any subset S

of N, there exist uncountably many non conjugate singular masas in the free group

factors with Pukánszky invariant S ∪ {∞}.

Experts have tried to distinguish singular masas by a number of invariants.

Our work will show that, the measure-multiplicity-invariant understands most of
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the invariants that are available in the literature. However, the measure-multiplicity-

invariant is far from being a complete invariant. Nevertheless, it is a complete in-

variant as far as unitary conjugacy is concerned.
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CHAPTER II

MEASURE MULTIPLICITY INVARIANT

This work relies on the theory of direct integrals and measure theory. So we

have divided this chapter into four sections. In Section A we give some well known

results about direct integrals of Hilbert spaces with respect to an abelian von Neu-

mann algebra. In Section B we give some preliminaries about masas in II1 factors

and in Section C we will define the measure-multiplicity-invariant of masas in II1

factors. Section C has a subsection in which we discuss some facts on disintegration

of measures. Section D contains some technical results about measurable functions.

Notation: Throughout the entire manuscript N∞ will denote the set N ∪ {∞}.

A. Direct Integrals

Let a separable Hilbert space H be the direct integral of a µ-measurable field of

Hilbert spaces {Hx}x∈X over the base space (X,µ) where X is a σ-compact space

and µ is a positive, complete Borel measure.

Definition II.1. An operator T ∈ B(H) is said to be decomposable relative to the

decomposition H ∼=
∫ ⊕

X
Hxdµ(x) if there exists a µ-measurable field of operators

Tx ∈ B(Hx), such that x 7→ ‖Tx‖ ∈ L∞(X,µ) and T =
∫ ⊕

X
Txdµ(x).

If Tx = c(x)IHx , where c(x) ∈ C for almost all x, then T is said to be diagonalizable.

It is easy to see that the fibres of a decomposable operator are uniquely determined

up to an almost sure equivalence. The collection of diagonalizable and decomposable

operators both form von Neumann subalgebras of B(H), with the later being the

commutant of the former. Whenever there is no danger of confusion we will use the

term measurable instead of µ-measurable.
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Theorem II.2. Let A ⊂ B(H) be a diffuse abelian von Neumann algebra on a separa-

ble Hilbert space H. Then there exists a measure space (X,µ), where X is a σ-compact

space, µ is a positive, Borel, non-atomic, complete measure on X and a measurable

field of Hilbert spaces {Hx}x∈X , such that H is unitarily equivalent to,

H ∼=
∫ ⊕

X

Hxdµ(x) (A.1)

and A is (unitarily equivalent to) the algebra of diagonalizable operators on
∫ ⊕

X
Hxdµ(x)

with respect to this decomposition.

The dimension function of the decomposition in Thm. II.2 is defined as

m : X 7→ N∞ by, m(x) = dim(Hx).

The dimension function m is µ-measurable. Such results are known in greater gener-

ality. For a measure space (X,µ) we denote by [µ] the equivalence class of measures

on X that are mutually absolutely continuous with respect to µ. There is also an

uniqueness of the decomposition in Thm. II.2.

Theorem II.3. (Uniqueness) Let A ⊂ B(H) be a diffuse abelian von Neumann al-

gebra on a separable Hilbert space H. If (X,µ) and (Y, ν) are Borel measure spaces

where X, Y are σ-compact spaces, µ, ν are positive, Borel, non-atomic, complete mea-

sures on X, Y respectively, such that H abstractly decomposes (unitarily equivalent

to) into,

H ∼=
∫ ⊕

X

Hxdµ(x) ∼=
∫ ⊕

Y

H′ydν(y) (A.2)

with multiplicity functions mX , mY respectively, for measurable fields of Hilbert spaces

{Hx}x∈X , {H′y}y∈Y and A is (unitarily equivalent to) the algebra of diagonalizable op-

erators with respect to both these decompositions, then there exists a Borel isomor-
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phism T : X 7→ Y such that

[T∗µ] = [ν] and mX ◦ T−1 = mY , ν a.e. (A.3)

We will be always working with finite measures. Since direct integrals of Hilbert

spaces does not change when the measures are scaled, we will most of the time assume

that the measures have total mass 1. Details of these facts can be found in [19], [25].

B. Basics on Masas in II1 Factors

Definition II.4. Given a type I von Neumann algebra B we shall write Type(B) for

the set of all those n ∈ N∞ such that B has a nonzero component of type In.

Let M be a separable II1 factor with the faithful, normal, tracial state τ . This

trace induces the two-norm ‖x‖2 = τ(x∗x)1/2 on M and we write L2(M) for the

Hilbert space completion of M with respect to this norm. Let M act on L2(M)

via left multiplication. Let J denote the anti-unitary conjugation operator on L2(M)

obtained by extending the densely defined map J(x) = x∗. Inclusions of von Neumann

algebras will always be assumed to be unital until further notice.

Given a von Neumann subalgebra N ofM, let EN be the unique trace preserving

conditional expectation from M onto N . This conditional expectation is obtained by

restricting the orthogonal projection eN from L2(M) onto L2(N ) to M.

Let A ⊂ M be a masa. Then the augmented algebra A = (A ∪ JAJ)′′ is an

abelian algebra, with a type I commutant, the commutant being taken in B(L2(M))

and the center of A′ is A. The Jones projection eA onto L2(A) lies in A [43]. Hence,

A′(1− eA) decomposes as,

A′(1− eA) = ⊕n∈N∞A′Pn (B.1)
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where Pn ∈ A are orthogonal projections summing up to 1− eA and A′Pn is homoge-

nous algebra of type n whenever Pn 6= 0.

Lemma II.5. If A ⊂M be a masa and B ⊆M be any subalgebra, then (A∪ JBJ)′′

is diffuse.

Proof. If not, let p 6= 0 be a minimal projection in (A∪ JBJ)′′. Then Ap ∼= C. Since

A ∼= L∞([0, 1], dx) so f 7→ fp, f ∈ A is a one dimensional normal representation of

A. Therefore there exists a L1 function g ≥ 0 so that f 7→
∫ 1

0
fgdx implements this

representation, which is not a homomorphism unless g = 0.

Definition II.6. The Pukánszky invariant of a masa A in a II1 factor M, denoted

by Puk(A) (or PukM(A) when the containing factor is ambiguous) is { n ∈ N∞ :

Pn 6= 0} which is precisely Type(A′(1− eA)).

Definition II.7. If A is an abelian von Neumann subalgebra of M, let GN (A) or

GN (A,M) be the normalising groupoid, consisting of those partial isometries v ∈M

that satisfy v∗v, vv∗ ∈ A and vAv∗ = Avv∗ = vv∗A.

A theorem of Dye [8] says that, a partial isometry v ∈ GN (A) if and only if

there is an unitary u ∈ N(A) and a projection p ∈ A such that v = up = (upu∗)u.

Thus GN (A)′′ = N(A)′′. Popa in [34] connected the Pukánszky invariant to the type

of a masa showing that if 1 6∈ Puk(A), then A is singular and that the Pukánszky

invariant of a Cartan masa is {1}.

Singularity is difficult to verify. The following two conditions were introduced in

[40], [39] and [44] as they imply singularity and are often easier to verify in explicit

situations.

Definition II.8. (Smith, Sinclair) Let A be a masa in a II1 factor M.

(i) A is said to have the asymptotic homomorphism property (AHP) if there exists an
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unitary v ∈ A such that

lim
|n|→∞

‖EA(xvny)− EA(x)vnEA(y)‖2 = 0 for all x, y ∈M.

(ii) A has the weak asymptotic homomorphism property (WAHP) if, for each ε > 0

and each finite subset x1, · · · , xn ∈M there is an unitary u ∈ A such that

∥∥EA(xiux
∗
j)− EA(xi)uEA(x∗j)

∥∥
2
< ε for 1 ≤ i, j ≤ n.

In [44] it was shown that singularity is equivalent to WAHP. We will prove that

WAHP is indeed the most natural property. The next proposition is well known, we

state it for completeness.

Proposition II.9. Let N ⊆ B(H) be a von Neumann algebra. Let xi,j ∈ N and

x′i,j ∈ N ′ for i, j = 1, 2, · · · , n. Then the following conditions are equivalent:

(i)
∑n

k=1 xi,kx
′
k,j = 0 for all 1 ≤ i, j ≤ n.

(ii) There exist elements zi,j ∈ Z(N ), i, j = 1, 2, · · · , n such that for all i, j

n∑
k=1

xi,kzk,j = 0,
n∑

k=1

zi,kx
′
k,j = x′i,j.

C. The Invariant

We consider the conjugacy invariant for a masa A in a II1 factor M derived

from writing the direct integral decomposition of its left-right action. More precisely,

we choose a compact Hausdorff space Y such that C(Y ) ⊂ A, is a norm separable

unital C∗ subalgebra and C(Y ) is w.o.t dense in A. The trace τ restricted to C(Y )

gives rise to a probability measure ν on Y so that A is isomorphic to L∞(Y, ν), with

ν a completion of ν. For simplicity of notation we will use the same symbol ν to

denote its completion. Now a ⊗ b 7→ aJb∗J , a, b ∈ C(Y ) extends to an injective
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∗-homomorphism π of C(Y )⊗C(Y ) in L2(M). Indeed, as M is a factor so the map,

n∑
i=1

ai ⊗ bi 7→
n∑

i=1

aiJb
∗
iJ

is injective by Prop. II.9. Hence it induces a norm on C(Y )⊗alg C(Y ). Since abelian

C∗ algebras are nuclear, this norm must be the min norm, and therefore a⊗b 7→ aJb∗J

extends to an injective representation of C(Y )⊗C(Y ) in L2(M). Therefore C(Y×Y )

is a w.o.t dense unital subalgebra of A, so that A is isomorphic to L∞(Y × Y, ηY×Y )

for a complete, positive, Borel measure ηY×Y . By Lemma II.5, ηY×Y is non-atomic.

Remark II.10. In general, if we allow M to be a finite von Neumann algebra that is

not a factor, then measure will be supported on smaller sets. This is the reason we

consider factors, although most results of this manuscript go through even for finite

von Neumann algebras.

Thus in view of the uniqueness of direct integrals with respect to an abelian

algebra (see Thm. II.2, II.3), L2(M) admits a direct integral decomposition {Hx,y}

over the base space (Y × Y , ηY×Y ) so that A ∼= L∞(Y × Y, ηY×Y ) is the algebra

of diagonalizable operators with respect to this decomposition. Let mY denote the

multiplicity function of the above decomposition. It is clear from the direct integral

decomposition that, the Pukánszky invariant of A is the set of essential values of

mY (also check Cor. 3.2, [24]). We will call [ηY×Y ] the left-right-measure of A. For

reasons that will become clear, we will in most situation use the same terminology for

the class of the measure ηY×Y when restricted to the off diagonal. This will be clear

from the context and will cause no confusion. A related invariant was considered by

Neshveyev and Størmer in [24], which was a complete invariant for the pair (A, J).

Although the existence of such a measure is guaranteed, we need an algorithm to

figure out the left-right-measure. In order to do so fix a nonzero vector ξ ∈ L2(M).
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The cyclic projection Pξ with range [Aξ] is in A′ and hence decomposable. For f , g

∈ C(Y ), there exists a complete positive measure µξ (we complete it if necessary) on

Y × Y such that

〈fJg∗Jξ, ξ〉L2(M) =

∫
Y×Y

f(t)g(s)dµξ(t, s). (C.1)

APξ is a diffuse abelian algebra in B(Pξ(L
2(M))) with a cyclic vector, so is maximal

abelian. Thanks to von Neumann, we have only one. Therefore,

Pξ(L
2(M)) ∼=

∫ ⊕
Y×Y

Ct,sdµξ(t, s) where Ct,s = C. (C.2)

Moreover APξ is the diagonalizable algebra with respect to the decomposition in Eq.

(C.2).

Two orthogonal cyclic subspaces [Aξ1] and [Aξ2] with cyclic vectors ξ1, ξ2 does

not necessarily keep the fibres of its associated projections Pξ1 and Pξ2 orthogonal,

neither does assert that they are direct integrals over disjoint subsets of Y × Y .

However, using the ‘gluing lemma’ (Lemma 5.7, [11]) we single out a measure µξ1,ξ2

so that (Pξ1 + Pξ2)(L
2(M)) has a direct integral decomposition with respect to (Y ×

Y, ηξ1,ξ2) and A(Pξ1 +Pξ2) is the diagonalizable algebra respecting that decomposition.

This is the step where one will see the possible updates of the multiplicity function.

Since we are working on a separable Hilbert space, after at most a countable infinite

iterations of this procedure we will finally find a measure µ on Y × Y so that

L2(M) ∼=
∫ ⊕

Y×Y

H′xdµ(x) (C.3)

and A is diagonalizable with respect to the decomposition in Eq. (C.3). Modulo the

uniqueness of direct integrals we have found the measure. Needless to say, different

choices of cyclic subspaces will produce same measure modulo the uniqueness. How-

ever for purpose of explicit computation to distinguish masas one learns, that nice



15

choices of cyclic projections (vectors) is perhaps a little too costly.

For a set X we denote by ∆(X) the set {(x, y) ∈ X × X : x = y}. The restric-

tion of τ to C(Y ) ⊂ A gives rise to a Borel probability measure whose completion is

denoted by νY .

Lemma II.11. The measure ηY×Y has the following properties:

(i) [ηY×Y ] is invariant under the flip map θ :(s, t) 7→ (t, s) on Y × Y .

(ii) If π1 and π2 denote the coordinate projections from Y × Y onto Y then,

[(πi)∗ηY×Y ] = [νY ] for i = 1, 2. (C.4)

(iii) The subspace
∫ ⊕

∆(Y )
Ht,sdηY×Y (t, s) is identified with L2(A) and mY (t, t) = 1,

ηY×Y a.e. on ∆(Y ).

(iv) The topological (closed) support of ηY×Y is Y × Y .

(v) If E and F are measurable subsets of Y with νY (E) > 0 and νY (F ) > 0 then

ηY×Y (E × F ) > 0.

The multiplicity function mY has the property that

mY (s, t) = mY (t, s),

ηY×Y almost everywhere.

Proof. Most of Lemma II.11 is known so we only prove (v). The sets E and F

correspond to nonzero projections p and q respectively in A. If ηY×Y (E × F ) = 0

then pζq = 0 for all ζ ∈ L2(M). Thus pxq = 0 for all x ∈ M. Thus we have two

nonzero projections in A whose central carriers are orthogonal. This violates that M

is a factor.

We are now almost ready to give the definition of the measure-multiplicity-

invariant of a masa in a separable II1 factor. Let A be a masa in M. Let Y be any
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compact Hausdorff space such that the unital inclusion of C(Y ) in A is w.o.t dense and

C(Y ) is norm separable. To each such Y, we associate a quadruple (Y, νY , [ηY×Y ],mY ).

Define an equivalence relation on the quadruples (Y, νY , [ηY×Y ],mY ) by

(Y, νY , [ηY×Y ],mY ) ∼m.m (Y ′, νY ′ , [ηY ′×Y ′ ],mY ′) if and only if there exists a Borel

isomorphism F : Y 7→ Y ′ such that,

F∗νY = νY ′ ,

(F × F )∗[ηY×Y ] = [ηY ′×Y ′ ] and (C.5)

mY ◦ (F × F )−1 = mY ′ , ηY ′×Y ′ a.e.

We also have, [ηY×Y ] = [η|∆(Y )] + [η|∆(Y )c ].

Therefore if (Y, νY , [ηY×Y ],mY ) ∼m.m (Y ′, νY ′ , [ηY ′×Y ′ ],mY ′) then,

(F × F )∗[η|∆(Y )c ] = [η|∆(Y
′
)c ], (C.6)

m|∆(Y )c ◦ (F × F )−1 = m|∆(Y ′ )c , η|∆(Y ′ )c a.e.

Lemma II.12. If C(Y1) ⊆ C(Y2) ⊂ A ⊂ M be two w.o.t dense, unital, norm

separable C∗ subalgebras of A then (Y1, νY1 , [ηY1×Y1 ],mY1) ∼m.m (Y2, νY2 , [ηY2×Y2 ],mY2).

Proof. The inclusion i : C(Y1) ↪→ C(Y2) results from a continuous surjection θ : Y2 7→

Y1. Therefore for all f ∈ C(Y1),

τ(f) =

∫
Y1

fdνY1 =

∫
Y2

i(f)dνY2 =

∫
Y2

(f ◦ θ)dνY2 =

∫
Y1

fd(θ∗νY2).

Therefore, θ∗νY2 = νY1 .

The inclusion i preserve least upper bounds at the level of continuous functions.

So i extends to a surjective ∗-homomorphism ĩ between L∞(Y1, νY1) and L∞(Y2, νY2)

which is normal (Lemma 10.1.10 [19]). It is easy to see that ĩ is also implemented by

θ. That ĩ is injective is obvious. So θ is a Borel isomorphism between the underlying
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measure spaces.

Arguing similarly it is easy to see that θ × θ : Y2 × Y2 7→ Y1 × Y1 implements an

isomorphism between L∞(Y1 × Y1, ηY1×Y1) and L∞(Y2 × Y2, ηY2×Y2). The statements

regarding the measure classes now follows easily.

The statement about the multiplicity function is obvious from the uniqueness

of direct integrals in Thm. II.2, II.3 and the fact L∞(Y1 × Y1, ηY1×Y1)
∼= L∞(Y2 ×

Y2, ηY2×Y2)
∼= A.

Proposition II.13. Let A ⊂M be a masa. The collection of quadruples (Y, νY , [ηY×Y ],

mY ) for Y a compact Hausdorff space such that C(Y ) ⊂ A is unital, norm separable

and w.o.t dense in A, under the equivalence relation ∼m.m has exactly one equivalence

class.

Proof. If C(Y1), C(Y2) ⊂ A be two w.o.t dense, unital, norm separable subalge-

bras of A then C∗(C(Y1) ∪ C(Y2)) ∼= C(Y3) for a compact Hausdorff space Y3, and

C(Y3) is unital, norm separable and w.o.t dense in A. Therefore by Lemma II.12,

(Y3, νY3 , [ηY3×Y3 ],mY3) ∼m.m (Yi, νYi
, [ηYi×Yi

],mYi
) for i =1, 2.

Definition II.14. Let A ⊂ M be a masa. We define the measure-multiplicity-

invariant of A as the equivalence class of the quadruples (Y, νY , [η|∆(Y )c ],m|∆(Y )c)

under ∼m.m where,

(i) Y is a compact Hausdorff space such that C(Y ) is an unital, norm separable and

w.o.t dense subalgebra of A.

(ii) νY is the completion of the probability measure obtained from restricting τ on

C(Y ).

(iii) [η|∆(Y )c ] is the equivalence class of the measure ηY×Y restricted to ∆(Y )c,

(iv) m|∆(Y )c is the multiplicity function restricted to ∆(Y )c,

obtained from the direct integral decomposition of L2(M) over the base space (Y
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× Y, ηY×Y ) so that A is the algebra of diagonalizable operators with respect to this

decomposition.

The measure-multiplicity-invariant is an invariant for masas in the following

sense. If A ⊂M and B ⊂ N are masas in II1 factors M,N respectively, and there is

an unitary U : L2(M) 7→ L2(N ) such that, UAU∗ = B and UJMAJMU
∗ = JNBJN

then for any choice of compact Hausdorff spaces YA, YB with

C(YA)
s.o.t

= A and C(YB)
s.o.t

= B, 1M ∈ C(YA), 1N ∈ C(YB) and C(YA), C(YB)

norm separable, there exists a Borel isomorphism

FYA,YB
: (YA, νYA

) 7→ (YB, νYB
) such that,

(FYA,YB
)∗νYA

= νYB
,

(FYA,YB
× FYA,YB

)∗[η|∆(YA)c ] = [η|∆(YB)c ] and (C.7)

m|∆(YA)c ◦ (FYA,YB
× FYA,YB

)−1 = m|∆(YB)c , η|∆(YB)c a.e.

We will denote the measure-multiplicity-invariant of a masa A by m.m(A) (or

m.mM(A) when the containing factor is ambiguous).

1. Conditional Measures and Masas

As we will see later, the measure-multiplicity-invariant contains substantial

information about the masa. In order to extract more information we need to establish

some house keeping results in measure theory.

Disintegration of measures is a very useful tool in ergodic theory, in the study

of conditional probabilities and descriptive set theory. Measurable selection principle

is a term closely linked to disintegration of measures and has been studied by a

number of mathematicians in the last century. A detailed exposition of the existence
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of disintegration can be found in [2].

For the general definition of disintegration of measures we will restrict to the

following set up. Let T be a measurable map from (X, σX) to (Y, σY ) where σX , σY

are σ-algebras of subsets of X, Y respectively. Let λ be a σ-finite measure on σX and

µ a σ-finite measure on σY . Here λ is the measure to be disintegrated and µ is often

the push forward measure T∗λ, although other possibilities for µ is allowed.

Definition II.15. We say that λ has a disintegration {λt}t∈Y with respect to T and

µ or a (T, µ) disintegration if:

(i) λt is a σ-finite measure on σX concentrated on {T = t} (or T−1{t}), i.e, λt({T 6=

t}) = 0, for µ-almost all t,

and for each nonnegative measurable function f on X

(ii) t 7→ λt(f) is measurable.

(iii) λ(f) = µt(λt(f))
defn
=
∫

Y
λt(f)dµ(t).

In probability theory, the measures λt are called the disintegrating measures and

µ is called the mixing measure. One also writes λ(· | T = t) for λt(·) on occasion.

When λ and almost all λt are probability measures, one refers to the disintegrat-

ing measures as (regular) conditional distributions and t 7→ λt is called the transition

kernel.

The reader should be cautious that ‘measurable’ in Defn. II.15 (ii), (iii) means

measurable with respect to the σ-algebra of completion of λ.

Theorem II.16. [2](Existence Theorem) Let λ be a σ-finite Radon measure on a

metric space X and T be a measurable map into (Y, σY ). Let µ be a σ-finite measure

on σY such that T∗λ� µ. If σY is countably generated and contains all singleton sets

{t}, then λ has a (T, µ) disintegration. The measures λt are uniquely determined up

to an almost sure equivalence: if λ∗t is another (T, µ) disintegration then µ({t : λt 6=
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λ∗t}) = 0.

The condition T∗λ� µ in Thm. II.16 is actually necessary for the disintegration

to exist. The original version of Thm. II.16 is due to von Neumann.

Proposition II.17. Let λ be a Radon measure on a compact metric space X and

T be a measurable map into (Y, σY ). Let µ be a σ-finite measure on σY such that

T∗λ � µ. Assume that σY is countably generated and contains all singleton sets.

Let t 7→ λt denote the (T, µ) disintegration of λ. Let Xa denote the set of atoms of

{λt}t∈Y i.e,

Xa = {x ∈ X | ∃ t ∈ Y : λt({x}) > 0} .

Then Xa is a measurable set, measurable with respect to the σ-algebra of the comple-

tion of λ.

Proof. There is a measurable set E ⊆ Y with µ(Ec) = 0 such that for t ∈ E, λt

is concentrated on the set {T = t}. We can assume without loss of generality that

E = Y . Now for t ∈ Y , the measure λt is concentrated on {T = t}, so

{x ∈ X | ∃ t ∈ Y : λt({x}) > 0} = {x ∈ X | λTx({x}) > 0} .

Let B be a countable base for the topology on X. Then

{x ∈ X | λTx({x}) > 0} = ∪∞n=1X
(n)
a with

X(n)
a =

{
x ∈ X | ∀U ∈ B : x ∈ U ⇒ λTx(U) ≥ 1

n

}
=
⋂
U∈B

(
(X \ U) ∪

{
x ∈ U | λTx(U) ≥ 1

n

})
.

Therefore, {x ∈ X | ∃ t ∈ Y : λt({x}) > 0} is a measurable set by property (ii) of

disintegration.
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The next few lemmas are undoubtedly known to probablists but we lack the

reference. So we record them for convenience. We will omit their proofs as they are

easy.

Lemma II.18. Let λ1, λ2 be two Radon measures on a compact metric space X and

T be a measurable map into (Y, σY ). Let µ be a σ-finite measure on σY such that

T∗λ1, T∗λ2 � µ. Assume σY is countably generated and contains all singleton sets

{t}. Let λ1
t , λ

2
t be the (T, µ) disintegration of λ1, λ2 respectively. Let λ0

t be the (T, µ)

disintegration of λ1 + λ2. Then

λ0
t = λ1

t + λ2
t -µ a.e.

Lemma II.19. Let λ1, λ2 be two Radon measures on compact metric spaces X, Y and

T, S be measurable maps from X, Y into (Z, σY ), (W,σW ) respectively. Let µ, ν be

σ-finite measures on σY , σW respectively such that T∗λ1 � µ, S∗λ2 � ν.

Assume σY , σW are countably generated and contains all singleton sets {t}, {s} re-

spectively. Let λ1
t , λ

2
s be the (T, µ), (S, ν) disintegration of λ1, λ2 respectively. Let λ0

t,s

be the (T ⊗ S, µ⊗ ν) disintegration of λ1 ⊗ λ2. Then

λ0
t,s = λ1

t ⊗ λ2
s -µ⊗ ν a.e.

Lemma II.20. Let λ1, λ2 be two Radon measures on a compact metric space X

and T be a measurable map into (Y, σY ). Let µ be a σ-finite measure on σY such that

T∗λ1 � µ and T∗λ2 � µ. Assume σY is countably generated and contains all singleton

sets {t}. Let λ1
t , λ

2
t be the (T, µ) disintegrations of λ1, λ2 respectively.

(i) Assume that λ1 � λ2 � λ1. Then for µ almost all t, λ1
t � λ2

t � λ1
t . Moreover,
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if g = dλ1

dλ2
then

dλ1
t

dλ2
t

= gt a.e. µ, where

gt =


g|{T=t} on {T = t},

0 otherwise.

Conversely if λ1
t � λ2

t � λ1
t for µ almost all t then λ1 � λ2 � λ1.

(ii) If λ1 ⊥ λ2 then λ1
t ⊥ λ2

t for µ almost all t.

Lemma II.21. Let λ be a Radon measure on X ×X where X is a compact metric

space. Let µ be a σ-finite measure on X such that (πi)∗λ � µ where πi, i = 1, 2 are

coordinate projections onto X.

Assume that λ is invariant under the flip of coordinates i.e. θ∗λ � λ � θ∗λ,

where θ : X × X 7→ X × X by θ(x, y) = (y, x). Let λ1
s, λ

2
t be the (π1, µ), (π2, µ)

disintegrations of λ respectively. Then for µ almost all t,

λ1
t � θ∗λ

2
t � λ1

t .

In particular, if for µ almost all t, λ2
t has an atom at (s, t), then λ1

t has an atom at

(t, s) almost everywhere.

Theorem II.22. Let A ⊂ M and B ⊂ N be masas in separable II1 factors M,N .

Let C(X1) ⊂ A, C(X2) ⊂ B be w.o.t dense, norm separable, unital subalgebras of

A,B respectively, where Xi are compact metric spaces for i = 1, 2. Let νXi
denote

the tracial measures with respect to the w.o.t dense subalgebras on Xi respectively for

i = 1, 2. Let [λ1], [λ2] denote the left-right-measures of A and B respectively. All

the mentioned measures are assumed to be complete. Suppose there is an unitary

U : L2(M) 7→ L2(N ) such that UAU∗ = B and UJMAJMU
∗ = JNBJN .

Then there is a Borel isomorphism F : X1 7→ X2 such that, F∗νX1 = νX2 and the

following is true:
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Denoting by λ1,X1
t , λ2,X1

s the (π1, νX1), (π2, νX1) disintegrations of λ1 respectively and

λ1,X2

t′ , λ2,X2

s′ the (π1, νX2), (π2, νX2) disintegrations of λ2 respectively, one has

[λ1,X2

t′ ] = [(F × F )∗λ
1,X1

F−1t′ ], νX2 almost all t′,

[λ2,X2

s′ ] = [(F × F )∗λ
2,X1

F−1s′ ], νX2 almost all s′,

where π1, π2 denotes the projection onto the first and second coordinates respectively.

We need some auxiliary results on convergence of measures in total variation

norm. The set of finite signed measures on a measurable space (X,F) is a Banach

space equipped with the total variation norm ‖·‖t.v, also called the L1-norm, which

is defined by ‖µ‖t.v = |µ| (X) where |µ| denotes the variation measure of µ. It is well

known that for probability measures P,Q

‖P −Q‖t.v = 2 sup
B∈F

|P (B)−Q(B)| =
∫

X

|f − g| dλ (C.8)

where f, g are density functions of P,Q respectively with respect to any σ-finite

measure λ dominating both P,Q. (see [29]).

Lemma II.23. Let λn, λ, λ0 be Radon measures on a compact metric space X such

that, λ0 6= 0, λn � λ for n = 1, 2, · · · , λ0 � λ and λn → λ0 in ‖·‖t.v. Let T be a

measurable map into (Y, σY ). Let µ be a σ-finite measure on σY such that T∗λ� µ.

Assume σY is countably generated and contains all singleton sets {t}. Let λn
t , λ

0
t , λt be

the (T, µ) disintegrations of λn, λ0, λ respectively.

(i) Then there is a µ null set E and a subsequence {nk} (nk < nk+1 for all k) such

that for all t ∈ Ec,

sup
A⊆{T=t},A Borel

∣∣λnk
t (A)− λ0

t (A)
∣∣→ 0 as k →∞.
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(ii)Moreover, if for µ almost all t one has λn
t is completely atomic (or completely

non-atomic) for all n, then so is λ0
t almost everywhere.

Proof. For n = 1, 2, · · · , the hypothesis guarantees the (T, µ) disintegrations of λn

as well as λ0. Also λn(X) → λ0(X). Then denoting fn = dλn

dλ
and g = dλ0

dλ
we have

from the proof of Lemma II.20, fn|{T=t} =
dλn

t

dλt
, g|{T=t} =

dλ0
t

dλt
for µ almost all t. (The

Radon-Nikodym derivatives are zero outside {T = t}). Dropping to a subsequence

if necessary we can assume without loss of generality that inf
n
λn(X) 6= 0. We have

λ0(X)
λn(X)

→ 1. An easy triangle inequality argument shows that
∥∥∥ λn

λn(X)
− λ0

λ0(X)

∥∥∥
t.v
→ 0.

Therefore∥∥∥∥ λn

λn(X)
− λ0

λ0(X)

∥∥∥∥
t.v

=

∫
X

∣∣∣∣ fn

λn(X)
− g

λ0(X)

∣∣∣∣ dλ
=

∫
Y

λt(

∣∣∣∣ fn

λn(X)
− g

λ0(X)

∣∣∣∣)dµ(t) → 0 as n→∞.

Dropping to a further subsequence if necessary one can assume that there is a µ null

set E ⊂ Y such that

(i)λt(

∣∣∣∣ fn

λn(X)
− g

λ0(X)

∣∣∣∣) → 0 as n→∞, (C.9)

(ii)λn
t 6= 0 and finite for all n, λ0

t 6= 0 and finite

for all t ∈ Ec. Given ε > 0 there is a n0 ∈ N such that
∣∣∣1− λn(X)

λ0(X)

∣∣∣ < ε for all n ≥ n0.

Fix t ∈ Ec. Then

λt(|fn − g|) ≤
∫
{T=t}

∣∣∣∣fn(s)− g(s)λn(X)

λ0(X)

∣∣∣∣ dλt(s)

+

∫
{T=t}

∣∣∣∣λn(X)

λ0(X)
g(s)− g(s)

∣∣∣∣ dλt(s)

≤ λn(X)λt(

∣∣∣∣ fn

λn(X)
− g

λ0(X)

∣∣∣∣) + ε
∥∥g|T=t

∥∥
1,λt

for all n ≥ n0.

Therefore λt(|fn − g|) → 0 as n→∞.
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Now let A ⊆ {T = t} be a Borel set. Then

∣∣λn
t (A)− λ0

t (A)
∣∣ =

∣∣∣∣∫
{T=t}∩A

(fn − g)dλt

∣∣∣∣
≤ λt(|fn − g|).

So sup
A⊆{T=t},A Borel

|λn
t (A)− λ0

t (A)| ≤ λt(|fn − g|) → 0 as n→∞. This proves the first

assertion.

(ii) In this case throwing off another null set if necessary and naming it E as well we

assume that in addition to (i), (ii) in Eq. (C.9) one has λn
t is completely atomic, and

for all n, λn
t has at most countably many atoms for all t ∈ Ec. Fix t ∈ Ec.

Since λn
t ({T = t}) → λ0

t ({T = t}), dropping to a subsequence depending on t if

necessary one can make sure inf
n
λn

t ({T = t}) > 0. An easy triangle inequality shows

that ∥∥∥∥ λn
t

λn
t ({T = t})

− λ0
t

λ0
t ({T = t})

∥∥∥∥
t.v

→ 0 as n→∞. (C.10)

Suppose there is a measurable subset B of {T = t} such that λ0
t (B) > 0 and B

contains no atoms of λ0
t . We can assume without loss of generality that B does not

contain any atom of λn
t for all n. (There can only be countably many atoms of λn

t

almost everywhere for each n).

Given
λ0

t (B)

λ0
t ({T=t}) > ε1 > 0 there is a n1 ∈ N such that for all n ≥ n1,∥∥∥∥ λn

t

λn
t ({T = t})

− λ0
t

λ0
t ({T = t})

∥∥∥∥
t.v

≤ 2ε1. (C.11)

Then the inequality in Eq. (C.11) is violated by using Eq. (C.8) and the set

B. So λ0
t is completely atomic. In the case when almost all fibres are completely

non-atomic, the conclusion is obvious from Eq. (C.10).

For a masa A ⊂ M, fix a compact Hausdorff space X such that C(X) ⊂ A
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is an unital, norm separable and w.o.t dense C∗ subalgebra. For ζ ∈ L2(M) let

κζ : C(X)⊗ C(X) 7→ C be the linear functional defined by

κζ(a⊗ b) = 〈aζb, ζ〉.

Then κζ induces an unique Radon measure ηζ on X ×X given by

κζ(a⊗ b) =

∫
X×X

a(t)b(s)dηζ(t, s) (C.12)

and ‖ηζ‖t.v = ‖κζ‖.

For ζ1, ζ2 ∈ L2(M) let ηζ1,ζ2 denote the possibly complex measure on X × X

obtained from the vector functional

〈aζ1b, ζ2〉 =

∫
X×X

a(t)b(s)dηζ1,ζ2(t, s), a, b ∈ C(X). (C.13)

We will write ηζ,ζ = ηζ . Note that ηζ is a positive measure for all ζ ∈ L2(M). It

is easy to see that the following polarization type identity holds:

4ηζ1,ζ2 = (ηζ1+ζ2 − ηζ1−ζ2) + i (ηζ1+iζ2 − ηζ1−iζ2) . (C.14)

Note that the decomposition of ηζ1,ζ2 in Eq. (C.14) need not be its Hahn decom-

position in general, but

4 |ηζ1,ζ2| ≤ (ηζ1+ζ2 + ηζ1−ζ2) + (ηζ1+iζ2 + ηζ1−iζ2) = 4(ηζ1 + ηζ2).

So

|ηζ1,ζ2| ≤ ηζ1 + ηζ2 . (C.15)

Lemma II.24. If ζn, ζ ∈ L2(M) be such that, ζn → ζ in ‖·‖2 then

ηζn → ηζ in ‖·‖t.v .
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Proof. Obvious.

Proposition II.25. Let A ⊂ M be a masa. Let X be a compact Hausdorff space

such that C(X) ⊂ A is unital, norm separable and w.o.t dense in A and let ν be

the tracial measure. Let 0 6= ζ ∈ L2(N(A)′′). Then ηζt , ηζs is completely atomic ν

almost all t, s where ηζ is the measure defined in Eq. (C.12) and ηζt , ηζs are (π1, ν)

and (π2, ν) disintegrations of ηζ respectively.

Proof. We only prove for the (π1, ν) disintegration. If ζ = u where u ∈ N(A) then

the result is obvious as the measure ηu will be concentrated on the automorphism

graph. The span of N(A) being s.o.t dense in N(A)′′ it suffices by Lemma II.24 and

II.23 to prove the statement when ζ =
∑n

i=1 ciui where ui ∈ N(A) and ci ∈ C for

1 ≤ i ≤ n. Now for a, b ∈ A

〈a(
n∑

i=1

ciui)b, (
n∑

i=1

ciui)〉 =
n∑

i=1

|ci|2 〈auib, ui〉+
n∑

i6=j=1

cic̄j〈auib, uj〉.

The measures given by a ⊗ b 7→ |ci|2 〈auib, ui〉, a, b ∈ C(X) are concentrated

on the automorphism graphs implemented by ui and hence definitely disintegrates

as atomic measures and so does their sum from Lemma II.18. The measures given

by a ⊗ b 7→ cic̄j〈auib, uj〉, a, b ∈ C(X) for i 6= j are possibly complex measures.

However Eq. (C.15) forces that these measures are also concentrated on the union of

the automorphism graphs implemented by ui and uj. Thus η∑n
i=1 ciui

is concentrated

on the union of the automorphism graphs implemented by ui, 1 ≤ i ≤ n. Hence the

result follows.

D. Some Technical Results on Measurable Functions

Structure theorems of continuous and measurable functions are what that will

come into play, when we attempt to use the measurable selection principle of Jankov
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and von Neumann. So we develop some technical lemmas in this section.

Definition II.26. Let f : [0, 1] 7→ R be a function and E be a subset of [0,1]. Then

f is said to satisfy condition (N) or null condition of Lusin relative to E if f(A) is a

set of measure 0 whenever A ⊂ E is a set of measure 0.

The definition implicitly assumes that there are two measures on [0, 1] and R.

For our purpose these measures will always be the Lebesgue measure, which we will

denote by λ.

Proposition II.27. (Tietze’s Extension Type) Let E ( [0, 1] be closed and let f :

E 7→ [0, 1] be a continuous function that satisfy the property that for a measurable set

A ⊂ E, λ(A) = 0 if and only if λ(f(A)) = 0. Then there exists a continuous function

F : [0, 1] 7→ [0, 1] such that

(i) F|E = f ,

(ii) F satisfies the property that for a measurable set A ⊂ [0, 1], λ(A) = 0 if and only

if λ(F (A)) = 0.

Proof. Since E is closed it is a compact subset of [0, 1]. Therefore E has greatest and

least members m and M respectively. If m 6= 0 or M 6= 1 then extend f to a function

h on E1 = E ∪ {0} ∪ {1} by assigning the values f(m) and f(M) at the points 0 and

1 respectively. The function h is continuous on E1 and satisfies the same condition

as f relative to E1. So without loss of generality we can assume 0, 1 ∈ E.

The complement of E is a open set in [0, 1] and Ec ⊂ (0, 1). Then Ec can be

written as a countable disjoint union of intervals
∞
∪

i=1
(ai, bi). Then note that ai, bi ∈ E

for all i.
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So we only have to define an extension on (ai, bi). Define

F (x) =



f(x) if x ∈ E,

λf(ai) + (1− λ)f(bi) if x = λai + (1− λ)bi ∈ (ai, bi),

0 < λ < 1 and f(ai) 6= f(bi),

2(1−f(ai))
bi−ai

(x− ai) + f(ai) if ai < x ≤ ai+bi

2
and

f(ai) = f(bi) < 1,

2(1−f(bi))
ai−bi

(x− bi) + f(bi) if ai+bi

2
≤ x < bi and

f(ai) = f(bi) < 1,

2(x−ai)
ai−bi

+ 1 if ai < x ≤ ai+bi

2
and

f(ai) = f(bi) = 1,

2(x−bi)
bi−ai

+ 1 if ai+bi

2
≤ x < bi and

f(ai) = f(bi) = 1.

The function F is now continuous, as it is a linear interpolation obtained from

f and the construction satisfy the required conditions.

Theorem II.28. (Foran, [14]) A necessary and sufficient condition for a continuous

function F : [0, 1] 7→ [0, 1] to satisfy condition (N) relative to [0, 1] is that there

exist a sequence of measurable sets En ⊆ [0, 1], n = 0, 1, · · · , such that the following

properties are true:

(i) [0, 1] =
∞
∪

n=0
En,

(ii) λ(F (En)) ≤ nλ(En) for all n ≥ 0,

(iii) for each n > 0, F is one to one on En.

Proposition II.29. Let F : [0, 1] 7→ [0, 1] be a measurable function such that for any

measurable set A ⊂ [0, 1], λ(A) = 0 if and only if λ(F (A)) = 0. Then there exists a
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measurable set E ⊆ [0, 1] such that λ(E) > 0 and F is one to one on E.

Moreover, if Y0 ⊆ [0, 1] is such that λ(Y0) > 0, then there exists Y1 ⊆ Y0 with

λ(Y1) > 0 such that F is one to one on Y1.

Proof. Let ε > 0. By Lusin’s theorem, choose a closed set H ⊂ [0, 1] such that

λ([0, 1]\H) < ε and F|H is continuous relative to H. Clearly, F|H satisfy the property

that A ⊂ H, λ(A) = 0 if and only if λ(F|H(A)) = 0. By Prop. II.27, extend F to a

continuous function F̃ : [0, 1] 7→ [0, 1] such that F̃ has the property that for A ⊂ [0, 1],

λ(A) = 0 if and only if λ(F̃ (A)) = 0.

Now by Thm. II.28, choose measurable subsets En ⊆ [0, 1] such that [0, 1] =
∞
∪

n=0
En, λ(F̃ (En)) ≤ nλ(En) for all n = 0, 1, · · · , and for each n > 0, F̃ is one to one

on En.

Since λ(F̃ (E0)) = 0 so λ(E0) = 0. If λ(En ∩H) = 0 for all n > 0 then λ(H) = 0,

which is not the case. Therefore there is a n0 > 0 such that λ(En0 ∩ H) > 0. But

F̃|En0∩H = F|En0∩H and clearly F is one to one on En0 ∩ H. Rename E = En0 ∩ H.

This proves the first assertion.

Suppose λ(Y0) > 0. By choosing ε > 0 small enough one can make sure that

the closed set H in the first part of the proof satisfies λ(Y0 ∩ H) > 0. The same

argument as the first part applies, and there exists a n0 > 0 such that F is one to

one on Y1 = Y0 ∩H ∩ En0 and λ(Y1) > 0.
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CHAPTER III

CHARACTERIZATION BY BAIRE CATEGORY METHODS

The study of Cartan masas in II1 factors has received special attention by many

experts. Our approach of studying measure-multiplicity-invariant was also consid-

ered implicitly by Popa and Shlyakhtenko in [36]. In this chapter we will use an

alternative approach to characterize masas by their left-right-measure. This chapter

has four sections. Section A uses operator algebraic tools to generalize Dye’s theorem

on groupoid normalisers. Section B is very technical and contains measure theoretic

details to analyze bimodules. In Section C we provide a proof of Chifan’s normaliser

formula. Section D presents a direct proof of the equivalence of WAHP and singular-

ity using measure theory.

A. Fundamental Set and Generalized Dye’s Theorem

This section is intended to characterize some operators in the normalizing algebra

of a masa. Throughout this section N will denote a finite von Neumann algebra

gifted with a faithful, normal, normalized trace τ . B ⊂ N will denote a von Neumann

subalgebra of N .

As usualN will be assumed to be acting on L2(N , τ) by left multipliers. L2(N , τ)

is a B-B Hilbert w∗-bimodule for any von Neumann subalgebra B ⊂ N . We know if

EB denotes the unique trace preserving conditional expectation onto B, then EB is

given by the Jones projection eB associated to B via the formula EB(x)1̂ = eB(x1̂).

For b1, b2 ∈ B and ζ ∈ L2(N , τ) one has

eB(b1ζb2) = b1eB(ζ)b2. (A.1)
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We will interchangeably use the symbols EB and eB.

Definition III.1. For a subalgebra B ⊂ N define the fundamental set of B to be

N f (B) = {x ∈ N : Bx = xB}.

Note that x ∈ N f (B) implies x∗ ∈ N f (B).

Definition III.2. For a subalgebra B ⊂ N define the weak-fundamental set of B to

be

N f
2 (B) = {ζ ∈ L2(N , τ) : Bζ = ζB}.

Note that ζ ∈ N f
2 (B) implies ζ∗ ∈ N f

2 (B) and N f (B) ⊂ N f
2 (B). When B is a

masa, ζ ∈ N f
2 (B) implies aζ, ζa ∈ N f

2 (B) for all a ∈ B.

To understand the normaliser of a masa the set N f
2 (B) will naturally arise into

the scene. However working with vectors in L2(N , τ) is always a technical issue.

Polar decomposition of vectors and the theory of L1 spaces are the tools we need, for

which we will give a short exposition. For details check Appendix B of [43]. To keep

it short we will omit most proofs. It is here, where one usually encounters unbounded

operators. For results proved in this section we have borrowed ideas from Roger

Smith and Stuart White.

The positive cone L2(N , τ)+ in L2(N , τ) is defined to be N+
‖·‖2 i.e. the closure

of the positive elements of N in L2(N , τ). It can be shown that L2(N , τ) is the

algebraic span of L2(N , τ)+. For x ∈ N the equation ‖x‖1 = τ(|x|) defines a norm

on N . The completion of N with respect to ‖·‖1 is denoted by L1(N , τ). It can be

shown that

‖x‖1 = sup{|τ(xy)| : y ∈ N , ‖y‖ ≤ 1}. (A.2)

So |τ(x)| ≤ ‖x‖1. Thus by density of N in L1(N , τ), τ extends to a bounded linear
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functional on L1(N , τ) which will also be denoted by τ . One can analogously define

the positive cone of L1(N , τ) which we denote by L1(N , τ)+. Clearly ‖x‖1 = ‖x∗‖1.

Consequently, the Tomita operator J extends to a surjective anti-linear isometry to

L1(N , τ) which will also be denoted by J . Moreover J2 = 1. We will interchangeably

use the notations Jζ and ζ∗ for ζ ∈ L1(N , τ).

Both the spaces L1(N , τ) and L2(N , τ) are unitary N -N bimodules. The space

L1(N , τ) can be identified with the predual of N and L2(N , τ) is dense in L1(N , τ).

One also has τ(xζ) = τ(ζx) for x ∈ N and ζ ∈ L1(N , τ). Note that EB is a

contraction from N onto B. It can be shown that for x ∈ N ,

‖EB(x)‖1 ≤ ‖x‖1 . (A.3)

Thus EB has an unique bounded extension to a contraction from L1(N , τ) onto

L1(B, τ), which will as well be denoted by EB. This extension preserves the extension

of the trace τ , is B modular, positive and faithful. The bilinear map Ψ : N ×N 7→ N

defined by Ψ(x, y) = xy satisfies

‖Ψ(x, y)‖1 ≤ ‖x‖2 ‖y‖2 (A.4)

by Cauchy-Schwarz inequality. Therefore Ψ lifts to a jointly continuous map from

L2(N , τ)×L2(N , τ) into L1(N , τ). The extension is actually a surjection. Since Ψ is

the product map of operators at the level of von Neumann algebra one calls Ψ(ζ1, ζ2)

to be ζ1ζ2, for ζ1, ζ2 ∈ L2(N , τ).

Lemma III.3. (B.5.1, [43]) Let a, b ∈ N be positives. Then∥∥∥a 1
2 − b

1
2

∥∥∥2

2
≤ 2 ‖a− b‖1 . (A.5)

Elements of L1(N , τ) and L2(N , τ) can be regarded as unbounded operators on
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L2(N , τ). By using the unbounded operator theory for operators affiliated to N , for

each ζ ∈ L1(N , τ)+ there exists an unique 0 ≤ ζ0 ∈ L2(N , τ) such that ζ∗0ζ0 = ζ2
0 = ζ.

In this case, ζ0 is said to be the square root of ζ and one writes ζ0 =
√
ζ = ζ

1
2 . For

ζ ∈ L2(N , τ) one has ζ∗ζ ∈ L1(N , τ). From Eq. A.4 and Lemma III.3 it follows

that ζ∗ζ ∈ L1(N , τ)+. In particular,
√
ζ∗ζ ∈ L2(N , τ) for any ζ ∈ L2(N , τ) and the

square root of any positive in L1(N , τ) is an unique element of L2(N , τ). One also

writes |ζ| =
√
ζ∗ζ for ζ ∈ L2(N , τ). If ζ ∈ L1(N , τ) be self adjoint i.e, ζ = ζ∗ then

ζ = ζ+ − ζ− where ζ± ∈ L1(N , τ)+ and this decomposition is unique by requiring

that ζ+
1
2 ζ−

1
2 = 0.

Let ζ ∈ L2(N , τ). Consider the projections p, q in B(L2(N , τ)) whose ranges

are JNJ
√
ζ∗ζ, JNJζ respectively. Since the ranges of p, q are invariant subspaces

of JNJ = N ′ so p, q lies in N . Using unbounded operators one obtains polar decom-

position of vectors (Eq. (A.7)) which we formalize below.

Theorem III.4. There is an unique partial isometry v ∈ N with initial projection p

and final projection q which satisfy the following condition:

vJx∗J
√
ζ∗ζ = Jx∗Jζ, x ∈ N . (A.6)

In particular,

v
√
ζ∗ζ = ζ. (A.7)

(i) Let B ⊂ N be a masa, then ζ ∈ L2(B, τ) imply p, q ∈ B.

(ii) For ζ ∈ L2(N , τ) if ζ∗ζ ∈ N then ζ ∈ N .

For ζ ∈ L2(N , τ) we define the left and right kernel of ζ to be respectively

Kerl(ζ) = {x ∈ N : ζx = 0} andKerr(ζ) = {x ∈ N : xζ = 0}. ThenKerl(·), Kerr(·)

are subspaces of N . Kerl(·), Kerr(·) are w.o.t and s.o.t closed.
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If ζ ∈ L1(N , τ) then the left and the right kernels of ζ can be defined analogously.

We will denote the kernels of the L1 vectors by Kerl(·), Kerr(·) as well. This is slight

abuse of notation. In this case, they are norm closed subspaces of N .

For ζ ∈ L2(N , τ) we have

Kerl(ζ) = Kerl(
√
ζ∗ζ) = Kerl(ζ

∗ζ). (A.8)

However the righthand side is defined in L1 sense. Therefore for ζ ∈ L2(N , τ),

Kerl(ζ
∗ζ) (respectively Kerr(ζζ

∗)) are in fact w.o.t closed. Similar statements hold

for Kerr(·) as well.

For ζ ∈ L2(N , τ) we define the left and right ranges of ζ to be respectively

Ranl(ζ) = {ζx : x ∈ N} and Ranr(ζ) = {xζ : x ∈ N}.

Note that for ζ ∈ L2(N , τ),

{x ∈ N : ζx = 0} = {x ∈ N : 〈ζx, y〉 = 0 for all y ∈ N} (A.9)

= {x ∈ N : 〈x, ζ∗y〉 = 0 for all y ∈ N}

implies Kerl(ζ) = Ranl(ζ
∗)⊥ ∩N .

Proposition III.5. Let ζ ∈ L2(N , τ) and let ζ = v
√
ζ∗ζ be its polar decomposition.

Then v∗v is the projection from L2(N , τ) onto Kerl(ζ)
⊥ and vv∗ is the projection

onto Ranl(ζ).

Proposition III.6. Let ζ ∈ L2(N , τ) and let ζ = v |ζ| be its polar decomposition.

Then |ζ|
1

2k → v∗v as k →∞ in ‖·‖2.

The proof of Prop. III.6 is a direct application of the monotone convergence

theorem.

Lemma III.7. Let A ⊂ N be a masa. Let ζ ∈ L1(N , τ) be a nonzero vector such

that aζ = ζa for all a ∈ A. Then ζ ∈ L1(A, τ).
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Proof. First assume ζ ≥ 0. Then use uniqueness of square roots of L1 vectors. In, the

general case write ζ as a linear combination of four positives. We omit the details.

Proposition III.8. Let A ⊂ N be a masa. Let 0 6= ζ ∈ L1(N , τ)+ be such that

Aζ = ζA. Then ζ ∈ L1(A, τ)
+
.

Proof. Let I = {a ∈ A : aζ = 0}. Then I is a weakly closed ideal (see Eq. (A.8)

and related discussion) in A and so has the form A(1− p) for some projection p ∈ A.

Then pζ = ζ, so ζ = ζp by operating with extended Tomita’s involution operator.

Thus Apζ = Aζp = ζAp.

For a1, a2 ∈ A if ζa1p = ζa2p then ζ(a1 − a2)p = 0, so p(a∗1 − a∗2)ζ = 0. Hence

p(a∗1−a∗2) ∈ I, but 1− p is the identity for I. So p(a∗1−a∗2) = 0 and hence a1p = a2p.

This means there is a well defined map ψ : Ap 7→ Ap such that

apζ = ζψ(ap) for a ∈ A.

Taking conditional expectation (see Eq. (A.3) and related discussion) one gets

(ap − ψ(ap))EA(ζ) = 0 (the left and the right action by elements of A coincides on

L1(A, τ)). Suppose there is an operator a ∈ A such that ap − ψ(ap) 6= 0. Write

ap− ψ(ap) = bp for b ∈ A. Then pb∗bpEA(ζ) = 0, so EA(pb∗bpζ) = 0. Let ζ = lim
n
xn

in ‖·‖1 where xn ∈ N+. Therefore

lim
n
τ(x

1
2
n (bp)∗bpx

1
2
n ) = lim

n
τ(pb∗bpxn) = lim

n
τ(EA(pb∗bpxn)) = 0.

The last statement follows from Eq. (A.2) and Eq. (A.3). So lim
n
bpx

1
2
n = 0 in ‖·‖2

and hence bpζ = lim
n
bpxn = 0, in ‖·‖1 by Lemma III.3 and Eq. (A.4). Thus bp ∈ I

so bp = bp(1− p) = 0, a contradiction. Thus ψ(ap) = ap for all a ∈ A.

Now ζ ∈ L1(pNp, τ) and Ap is a masa in pN p, thus ζ ∈ L1(Ap, τ) as apζ =

ζψ(ap) = ζap for all a ∈ A, from Lemma III.7.
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Theorem III.9. (Generalized Dye’s theorem-L2 form) Let A ⊂ N be a masa. Then

ζ ∈ N f
2 (A) if and only if ζ = vξ for some ξ ∈ L2(A, τ) and v ∈ GN (A). In particular,

spanN f (A)
‖·‖2 = L2(N(A)′′, τ).

Proof. Case 1: Assume ζ ∈ N f
2 (A) and ζ ≥ 0 i.e. ζ ∈ N+

‖·‖2 . Then ζ ∈ L1(N , τ)+

as well. From Prop. III.8 we get ζ ∈ L1(A, τ) ∩ L2(N , τ) = L2(A, τ).

Case 2: Let ζ ∈ N f
2 (A). We may without loss of generality assume that ‖ζ‖2 = 1.

Then as Aζ = ζA we also have Aζ∗ = ζ∗A. So Aζ∗ζ = ζ∗Aζ = ζ∗ζA. From Prop.

III.8,

ζ∗ζ ∈ L1(A, τ)

and similarly we have ζζ∗ ∈ L1(A, τ). Then ‖ζ∗ζ‖1 ≤ 1.

Arguing as in Prop. III.8, there are projections p1, p2 ∈ A such that J1 = {a ∈

A : aζ = 0} = A(1− p1) and J2 = {a ∈ A : ζa = 0} = A(1− p2). Therefore we have

p1ζ = ζ and ζp2 = ζ.

Then there is a well defined map (as explained before) ψ : Ap1 7→ Ap2 such that

ap1ζ = ζψ(ap1) for all a ∈ A.

Let ζ = v
√
ζ∗ζ be the polar decomposition of ζ from Thm. III.4. Then v is a partial

isometry in N and the initial space of v is

{
√
ζ∗ζx : x ∈ N}−‖·‖2 and the final space is {ζx : x ∈ N}−‖·‖2 . Moreover the projec-

tions v∗v and vv∗ are in A.

Indeed, by Prop. III.5, v∗v is the projection onto Kerl(ζ)
⊥ and vv∗ onto Ranl(ζ).

By Prop. III.6, v∗v ∈ A. Replacing ζ by ζ∗ and using Kerl(ζ)
⊥ = Ranl(ζ∗) (see Eq.

(A.9)), a similar argument will yield vv∗ ∈ A. Clearly v∗v = p2 and vv∗ = p1. Then

ap1v
√
ζ∗ζ = v

√
ζ∗ζψ(ap1).
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Now

J0 = {b ∈ A : ap1vb = vbψ(ap1) for all a ∈ A}

is a weakly closed ideal in A and its closure in ‖·‖2 is precisely the set

J
−‖·‖2
0 = {ξ ∈ L2(A, τ) : ap1vξ = vξψ(ap1) for all a ∈ A}

which contains
√
ζ∗ζ.

Since the left and right action of A on L2(A, τ) agree, so ξ0 ∈ J
−‖·‖2
0 and a ∈ A

implies that ξ0a, aξ0 ∈ J
−‖·‖2
0 .

Since the w.o.t closed ideal J0 in A is just a cutdown of A by a projection from

A, any positive ζ0 ∈ J
−‖·‖2
0 is a limit in ‖·‖2 of an increasing sequence of positive

operators from J0. Now it follows that |ζ|
1

2k ∈ J
−‖·‖2
0 for all k ∈ N. Therefore by

Prop. III.6 it follows that v∗v = p2 ∈ J
−‖·‖2
0 and hence p2 ∈ J0 ⊆ A. Similarly arguing

with ζζ∗ one shows p1 ∈ A. Therefore

ap1vp2 = vp2ψ(ap1) for all a ∈ A.

Then

v∗av = (vp2)
∗avp2 = v∗ap1v = v∗vp2ψ(ap1) = ψ(ap1).

Therefore v∗ and hence v are groupoid normalisers. So

ζ = vξ.

for v ∈ GN (A) and ξ = |ζ| ∈ L2(A, τ)+.
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B. Analysis of Bimodules through Measure Theory

Let A = L∞(X, νX), B = L∞(Y, νY ) be two diffuse commutative von Neumann

algebras, where νX , νY are probability measures. Let C(A,B) denote the set of all

A,B-bimodules. This set C(A,B) contains three distinguished subsets.

We will use the variable s to denote the first variable and t to denote the second

variable. Following [36] we define:

Definition III.10. A discrete (respectively, diffuse) A,B-bimodule is a Hilbert space

H so thatH ∼= ⊕
i∈I
L2(X×Y, µi) where for all i, µi disintegrates as µi(s, t) = µ

(i)
t (s)νY (t)

with µ
(i)
t atomic (respectively non-atomic) for νY almost all t. The bimodule H is

mixed if µ
(i)
t contains atoms on a set of positive νY measure for some i, and µ

(j)
t

contains a non-atomic part on some set of positive νY measure for some j.

It is to be noted that in view of Lemma II.20, the definition above only cares

about the equivalence class of the measures µi and not a particular member of the

class. The definition forces µi to be a non-atomic measure, and the existence of

such a disintegration actually forces the push forward of µi’s on the space Y to

be dominated by νY . We will restrict ourselves to the case I is countable. Let

Cd(A,B), Cn.a(A,B), Cm(A,B) denote the set of all discrete, diffuse, mixed A,B-

bimodules respectively.

Denote by Cd(A) ⊂ Cd(A,A) ⊂ C(A,A) the set of those bimodulesH ∈ Cd(A,A)

for which H̄ ∈ Cd(A,A). Here H̄ is the opposite Hilbert space of H with left and right

actions interchanged. Bimodules in Cd(A) are precisely those for which the associated

measures µi’s in Defn. III.10 have a completely atomic disintegration along both vari-

ables. Similarly define Cn.a(A), Cm(A). Note that the spaces Cd(A), Cn.a(A), Cm(A)

are all closed with respect to taking sub bimodules.
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When A,B are masas in a II1 factor M the standard Hilbert space L2(M)

is naturally a w∗-continuous A,B bimodule, meaning it carries a pair of mutually

commuting normal representations of A and B.

Note that when we deal with the left-right-measure of a masa, knowing the

disintegration along the second variable enables us to know the disintegration along

the first variable as well, by pushing forward the former with the flip map (see Lemma

II.21).

Before we proceed to the characterization of masas we will have to make few

definitions and statements that are very valuable tools yet not appear in standard

measure theory courses. For details see [16], [26].

Definition III.11. Let X be a Polish space. A subset B of X is said to have

Baire property if there is an open set O ⊂ X and a comeager set A ⊂ X such that

A ∩ O = A ∩B.

The collection of sets with Baire property forms a σ-algebra which includes the

Borel σ-algebra.

Definition III.12. Let X and Y be Polish spaces. A function f : X 7→ Y is said

to be Baire measurable if the inverse image of any open set has Baire property. The

function f is said to be universally Baire measurable if given any Borel function g

into X the function f ◦ g is Baire measurable.

Note that in particular every Borel function is Baire measurable.

Definition III.13. A subset E of a Polish space is said to be universally measurable

if it is measurable with respect to any complete Borel probability measure.

Definition III.14. A subset E of a Polish space X is said to be Σ
∼

1
1 or analytic, if

there is a Polish space Y , a Borel subset B of Y and a Borel function f : Y 7→ X

such that f(B) = E. In other words, Σ
∼

1
1 sets are Borel images of Borel sets.
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Remark III.15. The above definition of analytic sets is as per [16]. However in, [19]

continuous images rather than Borel images are used. The two definitions are in fact

equivalent.

A very nontrivial theorem of Lusin says the following.

Theorem III.16. (Lusin) Every Σ
∼

1
1 set has Baire property. Every Σ

∼
1
1 set is univer-

sally measurable.

For a function f : Y 7→ X, the graph of f will be denoted by Γ(f) = {(f(y), y) :

y ∈ Y }. The next theorem is very crucial in all our analysis.

Theorem III.17. (Selection Principle - Jankov, von Neumann) Let X, Y be Polish

spaces and let E ⊂ X × Y be in Σ
∼

1
1. Then E can be uniformized by a function that

is both Baire and universally measurable, in the sense that for some h : Y 7→ X we

have

Γ(h|πY (E)) ⊆ E

with the property that h−1(U) has the Baire property and is measurable with respect

to any Borel probability measure for all open U ⊆ X.

Remark III.18. Let νX and νY be any two Borel probability measures on X, Y re-

spectively. Let σνX
and σνY

be the σ-algebras associated to the measures νX , νY

respectively. If h is the function in Thm. III.17, then the inverse image of any Borel

set in X under h will lie in σνY
, because the collection of subsets of X whose inverse

images fall in σνY
is a σ-algebra and contains all open sets. If in addition, h satis-

fies the property that νX(h(F )) = 0 if and only if νY (F ) = 0, then h is (σνY
, σνX

)

measurable.

Let A ⊂ M be a masa. Without loss of generality we assume that A =

L∞([0, 1], λ) where λ is the Lebesgue measure on [0, 1]. Let [η[0,1]×[0,1]] denote the
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left-right-measure of A. We are including the diagonal. Fix any member η[0,1]×[0,1]

from the equivalence class. Since our base space is now fixed we will rename η[0,1]×[0,1]

by η to reduce the notation. We assume that η is a finite measure.

Consider the set Sa = ([0, 1] × [0, 1])a as defined in Prop. II.17 with respect to

the disintegration along the y-axis i.e. the t variable. Then by Prop. II.17, Sa is a [η]-

measurable set, i.e. measurable with respect to the completion σ-algebra associated

to η. Define measures

ηa = η|(Sa\∆([0,1])) and ηn.a = η|(Sc
a\∆([0,1])).

Then

(i) η|∆([0,1])c = ηa + ηn.a, ηa ⊥ ηn.a.

(ii) Both ηa, ηn.a have disintegrations along the x, y axes with respect to λ.

Note that the disintegration of the measure ηa along the x and y-axes must

have at most countably many atoms almost all fibres (see Lemma II.21), otherwise

η is an infinite measure. Since changing the measure ηa or η on a set of measure 0

does not change the measure class of ηa or η, we can as well assume without loss of

generality that, the disintegration of the measure ηa along y-axis (second variable) has

at most countable number of atoms for all fibres. With this as set up we formalize the

characterization theorem of masas. Thm. III.19 will be proved latter in this section.

Theorem III.19. (Classification of Types) A masa A ⊂M is

(i)Cartan if and only if ηn.a = 0 equivalently L2(A)⊥ ∈ Cd(A),

(ii)singular if and only if ηa = 0 equivalently L2(A)⊥ ∈ Cn.a(A),

(iii)A  N(A)′′  M if and only if ηa 6= 0, ηn.a 6= 0 equivalently

L2(A)⊥ ∈ Cm(A).
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(iv)A is semiregular if and only if ηa(E × F ) > 0 whenever

λ(E) > 0, λ(F ) > 0 for measurable sets E,F ⊂ [0, 1].

Remark III.20. First of all, in view of Lemma II.18 and II.20, the characterization

does not depend on any particular member of the left-right-measure.

Secondly, L2(A) is always included in Cd(A), the disintegration having one atom at

each point of the diagonal. This is the reason one excludes L2(A) from statements in

Thm. III.19.

Finally, from our discussion on direct integrals, it follows that L2(A)⊥ is the direct

integral over [0, 1]× [0, 1] with respect to the measure η|(∆[0,1])c , the measurable field

of Hilbert spaces depending on m[0,1] or the Pukánszky invariant. So the equivalent

statements regarding the type of bimodules and measure in Thm. III.19 are obvious

statements.

The next technical lemma is the key to characterization of masas. There are sev-

eral measures involved in its statement and proof. Since there is danger of confusion

with measurability of objects involved we will always use phrases like ‘µ-measurable’.

Lemma III.21. Let ηa 6= 0. Let Y ⊆ (∆[0, 1])c be a η-measurable set of strictly

positive ηa-measure. There exists a λ-measurable set EY ⊆ [0, 1] with λ(EY ) > 0 and

a function hY : [0, 1] 7→ [0, 1] such that

(i) hY is λ-measurable,

(ii) Γ(hY ) is a η-measurable set,

(iii) η(Γ(hY )) > 0 and (hY (t), t) ∈ Y ∩ Sa for t ∈ EY ,

(iv) for E ⊂ [0, 1], λ(E) = 0 if and only if λ(hY (E)) = 0.

Proof. We have

η(Sa ∩ Y ) = ηa(Sa ∩ Y ) = ηa(Y ) > 0.
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Consider the disintegration of η|Y along the y-axis. There is a set F Y ⊆ [0, 1]

such that λ(F Y ) > 0 and for each t ∈ F Y the measure (η|Y )t has atoms with at most

countable number of atoms and for t 6∈ F Y the same disintegration has no atoms.

This is true because η is a finite measure, the set F Y being πy(Sa ∩ Y ), πy denoting

the projection on to the y-axis. The set Sa ∩ Y is η-measurable, so Sa ∩ Y = B ∪N

where B is a Borel set in [0, 1]× [0, 1] and N is a η-null set. The set B is a continuous

image of a Polish space by Thm. 14.3.5 of [19] and so is πy(B). By Defn II.15,

λ(πy(N)) = 0. So F Y is λ-measurable set by Thm. III.16. Throwing off another

λ-null set from F Y if necessary we can as well assume without loss of generality that

F Y is a Borel set.

Let F Y
a =

(
(Y ∩ Sa) ∩ ([0, 1]× F Y )

)
which is η-measurable. Write F Y

a = EY
a ∪N1

where N1 is a η-null set and EY
a is a Borel set. Then by Thm. 14.3.5 of [19], EY

a is

in Σ
∼

1
1, in fact it is the continuous image of a Polish space. The hypothesis guarantees

η(EY
a ) > 0.

Let EY = πy(E
Y
a ). Then EY is in Σ

∼
1
1 and hence EY is λ-measurable by Thm.

III.16. Therefore by Def II.15, λ(EY ) > 0. By Thm. III.17 applied to EY
a , there

exists a function hY : [0, 1] 7→ [0, 1] that is both Baire and universally measurable in

the sense of Thm. III.17, such that Γ(hY |EY ) ⊆ EY
a .

The inverse image under hY of any Borel subset of [0, 1] belongs to σλ. Therefore

given ε > 0, by Lusin’s theorem there is a closed subset GY ⊆ EY such that λ(EY \

GY ) < ε and hY |GY is continuous. Then hY |GY is Borel measurable. So by Cor. 2.11

of [25], Γ(hY |GY ) is Borel measurable and hence η-measurable.

The disintegration along the y-axis of the measure η|Γ(hY |GY ) is precisely the atom

at the point (hY (t), t) for each t ∈ GY of the measure ηt. Outside GY we don’t care.



45

If η(Γ(hY |GY )) = 0 then by definition of disintegration

0 =

∫
GY

ηt(Γ(hY ))dλ(t)

which implies that for λ almost all t ∈ GY the point (hY (t), t) is not an atom of ηt

and hence cannot be in Sa. So η(Γ(hY |GY )) > 0.

Clearly, hY |GY satisfies the property that for any E ⊂ GY , λ(E) = 0 if and only

if λ(hY (E)) = 0. Therefore by Thm. II.27, extend hY |GY to a continuous function

h̃Y which satisfies the property that for any E ⊂ [0, 1], λ(E) = 0 if and only if

λ(h̃Y (E)) = 0. So by Rem III.18, h̃Y is (σλ, σλ) measurable. Rename h̃Y to hY and

GY to EY . The rest is clear from construction.

Lemma III.22. Let ηa 6= 0. Let Y ⊆ (∆[0, 1])c be a η-measurable set of strictly

positive ηa-measure. Then U(A)  N(A), where U(A) denotes the unitary group of

A. More precisely, there exists a subset F Y of [0, 1] such that λ(F Y ) > 0, a invertible

map hY : F Y 7→ hY (F Y ) and a nonzero vector ζY ∈ L2(N(A)′′)	 L2(A) such that

(i) ζY = vY ρY with vY ∈ GN (A), ρY ∈ L2(A)+

(ii) AζYA
‖·‖2 ∼=

∫ ⊕
Γ(hY )

Cs,tdη(s, t), where Cs,t = C,

(iii) Γ(hY ) ⊆ Y ∩ Sa,

(iv) η(Γ(hY )) > 0,

(v)1 ∈ Puk(A).

Proof. Using Lemma III.21, choose the function hY that satisfies the conclusion of

that Lemma. Note that hY satisfies the conditions of Prop. II.29. Apply Prop. II.29

to the function hY and the set EY to extract a set F Y ⊆ EY such that λ(F Y ) > 0
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and hY is one to one on F Y . So

hY : F Y 7→ hY (F Y ) is invertible.

Note that as λ(F Y ) > 0 so η(Γ(hY |F Y )) > 0. There is no information of the

Pukánszky invariant yet. So assume that Puk(A) = {ni : ni ∈ N∞, i ∈ I}, where the

indexing set I could be finite or countable. Let

Eni
= {(s, t) ∈ ∆([0, 1])c : m[0,1](s, t) = ni},

where m[0,1] denotes the multiplicity function of the direct integral decomposition of

L2(M) over [0, 1]× [0, 1] with respect to the measure η. Then for each i ∈ I it is well

known that Eni
are η-measurable sets. Also∫ ⊕

Eni

Cni
s,tdη(s, t)

∼= L2(Eni
, η|Eni

)⊗ Cni where Cni
s,t = Cni , and

⊕
i∈I

L2(Eni
, η|Eni

)⊗ Cni ∼= L2(M)	 L2(A).

In the above equation C∞ stands for l2(N). Fix orthonormal bases {e(ni)
j }1≤j≤ni

of Cni for all i ∈ I. Then ∑
i∈I

χΓ(hY |FY )∩Eni
⊗ e

(ni)
1

where χ denotes the indicator function, can be identified with a vector ζY ∈ (1 −

eA)(L2(M)) such that

AζYA = AζY = ζYA. (B.1)

Eq. (B.1) is easy to check, in fact one only uses that fact that hY is locally one to

one and onto. That ζY 6= 0 is due to the fact η(Γ(hY |F Y )) > 0. Then from Theorem

III.9, it follows that ζY = vY ρY where ρY = (ζ∗Y ζY )
1
2 ∈ L2(A)+ and vY ∈ GN (A).

Clearly, vY 6∈ A, as otherwise AζYA
‖·‖2 ⊆ L2(A) would become the direct integral of
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complex numbers over some subset of the diagonal with respect to the measure ∆∗λ,

where ∆ : [0, 1] 7→ [0, 1]× [0, 1] is the map ∆(x) = (x, x).

Thus ζY ∈ L2(N(A)′′) and hence AζYA
‖·‖2 ⊆ L2(N(A)′′). Clearly,

AζYA
‖·‖2 ∼=

∫ ⊕
Γ(hY |FY )

Cs,tdη(s, t), where Cs,t = C. (B.2)

So AζYA
‖·‖2 ⊥ L2(A) and AζYA

‖·‖2 ∈ Cd(A). Since AζYA
‖·‖2 ⊆ L2(N(A)′′) so

η(Γ(hY |F Y ) ∩ Eni
) = 0 if ni ≥ 2 from a result of Popa [34]. Thus 1 ∈ Puk(A).

Each partial isometry 0 6= v ∈ GN (A) implements a measure preserving local

isomorphism T : ([0, 1], λ) 7→ ([0, 1], λ) such that vav∗ = a ◦ T−1 for all a ∈ A. With

abuse of notation we will write v = T . Then Γ(v) = {(T (t), t) : t ∈ Dom(T )},

Dom(T ) denoting the domain of T .

Lemma III.23. Let ηa 6= 0. Let Y ⊆ (∆[0, 1])c be a η-measurable set of strictly

positive ηa-measure. Then there is a nonzero partial isometry v ∈ GN (A) such that

Γ(v) ⊆ Y .

Proof. By Lemma III.22, there exists a subset F Y of [0, 1] such that λ(F Y ) > 0, a

invertible map hY : F Y 7→ hY (F Y ) and a nonzero vector ζY ∈ L2(N(A)′′) 	 L2(A)

such that ζY = vY ρY with vY ∈ GN (A), ρY ∈ L2(A)+ and satisfying property (ii),

(iii), (iv) of Lemma III.22.

Let ηζY
, ηvY

be the measures on [0, 1] × [0, 1] defined in Eq. (C.12). Let qY =

vY v
∗
Y ∈ A. With abuse of notation we will regard qY as a measurable subset of [0, 1]

as well. We claim that, ηζY
� ηvY

� ηζY
. Indeed for a, b ∈ C[0, 1],∫

[0,1]×[0,1]

a(s)b(t)dηζY
(s, t) =

∫
Γ(hY )

a(s)b(t)dηζY
(s, t)

= τ(ρ∗Y v
∗
Y avY ρY b)

= τ(ρ∗Y v
∗
Y avY bρY ) (as ρY b = bρY )
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= τ(v∗Y avY bρY ρ
∗
Y )

= τ(v∗Y avY bρ
∗
Y ρY )

= τ(v∗Y avY ρ
∗
Y ρY b)

=

∫
qY

a(vY (t))b(t) |ρY (t)|2 dλ(t)

=

∫
Γ(vY )

a(s)b(t) |ρY (t)|2 dηvY
(s, t)

=

∫
[0,1]×[0,1]

a(s)b(t) |ρY (t)|2 dηvY
(s, t).

In the above string of equalities we have used the facts that τ extends to a trace

like functional on L1(A) and the left and right actions of A on L2(A), L1(A) coincides.

Using Thm. III.9, by standard arguments it follows that ηζY
� ηvY

� ηζY
. Thus the

result follows with v = vY .

Suppose {vj}j∈J is a family of partial isometries in GN (A) such that Avj ⊥ Avj′

whenever j 6= j′. Denote by [34]

∑
j∈J

Avj =

{
x ∈M : x =

∑
j∈J

ajvj, for aj ∈ A with
∑
j∈J

‖ajvj‖2
2 <∞

}
.

Theorem III.24. (Compare Cor. 2.5 [34]) Let ηa 6= 0. Then A ( N(A)′′. Moreover,

there is a sequence {vn}∞n=0 ⊂ GN (A) of nonzero partial isometries (with possibility

that the sequence could be finite) with v0 = 1 such that,

(i) Γ(vn) ∩ Γ(vm) = ∅ for n 6= m,

(ii) ηa([0, 1]× [0, 1]) =
∞∑

n=1

ηa(Γ(vn)),

(iii)⊕∞n=0 Avn
‖·‖2 ∼=

∫ ⊕
∪∞n=0Γ(vn)

Cs,td(ηa + ∆∗λ)(s, t) ∼= L2(N(A)′′),

(where Cs,t = C and ∆ : [0, 1] 7→ [0, 1]× [0, 1] by ∆(x) = (x, x))
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(iv) N(A)′′ =
∞∑

n=0

Avn,

and A restricted to ⊕∞n=0Avn
‖·‖2 is diagonalizable with respect to the decomposition in

(iii).

Proof. First of all assuming that (i) in the statement is true it follows that Avn ⊥ Avm

whenever n 6= m. Indeed, Avn
‖·‖2 ⊆ L2(N(A)′′). Now A restricted to Avn

‖·‖2 is an

abelian algebra with a cyclic vector, so it is maximal abelian. The projection eAvn

onto Avn
‖·‖2 is in A. So Avn

‖·‖2 is the direct integral of complex numbers over a

subset Xn of [0, 1]× [0, 1] with respect to the measure η and A restricted to Avn
‖·‖2

is diagonalizable with respect to this decomposition. But η(Xn∆Γ(vn)) = 0. Again

ηn.a(Γ(vn)) = 0. So the direct integral as stated above is actually with respect to the

measure ηa + ∆∗λ. The graphs being disjoint for n 6= m forces the orthogonality of

Avn and Avm whenever n 6= m. The sum in (iii) therefore makes sense.

Using Lemma III.23, choose a maximal family {vα}α∈Λ ⊂ GN (A), for some

indexing set Λ, such that Γ(vα) ⊂ ∆([0, 1])c for all α ∈ Λ and Γ(vα) ∩ Γ(vβ) = ∅

whenever α 6= β. Since Avα ⊥ Avβ whenever α 6= β (by similar argument as above)

so the indexing set must be countable by the separability assumption of L2(M). So

we index this maximal family by {vn}∞n=1. Let v0 = 1. So (i) follows by construction.

If ηa([0, 1] × [0, 1]) >
∑∞

n=1 ηa(Γ(vn)) then Sa \ ∪∞n=1Γ(vn) is a set of strictly

positive ηa measure. A further application of Lemma III.23 violates the maximality

of {vn}∞n=1. This proves (ii).

By the argument of the first paragraph and Lemma 5.7 [11],

⊕∞n=1Avn
‖·‖2 ∼=

∫ ⊕
∪∞n=1Γ(vn)

Cs,tdηa(s, t) ⊆ L2(N(A)′′)	 L2(A) (B.3)

and A restricted to ⊕∞n=1Avn
‖·‖2 is diagonalizable with respect to the decomposition
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in Eq. (B.3).

If 0 6= ζ = ζ∗ ∈ L2(N(A)′′) 	 L2(A) is such that ζ ⊥ Avn for all n ≥ 1 then

AζA ⊥ Avn for all n ≥ 0. By arguments similar to the first paragraph, AζA
‖·‖2 is the

direct integral over a η-measurable set Xζ , of complex numbers with respect to the

measure η andA restricted to AζA
‖·‖2 is diagonalizable respecting this decomposition.

If ζ as a L2 function stays nonzero on a set of positive ∆∗λ-measure then ζ cannot

be perpendicular to L2(A). By Prop. II.25, AζA
‖·‖2 ∈ Cd(A) and hence by Theorem

II.22 and Lemma 5.7 [11], we can assume Xζ ⊂ Sa \ ∆([0, 1]). Since ζ 6= 0 so

η(Xζ) = ηa(Xζ) > 0. Since ηa is concentrated on ∪∞n=1Γ(vn), so Xζ∩Γ(vn) has strictly

positive ηa and hence η measure for some n ≥ 1. Note that eN(A)′′ ∈ A and AeN(A)′′ =

A′eN(A)′′ from [34]. On the other hand, by Lemma 5.7 [11], L2(N(A)′′)	L2(A) will be

expressed as a direct integral over some subset of [0, 1]× [0, 1] with respect to η, with

multiplicity strictly bigger than 1 on a set of positive η-measure. This contradicts

AeN(A)′′ is maximal abelian. Thus

⊕∞n=0Avn
‖·‖2 ∼=

∫ ⊕
∪∞n=0Γ(vn)

Cs,td(ηa + ∆∗λ)(s, t) ∼= L2(N(A)′′),

with associated statements about diagonalizability of A. Finally

∞∑
n=0

Avn =
∞∑

n=0

Avn

‖·‖2

∩M =
(
⊕∞n=0Avn

‖·‖2
)
∩M = L2(N(A)′′) ∩M = N(A)′′.

Remark III.25. Thm. III.24 generalizes Cor. 2.5 of [34]. In general we cannot hope

to find unitaries as was the case in Cor. 2.5 [34]. The situation in Cor. 2.5 of [34] was

completely different, where the assumption was that, the masa is Cartan. Assuming

the masa is Cartan, forces the disintegration of the measure ηa to have at least one

atom off the diagonal in almost every fibre. Such an assumption cannot be made for a
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general masa. For example consider the following situation. Let C ⊂ R be a Cartan

masa and let S ⊂ R be a singular masa, where R denotes the hyperfinite II1 factor.

Then C⊕S ⊂ R⊕R is a masa, where the trace on R⊕R is 1
2
τR⊕ 1

2
τR, τR denoting

the unique, normal, faithful tracial state of R. Then C ⊕ S ⊂ (R⊕R) ∗ R ∼= L(F2)

(from [9]) is a masa for which such an assumption will fail from Prop. 5.10 [11].

We will now present the proof of Thm III.19.

Proof of III.19. Case (i). The necessary and sufficient condition for Cartan masas

follows directly from Thm. III.24.

Case (ii). The result for singular masas also follows from Thm. III.24.

Case (iii). Let A  N(A)′′  M. If ηa = 0 then, by conclusion of (ii), A would

become singular. Therefore ηa 6= 0. If ηn.a = 0 then by conclusion of part (i), A

would be Cartan. Therefore ηn.a 6= 0 as well.

Conversely, if ηn.a 6= 0 and ηa 6= 0, then by Theorem III.24, A  N(A)′′  M.

Case (iv). First assume that N(A)′′ is a factor. From Thm. III.24 it follows that

L2(N(A)′′) ∼=
∫ ⊕

[0,1]×[0,1]

Cs,td(ηa + ∆̃∗λ)(s, t), where Cs,t = C

and A restricted to this subspace is diagonalizable, where ∆̃ : [0, 1] 7→ [0, 1] × [0, 1]

is defined by ∆̃(x) = (x, x). Therefore [ηa + ∆̃∗λ] is the left-right-measure of the

inclusion A ⊂ N(A)′′. Suppose there are measurable sets E,F ⊂ [0, 1] such that

λ(E) > 0, λ(F ) > 0 and ηa(E × F ) = 0. Now E and F corresponds to nonzero

projections p, q respectively in A. Thus pζq = 0 for all ζ ∈ L2(N(A)′′) and hence

pxq = 0 for all x ∈ N(A)′′. Thus CpCq = 0 where Cp, Cq denotes the central carriers

of p and q respectively in N(A)′′. So N(A)′′ cannot be a factor.

Conversely assume N(A)′′ has a nontrivial center. Let p ∈ Z(N(A)′′) be a
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projection which is different from 0 and 1. Then

N(A)′′ = N(A)′′p⊕N(A)′′(1− p).

So p ∈ A′ ∩N(A)′′ and hence p ∈ A. So

A = Ap⊕ A(1− p). (B.4)

It follows that are exists λ-measurable sets F1, F2 ⊂ [0, 1] such that, λ(Fi) > 0 for

i = 1, 2, where F1 corresponds to p and F2 corresponds to (1− p).

With respect to the Eq. (B.4) let a = a1⊕a2 and b = b1⊕b2 be the decompositions

of a, b ∈ C([0, 1]). For ζ ∈ L2(N(A)′′) one has an analogous decomposition ζ = ζ1⊕ζ2

with ζ1 = pζp and ζ2 = (1− p)ζ(1− p). The equation

〈aζb, ζ〉 = 〈(a1 ⊕ a2)(ζ1 ⊕ ζ2)(b1 ⊕ b2), (ζ1 ⊕ ζ2)〉 = 〈a1ζ1b1, ζ1〉+ 〈a2ζ2b2, ζ2〉

shows that the left-right-measure of the inclusion A ⊂ N(A)′′ will be concentrated on

F1 × F1 ∪ F2 × F2. This completes the proof.

C. Consequences of the Characterization, Chifan’s Normaliser Formula

The following results about masas that were proved by experts in different ways,

are just easy consequences of the measurable selection principle as we have described

in the previous section.

Corollary III.26. If A ⊂ M is a Cartan masa then A ⊂ B is a Cartan masa for

all von Neumann subalgebra A  B  M.

Proof. By Lemma 5.7 of [11] the left-right-measure of the inclusion A ⊂M is [ηB +

ηB⊥ ] where [ηB] is the left-right-measure of the inclusion A ⊂ B and ηB ⊥ ηB⊥ .

It follows that ηB has atomic disintegration along both axes. The result is then
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immediate from Thm. III.19 and Thm III.24.

Corollary III.27. Let A ⊂M be a masa and let Q be a finite von Neumann algebra

such that dim(Q) ≥ 2. Then NM∗Q(A) = NM(A).

Proof. In this proof we consider left-right-measures restricted to the off diagonal.

First of all it well known that A ⊂ M ∗ Q is a masa. Let [ηM] denote the left-

right-measure of the inclusion A ⊂ M. Write ηM = η1 + η2 where η1 � λ ⊗ λ and

η2 ⊥ λ⊗λ. Using Prop. 5.10 and Lemma 5.7 [11] it follows that the left-right-measure

[ηM∗Q] of the inclusion A ⊂M∗Q is given by

ηM∗Q =


ηM + λ⊗ λ if η1 = 0,

η2 + λ⊗ λ if η1 6= 0.

The rest is obvious from Thm. III.19 and Thm. III.24.

Corollary III.28. Let A ⊂ M be a Cartan masa and let A ⊂ B ( M be an

intermediate subalgebra. Then there is a v ∈ GN (A) such that v ⊥ B.

Proof. By Lemma 5.7 [11], the left-right-measure of the inclusion A ⊂M is [ηB +ηB⊥ ]

where ηB ⊥ ηB⊥ and [ηB] is the left-right-measure of the inclusion A ⊂ B. Note

ηB⊥ 6= 0. Apply Lemma III.23.

We prove the next theorem in the context of II1 factors. But it can be easily

generalized to finite von Neumann algebras. Let Mi, i = 1, 2 be separably acting II1

factors with normal, faithful tracial states τi respectively. Let Mi act on L2(Mi, τi)

by left multiplication. Let A ⊂ M1 and B ⊂ M2 be masas. Fix compact Polish

spaces X, Y such that C(X) ⊂ A and C(Y ) ⊂ B are unital, norm separable and

w.o.t dense. Let νX and νY denote the tracial measures for A,B respectively, which

will be assumed to be complete. Let the left-right-measure of A on X × X be [σ1]



54

and that of B on Y × Y be [σ2]. Here we are allowing the diagonals, i.e, we are

assuming σ1|∆(X) = (∆̃X)∗νX and σ2|∆(Y ) = (∆̃Y )∗νY where ∆̃X : X 7→ X × X by

∆̃X(x) = (x, x) and ∆̃Y : Y 7→ Y × Y by ∆̃Y (y) = (y, y).

By Tomita’s theorem on commutants A⊗B is a masa in M1⊗M2. The space

X × Y is compact and Polish, and C(X × Y ) is unital, norm separable and w.o.t

dense in A⊗B. The standard Hilbert space and the Tomita’s involution operator

for M1⊗M2 are L2(M1, τ1) ⊗ L2(M2, τ2) and JM1 ⊗ JM2 respectively. The tracial

measure for A⊗B on X × Y is clearly νX ⊗ νY . With this as set up we formulate the

next theorem which appeared in [3]. The same proof actually generalizes to infinite

tensor products.

Theorem III.29. (Chifan’s Normaliser Formula) Let A ⊂ M1 and B ⊂ M2 be

masas in separably acting II1 factors M1 and M2. Then

N(A⊗B)′′ = N(A)′′⊗N(B)′′.

Proof. Fix σ1 and σ2 from the aforesaid class of left-right-measures. The left-right-

measure of A⊗B on (X × Y )× (X × Y ) which is denoted by [β] is given by

dβ(sX , sY , tX , tY ) = dσ1(sX , tX)dσ2(sY , tY )

from Prop. 5.2 [11]. Here s is the variable running along the first coordinate

(horizontal direction) and t along the second coordinate (vertical direction). Then

from Lemma II.19 it follows that the disintegration of β along the t variable (vertical

direction) is given by

βtX×Y
= σ1tX ⊗ σ2tY , (tX , tY ) - a.e νX ⊗ νY , where tX×Y = (tX , tY ).

For fixed tX×Y = (tX , tY ) ∈ X × Y the measure βtX×Y
has an atom at the point
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(sX , sY , tX , tY ) if and only if σ1tX has an atom at (sX , tX) and σ2tY has an atom at

(sY , tY ). Therefore

((X × Y )× (X × Y ))a = S2,3((X ×X)a × (Y × Y )a),

where S2,3 denotes the permutation (2, 3) on four symbols (see Prop. II.17). There-

fore,

β|((X×Y )×(X×Y ))a = σ1|(X×X)a
⊗ σ2|(Y×Y )a

.

Hence denoting CsX ,sY ,tX ,tY = C, CsX ,tX = C = CsY ,tY we have

L2(N(A⊗B)′′) ∼=
∫ ⊕

((X×Y )×(X×Y ))a

CsX ,sY ,tX ,tY dβ(sX , sY , tX , tY )

∼=
∫ ⊕

(X×X)a

CsX ,tXdσ1(sX , tX)⊗
∫ ⊕

(Y×Y )a

CsY ,tY dσ2(sY , tY )

∼= L2(N(A)′′)⊗ L2(N(B)′′) from Thm. III.24.

Since the containment N(A)′′⊗N(B)′′ ⊆ N(A⊗B)′′ is obvious we are done.

As a corollary we obtain the following result that was proved in [44].

Corollary III.30. Let A ⊂M1 and B ⊂M2 be singular masas in separably acting

II1 factors M1 and M2. Then A⊗B is singular in M1⊗M2.

D. Asymptotic Homomorphism and Measure Theory

The equivalence of WAHP and singularity is a nontrivial theorem [44]. In this

section we will give a direct proof of the equivalence of WAHP and singularity by

using measure theoretic tools. We will also present partial results about AHP. In

order to do so we will first have to relate certain norms to the left-right-measure. The

measure theoretic tools described in this section will be used in subsequent chapters

for explicit calculation of left-right-measures.
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Let A ⊂ M be a masa. Let λ denote the Lebesgue measure on [0, 1] so that

A ∼= L∞([0, 1], λ). Then λ is the tracial measure. Let [η] denote the left-right-measure

of A. We assume that η is a probability measure on [0, 1]× [0, 1] and η(∆([0, 1])) = 0.

Let B[0, 1] denote the collection of all bounded measurable functions on [0, 1].

Notation: The disintegrated measures are usually written with a subscript t 7→ ηt

in the literature. But in this section we will use the superscript notation t 7→ ηt to

denote them. The (π1, λ) disintegration of measures will be indexed by the variable

t and the (π2, λ) disintegration will be indexed by the variable s.

In all the following results that uses disintegration of measures, we will only state

or prove the result with respect to the (π1, λ) disintegration. Statements about the

(π2, λ) disintegration are analogous.

Lemma III.31. Let x ∈ M be such that EA(x) = 0. Let ηx denote the measure on

[0, 1]×[0, 1] defined in Eq. (C.12) of chapter II. Then ηx admits (πi, λ) disintegrations

[0, 1] 3 t 7→ ηt
x and [0, 1] 3 s 7→ ηs

x, where πi, i = 1, 2 denotes the coordinate

projections. Moreover,

ηt
x([0, 1]× [0, 1]) = EA(xx∗)(t), λ a.e.

Proof. From Lemma 5.7 of [11] it follows that there is a measure η0 such that (i)

η0 ⊥ ηx, (ii) [ηx + η0] is the left-right-measure of A. Therefore [(πi)∗(η0 + ηx)] = [λ]

by Lemma II.11 and hence (πi)∗(ηx) � λ for i = 1, 2. Consequently from Thm. II.16,

ηx admits (πi, λ) disintegrations for i = 1, 2.

Note that ηx([0, 1] × [0, 1]) = τ(xx∗) = τ(EA(xx∗)). From (ii) of Defn. II.15 it

follows that [0, 1] 3 t 7→ ηt
x([0, 1] × [0, 1]) is measurable. Let E ⊆ [0, 1] be any Borel

set. Then there exists a sequence of functions fn ∈ C[0, 1] such that 0 ≤ fn ≤ 1

and fn → χE pointwise. By dominated convergence theorem we have ηx(fn ⊗ 1) →
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ηx(χE ⊗ 1). On the other hand,

ηx(fn ⊗ 1) = 〈fnx, x〉 = τ(fnxx
∗) = τ(fnEA(xx∗)) =

∫ 1

0

fn(t)EA(xx∗)(t)dλ(t)

→
∫ 1

0

χE(t)EA(xx∗)(t)dλ(t), as n→∞,

=

∫
E

EA(xx∗)(t)dλ(t).

From Defn. II.15 again we have

ηx(χE ⊗ 1) =

∫ 1

0

ηt
x(χE ⊗ 1)dλ(t) =

∫
E

ηt
x([0, 1]× [0, 1])dλ(t).

Therefore for all Borel sets E ⊆ [0, 1] we have∫
E

ηt
x([0, 1]× [0, 1])dλ(t) =

∫
E

EA(xx∗)(t)dλ(t).

Thus, ηt
x([0, 1]× [0, 1]) = EA(xx∗)(t) for λ almost all t.

Lemma III.32. Let x ∈ M be such that EA(x) = 0. Let f ∈ B[0, 1]. Then the

functions [0, 1] 3 t 7→ ηt
x(1⊗ f), [0, 1] 3 s 7→ ηs

x(f ⊗ 1) are in L∞([0, 1], λ).

Proof. We will only prove for the (π1, λ) disintegration. From Lemma III.31 we

know that ηx admits a (π1, λ) disintegration. From Defn. II.15 we also know that

[0, 1] 3 t 7→ ηt
x(1⊗ f) is measurable. Now if 0 ≤ t ≤ 1 then

∣∣ηt
x(1⊗ f)

∣∣ ≤ ‖f‖ ηt
x([0, 1]× [0, 1]).

Now use Lemma III.31.

Lemma III.33. Let x ∈M be such that EA(x) = 0. Let b, w ∈ B[0, 1]. Then

‖EA(bxwx∗)‖2
2 =

∫ 1

0

|b(t)|2
∣∣ηt

x(1⊗ w)
∣∣2 dλ(t).

Proof. We have noted before that ηx admits (πi, λ) disintegrations for i = 1, 2. Sec-
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ondly, as b, w ∈ B[0, 1], so [0, 1] 3 t 7→ b(t)ηt
x(1⊗ w) is in L∞([0, 1], λ) from Lemma

III.32. Now

‖EA(bxwx∗)‖2
2 = sup

a∈C[0,1]

‖a‖2≤1

|〈a,EA(bxwx∗)〉|2

= sup
a∈C[0,1]

‖a‖2≤1

|τ(aEA(bxwx∗))|2

= sup
a∈C[0,1]

‖a‖2≤1

|τ(EA(abxwx∗))|2

= sup
a∈C[0,1]

‖a‖2≤1

|τ(abxwx∗)|2

= sup
a∈C[0,1]

‖a‖2≤1

∣∣∣∣∫
[0,1]×[0,1]

a(t)b(t)w(s)dηx(t, s)

∣∣∣∣2

( from Eq. (C.12) of chapter II)

= sup
a∈C[0,1]

‖a‖2≤1

∣∣∣∣∫ 1

0

a(t)b(t)ηt
x(1⊗ w)dλ(t)

∣∣∣∣2 (from Defn. II.15)

=

∫ 1

0

|b(t)|2
∣∣ηt

x(1⊗ w)
∣∣2 dλ(t) (from Lemma III.32).

The following facts are well known, we just record them for completeness. For

details we refer the reader to [20]. Recall that a subset S ⊆ Z is said to be of full

density if

lim
n

#(S ∩ [−n, n])

2n+ 1
= 1.

Definition III.34. A measure µ on [0, 1] is called mixing (or sometimes Rajchman)

if its Fourier coefficients µ̂n =
∫ 1

0
e2πintdµ(t) converge to 0 as |n| → ∞.



59

By the Riemann-Lebesgue lemma any absolutely continuous measure is mixing.

However there are many mixing singular measures as well. Atomic measures can

never be mixing. The next proposition justifies why non-atomic measures are called

weak (or weakly) mixing measures.

Proposition III.35. (Wiener) A measure µ on [0, 1] is non-atomic (diffuse) if and

only if for a set S ⊆ Z of full density

lim
n∈S,|n|→∞

µ̂n = 0.

From Prop. 2.5 and Prop. 2.19 of [20], mixing and weakly mixing are just not

properties of measures, they are in fact properties of equivalence class of measures.

We need the following fact from the calculus course. A bounded sequence of

complex numbers {an}n∈Z converges to 0 strongly in the sense of Cesàro i.e,

lim
N→∞

1

2N + 1

N∑
n=−N

|an| = 0 (D.1)

if and only if there is a set S ⊆ Z of full density such that

lim
n∈S,|n|→∞

|an| = 0. (D.2)

Let x, y ∈ M be such that EA(x) = EA(y) = 0. Let a ∈ A. Then the following

polarization identity holds:

4 EA(xay∗) = EA((x+ y)a(x+ y)∗)− EA((x− y)a(x− y)∗) (D.3)

+ i EA((x+ iy)a(x+ iy)∗)− i EA((x− iy)a(x− iy)∗).

Thus WAHP for a masa is equivalent to the following. For each finite set

{xi}n
i=1 ⊂ M with EA(xi) = 0 for all 1 ≤ i ≤ n and ε > 0, there exists an uni-
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tary u ∈ A such that

‖EA(xiux
∗
i )‖2 ≤ ε for all 1 ≤ i ≤ n.

We will only prove the harder part of the equivalence of singularity and WAHP.

Theorem III.36. Let A ⊂ M be a masa such that L2(A)
⊥ ∈ Cn.a(A). Then A has

WAHP.

Proof. Suppose to the contrary A does not have WAHP. Then there is a ε > 0 and

operators 0 6= xi ∈M, 1 ≤ i ≤ n with EA(xi) = 0 for all i, such that

inf
u∈U(A)

n∑
i=1

‖EA(xiux
∗
i )‖

2
2 ≥ ε,

where U(A) denotes the unitary group of A. Note that for all 1 ≤ i ≤ n, AxiA
‖·‖2 ∈

Cn.a(A) by Lemma 5.7 of [11] and Thm. III.19. Equivalently, if t 7→ ηt
xi

and s 7→ ηs
xi

denote the (π1, λ) and (π2, λ) disintegrations respectively of ηxi
, then for λ almost all

t, the measure ηt
xi

is completely non-atomic and similar statements hold for ηs
xi

.

Let v ∈ A be the Haar unitary corresponding to the function t 7→ e2πit. Then v

generates A. Now from Lemma III.33 we have

n∑
i=1

∥∥EA(xiv
kx∗i )

∥∥2

2
=

∫ 1

0

n∑
i=1

∣∣ηt
xi

(1⊗ vk)
∣∣2 dλ(t) ≥ ε for all k ∈ Z. (D.4)

Throwing off a λ-null set F we assume that for t ∈ F c the measures ηt
xi

are

completely non-atomic, finite, concentrated on {t} × [0, 1] and ηt
xi

([0, 1] × [0, 1]) =

EA(xix
∗
i )(t) for all 1 ≤ i ≤ n (see Lemma III.31). Let

ak(t) =
n∑

i=1

∣∣ηt
xi

(1⊗ vk)
∣∣2 , k ∈ Z, t ∈ [0, 1].
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Then ak is measurable for all k ∈ Z. For k ∈ Z and t ∈ F c we have

ak(t) =
n∑

i=1

∣∣∣∣∫
[0,1]×[0,1]

e2πiksdηt
xi

(t, s)

∣∣∣∣2 ≤ n∑
i=1

(
ηt

xi
([0, 1]× [0, 1])

)2
.

Then by Lemma III.31, ak(t) ≤
∑n

i=1 |EA(xix
∗
i )(t)|

2 < ∞, for all t ∈ F c and for all

k ∈ Z. Define

sN(t) =
1

2N + 1

N∑
k=−N

ak(t), N ∈ N.

Therefore, sN is measurable for all N ∈ N. Since ηt
xi

is completely non-atomic

for all 1 ≤ i ≤ n and t ∈ F c so

sN(t) → 0 as N →∞ for all t ∈ F c from Eq. (D.1), (D.2) and Prop III.35.

Again since sN(t) ≤
∑n

i=1 |EA(xix
∗
i )(t)|

2 for t ∈ F c (from Lemma III.31), so by

dominated convergence theorem∫ 1

0

sN(t)dλ(t) → 0 as N →∞.

Therefore,∫ 1

0

sN(t)dλ(t) =
1

2N + 1

N∑
k=−N

∫ 1

0

n∑
i=1

∣∣ηt
xi

(1⊗ vk)
∣∣2 dλ(t)

=
1

2N + 1

N∑
k=−N

(
n∑

i=1

∥∥EA(xiv
kx∗i )

∥∥2

2

)
→ 0 as N →∞.

Consequently from Eq. (D.2) there is a set S ⊆ Z of full density such that

lim
k∈S,|k|→∞

n∑
i=1

∥∥EA(xiv
kx∗i )

∥∥2

2
= 0.

This is a contradiction to Eq. (D.4). So A must have WAHP.

The proof of Thm. III.36 yields the following result.
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Theorem III.37. Let A ⊂ M be a singular masa. Then given any finite set

{xi}n
i=1 ⊂M with EA(xi) = 0 for all i,

1

2N + 1

N∑
k=−N

(
n∑

i=1

∥∥EA(xiv
kx∗i )

∥∥2

2

)
→ 0 as N →∞. (D.5)

where v is a Haar unitary generator of A.

Remark III.38. Thus the unitary in the definition of WAHP can always be chosen to

be vk where k is a large integer and v is a Haar unitary generator of the masa. This

strengthens the definition of WAHP. Note that Eq. (D.5) is very closely related to

definition of weakly mixing actions of abelian groups on finite von Neumann algebras.

The measures ηt
x, η

t are concentrated on {t} × [0, 1] for λ almost all t. We will

denote by η̃t
x, η̃

t the restriction of the measures ηt
x and ηt respectively on {t} × [0, 1].

Thus η̃t
x, η̃

t can be regarded as measures on [0, 1].

Theorem III.39. Let A ⊂M be a masa. Let [η] denote the left-right-measure of A.

If for λ almost all t the measures η̃t are mixing, then A has AHP with respect to a

Haar unitary generator of A.

Proof. From Prop. 2.5 of [20] it follows that for λ almost all t, any measure in the

equivalence class [η̃t] is mixing. In view of Eq. (D.3), it is enough to show that for

all x ∈M with EA(x) = 0,

‖EA(xvnx∗)‖2 → 0 as |n| → ∞,

where v ∈ A is a Haar unitary generator of A. Let v ∈ A correspond to the function

s 7→ e2πis. By Lemma III.33

‖EA(xvnx∗)‖2
2 =

∫ 1

0

∣∣ηt
x(1⊗ vn)

∣∣2 dλ(t).
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From Lemma 5.7 [11] we know that ηx � η and hence for λ almost all t, ηt
x � ηt from

Lemma II.20. So η̃t
x � η̃t for λ almost all t. Thus η̃t

x is mixing measure from Prop.

2.5 of [20] for λ almost all t. Also from Lemma III.31, the measures ηt
x are finite for λ

almost all t. Use Lemma III.31 and apply dominated convergence theorem to finish

the proof.
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CHAPTER IV

STRONGER NOTIONS OF SINGULARITY

In this chapter we study singular masas in II1 factors that possess special prop-

erties. This chapter has four sections. First we make a common setup in Section A

that will be in force in all the remaining three sections. Notations and facts from

Section A will be used left and right in Sections B, C and D. Section B deals with

masas for which the left-right-measure is the class of product measure. In Section

C we study strongly mixing masas and its left-right-measure. Section D deals with

presence or absence of nontrivial centralizing sequences in masas.

A. The Common Setup

Let A ⊂ M be a masa. Let λ denote the Lebesgue measure on [0, 1] so that

A ∼= L∞([0, 1], λ). Then λ is the tracial measure. Let [η] denote the left-right-measure

of A. We assume that η is a probability measure on [0, 1]× [0, 1] and η(∆([0, 1])) = 0.

Let B[0, 1] denote the collection of all bounded measurable functions on [0, 1].

To understand the relation between properties of masas and its left-right-measure,

disintegration of measures will be used. For disintegration of measures we refer the

reader to the subsection ‘Conditional Measures and Masas’ of chapter II. If β in Defn.

II.15 is a complex measure then the disintegration of β is obtained by decomposing

it into a linear combination of four positive measures, using the Hahn decomposition

of its real and imaginary parts.

Notation: The disintegrated measures are usually written with a subscript t 7→ βt

in the literature. But in this paper we will use the superscript notation t 7→ βt to

denote them. The (π1, λ) disintegration of measures on [0, 1]× [0, 1] will be indexed

by the variable t (points of the x axis) and the (π2, λ) disintegration will be indexed
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by the variable s (points of the y axis), where πi are coordinate projections. We

will only consider the (πi, λ) disintegration of the measures ηζ , ηζ1,ζ2 defined in Eq.

(C.12), Eq. (C.13) of chapter II. These disintegrations exist from Thm. II.16 (see

[2]). The measures ηt
ζ , η

t are concentrated on {t} × [0, 1] and ηs
ζ , η

s are concentrated

on [0, 1] × {s} for λ almost all t, s. We will denote by η̃t
ζ , η̃

t the restriction of the

measures ηt
ζ and ηt respectively on {t} × [0, 1]. Similarly define η̃s

ζ and η̃s. Thus

η̃t
ζ , η̃

t, η̃s
ζ , η̃

s can be regarded as measures on [0, 1]. This notation will be used in the

subsequent sections.

The left-right-measure [η] of A has the following property. If θ : [0, 1]× [0, 1] 7→

[0, 1]× [0, 1] is the flip map i.e, θ(t, s) = (s, t) then θ∗η � η � θ∗η (see Lemma II.11).

In fact, it is possible to obtain a choice of η for which θ∗η = η. So in most of our

analysis we will only state theorems with respect to the (π1, λ) disintegration. An

analogous statement with respect to the (π2, λ) disintegration is also possible, which

we won’t bother to state.

The discussion that follows will be used in our theorems. Let {an}n∈N∞ be such

that

an > 0 if n ∈ Puk(A)

an = 0 if n 6∈ Puk(A)

and
∑

n∈N∞ an = 1. For N∞ 3 n ∈ Puk(A), let En ⊆ [0, 1] × [0, 1] \∆([0, 1]) denote

the set where the multiplicity function in m.m(A) takes the value n. It is well known

that En is η measurable. Then

L2(M)	 L2(A) ∼= ⊕
n∈Puk(A)

L2(En, η|En)⊗ Cn (A.1)

∼= ⊕
n∈Puk(A)

∫ ⊕
[0,1]×[0,1]

Cn
t,sdη|En(t, s)
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where Cn
t,s = Cn for (t, s) ∈ En when n <∞, and C∞ = l2(N). Under this decompo-

sition one has

A′(1− eA) ∼= ⊕
n∈Puk(A)

L∞(En, η|En)⊗Mn(C),

where M∞(C) is to be interpreted as B(l2(N)).

Consequently it follows that for N∞ 3 n ∈ Puk(A) the projections χEn⊗1n lie in

Z(A′) = A, where 1n denotes the identity of Mn(C) if n <∞ and 1∞ = 1B(l2(N)). For

n ∈ Puk(A) choose vectors ζ
(n)
i , 1 ≤ i ≤ n so that the projections P

(n)
i : L2(M) 7→

Aζ
(n)
i A

‖·‖2
are mutually orthogonal, equivalent in A′,

∑n
i=1 P

(n)
i = χEn ⊗ 1n and for

all a, b ∈ C[0, 1] ⊂ A

〈aζ(n)
i b, ζ

(n)
i 〉 =


an

n

∫
En
a(t)b(s)dη(t, s), if n <∞

a∞
2i

∫
E∞

a(t)b(s)dη(t, s), if n = ∞.

It follows that for all a, b ∈ C[0, 1]

〈a
(

⊕
n∈Puk(A)

(
n
⊕
i=1
ζ

(n)
i

))
b, ⊕

n∈Puk(A)

(
n
⊕
i=1
ζ

(n)
i

)
〉 =

∫
[0,1]×[0,1]

a(t)b(s)dη(t, s). (A.2)

With abuse of notation we will write eA(ζ) = EA(ζ) for L1 and L2 vectors.

B. Uniformly Mixing Masas

It is not always easy to describe properties of a singular masa based on its left-

right-measure. However, we can write nice properties of masas when the left-right-

measure is the class of product measure. Examples of such masas are easy to give

in many situations and many known masas, for example, the single generator masa,

the radial masa in the free group factors, the masas that arise out of Bernoulli shift

actions of abelian groups belong to this class. In this section we will give analytical
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conditions for the left-right-measure of a masa in any II1 factor to be the class of

product measure.

The left-right-measure of any masa in the interpolated free group factors contains

λ⊗ λ as a summand. This statement of Voiculescu [46] is one of the most important

theorem in the subject. This is the precise reason for absence of Cartan subalgebras

in the interpolated free group factors. Recently, the authors of [17] distinguished a II1

factor N from the interpolated free group factors, by showing N contains an exotic

masa whose left-right-measure is singular with respect to λ⊗λ, yet very close to λ⊗λ.

However, the factor N in their example resembles almost like the free group factors.

In many cases, the left-right-measures are hard to calculate. So we need conditions

in terms of operators that characterize the Lebesgue class.

Definition IV.1. A masa A ⊂ M is said to satisfy the uniformly mixing condition

if there exists a set S ⊂M such that EA(x) = 0 for all x ∈ S and

(i) the linear span of S is dense in L2(M)	 L2(A),

(ii) there is an orthonormal basis {vn}∞n=1 ⊂ A of L2(A) such that

∞∑
n=1

‖EA(xvnx
∗)‖2

2 <∞

for all x ∈ S,

(iii) there is a nonzero vector ζ ∈ L2(M) 	 L2(A) such that EA(ζunζ∗) = 0 for all

n 6= 0, where u is a Haar unitary generator of A.

In this section we will prove that the uniformly mixing condition is sufficient

for the left-right-measure of A to be the class of product measure. We do not know

whether the same condition is necessary for the left-right-measure of any masa to

be of the product class. However, in Thm. IV.9 we provide an analogous condition

which is necessary for the left-right-measure to be of the product class. Note that
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the sum in Defn. IV.1 is independent of the choice of the orthonormal basis. This

just follows by expanding elements of one orthonormal basis with respect to another.

We suspect that condition (iii) in Defn. IV.1 is redundant and follows from the first

two conditions. Conditions (i) and (ii) in Defn. IV.1 forces that η � λ ⊗ λ. To

assure λ⊗ λ� η we need condition (iii). To prove that uniformly mixing condition

implies the left-right-measure to be the class of product measure, we need to prove

some auxiliary lemmas. In Section D of chapter III we proved a result similar to the

following.

Lemma IV.2. Let ζ1, ζ2 ∈ L2(M) be such that EA(ζ1) = 0 = EA(ζ2). Let ηζ1,ζ2

denote the measure on [0, 1]× [0, 1] defined in Eq. C.13 of chapter II.

1◦. Then ηζ1,ζ2 admits (πi, λ) disintegrations [0, 1] 3 t 7→ ηt
ζ1,ζ2

and [0, 1] 3 s 7→ ηs
ζ1,ζ2

,

where πi, i = 1, 2 denotes the coordinate projections. Moreover,

ηt
ζ1,ζ2

([0, 1]× [0, 1]) = EA(ζ1ζ
∗
2 )(t), λ a.e.

2◦. Let f ∈ C[0, 1]. Then the functions [0, 1] 3 t 7→ ηt
ζ1,ζ2

(1 ⊗ f), [0, 1] 3 s 7→

ηs
ζ1,ζ2

(f ⊗ 1) are in L1([0, 1], λ).

If ζi ∈ M for i = 1, 2 then [0, 1] 3 t 7→ ηt
ζ1,ζ2

(1 ⊗ f), [0, 1] 3 s 7→ ηs
ζ1,ζ2

(f ⊗ 1) are in

L∞([0, 1], λ).

3◦. Let b, w ∈ C[0, 1]. If EA(ζ1wζ
∗
2 ) ∈ L2(A) then

‖EA(bζ1wζ
∗
2 )‖2

2 =

∫ 1

0

|b(t)|2
∣∣ηt

ζ1,ζ2
(1⊗ w)

∣∣2 dλ(t).

Proof. 1◦. That ηζ1,ζ2 admits the stated disintegrations follows from Eq. (C.14) of

chapter II, Lemma 5.7 [11] and Lemma II.11. The next statement in 1◦ follows from

an argument similar to the proof of Lemma III.32.

2◦. From Eq. C.15 of chapter II, |ηζ1,ζ2 | admits (πi, λ) disintegrations. Use Hahn
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decomposition of measures and Lemma II.20 to see that |ηζ1,ζ2|
t =

∣∣ηt
ζ1,ζ2

∣∣ for λ almost

all t. The function t 7→ ηt
ζ1,ζ2

(1⊗ f) is clearly measurable from Defn. II.15 and from

Eq. (C.15) of chapter II,∫ 1

0

∣∣ηt
ζ1,ζ2

(1⊗ f)
∣∣ dλ(t)

≤ ‖f‖
∫ 1

0

∣∣ηt
ζ1,ζ2

∣∣ ([0, 1]× [0, 1])dλ(t)

≤ ‖f‖
(∫ 1

0

ηt
ζ1

([0, 1]× [0, 1])dλ(t) +

∫ 1

0

ηt
ζ2

([0, 1]× [0, 1])dλ(t)

)
= ‖f‖ (‖EA(ζ1ζ

∗
1 )‖1 + ‖EA(ζ2ζ

∗
2 )‖1) <∞.

When ζi ∈M a similar argument shows the stated functions are in L∞([0, 1], λ).

3◦ Since

∞ > sup
a∈C[0,1],‖a‖2≤1

∣∣∣∣∫ 1

0

a(t)b(t)EA(ζ1wζ
∗
2 )(t)dλ(t)

∣∣∣∣
= sup

a∈C[0,1],‖a‖2≤1

|τ(abEA(ζ1wζ
∗
2 ))|

= sup
a∈C[0,1],‖a‖2≤1

|τ(abζ1wζ∗2 )|

= sup
a∈C[0,1]

‖a‖2≤1

∣∣∣∣∫ 1

0

a(t)b(t)ηt
ζ1,ζ2

(1⊗ w)dλ(t)

∣∣∣∣
and t

g7→ b(t)ηt
ζ1,ζ2

(1⊗ w) is in L1(λ) so g is in L2(λ) and

‖EA(bζ1wζ
∗
2 )‖2

2 =

∫ 1

0

|b(t)|2
∣∣ηt

ζ1,ζ2
(1⊗ w)

∣∣2 dλ(t).

Let w := {wn}∞n=1 ⊂ C[0, 1] be an orthonormal basis of L2(A).

Proposition IV.3. Let xi ∈ L2(M) for i = 1, 2 be such that EA(xi) = 0. Let us
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suppose that

∞∑
n=1

‖EA(x1wnx
∗
2)‖

2
2 <∞.

If w′ := {w′n}∞n=1 be an orthonormal sequence in L2(A) with w′n ∈ C[0, 1] for all n,

then there is a set F (w,w′) ⊂ [0, 1] which depends on w,w′ such that λ(F (w,w′)) = 0

and for all t ∈ F (w,w′)c

∞∑
n=1

∣∣ηt
x1,x2

(1⊗ w′n)
∣∣2 ≤ ∞∑

n=1

∣∣ηt
x1,x2

(1⊗ wn)
∣∣2 <∞.

Proof. Note that the hypothesis implies that for any a ∈ C[0, 1],

∞∑
n=1

‖EA(ax1wnx
∗
2)‖

2
2 <∞

and this sum is independent of the choice of the orthonormal basis. Therefore for all

a ∈ C[0, 1]

∞∑
n=1

‖EA(ax1w
′
nx
∗
2)‖

2
2 ≤

∞∑
n=1

‖EA(ax1wnx
∗
2)‖

2
2 .

Let r ∈ A be a nonzero projection. Identify r with a measurable subset Er of

[0, 1]. We can assume Er is a Borel set. We claim that∫
Er

∞∑
n=1

∣∣ηt
x1,x2

(1⊗ w′n)
∣∣2 dλ(t) ≤

∫
Er

∞∑
n=1

∣∣ηt
x1,x2

(1⊗ wn)
∣∣2 dλ(t). (B.1)

If the claim is true then by standard measure theory arguments we are done.

First assume Er is a compact set. Choose a sequence of continuous functions fl

such that 0 ≤ fl ≤ 1 and fl ↓ χEr pointwise as l → ∞. Therefore by Lemma IV.2

and monotone convergence theorem, for all l we have,∫ 1

0

f 2
l (t)

∞∑
n=1

∣∣ηt
x1,x2

(1⊗ w′n)
∣∣2 dλ(t) =

∞∑
n=1

‖EA(flx1w
′
nx
∗
2)‖

2
2
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≤
∞∑

n=1

‖EA(flx1wnx
∗
2)‖

2
2

=

∫ 1

0

f 2
l (t)

∞∑
n=1

∣∣ηt
x1,x2

(1⊗ wn)
∣∣2 dλ(t).

Passing to limits we see that Eq. (B.1) is true whenever Er is compact. Now use

regularity of λ so see that Eq. (B.1) is true for all Borel sets of positive measure.

Let X = {f = (f1, f2, f3, · · · ) : fk ∈ C[0, 1] ∀ k ∈ N}. Equip X with the metric

d given by

d(f, g) =
∞∑

k=1

1

2k

‖fk − gk‖∞
1 + ‖fk − gk‖∞

. (B.2)

Then (X, d) is a separable metric space. Also for a sequence f (n) ∈ X, f (n) d→ f

as n→∞ implies that f
(n)
k → fk in ‖·‖∞ for all k ∈ N.

Let O =
{
f ∈ X : {fk}∞k=1 be an orthonormal sequence in L2([0, 1], λ)

}
. Then

O ⊂ (X, d) is a closed set. Note that (O, d) is separable.

Proposition IV.4. Let x ∈M be such that EA(x) = 0. Let us suppose that

∞∑
k=1

‖EA(xwkx
∗)‖2

2 <∞.

Then ηx � λ⊗ λ.

Proof. Let {w(m)}∞m=1 ⊂ (O, d) be any countable dense set. From Prop. IV.3 and

Lemma IV.2, it follows that there is a set F ⊂ [0, 1] with λ(F ) = 0 such that for

t ∈ F c, ηt
x is a finite measure and

∞∑
k=1

∣∣∣ηt
x(1⊗ w

(m)
k )

∣∣∣2 ≤ ∞∑
k=1

∣∣ηt
x(1⊗ wk)

∣∣2 <∞

for all m ∈ N. Let v = {vk}∞k=1 ∈ O. There exists a subsequence {w(mj)}∞j=1 such
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that d(w(mj), v) → 0 as j →∞. Therefore for t ∈ F c

∞∑
k=1

∣∣ηt
x(1⊗ vk)

∣∣2 =
∞∑

k=1

lim
j

∣∣∣ηt
x(1⊗ w

(mj)
k )

∣∣∣2 (by Dominated convergence)

=
∞∑

k=1

lim inf
j

∣∣∣ηt
x(1⊗ w

(mj)
k )

∣∣∣2
≤ lim inf

j

∞∑
k=1

∣∣∣ηt
x(1⊗ w

(mj)
k )

∣∣∣2 (by Fatou’s Lemma)

≤
∞∑

k=1

∣∣ηt
x(1⊗ wk)

∣∣2 <∞ (as t ∈ F c).

Therefore for each t ∈ F c,

sup
f∈O

∞∑
k=1

∣∣ηt
x(1⊗ fk)

∣∣2 ≤ ∞∑
k=1

∣∣ηt
x(1⊗ wk)

∣∣2 <∞. (B.3)

Fix t ∈ F c. If η̃t
x contains a part which is singular with respect to λ then

the supremum on the left hand side of Eq. (B.3) is infinite. Indeed, for simplicity

assume η̃t
x ⊥ λ. Choose a compact set K ⊂ [0, 1] of almost full η̃t

x measure such that

λ(K) = 0. Fix a large positive number N . By regularity of λ, there is a open set

U containing K such that λ(U) < 1
N8 . Using compactness of K we can find a finite

number of open intervals (ai, bi) and small positive numbers δi for i = 1, 2, · · ·m such

that the open intervals {(ai − δi, bi + δi)}m
i=1 are disjoint and K ⊂ ∪m

i=1(ai, bi) ⊂

∪m
i=1(ai − δi, bi + δi) ⊂ U . Define

fi(s) =



N if ai ≤ s ≤ bi

N
δi

(s− ai) +N if ai − δi ≤ s ≤ ai

−N
δi

(s− bi) +N if bi ≤ s ≤ bi + δi

0 otherwise.

Then f =
∑m

i=1 fi is continuous and ‖f‖2,λ = O( 1
N3 ). Now consider g = f

‖f‖2,λ
.
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Inductively construct an orthonormal sequence in C[0, 1] with the first function as g,

orthogonal with respect to λ measure. It is now clear that in this way the supremum

in Eq. (B.3) can be made to exceed any large number.

Consequently, it follows that for all t ∈ F c

η̃t
x � λ. (B.4)

Finally from Lemma II.20 it follows that ηx � λ⊗ λ.

Remark IV.5. Note that the proof of Lemma IV.4 actually shows that η̃t
x � λ with

dη̃t
x

dλ
∈ L2([0, 1], λ) for λ almost all t.

The set of finite signed measures on the measurable space (X, σX) is a Banach

space equipped with the total variation norm ‖·‖t.v, also called the L1-norm, which

is defined by ‖µ‖t.v = |µ| (X) where |µ| denotes the variation measure of µ. It is well

known that for probability measures µ, ν

‖µ− ν‖t.v = 2 sup
B∈σX

|µ(B)− ν(B)| =
∫

X

|f − g| dγ (B.5)

where f, g are density functions of µ, ν respectively with respect to any σ-finite mea-

sure γ dominating both µ, ν (see [29]).

Theorem IV.6. Let A ⊂ M be a masa satisfying the uniformly mixing condition.

Then the left-right-measure of A is the class of product measure.

Proof. Fix a set S ⊂M such that EA(x) = 0 for all x ∈ S, span S
‖·‖2 = L2(A)⊥ and

∞∑
k=1

‖EA(xukx
∗)‖2

2 <∞

for all x ∈ S, where {uk}∞k=1 ⊂ C[0, 1] is an orthonormal basis of L2(A). From Eq.

(A.2) there is a vector ζ ∈ L2(A)⊥ such that ‖ζ‖2 = 1 and ηζ = η. Choose a sequence

xn ∈ span S such that ‖xn‖2 = 1 and xn → ζ in ‖·‖2 as n → ∞. Then (Lemma
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II.24), we have ηxn → ηζ = η in ‖·‖t.v. Write xn =
∑kn

i=1 ci,nyi,n with yi,n ∈ S, ci,n ∈ C

for all 1 ≤ i ≤ kn and n ∈ N. As yi,n ∈ S, so for all n ∈ N, 1 ≤ i ≤ kn

∞∑
k=1

∥∥EA(yi,nuky
∗
i,n)
∥∥2

2
<∞.

From Prop. IV.4 we have ηyi,n
� λ⊗ λ. But

ηxn =
kn∑
i=1

|ci,n|2 ηyi,n
+

kn∑
i6=j=1

ci,ncj,nηyi,n,yj,n
.

For 1 ≤ i 6= j ≤ kn the measures ηyi,n,yj,n
are possibly complex measures but

from Eq. C.15 of chapter II,
∣∣ηyi,n,yj,n

∣∣ ≤ ηyi,n
+ ηyj,n

� λ⊗λ. Therefore ηxn � λ⊗λ.

Since ηxn are probability measures so from Eq. (B.5)

1

2
‖ηxn − ηxm‖t.v =

∫
[0,1]×[0,1]

|fn(t, s)− fm(t, s)| d(λ⊗ λ)(t, s) → 0

as n,m→∞, where fn = dηxn

d(λ⊗λ)
. Thus there is a function f ∈ L1([0, 1]× [0, 1], λ⊗λ)

such that ∫
[0,1]×[0,1]

|fn(t, s)− f(t, s)| d(λ⊗ λ)(t, s)

as n → ∞. As ηxn is a probability measure for each n so ‖fn‖L1(λ⊗λ) = 1 for all

n. Therefore ‖f‖L1(λ⊗λ) = 1 and ηxn → fd(λ ⊗ λ) in ‖·‖t.v. By uniqueness of limits

η = fd(λ⊗ λ).

We will now use condition (iii) of Defn. IV.1 to show that λ ⊗ λ � η. Let

v ∈ A be the Haar unitary corresponding to the function t 7→ e2πit. Suppose ξ ∈

L2(M)	 L2(A) is a nonzero vector such that EA(ξvnξ∗) = 0 for all n 6= 0. Then by

3◦ of Lemma IV.2 we have

ηt
ξ(1⊗ vn) = 0 for all n 6= 0 and for λ almost all t.
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By standard theorems in Fourier analysis it follows that η̃t
ξ is equal to λ for λ

almost all t. Finally by Lemma 5.7 [11] we have [η] = [λ⊗ λ].

The proof of the last part of Thm. IV.6 can be summarized in the corollary.

Corollary IV.7. Let A ⊂M be a masa such that the left-right-measure of A contains

the product class as a summand. Then there is a nonzero ξ ∈ L2(M) 	 L2(A) such

that EA(ξvnξ∗) = 0 for all n 6= 0 where v is a Haar unitary generator of A.

The next result is strengthening the uniformly mixing condition. The idea of its

proof is hidden in the proof of Thm. IV.6.

Theorem IV.8. Let A ⊂M be a masa. Then the following are equivalent.

(1) A satisfies (i) and (ii) of the uniformly mixing condition.

(2) There exists a set D ⊂ M such that EA(x) = 0 for all x ∈ D, D is dense in

L2(A)⊥ and

∞∑
k=1

‖EA(x1vkx
∗
2)‖

2
2 <∞ for all x1, x2 ∈ D

for some orthonormal basis {vk} ⊂ C[0, 1] of L2(A).

Proof. (2) ⇒ (1) is obvious.

(1) ⇒ (2). Let v ∈ A be the Haar unitary corresponding to the function t 7→ e2πit.

From Thm. IV.6 we get that the left-right-measure of A is dominated by λ ⊗ λ.

Let x1 =
∑n

i=1 ciy
1
i , x2 =

∑m
j=1 djy

2
j with y1

i , y
2
j ∈ S, ci, dj ∈ C for all 1 ≤ i ≤ n,

1 ≤ j ≤ m. Note that for all i, j

∑
k∈Z

∥∥EA(y1
i v

ky1
i
∗
)
∥∥2

2
<∞,

∑
k∈Z

∥∥EA(y2
j v

ky2
j
∗
)
∥∥2

2
<∞.

Then ηy1
i
, ηy2

j
� λ ⊗ λ with

dη
y1
i

d(λ⊗λ)
,

dη
y2
j

d(λ⊗λ)
∈ L2(λ ⊗ λ) (see Rem. IV.5 and

Lemma II.20). As argued in the proof of Thm. IV.6, ηy1
i ,y2

j
� λ ⊗ λ. But because
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∣∣∣ηy1
i ,y2

j

∣∣∣ ≤ ηy1
i
+ ηy2

j
so we conclude that fx1,x2 =

dηx1,x2

d(λ⊗λ)
∈ L2(λ⊗ λ). Therefore

∑
k∈Z

∥∥EA(x1v
kx∗2)

∥∥2

2
=
∑
k∈Z

∫ 1

0

∣∣ηt
x1,x2

(1⊗ vk)
∣∣2 dλ(t) (B.6)

=

∫ 1

0

∑
k∈Z

∣∣ηt
x1,x2

(1⊗ vk)
∣∣2 dλ(t)

=

∫ 1

0

∑
k∈Z

∣∣∣∣∫ 1

0

vk(s)dηt
x1,x2

(s)

∣∣∣∣2 dλ(t)

=

∫ 1

0

∑
k∈Z

∣∣∣∣∫ 1

0

fx1,x2(t, s)v
k(s)dλ(s)

∣∣∣∣2 dλ(t)(Lemma II.20)

=

∫ 1

0

‖fx1,x2(t, ·)‖
2
L2(λ) dλ(t)

=

∫
[0,1]×[0,1]

|fx1,x2(t, s)|
2 d(λ⊗ λ)(t, s) <∞.

Finally, let D = span S.

When the left-right-measure of a masa belongs to the class of product measure,

the masa satisfies a condition very close to the uniformly mixing condition. This is

the content of the next theorem.

Theorem IV.9. Let A ⊂M be a masa. Let the left-right-measure of A be the class

of product measure. Then there is a set S ⊂ L2(M) 	 L2(A) such that span S is

dense in L2(A)⊥,

∞∑
n=1

‖EA(ζwnζ
∗)‖2

2 <∞ for all ζ ∈ S,

for some orthonormal basis {wn}∞n=1 ⊂ A of L2(A) and there is a nonzero ξ ∈

L2(M) 	 L2(A) such that EA(ξvnξ∗) = 0 for all n 6= 0 where v is a Haar unitary

generator of A.
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Proof. We will first consider the case Puk(A) = {1}. In this case

L2(M)	 L2(A) ∼= L2([0, 1]× [0, 1] \∆([0, 1]), λ⊗ λ),

the left and the right actions of A being given by

(af)(t, s) = a(t)f(t, s), (fb)(t, s) = b(s)f(t, s)

where f ∈ L2(A)⊥ and a, b ∈ A.

Let 0 6= ζ ∈ L2(A)⊥ be a continuous function. Then for a, b ∈ C[0, 1]

〈aζb, ζ〉L2(M) = 〈aζb, ζ〉L2(λ⊗λ)

=

∫
[0,1]×[0,1]

a(t)b(s)ζ(t, s)ζ(t, s)dλ(t)dλ(s)

=

∫
[0,1]×[0,1]

a(t)b(s) |ζ(t, s)|2 dλ(t)dλ(s).

Therefore
dηζ

d(λ⊗λ)
= |ζ|2 which is bounded, in particular in L2(λ ⊗ λ). We claim

that EA(ζbζ∗) ∈ L2(A) for any b ∈ C[0, 1]. Fix a ∈ C[0, 1]. Then∫ 1

0

a(t)EA(ζbζ∗)(t)dλ(t) = τ(aEA(ζbζ∗)) (τ extends to L1) (B.7)

= τ(aζbζ∗)

=

∫
[0,1]×[0,1]

a(t)b(s)dηζ(t, s)

=

∫
[0,1]×[0,1]

a(t)b(s) |ζ|2 (t, s)dλ(t)dλ(s)

=

∫ 1

0

a(t)λ(|ζ|2 (t, ·)b)dλ(t).

Now consider the function [0, 1] 3 t
g7→ λ(|ζ|2 (t, ·)b). It is clearly λ-measurable

and ∫ 1

0

∣∣λ(|ζ|2 (t, ·)b)
∣∣2 dλ(t) =

∫ 1

0

(∫ 1

0

|ζ|2 (t, s)b(s)dλ(s)

)2

dλ(t)
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≤ ‖b‖2

∫ 1

0

(∫ 1

0

|ζ|2 (t, s)dλ(s)

)2

dλ(t)

≤ ‖b‖2

∫ 1

0

∫ 1

0

|ζ|4 (t, s)dλ(t)dλ(s) <∞.

Therefore from Eq. (B.7) we get,

sup
a∈C[0,1],‖a‖2≤1

∣∣∣∣∫ 1

0

a(t)EA(ζbζ∗)(t)dλ(t)

∣∣∣∣ = sup
a∈C[0,1],‖a‖2≤1

∣∣∣∣∫ 1

0

a(t)λ(|ζ|2 (t, ·)b)dλ(t)

∣∣∣∣
=

(∫ 1

0

∣∣λ(|ζ|2 (t, ·)b)
∣∣2 dλ(t)

) 1
2

<∞.

Consequently it follows that EA(ζbζ∗) ∈ L2(A) and

‖EA(ζbζ∗)‖2
2 =

∫ 1

0

∣∣λ(|ζ|2 (t, ·)b)
∣∣2 dλ(t).

Let v ∈ A be the Haar unitary corresponding to the function t 7→ e2πit. Then

{vn}n∈Z is a orthonormal basis of L2(A) and by Plancherel’s theorem,

∑
n∈Z

‖EA(ζvnζ∗)‖2
2 =

∑
n∈Z

∫ 1

0

∣∣λ(|ζ|2 (t, ·)vn)
∣∣2 dλ(t)

=

∫ 1

0

∑
n∈Z

∣∣λ(|ζ|2 (t, ·)vn)
∣∣2 dλ(t)

=

∫ 1

0

∫ 1

0

|ζ|4 (t, s)dλ(s)dλ(t) <∞.

Thus {ζ ∈ L2(A)⊥ :
∑

n∈Z ‖EA(ζvnζ∗)‖2
2 <∞} is dense in L2(A)⊥.

In the general case, write

L2(M)	 L2(A) = ⊕
n∈Puk(A)

(
n
⊕
i=1
Aζ

(n)
i A

‖·‖2
)

where ζ
(n)
i are vectors defined in Sec. 1. For each n ∈ Puk(A) and 1 ≤ i ≤ n we

consider the left and right actions of A on Aζ
(n)
i A

‖·‖2
to reduce the problem to a case

similar to having one bicyclic vector.
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Finally, let ζ ∈ L2(M) correspond to the function χ∆([0,1])c . Then ηζ = λ ⊗ λ.

By arguments exactly similar to the first part of the proof conclude that EA(ζaζ∗) ∈

L2(A) for all a ∈ A. But by 3◦ of Lemma IV.2 we get,

‖EA(ζvnζ∗)‖2
2 =

∫ 1

0

∣∣ηt
ζ(1⊗ vn)

∣∣2 dλ(t) = 0 for all n 6= 0.

C. Strongly Mixing Masas

The study of strongly mixing masas was initiated by Jolissaint and Stalder in

[18]. Their study was motivated from an algebraic point of view namely, inclusion of

groups and dynamical systems. Their approach is a way to generate nice examples

of such masas. In this section we study the same from a measure theoretic point of

view.

Recall from [18] that a subset E ⊂ U(M) is said to be almost orthonormal if

for every ε > 0 and φ ∈ M∗ there is a finite subset F ⊂ E such that |φ(u)| < ε for

all u ∈ E \ F . An almost orthonormal subset is necessarily countable since M is

separable. As the definition says, such sets are weakly null i.e, elements of these sets

converge in w.o.t to 0. See Prop. 2.4 of [18] for more information.

Definition IV.10. [18] Let A ⊂M be a diffuse abelian subalgebra. Then A is said

to be strongly mixing in M if for all almost orthonormal subgroups G ⊂ U(A),

lim
u→∞,u∈G

‖EA(uxu∗y)− EA(x)EA(y)‖2 = 0

for all x, y ∈M.

In [18] it was shown that such an abelian algebra is automatically a singular

masa.
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Theorem IV.11. Let A ⊂ M be a diffuse abelian subalgebra that satisfies the uni-

formly mixing condition. Then for any almost orthonormal sequence {un}∞n=1 ⊂ A

and x, y ∈M such that EA(x) = EA(y) = 0,

‖EA(u∗nxuny)‖2 → 0 as n→∞.

In particular, A is a strongly mixing masa.

A slightly different version of this statement is proved in Sec 11.4 of [43], so we

skip its proof. We will show that masas for which the left-right-measure is the class

of product measure are strongly mixing. This will give a second proof of the fact that

the radial (laplacian) masa in L(Fk), 2 ≤ k < ∞ is strongly mixing as its left-right-

measure is the class of product measure. The calculation of the left-right-measure of

the radial masa follows directly from Rădulescu’s calculation (Lemma 3, [38]).

Theorem IV.12. Let Γ be an icc group and let Z be an infinite abelian subgroup of

Γ. Suppose L(Z) ⊂ L(Γ) is a strongly mixing masa. Then the left-right-measure of

L(Z) is the class of product measure.

In particular, if Z is a malnormal subgroup of Γ then the left-right-measure of

L(Z) is the class of product measure.

Proof. In [18] it was shown that the hypothesis is equivalent to the following condi-

tion:

(ST) For every finite subset F ⊂ Γ \ Z, there exists a finite subset E of Z such that

gg0h 6∈ Z for all g0 ∈ Z \ E and all g, h ∈ F .

Now S1 is the character group of Z. Let µ be the normalized Haar measure on

S1. The left-right-measure of L(Z) is naturally supported on S1 × S1. Let ug ∈ L(Γ)

be the unitary operator corresponding to the group element g ∈ Γ. Fix g ∈ Γ \ Z.

Then taking F = {g, g−1}, there is a finite subset E of Z such that EL(Z)(uguhu
∗
g) = 0
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for all h ∈ Z \ E. Therefore ηt
ug

(1 ⊗ ȟ) = 0 for µ almost all t ∈ S1 and h ∈ Z \ E,

where ȟ is the canonical image of h in C(S1). By a theorem of F. Reisz and M. Reisz

(see for instance [15]), it follows that η̃t
ug
� µ for µ almost all t. But note that

η̃t
ug

dµ
is

a trigonometric polynomial for µ almost all t. Thus for µ({s ∈ S1 :
η̃t

ug

dµ
(s) = 0}) = 0

for µ almost all t. Thus µ � η̃t
ug

for µ almost all t. By Lemma II.20 we have

ηug � µ⊗ µ� ηug for each g ∈ Γ \ Z.

Now span {ug : g ∈ Γ \ Z} is dense in L2(L(Z))⊥ in ‖·‖2. By approximation argu-

ments it follows that the left-right-measure of L(Z) is mutually absolutely continuous

with respect to µ⊗ µ.

The last statement follows by observing that EL(Z)(uguhu
∗
g) = 0 for all h ∈ Z\{0}

and g ∈ Γ \ Z.

The next theorem is a measure theoretic formulation the main results of [18].

Recall from chapter III, a finite measure µ on the [0, 1] is called mixing (or sometimes

Rajchman) if its Fourier coefficients µ̂n =
∫ 1

0
e2πintdµ(t) converge to 0 as n→ ±∞.

There is also an analogous definition of mixing measures on S1. By the Riemann-

Lebesgue lemma any measure absolutely continuous with respect to Lebesgue measure

is mixing. However there are many mixing singular measures as well. Any measure

absolutely continuous with respect to a mixing measure is mixing. Thus mixing is a

property of equivalence class of measures. Mixing measures can be characterized in

a geometric way as being asymptotically uniformly distributed.

Let N be a diffuse, separable, finite von Neumann algebra equipped with a

faithful, normal tracial state τ . Let Γ be a countable discrete group which acts on N

by a τ -preserving action α. The action α is said to be strongly mixing [18] if, given

ε > 0 there exists a finite set E ⊂ Γ such that

|τ(αg(x)y)− τ(x)τ(y)| < ε for all g ∈ Γ \ E and for all x, y ∈ N.
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In [18] it was shown that, if Γ is abelian then, L(Γ) ⊂ NoαΓ is a strongly mixing

masa if and only if the action α is strongly mixing. In the next theorem, we relate

strongly mixing actions of countable discrete abelian groups to Fourier coefficients of

the left-right-measure of L(Γ). Since we are not very familiar with abstract Harmonic

Analysis on groups, we will assume Γ = Z.

Theorem IV.13. Let α be a free strongly mixing action of Z on a diffuse, separable,

finite von Neumann algebra N , preserving a faithful, normal tracial state τ . If [η] is

the left-right-measure of L(Z) ⊂ N oα Z then, η̃t is a mixing measure for λ almost

all t.

Proof. Let M = N oα Z. The tracial state on M will be denoted by τ as well. The

elements of M has a Fourier expansion of the form x =
∑

n∈Z xnun where xn ∈ N

and un ∈ L(Z) are the canonical unitaries implementing the action. The Fourier

expansion of x converges in ‖·‖2. Suppose x ∈ N and n, n1, n2 ∈ Z. Then the

equation

〈un1xunun2 , xun〉 = τ(un1xunun2u−nx
∗) (C.1)

= τ(un1xun2x
∗)

implies that ηxun = ηx for all x ∈ N and all n ∈ Z. Again for n1, n2 ∈ Z and x ∈ N ,

〈un1xun2 , x〉 = τ(un1xun2x
∗) (C.2)

= τ(αn1(x)un1+n2x
∗)

= τ(x∗αn1(x)un1+n2)

= τ(x∗αn1(x))τ(un1+n2) by orthogonality.

Note that the left-right-measure of L(Z) ⊂M is naturally supported on Ẑ = S1,

where Ẑ is the character group of Z. Identify L(Z) = L∞(S1, λ0), where λ0 is the
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normalized Haar measure on S1, via the standard identification, which sends un to

the function en(t) = tn, t ∈ S1, n ∈ Z. Now for m ∈ Z,

EL(Z)(xumx
∗) =

∑
n∈Z

〈EL(Z)(xumx
∗), un〉un

=
∑
n∈Z

τ(EL(Z)(xumx
∗)u−n)un

=
∑
n∈Z

τ(xumx
∗u−n)un

=
∑
n∈Z

τ(u−nxumx
∗)un

=
∑
n∈Z

τ(x∗α−n(x))τ(um−n)un (from Eq. C.2)

= τ(x∗α−m(x))um.

Therefore, ηt
x(1 ⊗ em) = τ(x∗α−m(x))em(t) for λ0 almost all t ∈ S1. Since the

action α is strongly mixing so η̃t
x is a mixing measure for λ0 almost all t, whenever

τ(x) = 0.

Let x =
∑n

i=1 xiuki
∈ M be such that EL(Z)(x) = 0. Therefore, 〈x, uki

〉 = 0 for

all 1 ≤ i ≤ n and hence τ(xi) = 0. Now from Eq. C.1 we get,

ηx =
n∑

i=1

ηxi
+

n∑
i6=j=1

ηxiuki
,xjukj

.

It is easy to see that ηxiuki
,xjukj

= (1⊗ eki−kj
)dηxi,xj

for all i 6= j. Thus from Eq.

C.15 of chapter II, Lemma II.20 it follows that,∫
S1

smdη̃t
xiuki

,xjukj
(s) =

∫
S1

smski−kjdη̃t
xi,xj

(s) → 0 as m→∞

for λ0 almost all t. This shows that ηt
x is a mixing measure for λ0 almost all t.

Let [η] denote the left-right-measure of L(Z). We assume η(∆(S1)) = 0 and η

is a probability measure. From Eq. A.2, we know that there is a nonzero vector
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ζ ∈ L2(M)	 L2(A) such that η = ηζ . Let

xn =
kn∑
i=1

x
(n)
i u

(n)
ki
∈M with x

(n)
i ∈ N

be such that EA(xn) = 0, ‖xn‖2 ≤ 1 for all n ∈ N and xn → ζ as n → ∞ in ‖·‖2.

Then ηxn → ηζ = η in ‖·‖t.v from Lemma II.24. Then from Lemma II.23, there is a

subsequence nk with nk < nk+1 for all k and a set E ⊂ S1 with λ0(E) = 0, such that

for all t ∈ Ec,

sup
A⊆S1,A Borel

∣∣∣η̃t
xnk

(A)− η̃t(A)
∣∣∣→ 0 as k →∞.

Note that η̃t
xnk

are mixing measures for all k and for λ0 almost all t. From standard

approximation arguments it follows η̃t is a mixing for λ0 almost all t.

Theorem IV.14. Let A ⊂M be a masa. Suppose the left-right-measure of A is the

class of product measure. Let x, y ∈M be such that EA(x) = 0 = EA(y). If un ∈ A is

a bounded sequence that goes to zero in w.o.t then, EA(xuny
∗) goes to zero, λ almost

everywhere.

Before we prove Thm. IV.14, we need to make an observation. Let x ∈ M

be such that EA(x) = 0. In all our results that involved disintegration of measures,

we have always worked with functions of the form [0, 1] 3 t 7→ ηt
x(1 ⊗ a) where

a ∈ C[0, 1] ⊂ A. The reason we chose a ∈ C[0, 1], was to assure that the function

[0, 1] 3 t 7→ ηt
x(1⊗ a) is λ-measurable. However, if [η] = [λ⊗ λ] then we can allow a

to be in L∞([0, 1], λ). In this case, measurability is not an issue. Now we prove Thm.

IV.14.

Proof. First, fix x ∈M with EA(x) = 0. Note that ηx � λ⊗λ. Let g = dηx

d(λ⊗λ)
. Then

g ∈ L1(λ⊗ λ). From Lemma II.20, η̃t
x � λ and dη̃t

x

dλ
= gt for λ almost all t, where

gt = g(t, ·) on {(t, s) : s ∈ [0, 1]}
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It is easy to verify that, [0, 1] 3 t 7→ ηt
x(1 ⊗ un) is in L∞([0, 1], λ) for all n. For

a ∈ A the equation

〈a∗,EA(xunx
∗)〉 = τ(aEA(xunx

∗))

= τ(axunx
∗)

=

∫ 1

0

a(t)ηt
x(1⊗ un)dλ(t)

implies that, EA(xunx
∗)(t) = ηt

x(1⊗un) for λ almost all t. Thus for λ almost all t we

have,

EA(xunx
∗)(t) = ηt

x(1⊗ un)

=

∫ 1

0

un(s)gt(s)dλ(s) → 0 as n→∞,

as {un} is bounded and converges to zero in w.o.t. Now use Eq. D.3 of chapter III

to finish the proof.

Definition IV.15. [21] Let U be an isometry on a Hilbert space H. A vector ζ ∈ H

is said to be a wandering vector for U if 〈Unζ, Umζ〉 = 0 for all n 6= m ∈ Z.

In Defn. IV.15, we interpret U−n = U∗n for n > 0.

Theorem IV.16. Let A ⊂ M be a uniformly mixing masa. Let v ∈ A be a Haar

unitary generator of A. Then the span of the wandering vectors for v which are

orthogonal to A is dense in L2(A)⊥.

Proof. In this proof we will borrow notations and ideas explained in Eq. (A.1), Eq.

(A.2) and related discussions following Defn. IV.1.

Let E =
{
ε = {εi,n}1≤i≤n,n∈Puk(A) : εi,n = ±1

}
. Let v correspond to the function

t 7→ e2πit. Since A is uniformly mixing so from our results in section B, the left-right-

measure of A is [λ⊗ λ]. For N∞ 3 n ∈ Puk(A) there exists vectors ζ
(n)
i , 1 ≤ i ≤ n so
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that the projections P
(n)
i : L2(M) 7→ Aζ

(n)
i A

‖·‖2
are mutually orthogonal, equivalent

in A′, Aζ(n)
i A

‖·‖2
⊥ L2(A), A′(

∑n
i=1 P

(n)
i ) is type In and for a, b ∈ C[0, 1], and for all

ε ∈ E ,

〈a
(

⊕
n∈Puk(A)

(
n
⊕
i=1
εi,nζ

(n)
i

))
b, ⊕

n∈Puk(A)

(
n
⊕
i=1
εi,nζ

(n)
i

)
〉 =

∫
[0,1]×[0,1]

a(t)b(s)dλ(t)dλ(s).

Fix ε ∈ E and let ζε = ⊕
n∈Puk(A)

n
⊕
i=1

εi,nζ
(n)
i . By Lemma IV.24 we find

∥∥EA(ζεv
nζ∗ε )

∥∥
1

=

∫ 1

0

|λ(1⊗ vn)| dλ(t) = 0, for all n 6= 0. (C.3)

Therefore for n 6= m

∣∣〈vnζ∗ε , v
mζ∗ε 〉

∣∣ =
∣∣τ(ζεvn−mζ∗ε )

∣∣ ≤ ∥∥EA(ζεv
n−mζ∗ε )

∥∥
1

= 0.

This establishes the existence of a wandering vector ζ∗ε for v. Note that ζ∗ε ⊥ L2(A).

For u ∈ U(A) and b, c ∈ A, from Eq. (C.3) we have

EA((bζεu)v
n(cζεu)

∗) = bEA(ζεv
nζ∗ε )c∗ = 0 for all n 6= 0.

In particular, bζεu is a wandering vector for v. Let

W = span {bζεu : u ∈ U(A), b ∈ A, ε ∈ E} .

It is easy to check that W is dense in L2(A)⊥.

Theorem IV.17. Let A ⊂ M be a strongly mixing masa. Then NM(B) = A for

any diffuse subalgebra B ⊆ A where NM(B) = {u ∈ U(M) : uBu∗ = B}.

Proof. Fix a diffuse subalgebra B ⊂ A. Let v ∈ B be a Haar unitary generator

of B. Then vk w.o.t→ 0 as |k| → ∞. For any x ∈ M with EA(x) = 0 we have∥∥EA(xvkx∗)
∥∥

2
→ 0 as |k| → ∞. Since ‖EB(y)‖2 ≤ ‖EA(y)‖2 for any y ∈ M so∥∥EB(xvkx∗)

∥∥
2
→ 0 as |k| → ∞. Thus by arguments similar to the proof of Thm III.36,
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Thm. III.37 of we get BxB
‖·‖2 ∈ Cn.a(B). Thus L2(A)⊥ ∈ Cn.a(B) from Lemma 5.7

[11] and Lemma II.24, II.23. Now if ζ ∈ L2(M) is such that BζB
‖·‖2 ∈ Cd(B) then

the decomposition

BζB
‖·‖2 = BEA(ζ)B

‖·‖2 ⊕B(1− EA)(ζ)B
‖·‖2

shows that B(1− EA)(ζ)B
‖·‖2 ∈ Cd(B), which is true only when (1 − EA)(ζ) = 0.

But by using arguments similar to the proof of Thm. III.19, ζ ∈ L2(N(B)′′) if and

only if BxB
‖·‖2 ∈ Cd(B). Thus we are done.

Remark IV.18. The conclusion of Thm. IV.17 is false if A is just assumed to be

singular. There exists a singular masa A in the hyperfinite II1 factor R that contains

a diffuse subalgebra B, so that B is a Cartan masa inside an infinite index subfactor

of R [41].

D. Γ and Non Γ Masas

In this section we study properties of the left-right-measures of masas that possess

nontrivial centralizing sequences of the factor. We also study properties of the left-

right-measure that prevents a masa to possess nontrivial centralizing sequences.

Definition IV.19. A centralizing sequence in M is a bounded sequence {xn} ⊂ M

such that ‖xny − yxn‖2 → 0 as n→∞ for all y ∈M.

The centralizing sequence {xn} is trivial if there exists a sequence λn ∈ C so that

‖xn − λn‖2 → 0.

Definition IV.20. [41] Let A ⊂M be a masa. Define

Γ(A) = sup{τ(p) :p ∈ A is a projection and

Ap contains nontrivial centralizing sequences of pMp}.
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It is immediate that Γ(A) = Γ(θ(A)) where θ is an automorphism of M.

Theorem IV.21. Let A ⊂ M be a masa. Let the left-right-measure of A be [(λ ⊗

λ) + µ] where µ ⊥ λ ⊗ λ. Then A cannot contain non trivial centralizing sequences

of M. Moreover, Γ(A) = 0.

Proof. From Eq. (A.2) there exists a vector ζ ∈ L2(M) 	 L2(A) such that for

a, b ∈ C[0, 1]

〈aJb∗Jζ, ζ〉 = λ(a)λ(b) + µ(a⊗ b).

Therefore

〈aζ, ζ〉 = λ(a) + µ(a⊗ 1) and 〈ζa, ζ〉 = λ(a) + µ(1⊗ a) for a ∈ C[0, 1]. (D.1)

If possible, let an ∈ A denote a non trivial centralizing sequence such that τ(an) =

0 for all n. By making a density argument we can assume that an ∈ C[0, 1] for all

n. Assume that lim sup
n

‖an‖2 = α > 0. A triangle inequality argument shows that

‖anζ − ζan‖2 → 0 as n→∞. However

‖anζ − ζan‖2
2 =〈anζ, anζ〉 − 〈ζan, anζ〉 − 〈anζ, ζan〉+ 〈ζan, ζan〉 (D.2)

=2λ(a∗nan) + µ(a∗nan ⊗ 1) + µ(1⊗ a∗nan)− µ(an ⊗ a∗n)− µ(a∗n ⊗ an).

But by Cauchy-Schwartz inequality,

µ(a∗nan ⊗ 1) + µ(1⊗ a∗nan)− µ(an ⊗ a∗n)− µ(a∗n ⊗ an)

=

∫
∆([0,1])c

|an(t)|2 dµ(t, s)−
∫

∆([0,1])c

an(t)an(s)dµ(t, s)

+

∫
∆([0,1])c

|an(s)|2 dµ(t, s)−
∫

∆([0,1])c

an(t)an(s)dµ(t, s)

≥
∫

∆([0,1])c

|an(t)|2 dµ(t, s)
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−
(∫

∆([0,1])c

|an(t)|2 dµ(t, s)

) 1
2
(∫

∆([0,1])c

|an(s)|2 dµ(t, s)

) 1
2

+

∫
∆([0,1])c

|an(s)|2 dµ(t, s)

−
(∫

∆([0,1])c

|an(t)|2 dµ(t, s)

) 1
2
(∫

∆([0,1])c

|an(s)|2 dµ(t, s)

) 1
2

=

{(∫
∆([0,1])c

|an(s)|2 dµ(s, t)

) 1
2

−
(∫

∆([0,1])c

|an(t)|2 dµ(s, t)

) 1
2

}2

≥ 0.

This shows from Eq. (D.2) that ‖anζ − ζan‖2
2 6→ 0 as n→∞, a contradiction.

The last statement follows from the above argument by considering compressions of

M by projections in A because, for any nonzero projection p ∈ A, identifying p as the

indicator of a measurable set Ep it follows that the left-right-measure of the inclusion

Ap ⊂ pMp will be the class of the restriction of λ⊗ λ+ µ to Ep × Ep.

We state the next result without proof as its proof is similar to the proof of Thm.

IV.21.

Proposition IV.22. Let A ⊂M be a masa. Let the left-right-measure of A restricted

to the projection pJqJ be the class of product tracial measure, where p, q are nonzero

projections in A. Then

(i) Γ(A) < 1.

(ii) If r ≥ p, q is any projection in A then Ar cannot contain nontrivial centralizing

sequences for rMr.

Recall that a von Neumann algebraN is called full if Int(N ) is closed in Aut(N ).

Corollary IV.23. (i) Let M be a II1 be factor such that for all masas A ⊂ M

there are nonzero projections p, q ∈ A so that the left-right-measure of A contains the

product measure restricted to the projection pJqJ as a summand. Then M is a full

factor.
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(ii) If Int(M) = Aut(M), then there is a masa A in M whose left-right-measure is

singular with respect to the product measure.

(iii) Every strongly stable (McDuff) factor contains singular masas whose left-right-

measure is singular with respect to the product class.

Proof. (i) and (ii) follows from two theorems. A factor M is full if and only if

every centralizing sequence in M is trivial. Secondly, if a factor M possess nontrivial

centralizing sequences then there exists a masaA ⊂M such thatA contains nontrivial

centralizing sequences for M [4]. Finally use Prop. IV.22.

(iii) follows by tensoring any singular masa in a McDuff factor by the alternating

Tauer masa in R (see the section on Tauer masas).

Making the appropriate changes to the proof of Lemma IV.2 we get the following

result. Its proof uses basic facts about L1 spaces associated to finite von Neumann

algebras.

Lemma IV.24. Let ζ ∈ L2(M) be such that EA(ζ) = 0. Let ηζ denote the measure

on [0, 1]× [0, 1] defined in Eq. (C.12) of chapter II. Let b, w ∈ C[0, 1]. Then

‖EA(bζwζ∗)‖1 =

∫ 1

0

|b(t)|
∣∣ηt

ζ(1⊗ w)
∣∣ dλ(t).

Proof. We have

‖EA(bζwζ∗)‖1 = sup
a∈B[0,1],‖a‖≤1

|〈EA(bζwζ∗), a〉|

= sup
a∈B[0,1],‖a‖≤1

|τ(aEA(bζwζ∗))|

= sup
a∈B[0,1],‖a‖≤1

|τ(EA(abζwζ∗))|

= sup
a∈B[0,1],‖a‖≤1

|τ(abζwζ∗)|
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= sup
a∈B[0,1],‖a‖≤1

∣∣∣∣∫
[0,1]×[0,1]

a(t)b(t)w(s)dηζ(t, s)

∣∣∣∣
= sup

a∈B[0,1],‖a‖≤1

∣∣∣∣∫ 1

0

a(t)b(t)ηt
ζ(1⊗ w)dλ(t)

∣∣∣∣ (from Defn. (II.15))

=

∫ 1

0

∣∣b(t)ηt
ζ(1⊗ w)

∣∣ dλ(t) (from 2◦ of Lemma IV.2).

Definition IV.25. A finite measure µ on [0, 1] is called α-rigid for |α| = 1, if and

only if there is a subsequence µ̂nk
of µ̂n =

∫ 1

0
e2πintdµ(t) that converges to αµ([0, 1])

as k →∞. A 1-rigid measure is called rigid or a Dirichlet measure.

We now recall some properties of α-rigid measures. For details check [23]. Let

µ be a α-rigid measure on [0, 1]. Any sequence nk along which µ̂nk
converges to

αµ([0, 1]) is said to be a sequence associated with µ. It is easy to see that, µ is

α-rigid if and only if the sequence of functions [0, 1] 3 t 7→ e2πinkt converges to α

in µ-measure. Thus ν is α-rigid with associated sequence nk for any ν � µ. So

α-rigidity is a property of equivalence class of measures and hence can be thought of

as a property of unitary operators by considering appropriate Koopman operators.

Atomic measures are always rigid.

Theorem IV.26. Let A ⊂ M be a (singular) masa. Let v ∈ A be a Haar unitary

generator of A. Suppose there exists a subsequence nk (nk < nk+1 for all k) such that

for all y ∈M

‖vnky − yvnk‖2 → 0 as k →∞.

Then the measures η̃t are βt-rigid for some complex number βt ∈ S1, λ almost all t.

Proof. We can assume that v corresponds to the function [0, 1] 3 t 7→ e2πit. Standard
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density arguments show that if ξ ∈ L2(M) then

‖vnkξ − ξvnk‖2 → 0 as k →∞.

From Eq. (A.2) we know that there is a nonzero vector ζ ∈ L2(M) 	 L2(A)

such that η = ηζ . Therefore we have ‖EA(v−nkζvnkζ∗)− EA(ζζ∗)‖1 → 0 as k → ∞.

Consequently using similar arguments as in proof of Lemma IV.24 we have,

∥∥EA(v−nkζvnkζ∗)− EA(ζζ∗)
∥∥

1
=

∫ 1

0

∣∣e−2πinktηt(1⊗ vnk)− EA(ζζ∗)(t)
∣∣ dλ(t) → 0

as k →∞. Hence there exists a further subsequence nkl
and a subset E ⊂ [0, 1] such

that λ(E) = 0 and for t ∈ Ec,

e−2πinkl
tηt(1⊗ vnkl )− EA(ζζ∗)(t) → 0 as l→∞ (D.3)

and EA(ζζ∗)(t) = η̃t([0, 1]) <∞ (Lemma IV.2).

Fix t ∈ Ec. Dropping to a subsequence if necessary which depends on t, we

assume that e−2πinkl
t → βt as l → ∞ for some complex number βt ∈ S1. Then η̃t is

βt-rigid.

Remark IV.27. Examples of singular masas in the hyperfinite II1 factor can be con-

structed that satisfies the hypothesis of Thm. IV.26. There exist weakly mixing

actions of a stationary Gaussian process that has the desired properties [47].

Remark IV.28. Suppose a masa A ⊂ M possesses nontrivial centralizing sequences

of M. Then identify A = L∞(S1, λ), where λ is the normalized Haar measure on S1.

By Stone-Weierstrass theorem, we can always find a nontrivial centralizing sequence

of M consisting of trigonometric polynomials. We suspect that it is even possible

to extract a nontrivial centralizing sequence that consists of convex combinations of

fn(z) = zn for n ∈ Z. If the last statement is true, then we can show that η̃t is
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βt-rigid for some complex number βt ∈ S1, for λ almost all t.
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CHAPTER V

EXAMPLES AND CONCLUSIONS

In this chapter we calculate the measure-multiplicity-invariant of some masas in

the hyperfinite II1 factor and free group factors. For results proved in this chapter

we are indebted to Stuart White.

A. Tauer Masas in the Hyperfinite II1 Factor

In this section we will calculate the left-right-measure of certain Tauer masas in

the hyperfinite II1 factor R. The examples of the Tauer masas that we are interested

in are directly taken from [41].

Definition V.1. (White) A masa A in R is said to be a Tauer masa if there exists

a sequence of finite type I subfactors {Nn}∞n=1 such that,

(i) Nn ⊂ Nn+1 for all n,

(ii)(∪∞n=1Nn)′′ = R,

(iii) A ∩Nn is a masa in Nn for every n.

This allows us to write structure of every Tauer masa A in R with respect

to the chain {Nn}∞n=1 as follows. Switching to the notation of tensor products the

above definition means that we can find finite type I subfactors {Mn}∞n=1 such that,

Nn =
n
⊗

r=1
Mr for every n. For m > n the m-th finite dimensional approximation of A

can be written in terms of the n-th one as,

Am =
⊕

e∈P(An)

e⊗ A(e)
m,n (A.1)

where the direct sum is over the set of minimal projections P(An) in An and A
(e)
m,n is

a masa in
m
⊗

r=n+1
Mr. Note that the Cartan masa arising as the infinite tensor product
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of diagonal matrices inside the hyperfinite II1 factor is a Tauer masa. In [48], White

has shown that the Pukánszky invariant of every Tauer masa is {1}. In fact, it follows

from his proof that the bicyclic vector for any Tauer masa can be chosen to be an

operator from R itself.

Sinclair and White [41] has exhibited a continuous path of singular masas in R

no two of which can be connected by automorphisms of R. We are interested in two

masas that correspond to the end points of this path. For all Tauer masas it is clear

that the Cantor set is the natural space where we have to build the measures. For

ease of calculation we need to index the minimal projections in the approximating

stages in a different fashion than that appeared in [41]. It is now time to introduce

some notation.

1◦ Notation : IfNn =
n
⊗

r=1
Mkr(C), then the minimal projections ofAn will be denoted

by (n)ft(n) , where t(n) = (t1, t2, · · · , tn) with 1 ≤ ti ≤ ki, 1 ≤ i ≤ n.

The convention that we follow is

(n)ft1,t2,··· ,tn = (n−1)ft1,t2,··· ,tn−1 ⊗ (n)e
(t1,t2,··· ,tn−1)
tn ,

where (n)e
(t1,t2,··· ,tn−1)
tn are the minimal projections of the algebra A

(t1,t2,··· ,tn−1)
n,n−1 , in accor-

dance with Eq. (A.1). The matrix units corresponding to these family of minimal pro-

jections will be denoted by (n)ft(n), s(n) and we will understand (n)ft(n), t(n) = (n)ft(n).

For two tuples (t1, t2, · · · , tn) and (s1, s2, · · · , sn) such that ti = si for 1 ≤ i ≤ n − 1

and tn 6= sn we will write (n)ft(n), s(n) = (n)f(·,tn),(·,sn).

2◦ Notation: For any two subsets S, T ⊆ M, we will denote by S · T the set

span{ab : a ∈ S,b ∈ T}. The normalized trace of Mn(C) will be denoted by trn. The

unique normal tracial state of the hyperfinite factor R will be denoted by τR. This
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trace τR when restricted to A gives rise to a measure on a Cantor set which will also

be denoted by τR. For a measure µ on a space X and f ∈ L1(µ) we will denote by

fµ the measure on X obtained as fµ(E) =
∫

E
fdµ.

The next lemma is very well known but we record it for completeness.

Lemma V.2. If A, B are two masas in Mn(C) orthogonal with respect to the nor-

malized trace trn then A ·B = Mn(C).

1. Tauer Masa of Product Class

Following Sinclair and White [41] we are going to calculate the measure-

multiplicity invariant of a Tauer masa A whose description we are going to elaborate

now. This Tauer masa has the Γ invariant 0 (A is totally non-Γ). We will show that

its left-right-measure belongs to the product class. This example is important as this

is the first example of a masa in R with simple multiplicity whose left-right-measure

is the class of product measure.

Let k1 = 2 and for each r ≥ 2 let kr be a prime exceeding k1k2 · · · kr−1. SetMr to

be the algebra of kr×kr matrices. By Thm. 3.2 [32] there is a family {(r)Dt(r−1)}t(r−1)

of pairwise orthogonal masas in Mr. Let Nn =
n⊗

r=1

Mr. There is a natural inclusion

x 7→ x⊗ 1 of Nn inside Nn+1 and one works in the hyperfinite II1 factor R obtained

as a direct limit of these Nn with respect to the normalized trace. With respect to

the chain {Nn}∞n=1 of finite type I subfactors of R, A is constructed as follows.

Let A1 = D2(C) ⊂M1 be the diagonal masa. Having constructed An one constructs

An+1 as,

An+1 =
⊕
t(n)

(n)ft(n) ⊗ (n+1)Dt(n). (A.2)

That (∪∞n=1An)′′ is a masa in R follows from a theorem of Tauer [45]. This Tauer

masa is singular from Prop. 2.1 [41].
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We denote by P
(n)
t(n),s(n) the orthogonal projection from L2(R) onto the subspace

(n)ft(n)L
2(R)(n)fs(n) and let,

P =
∞∑

n=1

k1∑
t1=1

k2∑
t2=1

...

kn−1∑
tn−1=1

kn∑
tn 6=sn=1

P
(n)
(·,tn),(·,sn). (A.3)

Clearly, P
(n)
t(n),s(n) = (n)ft(n)J

(n)fs(n)J and is in A. At the first sight it might not

be clear that the sum in Eq. (A.3) makes sense but we will show that projections

involved in the sum are orthogonal and sums to 1− eA.

The following lemma, part of which is recorded by Sinclair and White [41] will

be crucial for our calculations.

Lemma V.3. For each n ∈ N let R = Nn

⊗
Rn where Rn = (

∞⊗
r=n+1

Mkr(C))′′, then

A =
⊕
t(n)

(n)ft(n) ⊗ A
t(n)
∞,n+1 where (A.4)

A
t(n)
∞,n+1 are Tauer masas in Rn and whenever t(n) 6= s(n) we have

(i) A
t(n)
∞,n+1 and A

s(n)
∞,n+1 are orthogonal in Rn,

(ii) (A
t(n)
∞,n+1 · A

s(n)
∞,n+1)

−‖.‖2 = L2(Rn).

Moreover, for each t(n) if {At(n)
m,n+1}∞m=1 denotes the m-th approximation of A

t(n)
∞,n+1 in

Rn then,

A
t(n)
1,n+1 = (n+1)Dt(n)and (A.5)

A
t(n)
m+1,n+1 =

⊕
e∈P(A

t(n)
m,n+1)

e⊗(m+1) D
t(n)
e,n+1 (A.6)

where for each fixed m and t(n), the family {(m+1)D
t(n)
e,n+1}e are pairwise orthogonal

masas in Mkn+m+1(C).

Proof. We only have to prove (ii). The rest of the statements are just rephrasing
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Lemma 5.6 of [41].

Use Lemma V.2, (i) and Eq. (A.5) to conclude

Mkn+1 ⊆ (A
t(n)
∞,n+1.A

s(n)
∞,n+1)

−‖·‖2 .

Since A
t(n)
∞,n+1 and A

s(n)
∞,n+1 are orthogonal so is A

t(n)
m,n+1 and A

s(n)
m,n+1 for allm ≥ n+1. Use

Lemma V.2 to conclude that
m⊗

r=n+1

Mkr(C) ⊆ (A
t(n)
∞,n+1.A

s(n)
∞,n+1)

−‖·‖2 for all m ≥ n+1.

Hence by density of the algebraic tensor product of matrix algebras in L2(Rn) we

finish the proof.

For each n, let Xn = {x(n)
1 , x

(n)
2 , · · · , x(n)

kn
} denote a set of kn points. Let Y (n) =

n∏
k=1

Xk, X
(n) =

∞∏
k=n+1

Xk and X =
∞∏

k=1

Xk, so that for each n, X = Y (n)×X(n). For n =

1, A1 = D2(C) ∼= C(Y (1)). Having identified A1, A2, · · · , An with C(Y (1)), C(Y (2)),

· · · , C(Y (n)) respectively, we identify An+1 with C(Y (n+1)) as follows.

For each 1 ≤ ti ≤ ki, 1 ≤ i ≤ n, t(n) = (t1, . . . , tn), (n+1)Dt(n) ∼= C(Xn+1). Now

the projection (n)ft(n) ∈ C(Y (n)) corresponds to the indicator of a set {x(1)
t1 , x

(2)
t2 , · · · , x

(n)
tn }

⊆ Y (n). Therefore identify, (n)ft(n) ⊗ (n+1)Dt(n) with (n)ft(n) ⊗ C(Xn+1). Hence

An+1
∼= C(Y (n+1)). Therefore, C(Y (1)) ⊂ C(Y (2)) ⊂ · · · ⊂ C(Y (n)) ⊂ C(Y (n+1)) ⊂

· · · ⊂ C(X) ⊂ A where

X = lim
∞←−n

Y (n)

and C(X) is norm separable and w.o.t dense in A. Write B = C(X). Therefore

B =
⊕
t(n)

(n)ft(n) ⊗B
t(n)
∞,n+1 (A.7)

and B
t(n)
∞,n+1

∼= C(X(n+1)) (by a similar argument and using Lemma V.3) and is w.o.t

dense, norm separable C∗ subalgebra of A
t(n)
∞,n+1.

Lemma V.4. For each n and t(n) 6= s(n),

(i)(A(n)ft(n),s(n)A)−‖.‖2 = (n)ft(n)L
2(R)(n)fs(n).
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(ii) For a, b ∈ B,

〈a(n)ft(n), s(n)b,
(n)ft(n), s(n)〉τR

=k1k2 · · · kn

∫
X

∫
X

(n)ft(n)(t)
(n)fs(n)(s)a(t)b(s)d(τR ⊗ τR)(t, s).

(iii) (A(n)ft(n),s(n)A)−‖.‖2 is orthogonal to (A(n)ft′(n),s′(n)A)−‖.‖2 whenever t(n) 6= s(n),

t′(n) 6= s′(n) and (t(n), s(n)) 6= (t′(n), s′(n)).

Proof. For a, b ∈ A, using Eq. (A.4) write

a = ⊕
q(n)

(n)fq(n) ⊗ aq(n) and b = ⊕
p(n)

(n)fp(n) ⊗ bp(n)

for aq(n) ∈ A
q(n)

∞,n+1, and bp(n) ∈ A
p(n)

∞,n+1. By direct multiplication we get

a((n)ft(n), s(n) ⊗ 1Rn)b = (n)ft(n), s(n) ⊗ at(n)bs(n).

Therefore (i) follows from Lemma V.3 (ii). Moreover for a, b ∈ B

〈a((n)ft(n), s(n) ⊗ 1Rn)b, (n)ft(n), s(n) ⊗ 1Rn〉τR

= trNn((n)ft(n))τRn(at(n)bs(n))

=
1

k1k2 · · · kn

τRn(at(n)bs(n))

= k1k2 · · · knτR(a((n)ft(n) ⊗ 1))τR(b((n)fs(n) ⊗ 1))

(by orthogonality, Lemma V.3(ii))

= k1k2 · · · kn

∫
X

∫
X

a((n)ft(n) ⊗ 1)(t)b((n)fs(n) ⊗ 1)(s)d(τR ⊗ τR)(t, s)

= k1k2 · · · kn

∫
x
(1)
t1
×···×x

(n)
tn
×X(n)

∫
x
(1)
s1
×···×x

(n)
sn ×X(n)

at(n)(t)bs(n)(s)d(τR ⊗ τR)(t, s)

= k1k2 · · · kn

∫
X×X

(n)ft(n)(t)
(n)fs(n)(s)a(t)b(s)d(τR ⊗ τR)(t, s).

This proves (ii). Clearly (iii) follows from (i) and the fact that (n)ft(n)J
(n)fs(n)J and

(n)ft′(n)J
(n)fs′(n)J are orthogonal projections in L2(R) if (t(n), s(n)) 6= (t′(n), s′(n)).
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Lemma V.5. For m > n the projections
k1∑

t1=1

k2∑
t2=1

· · ·
kn−1∑

tn−1=1

kn∑
tn 6=sn=1

P
(n)
(·,tn),(·,sn) and

P
(m)
(·,tm),(·,sm) with tm 6= sm are orthogonal. Moreover

∞∑
n=1

k1∑
t1=1

k2∑
t2=1

· · ·
kn−1∑

tn−1=1

kn∑
tn 6=sn=1

P
(n)
(·,tn),(·,sn) = 1− eA.

Proof. It follows from (iii) of Lemma V.4 that

P (n) =

k1∑
t1=1

k2∑
t2=1

· · ·
kn−1∑

tn−1=1

kn∑
tn 6=sn=1

P
(n)
(·,tn),(·,sn)

is a projection. The projection P (n) ∈ A′ and hence is in A as A is maximal abelian

in B(L2(R)). Therefore P (n) is decomposable. Denote

E(·,tn),(·,sn) = (x
(1)
t1 × · · · × x

(n)
tn−1

× x
(n)
tn ×X(n))× (x

(1)
t1 × · · · × x

(n)
tn−1

× x(n)
sn
×X(n)).

It is not hard to see from Lemma V.4 that

P
(n)
(·,tn),(·,sn)(L

2(R)) ∼=
∫ ⊕

E(·,tn),(·,sn)

Ct,sd(τR ⊗ τR)(t, s) where Ct,s = C,

and AP (n)
(·,tn),(·,sn) is the diagonalizable algebra with respect to this decomposition. For

t(n−1) 6= t′(n−1) the direct integrals for P
(n)
(t(n−1),tn),(t(n−1),sn) and P

(n)
(t′(n−1),t′n),(t′(n−1),s′n)

with tn 6= sn and t′n 6= s′n rests over disjoint subsets of X ×X. Therefore

P (n)(L2(R)) ∼=
∫ ⊕

En

Ct,sd(τR ⊗ τR)(t, s), where Ct,s = C and

En = ∪k1
t1=1 · · · ∪

kn−1

tn−1=1 ∪kn
tn 6=sn=1E(·,tn),(·,sn) = ∆(Y (n−1))×∆(Xn)c ×X(n) ×X(n),

and AP (n) is the diagonalizable algebra with respect to this decomposition. With

m > n and tm 6= sm, P
(m)
(·,tm),(·,sm) will be direct integral over the set (x

(1)
t1 × · · · ×
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x
(m−1)
tm−1

× x
(m)
tm × X(m)) × (x

(1)
t1 × · · · × x

(m−1)
tm−1

× x
(m)
sm × X(m)) which is disjoint from

∆(Y (n−1)) × ∆(Xn)c × X(n) × X(n). Therefore by direct integral theory P (n) and

P
(m)
(·,tm),(·,sm) are orthogonal. Now for x ∈ R we have for all positive integer N

N∑
n=1

P (n)x =
∑

t(N)6=s(N)

P
(N)
t(N),s(N)x = x−

∑
t(N)

P
(N)
t(N),t(N)x = (1− EAN

)(x).

Since by a result of Popa [30] we have EAN
(·) → EA(·) pointwise in ‖.‖2 as N →∞,

by density of R in L2(R) we are done.

Let cn =
n∏

r=1

kr for n ≥ 1 and c0 = 1.

Proposition V.6. The vector
∞∑

n=1

k1∑
t1=1

k2∑
t2=1

· · ·
kn−1∑

tn−1=1

kn∑
tn 6=sn=1

1√
cn

(n)f(·,tn),(·,sn) is a cyclic

vector for A(1− eA) and

(1− eA)(L2(R)) ∼=
∫ ⊕

X×X

Ct,sd(τR ⊗ τR)(t, s), where Ct,s = C.

Moreover A(1 − eA) is the algebra of diagonalizable operators with respect to this

decomposition.

Proof. Fix n ∈ N. For each 1 ≤ ti ≤ ki, 1 ≤ i ≤ n − 1, and 1 ≤ tn 6= sn ≤ kn,

working on with vectors 1√
cn

(n)f(·,tn),(·,sn) we find using Lemma V.4 a positive measure

η
(n)
(·,tn),(·,sn) supported on

(x
(1)
t1 × · · · × x

(n−1)
tn−1

× x
(n)
tn ×X(n))× (x

(1)
t1 × · · · × x

(n−1)
tn−1

× x
(n)
sn ×X(n)), such that

dη
(n)
(·,tn),(·,sn) = (n)f(·,tn)(t)

(n)f(·,sn)(s)d(τR ⊗ τR)(t, s).

By making arguments similar as in Lemma V.5 we find for each n a positive

measure η(n) on En = ∆(Y (n−1))×∆(Xn)c ×X(n) ×X(n) given by η(n) = χEnd(τR ⊗
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τR) such that

P (n)(L2(R)) =

k1∑
t1=1

k2∑
t2=1

· · ·
kn−1∑

tn−1=1

kn∑
tn 6=sn=1

P
(n)
(·,tn),(·,sn)(L

2(R)) =

∫
X×X

⊕
Ct,sdη

(n)(t, s)

where Ct,s = C and AP (n) is diagonalizable with respect to this decomposition. Note

that

η(n)(X ×X) =
cn−1(k

2
n − kn)

c2n
=

1

cn−1

− 1

cn
. (A.8)

The proof of Lemma V.5 shows that the measures η(n) are supported on disjoints

sets. Hence by Lemma V.5 and Lemma 5.7 [11]

(1− eA)(L2(R)) ∼=
∫ ⊕

X×X

Ct,sdη(s, t), where Ct,s = C, η =
∞∑

n=1

η(n). (A.9)

Moreover A(1 − eA) is diagonalizable with respect to the decomposition in Eq.

A.9. Clearly

η(X ×X) = lim
N→∞

N∑
n=1

η(n)(X ×X) = lim
N→∞

c0 − cN = 1.

Finally η = τR ⊗ τR. Indeed for a, b ∈ C(X),∫
X×X

a(t)b(s)dη(t, s) =
∞∑

n=1

∫
X×X

a(t)b(s)dη(n)(t, s)

=
∞∑

n=1

k1∑
t1=1

· · ·
kn−1∑

tn−1=1

kn∑
tn 6=sn=1

∫
X×X

a(t)b(s)dη
(n)
(·,tn),(·,sn)(t, s)

=
∞∑

n=1

k1∑
t1=1

· · ·
kn−1∑

tn−1=1

kn∑
tn 6=sn=1

∫
X×X

a(t)b(s)(n)f(·,tn)(t)
(n)f(·,sn)(s)

d(τR ⊗ τR)(t, s).

But
∞∑

n=1

k1∑
t1=1

· · ·
kn−1∑

tn−1=1

kn∑
tn 6=sn=1

(n)f(·,tn)(t)
(n)f(·,sn)(s) ↑ χ∆(X)c pointwise almost every-

where τR⊗ τR. Use dominated convergence theorem and the fact (τR⊗ τR)(∆X) = 0

to conclude η = τR ⊗ τR. This completes the proof.
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Since the Pukánszky invariant of every Tauer masa is {1} we have thus computed

the measure-multiplicity-invariant of A. The above Tauer masa was denoted by A(0)

in [41]. There is a Tauer masa of exact opposite flavor than A(0) which we call as

the alternating Tauer masa.

2. Alternating Tauer Masa

The alternating Tauer masa A(1) is a singular Tauer masa in the hyperfinite II1

factor R constructed by White and Sinclair [41]. It contains nontrivial centralizing

sequences of R. In fact its Γ-invariant is 1.

The chain for this masa is exactly similar as the masa of the product class de-

scribed before. Let A(1)1 = D2(C) ⊂M1 be the diagonal masa. Having constructed

A(1)n ⊂ Nn we construct A(1)n+1 as,

A(1)n+1 =


A(1)n ⊗ (n+1)Dn+1, n even, (n+1)Dn+1 the diagonal masa in Mkn+1(C),⊕
t(n)

(n)ft(n) ⊗ (n+1)Dt(n), n odd , (n+1)Dt(n) pairwise orthogonal.

(A.10)

We will prove that the left-right-measure of A(1) is singular with respect to the

product measure. With the left-right-measure of A(0) and A(1) at our disposal we

can calculate the same for the entire path of masas exhibited in [41].

Write R = Reven⊗Rodd where Rodd =
∞
⊗

r=1
M2r−1 and Reven =

∞
⊗

r=1
M2r. Also

denote Nn,even =
⊗n

r=1,2|r Mr and Nn,odd =
⊗n

r=1,r≡1mod(2)Mr. Then the subfactor

Rodd contains a Cartan masa B so that 1⊗B ⊂ A(1). By construction B is a infinite

tensor product of diagonal masas in the associated matrix algebras. Using similar

arguments like the product class Tauer masa we can identify C(X) as a w.o.t dense

subalgebra of A where X =
∞∏

r=1

Xr and Xr is a set of kr points.
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Lemma V.7. Let Mi for i = 1, 2 be II1 factors with unique tracial states τi re-

spectively. Let B ⊂ M2 and A ⊂ M1⊗M2 be masas so that 1 ⊗ B ⊂ A. Let

PukM1⊗M2
(A) = {1}, PukM2(B) = {1}. Let C(X) ⊂ A and C(Y ) ⊂ B be w.o.t

dense subalgebras with 1 ⊗ C(Y ) ⊂ C(X) and [ηX×X ], [ηY×Y ] denote the left-right-

measures for A and B respectively. If q : X 7→ Y denotes the continuous surjection

associated with the inclusion of C(Y ) in C(X) then [ηY×Y ] = [(q × q)∗ηX×X ].

Proof. With abuse of notation we will denote τ1 ⊗ τ2 to be the tracial measure on X

and τ2 that on Y of A,B respectively. Then q∗(τ1⊗τ2) = τ2. Note that f
i7→ f ◦(q×q)

for f ∈ C(Y ×Y ) is a injective ∗-homomorphism from C(Y ×Y ) into C(X×X) which

preserves least upper bounds at the level of continuous functions. Therefore i extends

to a injective ∗-homomorphism ĩ : L∞(Y × Y, ηY×Y ) 7→ L∞(X × X, ηX×X) which is

normal (see Lemma 10.1.10, [19]). By Theorem 4.6 [25], [(q × q)∗ηX×X ] = [ηY×Y ].

The hypothesis guarantees that

L2(M1⊗M2) = L2(X ×X, ηX×X) =

∫ ⊕
X×X

Ct,sdηX×X(t, s),

L2(M2) = L2(Y × Y, ηY×Y ) =

∫ ⊕
Y×Y

Ct,sdηY×Y (t, s)

with respect to which (A ∪ JM1⊗M2
AJM1⊗M2

)′′ and (B ∪ JM2BJM2)
′′ are respectively

diagonalizable. Therefore (q × q)∗ηX×X qualifies to be the left-right-measure of B ⊂

M2.

Theorem V.8. The left-right-measure [η] of A(1) is singular with respect to [τA(1)⊗

τA(1)] where τA(1) is the tracial measure for A(1).

Proof. Fix a member η from the equivalence class. Let C(
∞∏

n=1

Xn) be w.o.t dense in

A(1), then by virtue of construction C(
∞∏

n=1

X2n−1) is w.o.t dense in B. Let q :
∞∏

n=1

Xn 7→
∞∏

n=1

X2n−1 be the continuous surjection associated to the inclusion 1⊗B ⊂ A(1). Let
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η = f(τA(1) ⊗ τA(1)) + γ with τA(1) ⊗ τA(1) ⊥ γ and f ∈ L1(τA(1) ⊗ τA(1)) be the

decomposition of η with respect to τA(1) ⊗ τA(1) in the Lesbegue-Radon-Nikodym

theorem. Note that if τB denotes the tracial measure for B with respect to the

subfactor Rodd then τB = q∗τA(1) (as the inclusion of B in A arises from q). Now

E ⊆
∞∏

n=1

X2n−1 ×
∞∏

n=1

X2n−1 is a null set for τB ⊗ τB, implies

(τA(1) ⊗ τA(1))((q × q)−1E) = 0,

which in turn implies f(τA(1) ⊗ τA(1))((q × q)−1E) = 0.

Therefore (q× q)∗(f(τA(1)⊗ τA(1))) � τB ⊗ τB. Also (q× q)∗(f(τA(1)⊗ τA(1))) 6= 0

if f 6= 0. We have

(q × q)∗η = (q × q)∗(f(τA(1) ⊗ τA(1))) + (q × q)∗γ.

Decompose (q × q)∗γ = g(τB ⊗ τB) + β where g ∈ L1(τB ⊗ τB) and β ⊥ τB ⊗ τB.

It follows (q × q)∗η cannot be singular with τB ⊗ τB if f 6= 0 or g 6= 0.

But [(q × q)∗η] is the left-right-measure of B with respect to the subfactor Rodd

(Lemma V.7), which must be singular with τB⊗τB as B is Cartan in Rodd. Therefore

f = 0, g = 0, η ⊥ τA(1) ⊗ τA(1) and (q × q)∗η ⊥ τB ⊗ τB.

The fact that the left-right-measure of the alternating Tauer masa is singular

with respect to the product measure will play a huge role in generating masas in

free group factors. The alternating masa will be denoted by A(1) in the subsequent

sections.

B. Examples of Singular Masas in the Free Group Factors

In this section we show that given any subset S of N there are uncountably many

non conjugate singular masas in L(Fk), k ≥ 2 with Pukánszky invariant S∪{∞}. All
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examples constructed in this section are constructed from examples appearing in [11],

[42]. For any masa A considered in this section, we assume A = L∞([0, 1], λ), where

λ is the Lebesgue measure. If A ⊂ M is a masa and [η] be its left-right-measure,

then we will most of the time assume η(∆[0, 1]) = 0. There are few exceptions to this

assumption in this section, in which case we will notify.

The next two corollaries are direct applications of results in [11]. They can be

generalized to give analogous statements about masas in the interpolated free group

factors.

Corollary V.9. Let k ∈ N∞ and k ≥ 2. Let A ⊂ L(Fk) be a masa. If A is freely

complemented then Puk(A) = {∞} and is left-right-measure is the class of product

measure. In particular, A is singular.

Proof. Follows directly from Lemma 5.7 and Prop. 5.10 [11]. Singularity follows from

the characterization theorem in chapter II.

Corollary V.10. Let k ∈ N∞ and k ≥ 2, let A ⊂ L(Fk) be a masa. Let A  B  

L(Fk) where B is a subalgebra and B is freely complemented.

(i) If the left-right-measure [ηB] of the inclusion A ⊂ B is singular with respect to

λ⊗λ then PukL(Fk)(A) = PukB(A)∪{∞} and the left-right-measure of the inclusion

A ⊂ L(Fk) is [ηB + λ⊗ λ].

(ii) If the left-right-measure [ηB] of the inclusion A ⊂ B is [λ⊗λ], then PukL(Fk)(A) =

{∞} and the left-right-measure of the inclusion A ⊂ L(Fk) is [λ⊗ λ].

Proof. Easy. Consult Lemma 5.7 and Prop 5.10 [11].

Let S be a nonempty subset of N. Let S = {nk} with n1 < n2 < · · · . Define

PS =

α = {αnk
}|S|k=1 : αnk

> αnk+1
, 0 < αnk

< 1 for all k,

|S|∑
k=1

αnk
= 1

 . (B.1)
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For α, β ∈ PS, we say α 6= β if αnk
6= βnk

for some k.

Case: {1,∞}

Fix a sequence α ∈ PN. Consider the hyperfinite II1 factor R with the alternating

Tauer masa A(1). Let Rα = ⊕∞n=1R. Equip Rα with the faithful trace

τRα(·) =
∞∑

n=1

αnτR(·).

Then Aα = ⊕∞n=1A(1) is a singular masa in the hyperfinite algebra Rα which is

still separable. It is still true that PukRα(Aα) = {1}. The projections (0 ⊕ · · · ⊕

0 ⊕ 1 ⊕ 0 · · · ) where 1 appears at the n-th coordinate, is a central projection pn of

Rα and it belongs to Aα. The projections pn correspond to indicator of measurable

subsets Fn ⊂ ([0, 1], λ), so that Fn ∩ Fm is a set of λ measure 0 for all n 6= m.

Upon applying appropriate transformations the left-right-measure of A(1) ⊂ R can

be transported on each Fn × Fn, which we denote by [ηn]. It follows from Thm V.8

that ηn is singular with respect to λ⊗ λ. We also assume ηn(Fn × Fn) = 1 for all n.

The left-right-measure of the inclusion Aα ⊂ Rα is then the class of

∞∑
n=1

1

2n
ηn

from Prop. 5.2 [11]. Consider (M, τM) = (Rα, τRα)∗ (R, τR). Then M is isomorphic

to L(F2) by a well known theorem of Dykema [9]. Then Aα ⊂ L(F2) is a singular

masa by Theorem 2.3 [11]. The left-right-measure of the inclusion Aα ⊂ L(F2) is

[λ⊗ λ+
∞∑

n=1

1

2n
ηn]

and PukL(F2)(Aα) = {1,∞} from Cor. V.10.

Theorem V.11. For each α ∈ PN, there exists a singular masa Aα ⊂ L(F2) with
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Puk(Aα) = {1,∞}. If α 6= β are any two elements of PN then Aα and Aβ are not

conjugate.

In particular, for any countable discrete group Γ there exist uncountably many

non conjugate singular masas in L(F2 ∗ Γ) each having multiplicity {1,∞}.

Proof. The construction of the masa Aα ⊂ L(F2) is established in the discussion

above. Since automorphisms of II1 factors preserve traces of projections and orthogo-

nal projections the non conjugacy of Aα and Aβ follows by considering the left-right-

measures.

The final statement follows from the fact [9] that

Rα ∗ (R ∗ L(Γ)) ∼= (Rα ∗ R) ∗ L(Γ) ∼= L(F2) ∗ L(Γ) ∼= L(F2 ∗ Γ)

and Cor. V.10.

Case: {∞}

Fix a sequence α ∈ PN as before. Consider the hyperfinite II1 factor R with a

singular masa A such that PukR(A) = {∞}. Consider the inclusion B = ⊗∞n=1A ⊂

⊗∞n=1R. Since up to isomorphism there is one hyperfinite II1 factor so B ⊂ R is a

singular masa from Chifan’s Normaliser formula, Γ(B) = 1 and PukR(B) = {∞}

from Lemma 2.4 [49]. The left-right-measure of the inclusion B ⊂ R clearly contains

as a summand (Lemma 5.2 [11]), a measure γ which is singular with respect to λ⊗λ.

In addition, γt 6= 0 for λ almost all t, where [0, 1] 3 t 7→ γt denotes the (π1, λ)

disintegration of γ. Now repeat the process described in Case: {1,∞} replacing A(1)

by B to conclude:

Theorem V.12. For each α ∈ PN, there exists a singular masa Aα ⊂ L(F2) with

Puk(Aα) = {∞}. If α 6= β are any two elements of PN then Aα and Aβ are not

conjugate.
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In particular, for any countable discrete group Γ there exist uncountably many

non conjugate singular masas in L(F2 ∗ Γ) each having multiplicity {∞}.

Case: {1, n,∞}, n 6= 1

Let 1 6= n ∈ N. Consider the matrix groups

Gn =
{
( f x

0 1

)
| f ∈ Pn, x ∈ Q

}
, Hn =

{
( f 0

0 1

)
| f ∈ Pn

}
⊂ Gn where

P∞ =

{
p

q
| p, q ∈ Z, p, q odd

}
and

Pn =
{
f2kn | f ∈ P∞, k ∈ Z

}
,

of the multiplicative group of nonzero rational numbers. Then L(Gn) is the hyperfinite

II1 factor R and L(Hn) ⊂ L(Gn) is a singular masa with Pukánszky invariant {n}.

The left-right-measure of the inclusion L(Hn) ⊂ L(Gn) is the class of product Haar

measure λĤn
⊗ λĤn

on Ĥn × Ĥn, where Ĥn denotes the character group of Hn.

As R⊗R ∼= R so L(Hn)⊗A(1) is a singular masa in R from Chifan’s Normaliser

Formula. The Pukánszky invariant of the inclusion L(Hn)⊗A(1) ⊂ R is {1, n} from

Theorem 2.1 [42]. The left-right-measure of the inclusion L(Hn)⊗A(1) ⊂ R is the

class of

λĤn
⊗ λĤn

⊗ η + ∆∗λĤn
⊗ η + λĤn

⊗ λĤn
⊗∆∗λ

where [η] is the left-right-measure of the alternating Tauer masa restricted to the

off diagonal and ∆ is the map that maps a set to its square by sending x 7→ (x, x).

In this case we need to specify the measures on the diagonals as they are necessary.

Given α ∈ PN replace the role of A(1) in the previous construction (Case: {1,∞}) by

L(Hn)⊗A(1) to construct a masa Aα,n ⊂ L(F2).

Theorem V.13. For each α ∈ PN and for each 1 6= n ∈ N there exists a singular
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masa Aα,n ⊂ L(F2) with Puk(Aα,n) = {1, n,∞}. If α 6= β are any two elements of

PN then Aα and Aβ are not conjugate.

In particular, for any countable discrete group Γ there exist uncountably many

non conjugate singular masas in L(F2 ∗ Γ) each having multiplicity {1, n,∞}.

Proof. First use Theorem 3.2 of [11] to see that PukL(F2)(Aα,n) = {1, n,∞}. Then

use Lemma 5.7, Prop. 5.10 of [11] to see that the left-right-measure of the inclusion

Aα,n ⊂ L(F2) when viewed on [0, 1] × [0, 1] is of the same form as described in the

previous construction (Case: {1,∞}). Non conjugacy and the final statement follows

for exactly similar reasons as in Theorem V.11.

Case: {n,∞}, n 6= 1

Let 1 6= n ∈ N. Let Hn ⊂ Gn and H∞ ⊂ G∞. Then L(Hn ×H∞) is a singular

masa in L(Gn×G∞) whose measure-multiplicity-invariant is the equivalence class of

(Ĥn × Ĥ∞, [η],m)

where η is the sum of

(i) Haar measure on (Ĥn × Ĥ∞)× (Ĥn × Ĥ∞);

(ii) Haar measure on the subgroup

Dn = {(α, β1, α, β2) | α ∈ Ĥn, β1, β2 ∈ Ĥ∞};

(iii) Haar measure on the subgroup

D∞ = {(α1, β, α2, β) | α1, α2 ∈ Ĥn, β ∈ Ĥ∞};
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and where the multiplicity function is given by

m(γ) =


1, γ ∈ ∆(Ĥn × Ĥ∞)

n, γ ∈ Dn \∆(Ĥn × Ĥ∞)

∞, otherwise.

This was calculated in [11]. Note that η contains measures singular with respect

to product Haar measure as its summand off the diagonal ∆(Ĥn × Ĥ∞).

For each α ∈ PN, replace the role of A(1) in the previous construction (Case

{1,∞}) by L(Hn)⊗L(H∞) to construct a masaAα,n ⊂ L(F2). Note that PukL(F2)(Aα,n)

= {n,∞} from Thm. 3.2 [11]. The left-right-measure of the inclusion Aα,n ⊂ L(F2)

is of the same form as that of Aα as in Case: {1,∞}.

Theorem V.14. For each α ∈ PN and for each 1 6= n ∈ N there exists a singular

masa Aα,n ⊂ L(F2) with Puk(Aα,n) = {n,∞}. If α 6= β are any two elements of PN

then Aα,n and Aβ,n are not conjugate.

In particular, for any countable discrete group Γ there exist uncountably many non

conjugate singular masas in L(F2 ∗ Γ) each having multiplicity {n,∞}.

Proof. Clear. We omit the details.

Theorem V.15. Let S = {nk : 1 = n1 < n2 < · · · } be an arbitrary subset of N

that contains 1 and |S| > 2, let k ∈ {2, 3, · · · ,∞} be arbitrary and let Γ be any

arbitrary countable discrete group. For each α ∈ PS there exists a singular masa

Aα,S ⊂ L(Fk ∗ Γ) whose Pukánszky invariant is S ∪ {∞}. If α 6= β are any two

elements of PS then Aα,S and Aβ,S are not conjugate.

Proof. We first consider the case when Γ is trivial. Let Pn and P∞ be the subgroups

of multiplicative group of rational numbers as before. Let Gn, n ≥ 1, be the matrix
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group

Gn =




1 x y

0 f 0

0 0 g

 : x, y ∈ Q, f ∈ Pn, g ∈ P∞


and Hn the subgroup consisting of the diagonal matrices in Gn. Then as noted in

[42] Gn is amenable and L(Gn) ∼= R. It is also true that L(Hn) is a singular masa

in L(Gn) with Pukánszky invariant {n,∞} [11]. Consider Mn = L(Gn)⊗R ∼= R

and consider the masa An = L(Hn)⊗A(1). Then An ⊂ Mn is a singular masa with

PukMn(An) = {1, n,∞} [42]. Now consider

Mα = ⊕n∈SMn and Aα = ⊕n∈SAn where τMα(·) =
∑
n∈S

αnτMn(·).

Aα is a singular masa in Mα. Then Mα ∗L(Z) = Mα ∗L(F1) ∼= L(F2) [9]. Moreover

for 3 ≤ k ≤ ∞ one has isomorphisms [9]

Mα ∗ L(Fk−1) ∼= Mα ∗ (L(F1) ∗ L(Fk−2)) ∼= (Mα ∗ L(F1)) ∗ L(Fk−2)

∼= L(F2) ∗ L(Fk−2) ∼= L(Fk).

Then Aα is singular in both Mα and L(Fk) and PukL(Fk)(Aα) = S ∪ {∞} from

Theorem 3.2 [11]. There exist orthogonal projections {pn}n∈S ⊂ Aα with the property∑
n∈S pn = 1 and τL(Fk)(pn) = αn such that the left-right-measure of the inclusion

Aα ⊂ L(Fk) has λ ⊗ λ as a summand and measures singular with respect to λ ⊗ λ

on the squares pn × pn (here by abuse of notation we think of pn as the measurable

set which corresponds to the projection pn). The singular part on pn × pn has the

property that its (π1, λ) disintegration is non zero almost everywhere on pn. Non

conjugacy of Aα and Aβ follows for α 6= β follows easily.
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The case when Γ is non trivial follows from the fact that

Mα ∗ (L(Fk) ∗ L(Γ)) ∼= (Mα ∗ L(Fk)) ∗ L(Γ) ∼= L(Fk) ∗ L(Γ)

and Cor. V.10.

Theorem V.16. Let S = {nk : n1 < n2 < · · · } be an arbitrary subset of N that

does not contain 1 and |S| ≥ 2, let k ∈ {2, 3, · · · ,∞} be arbitrary and let Γ be any

arbitrary countable discrete group. For each α ∈ PS, there exists a singular masa

Aα,S ⊂ L(Fk ∗ Γ) whose Pukánszky invariant is S ∪ {∞}. If α 6= β are any two

elements of PS then Aα,S and Aβ,S are not conjugate.

Proof. Once again we first deal with the case when Γ is trivial. Let Gn, Hn for

n ∈ N∞ be the groups that were used in Thm. 6.2 [11]. Let Mn = L(Gn ×G∞) and

An = L(Hn ×H∞) for n ∈ S. Fix α ∈ PS. Let Rα,S = ⊕n∈SMn and Aα,S = ⊕n∈SAn

where Rα,S is equipped with the trace τRα,S
(·) =

∑
n∈S αnτMn(·). Replace the role

of the masa Aα,n in Theorem V.14 by Aα,S. We omit the details. The case when

Γ is nontrivial follows by standard isomorphism theorems of free products of von

Neumman algebras as explained before.

The only case that is open is the one in which Puk(A) is an infinite subset of

N. The existence of such a masa in the free group factors is unknown. Such a masa

cannot be freely complemented by anything from Cor. V.9. We end this section with

the observation that the measure-multiplicity-invariant for masas in the free group

factors is far from being a complete invariant.

Theorem V.17. There exist singular masas A,B in L(Fk), 2 ≤ k ≤ ∞ with same

measure-multiplicity-invariant.

Proof. Let R =
∏
n∈Z

({0, 1}, µ) o Z where µ({0}) = µ({1}) = 1
2

and the action is

Bernoulli shift. Then the copy of Z gives rise to a masa A ⊂ R whose multiplicity
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is {∞} and whose left-right-measure is the class of product measure. Consequently,

for k ≥ 2, A ⊂ R ∗ (
k−1∗
r=1
R) ∼= L(Fk) [9] is a singular masa whose left-right-measure is

the class of product measure and whose multiplicity function is m ≡ ∞. Let B be

the single generator masa or radial masa of L(Fk). From [38] the radial masa has the

same measure-multiplicity-invariant as A. The same holds for the single generator

masas as well. A is not conjugate B as the former is not maximally injective, while

the single generator and radial masas are maximally injective [1], [31].

C. Unitary Conjugacy

The question of deciding inner conjugacy of a pair of masa initially started in

the works of Feldman and Moore in [13]. In [36] several more equivalent conditions

were given that decides the inner conjugacy of masas. In this section we cite examples

of non inner conjugate singular masas in R and free group factors.

Definition V.18. [49] Given a pair of masas A,B in a II1 factor M the mixed-

Pukánszky invariant of A and B denoted by Puk(A,B)(or PukM(A,B) if necessary)

is Type((A ∪ JBJ)′) where the commutant is taken in B(L2(M)).

Let A, B be two masas in a II1 factor M. Let X, Y be compact Hausdorff spaces

such that C(X) ⊂ A and C(Y ) ⊂ B are unital, norm separable and w.o.t dense C∗

subalgebras. To each such pairX, Y we associate a tuple (X, Y, νX , νY , [ηX×Y ],mX×Y )

where ηX×Y is the measure on X × Y , mX×Y is the multiplicity function that is

obtained from the direct integral decomposition of L2(M) over (X × Y, ηX×Y ) so

that (A ∪ JBJ)′′ is unitarily equivalent to the algebra of diagonalizable operators

with respect to this decomposition, and νX , νY are completion of probability mea-

sures on X, Y respectively obtained by restricting the trace to C(X) and C(Y ).

Analogously as before we define an equivalence relation on the collection of tuples
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(X, Y, νX , νY , [ηX×Y ],mX×Y ) indexed by compact Hausdorff spaces X, Y as above by,

(X, Y, νX , νY , [ηX×Y ],mX×Y ) ∼j.m.m (X ′, Y ′, νX′ , νY ′ , [ηX′×Y ′ ],mX′×Y ′) if and only if

there exist Borel isomorphisms,

F : (X, νX) 7→ (X ′, νX′) , G : (Y, νY ) 7→ (Y ′, νY ′) such that,

F∗νX = νX′ , G∗νY = νY ′ ,

(F ×G)∗[ηX×Y ] = [ηX′×Y ′ ] and

mX×Y ◦ (F ×G)−1 = mX′×Y ′ , ηX′×Y ′ a.e.

Working as in chapter II one can show that ∼j.m.m has exactly one equivalence

class.

Definition V.19. Let A, B ⊂ M be masas in a II1 factor M. The joint-measure-

multiplicity invariant of the pair A and B, is the equivalence class of

(X, Y, νX , νY , [ηX×Y ],mX×Y )/ ∼j.m.m

where X, Y are compact Hausdorff spaces such that C(X) ⊂ A, C(Y ) ⊂ B are unital,

norm separable and w.o.t dense subalgebras, νX , νY are the complete probability

measures obtained from restricting τ on C(X) and C(Y ) respectively, ηX×Y is the

measure and mX×Y is the multiplicity function, obtained from the direct integral

decomposition of L2(M) over (X × Y, ηX×Y ) so that (A ∪ JBJ)′′ is the algebra of

diagonalizable operators with respect to this decomposition.

The measure class [ηX×Y ] is said to be the left-right-measure of the pair (A,B)

and the joint-measure-multiplicity invariant of a pair (A,B) is denoted by j.m.m(A,B).

Note that the Pukánszky invariant and mixed-Pukánszky invariant are the es-

sential values of the multiplicity functions in m.m(A) and j.m.m(A,B) respectively.
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The joint-measure-multiplicity invariant is an invariant for pair of masas in the fol-

lowing sense. If A,B ⊂M and C,D ⊂ N are masas in II1 factors M,N respectively,

and there is a unitary U : L2(M) 7→ L2(N ) such that, UAU∗ = C,UJMBJMU
∗ =

JNDJN then for any choice of compact Hausdorff spaces YA, YB, YC , YD with C(YA),

C(YB), C(YC), C(YD) unital, norm separable and w.o.t dense subalgebras ofA,B,C,D

respectively, there exist Borel isomorphisms

FYA,YC
: (YA, νYA

) 7→ (YC , νYC
) and FYB ,YD

: (YB, νYB
) 7→ (YD, νYD

) such that

(FYA,YC
)∗νYA

= νYC
, (FYB ,YD

)∗νYB
= νYD

,

(FYA,YC
× FYB ,YD

)∗[ηYA×YB
] = [ηYC×YD

] and

mYA×YB
◦ (FYA,YC

× FYB ,YD
)−1 = mYC ,YD

, ηYC×YD
a.e.

Also note that j.m.m(A,A) is the same as m.m(A) except for the fact that, the

information on the diagonal is absent in m.m(A).

Proposition V.20. Let A and B be two masas in a II1 factor M. Let u, v be

unitaries in M. Then j.m.m(uAu∗, vBv∗) = j.m.m(A,B). In particular, if A and B

are inner conjugate then j.m.m(A,B) = j.m.m(A,A).

Proof. The automorphism Ad(uJvJ) of B(L2(M)) takes A to uAu∗ and JBJ to

JvBv∗J . So the result follows.

Let (X,µ) be a Lebesgue probability space with a free, ergodic, measure preserv-

ing action T of a countable discrete abelian group G. The crossed product algebra

RT = L∞(X,µ) oT G has two distinguished masas, the image CT of L∞(X,µ) and

the masa ST generated by the canonical unitaries in RT implementing the action.

The masa CT is always Cartan.
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Corollary V.21. j.m.mRT
(CT , ST ) = (X, Ĝ, µ, λĜ, [µ ⊗ λĜ], 1)/ ∼ j.m.m where λĜ

is the normalised Haar measure on Ĝ. In particular, if ST is Cartan (for example

irrational rotation of Z) then CT , ST are not inner conjugate.

Proof. The masas CT and ST are orthogonal and span{ab : a ∈ CT , b ∈ ST} is dense

in L2(RT ). In particular 1 is a cyclic vector for (CT ∪ JSTJ)′′. The first statement

now follows easily. The left-right-measure of CT is concentrated on the union of

automorphism graphs implemented by the group unitaries. The final statement is

now obvious.

Recently, White has exhibited pairs of Cartan masas (An, Bn), for n ≥ 2 such

that Puk(An, Bn) = {n} [49]. So An and Bn are not inner conjugate from Prop. V.20.

Let A,B ⊂M be masas. Identify A ∼= L∞([0, 1], λ) and B ∼= L∞([0, 1], λ) where

λ is the Lebesgue measure. The bimodules that decide the inner conjugacy of masas

A and B are AξB
‖·‖2 and BξA

‖·‖2 , where ξ = 1̂.

Theorem V.22. [36] Let A,B ⊂ M be masas. Then A = uBu∗ for some unitary

u ∈M if and only if AξB
‖·‖2 ∈ Cd(A,B) and BξA

‖·‖2 ∈ Cd(B,A).

For examples constructed in the next couple of results we refer the reader back

to the section on Tauer masas.

Lemma V.23. Suppose A,B ⊂ M are masas. Let A = ∪∞n=1An
s.o.t

and B =

∪∞n=1Bn
s.o.t

where An ⊂ An+1, Bn ⊂ Bn+1 are finite dimensional subspaces for all

n. If τ(ab) = τ(a)τ(b) for a ∈ An and b ∈ Bn and for all n then τ(ab) = τ(a)τ(b) for

all a ∈ A, b ∈ B.

Now we show the presence of two non inner conjugate singular masas in R

which have the same measure-multiplicity-invariant. For notations related to indexing
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minimal projections we refer the reader to the section on Tauer masas.

Given a rapidly increasing sequence of primes kr with k1 = 2 one can always

ensure kr >> k1 · · · kr−1 for all r > 1. This allows one to construct different Tauer

masas with respect to the same chain in the following way. Let A1 = D2(C) and

B1 =
{
( α β

β α

)
: α, β ∈ C

}
. Having constructed An, Bn we construct An+1, Bn+1 as,

An+1 =
⊕
t(n)

(n)ft(n),A ⊗ (n+1)D
t(n)
A (C.1)

Bn+1 =
⊕
t(n)

(n)ft(n),B ⊗ (n+1)D
t(n)
B ,

where the family
{

(n+1)D
t(n)
A , (n+1)D

t(n)
B

}
t(n),A,B

are all orthogonal in Mkn+1(C). Let

A = ∪∞n=1An
s.o.t

and B = ∪∞n=1Bn
s.o.t

. Then A,B are Tauer masas in R for both of

which the left-right-measure is the class of product measure. We claim that τ(ab) =

τ(a)τ(b) for all a ∈ A, b ∈ B. In view of Lemma V.23 we need to show that

τ(ab) = τ(a)τ(b) for a ∈ An and b ∈ Bn. This is definitely true for n = 1. Suppose

we have proved the assertion for k = 1, 2, · · · , n. For a ∈ An+1, b ∈ Bn+1 decompose

a, b with respect to Eq. (C.1) as

a = ⊕
t(n)

(n)ft(n),A ⊗ at(n),A, b = ⊕
s(n)

(n)fs(n),B ⊗ bs(n),B.

Then by using orthogonality,

τ(ab) = τ((⊕
t(n)

(n)ft(n),A ⊗ at(n),A)( ⊕
s(n)

(n)fs(n),B ⊗ bs(n),B))

=
∑

t(n),s(n)

τ(((n)ft(n),A
(n)fs(n),B)⊗ (at(n),Abs(n),B))

=
1

c2n

∑
t(n),s(n)

τ(at(n),A)τ(bs(n),B)

= τ(a)τ(b),
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where c1 = 1 and for n > 1, cn =
∏n

r=1 kr. Therefore induction hypothesis proves

the claim. It follows that AξB
‖·‖2 6∈ Cd(A,B) and BξA

‖·‖2 6∈ Cd(B,A), where ξ = 1̂.

Therefore A,B are not inner conjugate.

We will now construct uncountably many non inner conjugate singular masas in

R and the free group factors with same measure-multiplicity-invariant. Fix a Cantor

set C =
∏∞

n=1Cn where |Cn| = cn and cn+1 > cn for all n. For each (r1, r2, · · · ) ∈ C

where 1 ≤ ri ≤ ci we will construct a Tauer masa A(r1,r2,··· ). The left-right-measure

of A(r1,r2,··· ) will be the class of product measure for each (r1, r2, · · · ) ∈ C.

Set k1 = 2. The initial approximation to the Tauer masas we are going to

construct is D2(C) i.e,

(A(r1,r2,··· ))1 = D2(C).

Choose a prime k2 >> k1 such that Mk2(C) has at least k1c1 orthogonal masas.

Fix such a family of k1c1 orthogonal masas and name it {Dt(1),r1}t(1),1≤r1≤c1 . Now

define the second approximations to the Tauer masas as

(A(r1,r2,··· ))2 = ⊕
t(1)

(1)f
(r1)
t(1) ⊗Dt(1), r1 , 1 ≤ r1 ≤ c1,

where (1)f
(r1)
t(1) are the minimal projections of (A(r1,r2,··· ))1.

Choose a prime k3 so large that k3 >> c1c2k1k2. So Mk3(C) has at least c1c2k1k2

orthogonal masas. Fix such a family and name it {Dt(2),r1,r2}1≤r1≤c1,1≤r2≤c2 . Construct

the third approximations of the Tauer masas as

(A(r1,r2,··· ))3 = ⊕
t(2)

(2)f
(r1)
t(2) ⊗Dt(2), r1,r2 , 1 ≤ ri ≤ ci, i = 1, 2,

where (2)f
(r1)
t(2) are the minimal projections of (A(r1,r2,··· ))2.

Continuing inductively we can construct Tauer masas A(r1,r2,··· ) where 1 ≤ ri ≤ ci.
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Identify A(r1,r2,··· ) = L∞([0, 1], λ) where λ is the Lebesgue measure and the projections

( 1 0
0 0 ) ∈ A(r1,r2,··· ) and ( 0 0

0 1 ) ∈ A(r1,r2,··· ) as indicator of Borel sets E and F respectively.

The left-right-measure of each A(r1,r2,··· ) is the class of λ⊗ λ from Prop. V.6.

For c = (r1, r2, · · ·) and c′ = (r′1, r
′
2, · · · ) with c 6= c′ the measure arising out the

vector functional a⊗ b 7→ τ(ab), a ∈ Ac and b ∈ Ac′ will be χE×E∪F×Fd(λ⊗ λ) from

Lemma V.3.

Theorem V.24. Given any Cantor set C =
∏∞

n=1Cn with |Cn+1| > |Cn| for all n,

there exist a family of non inner conjugate Tauer masas {Ac}c∈C in R the left-right-

measure of each of which is the class of product measure.

In particular, there is an uncountable family of non inner conjugate masas in L(Fk),

k ≥ 2 of product class and multiplicity {1,∞}.

Concluding Remarks: So far, we have not been able to fully characterize strongly

mixing masas. This problem is under investigation and we think that a masa A ⊂M

is strongly mixing, if and only if, η̃t is a mixing measure for λ almost all t. In the

same direction, we suspect that the converse to Thm. IV.17 is true. Furthermore, we

think that the measures η̃t must be βt-rigid, λ almost all t, if A contains nontrivial

centralizing sequences of M.

All these questions are technical in nature, and we suspect that sophisticated

approximation techniques from Fourier analysis will help to solve these questions.

Even though these questions originate in operator algebras but finally they reduce to

two technical questions in analysis, namely,

1. Under what conditions, a bounded sequence of measurable functions on [0, 1]

converge almost everywhere with respect to λ, and,

2. When can we interchange integrals and limits ?

We have produced uncountably many non conjugate singular masas in the free
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group factors, having same multiplicity function. We have also given an example

to show that measure-multiplicity-invariant is not a complete invariant. Thus the

real question regarding the measure-multiplicity-invariant is: ‘When are two masas

with the same measure-multiplicity-invariant conjugate’? A very similar question

was asked by Popa regarding Cartan masas.

We end by asking the following question: Suppose M = M1⊗M2 be the tensor

product of two II1 factors then, does there exist a masa A ⊂ M, whose left-right-

measure is singular to λ⊗ λ?
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