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ABSTRACT 

 

Inclusion of Blended Lipid Solutions as Functional Ingredients to Alter the Fatty 

Acid Profile of Beef Patties. (August 2009) 

Austin Cole Lowder, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Wesley N. Osburn 

 
We hypothesized that beef patties formulated with the addition of a beef fat, 

plant oil and rosemary extract (antioxidant) blend would increase unsaturated fatty acid 

content and maintain desirable sensory attributes as compared to 10 and 20% fat 

control beef patties.  Treatment patties were formulated by combining beef trimmings 

(6% fat) with a lipid blend mixture (4% or 14% addition, respectively) containing 57% 

beef tallow, 0.3% rosemary extract and 43% of either high oleic safflower oil (SO), olive 

oil (OO), or corn oil (CO) to achieve a total fat content of 10 or 20%.  Treatment patties 

were similar to control patties for lipid oxidation at 0 and 3 d of refrigerated (2oC) 

storage and up to 56 d of frozen (-10oC) storage.  Cooked lipid blend patties at 10 or 

20% fat content were similar to or higher, respectively, than control patties for juiciness 

and were no different for other sensory attributes evaluated.  At 10 and 20% fat levels, 

oleic acid (18:1) in cooked SO patties (46.1 and 50.3%, respectively) and OO patties 

(43.8 and 48.1%, respectively) was higher than the control (37.3 and 37.6%, 

respectively).  Unsaturated to saturated fatty acid ratios at the 10 and 20% fat levels 

were higher in SO (1.37 and 1.60, respectively) and CO (1.40 and 1.48, respectively) 

patties than the control (0.97 and 0.94, respectively).  The incorporation of nutritionally 

enhanced lipid blends increased unsaturated fatty acid content and maintained 

desirable sensory attributes of beef patties while suppressing lipid oxidation. 
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CHAPTER I 

INTRODUCTION AND REVIEW OF LITERATURE 

Introduction 

The increased awareness of the importance of diet to human health has prompted 

many consumers to carefully consider the foods they purchase.  Although there are many 

factors that influence the nutritional quality of a given food product, great attention is often 

paid to the total amount of fat present and its fatty acid composition.  This is because both 

of these attributes have been implicated as contributing factors to certain cancers and 

cardiovascular diseases.  Muscle foods have been criticized for their high total fat content 

and individual fatty acid content, specifically their low polyunsaturated (PUFA) to saturated 

(SFA) fatty acid ratios (PUFA:SFA).  It is for these reasons that methods of altering the 

fatty acid profile in muscle foods continues to gain interest. 

 

Fatty acid structure and nomenclature 

 Akoh (1998) describes the structure and nomenclature of food lipids.  Lipids within 

muscle food systems generally consist of 12 – 24 carbons atoms with a nonpolar methyl 

group (CH3) at one end of the chain and a polar carboxylic acid group (COOH) at the 

other.  If none of the carbons are double bonded together, the fatty acid is said to be 

saturated with hydrogens; it is put into the class of saturated fatty acids (SFA).  The 

presence of double bonds makes the fatty acid unsaturated.  Unsaturated fatty acids 

(UFA) can be classified as either monounsaturated (MUFA), containing a single double 

bond, or polyunsaturated (PUFA), containing multiple double bonds.   

The use of several different nomenclature systems complicates the discussion of  
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fatty acids.  There are several that will commonly be used in this text.  Shorthand 

nomenclature is used to identify the number of carbons a fatty acid has followed by the 

number of double bonds.  An 18 carbon fatty acid containing one double bond would be 

identified using shorthand as 18:1, for example.  Trivial names are given to individual fatty 

acids, such as oleic acid (18:1) or stearic acid (18:0).  The system used to denote double 

bond placement will be the n minus system.  This nomenclature identifies the position of 

the first double bond from the methyl end of the fatty acid by subtracting the number of 

carbons to the first double bond from the total number of carbons (n).  The first double 

bond in linoleic acid (18:2), for example, is six carbons from the methyl end.  This would 

be identified in short hand as 18:2n-6.  Fatty acids can often be classified simply by their n 

minus designation as this will indicate their eventual purpose within the body. 

 The physical characteristics of individual fatty acids are determined by chain length 

and presence of double bonds.  Fatty acid melting point is increased slightly as the 

number of carbons increases.  Palmitic acid (16:0), for example, has a melting point of 63-

64˚C while stearic acid (18:0) has a melting point of 70˚C.  Increasing double bonds has a 

much greater effect on melting point.  The melting point for oleic acid (18:1) is 18˚C, far 

less than the 70˚C melting point of 18:0.  Some bacteria, like those in the rumen, can 

hydrogenate fatty acids and create double bonds in the trans configuration.  This means 

that the hydrogens on either end of a double bond are on the same side of the molecule.  

Melting point is less affected by trans double bonds than cis double bonds as they put a 

much smaller kink in the molecule (Akoh 1998). 

 

Impact of fat on the nutritive value of meat 

 Intake of lipids from dietary sources is generally in the form of a triacylglycerol 

(TAG).  This molecule consists of three fatty acids bound by an ester linkage to a glycerol 

structure.  TAG represent most of the stored lipids in the body.  Phospholipids (PL) 
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represent the second major group of lipids.  These are lipid structures with an attached 

phosphate group.  Lecithin, an emulsifier important to the functions of bile, and 

sphingomyelin, an integral component of the myelin sheaths surrounding nerve axons, are 

both notable phospholipids.  Any other classes of lipids from dietary sources are generally 

present in insignificant amounts.  Food lipids contain practically no free fatty acids (Cichon 

2003).   

Food lipids are used for a wide variety of functions in the body, not all of which are 

known.  In very basic terms of metabolic energy lipids provide 9 kcal/g, where proteins 

and carbohydrates provide 4 kcal/g.  The human body has the ability to synthesize many 

fatty acids through enzymatic activity that either increases carbon chain length 

(elongation) or remove inserts double bonds (desaturation).  The n-6 and n-3 fatty acid 

families cannot be synthesized by humans, but are present in plant dietary sources.  The 

fatty acids in these families are termed essential fatty acids (EFA) and they are used by 

the body to synthesize various steroid hormones, maintain cell membranes and regulate 

many cellular functions (Cichon 2003). 

  The high amount of SFA in beef is often cited as a health concern for consumers 

because they tend to increase total plasma cholesterol and low density lipoprotein (LDL) 

cholesterol, both risk factors for cardiovascular disease (Mattson and Grundy 1985).  It 

should be noted that stearic acid (18:0), which represents about 30% of SFA in beef, has 

little effect on the levels of plasma lipoproteins (Yu and others 1995).  Evidence collected 

in a compilation of studies by Kris-Etherton and Yu (1997) shows oleic acid (18:1), which 

is the single most prominent fatty acid in beef, to lower both total cholesterol and LDL 

cholesterol.  The same review shows the major PUFA in beef, linoleic acid (18:2) to lower 

both total cholesterol and LDL cholesterol while increasing amounts of HDL cholesterol. 

 One of the most beneficial fatty acids present in beef is conjugated linoleic acid 

(CLA).  Conjugated linoleic acids are a series of isomers of linoleic acid (Pariza and others 



4 

 

  

4
 

2001).  The two isomers of most interest, cis-9, trans-11 and trans-10, cis-12, have been 

shown to have beneficial health effects.  CLA isomer cis-9, trans-11 is believed to have 

protective properties from the effects of cancer (De la Torre and others 2006) and 

atherosclerosis (Lee and others 1994) effects, while CLA trans-10, cis-12 has shown anti-

obesity effects (Park and others 1997).  

 The presence of n-6 fatty acids, such as linoleic acid (18:2n-6), and n-3 fatty acids, 

such as linolenic acid (18:3n-3), greatly affects the nutritive value of meat.  Both fatty 

acids reduce total cholesterol and LDL cholesterol, but n-3 fatty acids provide a host of 

other health benefits, including being anticarcinogenic, antithrombotic, and antiarrythmic 

(Leaf and others 2003, Calder 2004).  The chain elongation and further desaturation 

necessary for the body to utilize 18:2 and 18:3 occurs through the same enzymatic 

pathway (Calder 2004).  Because of this, the formation of longer chain 18:3 derivatives in 

the human body is inefficient (Pawlosky and others 2001; Burdge and others 2002). The 

most efficient source of long chain n-3 fatty acids are fish and fish oils, however, there is 

concern  over the low consumption in western diets and questionable sustainability of 

these sources (Williams and Burdge 2006).  Because of a physiological state conducive to 

platelet aggregation, cancerous cell proliferation and inflammation  (Simopolus 2002) 

caused by high n-6 diets, n-6:n-3 ratios above 4 are considered a risk factor for cancer, 

coronary heart disease and sudden cardiac arrest, and attention is placed on increasing 

the amount of n-3 fatty acids in the diet.  Beef contains a low n-6:n-3 ratio, usually less 

than 3:1 (Scollan and others 2006), while pork is shown to have a higher range of 7.57 – 

12.23 (Enser and others 1996; Wood and others 2004a).  

 

Fatty acid composition of meat 

 In beef, intramuscular fat is composed, on average, of 45-48% SFA, 35-38% 

monounsaturated fatty acids (MUFA), and around 5% PUFA (Scollan and others 2006).  
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The most prevalent SFA are myristic acid (14:0), palmitic (16:0) and stearic (18:0), while 

MUFA are almost entirely represented by oleic acid (18:1) and its isomers, and PUFA are 

mostly made up of linoleic acid (18:2) and α-linolenic acid (18:3).  Also present in beef are 

several isomers of conjugated linoleic acid (CLA), with the cis-9, trans-11 isomer 

accounting for 70% of all CLA (Dannenberger and others 2005).   

It is important to acknowledge the differences in fatty acid composition between 

species.  Enser and others (1996) used retail steak or chop samples from similar locations 

(loin) on beef, pork, and lamb carcasses to determine total adipose tissue amount and 

individual fatty acid content.  The results showed that for the whole steak or chop beef and 

lamb samples contained very low PUFA:SFA ratios (0.07 and 0.09, respectively), while 

pork displayed a higher ratio of 0.61.  This discrepancy between beef and lamb 

(ruminants) and pork (non-ruminant) PUFA:SFA ratios is because of biohydrogenation, a 

process that hydrogenates unsaturated fatty acids in the rumen (Wood and others 1999).  

Because of this process, long chain n-3 PUFA tend to show much greater deposition in 

pork than beef or lamb.  Determination of n-6:n-3 ratios showed lower values for beef and 

lamb (2.22 and 1.28, respectively) than pork (7.57).  

 

Components of meat quality 

 The direct effects of fatty acid composition on meat quality are limited to shelf life 

and flavor.  Lipid oxidation of unsaturated fatty acids explains the effect fatty acids can 

have on shelf-life.  Lipid oxidation is a process by which unsaturated fatty acids are 

converted to lipid free radicals.  These free radicals react with molecular oxygen and other 

unsaturated lipids to form lipid hydroperoxides.   Eventually, byproducts from these 

reactions will cause sensory attributes decrease and nutritional value to decline.  This 

condition in food systems is termed rancidity.  Meat products seem to be susceptible to 

lipid oxidation because of the availability of iron to initiate the process (Rhee and Ziprin 
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1987).  Continued exposure of muscle to oxygen causes the color to change over time, as 

the muscle pigment oxidizes, from red (oxymyoglobin) to brown (metmyoglobin).  This 

reaction tends to proceed in parallel with rancidity and some lipid oxidation byproducts 

have been shown to promote oxidation in muscle pigment.  Although meat containing a 

higher degree of unsaturated fatty acids would likely increase in rate of oxidation, pasture 

fed cattle tend to have more antioxidant in the form of α-tocopherol, while cattle fed lipid 

supplements, such as linseed oil or fish oils, do not (Scollan and others 2006).  

 Characteristic meat flavor is produced during cooking, when volatile compounds 

are released as a function of two mechanisms: 1) Maillard reaction, and 2) thermal 

degradation of lipids (Mottram 1998).  The Maillard reaction takes place when amino acids 

and reducing sugars are combined under heat; this reaction produces flavors 

characteristic of all cooked meat.  Volatiles derived from lipid degradation produce the 

species specific flavors found in different muscle foods (Mottram 1998).  Also important to 

meat flavor are the unsaturated fatty acids found in the phospholipids present in animal 

cells (Mottram 1998).  Alteration of the fatty acid profile to include more unsaturated fatty 

acids could change the type and amount of volatiles released during cooking, which would 

alter flavor and aroma (Scollan and others 2006).  Campo and others (2003) employed a 

trained sensory panel to study the flavor of individual fatty acids alone or in combination 

with cysteine (amino acid) and ribose (reducing sugar), the principal reactants of the 

Maillard reaction.  It was found that oleic acid (18:1n-9), linoleic acid (18:2n-6) and α-

linolenic acid (18:3n-3) all produced meaty flavors in the presence of the amino acid and 

sugar and that α-linolenic acid (18:3n-3) produced fishy flavors both individually and in 

combination with the Maillard reactants. 
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Carcass modification to alter the fatty acid composition of meat 

 Efforts to alter the profile of fatty acids present in beef cattle preharvest have 

resulted in a multitude of different approaches.   Often the most convenient approach is 

the feeding of grass or silages which are rich in n-3 fatty acids.  Neurnberg and others 

(2005) compared two breeds (German Simmental and German Holstein) of beef cattle fed 

concentrates to those that were pasture fed and subsequently placed on a concentrate 

diet supplemented with grass silage and linseed oil.  The grass based diet was able to 

increase (P < 0.05) the amount of n-3 PUFA in the loin muscle of both breeds while 

having no effect on the amounts of n-6 PUFA present, effectively reducing the n-6:n-3 

ratio to 2.0 and 1.9 for the grass fed cattle compared to 8.3 and 6.5 for the grain fed.  The 

authors also saw a significant increase (P < 0.05) of 18:1 in the grass fed cattle as well as 

a significantly larger (P < 0.05) amount of CLA isomer cis-9, trans-11.  Varela and others 

(2004) compared cattle fed on a pasture finishing system to those finished with a maize 

silage and concentrate system.  Although no change (P > 0.05) in the amount of α-

linolenic acid (18:3n-3) present in the Longissimus intramuscular fat was seen, a decrease 

(P < 0.05) in n-6:n-3 ratio displayed by the pasture fed cattle (2.67) versus the concentrate 

fed cattle (4.06) was. 

Supplementation of oil in the diet has also shown to be an effective method of 

altering an animal’s fatty acid content, as shown by Scollan and others (2001).  The 

authors conducted a study that used a 60:40 forage:concentrate diet supplemented with 

either palmitic acid (16:0) as a control, linseed oil, which contains high amounts of 18:3n-

3, fish oil, or a combination of linseed oil and fish oil.  As noted earlier, fish oil, which 

contains eicosopentanoic acid (20:5n-3) and decosohexanoic acid (22:6n-3), is a more 

efficient way to provide n-3 fatty acids to humans as these are the eventual products that 

α-linolenic acid (18:3n-3) will provide through chain elongation and desaturation.  The 

linseed oil and linseed oil-fish oil mixtures were able to increase (P < 0.05) α-linolenic acid 
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(18:3n-3) over cattle fed the control diet, while all treatments showed a reduction of 

linoleic acid (18:2n-6) in triacylglycerols (TAG).  The long chain PUFA present in fish oil 

were not detected in the TAG or subcutaneous adipose tissue, suggesting a high 

susceptibility to biohydrogenation.  All three treatments displayed a decrease in n-6:n-3 

ratio.  Noci and others (2005) undertook a study to determine the effects of different 

amounts of sunflower oil (SFO) in diets fed to crossbred heifers.  Biohydrogenation of 

18:2n-6 to 18:0 in the rumen has been shown to produce CLA isomers as intermediates 

(Harfoot and Hazlewood, 1988).  While the increased amounts of SFO were shown to 

significantly increase (P < 0.05) the amount of CLA isomer cis-9, trans-11 present in the 

intramuscular fat of the Longissimus dorsi muscle, they also had the effect of increasing 

(P < 0.05) the n-6:n-3 ratio beyond recommended levels.                                 

As previously noted, rumen biohydrogenation is one of the principal obstacles to 

the alteration of fatty acid composition in beef cattle.  A novel approach to overcome this 

obstacle is protection of the lipid supplement via protein encapsulation or chemical 

protection.  This approach was used by Scollan and others (2003) in a study that used 

grass fed cattle supplemented with concentrate treatments containing varying amounts of 

a ruminally protected lipid supplement (PLS) containing high values of α-linolenic acid 

(18:3n-3) fatty acids.  Feeding the PLS treatments tended to reduce the amount of SFA 

while increasing (P < 0.05) overall PUFA and 18:3n-3 in intramuscular fat, showing that 

the PLS treatments were afforded a high degree of protection from the biohydrogenating 

action of the rumen. 

 Enser and others (2000) fed pigs a test diet supplemented with crushed whole 

linseed, which is high in α-linolenic (18:3) acid, and a control diet.  The test diet was 

effective in producing porcine intramuscular fat with a PUFA:SFA value of 0.4, which is 

within recommended levels.  Lower n-6:n-3 fatty acid ratios were seen in intramuscular fat 

from pigs fed the test diet (5) than the control diet (8-9).   
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A crushed linseed diet was also used to increase n-3 PUFA by Kouba and others 

(2003).  The linseed diet produced pigs a favorable n-6:n-3 ratio in intramuscular fat of 

3.11 versus the control ratio of 8.71 after 100 d, but the PUFA:SFA ratio for both diets was 

slightly lower than the recommened 0.4 (0.38 and 0.31, respectively). 

 

Manipulating fatty acid composition and the effects on meat quality 

               Research has shown that it is possible to alter fatty acids profiles of animal fats 

by dietary strategies.  The ability of meat from these animals to maintain oxidative and 

color stability, as well as exhibit desirable sensory attributes is important to determine 

whether or not it can be successfully offered to consumers. 

          

Sensory attributes 

 Vatansever and others (2000) used oil supplements high in n-3 PUFA to 

supplement the diet of Holstein-Friesan and Welsh Black cattle fed for 120 d.  Cattle were 

subsequently harvested and steaks were cut from the longissimus while minced beef 

burgers were manufactured from the infraspinatus, supraspinatus, and triceps brachii.  

Steaks were used for retail display and either pulled for sensory analysis after 5 d or used 

for lipid oxidation testing after 4, 8, or 11 d.  Trained sensory panel scores showed the 

steaks from the fish oil treatment to have higher (P < 0.05) values for toughness, rancidity, 

and fishiness than the linseed oil and linseed oil/fish oil treatments.   

 Fatty acid analysis of Limousin and Belgian Blue cattle by Raes and others (2003) 

compared to imported Argentine and Irish cattle showed the former two breeds had higher 

overall PUFA amounts and n-6:n-3 ratios. This suggests that the Limousine and Blegian 

Blue cattle were grain fed, while the latter two breeds were grass fed.  Trained sensory 

panel and gas chromatograph – mass spectrometry (GC-MS) analyses discovered higher 

(P < 0.05) flavor intensity among the grass fed cattle.   
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 Neurnberg and others (2005) conducted sensory analysis on steaks from cattle fed 

either a grass based diet or a concentrate based diet.  The only sensory differences 

detected between steaks from concentrate fed cattle and steaks from grass fed cattle 

were overall liking (16.2 and 12.2, respectively) and fishy flavor (1.7 and 4.3, respectively).  

Fishy flavor, which scored higher (P < 0.05) in the grass fed cattle, is an indicator of 

rancidity and a known indicator of the presence of 18:3n-3 (Campo and others 2003).  

 Chops and bacon from pigs with increased n-3 PUFA (Sheard and others 2000) 

were not found to have any differences (P < 0.05) from control products as determined by 

a trained sensory panel.  Sausages produced from the pigs with increased n-3 PUFA 

were rated higher (P < 0.05) than the control sausages for overall liking.   

  

Shelf life 

Thiobarbituric acid reactive substances (TBARS) assays, which are a 

measurement of lipid oxidation, conducted by Vatansever and others (2000) on retail 

steak samples from cattle fed oils high in n-3 PUFA showed increased TBARS values 

over time for all overwrapped steaks.  Only a fish oil treatment, high in long chain PUFA, 

reached the threshold TBARS value of 1 mg malonaldehyde per kg of meat.  This is the 

point at which rancidity can be detected by consumers (Younathan and Watts 1959).  For 

burgers used in the same study, the index value of 1 was passed by the fish oil treatment 

at 3 d and by the linseed and linseed/fish oil treatments at 10 d. 

Crossbred steers fed a grass diet, concentrate diet (CON), or a varying mix of the 

two diets yielded steaks that were subsequently aerobically packaged or packaged within 

a modified atmosphere (MAP) and tested for color and lipid oxidation (O’Sullivan and 

others 2003).  Under MAP packaging, the grass fed cattle produced steaks that were 

higher (P < 0.05) for a*(redness) values on days 4 to 12 than all other diets.  

Metmyoglobin, the brown pigment observed in discolored beef, was analyzed for aerobic 
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and MAP packaged steaks.  Higher (P < 0.05) metmyoglobin levels were seen for steaks 

from the CON group of cattle for days 6 to 12 (MAP) and lower metmyoglobin levels in 

steaks from cattle fed the grass diet for days 6 to 12 (aerobic).  Subjective color analysis 

by sensory panel showed preferences for steaks from cattle fed the grass fed diet under 

MAP as it had a redder color.  Lipid oxidation as determined by TBARS analysis showed 

higher (P < 0.05) levels for steaks from cattle fed the concentrate dietary treatment 

compared to the grass fed group and all combinations in between.   

Yang and others (2002) evaluated both pasture fed cattle and grain fed cattle 

supplemented with α-tocopherol.  Control and supplemented pasture fed and control and 

supplemented concentrate fed cattle were estimated to intake 2200, 4700, 300 and 2800 

International Units (IU)/head/day, respectively.  The authors found that supplementation 

raised the tocopherol levels of the grain fed cattle to near those of the pasture fed cattle.  

Steaks from the pasture fed cattle, which were higher in α-linolenic (18:3n-3) and overall 

PUFA, were more susceptible to oxidation and has less red color than the antioxidant 

supplemented grain fed cattle.  This evidence would seem to indicate that α-tocopherol 

content is very important to the oxidative and color stability of meat. 

The pigs fed by Enser and others (2000) to have increased amounts of n-3 PUFA 

were used to produce pork chops, liver, bacon and sausages by Sheard and others 

(2000), which were assessed for shelf life attributes.  Chops from the test diet displayed a 

lower (P < 0.05) TBA value than the control diet (0.051 and 0.061, respectively), while 

liver, bacon and sausages saw differences in sensory attributes from dietary treatment.  

Through 8 d of testing chops, bacon and sausages showed no change in color 

measurements.  Overall, products produced from pigs with increased n-3 PUFA in this 

study did not show any detrimental effects to shelf life attributes.   

Lipid oxidation determination on pigs fed either a crushed linseed diet or control 

diet (Kouba and others 2003) for 100 d showed that muscle from pigs on the linseed diet 
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was more susceptible (P < 0.05) to oxidation than those fed a control diet, although 

overall values were low (< 0.2 mg malonaldehyde/kg meat).   

 

Reformulation of meat products to alter fatty acid composition 

 The development stages of processing offer an opportune time to alter the 

composition of meat products.  Products can be formulated to meet specific nutritional 

goals, such as reducing fat content to limit the calories offered by a product.  Low fat meat 

products, however, are known to present challenges related to processing characteristics 

(Keeton 1994) and sensory attributes.  Also, fat reduction in processed meats may not be 

able to limit dietary caloric intake from fat to recommended levels (WHO 2003).  Instead of 

focusing on a reduction in lipid intake, reformulation can be used to create products with 

specific fatty acid compositions that are potentially beneficial to human health. 

 

Types of oils/fat 

 Vegetable oils are a convenient and readily available source of unsaturated fatty 

acids to incorporate into processed meat products.  They can be high in MUFA (Olive oil, 

high oleic safflower oil, high oleic sunflower oil) or PUFA (soybean oil, sunflower oil, 

safflower oil, corn oil, cottonseed oil, linseed oil) and are cholesterol free.   

 Bloukas and others (1997) used olive oil as a replacement for pork fat in sausages 

because of its high concentration of MUFA and natural antioxidant capacity.  Olive oil has 

also shown to be antithrombotic and preventative of LDL oxidation, as noted by Luruena-

Martinez and others (2004) who used olive oil and hydrocolloids to reduce fat levels in 

frankfurters.  Park and others (1989, 1990) were able to incorporate high oleic sunflower 

oil into frankfurters to increase MUFA content. 

 Incorporation of PUFA is often easily achieved through the use of vegetable oils.  

Paneras and Bloukas (1994) and Paneras and others (1998) were both successful in 
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raising the amount of PUFA through the use of cottonseed and corn oils, while also raising 

the n-6:n-3 ratio, noted earlier as being a risk factor for cancer and cardiovascular 

diseases.  Work (Bishop and others 1993) with bologna also used corn oil, in a pre-

emulsified form to replace pork fat.  A general increase in PUFA might not be the best 

course of action as it can often raise the n-6:n-3 ratio; oils higher in n-3 PUFA could 

provide a more nutritionally beneficial fatty acid profile.  Pelser and others (2007) 

manufactured Dutch style sausages enriched with canola oil or encapsulated flaxseed oil, 

seeing an increase in PUFA:SFA ratio as well as an decrease in n-6:n-3 ratio in both 

treatments compared to the controls.  Another oil high in n-3 fatty acids, linseed oil, was 

used by Ansorena and Astiasaran (2004) in dry-fermented sausages to greatly reduce the 

n-6:n-3 ratio from 14.1 in the control sausages to 1.7 in the linseed oil treatment, while 

maintaining increased PUFA:SFA ratios.   

 Use of fish oils, which are high in long chain n-3 PUFA that are likely to be more 

efficiently utilized by the human body (Calder 2004), as beef or pork fat substitutes has 

been documented by Pelser and others (2007).  The authors observed that batches 

manufactured with fish oil yielded a lower n-6:n-3 ratio than other treatments.  Kolanowski 

and Laufenberg (2006) noted in a review on the subject that although fish oil is often 

associated with fishy aromas and a high susceptibility to lipid oxidation, these obstacles 

can be overcome through oil refinement and deodorizing treatments and employment of 

antioxidants.   

 

Fat replacement technology 

 The high amounts of unsaturated fatty acids in liquid oils, which causes very low 

melting points and high susceptibility in oxidation, lead to challenges when incorporating 

them into processed meat products.  Care must be taken to ensure that the oil is included 

in a droplet form to prevent product and quality losses.  The work of Whiting (1987) shows 
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that gel strength, water exudation, and fat loss are all correlated with degree of 

unsaturation in the fat of a comminuted product. 

 Liquid oils (ground nut oil and maize oil) were used by Dzudie and others (2004) 

for incorporation into beef patties.  Shiota and others (1995) also incorporated liquid oils 

(soybean, palm, high-oleic palm) into beef patties.  Work on fermented sausages (Bloukas 

and others 1997) and salami (Severini and others 2003) also included liquid oils. 

   Oils that are difficult to stabilize can be pre-emulsified using an emulsifier, usually 

a non meat protein, to improve the system’s fat binding ability by setting the oil in a protein 

matrix or immobilizing it (Jimenez-Colmenero, 2007).  The emulsion is made prior to 

product manufacture and added as a fat, and can be easily enhanced by adding an 

antioxidant as protection against lipid oxidation.  Ansorena and Antiasaran (2004), 

Bloukas and Paneras (1993), Paneras and Bloukas (1994), and Pelser and others (2007) 

all cite the method of Hoogenkamp for developing the pre-emulsion.  Hoogenkamp’s 

method involves mixing eight parts hot water with one part sodium caseinate or soy 

protein isolate for 2 minutes, after which this mixture is emulsified with 10 parts oil for 3 

minutes (Jimenez-Colmenero, 2007).  Mourtzinos and Kiosseoglou (2005) describe a 

method used to create a corn oil emulsion with isolated soy protein as the emulsifier.  

Emulsions were prepared by dissolving isolated soy protein in a phosphate buffer at pH 

6.5 followed by dropwise addition of corn oil to the continuous phase. 

 Solid fats containing mostly saturated fatty acids or partially hydrogenated oils can 

be incorporated into processed meats as they have higher melting points and are more 

stable at ambient temperatures.  Babji and others (1998) used partially hydrogenated 

palm oil to replace beef fat in beef patties and Liu and others (1991) used partially 

hydrogenated corn, cottonseed, palm, peanut, and soybean oils in beef patties.  While the 

use of partial hydrogenation in oils affords more consistency and stability, the process 

results in the formation of trans fatty acids and an increased degree of saturation in 
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triacylglycerol (TAG) fatty acids.  This leads to increases in plasma cholesterol 

concentration and LDL cholesterol and decreases in HDL cholesterol (Kris-Etherton and 

Yu 1995; Simopoulos 2002).  Interesterification allows for chemical or enzymatic alteration 

of a TAG structure to increase melting point and stability without increasing saturation or 

adding trans double bonds.  Interesterified oils have been used successfully in frankfurters 

(Vural and others 2004) and salami (Javidipour and Vural 2002).   

 

Effects of reformulating processed meat products with enhanced fatty acid 

composition 

 The various technologies developed have allowed researchers to influence the 

fatty acid profile of many different types of processed meat products.  Attention must be 

paid, however, to the effects that increasing the amount of unsaturated fatty acids has on 

processing characteristics and quality issues. 

 

Influence on processing and quality characteristics  

 When Bloukas and others (1997) replaced up to 20% of pork fat in frankfurters 

with olive oil as a liquid and a pre emulsified fat, they found that the olive oil treatments 

had higher lightness and yellowness values compared to the control.  The liquid olive oil 

treatments displayed lower weight losses than the control; however they had higher TBA 

values and were determined to have an unacceptable appearance.  When incorporated in 

pre-emulsified form, the olive oil treatments had lower TBA values than the control, but 

had greater weight losses.  The authors concluded that 20% of pork fat could be replaced 

by olive oil in a pre-emulsified form, using isolated soy protein as an emulsifier.   

 In a study that replaced pork fat with olive oil and added locust bean/xanthan gum 

(hydrocolloids) in frankfurters (Luruena-Martinez and others 2004) it was shown that 

treatment samples with olive oil were lower for hardness and higher for adhesiveness than 
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the control according to texture profile analysis.  However, the replacement of pork fat with 

olive oil, when combined with hydrocolloids, yielded lower cook losses, better emulsion 

stability and lower jelly and fat separation.  Also, olive oil replacement did not affect overall 

acceptability.   

 Park and others (1989), in using high oleic acid sunflower oil to increase MUFA 

content in beef/pork frankfurters, were able to increase (P < 0.05) monounsaturated fatty 

acid to saturated fatty acid (MUFA:SFA) ratios by 468% over the control.  Despite 

increases in low melting point fats, the frankfurters experienced little weight loss during 

heating and were not significantly different for most sensory attributes.  The authors 

suggested that the total fat content, rather than amount of unsaturated fatty acids, had far 

more influence in sensory and texture scores. 

 Bologna (Bishop and others 1993) containing 20% pre-emulsified corn oil and 10% 

pork fat was produced and analyzed compared to control bologna.  Cooking yield and 

TBA values were not affected by the addition of corn oil, even though it is high in PUFA.  

Higher (P < 0.05) purge loss values were seen from the samples with corn oil (2.23%) 

than control (0.30%).  The authors believe the higher purge values were due to the oil 

being liquid at refrigeration temperatures, which allows it to move more freely within the 

protein matrix.  Hunter L, a  and b scores were determined on control and treatment 

bologna.  Bologna with corn oil displayed higher L values, which indicate lightness, and 

lower a values, which indicate redness.  Firmness for the control bologna was higher than 

that of the corn oil bologna.  Sensory evaluation showed no differences between 

treatment and control for flavor, texture or juiciness. 

 In beef patties containing ground-nut or maize oils (Dzudie and others 2004), the 

greatest oxidative and microbial stability was seen in patties formulated with maize oil and 

low levels of ginger and basilica oils as they displayed the lowest TBA values (0.12 and 

0.11 mg/kg meat, respectively) and microbial loads.  Cooking losses, however, were 
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greater (P < 0.05) for patties manufactured with ground-nut and maize oils (35.85 and 

36.90%, respectively) compared to those manufactured with beef fat (32.65%).  Softness, 

as determined by textural analysis was greater for patties manufactured with vegetable 

oils.   

Beef patties manufactured with different liquid oils and liquid fats by Shiota and 

others (1995) were shown to have decreasing (P < 0.05) texture and aroma scores by a 

trained sensory panel as the amount of unsaturated fats (high oleic palm oil, soybean oil) 

increased.  Use of added beef tallow as a fat source in the beef patties increased aroma 

scores as fat level increased and increased texture, taste and overall acceptability scores 

up to 30% fat level.  In sensory testing of sausages manufactured with various oils at 

differing fat levels, also conducted by Shiota and others (1995), the more solid fats (beef 

tallow, palm oil) yielded decreased (P < 0.05) texture and aroma scores as their levels 

increased.   

 Sausages (Pelser and others 2007) were manufactured with canola oil or flaxseed 

oil, both high in 18:3n-3, and fish oils, high in 20:5n-3 and 22:6n-3.  It was observed that 

treatments with canola oil, due most likely to its high amount of tocopherols, remained 

similar to the control for peroxide values (oxidation) while treatments with flaxseed oil 

tended to increase in peroxide value due to the high amounts of 18:3n-3, which is highly 

susceptible to lipid oxidation.  Fish oil treatments were also high for peroxide values, even 

when incorporated as encapsulated oil, due to the high degree of unsaturation in its main 

fatty acids.   

Dry-fermented sausages containing linseed oil, high in 18:3n-3, substituted for 

25% of pork fat were higher for TBA values than control sausages, but were still under the 

threshold value of 1.0 (Ansorena and Antiasaran 2004).  Inclusion of a butylated 

hydroxytoulene (BHT) and butylated hydroxyanisole (BHA) antioxidant combination in the 
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formulation reduced all indicators of oxidation to similar to (P > 0.05) or lower (P < 0.05) 

than the control.  

 Beef patties formulated with various hydrogenated vegetable oils (corn, 

cottonseed, palm, peanut and soybean) by Liu and others (1991) were tested by a trained 

sensory panel.  Panelists found that treatments manufactured with corn or palm oil were 

not significantly different from the control for overall acceptability.  These treatments were 

also similar (P > 0.05) to the control for cooking losses. 

 The use of interesterified oils and sugarbeet fiber to augment beef fat in 

frankfurters did not lead to any significant changes in appearance, color, flavor, texture or 

sensory scores compared to a control frankfurter (Vural and others 2004).  Levels of oleic 

acid increased due to use of interesterified olive oil at 6 and 10% (47.2 and 45.2%, 

respectively), while use of interesterified cottonseed oil increased levels of linoleic acid.  

All treatments that incorporated interesterified oils and sugarbeet fiber also had greater 

water holding capacity than control frankfurters.  Similar studies conducted with 

interesterified oils and sugarbeet fiber in Turkish-type salami also showed no significant 

differences in color, flavor or texture between treatment and control groups (Javidipour 

and Vural 2002; Javidipour and others 2005).  Use of interesterified olive oil at 10% 

significantly increased the amount of oleic acid to as much as 58.97% of total fatty acid 

composition, while lowering the SFA:UFA ratio to 0.44. 

 

Potential health benefits and challenges 

 The current status of muscle foods as staples in the western diet affords the meat 

industry a great opportunity to take a step into the ever expanding market of functional 

foods, a segment which it has been slow to enter.  Current WHO dietary fat guidelines 

state that dietary fat should account for between 15% and 30% of total energy, while no 

more than 10% of total dietary energy should be from saturated fat, 6-10% should come 
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from PUFA (n-6, 5-8%; n-3, 1-2%), and approximately 10-15% of total dietary energy 

should be from MUFA (WHO 2003).  There exists sufficient evidence that muscle foods, 

whether produced by dietary means or processing techniques can be tailored to fit these 

guidelines, as well as fit recommended ratios of PUFA:SFA (0.4-1.0) and n-6:n-3 fatty 

acids (<4) (Wood and others 2004b).  The industry is currently in a position to use genetic, 

dietary or processing means to tailor products to offer the health benefits associated with 

certain qualitative aspects of dietary fat to consumers in a familiar form.  

 While it has been shown numerous times that it is possible to qualitatively alter 

the fatty acid composition of meat products through dietary and processing means, 

products that claim to offer health benefits should contain large enough amounts of 

beneficial dietary fats to impart any potential health benefits.  Scollan and others (2001), 

for example, were able to greatly increase the amount of long chain n-3 PUFA in the 

phospholipid fraction of beef intramuscular fat by feeding linseed and fish oils.  

Phospholipids, however, only make up 2-8% of intramuscular lipid in beef (Campbell and 

Harrill 1971) and while it is an important factor in beef flavor (Mottram 1998) it is not 

present in great enough amounts to offer a significant contribution to overall dietary fat.  In 

the same study, C20 and C22 fatty acids were not detected in the muscle lipid, while the 

amount of 18:3n-3 present in the intramuscular fat of the linseed-fish oil treatment cattle 

was 12 mg per 100 g of muscle.  Considering the proposed optimal intake of 18:3n-3 is 

2.2 g (Kolanowski and Laufenberg 2006), the cattle in this study have not yielded meat 

that, based on scientific evidence, helps a consumer to achieve the health benefits 

associated with intake of n-3 PUFA. 

 In contrast, a Dutch style fermented sausage, produced by Pelser and others 

(2007) to contain flaxseed oil offers 4.33 g/100 g of product n-3 PUFA while maintaining a 

n-6:n-3 ratio of less than 1 (Jimenez-Colmenero 2007).  In comparison to dietary or 

genetic approaches, processing techniques seem to be more suited to offer large 
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concentrations of nutritionally beneficial fatty acids to allow consumers to reasonably 

expect to see the health benefits associated with them.  It is important to realize that even 

if PUFA:SFA, n-6:n-3, and MUFA:SFA ratios are optimum, products that present a 

disproportionately small or large percentage of total dietary fat energy would offer little 

benefit.  It is also important that clinical trials be conducted to ensure that potentially 

beneficial products, developed based on generally accepted scientific data, are producing 

the desired effects in human subjects. 

 When working with processed meat products, such as ground beef, the issue of 

labeling must be addressed.  According to the FSIS Food Standards and Labeling Policy 

Book (USDA 2005), ground beef has a maximum total fat percentage of 30 and may not 

contain added fat or organ meats.  Any ground beef product containing these cannot be 

labeled as ground beef, chopped beef, or hamburger.  Hamburger patties may contain soy 

products as long as the resulting combination product is not nutritionally inferior to ground 

beef.  Any combination products found to be nutritionally inferior must be labeled as 

Imitation Hamburger, Imitation Ground Beef, Beef Patty or Ground Beef Patty Mix. 

 

Summary of literature 

  The growing amount of evidence that dietary fat intake can play a direct role in 

managing risk factors for certain cancers and cardiovascular diseases opens the doors for 

meat products, a significant source of fat in the western diet, to play a role as functional 

foods.  Researchers have shown that fatty acid composition of meat can be altered to 

include more polyunsaturated fatty acids through dietary means, mainly grass feeding or 

supplementation with lipid supplements.   Previous research also shows that processed 

meat products can be manufactured with replacement of animal fats with vegetable or 

marine oils to include beneficial fatty acids, such as monounsaturated fatty acids or long 

chain n-3 polyunsaturated fatty acids, at nutritionally significant levels.  Careful design and 
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implementation of production strategies using one or both of the previously mentioned 

approaches can be used to offer meat products as functional foods.  Design and 

formulation of functional meat products must also take into consideration the shelf life, 

sensory, texture, appearance issues presented throughout this text to ensure consumer 

acceptance.   

 It is important for the industry to innovate and incorporate new ideas to use in the 

production of functional foods that will maintain shelf life stability and sensory appeal.  

Rhoades and others (2005) formulated several lipid solution blends of beef tallow (BT) 

and high oleic safflower oil that were high in monounsaturated fatty acids (MUFA) and 

presented a color similar to that of beef intramuscular fat.  Incorporation of this blend into 

muscle foods could provide a fat source that combines the look and consistency of animal 

fat with the ability to make alterations to the fatty acid profile by including various oils.  The 

objective of this study is to determine if beef patties formulated with a blend of beef fat and 

vegetable oils will show an increase in unsaturated fatty acid content while maintaining 

desirable sensory attributes and adequate shelf life when compared to control beef 

patties. 
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CHAPTER II 

MATERIALS AND METHODS 

 This section contains detailed descriptions of the procedures, processes, and 

equipment used to carry out this research study. 

 

Lipid manufacture 

Lipid blends were manufactured by weighing out portions of beef tallow (Proliant 

Frozen Beef Tallow, Proliant, Arkeny, IA) and either high oleic safflower oil (Butcher Boy 

High Oleic Safflower Oil, Columbus Foods, Chicago, IL), olive oil (Del Destino 100% Pure 

Olive Oil, Atalanta Corp. Elizabeth, NJ), or corn oil (Hill Country Fare 100% Pure Corn Oil, 

HEB, San Antonio, TX) to achieve a 57% beef tallow/43% edible oil mixture.  A rosemary 

extract (Herbalox Type HT-25, Kalsec Inc., Kalamazoo, MI) was added at 0.3% directly to 

the oils to act as an antioxidant.  Lipid blends were mixed in a bowl chopper (Seydelmann 

Model K-64, Maschinenfabrik Seydelmann KG, Stuttgart, Germany) with a 3 blade setup 

by chopping the beef tallow in the bowl chopper at 2000 rpm for 30 seconds before adding 

the edible oil and chopping at 4000 rpm for another 15 seconds.  The mixture was then 

evacuated from the bowl chopper into a plastic container (Model 16PP, Cambro 

Manufacturing Company, Huntington Beach, CA). Samples were immediately taken for 

lipid oxidation and fat content analyses.  Duplicate samples of each lipid blend, which 

were to be used for objective color, were poured into a glass petri dish, covered with 

saran wrap (Reynolds Foodservice Film, Reynolds Food Packaging, Richmond, VA) and 

stored at 6˚C to solidify.  The lipid blends were frozen at -10°C.  Once the mixture was 

frozen it was removed from the container, vacuum packaged and stored at -10°C.  The 

frozen lipid blend was hand cut into fist sized pieces and chopped for 15 seconds at 2000 

rpm in the bowl chopper to a particle size of approximately 0.64 cm before being weighed 

out, placed in a 15 liter plastic bucket (Model RFS8PP, Cambro Manufacturing Company, 
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Huntington Beach, CA), covered with saran (Reynolds Foodservice Film, Reynolds Food 

Packaging, Richmond, VA), sealed with a plastic lid and stored at -10˚C for 30 minutes 

until addition to the beef. 

 

Raw material preparation  

Lean beef (Inside rounds, IMPS 169A, Denuded) and fat beef (Beef plates, IMPS 

121) was received from a local processor and ground (Biro Model 10-56, Biro Mfg. Co. 

Marblehead, OH) separately through a 0.95 cm plate.  The ground inside rounds and beef 

plates were mixed separately in a paddle mixer (Butcher Boy Model 150, Lasar MFG Inc., 

Los Angeles, CA) for 2 minutes and samples were taken for fat content and lipid oxidation 

analyses prior to patty formulation. 

 

Control patty manufacture 

Control batches (CT 10% and CT 20%) of 13.6 kg were formulated to either 10% 

or 20%.  The ground lean beef was added to the bowl chopper and chopped for 15 

seconds at 2000 rpm before the addition of the ground fat beef.  The mixture of lean and 

fat beef was chopped for another 15 seconds at 2000 rpm to achieve a particle definition 

of approximately 0.31 cm.  The ground meat mixture was then evacuated from the bowl 

chopper into a plastic meat lug and placed into a commercial patty machine (Model 8/65, 

Hollymatic Corporation, Countryside, IL).  Circular-shaped patties weighing approximately 

113 g were produced.  

 

Treatment patty manufacture 

Treatment batches of 13.6 kg were formulated by adding the high oleic safflower 

(SO), olive oil (OO), or corn oil (CO) lipid blends (97% fat) to the lean beef (6% fat) to 

obtain a final fat percentage of either 10% or 20% (Table 1).  Ground lean was introduced 
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into the bowl chopper and chopped for 30 seconds at 2000 rpm before the addition of the 

appropriate chopped lipid blend.  After another 30 seconds of chopping at 2000 rpm, the 

mixture was evacuated from the bowl chopper into a lug and placed into a patty machine 

(Model 8/65, Hollymatic Corporation, Countryside, IL).  Patties weighing approximately 

113g were produced. 

 

Sample packaging 

Treatment and control patties were either boxed in a 43.2 cm wide x 25.4 cm long 

x 10.2 cm deep plastic lined cardboard patty boxes for frozen (-10˚C) storage or 

overwrapped on 10S styrofoam trays (Sealed Air Corporation, Elmwood Park, NJ) with 

PVC film (Resinite RMF 61-HY stretch film, AEP Industries, Inc. Hackensack NJ) for 

refrigerated retail storage.  Frozen patties were used for lipid oxidation, pH and objective 

color analyses on days 0, 7, 14, 28, 56, as well as cook yield, dimensional changes and 

shear force determination on day 28.  Overwrapped refrigerated patties were used for lipid 

oxidation, pH and objective color analyses on days 0, 3, 6 and 9.  16 patties from each 

treatment were vacuum packaged in 17.8 cm X 25.4 cm vacuum pouches and frozen (-

10˚C) to be used for trained sensory panel analysis. 

 

Refrigerated retail and frozen beef patty shelf life study 

Four overwrapped trays each containing two patties laid side by side, from each 

treatment were stored at 6°C in a cooler under fluorescent lights (Philips F40T12-CWT) at 

an intensity of 2150 Lux.  Light intensity was measured using a light probe (Sper Model 

850075 Sper Scientific, LTD Scottsdale, AZ) attached to an environmental quality meter 

(Sper Model 850071 Sper Scientific, LTD Scottsdale, AZ).  The trays were stored for 3, 6, 

or 9 d before being removed for analyses.  Each sample was used for objective color, lipid 

oxidation, and pH. Control and treatment patties were either placed in plastic-lined 
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cardboard boxes in and stored at -20˚C for 7, 14, 28, 42, or 56 d and then analyzed for 

lipid oxidation, objective color, and pH. 

 

Lipid blend objective color 

Lipid blend samples, which were poured into a glass petri dish, covered with saran 

wrap (Reynolds Foodservice Film, Reynolds Food Packaging, Richmond, VA) and stored 

at 6˚C to solidify were used to determine objective color.  Color reading were taken in 

duplicate on each sample at the exposed surface using a Hunter Miniscan XE (Model 

45/O-L, Hunter Associates Laboratory, Inc. Reston VA) with a 1.54 cm aperture, 

calibrated with white and black standards covered with saran wrap (Reynolds Foodservice 

Film, Reynolds Food Packaging, Richmond, VA).  CIE L*, a*, and b* color space values 

were calculated using illuminant A and a 10° observer. 

 

pH and proximate composition 

The pH of raw and cooked beef patties was determined by inserting a pH probe 

attached to a pH meter (IQ Model IQ150 IQ Scientific Instruments, Inc. Reston VA) into 

patties from each treatment.  Duplicate readings were taken on four samples from each 

treatment.  The pH meter was calibrated with buffers 4.01 and 7.0.   

Percent moisture and fat were determined using modified AOAC (2005) air-dry 

oven and soxhlet ether extraction methods, respectively (AOAC 2005).  Powdered raw 

and cooked beef patty samples (~2.5 g) were placed in pre-weighed, previously dried 

paper thimbles (Whatman #2 filter paper) and the thimble plus sample weights were 

recorded.  Samples were dried for 16 h at 100°C, cooled to room temperature in a 

desiccator, and the dried thimble plus sample weights recorded.  Percent moisture was 

calculated as the difference between wet weight and dried sample weight divided by 

sample weight.  Oven dried samples were then placed into a soxhlet apparatus, three 
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randomly selected thimbles per soxhlet, and extracted with petroleum ether for 12 hours.  

The thimbles were dried overnight to remove excess moisture, and percent fat was 

calculated as the difference between dried sample weight and extracted sample weight 

divided by sample weight.  Percent protein was determined using a Leco FP-528 (Leco 

Corporation, St. Joseph, MI) nitrogen analyzer which vaporized powdered samples of 0.15 

gram to release total nitrogen.  Three samples per treatment were analyzed.  Percent 

protein was calculated as 6.25 times the percent nitrogen (AOAC 2005). 

 

Lipid oxidation 

Raw (refrigerated – 0 ,3, 6 and 9 d at 6oC and frozen- 0, 7, 14, 28, 42 and 56 d at -

20oC) patties and cooked beef patties (day 28 of frozen storage) were analyzed for lipid 

oxidation as determined by the thiobarbituric acid test of Tarladgis and others (1960) as 

modified by Rhee (1978).  Two raw beef samples (60 g) per treatment taken from raw 

beef patties were blended with 90 ml of distilled water and 5 ml of antioxidant solution with 

0.5% propyl gallate and 0.5% ethylenediamine tetraacetic acid.  Thirty g blended samples 

were collected and combined with an additional 77.5 ml of distilled water and 2.5 ml of 4 N 

HCl in a Kjeldahl flask. The acidified sample was distilled and 50 ml of distillate collected.  

Following distillation, 5 ml of distillate was added to 5 ml of 0.02 M TBA reagent then 

heated in boiling water for 35 min to fully develop the color reaction.  Absorbance was 

measured at 530 nm using an UV-visible spectrophotometer (Model Cary 300 Bio, Varian 

Instruments, Sugarland, TX).  Results were reported as mg of malonaldehyde per kg of 

meat. 

 

Beef patty objective color determinations 

 Patties for the refrigerated retail shelf-life study were overwrapped and stored at 

6°C under fluorescent lighting for 0, 3, 6, or 9 d.  Color measurements were taken on the 
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surface of four patties from each treatment.  The patty was divided into four quadrants and 

color measurements were taken from each quadrant.  Color measurements were taken 

with a Hunter Miniscan XE (Model 45/O-L, Hunter Associates Laboratory, Inc. Reston VA) 

using a 1.54 cm aperture, calibrated with white and black standards covered with RMF-

61HY film (Resinite RMF 61-HY stretch film, AEP Industries, Inc. Hackensack NJ).  CIE 

L*, a*, and b* color space values were calculated using illuminant A and a 10° observer. 

Frozen raw patties were allowed to thaw for 12 hours at 6°C.  Color measurements 

were taken on the surface of two patties from each treatment at four places on each patty.  

Color measurements were taken with a Hunter Miniscan XE (Model 45/O-L, Hunter 

Associates Laboratory, Inc. Reston VA) using a 1.54 cm aperture, calibrated with white 

and black standards.  CIE L*, a*, and b* color space values were calculated using 

illuminant A and a 10° observer. 

 Cooked beef patties were allowed to cool to 22°C and cut in half.  Each patty was 

arranged so that the exposed internal surfaces of the patty were side by side.  Color 

measurements were taken in 3 places on the internal surface of the 2 combined portions 

using a Hunter Miniscan XE (Model 45/O-L, Hunter Associates Laboratory, Inc. Reston 

VA) with a 1.54 cm aperture, calibrated with white and black standards.  CIE L*, a*, and b* 

color space values were calculated using illuminant C and a 10° observer. 

 

Fatty acid composition 

 Lipids were extracted from lipid blend, raw patty, and cooked patty samples from 

each treatment using the method of Folch and others (1957) and methylated by the 

method of Slover and Lanza (1979).  Methylated lipids were analyzed with a Varian gas 

chromatograph (Model CP-3800 fixed with a CP-8200 autosampler, Varian Inc., Walnut 

Creek, CA), equipped with a fused silica capillary column CP-Sil88 [100 m · 0.25 mm 

(i.d.)] (Chrompack Inc., Middleburg, The Netherlands), with helium as the carrier gas (flow 
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rate = 1.2 ml/min) (Smith and others 2002). After 32 min at 180˚C, oven temperature was 

increased at 20˚C/min to 225˚C and held for 13.75 min. Total run time was 48 min. 

Injector and detector temperatures were at 270 and 300˚C, respectively. Individual 

methylated lipids were quantified as g fatty acid/100 g of total FAME identified. Identities 

of FAME were established by comparison to authentic standards (GLC 96; Nu-Chek Prep, 

Inc, Elysian, MN, USA). 

 

Allo-Kramer shear force determination and dimensional changes 

Ten beef patties from each treatment were measured for diameter and thickness 

at four places, equally spaced from one another, using a set of calipers.  The patties were 

then cooked to 71˚C according to AMSA (1995) and allowed to cool to approximately 

22°C.  Cook yields were determined using the formula (Final cook weight – Initial cook 

weight) * 100.  The patties were measured for diameter and thickness in four equally 

spaced places after cooking, using a set of calipers.  Dimensional changes were reported 

as pre-cook measurements minus post-cook measurements.  A 60 x 50 mm rectangular 

sample was excised from the center of each patty.  The samples were weighed and shear 

values were recorded using an Instron Universal Testing Machine (Instron Corp., Canton, 

Mass., U.S.A.) equipped with a 10-blade Allo–Kramer shear compression cell using a 

500-kg load cell with a load range of 200 kg and a crosshead speed of 200 mm/min.  

Shear values were reported as Newtons/gram (N/g). 

 

Trained sensory panel analysis 

A trained descriptive attribute sensory panel was used to evaluate cooked beef 

patties for flavor, mouth feel, basic tastes, aftertastes and texture.  Five panelists were 

selected and trained according to AMSA (1995) and Meilgaard and others (2007). 

Training was conducted prior to testing to familiarize the panelist with the attributes 
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cooked beef patties.  Cooked beef samples were evaluated for texture (juiciness, 

sandy/gritty), flavor (cooked beef lean, cooked beef fat, oil, carboard, painty, fishy, liver, 

browned, salt, sour, bitter, metallic, astringent), after mouth feel (oily, fat coating), and 

aftertastes(sour, bitter, browned, metallic, astringent, oily, fatty).  All samples were scored 

using the 15 point Spectrum intensity scale (Meilgaard and others 2007) where 0 = 

absence of an attribute and 15 = extremely  intense.  Panelists evaluated 24 samples (8 

samples per day for 3 days).   Vacuum packaged beef patties were allowed to thaw for 12 

hours at 6°C before being cooked to 71°C on Hamilton Beach Healthsmart grills according 

to AMSA (1995), cut into 8 wedges and served to the panelists in warmed custard dishes.  

Each panelist received two wedges per sample. 

 

Statistical analysis 

Proximate composition, shear force, cook yield, dimensional changes, objective 

color, lipid oxidation and fatty acid analyses were statistically analyzed as a completely 

randomized block design using the Mixed Model procedure of the Statistical Analysis 

System (Version 9.1, SAS Institute, Inc., Cary, NC).  The model for all dependant 

variables included the fixed effect of lipid blend treatment and the block effect of 

replication.  Repeated measures data (objective color and lipid oxidation) also included 

the fixed effect of storage day and the interaction between lipid blend treatment and 

storage day.  Storage day was defined as a repeated effect.  Differences between 

treatment means were separated with Tukey’s studentized range test for significant main 

effects at P < 0.05.  Trained sensory panel data were statistically analyzed using the 

Mixed Model of the Statistical Analysis System (Version 9.1, SAS Institute, Inc., Cary, 

NC).  The model for all dependant variables included the block effect of replication and the 

fixed effect of lipid blend treatment.  All variables were analyzed for a significant 

interaction between lipid blend treatment and panelist before being pooled across all 
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panelists.  Differences among treatment means were identified using Tukey’s studentized 

range test for significant main effects at P < 0.05. 
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CHAPTER III  

RESULTS AND DISCUSSION 

 
Introduction 

Increased consumer awareness of the importance of dietary fat to human health 

has led to an interest in finding ways to manipulate the fatty acid composition of meat 

products, which are seen as a significant source of fat in the diet.  The status of red meat 

as a nutritious staple of western diets, rich in high quality protein as well as micronutrients, 

has been overshadowed by concerns about the amount of saturated fatty acids (SFA) in 

red meat products, as well as the lack of essential polyunsaturated fatty acids (PUFA), 

especially long chain n-3 PUFA.  The connection between these factors and incidences of 

certain cancers and cardiovascular diseases is well established (Leaf and others 2003; 

Calder 2004).  As a result, work has been conducted on novel approaches to altering the 

fatty acid profile of red meat products to more closely resemble recommended nutrient 

intake goals.   

Previous work on preslaughter dietary approaches to alter the fatty acid profile of 

red meats includes dietary supplementation of various oils to increase deposition of 

unsaturated fatty acids in the intramuscular and subcutaneous fat of cattle and pigs 

(Nuernberg and others 2005; Vatansever and others 2000).  While research has shown 

that increasing the amount of unsaturated fats in the diet does alter the fatty acid profile of 

the animals, it also increases the rate of oxidation of raw materials from these animals 

(Kouba and others 2003; Vatansever and others 2000). 

Another, perhaps more efficient and versatile approach, involves incorporation of 

vegetable and marine oils into processed meat products to replace animal fat.  This 

approach has been used to make frankfurters (Vural and others 2004), sausages (Pelser 

and others 2007; Bloukas and others 1997) and beef patties (Shiota and others 1995).  
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While reducing saturated fatty acid content has advantages from a nutritional standpoint, it 

can present problems such as reduced shelf life and altered appearance or texture 

(Jimenez-Colmenero 2007). 

Rhoades and others (2005) formulated several lipid solution blends of beef tallow 

(BT) and high oleic safflower oil that were high in monounsaturated fatty acids (MUFA) 

and possessed a color similar to that of beef subcutaneous fat.  A mixture such as this 

could be beneficial in an effort to produce a product that is higher in unsaturated fatty 

acids but retains a similar appearance and texture to that of a product manufactured with 

beef fat. 

We hypothesized that beef patties formulated with a blend of beef fat and 

vegetable oils would show an increase in unsaturated fatty acid content while maintaining 

desirable sensory attributes and adequate shelf life when compared to control beef 

patties.  

 

Materials and methods 

Lipid manufacture 

Lipid blends were manufactured by weighing out portions of beef tallow (BT; 

Proliant Frozen Beef Tallow, Proliant, Arkeny, IA) and either high oleic safflower oil (SO; 

Butcher Boy High Oleic Safflower Oil, Columbus Foods, Chicago, IL), olive oil (OO; Del 

Destino 100% Pure Olive Oil, Atalanta Corp. Elizabeth, NJ), or corn oil (CO; Hill Country 

Fare 100% Pure Corn Oil, HEB, San Antonio, TX) to achieve a 57% beef tallow/43% 

edible oil mixture (Table 1).  A rosemary extract (Herbalox Type HT-25, Kalsec Inc., 

Kalamazoo, MI) was added at 0.3% directly to the oils to act as an antioxidant.  Lipid 

blends were mixed in a bowl chopper (Seydelmann Model K-64, Maschinenfabrik 

Seydelmann KG, Stuttgart, Germany) with a 3 blade setup by chopping the beef tallow in 

the bowl chopper at 2000 rpm for 30 seconds before adding the edible oil and chopping at 
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2000 rpm for another 15 seconds.  The mixture was then evacuated from the bowl 

chopper into a plastic container and samples were immediately taken for lipid oxidation 

and fat content analyses.  Duplicate samples of each lipid blend, which were to be used 

for objective color, were poured into a glass petri dish, covered with saran wrap (Reynolds 

Foodservice Film, Reynolds Food Packaging, Richmond, VA) and stored at 6˚C to solidify.  

The lipid blends were frozen at -10°C.  Once the mixture was frozen it was removed from 

the container, vacuum packaged and stored at -10°C.  The frozen lipid blend was hand 

cut into fist sized pieces and chopped for 15 seconds at 2000 rpm in the bowl chopper to 

a particle size of approximately 0.64 cm before being weighed out, placed in a 15 liter 

plastic bucket (Model RFS8PP, Cambro Manufacturing Company, Huntington Beach, CA), 

covered with saran (Reynolds Foodservice Film, Reynolds Food Packaging, Richmond, 

VA), sealed with a plastic lid and stored at -10˚C for 30 minutes until addition to the beef 

according to formulations (Table 1). 

 

Raw material preparation  

Lean beef (Inside rounds, IMPS 169A, Denuded) and fat beef (Beef plates, IMPS 

121) was received from a local processor and ground (Biro Model 10-56, Biro Mfg. Co. 

Marblehead, OH) separately through a 0.95 cm plate.  The ground inside rounds and beef 

plates were mixed separately in a paddle mixer (Butcher Boy Model 150, Lasar MFG Inc., 

Los Angeles, CA) for 2 minutes and samples were taken for fat content and lipid oxidation 

analyses prior to patty formulation. 

 

Control patty manufacture 

Batches (13.6 kg) were formulated at either 10 or 20% fat for control (CT) patty 

manufacture (Table 1).  The ground lean beef was added to the bowl chopper and 

chopped for 15 seconds at 2000 rpm before the addition of the ground fat beef.  The  
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Table 1. Formulation weights (kg) for manufacture of beef patties containing a blend of beef tallow (57%) and 
mono- or poly unsaturated oils (43%) 

Beef Patties 
CT 10 
10%

a 
SO 10 
10%

b 
OO 10 
10%

b 
CO 10 
10%

b 
CT 20 
20%

a 
SO 20 
20%

b 
OO 20 
20%

b 
CO 20 
20%

b 

Meat Block         
Beef inside rounds-
94/6

c 
12.07 12.97 12.97 12.97 8.30 11.48 11.48 11.48 

Beef Plates-58/42
c 

1.54    5.31    

Lipid Blends         

Beef tallow  0.36 0.36 0.36  1.22 1.22 1.22 

High Oleic Safflower Oil 
- 95.51%

d 
 0.27    0.92   

Olive Oil - 95.69%
d 

  0.27    0.92  

Corn Oil - 96.01%
d 

   0.27    0.92 

Lipid Blend Total  0.64 0.64 0.64  2.13 2.13 2.13 

Total Weight (kg) 13.61 13.61 13.61 13.61 13.61 13.61 13.61 13.61 
a
Fat levels represent a mixture of beef fat present in the beef lean trim (6%) and the beef plates (42%) formulated 

to achieve the desired 10% and 20% fat levels 
b
Fat levels represent a mixture of beef fat present in the raw materials (6%) and manufactured lipid blends added 

at 4% and 14%, respectively to achieve the desired 10% and 20% fat levels 
c
Lean/Fat ratio of selected materials 

d
Total fat percentage by weight of lipid blends 
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mixture of lean and fat beef was chopped for another 15 seconds at 2000 rpm to achieve 

a particle size of approximately 0.31 cm.  The ground meat mixture was then evacuated 

from the bowl chopper into a plastic meat lug and placed into a commercial patty 

machine (Model 8/65, Hollymatic Corporation, Countryside, IL).  Circular-shaped patties 

weighing approximately 113 g were produced. 

 

Treatment patty manufacture 

Batches (13.6 kg) were formulated by adding either high oleic safflower (SO), 

olive oil (OO), or corn oil (CO) lipid blends (97% fat) to the lean beef (6% fat) to obtain a 

final raw patty fat percentage of either 10 or 20% (Table 1).  Ground lean (-1.1˚C) was 

introduced into the bowl chopper and chopped for 30 seconds at 2000 rpm before the 

addition of the appropriate type and amount of chopped lipid blend.  Final patty particle 

size (0.31 cm) was attained after another 30 seconds of chopping at 2000 rpm.  The 

mixture was evacuated from the bowl chopper into a lug and placed into a patty machine 

(Model 8/65, Hollymatic Corporation, Countryside, IL).  Patties weighing approximately 

113g were produced. 

 

Sample packaging 

Treatment and control patties were either boxed in a 43.2 cm wide x 25.4 cm 

long x 10.2 cm deep plastic lined cardboard patty boxes for frozen (-10˚C) storage or 

overwrapped on 10S styrofoam trays (Sealed Air Corporation, Elmwood Park, NJ) with 

PVC film (Resinite RMF 61-HY stretch film, AEP Industries, Inc. Hackensack NJ) for 

refrigerated retail storage.  Frozen patties were used for lipid oxidation, pH and objective 

color analyses on days 0, 7, 14, 28, 56, as well as cook yield, dimensional changes and 
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shear force determination on day 28.  Overwrapped refrigerated patties were used for 

lipid oxidation, pH and objective color analyses on days 0, 3, 6 and 9.  16 patties from 

each treatment were vacuum packaged in 17.8 cm X 25.4 cm vacuum pouches and 

frozen (-10˚C) to be used for trained sensory panel analysis. 

 

Refrigerated retail and frozen beef patty shelf life study 

Four patties (two stacks of two patties each arranged side by side) from each 

control and treatment patty formulation were placed on 10S Styrofoam trays 

overwrapped with oxygen permeable polyvinyl chloride (PVC) film and stored at 6˚C 

under fluorescent lights (Philips F40T12-CWT) at an intensity of 2150 Lux.  The trays 

were stored for 3, 6, or 9 d before being removed for analyses.  Each sample (2 patties) 

was used for objective color, lipid oxidation, and pH. Control and treatment patties were 

either placed in plastic-lined cardboard boxes in and stored at -20˚C for 7, 14, 28, 42, or 

56 d and then analyzed for lipid oxidation, objective color, and pH. 

 

Lipid blend objective color 

Lipid blend samples, which were poured into a glass petri dish, covered with 

saran wrap (Reynolds Foodservice Film, Reynolds Food Packaging, Richmond, VA) and 

stored at 6˚C to solidify were used to determine objective color.  Color reading were 

taken in duplicate on each sample at the exposed surface using a Hunter Miniscan XE 

(Model 45/O-L, Hunter Associates Laboratory, Inc. Reston VA) with a 1.54 cm aperture, 

calibrated with white and black standards covered with saran wrap (Reynolds 

Foodservice Film, Reynolds Food Packaging, Richmond, VA).  CIE L*, a*, and b* color 

space values were calculated using illuminant A and a 10° observer. 
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pH and proximate composition 

The pH of raw and cooked beef patties was determined by inserting a pH probe 

attached to a pH meter (IQ Model IQ150 IQ Scientific Instruments, Inc. Reston VA) into 

patties from each treatment.  Duplicate readings were taken on four samples from each 

treatment.  The pH meter was calibrated with buffers 4.01 and 7.0.   

Percent moisture and fat were determined using modified AOAC (2005) air-dry 

oven and soxhlet ether extraction methods, respectively (AOAC 2005).  Percent protein 

was determined using a Leco FP-528 (Leco Corporation, St. Joseph, MI) nitrogen 

analyzer which vaporized powdered samples of 0.15 gram to release total nitrogen.  

Percent protein was calculated as 6.25 times the percent nitrogen. 

 

Lipid oxidation 

Lipid oxidation was determined by the thiobarbituric acid test of Tarladgis and 

others (1960) as modified by Rhee (1978).  Absorbance was measured at 530 nm using 

an UV-visible spectrophotometer (Model Cary 300 Bio, Varian Instruments, Sugarland, 

TX).  Results were reported as mg of malonaldehyde per kilogram of meat. 

 

Beef patty objective color determinations 

 Color measurements were taken on the surface of raw patties from each 

treatment using a Hunter Miniscan XE (Model 45/O-L, Hunter Associates Laboratory, 

Inc. Reston VA) with a 1.54 cm aperture, calibrated with white and black standards 

covered by a piece of RMF-61HY overwrap film (Resinite RMF 61-HY stretch film, AEP 

Industries, Inc. Hackensack NJ).  CIE L*, a*, and b* color space values were calculated 

using illuminant A and a 10° observer. 
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 Cooked beef patties were allowed to cool to 22°C and cut in half.  Each patty was 

folded in half so that the exposed internal surfaces of the patty were side by side.  Color 

measurements were taken in 3 places on the internal surface of the 2 combined portions 

using a Hunter Miniscan XE (Model 45/O-L, Hunter Associates Laboratory, Inc. Reston 

VA) with a 1.54 cm aperture, calibrated with white and black standards.  CIE L*, a*, and 

b* color space values were calculated using illuminant C and a 10° observer. 

 

Fatty acid composition 

 Lipids were extracted using the method of Folch and others (1957) and 

methylated by the method of Slover and Lanza (1979).  Methylated lipids were analyzed 

with a Varian gas chromatograph (model CP-3800 fixed with a CP-8200 autosampler, 

Varian Inc., Walnut Creek, CA), equipped with a fused silica capillary column CP-Sil88 

[100 m · 0.25 mm (i.d.)] (Chrompack Inc., Middleburg, The Netherlands), with helium as 

the carrier gas (flow rate = 1.2 ml/min) (Smith et al., 2002). After 32 min at 180˚C, oven 

temperature was increased at 20˚C/min to 225˚C and held for 13.75 min. Total run time 

was 48 min. Injector and detector temperatures were at 270 and 300˚C, respectively. 

Individual methylated lipids were quantified as g fatty acid/100 g of total FAME identified. 

Identities of FAME were established by comparison to authentic standards (GLC 96; Nu-

Chek Prep, Inc, Elysian, MN, USA). 

 

Allo-Kramer shear force determination and dimensional changes 

Ten beef patties from each treatment were measured for diameter and thickness 

at four places, equally spaced from one another, using a set of calipers.  The patties 

were then cooked to 71˚C according to AMSA (1995) and allowed to cool to 
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approximately 22°C.  The patties were measured for diameter and thickness in four 

equally spaced places after cooking, using a set of calipers.  Dimensional changes were 

reported as pre-cook measurements minus post-cook measurements.  A 60 x 50 mm 

rectangular sample was excised from the center of each patty.  The samples were 

weighed and shear values were recorded using an Instron Universal Testing Machine 

(Instron Corp., Canton, Mass., U.S.A.) equipped with a 10-blade Allo–Kramer shear 

compression cell using a 500-kg load cell with a load range of 200 kg and a crosshead 

speed of 200 mm/min.  Shear values were reported as Newtons/gram (N/g). 

 

Trained sensory panel analysis 

A trained descriptive attribute sensory panel was used to evaluate cooked beef 

patties for flavor, mouth feel, basic tastes, aftertastes and texture.  Five panelists were 

selected and trained according to AMSA (1995) and Meilgaard and others (2007). 

Training was conducted prior to testing to familiarize the panelist with the attributes 

cooked beef patties.  Cooked control and treatment patties were evaluated for texture 

(juiciness, sandy/gritty), flavor (cooked beef lean, cooked beef fat, oil, carboard, painty, 

fishy, liver, browned, salt, sour, bitter, metallic, astringent), after mouth feel (oily, fat 

coating), and aftertastes(sour, bitter, browned, metallic, astringent, oily, fatty).  All 

samples were scored using the 15 point Spectrum intensity scale (Meilgaard and others 

2007) where 0 = absence of an attribute and 15 = extremely  intense.  Panelists 

evaluated 24 samples (8 samples per day for 3 days).   Beef patties were cooked to 

71°C on Hamilton Beach Healthsmart grills according to AMSA (1995), cut into 8 

wedges and served to the panelists in warmed custard dishes.  Each panelist received 

two wedges per sample. 
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Statistical analysis 

Proximate composition, shear force, cook yield, dimensional changes, objective 

color, lipid oxidation and fatty acid analyses were statistically analyzed as a completely 

randomized block design using the Mixed Model procedure of the Statistical Analysis 

System (Version 9.1, SAS Institute, Inc., Cary, NC).  The model for all dependant 

variables included the fixed effect of lipid blend treatment and the block effect of 

replication.  Repeated measures data (objective color and lipid oxidation) also included 

the fixed effect of storage day and the interaction between lipid blend treatment and 

storage day.  Storage day was defined as a repeated effect.  Differences between 

treatment means were separated with Tukey’s studentized range test for significant main 

effects at P < 0.05.  Trained sensory panel data was statistically analyzed using the 

Mixed Model of the Statistical Analysis System (Version 9.1, SAS Institute, Inc., Cary, 

NC).  The model for all dependant variables included the block effect of replication and 

the fixed effect of lipid blend treatment.  All variables were analyzed for a significant 

interaction between lipid blend treatment and panelist before being pooled across all 

panelists.  Differences among treatment means were identified using Tukey’s 

studentized range test for significant main effects at P < 0.05. 

 

Results and discussion 

Objective color of lipid blends 

 Means for objective color of lipid blends (BT/oil) are presented in Table 2.  L* 

values ranged from 77.02 to 81.52 with BT/OO being the highest, BT/CO being 

intermediate (P and BT/HOSO being the lowest in whiteness values. Redness was not 

affected by the type of lipid blend (P > 0.05).  BT/OO was highest (P ≤ 0.05) for 
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yellowness, while BT/HOSO blends were intermediate and BT/CO blends were the 

lowest.  

 

Proximate composition 

 Main effect least squares means for fat, moisture and protein percentages are 

presented in Table 3.  Data showed that raw patties closely approximate their 10% and 

20% formulations.  Both the 10 and 20% controls were lower in fat percentage than the 

other treatments.  As expected, all 20% fat treatments were higher in fat percentage and 

lower in protein and moisture percentage than the 10% fat treatments.   

For cooked patties CT 20 was higher for cooked fat percentage than the other 

20% treatment patties.  This is most likely due to the higher melting point of the 

saturated fatty acids present in the control patties.  All 20% fat cooked patties were 

higher in fat percentage than the 10% fat patties.  For all treatments, the 10% cooked 

patties were higher in protein and moisture percentage than the 20% patties.  

 

Comparison of TBA values during refrigerated storage 

 The two way interaction of lipid blend treatment x storage day was significant for 

TBA values of the control and treatment patties (Table 4).  TBA values for all treatments 

increased (P < 0.05) with storage time.  TBA values on d 0 were not affected by lipid 

blend treatment.  At d 3 CT 20 had a higher TBA value than all other treatments, most 

likely due to the absence of the rosemary extract present in the treatment patties and its 

results suggest that the patties formulated with lipid blend treatments did not oxidize any 

faster than the controls.  Dzudie and others (2004) saw similar results for beef patties
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Table 2. Least squares means for L*, a*, and b* values of lipid blends formulated with beef tallow 
(57%) and mono- or polyunsaturated oils (43%) 

Color
d
 BT/High Oleic Safflower BT/Olive Oil BT/Corn Oil 

L* 77.02
 c
 ± 0.40

e 
81.52

 a
 ± 0.46

 
79.57

 b
 ± 0.40

 

a* 1.91 ± 0.03 1.81 ± 0.03 1.82 ± 0.03 
b* 18.98

 b
 ± 0.20

 
19.91

 a
 ± 0.24

 
18.19

 c
 ± 0.20

 

a-c
Means in a row with different superscripts are significantly different (P < 0.05) 

d
L* = lightness/whiteness; a* = redness; b* = yellowness 

e
Standard deviation 
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Table 3. Main effect means (fat level and lipid blend treatment) for proximate composition of raw and cooked beef patties formulated with a 
blend of beef tallow (57%) and mono- or polyunsaturated oils (43%) 

 CT SO OO CO  

 Fat level (%)
e 

 

 10
 

20
 

10
 

20
 

10
 

20
 

10
 

20
 

SEM
f
 

Raw          

Fat % 10.41
d 

19.29
b 

12.04
c 

21.01
a 

11.35
cd 

20.66
ab 

10.09
d 

20.89
a 

0.33 

Protein % 21.30
a 

19.81
bc 

20.66
ab 

18.98
cd 

21.00
a 

18.68
d 

21.13
a 

18.89
cd 

0.23 

Moisture % 68.84
ab 

62.41
c 

67.77
b 

61.00
d 

68.74
ab 

61.61
cd 

69.36
a 

61.24
d 

0.24 

Cooked          

Fat % 15.50
d 

26.47
a 

15.08
d 

21.59
b 

14.93
d 

18.79
c 

14.30
d 

19.59
bc 

0.94 

Protein % 29.11
a 

26.16
bc 

27.61
ab 

24.39
d 

28.13
a 

25.53
cd 

28.38
a 

24.59
cd 

0.35 

Moisture % 56.89
ab 

48.89
e 

56.72
abc 

53.80
d 

58.55
a 

55.63
bcd 

57.31
ab 

54.78
cd 

0.47 

a-d
Means in a column with different superscripts are significantly different (P < 0.05). 

e
Fat levels represent a mixture of beef fat present in the raw materials (6%) and manufactured lipid blends added at 4% and 14%, respectively to 

achieve the desired 10% and 20% total raw product fat levels. Control contained no lipid blend treatment. 
 f
SEM = Standard error of the mean. 
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Table 4.  Two-way interaction (lipid blend treatment x storage day) least squares means for TBA values of raw beef 
patties formulated with a blend of beef tallow (57%) and mono- or polyunsaturated oils (43%) at 0, 3, 6, 9 days of 
storage

g 

  Day  

Treatment Fat Level 
(%)

e
 

0 3 6 9 SEM
f 

 
 

CT  

 
10 

 
0.23

w 
 

1.55
x 

 
2.39

abcx 
 

4.38
bcy 

 
0.23 

 
20 

 
0.35

w 
 

2.05
x 

 
2.95

abcx 
 

4.42
bcy 

 
0.23 

 
 

SO 

 
10

 
 

0.34
w 

 
1.35

w 
 

1.90
cw 

 
3.87

cx 
 

0.23 
 

20
 

 
0.39

w 
 

1.11
wx 

 
2.11

cx 
 

3.97
cy 

 
0.23 

 
OO 

 
10

 
 

0.44
w 

 
1.48

w 
 

2.90
abcx 

 
6.01

ay 
 

0.23 
 

20
 

 
0.45

w 
 

1.43
w 

 
3.76

abx 
 

6.77
ay

 
 

0.23 

 
CO 

 
10

 
 

0.46
w 

 
1.44

w 
 

2.64
bcx 

 
5.66

aby 
 

0.23 
 

20
 

 
0.41

w 
 

0.94
wx 

 
2.14

cx 
 

5.54
aby 

 
0.23 

a-d
Means with the same letter within a column are not significantly different (P < 0.05) 

w-z
Means with the same letter within a row are not significantly different (P < 0.05) 

e
Fat levels represent a mixture of beef fat present in the raw materials (6%) and manufactured lipid blends added at 4% 

and 14%, respectively to achieve the desired 10% and 20% fat levels. 
 f
SEM = Standard error of the mean. 

g
Refrigerated (6˚C) patties were stored in PVC overwrapped trays under fluorescent lighting. 
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formulated with 20% maize oil instead of beef fat, which did not exhibit higher TBA 

values than those with animal fats.  The authors concluded that tocopherol, a free radical 

scavenger native to beef tissue, acted as a natural antioxidant.  The inclusion of a 

rosemary antioxidant along with the presence of tocopherol is likely why TBA values of 

lipid blend treatment patties were not observed to be higher than the control patties in 

this study.   

 

Comparison of TBA values during frozen storage 

 The two way interaction between lipid blend treatment and storage day was 

significant at P ≤ 0.05.  Least square means of TBA values for the two way interaction of 

lipid blend treatment x storage day are presented in Table 5.  TBA values at d 0 were not 

affected by lipid blend treatment.  Control patties and those containing high oleic 

safflower were not affected by storage day.  Patties formulated with olive oil and corn oil 

increased in TBA values then decreased as storage time increased.  A similar effect was 

seen by Nassu and others (2003) while using a natural rosemary antioxidant, similar to 

the one used in this study, to determine the oxidative stability of goat meat sausage.  

The authors attributed the reduction in TBA values to reactions of malonaldehyde, the 

compound used to measure TBA values, with proteins.  TBA values ranged from 0.16 to 

0.73 for all patty treatments across all storage days.  None of the treatments reached the 

threshold TBA value of 1 over the 56 d of frozen storage.  The oxidative stability over 

time of with patties high in unsaturated oils can be attributed to the antioxidant effect of 

the rosemary extract (St. Angelo and others 1990; Rojas and Brewer 2007), as well as 

its synergistic action with the tocopherols present in the treatment oils and beef raw 

materials (Wada and Fang 1992; Hras and others 2000). 
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Table 5. Two-way interaction (lipid blend treatment x storage day) least squares means for TBA values of raw beef patties 
formulated with a blend of beef tallow (57%) and mono- or polyunsaturated oils (43%) at days 0, 7, 14, 28, 42, and 56 of storage

g
 

  Day  

Treatment Fat level 
(%)

e 
0 7 14 28 42 56 SEM

f 

CT 10 0.23 0.34
b 

0.38 0.48
ab 

0.41
ab 

0.56
ab 

0.06 
20 0.35 0.68

a 
0.44 0.64

a 
0.60

a 
0.73

a 
0.06 

SO 10 0.34 0.54
ab 

0.26 0.33
ab 

0.34
ab 

0.45
ab 

0.06 
20 0.39 0.50

ab 
0.18 0.29

ab 
0.27

ab 
0.41

ab 
0.06 

OO 10 0.44
wx 

0.71
a,w 

0.31
x 

0.37
ab,wx 

0.32
ab,x 

0.41
ab,wx 

0.06 
20 0.45

wx 
0.68

ab,w 
0.26

x 
0.34

ab,wx 
0.28

ab,x 
0.42

ab,wx 
0.06 

CO 10 0.46
wx 

0.62
ab,w 

0.23
x 

0.35
ab,wx 

0.21
b,x 

0.30
b,wx 

0.06 

20 0.41
wx 

0.52
ab,w 

0.20
wx 

0.19
b,x 

0.16
b,x 

0.25
b,wx 

0.06 
a-b

Means with the same letter within a column are not significantly different (P < 0.05) 
w-x

Means with the same letter within a row are not significantly different (P < 0.05) 
e
Fat levels represent a mixture of beef fat present in the raw materials (6%) and manufactured lipid blends added at 4% and 

14%, respectively to achieve the desired 10% and 20% fat levels. 
 f
SEM = Standard error of the mean. 

g
Frozen (-20˚C) patties stored in plastic-lined cardboard boxes 
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Refrigerated raw patty color determination 

 CIE L* a* and b* values for refrigerated treatment and control patties are 

presented in Table 6.  L* (Lightness) values were not affected by lipid blend treatment (P 

> 0.05), but all treatments excluding SO 20 and CO 10, became darker (P < 0.05) 

between d 0 and d 6.  SO 10 and 20 displayed the most redness (a*) with values of 

30.83 and 30.15, respectively, on day 0.  All treatments decreased (P < 0.05) in redness 

by d 3 and they decreased (P < 0.05) again by d 6.  SO 10 was higher in yellowness (b*) 

than all other treatments except for SO 20 at d 0.  Pelser and others (2007) saw a similar 

effect in fermented sausages from using canola and flaxseed oils, which have a slightly 

yellow appearance.  This is most likely not the cause in this study, as objective color 

determination showed the beef tallow/olive oil mixture to be more yellow (P < 0.05) than 

the beef tallow/high oleic safflower oil mixture (Table 2), and the high oleic safflower oil 

treated patties were not significantly higher for b* values than any other treatment on any 

subsequent day.  Yellowness decreased (P < 0.05) for all treatments between d 0 and d 

3, but did not decrease any further. 

 

Frozen raw patty color determination 

CIE L*, a* and b* values of frozen treatment and control patties are presented in 

Table 7.  Lipid blend treatment had no effect on lightness (L*) values of frozen patties.  

Storage day did affect (P < 0.05) lightness values, with the highest values for all 

treatments displayed at d 14.  Redness values did not show any differences between 

treatments on any day except d 7, when SO 10 displayed the highest value (27.30).  

Redness values for all treatments tended to decrease (P < 0.05) as storage time 

increased.  Yellowness values were highest (P < 0.05) for SO 10 (33.24) compared to all  
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Table 6. Two way interaction (lipid blend treatment x storage day) least squares means of L*, a*, and b* values of raw beef patties formulated 
with a blend of beef tallow (57%) and mono- or polyunsaturated oils (43%) at days 0, 3, 6, and 9 of refrigerated storage

g 

 CT SO OO CO  
 Fat level (%)

e 
 

 10 20 10
 

20
 

10
 

20
 

10
 

20
 

SEM 

Day 0          
 L* 53.15

a 
47.52

a 
48.34

a 
     47.38

 
48.69

a 
45.21

a 
48.70

 
47.11

a 
1.80 

 a* 27.27
ax 

28.51
awx 

30.83
aw 

30.15
awx 

29.42
awx 

29.12
awx 

29.32
awx 

27.72
ax 

0.52 
 b* 22.24

ax 
22.95

ax 
28.75

aw 
24.56

awx 
23.88

ax 
23.84

ax 
23.47

ax 
23.08

ax 
0.83 

Day 3          
 L* 46.95

b 
47.23

a 
45.62

ab 
46.80

 
44.68

ab 
43.58

a 
46.85

 
45.80

a 
1.80 

 a* 13.12
bwx 

12.34
bx 

13.28
bwx 

14.86
bwx 

12.30
bx 

12.91
bwx 

14.03
bwx 

15.37
bw 

0.52 
 b* 14.44

b
 14.69

b 
14.42

b 
15.73

b 
14.07

b 
14.10

b 
 15.09

b 
15.87

b 
0.83 

Day 6          
 L* 41.60

c 
  41.98

b 
40.58

c 
44.85

 
40.04

b 
37.82

b 
44.71

 
40.86

b 
1.80 

 a* 6.76
c 

7.84
c 

6.94
c 

7.20
c 

6.46
c 

6.31
c 

6.56
c 

6.88
c 

0.52 
 b* 13.68

b 
14.46

b 
13.61

b 
14.89

b 
13.68

b 
13.10

b 
14.26

b 
14.41

b 
0.83 

Day 9          
 L* 42.77

bc 
42.99

b 
42.75

bc 
46.67

 
41.56

b 
40.63

ab 
46.03

 
43.73

ab 
1.80 

 a* 8.04
cx 

11.62
bw 

7.86
cx 

7.39
cx 

6.70
cx 

7.71
cx 

7.53
cx 

7.09
cx 

0.52 
 b* 14.47

b 
15.47

b 
14.22

b 
15.88

b 
14.17

b 
14.38

b 
15.32

b 
15.54

b 
0.83 

a-d
Means with the same letter within a column are not significantly different (P < 0.05) 

w-z
Means with the same letter within a row are not significantly different (P < 0.05) 

e
Fat levels represent a mixture of beef fat present in the raw materials (6%) and manufactured lipid blends added at 4% and 14%, respectively 

to achieve the desired 10% and 20% fat levels 
f
SEM = Standard error of the mean. 

g
Refrigerated (6˚C) patties were stored in PVC overwrapped trays under fluorescent lighting. 
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Table 7. Two way interaction (lipid blend treatment x storage day) least squares means of L*, a*, and b* values of raw beef patties formulated with a blend of beef 
tallow (57%) and mono- or polyunsaturated oils (43%) at days 0, 7, 14, 28, 42, and 56 of frozen storage

g 

 CT SO OO CO  

 Fat level (%)
e 

 

 10 20 10
 

20
 

10
 

20
 

10
 

20
 

SEM 

Day 0          

 L* 51.46
a 

48.59
ab 

49.36
ab 

48.34
b 

47.57
ab 

45.05
b 

50.17
ab 

46.10
b 

1.34 

 a* 28.35
a 

28.58
a 

30.92
a 

30.32
a 

29.12
a 

29.11
a 

28.91
a 

27.54
a 

0.69 

 b* 22.86
x 

23.14
x 

33.24
aw 

24.81
x 

23.67
x 

23.70
x 

23.18
x 

23.10
x 

1.36 

Day 7          

 L* 46.11
ab 

44.37
ab 

43.10
bc 

44.02
b 

43.27
b 

41.94
b 

42.98
c 

44.18
b 

1.34 

 a* 25.09
abwx 

24.70
abwx 

27.30
aw 

24.21
abwx 

26.23
abwx 

23.89
abwx 

26.13
abwx 

22.98
bx 

0.69 

 b* 19.86
 

19.70
 

21.30
b 

19.68
 

20.96
 

19.19
 

20.31
 

23.10
 

1.36 

Day 14          

 L* 52.02
a 

55.14
a 

51.69
a 

55.81
a 

51.28
a 

53.49
a 

53.75
a 

56.75
a 

1.34 

 a* 22.41
b 

21.51
c 

23.23
cd 

22.09
bc 

22.08
c 

22.59
bc 

22.65
c 

22.13
b 

0.69 

 b* 17.28
 

17.81
 

18.10
b 

19.11
 

17.22
 

18.97
 

18.41
 

20.03
 

1.36 

Day 28          

 L* 45.32
ab 

45.11
b 

42.49
bc 

45.36
b 

42.19
b 

42.06
b 

43.20
bc 

44.89
b 

1.34 

 a* 26.67
a 

25.33
b 

25.15
bc 

24.71
b 

24.12
bc 

22.86
bc 

24.46
bc 

23.01
b 

0.69 

 b* 21.89
 

20.73
 

19.75
b 

20.63
 

19.14
 

18.71
 

19.54
 

19.75
 

1.36 

Day 42          

 L* 49.24
ab 

47.90
ab 

47.16
ab 

48.83
ab 

46.34
ab 

46.18
ab 

47.09
bc 

49.79
a 

1.34 

 a* 20.73
b 

20.66
c 

21.50
d 

21.63
c 

21.22
c 

21.39
bc 

22.15
c 

21.67
b 

0.69 

 b* 17.92
 

17.84
 

18.10
b 

19.14
 

17.66
 

18.46
 

18.43
 

19.62
 

1.36 

Day 56          

 L* 43.62
b 

43.78
b 

42.83
b 

46.21
b 

41.99
b 

42.60
b 

42.38
c 

46.47
b 

1.34 

 a* 21.76
b 

20.85
c 

22.22
d 

22.84
c 

21.03
c 

20.71
c 

22.52
c 

21.45
b 

0.69 

 b* 18.35
 

17.84
 

17.97
b 

20.08
 

17.49
y 

17.55
 

18.10
 

19.23
 

1.36 
a-d

Means with the same letter within a column are not significantly different (P < 0.05) 
w-z

Means with the same letter within a row are not significantly different (P < 0.05) 
e
Fat levels represent a mixture of beef fat present in the raw materials (6%) and manufactured lipid blends added at 4% and 14%, respectively to achieve the desired 

10% and 20% fat levels
  

f
SEM = Standard error of the mean. 

g
Frozen (-20˚C) patties stored in plastic-lined cardboard boxes 
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other treatments at d 0.  Lipid blend treatment and storage day had no effect on 

yellowness values past d 0.   

 

pH determination 

 The pH of refrigerated patties was not affected (P > 0.05) by lipid blend treatment 

on day 0.  The only treatment affected by storage day was OO 10, which was lower (P < 

0.05) on d 9 (5.27) than on d 0 (5.43; data not shown).  The pH of frozen patties was 

highest (P < 0.05) on d 28 for all treatments (5.81-5.89).  Treated beef patty pH did not 

differ (P > 0.05) between d 0 and d 56 (5.43-5.54; data not shown).   

 

Cooked internal color, cook yield, Allo-Kramer shear, and dimensional 

changes 

Means for cook yield percentages, Allo-Kramer shear values, cooked internal 

color values and dimensional changes are presented in Table 8.  Internal L* (lightness) 

values of cooked patties were slightly higher (P < 0.05) for SO 20, OO 10, and CO 20 

than for either of the control patties.  No treatment patties were higher than the controls 

for a* (redness) values.  Values for b* (yellowness) were lowest for the 10 and 20% 

control patties and highest for the CO 10 and 20% treated patties.  

 Percentage cook yield was higher (P < 0.05) for patties containing 10% fat than 

those containing 20% fat (CT, SO, OO).  CO 10 had higher cook yields compared to CO 

20, but they were not significantly different (P > 0.05). Similar results were reported by 

Troutt and others (1992) which determined that beef patties with lower fat percentages 

tended to have higher cook yields.  The controls had the highest cook yields within each 

fat level (10 and 20%), with CT 10 being significantly higher (P < 0.05) than CO 10 and  
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Table 8. Least squares means for cook yield, shear values, cooked CIE L*, a* and b* values, and dimensional changes of beef 
patties formulated with a blend of beef tallow (57%) and mono- or polyunsaturated oils (43%) 

 CT SO OO CO  

 Fat level (%)
f 

 

 10  20  10
 

20
 

10
 

20
 

10
 

20
 

SEM
h
 

% Cook Yield 74.84
a 

72.43
bc 

74.14
ab 

69.97
d 

73.83
abc 

69.65
d 

72.22
bc 

71.75
cd 

0.62 

Shear Value
g
 30.69

a 
26.19

bc 
27.59

b 
23.02

de 
30.46

a 
24.27

cd 
28.17

b 
21.64

e 
0.60 

L* 51.24
b 

51.55
b 

52.78
ab 

54.53
a 

54.16
a 

53.10
ab 

53.08
ab 

54.37
a 

0.49 

a* 4.11
ab 

4.09
ab 

3.87
cb 

3.80
cb 

3.62
c 

3.85
cb 

4.24
a 

4.06
ab 

0.08 

b* 15.82
d 

16.24
cd 

16.57
cd 

17.10
ab 

16.40
cd 

17.08
ab 

17.45
a 

17.48
a 

0.15 

Patty diameter 
change, mm 

-10.99
b 

-12.73
b 

-12.33
b 

-14.77
a 

-12.91
ab 

-12.59
b 

-11.81
b 

-12.70
b 

0.45 

Patty thickness 
change, mm 

-0.08
abc 

-0.28
ab 

-0.35
ab 

-0.65
a 

-0.13
abc 

-0.43
a 

+0.38
c 

+0.26
bc 

0.14 

a-e
Means in a row with different superscripts are significantly different (P < 0.05) 

f
Fat levels represent a mixture of beef fat present in the raw materials (6%) and manufactured lipid blends added at 4% and 14%, 
respectively to achieve the desired 10% and 20% fat levels  
g
Shear values reported as Newtons/gram 

h
SEM = Standard error of the mean 
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CT 20 being significantly higher (P < 0.05) than SO 20 and OO 20.  Similar findings were 

reported by Dzudie and others (2004) and Babji and others (1998), who observed that beef 

patties formulated with 20% maize and ground-nut oils lost more weight due to cooking than 

control patties. 

Overall cooked patty means for Allo-Kramer shear, an objective measurement of 

instrumental tenderness, ranged from 21.64 N/g to 30.69 N/g.  All 20% fat patties were lower for 

Allo-Kramer shear values (more tender) (P < 0.05) than the corresponding 10% fat patties for 

each lipid blend treatment, suggesting that patties with a higher fat content were more tender 

regardless of fatty acid profile.  These findings are supported by work (Park and others 1989) in 

beef/pork frankfurters supplemented with high oleic sunflower oil.  The authors saw much larger 

differences in tenderness as determined by texture profile analysis and sensory evaluation 

between high fat and low fat frankfurters than between control and supplemented frankfurters.  

The authors concluded that amount of fat had more influence in texture than individual fatty acid 

composition.  For all 10% treatments SO 10 and CO 10 were more tender (P < 0.05) than OO 

10 and CT 10.  For 20% treatments SO 20 and CO 20 were both more tender (P < 0.05) than 

OO 20 and the 20 control.  Overall, all lipid blend treatment patties were as tender (P > 0.05) or 

more tender (P < 0.05) than the control patties.  Dzudie and others (2004) also observed that 

beef patties formulated with vegetable oils were softer as determined by textural analysis.  

SO 20 experienced a greater loss (P < 0.05) in diameter (14.77 mm) from cooking than 

all other treatments, excluding OO 10.  All other treatments were similar in their diameter 

change.  CO 10 and 20 were the only treatments to increase in patty thickness after cooking. 

 

Sensory evaluation 

Descriptive sensory data (Table 9) indicated that the lipid blend treatment used in the 

treatment patties had an effect (P < 0.05) on sensory texture, but no effect (P > 0.05) on 

aromatics, basic tastes, aftertastes, mouthfeels, and after mouthfeels.  Control and treatment 
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patties at both fat levels affected juiciness and sandy/gritty texture (P < 0.05).  Patties 

manufactured with SO 20 received the highest rating for juiciness (7.67) and were significantly 

higher (P < 0.05) than CT 10 (5.60) and OO 10 (5.87) patties.  Differing results to the ones in 

this study were observed by Shiota and others (1995), who found that sensory scores for 

texture and aroma tended to decline as the amount of unsaturated oil (palm super-olein, 

soybean) increased in beef patties. 

Patties formulated at 10% fat tended to be less juicy (P < 0.05) than those containing 

20% fat.  Similar findings for comparisons of fat levels were reported by Troutt and others 

(1992) and Berry and Leddy (1984).   For Sandy/Gritty texture the only treatment higher than 

the control (P < 0.05) was CO 10.  Aromatics associated with rancidity, such as cardboard, 

painty, and fishy were only slightly detected and were not affected by treatment.  No attributes 

associated with rancidity were above 0.67 on a 15 point Spectrum scale. 
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Table 9. Least squares means of descriptive attribute sensory panel scores (combined) for textures, aromatics, basic tastes, mouthfeels, aftertastes, and after 
mouthfeels of cooked beef patties formulated with a mixture of beef tallow (57%) and mono- or polyunsaturated oils (43%) at 10% and 20% fat levels 

 CT 
 

SO OO CO  

 Fat level (%)
d 

 

Attributes 10  20  10
 

20
 

10 
 

20 
 

10
 

20
 

SEM 

Textures          

   Juiciness 5.60
c 

6.20
abc 

6.06
abc 

7.67
a 

5.87
bc 

6.57
abc 

6.47
abc 

7.33
ab 

0.40 

   Sandy/gritty 3.33
ab 

3.00
b 

3.50
ab 

3.91
ab 

3.42
ab 

3.42
ab 

3.25
ab 

4.08
a 

0.23
 

Aromatics          

   Cooked Beef Fat 6.00 6.53 5.80 5.40 6.00 5.53 5.87 5.87 0.29 

   Cooked Beef Lean 1.42
ab

 2.00
a
 1.50

ab
 1.17

b
 1.41

ab
 1.08

b
 1.33

ab
 1.41

ab
 0.18 

   Oil 2.25 2.75 2.75 3.58 2.91 3.42 2.75 3.58 0.31 

   Cardboard 0.67 0.20 0.07 0.33 0.13 0.53 0.07 0.20 0.17 

   Painty 0.00 0.00 0.00 0.00 0.67 0.00 0.67 0.00 0.07 

   Fishy 0.00 0.00 0.00 0.67 0.00 0.00 0.00 0.00 0.03 

   Browned 0.40 0.33 0.33 0.20 0.40 0.13 0.47 0.20 0.15 

Tastes          

   Salt  0.80 0.93 1.07 0.80 0.87 0.87 0.93 0.80 0.11 

   Sour 2.47 2.53 2.60 2.67 2.47 2.80 2.67 2.87 0.16 

   Bitter 2.33 2.33 2.13 2.40 2.27 2.33 2.40 2.67 0.16 

Aftertastes          

   Sour 2.33 2.20 2.27 2.33 2.13 2.47 2.27 2.53 0.13 

   Bitter 2.20 2.20 2.20 2.13 2.07 2.13 2.07 2.40 0.10 

   Browned 0.20 0.13 0.20 0.20 0.27 0.00 0.27 0.20 0.11 

Mouthfeels          

   Metallic 2.60 2.47 2.47 2.73 2.53 2.53 2.67 2.53 0.14 

   Astringent 2.87 2.87 2.73 2.80 3.07 3.20 2.87 3.00 0.14 

   Oily/Greasy 1.47 2.00 1.53 2.33 1.60 2.33 1.80 2.20 0.26 

   Fatty Coating 0.80 1.20 1.27 0.93 1.07 0.80 0.93 0.93 0.19 

After Mouthfeels          

   Metallic 2.47 2.20 2.27 2.13 2.20 2.40 2.27 2.47 0.13 

   Astringent 2.47 2.27 2.27 2.47 2.73 2.40 2.40 2.67 0.19 

   Oily/Greasy 1.00 1.27 1.13 1.60 1.40 1.53 1.13 1.60 0.21 

   Fatty Coating 0.73 1.00 0.93 0.53 0.73 0.53 0.80 0.67 0.15 

a-c
Means in a row with different superscripts are significantly different (P < 0.05) 

d
Fat levels represent a mixture of beef fat present in the raw materials (6%) and manufactured lipid blends added at 4% and 14%, respectively to achieve the desired 

10% and 20% fat levels 
 



55 

 

  

Fatty acid composition 

 Least square means for fatty acid composition of manufactured lipid blends are 

presented in Table 10.  Lipid blends with beef tallow and olive oil were highest (P < 0.05) in 

palmitic (16:0), palmitoleic (16:1), and stearic acid (18:0), and were lowest for linoleic (18:2), 

contained no linolenic acid (18:3), and had the lowest (P< 0.05) unsaturated to saturated fatty 

acid ratio (1.98).  High oleic safflower and beef tallow blends were highest (P < 0.05) in oleic 

acid (18:1; 57.01%) and unsaturated to saturated fatty acid ratio (2.39).  Corn oil and beef tallow 

blends were highest (P < 0.05) for linoleic acid (18:2) and polyunsaturated to saturated fatty 

acid ratio (0.83), but were lowest (P < 0.05) for oleic acid (18:1).  Myristic acid (14:0) was 

present at a range of 1.23 to 1.27, but was not affected across lipid blend treatments. 

 In cooked beef patties (Table 11), significant differences in lipid blend treatment patties 

were observed for six fatty acids (C14:0, C16:0, C18:0, C18:1, C18:2, and C18:3).  Control beef 

patties at both fat levels (10 and 20%) were higher (P < 0.05) than all other treatments for 

myristic (14:0) and palmitic acid (16:0), which are both responsible for increasing total 

cholesterol and low density lipoprotein cholesterol in humans (Kris-Etherton and Yu 1997).  The 

controls were also higher (P < 0.05) for stearic acid (18:0), which, although saturated, has a 

neutral cholesterolemic effect (Yu and others 1995), compared to all treatments except for OO 

10.  Oleic acid (18:1) was the major fatty acid found in all lipid blend patty treatments, 

accounting for at least 36%, with SO 20 containing 50.27%, the highest (P < 0.05) of all 

treatments.  As expected, CO 10 and CO 20 contained significantly more (P < 0.05) linoleic acid 

(18:2) (14.40% and 19.46%, respectively) than all other treatments while the controls had the 

lowest (3.24% and 2.67%, respectively).  Conjugated linoleic acid (CLA) isomer cis-9, trans-11, 

a beneficial fatty acid produced as a byproduct of rumen biohydrogenation that is known to have 

anticarcinogenic (De la Torre and others 2006) and antiatherogenic (Lee and others 1994) 

effects, was present in all beef patties, though its concentration was not diminished (P > 0.05) 

by use of a lipid blend treatment.  Addition of a beef tallow/corn oil blend to achieve 10 and 20% 
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fat was successful in raising the PUFA:SFA ratio from 0.1 and 0.09 in the 10 and 20% fat 

controls, respectively, to 0.41 and 0.62, respectively, within the recommended range of 0.4 - 1.0 

(Wood and others 2004a).  MUFA:SFA ratios in SO 10 and 20 (1.29 and 1.58, respectively) and 

OO 10 and 20 (1.17 and 1.42, respectively) where significantly higher (P < 0.05) compared to 

the controls (0.88 and 0.92, respectively).  Increased MUFA:SFA ratios have been shown to 

decrease LDL and total cholesterol in humans (Mattson and Grundy 1985). 

 

Conclusions 

The inclusion of beef tallow/edible oil lipid blends into beef patties was achieved without 

compromising physical or textural characteristics.  Sensory analysis showed little difference 

between control beef patties and those manufactured with a lipid blend treatment.  Lipid blend 

treatment patties were shown to have the same oxidative stability as control patties when 

manufactured with a rosemary extract antioxidant.  High oleic safflower oil and olive oil lipid 

blend treatments were successful in raising the MUFA/SFA ratio, while corn oil lipid blend 

treatments displayed more optimal PUFA/SFA ratios.  Overall results of this study suggest that 

replacement of beef fat by a beef tallow/edible oil blend is feasible for production of a beef 

product with a healthier image. 
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Table 10. Least squares means for fatty acid composition of lipid blends formulated with beef tallow (57%) and mono- or 
polyunsaturated oils (43%) 

 
Fatty Acid 

Beef Tallow/High Oleic 
Safflower Oil 

Beef Tallow/Olive Oil Beef Tallow/Corn Oil  
SEM

d
 

Myristic 14:0 1.27 1.21 1.23 0.02 
Palmitic 16:0 14.81

c 
18.23

a 
17.38

b 
0.10 

Palmitoleic 16:1 1.35
b 

1.76
a 

1.36
b 

0.01 
Stearic 18:0 10.27

b 
11.36

a 
10.35

b 
0.10 

Oleic 18:1 57.01
a 

55.48
b 

37.15
c 

0.24 
Linoleic 18:2 8.05

b 
5.65

c 
25.45

a 
0.13 

Linolenic 18:3 0.16
a 

0.00
c 

0.12
ab 

0.04 
UFA:SFA Ratio 2.39

a 
1.98

c 
2.13

b 
0.03 

PUFA:SFA Ratio 0.30
b 

0.17
c 

0.83
a 

0.01 
a-c

Means in a row with different superscripts are significantly different (P < 0.05) 
d
SEM = Standard error of the mean 
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Table 11. Least squares means for fatty acid composition (% of total fatty acids) of cooked beef patties formulated with a blend of beef tallow (57%) and mono- or 
polyunsaturated oils (43%) 
 

 CT SO OO CO 
 

 Fat level (%)
f 

 

Fatty Acid 10 20 10
 

20
 

10
 

20
 

10
 

20
 

SEM
k
 

Myristic 
 

14:0 3.13
a 

3.23
a 

2.26
b 

1.81
c 

2.35
b 

1.86
c 

2.21
b 

1.79
c 

0.05 

Palmitic 
 

16:0 23.13
a 

22.86
a 

19.61
c 

17.45
d 

21.55
b 

19.86
c 

20.90
b 

19.21
c 

0.17 

Palmitoleic 
 

16:1 2.14 3.35 2.16 1.81 2.43 2.13
 

2.15 1.79 0.36 

Stearic 
 

18:0 13.57
a 

13.52
a 

12.01
bc 

10.93
e 

12.38
a 

11.52
cd 

12.06
bc 

10.94
de 

0.12 

Oleic 
 

18:1 37.29
d 

37.56
d 

46.12
b 

50.27
a 

43.76
c 

48.09
b 

36.74
d 

36.09
e 

0.41 

Linoleic 
 

18:2 3.24
f 

2.67
f 

6.02
cd 

6.80
c 

4.73
e 

5.30
de 

14.40
b 

19.46
a 

0.24 

Linolenic 
 

18:3 0.41
ab 

0.56
a 

0.27
b 

0.29
b 

0.25
b 

0.29
b 

0.23
b 

0.34
b 

0.05 

CLA c-9, t-11 
 

0.21 0.12 0.19 0.21 0.19 0.13 0.14 0.15 0.05 

PUFA:SFA Ratio
h 

 
0.10

ef 
0.09

f 
0.19

cd 
0.24

c 
0.14

de 
0.18

d 
0.41

b 
0.62

a 
0.05 

MUFA:SFA Ratio
i 

 
0.88

g 
0.92

fg 
1.29

c 
1.58

a 
1.17

d 
1.42

b 
1.02

ef 
1.11

de 
0.02 

a-e
Means in a row with different superscripts are significantly different (P < 0.05) 

h
PUFA:SFA = Polyunsaturated fatty acid to saturated fatty acid ratio

  

i
MUFA:SFA = Monounsaturated fatty acid to saturated fatty acid ratio 

j
Fat levels represent a mixture of beef fat present in the raw materials (6%) and manufactured lipid blends added at 4% and 14%, respectively to achieve the desired 10% 

and 20% fat levels  

k
SEM = Standard error of the mean 
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CHAPTER IV  

CONCLUSIONS 

 
 The use of lipid blends containing beef tallow, edible oil, and a rosemary extract 

antioxidant in this study was successful in altering the fatty acid composition of beef patties.  

MUFA/SFA ratios were increased through the use of high oleic safflower and olive oil lipid blend 

treatments, while corn oil lipid blend treatments were shown to have increased PUFA/SFA 

ratios.  Descriptive sensory analysis showed little differences between treatment patties and 

control patties.  In addition, the oxidative stability of patties containing greater amounts of 

unsaturated fats present in the lipid blends was shown to be no different than that of the control 

patties.  Based on the results of this study it is reasonable to suggest that a beef tallow/edible oil 

lipid blend can be used to replace beef fat to alter the fatty acid profile of beef patties. 

 Furthermore, the lipid blend concept used in this study could be used in further research 

regarding the impact of beef, as well as other muscle foods, on human health.  Although, the 

vegetable oils used in this study were high in MUFA (high oleic safflower oil, olive oil) and 

overall PUFA (corn oil) other oils that are high in n-3 fatty acids (canola oil, linseed oil) could be 

used as well.  Marine oils, which contain highly unsaturated, long-chain n-3 fatty acids known to 

be beneficial to human health, could also be used.  As research into the effects of different fatty 

acids on human health and diseases progresses, the lipid blend concept has the ability to allow 

the use of many different oils to achieve a nutritionally beneficial fatty acid composition.  

Incorporation of an emulsifier into the system to achieve more efficient binding of the highly 

unsaturated oils is also a possibility. 

 While beef patties were the only product used in this study, the system employed to 

incorporate the lipid blends into the product (bowl chopper) could also be used to manufacture 

different processed muscle foods.  Cured, dried, fermented and fresh coarse chopped sausage 

products are a possibility, as are fully emulsified frankfurters.  These chopped and emulsified 
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products present challenges as far as incorporation of high amounts of low melting point 

unsaturated fats because of the longer chopping times, and the resulting rise in product 

temperature, necessary to produce them.  As mentioned earlier, an emulsifier could be used to 

increase the fat binding ability of the food system.  These products, often high in fat and seen as 

unhealthy by consumers could benefit greatly from a healthier image.   

 The use of different production systems could be possible to allow incorporation of lipid 

blends into a wider range of products.  Mixing lipid blends with chopped and formed and formed 

emulsified products is a possibility.  The use of an injector to deliver lipid blends into whole 

muscle products such as roasts would not only increase nutritional value, but quality as well. 
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APPENDIX A 

 

Figure 1. Ballot used for descriptive sensory analysis of beef patties 
Textures Aromatics Tastes           Mouthfeels  Aftertastes      After Mouthfeels
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APPENDIX B 

 
Attribute Description 

Textures  
Juiciness The amount of juice/moisture perceived in the mouth. 
Mealy/Grainy The amount of rough, grain-like residues perceived. 

Aromatics  
Cooked beef lean The aromatic associated with cooked beef muscle meat. 
Cooked beef fat The aromatic associated with cooked beef fat. 
Oil The aromatic associated with cooked vegetable oils. 
Olive oil The aromatic associated with cooked olive oil. 
Cardboard The aromatic associated with slightly stale beef, refrigerated 

for a few days only and associated with wet cardboard and 
stale oils and fats. 

Painty The aromatic associated with rancid oil and fat. 
Fishy The aromatic associated with some rancid fats and oils. 
Liver The aromatic associated with beef liver and/or kidney. 
Browned The aromatic associated with the outside of grilled or broiled 

beef. 

Tastes  
Salt The taste stimulated by sodium salts, such as sodium 

chloride and sodium glutamate, and in part by other salts, 
such as potassium chloride. 

Sour The taste stimulated by acids, such as citric, malic, 
phosphoric, etc. 

Bitter The taste stimulated by substances such as quinine, 
caffeine and hop bitters. 

Mouthfeels  
Metallic The sensations on the tongue associated with metals such 

as iron or copper. 
Astringent The shrinking or puckering of the tongue surface caused by 

substances such as tannin or alum. 
Oily/greasy Amount of oil left on fat surfaces. 
Fatty coating Amount of fat left on mouth surfaces. 
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APPENDIX C 
 

LIPID EXTRACTION AND QUANTIFICATION OF FATTY ACID BY GAS 
CHROMATOGRAPHY  

 
EQUIPMENT: 
Balance / Scale      Graduated cylinder 
50 ml Polypropylene centrifuge tubes w/ screw caps Kimwipes® 
Refrigerator / cooler      Vacuum 
Homogenizer       Vortex mixer 
500 ml side-arm flask with hose    Centrifuge 
Heated water bath      Nitrogen evaporator 
Gas chromatograph      Pasteur pipete 
CP Sil-88 capillary column (100 meter length preferred) Timer 
Glass filter assembly      Glass scintillation 
vial 
2.4 cm Glass filters (0.2µ)     2.0 ml autosampler vial 
30 ml glass tubes 
15 ml glass tubes 
 
REAGENTS: 
Nitrogen gas 
HPLC grade Hexane 
FAME standards (Nu-Chek-Prep, Inc. Elysian, MN) 
Chloroform:Methanol (2:1, v/v) 
14% boron trifluoride in methanol 
Saturated NaCl 
Na2SO4 
 
Solutions: 
0.5 N KOH in MeOH:  2.81 g KOH in 100 ml MeOH 
It takes approximately 10 minutes to dissolve. 
 
Saturated NaCl:  31.7 g NaCl in 100 ml dd H2O 
 
0.74% KCl:  7.4 g KCl in 1 liter ddH2O 
 
Nu-Chek Prep, Inc.  1-800-521-7728 
GLC #68D and #211 (FAME Standards) 
 
PROCEDURE: 
Extraction of Total Lipids 
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1. Weigh ~100 mg adipose tissue (i.e. chicken or beef fat), or 0.5-1 g 
muscle or 2-5 ml plasma or 2 g digesta and add to a labeled 50 ml 
tube (plastic/glass, with cap).  Record the exact sample weight.  (500 
mg of fat can be used, but only saponify 100 µl.) 

NOTE: Some plastics are attacked by chloroform/methanol.  
Polypropylene is generally safe.  Polyethylene is not.  50 ml polypropylene 
centrifuge tubes for cell culture are recommended. 
2. Preparation of external control:  Measure 5 mg each of 14-0, 16-0 and 

18-0 triglyceride standards.  Record the exact weights of each. 
3. Add 5.0 ml of chloroform:methanol (CHCl3:CH3OH, 2:1, v/v) to each 

tube, including the external controls. 
4. Homogenize each sample with Polytron (or similar) homogenizer on 

medium setting for ~30 seconds.  After homogenization, rinse the 
probe with CHCl3:CH3OH until final volume in the tube is ~15 ml.  
Rinse the probe with warm water.  Spray the probe with clean water 
into waste beaker.  Rinse with CHCl3:CH3OH into another waste 
beaker.  Dry with Kimwipes. 
NOTE:  If using pure lipid (fat), skip homogenization step and bring 
final volume in each tube to ~15 ml with chloroform:methanol.  

5. Let sample sit for at least 30 minutes to extract the lipids.  If stopping 
at this point, flush the tube with nitrogen, cap and store at 4oC. 

6. Filter homogenate into a new 50 ml centrifuge tube using a glass 
microanalysis filter holder assembly with disposable 2.4 cm glass fiber 
filters.  Place glass fiber filter onto assembly rough side up.  Rinse 
homogenate tube 2 times with CHCl3:CH3OH using a squeeze bottle.  
Also rinse filter funnel 1-2 times with CHCl3:CH3OH. (See detailed 
filtering instructions below.) 

7. Add CHCl3:CH3OH to the filtered homogenate until you have a final 
volume of 20 ml.  Measure with a graduated cylinder and replace in 
tube. 

8. Add 8 ml of 0.74% KCl and vortex 1 minute. 
9. Let sit 2 hours to separate phases or centrifuge at ~600 x g until you 

get two distinct phases.  If stopping at this point, flush with nitrogen, 
cap and store at 4oC overnight. 

10. Carefully remove ALL of the upper phase (non-lipid portion) using a 
pasteur pipet and discard.  If you want to stop at this point, flush with 
nitrogen, cap and store at -20oC. 

11. Transfer all lower phase (contains lipid) to 30 ml glass tubes.  Rinse 
50 ml tube 2-3 times with CHCl3:CH3OH into the 30 ml glass tube. 

12. Evaporate the sample to dryness with nitrogen using the N-EVAP 
analytical evaporator. 

13. If fat was extracted from a 500 mg sample in Step 1, collect 100 µl 
after evaporation and use for saponification process. 
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Filtering Lipid Samples: 
 

1. Set up filter holder assembly consisting of 15 ml filter tube, fritted 
glass filter with stopper, aluminum clamp, 500 ml side-arm flask and 
vacuum hose. 

2. Place 50 ml tube (marked at 20 ml) in the 500 ml side arm flask. 
3. Replace glass filter and stopper.  Make sure stem of filter is inside 50 

ml tube. 
4. Place 2.4 cm glass fiber filter on top of glass filter (rough side facing 

up). 
5. Replace 15 ml filter tube and clamp it. 
6. Turn on vacuum.  Make sure vacuum hose is connected to flask and 

lab vacuum. 
7. Pour sample into 15 ml filter tube.  Avoid filtering too quickly.  Add the 

rinse liquid before the filter tube is dry to prevent the filter from 
clogging. 

8. Rinse 50 ml tube with Chloroform:Methanol 2:1 (a few squirts) and 
pour into 15 ml tube.  Rinse side of 15 ml filter tube with 
Chloroform:Methanol 2:1 (a few squirts). 

9. Add Chloroform:Methanol 2:1 to bring the volume in the second 50 ml 
tube to 20 ml. 

10. Remove 2nd 50 ml tube, cap and set to the side. 
11. Remove and discard glass fiber filter. 
12. Make sure 15 ml tube is clean.  Run Kimwipe through it to clean it. 

 
Saponification and Methylation of Lipids: 
 

1. Add 1 ml of 0.5 N KOH in methanol.  Heat in 70oC bath for 10 
minutes. 

2. Add 1 ml of 14% BF3 (boron trifluoride) in methanol, flush with N2, cap 
loosely, and place in 70oC water bath for 30 minutes.  

3. Remove the tubes and allow them to cool for 5 minutes.  Add 2 ml 
HPLC grade hexane and 2 ml saturated NaCl.  Vortex for 1 minute. 

4. Pipet off upper hexane layer with transfer pipet and place in 20 ml 
tube containing ~800 mg Na2SO4.  Add 2 more ml of hexane to the 
tube with saturated NaCl.  Vortex, allow to settle and pipet the upper 
hexane layer into the 20 ml tube with Na2SO4.  You should now have 
approx. 4 ml of hexane in this tube.  Vortex this tube briefly.  The 
Na2SO4 removes any moisture from the hexane.  Allow tube to stand 
until the Na2SO4 settles and the hexane is clear. 

5. Pipet the hexane into the labeled glass scintillation vial.  Be careful not 
to pull any of the Na2SO4 crystals into the pipet.  It is better to leave 
some of the hexane behind than to get the crystals because they can 
clog up the capillary column. 
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6. Add 1 ml hexane to the 20 ml tube with Na2SO4 in it.  Vortex briefly 
and let tube stand as described above.  Transfer the hexane to the 
glass scintillation vial. 

7. Evaporate the hexane completely with the N-EVAP. 
8. Reconstitute the lipid with HPLC grade hexane as follows:  500 µl 

hexane for plasma, 500 µl hexane for digesta, 500 µl hexane for meat, 
500 µl hexane for liver or any other tissue besides fat, 1 ml hexane for 
subcutaneous or intramuscular fat.  Swirl vial gently to mix.   

9. Transfer to a labeled 2.0 ml autosampler vial.  Pipet (100 µl for 
digesta, plasma, muscle, liver or tissues other than fat; or 400 µl for 
fat) this solution into a 2-ml autosampler vial containing 1.6 ml of 
HPLC-grade hexane containing 5 mg C12 FAME internal standard 
(FAME 12:0 @ 12.5 mg/ml). An autosampler glass insert should be 
used to hold samples that are 100 µl.   As with the external standard, 
the 12-0 internal standard is appropriate for meat samples since they 
generally contain very little 12-0 lipids and thus present an 
independent peak on the GC.  Alternate standards may be desirable 
for other sources of lipids. 

10. Inject 0.5 to 1.0 µl into the gas chromatograph. 
 
Calculations: 
1. List the areas for your external standards and your internal standard (IS).  

Calculate the Fx for each of the fatty acids in the external standard. 
  
Fx = (Area IS/Amount IS)  ÷  (Area FAex /Amount FAex) 
 
Where:   Fx = Correction for loss during extraction and methylation 
  Area IS = Area of the internal standard (12:0) 
  Amount IS = Amount of internal standard added (5 mg) 
  Area FAex = Area for each fatty acid in the external standard 
  Amount FAex = Amount of each external fatty acid added (5 mg) 
 
You will generate three Fx values (14:0, 16:0 and 18:0).  You can use the Fx 
that is closest to the FAME being evaluated or just use the simple average of 
all three Fx values. 
2. Enter data from the Star Program printouts in the table on the next page.  

Use the FAME Standards printout to identify the major fatty acid peaks.  
You may have some very small peaks that cannot be identified.  Add the 
areas of these peaks together and enter the sum in the unidentified row. 

3. Use the following equation to calculate the actual quantity of each fatty 
acid.  Enter the calculated values in the Fatty Acid table. 

 
Amount FA (g/100g) = Fx x  (Area FA)  x  (Amount IS)___   x  100 
    (Area IS) x (Amount Sample) 



72 

 

  

 
4. Calculate the area percentage of each fatty acid and enter in the Fatty 

Acid table. 
 

Area Percentage   =    ___g fatty acid_____   x  100 
     Total g fatty acids 
 
 
 

GC PROTOCOL 
 
TO TURN ON THE FLAME: 
Go to FILE 
ACTIVATE METHOD 
Find FAME NEW TEMP and click on it. 
 
Shortcut: 
There should be a button on the top that says GAS SAVER next to that there 
should be a small button that looks like an open file to the right.  Click on this.  
This will open the methods list.  Find FAME NEW TEMP and click on it.  Use the 
glass Petri dish to check to see if the flame is on. 
 
SAMPLE LIST: 
Click on FILE → NEW SAMPLE LIST 
Use the date with dashes for the name → click and save at the bottom of the 
screen. 
Load the vials in the carrousel. 
Click on the CARROUSEL BUTTON on the bottom of the screen. 
A new window will open.  Click on APPEND.  The autosampler will begin to scan 
the carrousel and enter all the vials for you.  All you need to do is rename all the 
samples.  Use the arrow keys to go up or down.  Do not change anything in the 
other columns.  When you are done renaming the samples and the flame is lit 
begin the sequence by clicking BEGIN on the bottom left.  It will open a new 
window with the Varian machine number and operator name.  Enter your name 
as the operator and click OK.  Then another window will open asking you if this 
is the correct method.  Click OK. 
 
When the samples are finished running, put the GC back in GAS SAVER 
METHOD.  Go to the methods activation screen and find the GAS SAVER 
METHOD.  Click on it.  Then turn off the Hydrogen (Red) and the Air (yellow).  
DO NOT TOUCH THE HELIUM (BLUE)! 
 
TO PRINT FILES: 
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Before you start opening files, please minimize the system setup screen.  This 
will prevent you from accidentally shutting down a run. 
 
There is a sequence of buttons on the left of the screen that run up and down.  
The 4th button is STANDARD REPORTS.  Click on this button.  It will open a 
new window.  The name of the folder should be DATA.  If it is not, you need to 
go up to find the data folder.  Find your samples click on one and then click 
OPEN FILE (the bottom of the screen). 
 
Change the Chromatogram for easier reading: 
Click on OPTIONS at the top of the screen.  Change the start time to 5.00 and 
the end time to 43.00.  Then UNCHECK auto scale.  Click OK. 
 
Click on the PRINT BUTTON at the top of the screen.  Make sure to check both 
the Chromatogram and the results.  Click OK.  When you open the next file it will 
ask if you want to save the changes.  Click YES. 
 
When you get finished using the computer leave the system setup screen 
minimized. 
 
TO ADD OR REMOVE PEAKS: 
 
There is a sequence of buttons on the left of the screen that run up and down.  
The 3rd button is VIEW/EDIT CHROMATOGRAM.  Click on this button.  It will 
open a new window.  The name of the folder should be DATA.  If it is not, you 
need to go up to find the data folder.  Find your samples click on one and then 
click OPEN FILE (the bottom of the screen).  You will get a blue Chromatogram. 
 
Click on EDIT METHOD on the top of the screen.  Go to INTEGRATION 
PARAMETERS.  You want to change the INITIAL PEAK REJECTION VALUE, 
right side in the middle.  This is the lowest value of peaks it will find.  Click SAVE 
when done.  Now you need to go the top of the screen and click RESULTS and 
then REINTEGRATE NOW.  The chromatogram should flash and peaks should 
appear or disappear depending on how you set the range.  You will need to 
CLEAR between each sample. 
 
You do not need to save them.  They are automatically saved with the changes.  
The computer will also save the last integration parameters for you so all you 
need to do is reintegrate each sample after you do the first. 
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APPENDIX D 

 
RAPID NITROGEN/PROTEIN ANALYSIS PROCEDURE 

LECO FP-528 
 

EQUIPMENT: 
LECO FP-528 System 
Analytical balance 
 
REAGENTS: 
Oxygen gas 
Helium Gas 
Air 
 
PROCEDURE: 
Instrument Start-Up: 

Assumes instrument switch has been turned “ON”, but gases have been 
turned “OFF”.  In the ”OFF” mode, no helium is flowing. 
 
QUICK MENU – First Screen 

1. Perform leak detection – See operation manual for this procedure. 
2. Standard parameter settings for the LECO FP528 Nitrogen/Protein 

System:  
 

Gases   Pressure 
Oxygen  40 psi 
Air   40 psi 
Helium   40 psi 
 

When gas tanks reach 300 psi – CHANGE TO NEW TANK 
Combustion Tube Temperature – 850ºC 
 
•Furnace Filter – Change when the metal shavings have begun to rust ~1” 

down the tube.  Change daily if the machine is used 8 hr/day. 
•Filter Materials  
 Anhydrone (Mg Perchlorate) – Absorbs H2O 
 LecoSorb (NaOH with silica coating) – Absorbs CO2 
•Thermal Conductivity Cell 
 Reference flow of Helium = 30 cc 
 Sample Flow = 200 cc/min – Red line is the indicator 

3. To turn gases “ON” 
 
NOTE:  Superscript “S” denotes prompts on the LECO FP528 Screen while 
superscript “B” denotes Button below screen. 
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[ANALYZE]S    →    [l]S   →    [MENU]B   →   [5]S     →    [CARRIER GASES]S     →  
  (ANALYZE)   (SYSTEM CONTROLS)  

[ON]B  →    [EXIT]B   
 

4. To calibrate the BLANKS prior to standardization and analysis 
 
[l]B    →    [SELECT]B*   →    [NEXT]B**     →     [START]B     →    [EXIT]B → 
 
[3]S    →    [YES]B***→   [MENU]B  →   [6]S →   [EXIT]B****→  TO QUICK 
MENU  
(CALIBRATE)     (CALIBRATE 
      BLANK) 
   
*Press key two times to move to ID Code;  Input Code by pressing key pad 
buttons until appropriate letter or number appears. 
**Press key to input multiple blanks >5. 
***Press to select each blank to be run. 
****Press 2 times. 
 
(Allow 5 or more blanks to run until blank values are near zero (0), i.e., 0.012 
or -0.012). 
 
5. To Run Standards: 

 
[l]S   →   [WEIGHT]S*   →    [SELECT]B**   →    [NEXT]B***   →   [WEIGHT]S****    
→  
(ANALYZE) 
 
     [NEXT]B*****    →    [ENTER REMAINDER OF STD’S]      →      [START]B 

         Runs Standard 
*Enter weight of standard 
**Press 2 times and input ID Cod, i.e. “Oats” 
***Press 1x to enter 
****Enter 2nd weight of standard 
*****Enters 2nd standard 
 

6. To Delete Blanks: 
[PREVIOUS]B to select for DELETION 
[NEXT] 

 
[ANALYZE]B  →  [SELECT]B  →  (Change any blanks as needed)   →   
        Scrolls through  [MENU]B  →  [l]S DELETE 
  ID Code, Weight, P Factor 
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[EXIT] B TO MAIN MENU 

 
7. To Run Samples: 

 
Weigh ~0.5000 g of sample into gel cap. 
 
Under the ANALYZE menu, press SELECT to obtain  
”Weight Input” 
 
[l]S   →   [WEIGHT]S*   →   [SELECT]B**   →   [NEXT]B    →   [WEIGHT]S   →   
Press #1            Press 1x to enter    Enter 2nd wt of 
(ANALYZE)         Sample 
 
 [NEXT]B   →   [ENTER REMAINDER OF SAMPLES]S   →    [START]B 
Enter 2nd        (Maximum sample number is 10)    Runs samples 
Sample 
 
*Enter weight of sample. 
**Press 1, 2 etc.times and input ID Code, i.e. “Oats” or other sample name. 
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APPENDIX E 

 
HUNTER LAB MINI SCAN XE PLUS STANDARD OPERATING 

PROCEDURES 
 
** Always handle the black and white standardization plates with care.  Do not 
scratch or chip them. 
Plug Mini Scan into electrical outlet. 
Wrap PVC overwrap over aperture insuring a smooth, tight fit.  Also wrap the 
black and white standardization plates with PVC overwrap.  Make sure there are 
no air bubbles or wrinkles on the surface of the plates where the readings will be 
taken. 
Wipe the black plate with a Kimwipe to insure it is clean and place the black 
plate on the circle of the calibration tile holder. 
Place the Mini Scan on the calibration tile holder so the two rubber feet are in 
the two holes of the holder and the aperture is centered on the black plate.  The 
aperture should fit flatly on the black plate to insure that there is no interference 
when taking readings. 
Push the lightning bolt key on the Mini Scan to turn the unit on. 
Make sure that the XYZ values on the screen correspond to the XYZ values 
listed on the back of the white plate. 
You are now ready to standardize the unit.  Press the lightning bolt key and the 
Mini Scan will read the black plate. 
When the reading is complete, the screen will indicate that the machine is ready 
to read the white plate. 
Remove the black plate from the calibration tile holder and replace it with the 
white plate.  Wipe the white plate with a Kimwipe.  Make sure that the aperture 
of the Mini Scan sits flatly on the white plate. 
Press the lightning bolt key to read the white plate. 
Press the lightning bolt key three times and the MiniScan will be ready to read 
the first sample. 
The Tristimulus values L*a*b* will be recorded. 
Position the aperture of the Mini Scan on the part of the meat sample to be 
tested.  Be sure that the aperture fits flatly on the meat but do not apply 
pressure.  The spot to be tested should be representative of the steak muscle 
tissue.  There should not be a lot of connective tissue, seam fat or subcutaneous 
fat where the color reading is taken. 
To take a reading, press the lightning bolt key. 
Record the L*a*b* values and press the lightning bolt key again to take a second 
reading of exactly the same spot on the meat sample.  
Record the L*a*b* values and take a third reading by pressing the lightning bolt 
key. 
Record the L*a*b* values and press the lightning bolt key to display the average 
values.  Record these values. 
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Press the lightning bolt key again to display the standard deviations.  Record 
these values. 
The Mini Scan is now ready to read the next sample.  Repeat the process. 
Before taking readings on the second meat sample, make sure that the PVC 
overwrap covering the aperture is clean and free of fat or anything that might 
interfere with a clean reading. 
When all readings are complete, unplug it from the electrical source. 
Be sure that the Mini Scan is clean and that the aperture is clean before putting 
the machine away. 
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APPENDIX F 

 
LIPID OXIDATION ANALYSIS PROCEDURE 

FOR UNCURED MEATS 
Apparatus: 
500 or 800 ml Kjeldahl flasks    400 ml beakers 
Spectrophotometer with 1 cm cells   Screw cap test tubes 
Hot plate or Bunsen burner    Test tube rack 
Waring Blender     Graduated cylinder 
Boiling chips      Timer 
250 ml beakers     Pipette 
Balance / Scale 
 
Reagents: 
0.02 M 2-Thiobarbituric Acid (1.442 g 2-Thiobarbituric acid in 500 ml distilled 

water).  Heat just enough to dissolve, DO NOT BOIL. 
0.5% Propyl gallate (PG) and 0.5% ethylenediamine tetraacetic acid (EDTA) 

solution (5g PG + 5 g EDTA made up to 1 liter distilled water, heat just 
enough to dissolve, DO NOT BOIL). 

4 N HCL (1 volume concentrated HCL and 2 volumes of distilled water) or (384 g 
conc. HCL in 1 liter dd-water) 

Slipicone® Spray (reduces foaming) 
PROCEDURE: 
Sample/Extraction Solution Combinations for Decreasing Sample Sizes (for Step 
#1) 
________________________________________________________________
________ 
Meat (g)   60 50 40 30 20 10 2 
dd-water (ml)  90 75 60 45 30 15 3 
PG + EDTA (ml) 30 25 20 15 10 5 1 
________________________________________________________________
________ 
(First choice of reagents is in Bold) 

1. Blend 60 g of meat with 90 ml of 50oC distilled water and 30 ml of 
0.5% solution of PG and EDTA for 2 min. 

2. Weight 30 g of slurry into a 250 ml beaker. 
3. Quantitatively transfer beaker contents into a 500 ml Kjeldahl flask 

rinsing with 77.5 ml of 50oC distilled water. 
4. Add 2.5 ml of 4 N HCL to the Kjeldahl flask along with 5-6 boiling 

chips.  Spray Slipicone® into the neck of the Kjeldahl flask. 
5. Turn on cooling water in the distillation unit. 
6. Connect the flask to the Kjeldahl distillation unit.  Turn on heat and 

collect 50 ml of distillate (12 – 15 min) in a graduated cylinder. 
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7. Remove distillate and replace with a beaker containing 400 ml of 
distilled water.  Turn off the heat and allow water to be drawn back 
through the distillation apparatus.  Then turn off the cooling water. 

8. Add 5 ml of the distillate to a screw cap test tube along with 5 ml of the 
0.02 M TBA reagent.  Mix and heat in boiling water for 35 min to 
develop the color.  For the blank, use 5 ml distilled water + 5 ml TBA 
reagent and heat with sample. 

9. Cool in tap water for 10 min, place sample in a cuvette, then read the 
sample absorbance in the spectrophotometer at 530 nm.  Then blank 
should be read first and set at 0 absorbance. 

 
NOTE:  For accurate results, a standard curve should be run for quantities of 
malonaldehyde over the expected range of values. 
 
CALCULATION OF TBA NUMBER: 
TBA number = O.D. x K  
Where K = 7.8, which was determined for the distillation set up in the lab. 
Specifically, 
TBA number = Abs 530λ x 7.8 (conversion factor) mg malonaldehyde/kg 
sample 
Standard deviations of the duplicates should be approximately ±0.2 TBA Value. 
Slight changes occur in the K value from laboratory to laboratory.  Therefore, the 
K value or standard curve for known dilutions of 1, 1, 3, 5 tetraethyoxypropane 
should be calculated in each laboratory.  K=7.0 is an average value that can be 
used but may not be the most accurate (Tarladgis et al., 1960). 
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APPENDIX G 

 
CRUDE MOISTURE AND  FAT DETERMINATION – AOAC PROCEDURE 

EQUIPMENT: 
Whatman® filter paper, 22 x 40 mm 
Stapler 
Desiccator with desiccant 
Tongs 
Analytical balance/ Scale 
Convection oven 
Soxhlet apparatus 
Fume hood 
Boiling chips 
 
REAGENTS: 
Ether (diethyl or petroleum) 
 
PROCEDURE: 

1. Construct thimbles from Whatman 22 x 40 mm filter paper folded into 
a sleeve open at one end and stapled at the other end.  Dry thimbles 
overnight at 100oC using air dry oven.  (Samples dried previously by 
the Air Oven method may be used.) 

2. Cool thimbles in desiccator for 30 minutes. 
3. Weigh thimble and record the weight (Beginning thimble weight).  Put 

2 to 3 grams of stirred sample into the thimble and seal.  Record the 
weight to the nearest 0.0001 g (Beginning thimble and sample 
weight). 

4. Dry overnight at 100oC. 
5. Cool in desiccator for at least 30 minutes prior to reweighing. 
6. Weigh the sample and record the weight (Dried thimble and sample 

weight will be used to calculate percent moisture). 
7. Extract on the Soxhlet apparatus for 12 hours at an ether (diethyl or 

petroleum) drip rate of approximately 4 drops per second. 
8. Allow sample to evaporate under the hood until thoroughly dry (no 

detectable ether odor) ** This is very important to avoid an explosion 
or flash fire** 

9. Dry in the oven overnight at 100oC. 
10. Cool in the desiccator of 30 minutes or until the sample cools to room 

temperature (this could be a long as one hour). 
11. Weigh the sample and record (Fat free thimble and sample weight). 

 
CALULATIONS: 
Percent Moisture = 100 (B-C)  
     A 
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Where : A = Sample weight 
B = Weight of dish/thimble + sample before drying 
C = Weight of dish/thimble + sample after drying 

 
Percent Fat Content = (B-C)  x  100 
       A 
Where: A = Sample Weight 
  B = Dried thimble and sample weight 
  C = Fat free thimble and sample weight 
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