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ABSTRACT

Analysis of a PML Method Applied to Computation of Resonances in Open

Systems and Acoustic Scattering Problems. (August 2009)

Seungil Kim, B.S., Seoul National University;

M.S., Seoul National University

Chair of Advisory Committee: Dr. Joseph E. Pasciak

We consider computation of resonances in open systems and acoustic scattering

problems. These problems are posed on an unbounded domain and domain truncation

is required for the numerical computation. In this paper, a perfectly matched layer

(PML) technique is proposed for computation of solutions to the unbounded domain

problems.

For resonance problems, resonance functions are characterized as improper eigen-

function (non-zero solutions of the eigenvalue problem which are not square inte-

grable) of the Helmholtz equation on an unbounded domain. We shall see that the

application of the spherical PML converts the resonance problem to a standard eigen-

value problem on the infinite domain. Then, the goal will be to approximate the eigen-

values first by replacing the infinite domain by a finite computational domain with

a convenient boundary condition and second by applying finite elements to the trun-

cated problem. As approximation of eigenvalues of problems on a bounded domain

is classical [12], we will focus on the convergence of eigenvalues of the (continuous)

PML truncated problem to those of the infinite PML problem. Also, it will be shown

that the domain truncation does not produce spurious eigenvalues provided that the

size of computational domain is sufficiently large.

The spherical PML technique has been successfully applied for approximation

of scattered waves [13]. We develop an analysis for the case of a Cartesian PML
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application to the acoustic scattering problem, i.e., solvability of infinite and truncated

Cartesian PML scattering problems and convergence of the truncated Cartesian PML

problem to the solution of the original solution in the physical region as the size of

computational domain increases.
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CHAPTER I

INTRODUCTION

Wave phenomena in many applications take place in unbounded domains. For the

numerical study of the wave propagation it is required to truncate the unbounded

domain to a finite region of computational interest. For this purpose many numerical

techniques have been proposed, and over the last decay a fictitious layer technique,

so-called a perfectly matched layer (PML), has attracted attention of mathematicians,

physicists and engineers and has been successfully applied to many wave propagation

problems.

In this dissertation, we investigate the application of PML techniques to com-

pute resonances in open systems and solve acoustic scattering problems. Resonance

problems in open systems are important since they arise in many applications, for

example, the modeling of slat and flap noise from an airplane wing, designing pho-

tonic band gap devices for wave guides and quantum mechanical systems. Scattering

theory is a framework to study and understand the acoustic properties of objects and

shape recognition from scattered fields.

These problems are set on an unbounded domain and, in case of resonances,

have solutions which grow exponentially at infinity. For approximation of solutions

to problems posed on an unbounded domain, domain truncation is required. For

this purpose many numerical methods have been designed, including boundary ele-

ment methods [17, 33, 39], infinite element methods [11, 28] and artificial boundary

condition approaches [8, 25, 26, 32, 42].

The original PML technique was introduced by Bérenger in the seminal papers

The dissertation model is SIAM Journal on Numerical Analysis.
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[9, 10]. PML is a domain truncation approach which involves the use of a fictitious

absorbing layer outside of the region of computational interest. A properly defined

PML method absorbs waves propagating into it without producing spurious reflections

and results in an exponentially decaying solution. Because of this exponential decay

it is natural to truncate the problem to a bounded domain with a convenient outer

boundary condition, e.g., a homogeneous Dirichlet boundary condition. The PML

technique has been applied to approximation of solutions to Maxwell’s equations

[9, 10, 13, 14, 20], elasticity problems [15, 34] and acoustic resonances [35, 36] as well

as acoustic scattering problems [13, 43].

PMLs are classified according to shapes of the layers, e.g., spherical/cylindrical

PML, Cartesian PML or elliptical PML. Initially, the PML technique was introduced

by Bérenger for electromagnetic scattering problems on unbounded domains in Carte-

sian coordinates [9, 10]. Subsequently, Chew and Weedon [18] interpreted it using

a complex coordinate stretching for each component in Cartesian coordinates. In

[20, 43] a coordinate stretching viewpoint for PMLs was extended to a curvilinear

coordinate system. A more general PML with a convex geometry was developed in

[44].

First, we consider application of a spherical/cylindrical PML to resonance prob-

lems in three dimensional space. The model operators of resonance problems are a

perturbation of the negative Laplacian, i.e.,

L = −∆ + L1

where L1 is symmetric and supported in a compact set in R3. Resonance functions

are characterized as non-zero solutions ψ to

Lψ = k2ψ
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with an outgoing condition at infinity, and their k in the problem are called reso-

nances. A resonance value k corresponds to an improper eigenvalue problem, and the

corresponding eigenvector (resonance function) grows exponentially.

There are two difficulties in computing resonances. One is that the problem is

posed on the infinite domain, and the other is that resonance functions grows rapidly

at infinity. In order to circumvent these difficulties the PML technique is utilized. In

time dependent wave propagation problems one introduces a wave number dependent

PML stretching which results in wave number independent decay. In contrast, for res-

onance problems we define a PML stretching which is independent of wave numbers,

yielding wave number dependent decay. For this reason, the wave number indepen-

dent PML stretching provides certain resonance functions with stronger exponential

decay than their exponential growth. This stronger exponential decay changes the

resonance functions of the original problem to eigenfunctions of the PML problem (on

the infinite domain). In other words, the application of PML converts the resonance

problem to a standard eigenvalue problem (on the infinite domain). The exponential

decay of PML eigenfunctions enables us to truncate the problem to a finite domain,

and impose a convenient boundary condition on the artificial boundary, which reduces

the eigenvalue problem on the infinite domain to one on a finite domain.

The numerical approximation of resonance values consists of two steps: the first

step is domain truncation which converts the infinite domain eigenvalue problem to

one on truncated domains and the second is the finite element approximation on

the truncated domain. As the convergence of the eigenvalues associated with the

finite element approximation to those of the PML problem on the truncated domain

is standard (See, e.g., [12]), we will focus on the convergence of eigenvalues of the

truncated PML problem to those of the infinite PML problem as the truncated domain

is increasing.
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The second part of this dissertation introduces the analysis of a Cartesian PML

approximation of acoustic scattering problems in R2

−∆u− k2u = 0 in Ω̄c,

u = g on ∂Ω,

lim
r→∞

r1/2

∣∣∣∣
∂u

∂r
− iku

∣∣∣∣ = 0.

Here k is real and positive and Ω is a bounded domain with a Lipschitz continuous

boundary contained in the square† [−a, a]2 for some positive a.

The application of spherical/cylindrical PML to the acoustic scattering problem

is well understood [13, 43], but unfortunately the compact perturbation argument

[47, 54], that was used in [13], is not applicable to the problem reformulated in terms

of a Cartesian PML. We need to follow a significantly different approach to establish

well-posedness of the Cartesian PML problem.

The first important ingredient for the analysis is the construction of solutions to

the PML equation in terms of integrals. In the case of the Helmholtz equation with a

real and positive wave number k, these results are classical. These results are alluded

to for the PML Helmholtz equation based on a smooth convex geometry by Lassas

and Somersalo [44]. Such results are needed for proving uniqueness and exponential

decay of solutions to the PML problem on the infinite domain.

Another critical component for the analysis is examination of the essential spec-

trum of the Cartesian PML operator. By identifying the essential spectrum of the

Cartesian PML operator, we will show that any point on the real axis excluding the

origin is either in the resolvent set or is in the discrete spectrum (i.e., an isolated

point of spectrum of finite algebraic multiplicity). Once uniqueness of solutions is

†We consider a domain in R2 for convenience. The extension to domains in R3 is
completely analogous.
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established for all real k 6= 0, we conclude stability of the PML scattering problem on

the infinite domain. This is one of the main ingredients in the subsequent analysis of

the truncated Cartesian PML problem.

Finally, the outline of this dissertation follows. In Chapter II we introduce

Sobolev spaces, traces and regularity results. From Chapter III through Chapter VI

we study an application of spherical PML to compute resonances in open systems.

Chapter III introduces the Helmholtz equation and an outgoing condition, and finds

two important representations of solutions to the Helmholtz equation with the out-

going condition. In Chapter IV we define a perfectly matched layer in terms of a

complex coordinate stretching in spherical geometry and reformulate the original res-

onance problem into a weak form in the spherical PML framework. Also, we establish

a one-to-one correspondence between some of resonance values of the original problem

and eigenvalues of the spherical PML problem (on the infinite domain), and verify

exponential decay of generalized eigenfunctions of the spherical PML problem. Chap-

ter V shows that the truncated PML problem does not produce spurious eigenvalues

provided that the truncated domain is large enough, and that its generalized eigen-

functions decay exponentially. In Chapter VI, as the main result, we prove that the

eigenvalues of truncated problems converges to those of the infinite PML problem as

the size of the computational domain increases. The numerical results illustrating the

theory will be provided here.

From Chapter VII through Chapter IX we study an analysis of a Cartesian PML

approximation to acoustic scattering problems in R2. In Chapter VII we reformulate a

model problem with a Cartesian PML and find a fundamental solution of a Cartesian

PML Helmholtz equation and its exponential decay. Chapter VIII examines the

essential spectrum of the Cartesian PML associated with the scattering problem. As

the main result, Chapter IX shows the solvability of the Cartesian PML problem in
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both of infinite and truncated domains. Here we prove that exponential convergence

of solutions to truncated problems to those of the infinite domain problem as the

thickness of PML increases. This chapter concludes with the numerical experiments

that illustrate the convergence of finite element PML approximations
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CHAPTER II

PRELIMINARIES

In this chapter, we recall the definition and properties of Sobolev spaces, trace the-

orems and regularity for second-order elliptic problems to be used throughout this

dissertation. We shall start with defining Sobolev spaces and introduce a Sobolev

embedding theorem. A trace theorem and interior and global regularity theorem will

be stated here. The results quoted can be found in [2, 19, 27, 29, 31].

A. Sobolev spaces

Let Ω be an open subset of RN and ∂Ω denote the boundary of Ω. Here N is the

space dimension. Ck(Ω) is denoted by the set of functions defined on Ω which have

continuous k-th order derivatives. For 1 ≤ p <∞, the Lp(Ω) space is a Banach space

of the functions on Ω with the norm

‖u‖Lp(Ω) :=

(∫

Ω

|u(x)|p dx

)1/p

.

We define a multi-index α = (α1, α2, . . . , αN) where αi is a non-negative integer

for i = 1, 2, . . . , N . The length of α is defined by |α| =
∑N

i=1 αi. With this multi-index

let

Dα =
∂|α|

∂xα1

1 ∂xα2

2 · · ·∂xαN
N

denote the weak derivatives.

Definition II.1. Let Ω be an open subset of RN . For a non-negative integer k and

1 ≤ p < ∞, the Sobolev space W k,p(Ω) consists of functions u such that for each

multi-index α with |α| ≤ k, Dαu exists in the weak sense and belongs to Lp(Ω).



8

The Sobolev space W k,p(Ω) is equipped with the norm

‖u‖W k,p(Ω) :=




∑

|α|≤k

∫

Ω

|Dαu|p dx




1/p

.

W k,p(Ω) is a Banach space with the norm defined above. If p = 2, in particular, then

W k,2(Ω) is commonly written as Hk(Ω) for k = 0, 1, . . .. In this case, Hk(Ω) is a

Hilbert space with the corresponding inner product

(u, v)Hk(Ω) =
∑

|α|≤k

∫

Ω

DαuDαv dx.

We define W k,p
0 (Ω) to be the closure of C∞

0 (Ω), the space of infinitely differentiable

functions on Ω whose support is compact, in W k,p(Ω). In case of p = 2, we write

Hk
0 (Ω) = W k,2

0 (Ω) for k = 0, 1, . . . .

For a non-integer k = m+ s with m being a non-negative integer and 0 < s < 1,

the Sobolev space W k,p(Ω) is defined as the set of functions u which are bounded

with respect to the Sobolev norm

‖u‖W k,p(Ω) :=


‖u‖p

W m,p(Ω) +
∑

|α|=m

∫

Ω

∫

Ω

|Dαu(x) −Dαu(y)|p
|x− y|N+sp

dxdy




1/p

.

See [2, 19, 27, 29] for properties of Sobolev spaces. Here, we recall a Sobolev em-

bedding theorem that describes continuous inclusions between certain Sobolev spaces.

We assume that the boundary of the domain Ω under consideration is regular in the

following sense: (It is taken from [31])

Definition II.2. Let Ω be an open subset of RN . We say that its boundary Γ is

Lipschitz-continuous (m times continuously differentiable or Cm) if for every x ∈ Γ

there exists a neighborhood O of x in RN and new orthogonal coordinates {y1, . . . , yN}

such that
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(a) O is an hypercube in the new coordinates:

O = { (y1, . . . , yN) | − aj < yj < aj , 1 ≤ j ≤ N},

(b) there exists a Lipschitz-continuous (m times continuously differentiable or Cm)

function ϕ, defined in

O′ = { (y1, y2, . . . , yN−1) | − aj < yj < aj, 1 ≤ j ≤ N − 1}

and such that

|ϕ(y′)| ≤ aN/2 for every y′ = (y1, y2, . . . , yN−1) ∈ O′,

Ω ∩O = { y = (y′, yN) ∈ O | yN < ϕ(y′)},

Γ ∩O = { y = (y′, yN) ∈ O | yN = ϕ(y′)}.

In other words, a Lipschitz-continuous boundary is thought as locally being a

graph of a Lipschitz-continuous function. We shall that Ω is Lipschitz-continuous

when it has a Lipschitz-continuous boundary.

Finally, we need Hölder spaces to state the Sobolev embedding theorem. For any

non-negative integer k and 0 < γ ≤ 1, Ck,γ(Ω̄) denotes the space of all functions in

Ck(Ω̄) whose k-th derivatives satisfy a Hölder’s condition with exponent γ: there is

a non-negative constant C such that for x, y ∈ Ω and |α| = k,

|Dαu(x) −Dαu(y)| ≤ C|x− y|γ.

The space Ck,γ(Ω̄) is a Banach space with the norm

‖u‖Ck,γ(Ω̄) :=
∑

|α|≤k

sup
x∈Ω

|u(x)| +
∑

|α|=k

sup
x,y∈Ω
x 6=y

{ |Dαu(x) −Dαu(y)|
|x− y|γ

}
.

Theorem II.3. Let Ω be a Lipschitz-continuous and bounded domain in R
N . For all
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integer k ≥ 0 and all 1 ≤ p <∞, the following inclusion holds:

W k,p(Ω) ⊂





Lp∗(Ω) with 1
p∗

= 1
p
− k

N
, if k < N

p
,

Lq(Ω) for all q ∈ [1,∞), if k = N
p
,

C0,k−N/p(Ω̄), if N
p
< k < N

p
+ 1,

C0,γ(Ω̄) for all 0 < γ < 1, if k = N
p

+ 1,

C0,1(Ω̄), if N
p

+ 1 < k.

This embedding theorem implies that in R1 the functions in H1(Ω) are continu-

ous, whereas in R
2 or R

3 this may not hold. If N = 2 or 3 then functions in H2(Ω)

are continuous.

B. Trace theorems

Functions on Lipschitz-continuous boundaries will play an important role throughout

this dissertation . In this section, we define Sobolev spaces on a Lipschitz-continuous

boundary and discuss the boundary values of functions defined on Lipschitz-continuous

bounded domains.

Definition II.4. Assume that Ω be a Lipschitz-continuous bounded domain of RN

with a boundary Γ. Let Φ be a function defined on O′ by

Φ(y′) = (y′, ϕ(y′))

with ϕ given in Definition II.2. A function u on Γ belongs to W k,p(Γ) for 0 ≤ k ≤ 1

if u ◦ Φ belongs to W k,p(O′ ∩ Φ−1(Γ ∩ O)) for all possible O and ϕ fulfilling the

assumption of Definition II.2.

Let (Oj ,Φj)1≤j≤J be any atlas of Γ such that each (Oj,Φj) satisfies the assump-
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tions of Definition II.4. One possible Banach norm on W k,p(Γ) is

u 7→
(

J∑

j=1

‖u ◦ Φj‖p
W k,p(O′

j∩Φ−1(Γ∩O′

j))

)1/p

. (II.1)

In case when 0 < k < 1, the norm defined in (II.1) is equivalent to

u 7→
(∫

Γ

|u|p dS +

∫

Γ

∫

Γ

|u(x) − u(y)|p
|x− y|N−1+kp

dSxdSy

)1/p

,

where dS denotes the surface measure of Γ [31].

Theorem II.5. Let 1 ≤ p < ∞ and Ω be a Lipschitz-continuous bounded domain

with a boundary Γ. Let q denote the number such that 1/p + 1/q = 1. Then there

exists a linear operator

γ0 : W 1,p(Ω) →W 1/q,p(Γ)

such that

(i) γ0 is surjective,

(ii) ‖γ0(u)‖W 1/q,p(Γ) ≤ C‖u‖W 1,p(Ω),

(iii) γ0(u) = u|Γ if u ∈W 1,p(Ω) ∩ C1(Ω̄),

(iv) The kernel of γ0 is W 1,p
0 (Ω).

The constant C in (ii) depends only on p and Ω.

If p = 2, we set H1/2(Γ) = W 1/2,2(Γ). Every function in H1/2(Γ) is a trace of a

function in H1(Ω). In addition, the subjectivity of the trace operator and the open

mapping theorem implies the following corollary.

Corollary II.6. Let 1 ≤ p < ∞ and Ω be a Lipschitz-continuous bounded domain

with a boundary Γ. Let q denote the number such that 1/p + 1/q = 1. Then there
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exists a constant C such that for f ∈W 1/q,p(Γ) there exists uf ∈W 1,p(Ω) satisfying

γ0(uf) = f and ‖uf‖W 1,p(Ω) ≤ C‖f‖W 1/q,p(Γ).

C. Regularity

In this section, we shall introduce the interior and global regularity results of uniformly

elliptic operators of the form

L(u) = −
N∑

i,j=1

∂

∂xi

(aij(x)
∂

∂xj

u) +
N∑

i=1

bi(x)
∂

∂xi

u+ c(x)u,

with
N∑

i,j=1

aij(x)ξiξj ≥ λ|ξ|2, for all x ∈ Ω, ξ ∈ R
N . (II.2)

We will state the regularity results. See e.g., [27, 29] for detail.

Theorem II.7. Let Ω be an open subset of RN . Let u ∈ H1(Ω) be a weak solution

of the equation Lu = f in Ω where L is strictly elliptic in Ω, the coefficients aij

for i, j = 1, . . . , N are uniformly Lipschitz continuous in Ω, the coefficients bi, c for

i = 1, . . . , N are essentially bounded in Ω and the function f is in L2(Ω). Then for

any subdomain Ω′ ⊂⊂ Ω (strictly contained in Ω), we have u ∈ H2(Ω′) and

‖u‖H2(Ω′) ≤ C(‖u‖H1(Ω) + ‖f‖L2(Ω)) (II.3)

for C = C(N, λ,K, l), where λ is given by (II.2),

K = max{‖ai,j‖C0,1(Ω̄), ‖bi‖L∞(Ω), ‖c‖L∞(Ω)} and l = dist(Ω′, ∂Ω).

Furthermore, u satisfies the equation

Lu = −
N∑

i,j=1

(
aij ∂2

∂xi∂xj

u+

(
∂

∂xi

aij

)
∂

∂xj

u

)
+

N∑

i=1

bi
∂

∂xi

u+ cu = f
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almost everywhere in Ω.

We note that in the estimate (II.3), ‖u‖H1(Ω) may be replaced by ‖u‖L2(Ω). Under

an appropriate smoothness condition on the boundary Γ of Ω the preceding interior

regularity result can be extended to all of Ω.

Theorem II.8. Let us assume, in addition to the hypothesis of Theorem II.7, that Γ

is of class C2 and that there exists a function φ ∈ H2(Ω) for which u − φ ∈ H1
0 (Ω).

Then we have also u ∈ H2(Ω) and

‖u‖H2(Ω) ≤ C(‖u‖L2(Ω) + ‖f‖L2(Ω) + ‖φ‖H2(Ω))

where C = C(N, λ,K, ∂Ω).

In case when we assume Ω to be convex without the assumption of smoothness

of the domain, we again obtain the regularity of the solution to the Poisson problem.

See e.g., [31, 40]

Theorem II.9. Let Ω be a convex, bounded and open subset of RN . Then for each

f ∈ L2(Ω), there exists a unique u ∈ H2(Ω) satisfying

∆u = f in Ω,

u = 0 on Γ.

Moreover, there exists a constant C = C(Ω) such that

‖u‖H2(Ω) ≤ C‖f‖L2(Ω).
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CHAPTER III

THE HELMHOLTZ EQUATION AND OUTGOING RADIATION CONDITION

In this chapter we introduce the Helmholtz equation and define an outgoing radiation

condition. As model problems under consideration reduce to the Helmholtz equation

on the outside of a bounded domain, understanding solutions to the Helmholtz equa-

tion is important. We introduce two ways to describe solutions to the Helmholtz

equation. One is a series representation using spherical Hankel functions and spher-

ical harmonics. The other is an integral formula using the fundamental solution to

the Helmholtz equation. These representation formulae will be used to develop the

computational technique based on PML. In addition to the Helmholtz equation, reso-

nance functions satisfy a certain outgoing radiation condition at infinity. This is also

discussed in this chapter.

A. The Helmholtz equation and model problems

Consider the wave equation

∆U(x, t) =
1

c2
∂2

∂t2
U(x, t).

Here c is the speed of a wave such as light or sound. U is a velocity potential and

has a relation with the velocity field v and pressure p as follows:

v =
1

ρ0
∇U, p = −∂U

∂t
(III.1)

with the density ρ0 at a steady state. If we assume that solutions of the wave equation

are time-harmonic, then solutions are of the form U(x, t) = u(x)e±iωt with frequency

ω. There are two choices of a time dependence of e±iωt. The choice is arbitrary as long

as it is used consistently. Substituting U(x, t) with u(x)e±iωt produces the Helmholtz
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equation

∆u+ k2u = 0,

where k = ω/c is called the wave number.

As a model problem, we shall consider a resonance problem in three dimensional

space which results from a compactly supported perturbation of the negative Lapla-

cian, i.e.,

Lu = −∆u + L1u,

where L1 is symmetric and lives on a bounded domain Ω ⊂ R
3. A resonance value

is defined as k such that there are non-trivial functions ψ satisfying

Lψ = k2ψ (III.2)

and an outgoing radiation condition corresponding to the wave number k. In Section C

we will discuss the outgoing radiation condition to be imposed on the model problem.

We note that the equation reduces to the Helmholtz equation outside of Ω. General

solutions to the Helmholtz equation are examined in the following sections.

The model problem has only the essential spectrum on [0,∞) and has no eigen-

values. It has resonance values instead of eigenvalues. We will see that resonance

functions of the model problem grow exponentially and hence can be thought as

“improper eigenfunctions”.

A simple example of the model problem is the problem that stems from classical

scattering theory such as the time-harmonic acoustic waves by a penetrable bounded

inhomogeneous medium and by a bounded impenetrable obstacle. In case of a pene-

trable bounded inhomogeneous medium, the problem is to find non-trivial solutions

ψ and k such that

∆ψ + k2a(x)ψ = 0 in R
3
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and ψ satisfies an outgoing radiation condition. Here a is the refractive index defined

by the ratio of the square of the phase velocity of a wave in a host medium to the

square of the phase velocity in the inhomogeneous medium, i.e., if c denotes the

phase velocity function on R
3 such that c is a constant c0 on the host medium, then

a = c20/c
2. The continuity of the pressure and of the normal velocity across the

interface leads to transmission conditions at the interface of two media:

• continuity of ψ (that is obtained from the continuity of pressure in (III.1)),

• continuity of c2
∂ψ

∂n
(that is obtained from the continuity of the normal velocity

across the interface in (III.1) and the fact that ρ0 is proportional to 1/c2).

A similar situation occurs in the study of a photonic crystal membrane resonator. In

this case the continuity of u and its normal derivative at the interface is required. Due

to variable dielectric constants in each medium this structure produces resonances.

In case of an impenetrable Lipschitz continuous obstacle Ω, the problem is to

find non-trivial solutions ψ and k such that

∆ψ + k2ψ = 0 in R
3 \ Ω̄,

∂ψ

∂n
= 0 on ∂Ω,

and ψ satisfies an outgoing radiation condition. This problem arises from, for example,

the study on aerodynamic noise such as slat and flap noise from an airplane wing.

On the other hand, resonance phenomenon occurs in quantum mechanics as well,

for instance, resonance values of a Schrödinger equation

−∆ψ + V ψ = k2ψ in R
3

with a compactly supported potential V . These resonances are identified as eigenval-

ues of a spectrally deformed Schrödinger operator and they are interpreted as states



17

with finite lifetimes of unstable atoms or molecules.

B. Series representation for solutions to the Helmholtz equation

We shall find a general solution to the Helmholtz equation in the exterior of a sphere

in R3. To do this, we first deliver a short description for spherical harmonics and

spherical Bessel functions.

Definition III.1. A spherical harmonic of order n is the restriction of a homogeneous

harmonic polynomial of degree n to the unit sphere.

Recall that in terms of spherical coordinates

∆ =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+ ∆S2,

where ∆S2 is the Laplace-Beltrami operator on the sphere or spherical Laplacian

defined by

∆S2 =
1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

(here θ represents the polar angle from z-axis and φ the azimuthal angle in xy-plane).

Every homogeneous polynomial of degree n is of the form Hn = rnYn(θ, φ). If Hn is

harmonic, i.e., ∆Hn = 0, then it satisfies

1

sin θ

∂

∂θ

(
sin θ

∂Yn

∂θ

)
+

1

sin2 θ

∂2Yn

∂φ2
= −n(n + 1)Yn.

In other words, the spherical harmonic Yn is an eigenfunction of the spherical Lapla-

cian ∆S2 on the unit sphere associated with the eigenvalue −n(n+1). Some important

properties of spherical harmonics are given in the following theorem (See, for instance,

[21]):

Theorem III.2. Let S2 be the unit sphere in R3.
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1. There exist exactly 2n+ 1 linearly independent spherical harmonics of order n,

which are denoted by Y m
n for −n ≤ m ≤ n.

2. Suitably normalized spherical harmonics Y m
n for n = 0, 1, 2, . . . , and |m| ≤ n

form an orthonormal basis in L2(S2).

We look for solutions to the Helmholtz equation of the form

u(x) = f(k|x|)Yn(x̂),

where Yn is a spherical harmonic of order n and x̂ = x/|x| for x 6= 0. u solves the

Helmholtz equation provided that f satisfies the spherical Bessel differential equation

r2f ′′(r) + 2rf ′(r) + (r2 − n(n + 1))f(r) = 0.

There are two linearly independent solutions jn and yn to the spherical Bessel differ-

ential equation, which are called spherical Bessel functions of order n. jn and yn are

defined recursively by the formula: for fn = jn or fn = yn and for n = 1, 2, . . .,

fn−1(r) + fn+1(r) = (2n+ 1)r−1fn(r)

with

j0(r) =
sin r

r
, j1(r) =

sin r

r2
− cos r

r

y0(r) = −cos r

r
, y1(r) = −cos r

r2
− sin r

r
.

The linear combinations

h1
n = jn + iyn, h2

n = jn − iyn

are called spherical Hankel functions of the first kind and second kind of order n,

respectively. See e.g., [1, 21] for properties of the spherical Hankel functions.

We give a brief description of properties that are required to develop our theory.
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The spherical Hankel functions are of the form

h1
n(r) = (−i)n e

ir

ir

{
1 +

n∑

p=1

apn

rp

}
, h2

n(r) = in
e−ir

−ir

{
1 +

n∑

p=1

āpn

rp

}
(III.3)

with complex coefficients a1n, . . . , ann. The recursive formula for the spherical Bessel

functions implies

h2
2n(−r) = h1

2n(r) and h2
2n−1(−r) = −h1

2n−1(r) (III.4)

for n = 0, 1, 2, . . .. From (III.3) the asymptotic behavior of the spherical Hankel

functions for large argument is obtained:

hl
n(r) =

1

r
e±i(r−nπ

2
−π

2
)

{
1 +O

(
1

r

)}
, r → ∞, (III.5)

hl
n

′
(r) =

1

r
e±i(r−nπ

2
)

{
1 +O

(
1

r

)}
, r → ∞ (III.6)

with l = 1, 2. l = 1 is attached to the upper sign in the double signs and the lower

sign for l = 2.

We shall be interested in C2 solutions to the Helmholtz equation on domains

away from the origin. It is enough to find solutions on an annulus Ar0,r1
= {x ∈ R3 :

r0 < |x| < r1} with any two positive numbers r0 < r1. From here on, r denotes the

distance from the origin to x, and x̂ = x/|x| for x 6= 0.

Theorem III.3. Let k be a complex number in C \R−. Suppose that u ∈ C2(Ār0,r1
).

If u satisfies the Helmholtz equation in Ar0,r1
, then u is of the form

u(x) =
∞∑

n=0

n∑

m=−n

(an,mh
1
n(k|x|) + bn,mh

2
n(k|x|))Y m

n (x̂). (III.7)

The series converges in L2 sense on |x| = r with r0 ≤ r ≤ r1 and in L2(Ar0,r1
).

Proof. Since the spherical harmonics comprise an complete orthonormal system, u
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can be written as

u(x) =
∞∑

n=0

n∑

m=−n

fn,m(r)Y m
n (x̂)

with

fn,m(r) =

∫

S2

u(rx̂)Y m
n (x̂) dx̂.

Here the series converges in L2 sense on each |x| = r with r0 ≤ r ≤ r1 and dx̂ is

the surface element on the unit sphere. Since the integrand in the integral above is

C2(Ar0,r1
), fn,m is in C2((r0, r1)). Moreover, fn,m satisfies

r2f ′′
n,m(r) + 2rf ′

n,m(r) + (r2k2 − n(n + 1))fn,m(r) = 0. (III.8)

Indeed, consider χ ∈ C∞
0 ((r0, r1)) and define χ̃(x) = χ(|x|)Y m

n (x̂) ∈ C∞
0 (Ar0,r1

). Us-

ing the integration by parts with respect to r and the orthonormality of the spherical

harmonics,

0 =

∫

Ar0,r1

(∆u+ k2u) χ̃dx

=

∫

S2

∫ r1

r0

u(rx̂)

[
d

dr

(
r2dχ

dr
(r)

)
Y m

n (x̂) − n(n + 1)χ(r)Y m
n (x̂) + r2k2χ(r)Y m

n (x̂)

]
drdx̂

=

∫ r1

r0

fn,m(r)

[
d

dr

(
r2dχ

dr
(r)

)
− n(n + 1)χ(r) + r2k2χ(r)

]
dr

=

∫ r1

r0

[
r2d2fn,m

dr2
(r) + 2r

dfn,m

dr
(r) +

(
r2k2 − n(n + 1)

)
fn,m(r)

]
χ(r) dr. (III.9)

Since (III.9) holds for any χ ∈ C∞
0 ((r0, r1)), we obtain (III.8).

The initial value problem (III.8) with the initial conditions

fn,m(r0) =

∫

S2

u(r0x̂)Y
m
n (x̂) dx̂ and f ′

n,m(r0) =

∫

S2

∂u

∂r
(r0x̂)Y

m
n (x̂) dx̂ (III.10)

has a unique solution. It follows that fn,m is of the form

fn,m(r) = an,mh
1
n(kr) + bn,mh

2
n(kr)
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for some constants an,m and bn,m.

If un is a partial sum of the series, then by the Parseval’s theorem

‖u(r, ·) − un(r, ·)‖2
L2(S2) ≤ ‖u(r, ·)‖2

L2(S2) for each r ∈ [r0, r1].

Since the right-hand function ‖u(r, ·)‖2
L2(S2) is integrable over [r0, r1], by the domi-

nated convergence theorem

lim
n→∞

∫

Ar0,r1

|u(x) − un(x))|2 dx = lim
n→∞

∫ r1

r0

‖u(r, ·) − un(r, ·)‖2
L2(S2)r

2 dr

=

∫ r1

r0

lim
n→∞

‖u(r, ·) − un(r, ·)‖2
L2(S2)r

2 dr

= 0,

which shows the convergence of un in L2(Ar0,r1
).

C. Outgoing radiation condition

For a spherical harmonic Yn, there are two types of solutions to the Helmholtz equa-

tion:

u(x) = h1
n(k|x|)Yn(x̂) and v(x) = h2

n(k|x|)Yn(x̂).

When we determine whether a wave is incoming or outgoing, we need to go to the time-

harmonic solutions to the wave equation. The leading terms of expression (III.3) of

h1
n and h2

n determine the behavior of the waves. The following are the leading terms

of the waves corresponding to h1
n(kr)e−iωt, h2

n(kr)e−iωt, h1
n(kr)eiωt and h2

n(kr)eiωt,
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respectively:

eikr−iωt

ikr
=
e−Im(k)(r−ct)

ikr
[cos(Re(k)(r − ct)) + i sin(Re(k)(r − ct))] , (III.11)

e−ikr−iωt

−ikr =
eIm(k)(r+ct)

−ikr [cos(Re(k)(r + ct)) − i sin(Re(k)(r + ct))] , (III.12)

eikr+iωt

ikr
=
e−Im(k)(r+ct)

ikr
[cos(Re(k)(r + ct)) + i sin(Re(k)(r + ct))] , (III.13)

e−ikr+iωt

−ikr =
eIm(k)(r−ct)

−ikr [cos(Re(k)(r − ct)) − i sin(Re(k)(r − ct))] . (III.14)

Among them, only h1
n(kr)e−iωt and h2

n(kr)eiωt are traveling out from the origin and

represent outgoing waves. Therefore, when a series representation (III.7) for solutions

is available, the expansion with spherical Hankel functions of the first kind

∞∑

n=0

n∑

m=−n

an,mh
1
n(kr)Y m

n (x̂) (III.15)

coupled with the time variable function e−iωt represents an outgoing wave. On the

other hand,
∞∑

n=0

n∑

m=−n

bn,mh
2
n(kr)Y m

n (x̂) (III.16)

coupled with eiωt is outgoing. Since (III.16) with wave number k can be written as

(III.15) with wave number −k, we will say that a solution to the Helmholtz equation

satisfies the outgoing radiation condition at infinity if it has a series representation

(III.15). This outgoing radiation condition will be imposed to the model problem.

Remark III.4. For k ∈ R, we have a uniqueness result for (III.2) with the outgoing

radiation condition (III.15) by the proof of Theorem IV.4 without an essential change.

If Im(k) > 0, then h1
n(kr) decays exponentially and hence solutions to (III.2) that

could be expanded as (III.15) away from the origin are square integrable. Since the

model problem has no non-trivial solutions in L2(R3), resonance values must appear



23

in the region of Im(k) < 0. The negative imaginary part of resonance values k makes

the waves associated with k grow exponentially at infinity at a fixed time but damped

at each point, where the series expansion is available, with time increasing by (III.11).

Remark III.5. If we choose (III.16) for a definition of an outgoing radiation con-

dition, then resonance values will be located in the region of Im(k) > 0. However,

the resonance functions pertained to k are identical to ones that are defined with the

outgoing radiation condition (III.15) with −k. Obviously, k and −k have the same

square and the resonance function is the improper eigenfunction to (III.2) associated

with k2. The important role of the definition of an outgoing radiation condition is

that functions satisfying an outgoing radiation condition are expanded with only one

type of spherical Hankel functions.

D. Green’s representation theorem

In this section we discuss an integral formula for solutions to the Helmholtz equation

with Im(k) ≥ 0. To do this, we first introduce a boundary condition at infinity.

For exterior problems, a boundary condition at infinity is required in order to have

uniqueness of solutions to the Helmholtz equation.

Definition III.6. Let u be a solution to the Helmholtz equation in the exterior of

a bounded domain. u is said to satisfy the Sommerfeld radiation condition provided

that u fulfills the condition

lim
r→∞

r

(
∂u

∂r
− iku

)
= 0 (III.17)

uniformly in all directions x̂ = x/|x|.

This condition was proposed by Sommerfeld [53] for a scattering problem for k

real and positive.



24

Assume that Im(k) ≥ 0. From (III.5)

dhl
n(kr)

dr
− ikhl

n(kr) = khl
n

′
(kr) − ikhl

n(kr)

= (∓i)nk
e±ikr

kr

{
1 +O

(
1

r

)}
− (∓i)nk

e±ikr

kr

{
1 +O

(
1

r

)}

= (∓i)ne±ikrO

(
1

r2

)

with l = 1, 2. It follows that h1
n(k|x|) satisfies the Sommerfeld radiation condition, but

h2
n(k|x|) does not. This condition gets rid of blowing-up functions h2

n(k|x|) and takes

decaying functions h1
n(k|x|). For Im(k) ≥ 0, the Sommerfeld radiation condition

(III.17) is equivalent to the series expansion (III.15) (See, e.g., [21]). In [22], it is

shown that the Sommerfeld radiation condition makes solutions decay and ensures

uniqueness for solutions to scattering problems.

The Green’s integral formula is deduced from the fundamental solution to the

Helmholtz equation

Φ(x, y) =
eik|x−y|

4π|x− y| ,

that satisfies

−∆Φ(x, y) − k2Φ(x, y) = δ(x− y),

where δ(x) is the Dirac delta function. There are two possible fundamental solution

to the Helmholtz equation:

eik|x−y|

4π|x− y| and
e−ik|x−y|

4π|x− y| .

Φ is the one satisfying the Sommerfeld radiation condition. Indeed, for a fixed y ∈ R3

∇xΦ(x, y) =

(
ik − 1

|x− y|

)
eik|x−y|

4π|x− y|
x− y

|x− y| ,
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and

|x− y| = |x| − x̂ · y +O

(
1

|x|

)
. (III.18)

Then

∂Φ

∂rx

(x, y) − ikΦ(x, y)

= ik

(
(x− y) · x
|x− y||x| − 1

)
eikr

4π|x− y| −
eik|x−y|

4π|x− y|2
(x− y) · x
|x− y||x|

= ik

( |x|2 + |x− y|2 − |y|2
|x− y||x| − 1

)
eik|x−y|

4π|x− y| −
eik|x−y|

4π|x− y|2
(x− y) · x
|x− y||x|

= ik

(
(|x| − |x− y|)2 − |y|2

|x− y||x|

)
eik|x−y|

4π|x− y| −
eik|x−y|

4π|x− y|2
(x− y) · x
|x− y||x|

= O

(
1

|x|2
)
, |x| → ∞,

because (|x| − |x− y|)2 − |y|2 = O(1) by (III.18) and |x||x− y| = O(|x|2).

Let Ω be a bounded domain of class C2 and n denote the unit normal vector to the

boundary ∂Ω directed into the exterior of Ω. Then we have the Green’s representation

theorem [22].

Theorem III.7. Let u ∈ C2(R3 \ Ω̄) ∩ C(R3 \ Ω̄) be a solution to the Helmholtz

equation

∆u+ k2u = 0 in R
3 \ Ω̄

with Im(k) ≥ 0 satisfying the Sommerfeld radiation condition (III.17). Then

u(x) =

∫

∂Ω

[
u(y)

∂Φ(x, y)

∂ny
− ∂u

∂n
(y)Φ(x, y)

]
dSy for x ∈ R

3 \ Ω̄.

Here dSy is the surface element on ∂Ω.
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CHAPTER IV

PERFECTLY MATCHED LAYER AND RESONANCE PROBLEMS

In this chapter we introduce the basic idea of the perfectly matched layer (PML)

method and reformulate the resonance model problem. The perfectly matched layer

is an artificial boundary condition technique which can be thought of introducing

an artificial absorbing layer. The goal is to create a layer surrounding a bounded

scatterer or inhomogeneous medium which damps all waves that strike it without

producing reflected waves. Due to the damping property of the PML, some of the

resonance functions are converted to exponentially decaying functions. This means

that PML transforms the resonance problem into a standard eigenvalue problem.

We will show that the PML problem in the infinite domain gives rise to a well-

posed in a variational formulation. The resulting well-defined inverse operator T

from H1(R3) to H1(R3) follows. We will show exponential decay of eigenfunctions of

the PML problem in the infinite domain, which will play a key role in analyzing the

convergence of approximate eigenvalues.

A. Perfectly matched layer

The PML method can be well illustrated by example. Consider a simple one-dimensional

scattering problem

u′′ + k2u = 0 on (0,∞)

u(0) = g

with the Sommerfeld radiation condition

du

dr
− iku = 0.
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Here k is a positive wave number and g is a given Dirichlet data. The general solution

to the Helmholtz equation in R is of the form

u(x) = c1e
ikx + c2e

−ikx

with some constants c1 and c2. The Sommerfeld radiation condition takes only the

outgoing function so that the analytic solution to the problem is

u(x) = geikx for x ∈ (0,∞).

Now we want to approximate the solution in a bounded domain of computa-

tional interest, e.g., Ω0 = (0, r0) using finite elements. There are two difficulties in

approximating the solution: one is that the domain is infinite and the other is that

the real and imaginary part of the solution are oscillating. PML enables us to avoid

these difficulties. PML is introduced by using a complex coordinate stretching

r̃ =






r if 0 ≤ r ≤ r0,

r + i

∫ r

r0

σ(s) ds if r0 < r,

where σ is a positive function. A simple example for σ is a constant function σ0. The

plot of r̃ with r0 = 1 and σ0 = 0.2 is shown in Figure 1(a). By the definition, r̃ is equal

to r for 0 ≤ r ≤ r0 and complexified for r > r0, and the PML is the region on which

r is deformed into the complex plane. We define the PML solution ũ(r) := u(r̃). Let

d denote the derivative of r̃ and so d is defined as

d =





1 if 0 ≤ r < r0,

1 + iσ0 if r0 < r.

Then ũ preserves u in the region of 0 < r < r0, and is attenuated inside the PML as

in Figure 1(b). The PML acts like an absorbing material without producing reflected
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Fig. 1. Complex stretching and a PML solution

waves. The PML solution ũ satisfies

1

d

(
1

d
ũ′
)′

+ k2ũ = 0 for r ∈ (0, r0) ∪ (r0,∞).

with the continuity of ũ′/d across the interface r = r0, which is deduced from the

continuity of u′ at the interface. Utilizing the continuity of ũ′/d at the interface, a

corresponding weak formulation on the infinite domain is to find ũ ∈ H1((0,∞)) such

that ũ(0) = g and satisfying

∫ r∞

0

1

d
ũ′φ̄′ dr −

∫ r∞

0

k2dũφ̄dr = 0 for all φ ∈ H1
0 ((0,∞)).

Due to the exponential decay of the PML solution ũ, we can truncate the problem to

a finite domain Ωδ = (0, r∞) with a sufficiently large r∞ > r0 and impose a convenient

boundary condition at the artificial boundary r = r∞, e.g, the homogeneous Dirichlet

boundary condition. Although no longer the exact solution inside, the difference

between u and ũt on (0, r0) is exponentially small. A finite elements method on the

truncated domain can gives an approximation for the exact solution u on (0, r0).

So far, we discussed the basic idea of the PML method for a scattering problem in
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R. The complex stretching function we have chosen in the example does not depend

on frequency ω and hence the attenuation rate in the PML varies depending on the

wave number. In contrast, Collino and Monk [20] used a complex stretching function

depending on frequency such as

r̃ =






r if 0 ≤ r ≤ r0,

r +
i

ω

∫ r

r0

σ(s) ds if r0 < r.

In this case, the attenuation rate is independent of frequency ω because the PML

solution ũ is of the form

Ceikre
−k/ω

R r
r0

σ(s) ds
= Ceikre

−1/c
R r
r0

σ(s) ds

for r > r0, where c is a constant phase velocity of the wave on a host medium.

For PML resonance problems, we will use a complex stretching independent of the

wave number as in the example. This results in wave number dependent decay. When

this decay is stronger than the exponential growth of the resonance eigenfunction, this

eigenfunction is transformed into a proper eigenfunction for the PML equation on the

infinite domain.

B. Spherical PML reformulation for the resonance problem

We consider a linear operator

L = −∆ + L1,

where L1 is a linear operator with support contained in the ball Ω̄0 centered at the

origin of radius r0. For example, we can consider Schrödinger operators −∆+V with

a real valued potential V supported in Ω̄0. We shall concentrate on this example as

more general applications are similar.
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We consider the Helmholtz problem:

Lu− k2u = f on R
3. (IV.1)

Here k is a complex number and the support of f is contained in Ω0. We need to

set a “boundary condition” at infinity. We consider solutions which are outgoing.

Since L coincides with −∆ outside of Ω0, u can be expanded in terms of spherical

Hankel functions and spherical harmonics. Because the solutions are outgoing, this

expansion takes the form

u(x) =

∞∑

n=0

n∑

m=−n

an,mh
1
n(kr)Y m

n (x̂) for r ≥ r0. (IV.2)

We shall be interested in weak solutions of (IV.1) which are, at least, locally

in H1. This means that the series (IV.2) converges in H1/2(Γ0), where Γ0 is the

boundary of Ω0. It follows that the series converges in H1 on any annular domain

r0 < r < R (see Theorem IV.2 below).

Remark IV.1. Resonances are solutions of (IV.1) with f = 0 satisfying the outgoing

condition. For resonances, the resonance value k has a negative imaginary part and so

u increases exponentially as r becomes large. Accordingly, the Sommerfeld radiation

condition

lim
r→∞

r

(
∂u

∂r
− iku

)
= 0 (IV.3)

is not satisfied in this case. There are no exponentially decreasing eigenfunctions for

this equation corresponding to any k with non-zero imaginary part.

We consider using a complex coordinate stretching to define a perfectly matched

layer surrounding the support of V . A non-smooth complex stretching was utilized

in the previous example in R. In the higher dimensional space we will use a spherical

PML such that the complex stretching function is C2 and the resulting PML equation
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is reduced to a Helmholtz equation with a complex constant coefficient outside of the

ball. The second condition enables us to easily show the rapid decay of eigenfunctions

of the PML equation†.

The PML approach [13] provides a convenient way to deal with (IV.1) with the

outgoing radiation condition. Let r1 be greater than r0 and Ω1 denote the open ball

of radius r1 centered at the origin with the boundary Γ1.

The PML problem is defined in terms of a function σ̃ ∈ C2(R+) satisfying

σ̃(r) =






0 for 0 ≤ r < r0,

increasing for r0 ≤ r < r1,

σ0 for r1 ≤ r.

(IV.4)

A typical C2 function in [r0, r1] with this property is given by

σ̃(x) = σ0

∫ x

r0

(t− r0)
2(r1 − t)2 dt

∫ r1

r0

(t− r0)
2(r1 − t)2 dt

.

The PML approximation can be thought of as a formal complex shift in coordi-

nate system with r̃ = r(1 + iσ̃(r)). See Figure 2 for the graph of the imaginary part

of r̃ as a function of r. The PML solution is defined by

ũ(x) =





u(x), for |x| ≤ r0,

∞∑

n=0

n∑

m=−n

an,mh
1
n(kr̃)Y m

n (x̂), for r = |x| ≥ r0.
(IV.5)

Here an,m is coefficients from the series for u.

Clearly, ũ and u coincide for |x| ≤ r0. Moreover, ũ satisfies

L̃ũ− k2ũ = f in R
3, (IV.6)

†This is not true in the Cartesian case.
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where L̃ coincides with L for |x| ≤ r0 and is given, in spherical coordinates (r, θ, φ),

by

L̃v = −
(

1

d̃2dr2

∂

∂r

(
d̃2r2

d

∂v

∂r

)
+

1

d̃2r2 sin θ

∂

∂θ

(
sin θ

∂v

∂θ

)

+
1

d̃2r2 sin2 θ

∂2v

∂φ2

)
+ V v.

(IV.7)

or, in Cartesian coordinates, by

L̃v = − 1

d̃2d
∇ ·
[(

d̃2

d
P (x) + d(I − P (x))

)
∇v
]

+ V v.

Here P (x) is the orthogonal projection onto the x̂ = x/|x|-direction, and d̃ ≡ 1 + iσ̃

and d ≡ r̃′ = 1 + iσ with σ ≡ σ̃ + rσ̃′.

We shall see that (IV.6) has a well-posed variational formulation in H1(R3) when

k is real and positive. Let χ be in C∞
0 (R3). Assuming that ũ is locally in H1(R3), we

have

A(ũ, χ) − k2B(ũ, χ) = (d̃2f, χ)R3, (IV.8)
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where

A(ũ, χ) ≡
(
d̃2

d

∂ũ

∂r
,
∂

∂r

(
χ

d̄

))

R3

+

(
1

r2

∂ũ

∂θ
,
∂χ

∂θ

)

R3

+

(
1

r2 sin2 θ

∂ũ

∂φ
,
∂χ

∂φ

)

R3

+ (V ũ, χ)Ω0

(IV.9)

and

B(ũ, χ) ≡ (d̃2ũ, χ)R3. (IV.10)

For an open set D ⊂ R3, (·, ·)D denotes the L2 Hermitian inner-product on D.

The PML problem corresponding to a scattering problem was studied in [13]

however the techniques there easily extend to our problem. We consider first the case

when k is real and positive. In this case, the Sommerfeld radiation condition can be

used as a replacement of the outgoing condition. To obtain a uniqueness result for

the PML problem for k real and positive, we introduce the following theorem as in

Theorem III.3. Let Ar0,r2
be an annulus bounded by two spheres of radius r0 < r2.

Theorem IV.2. Let k be a non-zero complex number not on the negative real axis.

Suppose that u ∈ H1(Ar0,r2
) satisfies A(u, v) = k2B(u, v) for all v ∈ C∞

0 (Ar0,r2
), then

u(x) =
∞∑

n=0

n∑

m=−n

(
an,mh

1
n(kr̃) + bn,mh

2
n(kr̃)

)
Y m

n (x̂), (IV.11)

and the series converges in H1(Ar0,r2
).

Proof. By the orthonormality of Y m
n , u can be written as

u(x) =

∞∑

n=0

n∑

m=−n

fn,m(|x|)Y m
n (x̂) (IV.12)

with

fn,m(r) =

∫

S2

u(rx̂)Y m
n (x̂) dx̂.

The series above converges in the L2 sense on each sphere |x| = r with r0 ≤ r ≤ r1,

and also converges in L2(Ar0,r2
). See the proof of Theorem III.3.
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As the first step of the proof, we prove that fn,m(r) is in H2((r0, r2)) and of the

form an,mh
1
n(kr̃) + bn,mh

2
n(kr̃). On |x| = r ∈ [r0, r2] by Parseval’s theorem

∫

|x|=r

|u(x)|2 dS =

∞∑

n=0

n∑

m=−n

r2|fn,m(r)|2 <∞,

where dS is the surface element of the sphere of |x| = r, i.e., dS = r2dx̂. Then

‖u‖2
L2(Ar0,r2) =

∫ r2

r0

∞∑

n=0

n∑

m=−n

r2|fn,m(r)|2 dr <∞,

which implies

∫ r2

r0

r2|fn,m(r)|2 dr <∞ for all |m| ≤ n, and n = 0, 1, . . . .

Thus fn,m is in L2((r0, r2)).

Consider χ ∈ C∞
0 ((r0, r2)) and define χ̃(x) = χ(|x|)Y m

n (x̂) ∈ C∞
0 (Ar0,r2

). Thus,

∫ r2

r0

fn,m(r)
dχ

dr
(r) dr =

∫ r2

r0

(∫

S2

u(rx̂)Y m
n (x̂) dx̂

)
dχ

dr
(r) dr

=

∫

S2

∫ r2

r0

u(rx̂)
∂χ̃

∂r
(rx̂) drdx̂

= −
∫

S2

∫ r2

r0

∂u

∂r
(rx̂) χ̃(rx̂) drdx̂

= −
∫

Ar0,r2

∂u

∂r
(x)

χ̃

r2
(x) dx,

which implies that

∣∣∣∣
∫ r2

r0

fn,m(r)
dχ

dr
(r) dr

∣∣∣∣ ≤ C‖u‖H1(Ar0,r2)‖χ‖L2((r0,r2)).

It follows from the Riesz representation theorem that there exists g ∈ L2((r0, r2))

such that ∫ r2

r0

g(r)χ(r) dr = −
∫ r2

r0

fn,m(r)
dχ

dr
(r) dr.

Consequently, dfn,m

dr
exists in the weak sense and it belongs to L2((r0, r2)).
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We will use the fact that u satisfies A(u, v)−k2B(u, v) = 0 for all v ∈ C∞
0 (Ar0,r2

)

to show that the second derivative of fn,m is in L2((r0, r2)). With χ̃(x) as above,

0 =

∫

S2

∫ r2

r0

[
r2d̃2

d

∂u

∂r

∂

∂r

(
χ̃

d

)
+
∂u

∂θ

∂χ̃

∂θ
+

1

sin2 θ

∂u

∂φ

∂χ̃

∂φ
− k2r2d̃2uχ̃

]
drdx̂

= −
∫

S2

∫ r2

r0

[
u
∂

∂r

(
r2d̃2

d

∂

∂r

(
χ̃

d

))
+ ur2∆S2χ̃ + k2r2d̃2uχ̃

]
drdx̂

= −
∫ r2

r0

fn,m

[
d

dr

(
r2d̃2

d

d

dr

(
χ

d

))
+ (k2r2d̃2 − n(n+ 1))χ

]
dr

=

∫ r2

r0

[
r2d̃2

d

dfn,m

dr

d

dr

(
χ

d

)
− (k2r2d̃2 − n(n+ 1))fn,mχ

]
dr. (IV.13)

Thus

∫ r2

r0

r2d̃2

d2

dfn,m

dr

dχ

dr
dr =

∫ r2

r0

[
(k2r2d̃2 − n(n+ 1))fn,m +

r2d̃2d′

d3

dfn,m

dr

]
χ dr

= −
∫ r2

r0

hχ dr

for some h ∈ L2((r0, r2)). It follows that r2d̃2

d2

dfn,m

dr
is in H1((r0, r2)). Since r2d̃2

d2 is in

C1, dfn,m

dr
belongs to H1((r0, r2)) and hence fn,m is in H2((r0, r2)).

From (IV.13) we have

∫ r2

r0

(
1

d

d

dr

(
d̃2r2

d

dfn,m

dr

)
+
(
k2d̃2r2 − n(n+ 1)

)
fn,m

)
χdr = 0

for all χ ∈ C∞
0 (Ar0,r2

). Thus fn,m satisfies the differential equation

1

r2d̃2d

d

dr

(
r2d̃2

d

dfn,m

dr

)
+

(
k2 − n(n + 1)

r2d̃2

)
fn,m = 0. (IV.14)

It is easy to show that (IV.14) has two linearly independent solutions h1
n(kr̃) and

h2
n(kr̃). With the initial conditions fn,m(r0) and f ′

n,m(r0) it follows that fn,m is of the

form

fn,m(r) = an,mh
1
n(kr̃) + bn,mh

2
n(kr̃)
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for some constants an,m and bn,m.

Next, we will see the series (IV.11) converges in H1(Ar0,r2
). Using the L2-

orthogonality of {Y m
n }, it is not hard to see that a function g ∈ L2(Γj) is in H1(Γj)

for j = 0, 2 if and only if the series

∞∑

n=0

n∑

m=−n

(1 + n(n + 1))|(g, Y m
n )Γj

|2 ≡ ‖g‖2
H1(Γj)

is finite. By interpolation [16], g is in H1/2(Γj) if and only if the series

∞∑

n=0

n∑

m=−n

(1 + n(n + 1))1/2|(g, Y m
n )Γj

|2 ≡ ‖g‖2
H1/2(Γj)

is finite. This shows that the series (IV.12) at r0 and r2 converge in H1/2(Γ0) and

H1/2(Γ2) respectively. Let ũ denote a partial sum in the series (IV.11) and g̃j denote

its trace to Γj, for j = 0, 2. We note that ũ ∈ H1(Ar0,r2
) satisfies the variational

problem,

A(ũ, d̄φ) = k2B(ũ, d̄φ) for all φ ∈ H1
0 (Ar0,r2

),

ũ = g̃0 on Γ0,

ũ = g̃2 on Γ2.

Examining the coefficients appearing in the form on the left hand side above, we see

that this is a well-posed variational problem since the real parts of d̃2/d and d are

positive and uniformly (as r varies) bounded away from zero. It follows that

‖ũ‖H1(Ar0,r2 ) ≤ C(‖ũ‖L2(Ar0,r2) + ‖g̃0‖H1/2(Γ0) + ‖g̃2‖H1/2(Γ2)),

which implies convergence of (IV.11) in H1(Ar0,r2
).

The uniqueness of solutions to the PML problem (IV.8) now follows from the

above theorem and the proof of [20, Theorem 1]. For completeness we present
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the proof here. For this, the following unique continuation result (see e.g., [46,

Lemma 4.15]) is required.

Lemma IV.3. Let Ω be a connected domain in R3 and suppose that v ∈ H1(Ω) is a

real-valued function that satisfies

|∆v| ≤ C(|∇v| + |v|)

almost everywhere in Ω, where C is a constant. If v vanishes identically in a neigh-

borhood of a point x ∈ Ω, then v is identically zero in Ω.

Theorem IV.4. The PML problem (IV.8) has at most one solution in H1(R3) when

k is real and positive.

Proof. Assume that f = 0 and u is a solution to (IV.8) with u ∈ H1(R3). Then u

satisfies

−∆u+ V u = k2u on Ω0.

By the second Green’s identity

∫

Γ0

(
u
∂ū

∂n
− ū

∂u

∂n

)
dx̂ =

∫

Ω0

(u∆ū− ū∆u) dx = 0. (IV.15)

It follows from Theorem IV.2 that u has a series representation (IV.11) for r > r0.

Since h2
n(kr̃) grows exponentially as r → ∞, we must have bn,m = 0 and hence u is

of the form

u(x) =

∞∑

n=0

n∑

m=−n

an,mh
1
n(kr̃)Y m

n (x̂). (IV.16)

Using (IV.16) and the orthonormality of the spherical harmonics (note that d̃ = 1 on

Γ0), we find that the left hand side of (IV.15) is

k

∞∑

n=0

n∑

m=−n

|an,m|2(h1
n(kr0)h

2
n
′
(kr0) − h2

n(kr0)h
1
n
′
(kr0)) = 0.
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Since the Wronskian of the spherical Hankel functions of the first and second kind is

h1
n(z)h2

n
′
(z) − h2

n(z)h1
n
′
(z) = −2iz−2,

we conclude an,m = 0 for all n = 0, 1, . . . , and |m| ≤ n. Therefore u = 0 in R
3 \ Ω̄0.

Now the unique continuation principle Lemma IV.3 shows that u = 0 in R3, which

completes the proof.

To prove the well-posedness of the variational problem (IV.8) we require the fol-

lowing theorem which follows from the Peetre-Tartar lemma (See, e.g., [30, Theorem

2.1],[47, 54]).

Theorem IV.5. Let A(·, ·) be a bounded sesquilinear form on a complex Hilbert space

V with norm ‖·‖V . Let W be another Hilbert space with norm ‖·‖W and T a compact

operator from V to W . Suppose that the only solution of

A(u, v) = 0 for all v ∈ V

is u = 0 and that

‖u‖V ≤ C1

(
sup
v∈V

|A(u, v)|
‖v‖V

+ ‖Tu‖W

)
for all u ∈ V.

Then there exists C2 > 0 such that for all u ∈ V ,

‖u‖V ≤ C2 sup
v∈V

|A(u, v)|
‖v‖V

.

The proof of the well-posedness theorem follows [13, Theorem 3.1].

Theorem IV.6. Let Ak(·, ·) ≡ A(·, ·)− k2B(·, ·) and k is real and positive. Then for

f ∈ L2(R3), the problem

Ak(u, v) = B(f, v) for all v ∈ H1(R3) (IV.17)
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has a unique solution u satisfying

‖u‖H1(R3) ≤ C‖f‖L2(R3).

Proof. Using Theorem IV.5, we will show an inf-sup condition forAk(·, ·). The unique-

ness of solutions to (IV.17) follows from Theorem IV.4. We break the form Ak(·, ·)

into two parts:

Ak(u, v) = Ã(u, v) + I(u, v)

where

Ã(u, v) =

(
d̃2

d2

∂u

∂r
,
∂v

∂r

)

R3

+

(
1

r2

∂u

∂θ
,
∂v

∂θ

)

R3

+

(
1

r2 sin2 θ

∂u

∂φ
,
∂v

∂φ

)

R3

− d2
0k

2(u, v)R3

(IV.18)

and

I(u, v) = k2((d2
0 − d̃2)u, v)Ω1

−
(
d̃2d′

d3

∂u

∂r
, v

)

Ω1

+ (V u, v)Ω1
.

Since Ã(·, ·) is coercive and Ak(·, ·) is a low order perturbation of Ã(·, ·) on a bounded

domain, the inf-sup condition,

‖u‖H1(R3) ≤ Ck sup
φ∈H1(R3)

|Ak(u, φ)|
‖φ‖H1(R3)

for all u ∈ H1(R3) (IV.19)

follows from Theorem IV.5 (see [13] for details). The analogous inf-sup condition for

the adjoint operator holds as well:

‖φ‖H1(R3) ≤ Ck sup
u∈H1(R3)

|Ak(u, φ)|
‖u‖H1(R3)

for all φ ∈ H1(R3). (IV.20)

This easily follows from

Ak(u, φ) = Ak(φ̄/d, d̄ū). (IV.21)

By the generalized Lax-Milgram Lemma, there exists a unique u ∈ H1(R3) satisfying

(IV.17) and ‖u‖H1(R3) ≤ C‖f‖L2(R3).
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Fix k = 1 above. We define T : L2(R3) → H1(R3) of L̃ − k2 as follows. For

f ∈ L2(R3) we define T (f) = w where w is the unique solution of

A1(w, φ) = B(f, φ) for all φ ∈ H1(R3).

It follows from Theorem IV.6 that

‖T (f)‖H1(R3) ≤ C‖f‖L2(R3).

We can clearly restrict T to an operator on H1(R3) and so its resolvent and spectrum

are well-defined.

The complex stretching that we introduced is a special case of general stretching,

i.e., exterior dilations, given by the Aguilar-Balslev-Combes-Simon (ABCS) Theorem

[3, 5, 38, 52, 48]. The deformed operator using an exterior dilation is defined as follows.

Let h : R3 → R3 be a C2 function such that h(x) = 0 for |x| < r0 and h(x) = x for

|x| ≥ r1 with 0 < r0 < r1. An exterior dilation is a C2 function ϕη with a parameter

η ∈ R, which is defined by ϕη(x) = x+ηh(x). Let Jη denote the Jacobian determinant

of ϕη. For sufficiently small η ∈ R, Uη defined by Uη(f(x)) = J
1/2
η f(ϕη(x)) is an

unitary operator in L2(R3). Then the deformed operator Lη is defined by

Lη ≡ UηLU
−1
η .

Since Uη is unitary for small η ∈ R, the spectrum of Lη is the same as that of L

for such η. On the other hand, according to the ABCS theory when Lη is continued

analytically to a small neighborhood of the origin, some of resonance values of L

become isolated eigenvalues of Lη. We produce this results using PML, and discuss

now how PML can be used for computing resonance values.

In order to see the relation of the PML operator L̃ and the spectrally deformed

operator Lη, when ϕη(x) ≡ d̃x = (1+ησ̃(r))x is the exterior dilation, we will first com-
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pute the Jacobian matrix J of ϕη for real η > −1/(2σM) where σM ≡ maxr≥0{σ(r)}.

Since ϕη,i(x) = (1 + ησ̃(r))xi,

Jij =
∂ϕη,i

∂xj
= d̃δij +

∂r

∂xj
d̃′xi

= d̃δij +
xj

r

d− d̃

r
xi.

In the last equality we have used d = (rd̃)′ = d̃+ rd̃′. Finally, we have

J = d̃(I − P ) + dP.

Thus the Jacobian determinant Jη is dd̃2. Note that for real η > −1/(2σM), Jη is

positive. In addition, 0 ≤ arg(Jη) < 3π/2 for η with Re(η) > 1/(2σM), and hence

there is a branch cut for J
1/2
η for such η.

Let J̃η be the Jacobian determinant of ϕ−1
η . For f, g ∈ C∞

0 (R3) and real η with

η > −1/(2σM)

I(η) ≡
∫

R3

−Uη∆U
−1
η f(x)g(x) dx =

∫

R3

−∆(U−1
η f)(x)(U−1

η g)(x) dx

=

∫

R3

∇(U−1
η f)(x) · ∇(U−1

η g)(x) dx

=

∫

R3

∇J̃1/2
η (x)f(ϕ−1

η (x)) · ∇J̃1/2
η (x)g(ϕ−1

η (x)) dx.

Using the change of variables x = ϕη(y) gives

I(η) =

∫

R3

J−t(y)∇(J−1/2
η (y)f(y)) · J−t(y)∇(J−1/2

η (y)g(y))dd̃2 dy

=

∫

R3

dd̃2
[
d−2P + d̃−2(I − P )

]
∇J−1/2

η f · ∇J−1/2
η g dy

=

∫

R3

−J−1/2
η

[
∇ ·
(
d̃2

d
P + d(I − P )

)
∇J−1/2

η f

]
g dy.

As will be seen later, I(η) is an analytic function of η on {z ∈ C : Re(z) > −1/(2σM)}
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and

∆η = J−1/2
η

[
∇ ·
(
d̃2

d
P + d(I − P )

)
∇
]
J−1/2

η

= J1/2
η ∆̃J−1/2

η .

It is easy to show that the resolvent sets of the PML operator and the spectrally de-

formed operator are the same and hence these two operators have the same spectrum.

Although the ABCS theory provides a one-to-one correspondence between res-

onance values of the original operator and eigenvalues of the spectrally deformed

operator, we present a simple proof which works when the solutions of the PML

problem are available in the explicit form (IV.5).

Given a solution of (IV.1), we defined the PML solution ũ by (IV.5) and noting

that ũ satisfied (IV.6). Conversely, given a function ũ satisfying (IV.5), we can define

u(ũ) by

u(ũ)(x) =






ũ(x) for 0 ≤ r ≤ r0,
∞∑

n=0

n∑

m=−n

an,mh
1
n(kr)Y m

n (x̂) for r0 < r,

where an,m are coefficients from the series for ũ. The following theorem connects the

resonance values with the eigenvalues of the PML operator T .

Theorem IV.7. Let Im(d0k) be greater than zero and set λ = 1/(k2 − 1). If there

is a non-zero outgoing solution u (locally in H1) satisfying (IV.1) with f = 0, then

ũ given by (IV.5) is an eigenfunction for T with an eigenvalue λ. Conversely, if ũ is

an eigenfunction for T with an eigenvalue λ, then ũ is of the form (IV.5) for r ≥ r0

and u = u(ũ) satisfies the outgoing condition and (IV.1) with f = 0 and

For the proof of the above theorem, we shall require the following proposition.

Proposition IV.8. Let β be a constant with positive imaginary part and g be given
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in H1/2(Γ1). There is a unique w ∈ H1(Ωc
1) satisfying w = g on Γ1 and

∆w + β2w = 0 on Ωc
1. (IV.22)

Moreover, w is outgoing (the series representation given by Theorem IV.2 has van-

ishing bk).

Proof. Consider the sesquilinear form

a(u, v) = (∇u,∇v)Ωc
1
− (β2u, v)Ωc

1

for u, v ∈ H1(Ωc
1). Since Im(a(u,−1/β̄u)) ≥ C‖u‖2

H1(Ωc
1
) with C = Im(β) max{1, 1/|β|},

it is straightforward to see that there is a unique w in H1(Ωc
1) satisfying

a(w, v) = 0 for all v ∈ H1
0 (Ωc

1),

w = g on Γ1.

(IV.23)

Terms involving bn,m in the series of Theorem IV.2 blow up exponentially at infinity.

The presence of any one results in a function not in H1(Ωc
1), i.e., w is outgoing.

Remark IV.9. It follows from the above proposition and the proof of Theorem IV.2

that an outgoing series (with such β) which coincides with a function in H1/2(Γ1), in

fact, converges in H1(Ωc
1).

Proof of Theorem IV.7. Suppose that u is outgoing, locally in H1 and satisfies (IV.1)

with f = 0. Then u has a series representation (IV.2). The resulting ũ defined by

(IV.5) converges uniformly on compact sets of Ωc
0. It follows from the definition of L̃

and the uniform convergence that ũ satisfies

(L̃− k2)ũ = 0.

Outside of Ω1, this coincides with (IV.22) with β = d0k. Theorem IV.2 and Re-
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mark IV.9 imply that the series for ũ converges in H1(Ωc
1), i.e., ũ ∈ H1(R3). For

φ ∈ C∞
0 (R3),

A(ũ, φ) − k2B(ũ, φ) = 0.

This is the same as

A1(ũ, φ) = (k2 − 1)B(ũ, φ). (IV.24)

Thus, ũ = (k2 − 1)T ũ.

Suppose, conversely, that ũ ∈ H1(R3) is an eigenfunction for T with eigenvalue

λ. Then ũ satisfies (IV.24). By Theorem IV.2, ũ can be written as a series (IV.11)

for |x| ≥ r0. Proposition IV.8 implies that ũ is outgoing. Then u = u(ũ) satisfies

(IV.1) with f = 0 and is also outgoing. This completes the proof of the theorem.

Remark IV.10. It is clear that the PML method is only guaranteed to gives the

resonances which satisfy Im(d0k) > 0, i.e., those which are in the sector bounded by

the positive real axis and the line arg(z) = arg(1/d0). To get the resonances to the

left of this line, we need to increase σ0.

The ABCS theory provides additional information about the spectrum of the

PML operator L̃ . Specifically, these results imply that the essential spectrum of L̃ is

σess(L̃) = {z | arg(z) = −2 arg(1 + iσ0)}

(cf. Theorem 18.6 [38]). These type of results are also proved in Theorem VIII.20.

This implies that the eigenvalues of L̃ corresponding to resonances are isolated and

of finite multiplicity. Note that if z is in σess(L̃), then Im(d0k) = 0.
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C. Exponential decay of eigenfunctions of the spherical PML problem in the infinite

domain

We are interested in finding isolated eigenvalues λ of T , which are mapped via the

map λ = 1/(k2 − 1) into the sector bounded by the positive real axis and the line

arg(z) = 2 arg(1/d0). Let λ be an isolated eigenvalue of T that is mapped into

this sector and V denote the generalized eigenspace of T associated with λ. Since

the multiplicity of λ is finite, V is a finite dimensional subspace of H1(R3). In this

section, we shall show that every function in V decays exponentially. We start with

the following lemma.

Lemma IV.11. Suppose that w is in H1(Ωc
1) and satisfies

∆w + β2w = f in Ωc
1 (IV.25)

with Im(β) positive and f ∈ L2(Ωc
1). If f decays exponentially, i.e., there are positive

constants α, Cf and M > r1 such that |f(x)| ≤ Cfe
−α|x| for |x| > M , then there are

positive constant α1, C1 and M1 > M such that

|w(x)| ≤ C1e
−α1|x| (‖w‖H1(Ωc

1
) + ‖f‖L2(Ωc

1
) + Cf

)
(IV.26)

and

‖w‖H1/2(Γ∞) ≤ C1e
−α1δ

(
‖w‖H1(Ωc

1
) + ‖f‖L2(Ωc

1
) + Cf

)

for |x|, δ > M1. Here α1, C1 and M1 can be chosen independently of w, f and δ.

Proof. Choose any M̃1 > M . For |x| > M̃1 let ΩM and ΩR be open balls centered at

the origin of radius M and 2|x|, respectively. Let ΓM and ΓR denote their boundaries.

By Green’s theorem, we have for |x| > M̃1

w(x) = −
∫

ΓM∪ΓR

[
∂w

∂n
(y)Φ(x, y)−w(y)

∂Φ

∂ny
(x, y)

]
dSy +

∫

D

f(y)Φ(x, y) dy, (IV.27)
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where n is the outward normal vector on the boundaries of D = ΩR \ Ω̄M and

Φ(x, y) = −eiβ|x−y|/(4π|x−y|) is the fundamental solution of the Helmholtz equation

with wave number β.

Note that for |x| > M̃1

∫

ΓM

dSy

|x− y|2 ≤
∫

ΓM

dSy

(|x| −M)2
≤ 4πM2

(M̃1 −M)2
.

By Schwarz’s inequality and the properties of Φ,

∣∣∣∣
∫

ΓM

[
∂w

∂n
(y)Φ(x, y) − w(y)

∂Φ

∂ny

(x, y)

]
dSy

∣∣∣∣
2

≤ Ce−2Im(β)|x|
(
‖∂w
∂n

‖2
L2(ΓM ) + ‖w‖2

L2(ΓM )

)∫

ΓM

dSy

|x− y|2

≤ Ce−2Im(β)|x|(‖w‖2
H1(Ωc

1
) + ‖f‖2

L2(Ωc
1
)).

For the last inequality above, we used an interior regularity estimate, i.e., since w

satisfies (IV.25), its H2-norm in a neighborhood of ΓM can be bounded by the H1-

norm of w and the L2-norm of f in a slightly larger neighborhood. The analogous

inequality bounding the integral on ΓR holds and hence

∣∣∣∣
∫

ΓM∪ΓR

[
∂w

∂n
(y)Φ(x, y) − w(y)

∂Φ

∂ny

(x, y)

]
dSy

∣∣∣∣
2

≤ Ce−2Im(β)|x|(‖w‖2
H1(Ωc

1
) + ‖f‖2

L2(Ωc
1
)). (IV.28)

For the volume integral in (IV.27), let α̃ = min{α, Im(β)}. Then

∣∣∣∣
∫

D

f(y)Φ(x, y) dy

∣∣∣∣ ≤ CCf

∫

D

e−α|y| e
−Im(β)|x−y|

|x− y| dy

≤ CCfe
−α̃|x|

∫

D

1

|x− y| dy

≤ CCf |x|2e−α̃|x| ≤ CCfe
−α1|x| (IV.29)

for |x| > M̃2 and 0 < α1 < α̃. The first inequality of Lemma IV.11 now follows from
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inequalities (IV.28) and (IV.29).

For the second inequality, let D1 ⊂ Sγ be open sets such that Sγ is a γ-

neighborhood of Γ∞ with γ independent of δ and D̄1 ⊂ Sγ . Using an interior regularity

estimate and integrating (IV.26) over Sγ gives

‖w‖H1/2(Γ∞) ≤ C‖w‖H2(D1) ≤ C‖w‖L2(Sγ)

≤ Ce−α1δ
(
‖w‖H1(Ωc

1
) + ‖f‖L2(Ωc

1
) + Cf

)
,

which completes the proof.

The following lemma shows the pointwise exponential decay of the generalized

eigenfunctions of T . An important remark is that the decay rate depends only the

eigenvalue of interest and its algebraic multiplicity. This rapid decay of the eigenfunc-

tions gives a motivation to truncate the infinite domain to approximate the resonance

values.

Lemma IV.12. Let V be as above. Then there are constants α, C and M > r1 such

that for all ψ ∈ V ,

|ψ(x)| ≤ Ce−α|x|‖ψ‖H1(R3) for |x| > M. (IV.30)

Proof. Let m be the (algebraic) multiplicity of λ. For any non-zero ψ ∈ V ,

(T − λI)mψ = 0.

There exists a positive integer n ≤ m, such that

(T − λI)n−1ψ 6= 0 and (T − λI)nψ = 0. (IV.31)

We will show that there exist constants α,C and M depending only on λ, T and n

such that ψ satisfies (IV.30) with these constants. The proof is by induction on n.
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The case of n = 1 corresponds to an eigenfunction ψ and immediately follows from

Lemma IV.11 since ψ satisfies

∆ψ(x) + (d0k(λ))2ψ(x) = 0, for |x| > r1.

Let ψ satisfy (IV.31) with 2 ≤ n ≤ m and denote ψj = (T − λI)n−jψ for

j = 1, . . . , n. Assume that (IV.30) holds for ψj for j = 1, . . . , n − 1 with constants

depending only on λ, T , and j. We need to estimate the decay of ψn. Then (T −

λI)ψn = ψn−1 so outside of Ω1,

d2
0ψn + λ(∆ψn + d2

0ψn) = −(∆ψn−1 + d2
0ψn−1).

A straightforward computation gives

∆ψn + (d0k(λ))2 ψn = d2
0

n−1∑

j=1

(−1)j+1

λj+1
ψn−j. (IV.32)

Since the function on the right of (IV.32) decays exponentially by the inductive

assumption, by Lemma IV.11 there exist α = α(T, λ, n), C = C(T, λ, n) and M =

M(T, λ, n) such that ψn satisfies

|ψn(x)| ≤ Ce−α|x|
n∑

j=1

‖ψj‖H1(Rn) (IV.33)

for |x| > M . In addition, from the continuity of T −λI and the definition of ψj there

is a constant C = C(T, λ, n) such that

‖ψj‖H1(R3) ≤ C‖ψn‖H1(R3)

for j = 1, . . . , n − 1. Thus, from (IV.33), there exist α = α(T, λ, n), C = C(T, λ, n),

and M = M(T, λ, n) such that |ψn(x)| ≤ Ce−α|x|‖ψn‖H1(R3) for |x| > M .
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CHAPTER V

TRUNCATED PML PROBLEM

In this chapter we analyze the PML problem in a truncated domain. As indicated

by Lemma IV.12, the generalized PML eigenfunctions decay exponentially. It is then

natural to approximate them on a bounded computational domain with a convenient

boundary condition, for example, the homogeneous Dirichlet boundary condition. To

this end, we introduce a bounded (computational) domain Ωδ whose boundary is

denoted by Γδ.

We will prove the theorems for the PML problem in the truncated domain that

are analogous to those for the PML problem in the infinite domain in the previous

chapter. We will show that the PML problem in a truncated domain Ωδ has a well-

posed variational formulation. The well-posedness of the PML problem in Ωδ leads

to a well-defined inverse operator Tδ. We will consider its restriction to H1(R3), Tδ :

H1(R3) → H1
0 (Ωδ) ⊂ H1(R3), for eigenvalues. Our goal will be to study convergence

of eigenvalues of Tδ to those of T . As the first result, we will prove that the resolvent

set for Tδ approaches that of T as the domain Ωδ becomes large. Exponential decay

of the generalized eigenfunctions of Tδ will be covered here.

A. Well-posedness of the spherical PML problem in a truncated domain

We shall always assume that the transition layer is in Ωδ, i.e., Ω1 ⊂ Ωδ. We assume

that the outer boundary of Ωδ is given by dilation of a fixed boundary by a parameter

δ, e.g., Ωδ is a cube of side length 2δ.

The following theorem is the well-posedness result for the truncated PML prob-

lem for δ large enough. Its proof was given in [13]. We provide a proof for complete-

ness.
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Theorem V.1. There exists δ0 > 0 such that if δ ≥ δ0, then for f ∈ L2(Ωδ) the

problem

A1(u, v) = B(f, v) for all v ∈ H1
0 (Ωδ) (V.1)

has a unique solution u ∈ H1
0 (Ωδ) satisfying

‖u‖H1(Ωδ) ≤ C‖f‖L2(Ωδ),

where C does not depend on δ.

Proof. We will show that the sesquilinear form A1(·, ·) still satisfies an inf-sup condi-

tion on H1
0 (Ωδ) provided that δ ≥ δ0 and δ0 is sufficiently large, i.e., for u ∈ H1

0 (Ωδ),

‖u‖H1(Ωδ) ≤ C sup
φ∈H1

0
(Ωδ)

|A1(u, φ)|
‖φ‖H1(Ωδ)

. (V.2)

Here and in the remainder of this paper, C is independent of δ once δ is sufficiently

large. Once we have the inf-sup condition, by (IV.21) the inf-sup condition for the

adjoint operator holds as well: for φ ∈ H1
0 (Ωδ)

‖φ‖H1(Ωδ) ≤ C sup
u∈H1

0
(Ωδ)

|A1(u, φ)|
‖u‖H1(Ωδ)

. (V.3)

Then the generalized Lax-Milgram theorem completes the proof.

We start with (IV.19) to verify (V.2). The test function φ appearing in (IV.19)

is decomposed φ = φ0 + φ1, where φ1 solves

A1(χ, φ1) = 0 for all χ ∈ H1
0 (Ω∞ \ Ω̄1),

φ1 = 0 on Ω1, (V.4)

φ1 = φ on Ωc
∞.
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This problem is uniquely solvable. Indeed, let χ ∈ H1
0 (Ωδ \ Ω̄1) and γ = i/d0. Then

A1(γχ, χ) = γD(χ, χ) − d2
0γ(χ, χ).

Here D(·, ·) denotes the Dirichlet form. Since γ and −d2
0γ have a positive real part,

|A1(γχ, χ)| ≥ C‖χ‖2
H1(Ωδ\Ω̄1).

The unique solvability of (V.4) follows and by the stability of (V.4) and Lemma II.5

we have

‖φ1‖H1(R3) ≤ C‖φ‖H1(R3). (V.5)

Next for u ∈ H1
0 (Ωδ), we write u = u0 + u1, where

A1(u1, χ) = 0 for all χ ∈ H1
0 (Ωδ \ Ω̄1),

u1 = u on Ω1,

u1 = 0 on Ωc
δ.

(V.6)

As above, this problem is also uniquely solvable and

‖u1‖H1(R3) ≤ C‖u‖H1(Ωδ).

We then have

A1(u, φ) = A1(u, φ0) + A1(u0, φ1) + A1(u1, φ1)

= A1(u, φ0) + A1(u1, φ1).

Now, let ũ1 solve

A1(ũ1, η) = 0 for all η ∈ H1
0 (Ωc

1),

ũ1 = u on Ω1.

(V.7)

The argument showing unique solvability of (V.4) works as well here.
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We then have

A1(u1, φ1) = A1(u1 − ũ1, φ1) + A1(ũ1, φ1) = A1(u1 − ũ1, φ1).

Now

A1(u1 − ũ1, v) = 0 for all v ∈ H1
0 (Ωδ \ Ω̄1) ⊕H1

0 (Ωc
δ),

from which it follows that

‖u1 − ũ1‖H1(R3) ≤ C‖ũ1‖H1/2(Γδ) ≤ Ce−αδ‖u‖H1/2(Γ1).

We used Lemma IV.11 and the stability of the problem (V.7) for the last inequality

above. It then follows from (V.5) and a standard trace estimate that

|A1(u1, φ1)| ≤ Ce−αδ‖u‖H1(Ωδ)‖φ‖H1(R3).

Thus,

‖u‖H1(Ωδ) ≤ C sup
φ0∈H1

0
(Ωδ)

|A1(u, φ0)|
‖φ0‖H1(Ωδ)

+ Ce−αδ‖u‖H1(Ωδ). (V.8)

The inf-sup condition (V.2) follows taking δ0 large enough so that Ce−αδ0 < 1.

B. Convergence of the resolvent sets of the operators in truncated domains

Because of the well-posedness of the PML problem in a truncated domain, we can

define the operator Tδ : H1(R3) → H1
0 (Ωδ) ⊂ H1(R3) by Tδf = u, where u ∈ H1

0 (Ωδ)

is the unique solution to

A1(u, φ) = B(f, φ) for all φ ∈ H1
0 (Ωδ).

The following theorem shows that the resolvent set for Tδ approaches that of T as δ

goes to infinity. This means that the truncated problem does not result in spurious
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eigenvalues in the region of interest, Im(d0k) > 0.

Theorem V.2. Let U be a compact subset of ρ(T ), the resolvent set of T , whose

image under the map z 7→
√

(1 + z)/z ≡ k(z) satisfies Im(d0k(z)) > 0 for all z ∈ U .

Here we have taken −π < arg(k(z)) ≤ 0. Then, there exists a δ0 (depending on U)

such that for δ > δ0, U ⊂ ρ(Tδ).

We shall need the following proposition for the proof of the above theorem.

Proposition V.3. Assume that w is in H1(R3) and satisfies (IV.22) in Ωc
1 with

β2 = d2
0k(z)

2 and z ∈ U as in Theorem V.2. Then there is a positive number α and

δ0 > r1 such that for δ ≥ δ0

‖w‖H1/2(Γδ) ≤ Ce−αδ‖w‖H1/2(Γ1).

The constants C and α can be taken independently of z ∈ U and δ ≥ δ0.

Proof. Since U is compact, it follows that α1 in Lemma IV.11 can be chosen inde-

pendent of z ∈ U . The proposition follows from Lemma IV.11.

Proof of Theorem V.2. LetRz(T ) = (T−zI)−1 be the resolvent operator and ‖Rz(T )‖H1(R3)

denote its operator norm. This norm depends continuously for z ∈ ρ(T ) so there is a

constant C = CU such that

‖Rz(T )‖H1(R3) ≤ C for all z ∈ U.

For u ∈ H1(R3), set φ = (T − zI)u. Then for z ∈ U , using (IV.19),

‖u‖H1(R3) ≤ C‖φ‖H1(R3) ≤ C sup
v∈H1(R3)

|A1(φ, v)|
‖v‖H1(R3)

= C sup
v∈H1(R3)

|Ãz(u, v)|
‖v‖H1(R3)

.

(V.9)
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Here we have set Ãz(·, ·) ≡ B(·, ·) − zA1(·, ·). The inf-sup condition for the adjoint

problem holds as well by similar reasoning.

We will show that the corresponding inf-sup conditions on the truncated domain

hold for all z ∈ U if δ0 is large enough. Namely, for u ∈ H1
0 (Ω∞),

‖u‖H1(Ωδ) ≤ C sup
v∈H1

0
(Ωδ)

|Ãz(u, v)|
‖v‖H1(Ωδ)

(V.10)

and

‖u‖H1(Ωδ) ≤ C sup
v∈H1

0
(Ωδ)

|Ãz(v, u)|
‖v‖H1(Ωδ)

. (V.11)

Once we show (V.10) and (V.11), then it follows that the solution v ∈ H1
0 (Ωδ) to the

variational problem

Ãz(v, φ) = A1(w, φ) for all φ ∈ H1
0(Ω∞) (V.12)

satisfies

(Tδ − zI)v = w.

This shows that z is in ρ(Tδ).

The idea of the proof for (V.10) is essentially the same as one for (V.2). The

only modification needed is

• inf-sup condition of Ãz(·, ·) on H1(R3),

• coercivity of Ãz(·, ·) on H1
0 (Ωδ \ Ω̄1) and H1

0(Ω
c
1),

• exponential decay of solutions to the problem

Ãz(u, φ) = 0 for all φ ∈ H1
0 (Ωc

1)

with a Dirichlet boundary condition on Γ1, (that is, exponential decay of solu-

tions to the Helmholtz equation with a complex coefficient β2 = d2
0k(z)

2 and
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z ∈ U in the sense of Proposition V.3).

Once the above conditions for Ãz(·, ·) are verified, then the proof for (V.10) will be

completed.

Because of the inf-sup condition (V.9) of Ãz(·, ·) on H1(R3) and Proposition V.3,

it suffices to show that Ãz(·, ·) is coercive on H1
0 (X) where X = Ωδ \ Ω̄1 or Ωc

1. Now,

let χ ∈ H1
0 (X) and γ be in C. Then

Ãz(γχ, χ) = z(γd2
0k(z)

2(χ, χ) − γD(χ, χ)).

Since U is compact, there is an ǫ with 0 < ǫ < π such that ǫ < arg(d2
0k(z)

2) < π for

all z ∈ U . Taking γ = exp(−iǫ/2) above implies that both −γ and γd2
0k(z)

2 have a

positive imaginary part. It follows that

|Ãz(γχ, χ)| ≥ C‖χ‖2
H1(X),

from which the unique solvability is obtained.

The proof of (V.11) is similar. This completes the proof of the theorem.

C. Exponential decay of eigenfunctions of the spherical PML problem in the trun-

cated domain

As mentioned in Chapter IV, the eigenvalues of T corresponding to resonances are

isolated and of finite multiplicity. Let λ be such an eigenvalue. Since λ is isolated,

there is a neighborhood of it with all points excluding λ in ρ(T ). Let η > 0 be such

that the circle of radius η centered at λ is in this neighborhood. We denote this circle

by Γ. By Theorem V.2, ρ(Tδ) contains Γ for sufficiently large δ. Let Vδ be a subspace

of H1
0 (Ωδ) spanned by the generalized eigenfunctions associated with the eigenvalues

of Tδ inside Γ.
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As Tδ is compact, the generalized eigenspace Vδ has a finite dimension and a

basis of the form ψi,j, i = 1, . . . , k, j = 1, . . . , m(i). Here if λδ
i is an eigenvalue of Tδ

inside Γ for i = 1, . . . , k, we may take

ψi,j = (Tδ − λδ
i )ψi,j+1 and (Tδ − λδ

i )ψi,1 = 0.

A priori we do not have a bound on the dimension of Vδ. To deal with this, we

consider subspaces of Ṽδ of dimension at most dim(V ) + 1. Specifically, let Ṽδ have a

basis of the form {ψi,j}, ψi,j , i = 1, . . . , k, j = 1, . . . , m̃(i) with {ψi,j} as above and
∑

i m̃(i) ≤ dim(V ) + 1. The space Ṽδ is invariant under Tδ and P δ
Γ. The following

lemma gives a decay estimate for functions in Ṽδ. The constant can be taken so that

it only depends on the dimension of V provided that δ is large enough. We will first

prove the result for the truncated problem analogous to Lemma IV.11.

Lemma V.4. If ψδ ∈ H1
0 (Ωδ \ Ω̄1) satisfies

∆ψδ + β2ψδ = f in Ωδ \ Ω̄1

with Im(β) positive, f ∈ L2(Ωδ \ Ω̄1) and there exist positive constants α, C and M

such that |f(x)| ≤ Cfe
−α|x| for |x| > M > r1, then there exist positive constants α1,

C1 and M1 independent of ψδ, f and δ such that

|ψδ(x)| ≤ C1e
−α1|x| (‖ψδ‖H1(Ωδ\Ω̄1) + ‖f‖L2(Ωδ\Ω̄1) + Cf

)
(V.13)

for |x| > M1 .

Proof. We start by decomposing ψδ = ψ+w, where ψ is defined to be equal to ψδ in

Ω1 and satisfies

∆ψ + β2ψ = f in Ωc
1,

ψ = ψδ on Γ1,
(V.14)
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where f is the zero extension to Ωc
∞. Then w satisfies the equations

∆w + β2w = 0 in Ω∞ \ Ω̄1,

w = 0 on Γ1,

w = −ψ on Γ∞.

Note that ψ decays exponentially by Lemma IV.11 and the stability of (V.14) implies

|ψ(x)| ≤ C1e
−α1|x| (‖ψδ‖H1(Ωδ\Ω̄1) + ‖f‖L2(Ωδ\Ω̄1) + Cf

)
(V.15)

for |x| > M1. So we have only to show exponential decay of w.

We do this by showing that

‖w‖H2(Ωδ\Ω̄1) ≤ Cδ‖ψ‖H2(Sǫ∩Ωδ), (V.16)

where Sǫ is an ǫ-neighborhood of Γδ for ǫ > 0. Here Cδ only grows as a polynomial

of δ. Using (V.16) gives (for ǫ′ > ǫ independent of δ)

‖w‖H2(Ωδ\Ω̄1) ≤ Cδ‖ψ‖L2(Sǫ′ )

≤ Cδe
−α1δ

(
‖ψ‖H1(Ωc

1
) + ‖f‖L2(Ωδ\Ω̄1) + Cf

)

≤ C1e
−α2|x| (‖ψδ‖H1(Ωδ\Ω̄1) + ‖f‖L2(Ωδ\Ω̄1) + Cf

)
.

(V.17)

Here we absorbed the polynomial growth in Cδ by making α2 < α1. Combining the

above inequalities with a Sobolev embedding theorem proves (V.13).

Finally, to prove (V.16), we decompose w = w̃ + w0, where w̃ = −χψ and χ

is a cutoff function which is defined on Ωδ \ Ω̄1, is one in a neighborhood of Γδ and

vanishes outside of Sǫ ∩ (Ωδ \ Ω̄1). We need only show that

‖w0‖H2(Ωδ\Ω̄1) ≤ Cδ‖ψ‖H2(Sǫ∩Ωδ).
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Note that w0 satisfies

∆w0 + β2w0 = g in Ωδ \ Ω̄1,

w0 = 0 on Γ1 ∪ Γδ,
(V.18)

where g = −(∆w̃ + β2w̃) is in L2(Sǫ ∩ (Ωδ \ Ω̄1)). Clearly, ‖w0‖H1(Ωδ\Ω̄1) is bounded

by C‖g‖L2(Ωδ\Ω̄1).

Let Ω2 be a ball centered at the origin and of radius r2 > r1, independent of δ,

and contained in Ωδ. Let χ1 be a cutoff function on Ωδ \ Ω̄1, which is one on Ωδ \ Ω̄2

and vanishes near Γ1. Then (1 − χ1)w0 and χ1w0 (extended by zero in Ω1) satisfy

equations similar to (V.18) on domains Ω2 \ Ω̄1 and Ωδ, respectively. The data for

these problems involves g above and at most first order derivatives of w0 and hence is

controlled in L2(Ωδ \ Ω̄1). It follows from a regularity on the smooth domain Ω2 \ Ω̄1

that

‖(1 − χ)w0‖H2(Ωδ\Ω̄1) = ‖(1 − χ)w0‖H2(Ω2\Ω̄1) ≤ C(‖g‖L2(Ω2\Ω̄1) + ‖w0‖H1(Ω2\Ω̄1)).

Finally, by dilation to a fixed sized domain,

‖χw0‖H2(Ωδ\Ω̄1) = ‖χw0‖H2(Ωδ) ≤ Cδ(‖g‖L2(Ωδ\Ω̄1) + ‖w0‖H1(Ωδ\Ω̄1)).

The inequality (V.16) follows combining the above.

The same technique as used in the proof of Lemma IV.12 will justify the following

lemma.

Lemma V.5. Let Ṽδ be as above. Then there are constants α,C and M > r1 such

that for δ > M and ψδ ∈ Ṽδ,

|ψδ(x)| ≤ Ce−α|x|‖ψδ‖H1(Ω∞) for all |x| > M. (V.19)
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Proof. Let m̃ =
∑

i m̃(i). For any non-zero ψ ∈ Ṽδ,

k∏

i=1

(Tδ − λδ
i I)

m̃(i)ψ =
m̃∏

i=1

(Tδ − λ̃iI)ψ = 0,

with the obvious definition of λ̃i. There is a positive integer n ≤ m̃ such that

n−1∏

i=1

(Tδ − λ̃iI)ψ 6= 0 and

n∏

i=1

(Tδ − λ̃iI)ψ = 0.

Setting ψn = ψ and ψj = (Tδ − λ̃n−jI)ψj+1 for j = 1, . . . , n− 1, we have

∆ψn + (d0k(λ1))
2 ψn = d2

0

n−1∑

j=1

(−1)j+1

Πj+1
l=1 λ̃l

ψn−j in Ωc
1.

Recall that the norm of Tδ is bounded by a constant independent of δ from (V.2)

and (V.3) and λ̃i, for each i, is inside Γ and so that Im(d0k(λ̃i)) > 0. The induction

argument used in the proof of Lemma IV.12 completes the proof.
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CHAPTER VI

EIGENVALUE CONVERGENCE

In this chapter we will show the eigenvalue convergence as the main result. The

eigenvalue convergence consists of two parts. One is the convergence of eigenvalues of

Tδ with δ increasing in the continuous level, and the second part is the convergence of

eigenvalues of the corresponding discrete operators T h
δ with a mesh size h converging

to zero in the discrete level. Because the second part is standard [12], the first part

will be the focus. To develop this result, we will use the exponential decay property of

generalized eigenfunctions of T and Tδ that we provided in Chapter IV and Chapter V.

Numerical experiments illustrating these results will also be given. Specifically,

we will consider a resonance problem in a penetrable inhomogeneous media of one and

two space dimension. Although some experiments appear to have spurious numerical

eigenvalues, we will explain how this relates to the theory.

A. Convergence of eigenvalues

In the previous two chapters, we studied the inverse of the operator L̃ on L2(R3) and

L2(Ωδ), specifically T : H1(R3) → H1(R3) and Tδ : H1(R3) → H1
0 (Ωδ) ⊂ H1(R3).

Our goal is to now show that the eigenvalues of Tδ converge to those of T as δ

increases. The typical approach for proving eigenvalue convergence results involves

norm convergence (see, e.g., [41]). Unfortunately, this approach is not viable in this

case because the approximate operator Tδ is compact while the full operator T is not,

which means that Tδ can not converge to T in norm as δ grows. Thus the analysis

of the eigenvalue convergence will be developed in a non-standard way based on the

exponential decay property of eigenfunctions of the operator T and Tδ. First we will

show that Tδ converges to T on a subspace of exponentially decaying functions.
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Lemma VI.1. Suppose that u ∈ H1(R3) satisfies

|u(x)| ≤ Ce−α|x|‖u‖H1(R3) (VI.1)

for |x| > M > r1. Then there exist positive constants α1, C1 and M1 > M such that

‖(T − Tδ)u‖H1(R3) ≤ C1e
−α1δ‖u‖H1(R3)

for δ > M1.

Proof. The H1-estimate for (T − Tδ)u will be computed in two subdomains Ω∞ and

Ωc
∞. First, note that since Tu is the solution to the problem

A1(Tu, φ) = B(u, φ) for φ ∈ H1(R3),

it satisfies

∆Tu+ d2
0Tu = −d2

0u in Ωc
1. (VI.2)

It follows from Lemma IV.11 that

‖Tu‖H1/2(Γ∞) ≤ C1e
−α1δ(‖Tu‖H1(Ωc

1
) + ‖u‖H1(Ωc

1
)) (VI.3)

for δ > M1.

Take M1 > δ0 in Theorem V.2. In Ω∞, ψ ≡ (T − Tδ)u is the unique solution to

the problem

A1(ψ, φ) = 0 for all φ ∈ H1
0(Ω∞),

ψ = Tu on Γ∞,

so that by stability and (VI.3),

‖(T − Tδ)u‖H1(Ω∞) ≤ C‖Tu‖H1/2(Γ∞)

≤ C1e
−α1δ(‖Tu‖H1(R3) + ‖u‖H1(R3)) (VI.4)



62

for δ > M1.

In Ωc
δ, ψ ≡ (T − Tδ)u = Tu is the unique solution to (VI.2) with the boundary

condition Tu on Γ∞. By stability,

‖Tu‖H1(Ωc
δ) ≤ C(‖u‖L2(Ωc

δ) + ‖Tu‖H1/2(Γ∞)).

Integrating the square of (VI.1) over Ωc
δ and using (VI.3) gives

‖Tu‖H1(Ωc
δ) ≤ Cδe

−α1δ

(
‖u‖H1(R3) + ‖Tu‖H1(R3)

)
. (VI.5)

for δ > M1 and Cδ a linear function of δ. The δ-dependence in the constant can be

removed by making α1 slightly smaller. The result follows from (VI.4), (VI.5) and

the boundedness of T .

Before stating the main theorem, we shall recall the finite dimensional subspaces

V and Vδ in H1(R3) defined in the previous chapters. We are considering λ, an

isolated eigenvalue of finite multiplicity of T , and Γ is a circle of radius η centered

at λ contained in ρ(T ). η is chosen so small enough that all points in the interior

of Γ except for λ belong to ρ(T ). Furthermore, it is guaranteed that Γ ⊂ ρ(Tδ)

for sufficiently large δ due to Theorem V.2. V is the generalized eigenspace of T

associated with λ and Vδ is the space spanned by the generalized eigenfunctions

associated with the eigenvalues of Tδ inside Γ. Ṽδ denotes a Tδ-invariant subspace

of Vδ of dimension ≤ dim(V ) + 1 defined in Chapter V. We observe that V is a

Rz(T )-invariant space for z ∈ Γ, since V is finite-dimensional and invariant under the

action of the injective operator T − zI. For the same reason, Ṽδ is Rz(Tδ)-invariant

for z ∈ Γ.

We define the Riesz projections PΓ and P δ
Γ onto V and Vδ, respectively: For
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u ∈ H1(R3)

PΓ(u) =
1

2πi

∫

Γ

Rz(T )u dz (VI.6)

and

P δ
Γ(u) =

1

2πi

∫

Γ

Rz(Tδ)u dz. (VI.7)

Since Γ is contained in ρ(Tδ) for sufficiently large δ, P δ
Γ is well-defined for such δ.

We are now in a position to prove the eigenvalue convergence.

Theorem VI.2. For any η sufficiently small, there is a δ1 > 0 such that

dim(V ) = dim(Vδ)

for δ > δ1.

Remark VI.3. The above theorem shows that the eigenvalues for the truncated

problem converge to those of the full problem since the radius η of Γ is arbitrary

small. This convergence respects the eigenvalue multiplicity in the sense that the sum

of the multiplicities of the eigenvalues inside the circle of radius η for the truncated

problem equals the multiplicity of λ for any η provided that δ ≥ δ1(η) is sufficiently

large.

Proof of Theorem VI.2. We first note that for z ∈ Γ,

‖Rz(T )‖H1(R3) ≤ C.

In addition, for δ > δ0 in Theorem V.2, (V.10) and (V.11) implies that

‖Rz(Tδ)‖H1(R3) ≤ C

with C independent of δ. It follows that PΓ and P δ
Γ are bounded operators in H1(R3).
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Let ψ be in V . Since V is invariant under the action of Rz(T ), by Lemma VI.1,

‖(T − Tδ)Rz(T )ψ‖H1(R3) ≤ Ce−α1δ‖ψ‖H1(R3).

We also have

(I − P δ
Γ)PΓ =

1

2πi

∫

Γ

(Rz(T ) − Rz(Tδ))PΓ dz

= − 1

2πi

∫

Γ

Rz(Tδ)(T − Tδ)Rz(T )PΓ dz.

Thus,

‖(I − P δ
Γ)ψ‖H1(R3) =

1

2π
‖
∫

Γ

Rz(Tδ)(T − Tδ)Rz(T )ψ dz‖H1(R3)

≤ 1

2π

∫

Γ

‖Rz(Tδ)‖H1(R3)‖(T − Tδ)Rz(T )ψ‖H1(R3) dz

≤ Ce−α1δ‖ψ‖H1(R3). (VI.8)

We choose δ1 ≥ δ0 so that Ce−α1δ1 is less than one. For (VI.8) to hold, it is necessary

that the rank of P δ
Γ be greater than or equal to dim(V ), i.e., dim(Vδ) ≥ dim(V ).

For the other direction, we let ψ be in Ṽδ with Ṽδ as above. An argument similar

to that used above (using the invariance of Ṽδ under P δ
Γ) gives

‖(I − PΓ)ψ‖H1(R3) ≤ Ce−α1δ‖ψ‖H1(R3).

Choosing δ1 ≥ δ0 so that Ce−α1δ1 < 1 then leads to dim(V ) ≥ dim(Ṽδ). This

implies that there is no subspace Ṽδ ⊆ Vδ with dimension greater than dim(V ), i.e.,

dim(Vδ) = dim(V ).

So far, we studied convergence of eigenvalues of Tδ to those of T in the continuous

level as δ is increasing. Now we shift our concern to the problem in a discrete level.

For a fixed δ > δ1(η) in Theorem VI.2 we discretize the system with finite elements.

Let h represent the diameters of elements of a triangulation of the domain Ωδ and
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Sh denote a finite dimensional subspace of H1
0 (Ωδ). Then for a given f ∈ L2(Ωδ) the

problem to find uh ∈ Sh such that

A1(uh, φh) = B(f, φh) for all φh ∈ Sh (VI.9)

is solvable. The solvability of the problem (VI.9) follows from the Aubin-Nitsche

duality argument [50]. In fact, if uh satisfies (VI.9) with an exact solution u, then by

the duality argument there exists s > 1/2 such that

‖u− uh‖L2(Ωδ) ≤ Chs‖u− uh‖H1(Ωδ). (VI.10)

Now, from coercivity of Ã(·, ·) in (IV.18), Galerkin orthogonality, boundedness of

A1(·, ·), and (VI.10) we obtain

‖u− uh‖H1(Ωδ) ≤ C
|Ã(u− uh, u− uh)|

‖uh‖H1(Ωδ)

≤ C
|A1(u, u− uh)| + ‖u− uh‖L2(Ωδ)‖u− uh‖H1(Ωδ)

‖u− uh‖H1(Ωδ)

≤ C‖u‖H1(Ωδ) + Chs‖u− uh‖H1(Ωδ).

(VI.11)

Consequently, for h with Chs < 1

‖u− uh‖H1(Ωδ) ≤ C‖u‖H1(Ωδ). (VI.12)

Since Sh is finite dimensional, for the solvability of (VI.9), it suffices to show that

(VI.9) has a unique solution. To this end, assume that f = 0. Then u = 0 and it

follows from (VI.12) that uh = 0.

Therefore, for f ∈ H1(R3) we can define T h
δ (f) by the unique solution to the

problem

A1(T
h
δ f, φh) = B(f, φh) for all φh ∈ Sh.



66

0 20 40 60 80 100
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

true resonances
spurious resonances

 essential spectrum

Fig. 3. Spectrum of a one dimensional resonance problem

From (VI.10),

‖Tδ − T h
δ ‖L2(Ωδ) ≤ Chs‖T‖H1(Ωδ).

Thus there is a one-parameter family of compact operators T h
δ : H1(R3) → Sh ⊂

H1(R3) converging to Tδ as h → 0. An eigenvalue convergence result for Tδ and T h
δ

is standard and it is presented in the following lemma [12].

Lemma VI.4. Let λ be a non-zero eigenvalue of Tδ with algebraic multiplicity m

and let Γ be a circle centered at λ which lies in ρ(Tδ) and contains no other points of

σ(Tδ). If ‖Tδ−T h
δ ‖L2(Ωδ) → 0 as h→ 0, then there is an h0 such that, for 0 < h ≤ h0,

there are exactly m eigenvalues (counting algebraic multiplicities) of T h
δ lying inside

Γ and all points of σ(T h
δ ) are bounded away from Γ.

B. Numerical results

In this section, we will give simple one and two dimensional resonance problems

illustrating the behavior of finite element approximations of the PML eigenvalue

problem. Although some experiments appear to have spurious numerical eigenvalues,
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we shall see that they can be controlled by keeping the transition layer close to the

non-homogeneous phenomena, i.e. the region where the operator differs from the

Laplacian.

We start with a one dimensional problem, i.e.,

−a∆u = k2u in R

with the outgoing wave condition. Here a is a piecewise constant function defined by

a =





1/4 if |x| < 1,

1 otherwise.

We impose the continuity of u and au′ at x = ±1. The analytic resonances corre-

sponding to this problem are given by

k =
nπ

4
− ln 3

4
i

for n ∈ Z and n > 0.

For the first experiment, we choose the PML parameters r0 = 2, r1 = 4, δ = 8,

σ0 = 1 and discretize the system with a mesh size h = 1/50. Figure 3 shows the

resulting eigenvalues. Note that the eigenvalues labeled “true resonances” are very

close to the analytic resonances given above. In Figure 4, we report the error observed

when approximating the resonance of smallest magnitude as a function of δ for fixed

values of h. The PML parameters were r0 = 1, r1 = 2 and σ0 = 1. As expected,

increasing δ for a fixed value of h improves the accuracy to the point where the mesh

size errors dominate.

The remaining eigenvalues in Figure 3 either correspond to those clearly approx-

imating the essential spectrum or spurious eigenvalues. Those far away from the true

resonances and those to the left of the essential spectrum are easily ignored. However
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Fig. 4. Eigenvalue error for the resonance of smallest magnitude

the group of spurious eigenvalues running below and parallel to the true resonances

are somewhat disturbing, especially so since they do not move much when either the

mesh size is decreased (at least, within reasonable parameters) or the computational

region is increased. This will be discussed in the next section in detail.

We next consider a model problem on R2. Let Ω0 be the open unit disk in R2

and consider

−a∆u = k2u in R
2

with the outgoing wave condition and the transmission conditions of the continuity

of u and a∇u at the interface, where

a =





1/4 if (x, y) ∈ Ω0,

1 otherwise.

An outgoing solution bounded in Ω0 is of the form (in polar coordinates)

u(x, y) =






∞∑

n=−∞
anJn(2kr)einθ for (x, y) ∈ Ω0,

∞∑

n=−∞
bnH

1
n(kr)einθ for (x, y) ∈ Ωc

0,

where Jn are Bessel functions of the first kind of order n and H1
n are Hankel functions
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of the first kind of order n. The continuity conditions at the interface lead to

anJn(2k) = bnH
1
n(k) and

1

2
anJ

′
n(2k) = bn(H1

n(k))′.

Non-zero solutions exist when k satisfies

J ′
n(2k)H1

n(k) − 2Jn(2k)(H1
n(k))′ = 0. (VI.13)

This equation can be solved by iteration and its solutions are used as a reference. It

is easy to see that each solution k to the problem (VI.13) for n > 0 is of multiplicity

2.

For the one dimensional case, we simply computed all eigenvalues using MatLab.

This approach fails for the two dimensional problem as the problem size is much too

large. We clearly have to be more selective. Our goal is to focus on computing the

eigenvalues corresponding to resonances which are close to the origin. We are able

to do this by defining a related eigenvalue problem which transforms the eigenvalues

of interest into the eigenvalues of greatest magnitude. These eigenvalues can then

be selectively computed using a general eigensolver software. Specifically, we use the

software package SLEPc [37], which is a general purpose eigensolver built on top of

PETSc [4].

The computational eigenvalue problem (after introducing PML, truncating the

domain and applying finite elements) can be written

Su = k2Nu

for appropriate complex valued matrices S and N . The idea is to use linear fractional

transformations. We consider ζ2 ◦ ζ1 where

ζ1(z) =
1

z
and ζ2(z) =

d0 + iz

d0 − iz
.
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Table 1. Numerical results for the first ten resonances of the two dimensional problem

Approximate PML Resonances
Resonances Multiplicity n

h = 1/100 h = 1/120

1.1169 − 0.2393i 1.1165 − 0.2392i 1.1155 − 0.2396i 1 0

2.7211 − 0.2667i 2.7200 − 0.2665i 2.7167 − 0.2665i 1 0

1.8264 − 0.2916i 1.8256 − 0.2914i
1.8238 − 0.2921i 2 1

1.8264 − 0.2916i 1.8256 − 0.2914i

2.4021 − 0.3759i 2.4009 − 0.3755i
2.3981 − 0.3781i 2 2

2.4026 − 0.3761i 2.4012 − 0.3757i

2.8249 − 0.3182i 2.8242 − 0.3173i
2.8161 − 0.3161i 2 3

2.8249 − 0.3182i 2.8242 − 0.3173i

3.4066 − 0.1881i 3.4058 − 0.1877i
3.3993 − 0.1851i 2 4

3.4068 − 0.1885i 3.4059 − 0.1880i

The first transformation maps points near the origin to points of large absolute

value. Under this transformation, the sector 2 arg(1/d0) ≤ arg(z) ≤ 0 maps to the

sector 0 ≤ arg(z) ≤ 2 arg(d0). The second transformation gets rid of the “essential

spectrum” (which was mapped to arg(z) = 2 arg(d0)) by mapping arg(z) = 2 arg(d0)

to the interior of the unit disk and anything in the sector 0 ≤ arg(z) < arg(d0) to the

exterior of the unit disk. Thus, we look for the eigenvalues of largest magnitude for

the operator

(d0S + iN)u = µ(d0S − iN)u
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and recover k2 from the formula

k2 =
(µ+ 1)i

(µ− 1)d0
.

We consider computing on a square domain of side length 2δ. Table 1 gives

the values of the first ten numerical and analytical resonances for the above problem

as a function of h. The truncated domain corresponded to δ = 5 and the PML

parameters were σ0 = 1, r0 = 1 and r1 = 4. Note that errors of less than one percent

were obtained and improved results were observed when the mesh size was decreased.

These are relatively large problems, indeed, the case of h = 1/120 corresponds to

almost a million and a half complex unknowns.

C. Spurious resonances

Spurious eigenvalues appearing in PML approximations to resonance problems have

been discussed elsewhere in the literature. In particular, Zworski [56] explains this

phenomenon in terms of the pseudo-spectra concept (cf. [55]). While the set of the

pseudo-spectrum of selfadjoint operators H

Λǫ(H) = {z ∈ C : ‖(H − zI)−1‖ ≤ ǫ−1}

is exactly the same as the ǫ-neighborhood of the spectrum of H , we can not expect

this result for non-selfadjoint operators, and Λǫ(H) may be larger than that. In other

words, the norms of the resolvent of a non-selfadjoint operator can be quite large

for points located far away from the spectrum. We shall demonstrate that this is

an important issue for the PML eigenvalue problem. Note that the central theorems

(Theorem V.2 and Theorem VI.2) require that δ is large enough that

C(‖Rz(T )‖)e−αδ < 1 (VI.14)



72

(See the inequalities (V.9) and (V.8) withA1(·, ·) replaced with Ãz(·, ·)). The situation

at the discrete level is worse. To guarantee eigenvalue convergence without spurious

eigenvalues from the discretization, the problem (T h
δ − z)uh = fh, or equivalently

Ãz(uh, φh) = A1(fh, φh) for fh ∈ Sh and z ∈ ρ(Tδ) needs to be uniquely solvable. For

this, assume that fh = 0. Let χ be the solution to the adjoint problem

Ãz(φ, χ) = A1(eh, φ) for all φ ∈ H1
0 (Ωδ)

with the error eh = uh. Since A1(·, ·) is coercive for sufficiently small h from (VI.11),

‖eh‖2
H1(Ωδ) ≤ C|A1(eh, eh)| = C|Ãz(eh, χ)| = C|Ãz(eh, χ− vh)| (VI.15)

for any vh ∈ Sh. Applying an interpolation estimate ‖χ − vh‖H1(Ωδ) ≤ Ch‖χ‖H2(Ωδ)

for some vh ∈ Sh and the regularity ‖χ‖H2(Ωδ) ≤ C(‖Rz(Tδ)‖)‖eh‖H1(Ωδ) to (VI.15),

it follows that

‖eh‖2
H1(Ωδ) ≤ C(‖Rz(Tδ)‖)h‖eh‖2

H1(Ωδ).

To achieve a unique solution uh = 0, one needs to have that h ≤ h0 with h0 satisfying

C(‖Rz(Tδ)‖)h0 < 1. (VI.16)

Thus, in cases where the norm of the resolvent is large, to get rid of the spurious

eigenvalues, it appears to be necessary to make h too small to be practical.

To shed some light on the behavior of the resolvent, we consider the above one

dimensional problem. Let k be a complex number with Im(k) < 0, Im(d0k) > 0 and

k not a resonance. The function f(x) = eikd̃|x| satisfies the PML equation

(L̃− k2)f ≡ −1

d

(
1

d
f ′
)′

− k2f = 0 for |x| > 1. (VI.17)

Note that with r0 > 1, f increases exponentially from |x| = 1 to |x| = r0 while
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Fig. 5. Spurious eigenfunction

decreasing exponentially outside of the transition region. Figure 5 shows magnitude

of the second spurious eigenfunction. Because f is relatively small for |x| ≤ 1 and

satisfies (VI.17), ‖(L̃−k2)f‖ is much smaller than ‖f‖. This implies that the constant

in the inf-sup condition (V.9) is large. This constant is directly proportional to the

norm of the resolvent Rz(T ) (see the proof of Theorem V.2 for details). Accordingly,

to keep the norm of Rz(T ) manageable, we need to avoid a large region allowing

exponential increase. This can be attained by keeping the start of the transitional

region as close as possible to the region of inhomogeneity, i.e., |x| = 1. The analysis

for problems of dimension greater than one is similar.

The behavior of the spurious resonances as a function of the location of the

transitional layer is illustrated in Figure 6. Notice that the spurious eigenvalues can

be moved away from the true resonances simply by placing the transition region

closer to one. In fact, the best results are obtained by starting the transition region

on the interface. This also illustrates the fact that there does not need to be any area

extending outside of Ω where the original equation is retained.
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Fig. 6. Eigenvalues from different PML’s (r0 is the radius of the inside boundary of

PML)
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CHAPTER VII

APPLICATION OF CARTESIAN PML TO ACOUSTIC SCATTERING

PROBLEMS

From this chapter on we study an application of Cartesian PML to acoustic scatter-

ing problems. When PML is introduced in a Cartesian geometry, each coordinate is

stretched independently. The analysis of Cartesian PML problems requires a signifi-

cantly different approach from that of spherical PML problems. This chapter provides

preliminaries for the analysis in the subsequent chapters. We start with reformulat-

ing acoustic scattering problems in the Cartesian PML framework and introduce a

complexified distance between two complex stretched points. We also discuss the

fundamental solution to the Cartesian PML Helmholtz equation.

A. Cartesian PML reformulation

We consider the exterior Helmholtz problem with Sommerfeld radiation condition,

−∆u− k2u = 0 in Ω̄c,

u = g on ∂Ω,

lim
r→∞

r1/2

∣∣∣∣
∂u

∂r
− iku

∣∣∣∣ = 0.

(VII.1)

Here k is real and positive and Ω is a bounded domain with a Lipschitz continuous

boundary contained in the square† [−a, a]2 for some positive a.

The simplest example of a Cartesian PML approximation involves an even func-

†We consider a domain in R2 for convenience. The extension to domains in R3 is
completely analogous.
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tion σ̃ ∈ C2 satisfying

σ̃(x) = 0 for |x| ≤ a,

σ̃(x) : increasing for a < x < b,

σ̃(x) = σ0 for |x| ≥ b.

(VII.2)

Here 0 < a < b and σ0 > 0 is a parameter that represents the PML strength.

We shall use the sequence of the strictly increasing square domains, Ω1 = (−a, a)2,

Ω2 = (−b, b)2 (a and b are defined as above) and Ωδ = (−δ, δ)2 such that Ω ⊂ Ω0 ⊂

Ω1 ⊂ Ω2 ⊂ Ωδ (see Figure 7). Here Ω0 is an auxiliary square domain between Ω and

Ω1. Let Γj denote the boundary of Ωj for j = 0, 1, 2 and δ. In particular, as we shall

see, the infinite domain PML model preserves the solution of (VII.1) in Ω1 and Ωδ \ Ω̄

is the domain of numerical computation. Here we assume that the origin is inside the

scatterer Ω and the sides of square domains are parallel to the coordinate axes.
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We shall use the following notations: for j = 1, 2

x̃j(xj) ≡ xj(1 + iσ̃(xj)),

σ(xj) ≡ (xj σ̃(xj))
′,

d(xj) ≡ (x̃j)
′ = 1 + iσ(xj),

J(x) ≡ d(x1)d(x2),

H(x) ≡



d(x2)/d(x1) 0

0 d(x1)/d(x2)


 .

(VII.3)

Then, the Cartesian PML Laplacian is defined by

∆̃ =
1

d(x1)

∂

∂x1

(
1

d(x1)

∂

∂x1

)
+

1

d(x2)

∂

∂x2

(
1

d(x2)

∂

∂x2

)

=
1

J(x)
∇ ·H(x)∇.

(VII.4)

Sometimes we shall use ∆̃x for ∆̃ in order to indicate that the operator acts on

functions of x.

The PML reformulation leads to the study of a source problem: for f ∈ L2(Ω̄c),

find û ∈ H1
0 (Ω̄c) satisfying

A(û, φ) − k2(d(x1)d(x2)û, φ) = (d(x1)d(x2)f, φ) for all φ ∈ H1
0 (Ω̄c). (VII.5)

Here

A(u, v) =

∫

Ωc

[
d(x2)

d(x1)

∂u

∂x1

∂v̄

∂x1

+
d(x1)

d(x2)

∂u

∂x2

∂v̄

∂x2

]
dx,

(f, g) =

∫

Ωc

f ḡ dx.

(VII.6)

In [13], an analysis of the source problem on the infinite domain with spherical

PML was given by first showing that the resulting form was coercive up to a lower

order perturbation on a bounded domain. A standard argument by compact pertur-

bation [47, 54] then shows stability of the source problem once uniqueness has been
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established. Unfortunately, this perturbation approach fails for Cartesian PML. The

problem is, e.g., that the coefficient of the x1 derivatives in the form on the left hand

side of (VII.5) equals −k−2 times that of the zeroth order term when x1 ∈ (−a, a),

i.e., when d(x1) = 1. As Ω̄c ∩ ((−a, a) × R) is an unbounded domain, we cannot

restore coercivity by a zeroth order perturbation on a BOUNDED domain.

We need to circumvent the compact perturbation approach. We do this by

analyzing the essential spectrum of the unbounded operator L̃ : H−1(Ω̄c) → H−1(Ω̄c)

with domain H1
0 (Ω̄c) defined for v ∈ H1

0 (Ω̄c) by L̃v = f , where f ∈ H−1(Ω̄c) is given

by

< f, d̄(x1) d̄(x2)φ >= A(v, φ) for all φ ∈ H1
0 (Ω̄c). (VII.7)

Here < ·, · > denotes the duality pairing. As usual, if f ∈ L2(Ω̄c), then the du-

ality pairing coincides with the L2-inner product. We shall see that L̃ is a (well-

defined) closed unbounded operator on H−1(Ω̄c) with domain H1
0 (Ω̄c) provided that

σ̃ is smooth enough. Note that L̃ is a weak form of the operator −∆̃ given by (VII.4).

We take the definition of essential spectrum σess(L̃) to be the set of points in

the spectrum (the complement of the resolvent ρ(L̃)) excluding those in the discrete

spectrum σd(L̃) (isolated points of the spectrum with finite algebraic multiplicity).

There are other notions of essential spectrum, some of which are discussed in [24].

We will identify the essential spectrum σess(L̃) (see Figure 8) and conclude that

σess(L̃) intersects the real axis only at the origin (in Chapter VIII). This means

that the only way that k2 (for real k with k 6= 0) can fail to be in the resolvent

set for L̃ is that there is an eigenvector of L̃ associated with k2. Thus by showing

uniqueness of solutions for k2 (in Chapter IX), we conclude that k2 is in the resolvent

set of L̃ for any real nonzero k. This conclusion implies the “inf-sup” conditions for

the variational problem (VII.5) and leads to existence, uniqueness and stability of its
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(b) The case when σ10 6= σ20.

Fig. 8. The essential spectrum of −∆̃ on L2(R2) (which coincides with that of L̃ on

H−1(Ω̄c))

solution (for suitable f).

Remark VII.1. In the above, we consider a simple PML example where the same

stretching function is used in each direction. In an application where the domain

more naturally fits into a rectangle [−a1, a1] × [−a2, a2], it is more reasonable (and

computationally efficient) to use direction dependent PML stretching functions. For

example, we use even functions σ̃j for j = 1, 2 satisfying (VII.2) with a, b and σ0

replaced by aj , bj and σj0, respectively. The only changes in (VII.5) and (VII.7)

involve replacement of d(xj) by dj(xj) ≡ 1 + i(xj σ̃j(xj))
′. As the analysis presented

below is identical for direction dependent PML stretching, for convenience of notation,

from here on, we shall revert back to the case of σ̃1 = σ̃2 = σ̃.

B. Complexified distance

In this section we present some technical lemmas that will be used in the following

sections. We first shall generalize the complex stretching functions. Let σM denote
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the maximum of σ, σM ≡ maxt∈R{σ(t)}, and

U ≡ {z ∈ C : Re(z) > −1/(2σM)}.

For z ∈ U , we define x̃z
j ≡ xj(1 + zσ̃(xj)) and d̃z, σz, dz, Jz in (VII.3) with z in

place of i in (VII.3). We also introduce a “stretched” differential operator ∆̃z given

by

∆̃z =
1

dz(x1)

∂

∂x1

(
1

dz(x1)

∂

∂x1

)
+

1

dz(x2)

∂

∂x2

(
1

dz(x2)

∂

∂x2

)
.

Finally, we define a complexified distance between x̃z ≡ (x̃z
1, x̃

z
2) and ỹz ≡ (ỹz

1, ỹ
z
2)

by

r̃z ≡
√

(x̃z
1 − ỹz

1)
2 + (x̃z

2 − ỹz
2)

2.

The properties of r̃z are presented in the following lemmas. In case of z = i, we will

use x̃ and r̃ without z dependency.

Lemma VII.2. For z ∈ U there exists ε > 0 such that for x 6= y,

−π + ε ≤ arg((x̃z
1 − ỹz

1)
2 + (x̃z

2 − ỹz
2)

2) ≤ π − ε.

The constant ε appearing above depends on |Im(z)| and hence holds uniformly on

subsets

Uβ ≡ {z ∈ U : |Im(z)| ≤ β},

i.e., ε = ε(β) on Uβ.

Proof. We first consider the case of Im(z) ≥ 0. Let x 6= y. By the mean value

theorem,

xj σ̃(xj) − yjσ̃(yj) = σ(ξj)(xj − yj)
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for some ξj between xj and yj and hence

Re(x̃j − ỹj) = (1 + Re(z)σ(ξj))(xj − yj),

Im(x̃j − ỹj) = Im(z)σ(ξj)(xj − yj).

(VII.8)

Since Re(z) > −1/(2σM),

(1 + Re(z)σ(ξj)) ≥ 1/2 (VII.9)

and so for x̃j − ỹj ≥ 0

0 ≤ arg(x̃j − ỹj) = tan−1 Im(z)σ(ξj)

1 + Re(z)σ(ξj)
≤ tan−1(2σM Im(z)) ≤ π

2
− ε/2 (VII.10)

for some ε > 0. Therefore, it follows immediately that

0 ≤ arg((x̃j − ỹj)
2) ≤ π − ε.

It also holds for the case of x̃j − ỹj < 0.

Now the sector S0,π−ε = {η ∈ C : 0 ≤ arg(η) ≤ π − ε} is closed under addition

so it follows that

0 ≤ arg((x̃1 − ỹ1)
2 + (x̃2 − ỹ2)

2) ≤ π − ε.

When Im(z) ≤ 0, the argument is the same except both terms end up in the sector

S−π+ε,0.

The following lemma shows that |r̃| is equivalent to the Euclidean distance be-

tween x and y.

Lemma VII.3. For z ∈ U and x, y ∈ R2, there exist positive constants C1 and C2

depending on z such that

C1|x− y| ≤ |r̃z| ≤ C2|x− y|. (VII.11)
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Moreover, the constants C1 = C1(α) and C2 = C2(α) can be chosen independent of

z ∈ U provided that |z| ≤ α.

Proof. The upper inequality is immediate from (VII.8) as |1 + zσ(ξj)| is uniformly

bounded when z is uniformly bounded, |z| < α.

For the lower, we again consider the case of Im(z) ≥ 0 and the other case is

verified in the same way. We observe that

|r̃2|2 =
∣∣(x̃1 − ỹ1)

2 + (x̃2 − ỹ2)
2
∣∣2

= |x̃1 − ỹ1|4 + |x̃2 − ỹ2|4 − 2|x̃1 − ỹ1|2|x̃2 − ỹ2|2 cos(π − θ),

where θ is the positive angle between (x̃1 − ỹ1)
2 and (x̃2 − ỹ2)

2 (See Figure 9). Since

the angle θ is in [0, π−ε] (from the previous proof), there exists a constant Cc = Cc(α)

such that

−1 ≤ cos(π − θ) < Cc < 1. (VII.12)

Then by a Schwarz inequality

|r̃2|2 ≥ |x̃1 − ỹ1|4 + |x̃2 − ỹ2|4 − Cc(|x̃1 − ỹ1|4 + |x̃2 − ỹ2|4)

= (1 − Cc)(|x̃1 − ỹ1|4 + |x̃2 − ỹ2|4)

≥ (1 − Cc)

25
(|x1 − y1|2 + |x1 − y1|2)2.

For the last inequality above, we used the arithmetic-geometric mean inequality,

(VII.8) and (VII.9). This completes the proof of the lemma.

Lemma VII.4. There is a constant α > 0 such that for y ∈ [−a, a]2 and ‖x‖∞ ≥ b,

Im(r̃) ≥ α|x|. (VII.13)

In addition, (VII.13) holds also if y ∈ [−m,m]2, ‖x‖∞ = R ≥ 2m and m ≥ b.
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2

ε
θ

π − θ

0

Fig. 9. r̃2 in the complex plane C

Proof. Let y be in [−a, a]2 and ‖x‖∞ ≥ b. Assume without loss of generality that

|x1| = ‖x‖∞. Then

r̃2 = (x1 − y1)
2 − (σ0x1)

2 + 2(x1 − y1)σ0x1i

+ (x2 − y2)
2 − (σ̃(x2)x2)

2 + 2(x2 − y2)σ̃(x2)x2i

≡ R1 + I1i+R2 + I2i ≡ R3 + I3i.

(VII.14)

Now I1 > 0 and I2 ≥ 0 and there is a positive constant c1 satisfying

2Re(r̃)Im(r̃) = I3 ≥ I1 ≥ c1‖x‖2
∞. (VII.15)

Moreover, the proof of Lemma VII.2 shows that the real part of r̃ is non-negative,

and using Lemma VII.3

Re(r̃) ≤ |r̃| ≤ c2‖x‖∞. (VII.16)

An elementary calculation using (VII.15) and (VII.16) gives

Im(r̃) ≥ c1
2c2

‖x‖∞ ≥ c1

2
√

2c2
|x|.

For the second case, we start with (for j = 1, 2)

x̃j − ỹj = (xj − yj) + (σ̃(xj)xj − σ̃(yj)yj)i.
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Now,

σ̃(xj)xj − σ̃(yj)yj =

∫ xj

yj

σ(s) ds = σ(ζj)(xj − yj) (VII.17)

for some ζj between xj and yj. Assume without loss of generality that |x1| = ‖x‖∞.

We expand r̃2 analogous to (VII.14), i.e.,

r̃2 ≡ R1 + I1i+R2 + I2i ≡ R3 + I3i.

Now, (VII.17) and the fact that σ ≥ 0 implies that I2 ≥ 0. Moreover, the integral

representation of the difference in (VII.17) implies that if x1 ≥ 2m, then

∫ x1

y1

σ(s) ds ≥ σ0(x1 − b) ≥ σ0

3
(x1 − y1) > 0.

Thus

I1 ≥
2σ0

3
(x1 − y1)

2 ≥ σ0

3
‖x‖2

∞.

The same argument implies the above inequality when x1 < 0. Thus, (VII.15) and

(VII.16) follow for this case as well, and the conclusion of the lemma immediately

follows as above.

C. Fundamental solution to the Cartesian PML Helmholtz equation

In this section we will find the fundamental solution to the Cartesian PML Helmholtz

equation in R2. The fundamental solution to the Helmholtz equation in R2 satisfying

the Sommerfeld radiation condition at infinity with k real and positive is Φ(r) =

i
4
H1

0 (kr). We have

∫

R2

(−(∆y + k2)u(y))Φ(|x− y|) dy = u(x) for u ∈ C∞
0 (R2). (VII.18)
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Here H1
0 = J0 + iY0 is the Hankel function of the first kind of zero order and J0 and

Y0 are the Bessel functions of the first and second kind, respectively. We have

J0(z) =

∞∑

k=0

(−1)k(z/2)2k

(k!)2
,

and for z ∈ C \ (−∞, 0]

Y0(z) =
2

π
J0(z) ln

z

2
+W0(z)

for an entire function W0(z) with limz→0W0(z) = 2γ/π, where γ = 0.57721566 · · · is

Euler’s constant (See, e.g., [45]). Thus

H1
0 (z) =

2i

π
J0(z) ln

z

2
+ E(z),

H1
0
′
(z) =

2i

π

(
J ′

0(z) ln
z

2
+ J0(z)

1

z

)
+ E ′(z)

for an entire function E(z) with limz→0E(z) = 1 + 2γi/π. It follows that there exist

Cb > 0 and rb > 0 such that

|Φ(z)| ≤ Cb| ln |z||,

|Φ′(z)| ≤ Cb

|z|
(VII.19)

on B(0, rb) \ ((−rb, 0]× 0). Here B(0, rb) ⊂ C is a ball of radius rb centered at z = 0.

On the other hand, for large |z|, we have

H1
0 (z) =

(
2

πz

)1/2

ei(z−π/4)

(
1 +O

(
1

z

))
for | arg(z)| ≤ π − ε,

H1
0
′
(z) =

(
2

πz

)1/2

ei(z+π/4)

(
1 +O

(
1

z

))
for | arg(z)| ≤ π − ε

(VII.20)

with arbitrary small ε [1, 45].
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Theorem VII.5. Assume that z ∈ U . Then Φ̃z(x, y) ≡ Jz(y)Φ(r̃z) satisfies

u(x) =

∫

R2

(−(∆̃z
y + k2)u(y))Φ̃z(x, y) dy (VII.21)

for all u ∈ C∞
0 (R2). Moreover, for z ∈ U with Im(z) > 0 and any compact set

K ⊂ R2, Φ̃z(x, y) decays exponentially uniformly for x ∈ K as |y| → ∞.

To prove (VII.21), for u ∈ C∞
0 (R2) and x ∈ R2, we define

F (z) ≡
∫

R2

(−(∆̃z
y + k2)u(y))Φ̃z(x, y) dy =

∫

R2

Jz(y)(−(∆̃z
y + k2)u(y))Φ(r̃z) dy

and we shall show that F (z) is analytic on U . This will be treated in the following

lemmas.

First, we need to justify that the integral in (VII.21) is well-defined. To this end,

fix x ∈ R2, set P (y, z) ≡ Jz(y)(∆̃z
y + k2)u(y) and G(y, z) ≡ P (y, z)Φ(r̃z). For any

z0 ∈ U there exists ǫ > 0 such that B̄(z0, ǫ) ⊂ U .

Lemma VII.6. Let z0, ǫ and G(y, z) be defined as above. Then, G(·, z) and ∂
∂z
G(·, z)

are integrable for each z ∈ B(z0, ǫ). In addition, there exists an integrable function

G(y) such that

∣∣∣∣
∂

∂z
G(y, z)

∣∣∣∣ ≤ G(y) for all z ∈ B(z0, ǫ) and y 6= x. (VII.22)

Proof. Note that Φ(r̃z) is a continuous function of y except at y = x. By Lemma VII.3,

there exists 0 < s such that |r̃z| < rb for (y, z) ∈ B(x, s) × B(z0, ǫ). It follows from

(VII.19) and Lemma VII.3 that there exists a constant Csing > 0 such that

|Φ(r̃z)| ≤ Cb |ln |r̃z|| ≤ Csing |ln |x− y|| ,

|Φ′(r̃z)| ≤ Cb

|r̃z| ≤ Csing

|x− y|

(VII.23)

for (y, z) ∈ B̃(x, s) × B(z0, ǫ). Here B̃(x, s) denotes B(x, s) \ {x}.
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Moreover,

|P (y, z)|,
∣∣∣∣
∂

∂z
P (y, z)

∣∣∣∣ ≤ Cp(|∆u(y)| + |∇u(y)|+ |u(y)|) for all y ∈ R
2 (VII.24)

with Cp independent of z ∈ B(z0, ǫ).

By (VII.23)-(VII.24), G(·, z) is integrable on the neighborhood B(x, s) for all

z ∈ B(z0, ǫ). Its integrability outside of B(x, s) follows from (VII.24) and the fact

that u is compactly supported (since Φ(r̃z) is bounded on supp(u) \B(x, s)).

For the derivative

∂

∂z
G(y, z) =

(
∂

∂z
P (y, z)

)
Φ(r̃z) + P (y, z)

∂

∂z
Φ(r̃z)

=

(
∂

∂z
P (y, z)

)
Φ(r̃z) + P (y, z)Φ′(r̃z)

∂r̃z

∂z
.

(VII.25)

Except for the derivative of r̃z with respect to z, the functions in (VII.25) are esti-

mated as above.

For ∂r̃z/∂z, we observe xj σ̃(xj)− yjσ̃(yj) = σ(ξj)(xj − yj) for ξj between xj and

yj. Thus for z ∈ B(z0, ǫ),

∣∣∣∣
∂r̃z

∂z

∣∣∣∣ =

∣∣∣∣

∑
j=1,2(x̃j − ỹj)(xj σ̃(xj) − yjσ̃(yj))

r̃z

∣∣∣∣

=

∣∣∣∣∣

∑
j=1,2(xj − yj)

2(1 + zσ(ξj))σ(ξj)

r̃z

∣∣∣∣∣ ≤ Cr|x− y|,
(VII.26)

where we used Lemma VII.3.

Let h(y) be defined by

h(y) =





Csing

|x− y| for y ∈ B̃(x, s),

Csup for y ∈ R2 \B(x, s),

where Csup is the supremum of |Φ(r̃z)| and |Φ′(r̃z)| for y ∈ supp(u) \ B(x, s) and
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z ∈ B(z0, ǫ). Since | ln |x− y|| ≤ 1/|x− y| for |x− y| < s < 1,

|Φ(r̃z)|, |Φ′(r̃z)| ≤ h(y) on supp(u).

Then applying (VII.23), (VII.24) and (VII.26) to (VII.25) gives

∣∣∣∣
∂

∂z
G(y, z)

∣∣∣∣ ≤ Cp(|∆u(y)|+ |∇u(y)|+ |u(y)|)h(y)(1 + Cr|x− y|)

and (VII.22) follows. This completes the proof.

Lemma VII.7. For u ∈ C∞
0 (R2) and x ∈ R

2, F (z) defined as above is analytic on

U .

Proof. For z0 ∈ U choose ǫ as in Lemma VII.6. It suffices to show that the limit of

(F (z + h) − F (z))/h as h → 0 exists for z ∈ B(z0, ǫ). This, in turn, will follow by

dominated convergence once we show that there exists an integrable function G̃(y)

such that ∣∣∣∣
G(y, z + h) −G(y, z)

h

∣∣∣∣ ≤ G̃(y).

Then,

dF

dz
=

∫

R2

lim
h→0

G(y, z + h) −G(y, z)

h
dy

=

∫

R2

∂

∂z
G(y, z) dy.

By applying the mean value theorem and the Cauchy-Riemann equations, it is

easy to show that for an analytic function w,

|w(z1) − w(z2)| ≤ 2|z1 − z2| max
α∈(0,1)

∣∣∣∣
dw

dz
(αz1 + (1 − α)z2)

∣∣∣∣.

Thus, by (VII.22),

∣∣∣∣
G(y, z + h) −G(y, z)

h

∣∣∣∣ < 2G(y) for z ∈ B(z0, ǫ),
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which completes the proof.

Proof of Theorem VII.5. First, we will prove (VII.21) for real z ∈ U . In this case the

mapping y 7→ ỹz is a diffeomorphism of R2 with the Jacobian Jz(y) and r̃z is |x̃z− ỹz|,

l2-norm of x̃z − ỹz in R2. Let u ∈ C∞
0 (R2) and define v(ỹz) ≡ u(y). By change of

variables and (VII.18),

F (z) =

∫

R2

Jz(y)(−(∆̃z
y + k2)u(y))Φ(|x̃z − ỹz|) dy

=

∫

R2

(−(∆ỹz + k2)v(ỹz))Φ(|x̃z − ỹz|) dỹz

= v(x̃z) = u(x),

which means that F (z) is constant on U ∩ R. Since F (z) is analytic on U by

Lemma VII.7 and constant on U ∩R, F (z) must be constant. Therefore F (z) = u(x)

for all z ∈ U .

Remark VII.8. The formula (VII.21) can be extended to u ∈ H2(R2) with compact

support.

For each x ∈ R2, the function Φ(r̃z) (as a function of y) satisfies the Cartesian

PML Helmholtz equation as noted in the following lemma.

Lemma VII.9. Assume that y 6= x in R2 and z ∈ U . Then

(∆̃z
y + k2)Φ(r̃z) = 0.

Proof. Let x, y, z be as above. We note that

F̃ (z) ≡ (∆̃z
y + k2)Φ(r̃z) = Φ′′(r̃z) +

1

r̃z
Φ′(r̃z) + k2Φ(r̃z). (VII.27)

As F̃ (z) is analytic on U and vanishes for real z ∈ U , F̃ (z) vanishes identically.
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CHAPTER VIII

THE SPECTRUM OF A CARTESIAN PML LAPLACE OPERATOR

In this chapter we study the spectrum of a Cartesian PML Laplace operator on an

unbounded domain. It is important to understand the structure of the spectrum of

the Cartesian PML Laplace operator because the solvability of the problem (VII.5)

is intimately related to the spectrum of the operator.

The outline of this chapter is as follows. In Section A, we give some prelimi-

naries and state some tools for identifying the boundary of the essential spectrum of

operators from their behavior at infinity. In Section B, we study the spectrum of the

one dimensional PML operator. These results are used in Section C to identify the

essential spectrum of the operator −∆̃ defined on L2(R2) and subsequently that of L̃

on H−1(Ω̄c).

A. Preliminary tools

We give some preliminary results and tools for the analysis of the spectrum of oper-

ators in this section.

Remark VIII.1. We assumed that the PML function σ̃ is in C2(R). This will be

sufficient to guarantee that the unbounded operators discussed in the previous chapter

are well-defined and closed.

We next show that L̃ is well-defined. Indeed, for v ∈ H1
0 (Ω̄c),

|A(v, φ)| ≤ C‡‖v‖H1(Ω̄c)‖φ‖H1(Ω̄c) for all φ ∈ H1
0 (Ω̄c).

‡Here and in the remainder of the dissertation, C denotes a generic positive
constant which may take on different values in different places often depending on
the spectral parameter (z or z0).
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As multiplication by a bounded C1 function whose absolute value is bounded away

from zero gives an isomorphism of H1
0 (Ω̄c) onto H1

0 (Ω̄c), it follows that

|A(v, (d̄(x1)d̄(x2))
−1φ)| ≤ C‖v‖H1(Ω̄c)‖φ‖H1(Ω̄c)

so there is a unique f ∈ H−1(Ω̄c) satisfying (VII.7) and L̃ is well-defined. Moreover,

‖L̃v‖H−1(Ω̄c) ≤ C‖v‖H1(Ω̄c) for all v ∈ H1
0 (Ω̄c). (VIII.1)

Examining the properties of σ̃(x), it follows that there are real numbers α > 0

and 0 < θ < π/2 satisfying

Re(d(x)/d(y)) ≥ α and Re(e−iθd(x)d(y)) ≥ α for all x, y ∈ R.

This implies that for z0 = −e−iθ,

|A(u, u)− z0(d(x1)d(x2)u, u)| ≥ α‖u‖2
H1(Ω̄c) for all u ∈ H1

0 (Ω̄c). (VIII.2)

This, and the discussion above, implies that given f ∈ H−1(Ω̄c), there is a unique

u ∈ H1
0 (Ω̄c) satisfying

A(u, φ) − z0(d(x1)d(x2)u, φ) =< f, d̄(x1) d̄(x2)φ > for all φ ∈ H1
0 (Ω̄c). (VIII.3)

Moreover,

‖u‖H1(Ω̄c) ≤ C‖f‖H−1(Ω̄c). (VIII.4)

It is immediate that (L̃−z0I)u = f and so z0 is in the the resolvent set ρ(L̃). This

implies that the operator L̃ is closed, its resolvent set is non-empty and its spectrum

is well-defined.

Now, we define an extended operator (still denoted by L̃) defined for v ∈ H1(R2)
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by L̃v = f , where f ∈ H−1(R2) is defined by

< f, d̄(x1)d̄(x2)φ >= A(v, φ) for all φ ∈ H1(R2). (VIII.5)

Clearly, d(x) is well-defined for all x ∈ R and (VIII.5) makes sense. For f ∈ L2(R2)

the duality pairing is the integral (·, ·)R2.

The argument above shows that z0 ∈ ρ(L̃) for the extended operator and so L̃ is

closed, its resolvent set is non-empty, and its spectrum is well-defined.

To develop the same properties for −∆̃ as an operator on L2(R2) with domain

H2(R2), elliptic regularity comes into play. Specifically since σ̃ is C2(R), classical

arguments involving difference quotients (see, also, [13, 49]) can be used to show that

when f ∈ L2(R2), the solution u of the extended version of (VIII.3) is in H2(R2) and

satisfies

‖u‖H2(R2) ≤ C‖f‖L2(R2). (VIII.6)

This means that u is in the domain of −∆̃ and satisfies

(−∆̃ − z0I)u = f,

i.e., z0 ∈ ρ(−∆̃). This immediately gives the desired results as above.

In this chapter, we describe the essential spectrum of L̃ on H−1(Ω̄c) by studying

the spectrum of −∆̃ on L2(R2) and L̃ on H−1(R2). As a first step, we have the

following theorem.

Theorem VIII.2. The spectrum of L̃ as an unbounded operator on H−1(R2) (with

domain H1(R2)) is the same as the spectrum of −∆̃ on L2(R2) (with domain H2(R2)).

Before proving the theorem, we observe the following lemma.

Lemma VIII.3. The point z is in ρ(L̃) (as an operator on H−1(R2)) if and only if
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the following two inf-sup conditions hold: For all u in H1(R2),

‖u‖H1(R2) ≤ C sup
φ∈H1(R2)

|Az(u, φ)|
‖φ‖H1(R2)

(VIII.7)

and

‖u‖H1(R2) ≤ C sup
φ∈H1(R2)

|Az(φ, u)|
‖φ‖H1(R2)

, (VIII.8)

where Az(·, ·) ≡ A(·, ·) − z(d(x1)d(x2)·, ·)R2.

Proof. The inf-sup conditions immediately imply that the map L̃ − zI : H1(R2) →

H−1(R2) is an isomorphism. This means that if the inf-sup conditions hold for z,

then z is in the resolvent set ρ(L̃).

We already know from (VIII.2) that the inf-sup conditions hold for z0. It suffices

to prove the first inf-sup condition as the second follows from it since the coefficients

of Az(·, ·) are complex symmetric (but not Hermitian).

Suppose that z is in ρ(L̃). To prove (VIII.7), let u be in C∞
0 (R2) and v ∈ H1(R2)

be the unique function satisfying (cf., (VIII.2))

Az0
(v, φ) = Az(u, φ) for all φ ∈ H1(R2).

Setting u0 = u− v, a simple computation gives

Az(u0, φ) = (z − z0)(d(x1)d(x2)v, φ)R2 for all φ ∈ H1(R2)

or

(L̃− zI)u0 = (z − z0)v. (VIII.9)

Since z ∈ ρ(L̃),

‖u0‖H−1(R2) ≤ C‖v‖H−1(R2). (VIII.10)
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Also,

Az0
(u0, φ) = (z − z0)(d(x1)d(x2)[v + u0], φ)R2 for all φ ∈ H1(R2)

and hence by (VIII.4) and (VIII.10)

‖u0‖H1(R2) ≤ C‖v‖H−1(R2).

Thus, using (VIII.2) gives

‖u‖H1(R2) ≤ ‖v‖H1(R2) + ‖u0‖H1(R2) ≤ C‖v‖H1(R2)

≤ C sup
φ∈H1(R2)

|Az0
(v, φ)|

‖φ‖H1(R2)

= C sup
φ∈H1(R2)

|Az(u, φ)|
‖φ‖H1(R2)

.

This proves (VIII.7) and completes the proof of the lemma.

Remark VIII.4. The lemma holds for L̃ defined on H−1(Ω̄c) with the inf-sup con-

ditions involving the supremum over H1
0 (Ω̄c). The proof is identical.

Corollary VIII.5. If z in ρ(−∆̃) (as an operator on L2(R2)), then (VIII.7) and

(VIII.8) hold for z and hence z ∈ ρ(L̃) on H−1(R2).

Proof. The proof that z ∈ ρ(−∆̃) implies (VIII.7) and (VIII.8) is essentially identical

to that of the lemma except that (VIII.10) is replaced by

‖u0‖L2(R2) ≤ C‖v‖L2(R2). (VIII.11)

Remark VIII.6. Let Ωδ denote the square domain [−δ, δ]2 with δ ≥ b. We fix

z ∈ ρ(−∆̃) (as an operator on L2(R2)). For the analysis of the truncated PML

problem in Chapter IX, we shall require that the inf-sup conditions of Lemma VIII.3

still hold with H1(R2) replaced by H1
0 (Ωδ) uniformly for δ > δ0 = δ0(z). Examining

the proof of the above lemma, we see that for this to hold it suffices to show that
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for δ > δ0, z ∈ ρ(∆̃δ) (as an operator on L2(Ωδ) with domain H2(Ωδ) ∩H1
0 (Ωδ)) and

there is a constant C depending only on δ0 and z satisfying

‖(−∆̃δ − zI)−1‖L2(Ωδ) ≤ C (VIII.12)

for all δ > δ0. The existence of δ0 and C will be verified in the proof of Theo-

rem VIII.22.

Proof of Theorem VIII.2. That ρ(−∆̃) is contained in ρ(L̃) is given by the above

corollary. The other direction, ρ(L̃) ⊆ ρ(−∆̃), follows from Lemma VIII.3, the two

inf-sup conditions and elliptic regularity (the argument is identical that used earlier

in this section to show z0 ∈ ρ(−∆̃)).

To connect the spectrum of the extended operators to that of L̃ on H−1(Ω̄c), we

require the concepts of local compactness of operators, the Weyl spectrum and the

Zhislin spectrum. Let U be Ω̄c or R
m for m = 1, 2.

Definition VIII.7. For B ⊂ U , let χB denote the characteristic function on B. If a

closed operator T with ρ(T ) 6= ∅ satisfies the condition that χB(T −λI)−1 is compact

for any bounded open set B ⊂ U and for some λ ∈ ρ(T ) (and so any λ ∈ ρ(T )), then

T is called locally compact.

Definition VIII.8. Let T be a closed operator on a Hilbert space H. A Weyl

sequence {un} for T and λ ∈ C is a sequence such that ‖un‖H = 1, un → 0 weakly

and ‖(T − λI)un‖H → 0. The set of all λ such that a Weyl sequence exists for T and

λ is called the Weyl spectrum W (T ) of T .

The Weyl spectrum W (T ) of a closed operator T is related to the essential

spectrum σess(T ) of T as follows.
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Theorem VIII.9. [23, Theorem 3.1] Let T be a closed operator on a Hilbert space

H with ρ(T ) 6= ∅. Then W (T ) ⊂ σess(T ) and the boundary of σess(T ) is contained

in W (T ). Finally, W (T ) = σess(T ) if and only if each connected component of the

complement of W (T ) contains a point of ρ(T ).

Definition VIII.10. Let T be a closed operator on H ≡ H−1(U) or L2(Rm) for

m = 1, 2. A Zhislin sequence un for T and λ ∈ C is a sequence such that ‖un‖H = 1,

supp(un) ∩ K = ∅ for each compact set K ⊂ U and for all n large, and such that

‖(T − λI)un‖H → 0 as n → ∞. The set of all λ such that a Zhislin sequence exists

for T and λ is called the Zhislin spectrum Z(T ) of T .

Since every Zhislin sequence converges to zero weakly, it is obvious that Z(T ) ⊂

W (T ). In general, these two sets are not necessarily equal but sometimes they coincide

as shown in the following theorems.

Theorem VIII.11. Let T be a locally compact, closed operator on L2(Rm) such that

ρ(T ) 6= ∅ and C∞
0 (Rm) is a core. Let χ ∈ C∞

0 (Rm) be such that χ|B(0,r) = 1 for

some r > 0, where B(0, r) is a ball centered at the origin and of radius r. We define

χn(x) ≡ χ(x/n). Suppose that there exists ε(n) such that ε(n) → 0 as n → ∞, and

that for all u ∈ C∞
0 (Rm)

‖[T, χn]u‖L2(Rm) ≤ ε(n)(‖Tu‖L2(Rm) + ‖u‖L2(Rm)). (VIII.13)

Here [T, χn] is the commutator of T and χn: [T, χn]u = T (χnu) − χnTu for u ∈

C∞
0 (Rm). Then Z(T ) = W (T ).

This result for operators on L2(Rm) is given in [23, Theorem 3.2]. We note that

C∞
0 (Ω̄c) is still a core of L̃ on H−1(Ω̄c) and we have a similar theorem. Its proof is

essentially the same as that of Theorem VIII.11 in [23].



97

Theorem VIII.12. Let T be a locally compact, closed operator on H−1(U) with

domain H1
0 (U) such that ρ(T ) 6= ∅. Let χn be as in the previous theorem. Suppose

that there exists ε(n) such that ε(n) → 0 as n→ ∞, and that for all u ∈ H1
0 (U)

‖[T, χn]u‖H−1(U) ≤ ε(n)(‖Tu‖H−1(U) + ‖u‖H−1(U)). (VIII.14)

Then Z(T ) = W (T ).

B. Spectrum of the one dimensional PML operator on L2(R)

In this section, we consider the spectrum of the one dimensional stretched operator

on L2(R) with domain H2(R) defined by

D̃ = − 1

d(x)

∂

∂x

(
1

d(x)

∂

∂x

)
.

A weak form corresponding to D̃u = f for f ∈ L2(R) is given by: find u ∈ H1(R)

satisfying

a(u, v) = (d(x)f, v)R for all v ∈ H1(R),

where

a(u, v) =

(
1

d(x)
u′, v′

)

R

for all u, v ∈ H1(R).

The arguments showing that D̃ is well-defined as an operator on L2(R) with domain

H2(R) are identical to those given in Section 2 for −∆̃. In fact, z0 is in ρ(D̃).

Additional properties are given in the following lemma.

Lemma VIII.13. The operator D̃ on L2(R) is locally compact and satisfies (VIII.13).

Proof. The local compactness of D̃ immediately follows from the compact embedding

of H2(B) as a subset of L2(B) for bounded B (we take λ = z0 ∈ ρ(D̃)).
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It remains to show that D̃ satisfies (VIII.13). As in Section 2, for u ∈ C∞
0 (R),

‖u′‖2
L2(R) ≤ α−1Re(d(x)−1u′, u′)R = α−1Re(D̃u, d̄(x)u)R.

Thus,

‖u′‖L2(R) ≤ C(‖D̃u‖L2(R) + ‖u‖L2(R)). (VIII.15)

Expanding [D̃, χn]u and noting that all terms cancel except those involving differen-

tiation of χn gives

‖[D̃, χn]u‖L2(R) ≤ C(‖χ′′
nu‖L2(R) + ‖χ′

nu
′‖L2(R) + ‖χ′

nu‖L2(R)).

Since ‖χ′
n‖∞, ‖χ′′

n‖∞ ≤ C/n for large n, by (VIII.15),

‖[D̃, χn]u‖L2(R) ≤
C

n
(‖u′‖L2(R) + ‖u‖L2(R))

≤ C

n
(‖D̃u‖L2(R) + ‖u‖L2(R)),

which completes the proof.

Proposition VIII.14. Let D̃ be as above. Then

σ(D̃) = σess(D̃) = {z ∈ C : arg(z) = −2 arg(1 + iσ0)}.

Proof. Let S ≡ −(1 + iσ0)
−2∂2/∂x2 be defined on L2(R) with domain H2(R). Note

that S coincides with D̃ for x /∈ [−b, b]. Lemma VIII.13 holds for S so

W (S) = Z(S) = Z(D̃) = W (D̃) (VIII.16)

by Theorem VIII.11. Moreover,

σ(S) = σess(S) = {z ∈ C : arg(z) = −2 arg(1 + iσ0)} = W (S), (VIII.17)

where the last equality followed from Theorem VIII.9. Applying Theorem VIII.9 to
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D̃ and using (VIII.16) shows that σess(D̃) is also given by (VIII.17).

To complete the proof, we will show that the discrete spectrum of D̃ is empty.

Indeed, if λ is in the discrete spectrum of D̃, then there is an eigenvector u ∈ H2(R)

such that D̃u = λu. It is easy to see that

u(x) = C1e
i
√

λx(1+iσ̃(x)) + C2e
−i

√
λx(1+iσ̃(x)). (VIII.18)

For x /∈ [−b, b],

u(x) = C1e
i
√

λx(1+iσ0) + C2e
−i

√
λx(1+iσ0).

Examining this expression, it is clear that the only way that u can be in L2(R) is

that C1 = C2 = 0, i.e., u = 0. This completes the proof of the lemma.

C. The spectrum of L̃ on H−1(Ω̄c)

We prove the main theorem concerning the essential spectrum of L̃ on H−1(Ω̄c) in this

section. We start by examining the spectrum of −∆̃ on L2(R2). We first consider the

tensor product operator associated with components coming from the one dimensional

operator D̃, specifically

T̃ = D̃ ⊗ I + I ⊗ D̃. (VIII.19)

This operator is defined on L2(R) ⊗ L2(R) = L2(R2) with domain H2(R) ⊗ H2(R).

We note that H2(R) ⊗H2(R) is dense in H2(R2) and that T̃ coincides with −∆̃ on

H2(R) ⊗H2(R). This means that −∆̃ is the closure of T̃ .

To characterize the spectrum of −∆̃, we introduce the following theorem on

tensor product operators.

Theorem VIII.15. [48, Theorem XIII.35] Let A and B be the generators of bounded

holomorphic semigroups on a Hilbert space H. Let dom(A) and dom(B) be the do-

mains of A and B in H, respectively. If C is the closure of the operator A⊗ I+ I⊗B
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defined on dom(A)⊗dom(B), then C generates a bounded holomorphic semigroup and

σ(C) = σ(A) + σ(B).

The next theorem provides a criterion for an operator to be a generator of a

holomorphic semigroup. First, the following definition is required.

Definition VIII.16. Let T be a closed operator on a Hilbert space H. T is called

m-sectorial with a vertex at z = 0 and a semi-angle δ ∈ [0, π/2) if the numerical

range of T , N (T ) = {(Tu, u) ∈ C : u ∈ dom(T ) with ‖u‖H = 1}, is contained in a

sector Sδ = {z ∈ C : | arg(z)| ≤ δ} and (C \ Sδ) ∩ ρ(T ) 6= ∅.

Theorem VIII.17. [41, IX Theorem 1.24] Let T be an m-sectorial operator on a

Hilbert space H. Then T generates a bounded holomorphic semigroup.

Lemma VIII.18. There exist a real and positive constant β and a complex constant

η such that T ≡ ηD̃ + βI is m-sectorial.

Proof. The spectrum of T is a line from β to infinity and hence (C \ Sδ) ∩ ρ(T ) 6= ∅

for any δ ∈ [0, π/2).

Let η = 1+iσM , where σM = maxt∈R{σ(t)}. It suffices to show that for a positive

β, there exists a positive constant C such that Re(Tu, u)R ≥ C|Im(Tu, u)R| for all

u ∈ H2(R) with ‖u‖L2(R) = 1 since this implies that the numerical range N (T ) of T

is contained in the sector Sδ with a vertex at z = 0 and a semi-angle δ = tan−1(1/C).

Now, for u ∈ C∞
0 (R) with ‖u‖L2(R) = 1

(Tu, u)R = −
∫

R

η

d(x)

∂

∂x

(
1

d(x)

∂u

∂x

)
ū dx+ β‖u‖2

L2(R)

=

∫

R

η

d(x)2

∣∣∣∣
∂u

∂x

∣∣∣∣
2

dx+

∫

R

η

d(x)

(
1

d(x)

)′
∂u

∂x
ū dx+ β‖u‖2

L2(R).

(VIII.20)
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Note that there exist positive constants c1 and c2 such that

Re

(
η

d(x)2

)
≥ c1 and

∣∣∣∣
η

d(x)

(
1

d(x)

)′∣∣∣∣ ≤ c2. (VIII.21)

Using (VIII.21), applying the Schwarz inequality and the arithmetic-geometric mean

inequality gives that for any positive γ,

Re(Tu, u)R ≥ c1‖u′‖2
L2(R) + β‖u‖2

L2(R) −
c2
2

(γ‖u′‖2
L2(R) + 1/γ‖u‖2

L2(R))

= (c1 − γc2/2)‖u′‖2
L2(R) + (β − c2/(2γ))‖u‖2

L2(R).

(VIII.22)

Choosing γ small enough and β large enough implies

Re(Tu, u)R ≥ CR‖u‖2
H1(R).

On the other hand, it easily follows that

|Im(Tu, u)R| ≤ CI‖u‖2
H1(R). (VIII.23)

Combining these results and noting that C∞
0 (R) is dense in H2(R) finishes the proof

of the lemma.

Combining the above results gives the following theorem concerning the spec-

trum of −∆̃, which we state for the more general PML formulation discussed in

Remark VII.1. Let

S ≡ {z ∈ C : −2 arg(1 + iσ20) ≤ arg(z) ≤ −2 arg(1 + iσ10)}

when σ10 ≤ σ20 and

S ≡ {z ∈ C : −2 arg(1 + iσ10) ≤ arg(z) ≤ −2 arg(1 + iσ20)}

when σ10 > σ20.
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Theorem VIII.19. The spectrum of −∆̃ on L2(R2) with domain H2(R2) is given by

σ(−∆̃) = σess(−∆̃) = S (VIII.24)

(see Figure 8.).

Proof. We first consider the case when σ10 = σ20 = σ0. Since ηD̃ + βI is m-sectorial,

it follows from Theorem VIII.17 that ηD̃ + βI generates a bounded holomorphic

semigroup. By Theorem VIII.15

σ(−η∆̃ + 2βI) = σ(ηD̃ + βI) + σ(ηD̃ + βI) = σ(ηD̃ + 2βI).

Translating by −2β and multiplying by 1/η gives

σ(−∆̃) = σ(D̃).

In the case when σ10 6= σ20, D̃1, D̃2 are D̃ defined with σ̃1, σ̃2, respectively for each

component. As above, we have

σ(−∆̃) = σ(D̃1) + σ(D̃2) = S.

This completes the proof of the theorem.

We are now in a position to state and prove the main result of this chapter.

Theorem VIII.20. The essential spectrum of L̃ on H−1(Ω̄c) with domain H1
0 (Ω̄c) is

contained in S.

Proof. The spectrum of −∆̃ on L2(R2) is the same as L̃ on H−1(R2) by Theo-

rem VIII.2. Clearly, both L̃ on H−1(R2) and L̃ on H−1(Ω̄c) are locally compact.

To finish the proof of the theorem, it suffices to show that they satisfy (VIII.14).
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Indeed, in that case, we apply Theorem VIII.12 to conclude that

S ⊇ W (L̃)(on H−1(R2)) = Z(L̃)(on H−1(R2))

= Z(L̃)(on H−1(Ω̄c)) = W (L̃)(on H−1(Ω̄c)).

The theorem follows from Theorem VIII.9 since W (L̃)(on H−1(Ω̄c)) contains the

boundary of σess(L̃) (on H−1(Ω̄c)).

We verify (VIII.14) in the case of H−1(Ω̄c). The other case is essentially identical.

For χn defined in Theorem VIII.12 and u ∈ H1
0 (Ω̄c), a simple computation shows that

for φ ∈ C∞
0 (Ω̄c),

< [L̃, χn]u, d̄(x1) d̄(x2)φ > = A(χnu, φ) −A(u, χ̄nφ)

=

(
d(x2)

d(x1)

∂χn

∂x1

u,
∂φ

∂x1

)
+

(
d(x1)

d(x2)

∂χn

∂x2

u,
∂φ

∂x2

)

−
(
d(x2)

d(x1)

∂χn

∂x1

∂u

∂x1
, φ

)
−
(
d(x1)

d(x2)

∂χn

∂x2

∂u

∂x2
, φ

)
.

Using the fact that the first derivatives of χn can be bounded by C/n gives

| < [L̃, χn]u, d̄(x1) d̄(x2)φ > | ≤ C

n
‖u‖H1(Ω̄c)‖φ‖H1(Ω̄c).

Now

‖u‖H1(Ω̄c) ≤ C‖(L̃− z0I)u‖H−1(Ω̄c) ≤ C(‖L̃u‖H−1(Ω̄c) + ‖u‖H−1(Ω̄c)). (VIII.25)

Combining the above results shows that

| < [L̃, χn]u, d̄(x1) d̄(x2)φ > | ≤ C

n
(‖L̃u‖H−1(Ω̄c) + ‖u‖H−1(Ω̄c))‖φ‖H1(Ω̄c).

The desired result (VIII.14) follows as in the proof of (VIII.1). This completes the

proof of the theorem.
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R1 R1

R1

R1

R2 R2

R2R2

δn

3
2
δn

2b

2b

Ωδn

Fig. 10. The reflection subdomains

Remark VIII.21. By cutting down functions of the form

f(x, y) = ei[γx/(1+iσ10)+βy/(1+iσ20)]

with γ and β positive, it is possible to show that

γ2/(1 + iσ10)
2 + β2/(1 + iσ20)

2 ∈ Z(L̃).

As any point of S can be obtained this way, σess(L̃) (on H−1(Ω̄c)) equals S.

The following result provides uniform inf-sup conditions for the truncated prob-

lem.

Theorem VIII.22. Let z be in ρ(−∆̃). Then there is a δ0 such that for all δ > δ0

and u in H1
0 (Ωδ),

‖u‖H1

0
(Ωδ) ≤ C sup

φ∈H1

0
(Ωδ)

|Az(u, φ)|
‖φ‖H1

0
(Ωδ)

(VIII.26)

and

‖u‖H1

0
(Ωδ) ≤ C sup

φ∈H1

0
(Ωδ)

|Az(φ, u)|
‖φ‖H1

0
(Ωδ)

. (VIII.27)
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Proof. Let z be in ρ(−∆̃). As observed in Remark VIII.6, it suffices to verify

(VIII.12). If the constants in (VIII.12) are not uniformly bounded as δ goes to

infinity, then there is a sequence {(δn, un)} satisfying

un ∈ H2(Ωδn) ∩H1
0 (Ωδn), δn → ∞ as n→ ∞,

‖(−∆̃ − zI)un‖L2(Ωδn ) ≤
1

n
, ‖un‖L2(Ωδn ) = 1.

We assume that δn ≥ 2b. We next extend un to Ω3δn/2 by odd reflection. Specifi-

cally, we define the extended function ũn by first doing an odd reflection across ∂Ωδn

into the regions labeled R1 in Figure 10. Next, we do another odd reflection (across

the boundary between R1 and R2) from the regions labeled R1 into those labeled R2.

The values obtained in a R2 region are independent of the choice of component of R1

used in the reflection. It is easy to see that the resulting function ũn is in H2(Ω3δn/2).

Moreover, (−∆̃ − zI)ũn(x̃) for any x̃ ∈ Ω3δn/2 \Ωδn coincides with ±(−∆̃ − zI)un(x)

where x is the point in Ωδn which reflects into x̃. Accordingly,

‖(−∆̃ − zI)ũn‖L2(Ω3δn/2) ≤ 2‖(−∆̃ − zI)un‖L2(Ωδn ) ≤
2

n
.

Let χ be a smooth function on R2 with values in [0, 1] satisfying χ(x) = 1 on

[−1, 1]2 and χ(x) = 0 outside of (−3/2, 3/2)2. Define χn(x) = χ(x/δn). We shall

show that

‖[∆̃, χn]ũn‖L2(Ω3δn/2) ≤
C

n
. (VIII.28)

Note that if (VIII.28) holds, then wn = χnũn is in H2(R) and satisfies:

‖wn‖L2(R) ≥ ‖un‖L2(Ωδn ) = 1

and

‖(−∆̃ − zI)wn‖L2(R) ≤ ‖[∆̃, χn]ũn‖L2(Ω3δn/2)

+ ‖χn(−∆̃ − zI)ũn‖L2(Ω3δn/2) ≤
C

n
.
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This contradicts the fact that z ∈ ρ(−∆̃) (−∆̃ as an operator on L2(R2)).

To verify (VIII.28), we first note that by (VIII.2),

‖un‖2
H1(Ωδn ) ≤ C(‖un‖2

L2(Ωδn ) + |A(un, un)|).

Now, un is in H2(Ωδn) ∩H1
0 (Ωδn) and integration by parts gives

|A(un, un)| = (−∆̃un, d̄(x1) d̄(x2)un)Ωδn
≤ C‖∆̃un‖L2(Ωδn )‖un‖L2(Ωδn ),

from which it follows that

‖un‖H1(Ωδn ) ≤ C(‖un‖L2(Ωδn ) + ‖(−∆̃ − zI)un‖L2(Ωδn )).

Because of the reflection construction, this inequality extends to

‖ũn‖H1(Ω3δn/2) ≤ 2C(‖un‖L2(Ωδn ) + ‖(−∆̃ − zI)un‖L2(Ωδn )) ≤ C. (VIII.29)

Expanding [∆̃, χn] gives

[∆̃, χn]ũn =
1

d(x)

∂

∂x

(
1

d(x)
χn

xũ

)
+

1

d(x)2
χn

xũx

+
1

d(y)

∂

∂y

(
1

d(y)
χn

y ũ

)
+

1

d(y)2
χn

y ũy.

(VIII.30)

We note that d−1(x) and d′(x) are uniformly bounded and ‖χn
x‖L∞(R2), ‖χn

xx‖L∞(R2),

‖χn
y‖L∞(R2) and ‖χn

yy‖L∞(R2) are all bounded by C/n. Thus (VIII.28) follows from

integrating (VIII.30), using the above estimates, (VIII.29) and the triangle inequality.

This completes the proof of the theorem.
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CHAPTER IX

CARTESIAN PML APPROXIMATION TO ACOUSTIC SCATTERING

PROBLEMS

In this chapter we study the solvability of a Cartesian PML approximation to acous-

tic problems on infinite and truncated domains in R2. We first show uniqueness

of solutions to the infinite domain problem using the Green’s integral formula of

Chapter VII. Once uniqueness of solutions is established, the spectral structure of

the Cartesian PML operator given in Chapter VIII will be used to show the well-

posedness of the infinite domain problem. We also show that truncated problems are

well-posed provided that computational domains are large enough and their solutions

converge exponentially to that of the infinite domain problem as the thickness of

PML increases. Analysis of finite element approximations on the truncated domains

is then classical. Numerical experiments illustrating the results of the Cartesian PML

approach will be given.

A. Solvability of the PML problem in the infinite domain

From this section on, we take z = i and z-dependency in notations will be omitted

for simplicity. Also, C and α represent generic constants which do not depend on δ.

We first derive an integral formula of solutions to (∆̃ + k2)u = 0 on Ω̄c.

Theorem IX.1. Assume that u ∈ H1(Ω̄c) satisfies (∆̃ + k2)u = 0 on Ω̄c. Then, for

x ∈ R2 \ Ω̄0,

u(x) =

∫

Γ0

[
u(y)

∂Φ(r̃)

∂ny

− Φ(r̃)
∂u

∂n
(y)

]
dSy, (IX.1)

where n is the outward unit normal vector on Γ0.

Proof. We verify the theorem for x ∈ [−m,m]2 with m ≥ b. Let ΩR be a square
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domain (−R,R)2 with R ≥ 2m and ΓR its boundary. Let D = ΩR \ Ω̄0. Since u is

in H2
loc(Ω̄

c), u is in H2 on a neighborhood D̃ of D. Using a cutoff function, which is

one on D and supported on D̃, we can define a compactly supported extension ũ in

H2(R2) of u defined onD. For x ∈ D it follows from Theorem VII.5 and Remark VII.8

that

−u(x) =

∫

R2

((∆̃y + k2)ũ(y))Φ̃(x, y) dy

=

∫

Ω0

((∆̃y + k2)ũ(y))Φ̃(x, y) dy +

∫

Ωc
R

((∆̃y + k2)ũ(y))Φ̃(x, y) dy.

By integration by parts and Lemma VII.9

u(x) = −
∫

Γ0

[
Φ(r̃)ntH∇u(y)− u(y)ntH∇Φ(r̃)

]
dSy

+

∫

ΓR

[
Φ(r̃)ntH∇u(y)− u(y)ntH∇Φ(r̃)

]
dSy,

where n is the outward unit normal vector on the boundaries of Ω0 and ΩR.

Since |d(yj)| for j = 1, 2 is bounded above and below away from zero, by a

Schwarz inequality

I ≡
∣∣∣∣
∫

ΓR

[
Φ(r̃)ntH∇u(y)− u(y)ntH∇Φ(r̃)

]
dSy

∣∣∣∣

≤ C
(
‖Φ(r̃)‖L2(ΓR)‖∇u‖L2(ΓR) + ‖u‖L2(ΓR)‖∇Φ(r̃)‖L2(ΓR)

)
.

Set Sγ = {x ∈ R2 : dist(x,ΓR) < γ} with γ independent of R and small enough so

that Sγ ⊂ Ω̄c
0. Using a trace inequality and an interior regularity result,

‖u‖L2(ΓR) ≤ C‖u‖H1(R2) and

‖∇u‖L2(ΓR) ≤ C‖u‖H2(Sγ) ≤ C‖u‖H1(R2).

(IX.2)
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It follows from (VII.20) and Lemma VII.4 that

|Φ(r̃z)| ≤ Ce−kIm(r̃z) ≤ Ce−αk|y|. (IX.3)

This implies

(∫

ΓR

|Φ(r̃)|2 dSy

)1/2

≤ C

(∫

ΓR

e−2αkR dSy

)1/2

≤ Ce−α1kR (IX.4)

for some 0 < α1 < α. To estimate the derivatives of Φ(r̃), using Lemma VII.3,

(VII.20) and the above lemma, we see that

∣∣∣∣
∂Φ(r̃)

∂yj

∣∣∣∣ =

∣∣∣∣Φ
′(r̃)

(x̃j − ỹj)(−d(yj))

r̃

∣∣∣∣ ≤ C |Φ′(r̃)| ≤ Ce−αk|y|. (IX.5)

A simple computation as in (IX.4) shows that

‖∇Φ(r̃)‖L2(ΓR) ≤ Ce−α1kR (IX.6)

for some positive α1. Combining (IX.2), (IX.4), and (IX.6) gives

I ≤ Ce−α1kR‖u‖H1(R2).

Since I converges to zero as R tends towards infinity, there is no contribution of

the outer boundary ΓR. Finally, we obtain (IX.1) since H is the identity on Γ0.

The following proposition shows the uniqueness of solutions to the Cartesian

PML problem in the infinite domain (VII.5).

Proposition IX.2. The Cartesian PML problem (VII.5) with f = 0 has only a trivial

solution in H1
0 (Ω̄c).

Proof. Let ũ be a solution to (VII.5) with f = 0 in H1
0 (Ω̄c). By Theorem IX.1, ũ can
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be expressed in the integral formula

ũ(x) =

∫

Γ0

[
ũ(y)

∂Φ(r̃)

∂ny
− Φ(r̃)

∂ũ

∂n
(y)

]
dSy (IX.7)

for x ∈ R
2 \ Ω̄0.

Define

u(x) =





ũ(x) for x ∈ Ω̄0 \ Ω̄,
∫

Γ0

[
ũ(y)

∂Φ(|x− y|)
∂ny

− Φ(|x− y|)∂ũ
∂n

(y)

]
dSy for x ∈ R2 \ Ω̄0.

(IX.8)

Note that the transition at Ω0 is smooth since Φ(|x − y|) coincides with Φ(r̃) near

Ω0. It follows that u satisfies (VII.1) with g = 0. As (VII.1) has unique solutions, u

and, hence, ũ must vanish identically.

We combine the sesquilinear forms in (VII.5) and define

Ak2(·, ·) = A(·, ·) − k2(J ·, ·).

We then have the following lemma which provides stability of the PML problem on

Ω̄c.

Lemma IX.3. For any real k 6= 0, the following two inf-sup conditions hold: For u

in H1(Ω̄c),

‖u‖H1(Ω̄c) ≤ C sup
φ∈H1

0
(Ω̄c)

|Ak2(u, φ)|
‖φ‖H1(Ω̄c)

,

and

‖u‖H1(Ω̄c) ≤ C sup
φ∈H1

0
(Ω̄c)

|Ak2(φ, u)|
‖φ‖H1(Ω̄c)

.

Proof. It follows from Lemma VIII.3 and Theorem VIII.20, that for any real k 6= 0,

either the above two inf-sup conditions hold or there is an eigenvector corresponding
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to k2, i.e., a non-zero function w ∈ H1
0 (Ω̄c) satisfying

Ak2(w, φ) = 0 for all φ ∈ H1
0 (Ω̄c).

The lemma follows since Proposition IX.2 prohibits such a w.

We have now the first main result of solvability of the infinite domain problem

(VII.5).

Theorem IX.4. Let k be real and positive, and g ∈ H1/2(Γ). Then there exists a

unique solution ũ ∈ H1(Ω̄c) to the problem

Ak2(ũ, φ) = 0 for all φ ∈ H1
0 (Ω̄c) (IX.9)

with ũ = g satisfying ‖ũ‖H1(Ω̄c) ≤ C‖g‖H1/2(Γ). In addition, the solution ũ decays

exponentially, i.e., there exist C > 0 and α > 0 independent of x and δ such that for

‖x‖∞ ≥ b and δ ≥ b,

|ũ(x)| ≤ Ce−αk|x|‖g‖H1/2(Γ) and ‖ũ‖H1/2(Γδ) ≤ Ce−αkδ‖g‖H1/2(Γ). (IX.10)

Proof. The solvability of (IX.9) easily follows from Lemma IX.3 and we conclude that

the problem (IX.9) has a unique weak solution ũ ∈ H1(Ω̄c) satisfying

‖ũ‖H1(Ω̄c) ≤ C‖g‖H1/2(Γ).

Because of interior regularity estimates, ũ is in H2((−3b/2, 3b/2)2 \ [−b, b]2) and

hence it suffices to prove (IX.10) for ‖x‖∞ ≥ 3b/2 and δ ≥ 3b/2. This will follow from

the integral formula (IX.1), Lemma VII.4, and exponential decay of the fundamental

solution (IX.3) and (IX.5). Indeed, by a Schwarz inequality and an interior regularity
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as in (IX.2)

|ũ(x)|2 =

∣∣∣∣
∫

Γ0

ũ(y)
∂Φ(r̃)

∂ny
− Φ(r̃)

∂ũ

∂n
(y) dSy

∣∣∣∣
2

≤ Ce−2αk|x|(‖ũ‖2
L2(Γ0) + ‖∇ũ‖2

L2(Γ0)) ≤ Ce−2αk|x|‖ũ‖2
H1(Ω̄c).

(IX.11)

For γ = b/8 let Sγ be a γ-neighborhood of Γδ and set γ′ = b/4. Clearly Sγ ⊂ Sγ′ and

both are contained in the complement of [−b, b]2. Applying an interior regularity on

Sγ ⊂ Sγ′ and integrating (IX.11) over Sγ′ gives

‖ũ‖H1/2(Γδ) ≤ C‖ũ‖H2(Sγ) ≤ C‖ũ‖L2(Sγ′ )

≤ Cδe−αkδ‖ũ‖H1(Ω̄c) ≤ Ce−α1kδ‖ũ‖H1(Ω̄c).

The factor of δ is absorbed by choosing a slightly smaller α1 < α.

Remark IX.5. Theorem IX.4 holds for the adjoint problem as well.

B. Solvability of the truncated Cartesian PML problem

Our goal is to study the truncated Cartesian PML problem on Ωδ \ Ω̄. The analysis

involves an iteration involving the solution of the exterior problem (on Ω̄c) and a full

truncated problem (on Ωδ = (−δ, δ)2).

We start by considering the full truncated variational problem: Find u ∈ H1
0 (Ωδ)

satisfying

ak2(u, θ) =< F, θ > for all θ ∈ H1
0 (Ωδ). (IX.12)

Here F is a bounded linear functional on H1
0 (Ωδ), < ·, · > denotes the duality pairing

and

ak2(u, v) =

∫

Ωδ

[
d(x2)

d(x1)

∂u

∂x1

∂v̄

∂x1
+
d(x1)

d(x2)

∂u

∂x2

∂v̄

∂x2
− k2J(x)uv̄

]
dx.

It was shown in Chapter VIII that there is a positive constant δ0 (cf. Re-
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mark VIII.6 and Theorem VIII.22) such that the solution of (IX.12) exists and is

unique provided that δ > δ0. Moreover, there is a constant C independent of δ

satisfying

‖u‖H1

0
(Ωδ) ≤ C‖F‖(H1

0
(Ωδ))∗ .

These results hold for the adjoint problem as well. The following proposition is an

immediate consequence.

Proposition IX.6. Let g be in H1/2(Γδ) with δ > δ0. Then the problem

ak2(u, φ) = 0 for all φ ∈ H1
0 (Ωδ) (IX.13)

with u = g on Γδ has a unique solution satisfying

‖u‖H1(Ωδ) ≤ C‖g‖H1/2(Γδ). (IX.14)

The same result holds for the adjoint solution, i.e., (IX.13) replaced by

ak2(φ, u) = 0 for all φ ∈ H1
0 (Ωδ).

Here C is independent of δ.

The next proposition provides an inf-sup condition for the truncated PML prob-

lem (on Ωδ \ Ω̄).

Proposition IX.7. There is a constant δ̃0 and C = C(δ̃0) such that if δ > δ̃0,

‖u‖H1(Ωδ\Ω̄) ≤ C sup
φ∈H1

0
(Ωδ\Ω̄)

|ak2(u, φ)|
‖φ‖H1(Ωδ\Ω̄)

for all u ∈ H1
0 (Ωδ \ Ω̄). (IX.15)

In the above inequality, we have extended u and φ by zero to all of Ωδ (in ak2(u, φ)).

Proof. Let u be in H1
0 (Ωδ \ Ω̄). To prove (IX.15), we construct a solution φ ∈ H1

0 (Ωδ \
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Ω̄) of the adjoint equation

ak2(θ, φ) = (θ, u)H1(Ωδ\Ω̄) for all θ ∈ H1
0 (Ωδ \ Ω̄)

satisfying

‖φ‖H1(Ωδ\Ω̄) ≤ C‖u‖H1(Ωδ\Ω̄).

The proposition then follows since

‖u‖H1(Ωδ\Ω̄) =
ak2(u, φ)

‖u‖H1(Ωδ\Ω̄)

≤ C
|ak2(u, φ)|
‖φ‖H1(Ωδ\Ω̄)

.

To construct φ, we start by letting φ̃ ∈ H1
0 (Ω̄c) solve the exterior problem

Ak2(θ, φ̃) = (θ, u)H1(Ω̄c) for all θ ∈ H1
0 (Ω̄c),

where we extend u by zero outside of Ωδ \ Ω̄. By Lemma IX.3, φ̃ is well-defined and

‖φ̃‖H1(Ω̄c) ≤ C‖u‖H1(Ω̄c).

Thus, we need only to construct a function χ satisfying:

χ = φ̃ on Γδ and χ = 0 on Γ,

ak2(θ, χ) = 0 for all θ ∈ H1
0 (Ωδ \ Ω̄),

‖χ‖H1(Ωδ\Ω̄) ≤ C‖u‖H1(Ωδ\Ω̄).

(IX.16)

Indeed, then φ = φ̃− χ has the desired properties.

We construct χ by iteration on Γδ. To start, we set χ0 = φ̃ on Γδ. Clearly,

χ0 ∈ H1/2(Γδ). We set up a sequence {χj} ⊂ H1/2(Γδ) by induction. Given χj , we

first define w1
j ∈ H1(Ωδ) for δ > δ0 in Proposition IX.6 to be the unique solution of

ak2(θ, w1
j ) = 0 for all θ ∈ H1

0 (Ωδ)
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with w1
j = χj on Γδ. Next we define w2

j ∈ H1(Ω̄c) by

Ak2(θ, w2
j ) = 0 for all θ ∈ H1

0 (Ω̄c)

and w2
j = w1

j on Γ. We finally set χj+1 = w2
j on Γδ.

Now, by Proposition IX.6 and Theorem IX.4,

‖w1
j‖H1(Ωδ\Ω̄) ≤ C‖χj‖H1/2(Γδ)

and

‖χj+1‖H1/2(Γδ) = ‖w2
j‖H1/2(Γδ) ≤ Ce−αkδ‖w1

j‖H1/2(Γ)

≤ Ce−αkδ‖χj‖H1/2(Γδ).

(IX.17)

We set δ̃0 by γ = Ce−αkδ̃0 < 1 for C in (IX.17) so that

‖χj‖H1/2(Γδ) ≤ γj‖χ0‖H1/2(Γδ).

Because of this, the telescoping sequence

χ0 =
∞∑

j=0

(χj − χj+1)

converges in H1/2(Γδ) and the corresponding sequence

∞∑

j=0

(w1
j − w2

j ) (IX.18)

converges in H1(Ωδ \ Ω̄). By construction, the limit (which we denote by χ) equals

φ̃ on Γδ. By the definitions of w1
j and w2

j , it is also clear that each term in (IX.18)

vanishes on Γ and satisfies the homogeneous equation

ak2(θ, w1
j − w2

j ) = 0 for all θ ∈ H1
0 (Ωδ \ Ω̄)

and so these properties hold for χ as well. Finally, by Theorem IX.4 and Proposi-
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tion IX.6

‖χ‖H1(Ωδ\Ω̄) ≤
∞∑

j=0

‖w1
j − w2

j‖H1(Ωδ\Ω̄)

≤ C
∞∑

j=0

‖χj‖H1/2(Γδ) ≤ C‖χ0‖H1/2(Γδ) ≤ C‖u‖H1(Ωδ\Ω̄).

Thus, χ satisfies all of the conditions of (IX.16) and the proof is completed.

Remark IX.8. The inf-sup condition for the adjoint problem follows immediately

from (IX.15) and the fact that the coefficients in the forms are symmetric.

The following theorem shows exponential convergence of solutions of the trun-

cated problems.

Theorem IX.9. For δ > δ̃0, there exists a unique solution ũt ∈ H1(Ωδ \ Ω̄) to the

problem

Ak2(ũt, φ) = 0 for all φ ∈ H1
0 (Ωδ \ Ω̄) (IX.19)

with ũt = g on Γ and ũt = 0 on Γδ satisfying

‖ũt‖H1(Ωδ\Ω̄) ≤ C‖g‖H1/2(Γ). (IX.20)

Here C is independent of δ. In addition, if ũ is the solution to the infinite PML

problem (IX.9), then

‖ũ− ũt‖H1(Ωδ\Ω̄) ≤ Ce−αkδ‖g‖H1/2(Γ). (IX.21)

Proof. The existence and uniqueness of ũt and (IX.20) are an immediate consequence

of Proposition IX.7 and Remark IX.8.

Note that ũ− ũt satisfies

Ak2(ũ− ũt, φ) = 0 for all φ ∈ H1
0 (Ωδ \ Ω̄),

ũ− ũt = 0 on Γ and ũ− ũt = ũ on Γδ.
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Proposition IX.7 and Remark IX.8 then implies that

‖ũ− ũt‖H1(Ωδ\Ω̄) ≤ C‖ũ‖H1/2(Γδ)

and (IX.21) follows from Theorem IX.4.

C. Finite element analysis

In this section, we discuss properties of the finite element approximation of the so-

lution ũt of the variational problem (IX.19). As this analysis is standard, we only

give a brief sketch of the arguments. For simplicity, we assume that Γ is polygonal

as the errors which result from the finite element method associated with boundary

approximation are well understood.

Let Th denote a partition of shape-regular triangular (or quadrilateral) meshes of

Ωδ \ Ω̄, and h represents the diameters of elements, e.g., h = maxK∈Th
diam(K). Let

Sh denote a subspace of H1(Ωδ \ Ω̄) consisting of piecewise polynomial finite element

functions and S0
h denote the subset of functions in Sh which vanish on Γ ∪ Γδ. We

assume that g is the trace of a function in our approximation space as the additional

errors associated with boundary quadrature in the finite element method are well

understood. Let S̃h be the set of functions in Sh which coincide with g on Γ and

vanish on Γδ. In this case, the finite element approximation to ũt is the function in

ũh ∈ S̃h satisfying

ak2(ũh, θ) = 0 for all θ ∈ S0
h.

The unique solvability of ũh is a consequence of an argument of Schatz [50].

Since the real parts of the elements of H are uniformly bounded from below by a

positive constant and J is bounded, the sesquilinear form ak2(·, ·) satisfies a Gärding

inequality.
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Given g ∈ L2(Ωδ \ Ω̄), let φ ∈ H1
0 (Ωδ \ Ω̄) be the solution to the adjoint problem:

ak2(θ, φ) = (θ, g) for all θ ∈ H1
0 (Ωδ \ Ω̄).

As the coefficients defining σ̃ are C2, the elliptic regularity for the adjoint problem is

determined by its behavior near Γ, i.e., φ ∈ H1+s(Ωδ \ Ω̄) for some s > 1/2.

Under these conditions, the technique of [50] (see, also, [51]) gives that there is

a positive number h0 such that for h < h0, ũh is uniquely defined and satisfies

‖ũt − ũh‖H1(Ωδ\Ω̄) ≤ C inf
φh∈S̃h

‖ũt − φh‖H1(Ωδ\Ω̄).

Remark IX.10. In contrast to earlier sections, the analysis suggested in this section

leads to constants (i.e., h0 and C above) which may depend on δ.

D. Numerical experiments

As a numerical example, we consider a scattering problem (VII.1) with a square

scatterer Ω = (−1, 1)2 in R2 with the wave number k = 2. The boundary condition

is given by g = eiθH1
1(kr) on Γ, where (r, θ) is the polar coordinate of x. Clearly,

u(x) = eiθH1
1 (kr) satisfies (VII.1).

A Cartesian PML with the parameters

a = 3, b = 4, σ0 = 1

is applied to (VII.1) and we will observe that finite element PML solutions converges

to the exact one on the region of computational interest [−3, 3]2\ [−1, 1]2. For numer-

ical computation, the infinite domain is truncated to a finite domain [−5, 5]2\ [−1, 1]2

with δ = 5.

The numerical results obtained using the finite element library deal.II [6, 7] are
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(a) Real part of the exact so-
lution

(b) Real part of the finite ele-
ment PML solution

(c) Imaginary part of the ex-
act solution

(d) Imaginary part of the fi-
nite element PML solution

Fig. 11. Exact solution and its finite element PML approximation



120

Table 2. Convergence of the real part of the finite element PML approximate solutions

h # dofs real H1-error real L2-error

1 240 1.678e+00 ratio 5.621e-01 ratio

1/2 864 9.791e-01 1.71 2.955e-01 1.90

1/4 3264 5.642e-01 1.74 1.949e-01 1.90

1/8 12672 2.104e-01 2.68 3.957e-02 4.93

1/16 49920 9.913e-02 2.12 1.042e-02 3.80

1/32 198144 4.866e-02 2.04 2.646e-03 3.94

1/64 789504 2.421e-02 2.01 6.643e-04 3.98

(a) Real part at x2 = 2 (b) Imaginary part at x2 = 2

Fig. 12. Graphs of real and imaginary parts of the exact solution (dashed curves) and

the finite element PML approximation (solid curves for h = 1/32) at x2 = 2

as functions of x1 in [−5, 5]
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given in Figure 11 and Table 2. As shown in Figure 11, the finite element PML

solution is very close to the exact solution in [−3, 3]2 \ [−1, 1]2, and decays rapidly

outside. This is also illustrated in Figure 12. Figure 12 shows the graphs of the real

and imaginary parts of the exact solution and the finite element PML approximation

at x2 = 2 as functions of x1 with −5 ≤ x1 ≤ 5.

To further illustrate convergence of the finite element PML solutions, the errors

between the interpolant of the exact solution u and finite element PML solution ũh

are reported in Table 2 on the region [−3, 3]2 \ [−1, 1]2 for different h. Note that

the finite element PML solution ũh approximates the truncated PML solution ũt,

which is not available analytically. The table suggests the first order convergence

in H1(Ωδ \ Ω̄) and second order convergence in L2(Ωδ \ Ω̄). This is not surprising

because the truncated solution ũt is exponentially close to u in [−3, 3]2 \ [−1, 1]2 by

Theorem IX.7.
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CHAPTER X

CONCLUSIONS

We have studied a domain truncation method for an artificial boundary condition

based on perfectly matched layer (PML) approach. This technique was applied to

resonance problems in open systems and acoustic scattering problems.

In the first part of this dissertation, from Chapter II through Chapter VI, we

discussed application of spherical PML to resonance problems posed on unbounded

domains. We observed that application of PML converted the resonance problems

to an eigenvalue problem (on the infinite domain) and its eigenfunctions decayed ex-

ponentially. This exponential decay made it possible to truncate the infinite domain

eigenvalue problem to one on a finite domain with a convenient boundary condition,

e.g., a homogeneous Dirichlet boundary condition. We proved that the domain trun-

cation does not produce spurious eigenvalues provided that computational domains

are large enough. Moreover, the corresponding eigenvalues converge to those of the

infinite domain problem counted with their algebraic multiplicity as the size of com-

putational domains increases. The numerical experiments presented confirmed these

results.

In the second part, from Chapter VII through Chapter IX, we investigated a

Cartesian PML approximation to acoustic scattering problems. We examined the

essential spectrum of the Cartesian PML operator associated with the scattering

problem with a real and positive wave number and established uniqueness of solu-

tions. We verified the well-posedness of the Cartesian PML scattering problem on

the infinite domain and exponential decay of its solutions. These results played an

important role in the proof that truncated problems are well-posed provided that

the computational domain is large enough. Moreover, the solution to the truncated
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domain problem is exponentially close to that of the infinite domain problem on the

region of computational interest. The numerical experiments illustrated these results.
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APPENDIX

NOTATION INDEX

A(·, ·), 33, 77

Ã(·, ·), 39

a(·, ·), 97

ak2(·, ·), 112

Ak(·, ·), 38

Az(·, ·), 93

Ãz(·, ·), 54

B(·, ·), 33

Ck,γ(Ω̄), 9

H , 77

Hk(Ω), 8

J , 41, 77

Jη, 41

Lp(Ω), 7

L, 15

L̃, 32, 78

Lη, 40

P , 32

PΓ, 62

P δ
Γ, 62

Rz(T ), 53

Tδ, 52

V , 16, 45

Vδ, 55

Ṽδ, 56

W (T ), 95

W k,p(Ω), 7

Yn, 17

Z(T ), 96

Φ, 24, 84

Φ̃z, 86

σ, 32, 77

σM , 79

σ̃, 31

r̃, 31

r̃z, 80

ũ, 31

x̃z, 80

x̃j, 77

∆̃, 77

∆̃z, 80

∆̃δ, 95

D̃, 97

d, 32, 77
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