
GUST LOAD ALLEVIATION OF AN AEROELASTIC SYSTEM

USING NONLINEAR CONTROL

A Thesis

by

AMY MARIE LUCAS

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2009

Major Subject: Aerospace Engineering

GUST LOAD ALLEVIATION OF AN AEROELASTIC SYSTEM

USING NONLINEAR CONTROL

A Thesis

by

AMY MARIE LUCAS

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Thomas W. Strganac
Committee Members, John Valasek

Alan Palazzolo
Head of Department, Dimitris Lagoudas

August 2009

Major Subject: Aerospace Engineering

iii

ABSTRACT

Gust Load Alleviation of an Aeroelastic System

Using Nonlinear Control. (August 2009)

Amy Marie Lucas, B.S., Lipscomb University

Chair of Advisory Committee: Dr. Thomas W. Strganac

The author develops a nonlinear longitudinal model of an aircraft modeled by

rigid fuselage, tail, and wing, where the wing is attached to the fuselage with a tor-

sional spring. The main focus of this research is to retain the full nonlinearities

associated with the system and to perform gust load alleviation for the model by

comparing the impact of a proportional-integral-filter nonzero setpoint linear con-

troller with control rate weighting and a nonlinear Lyapunov-based controller. The

four degree of freedom longitudinal system under consideration includes the tradi-

tional longitudinal three degree of freedom aircraft model and one additional degree

of freedom due to the torsion from the wing attachment. Computational simulations

are performed to show the aeroelastic response of the aircraft due to a gust load

disturbance with and without control. Results presented in this thesis show that

the linear model fails to capture the true nonlinear response of the system and the

linear controller based on the linear model does not stabilize the nonlinear system.

The results from the Lyapunov-based control demonstrate the ability to stabilize the

nonlinear response, including the presence of an LCO, and emphasize the importance

of examining the fully nonlinear system with a nonlinear controller.

iv

To my husband and best friend, Matt.

”I sought the Lord, and he answered me, and delivered me from all my fears.”

Psalm 34:4

v

ACKNOWLEDGMENTS

The work that is presented in this thesis would not have been possible without

the guidance and help of many people. First, I would like to thank my advisor, Dr.

Thomas Strganac for his guidance and endless patience. I appreciate all the nudgings

in the right direction and support along the way.

I would also like to thank my committee members. Dr. Palazzolo, for agreeing to

be on my committee. Dr. Valasek, for his immense knowledge of control systems, his

willingness to answer my questions, and for the use of his Matlab codes, qpmcalc.m

and lqrdjv.m, which are used to calculate the inverse of the QPM matrix and the

LQR gains for the linear controller. I am also very thankful for the guidance of Dr.

Hurtado for lending his ear when I had a dynamics problem and for the use of his

Matlab code for a constant time step Runga-Kutta solver, runge.m. Especially, I

would like to thank NASA Graduate Student Researchers Program for helping fund

my studies and research this past year. I appreciate Dr. Walt Silva’s insight into my

research problem and his suggestion to look into gust load alleviation and a nonlinear

controller.

I am grateful to my family for their neverending love and support. I also owe

many thanks to some of my colleagues and friends. Thanks to Julie Parish and Leslie

Weitz for their dynamical insight and willingness to listen, with special thanks to

Leslie Weitz for her help with the Lyapunov function. I am grateful to Matt Fritz

for sharing some of his Matlab debugging knowledge. Also, I would like to thank

Myounghee Kim, for always being there to listen, and for her insight into potential

gain choices for the Lyapunov controller.

And last, but not least, I would like to thank my husband, Matt. For his patience

and support, without which I would not have made it this far.

vi

NOMENCLATURE

b̂ Fuselage fixed reference frame unit vector

ŝt Tail stability axes fixed reference frame unit vector

ŝw Wing stability axes fixed reference frame unit vector

t̂ Tail fixed reference frame unit vector

ŵ Wing fixed reference frame unit vector

AC Aerodynamic center

CM Center of mass

CRW Control rate weighting

d Distance between CMf and wing hinge in b̂1 direction

dc Distance between wing hinge and CMf in ŵ1 direction

Dt Drag at tail quarter chord

Dw Drag at wing quarter chord

e Distance between elastic axis and aerodynamic center of wing in ŵ1 direction

f Distance between tail support and CMf in b̂1 direction

g Acceleration of gravity

h Altitude

HCM Angular momentum of a body about its CM

vii

If Moment of inertia of fuselage about CMf

Iw Moment of inertia of wing about CMw

k Wing stiffness

Lt Lift at tail quarter chord

Lw Lift at wing quarter chord

m Mass of vehicle, mf +mw

Mac Moment at aerodynamic center

mf Mass of fuselage

mw Mass of wing

NZSP Nonzero setpoint

PIF Proportional-integral-filter

QPM Quad partition matrix

St Tail area

Sw Wing area

T Thrust

u Velocity of system CM in b̂1 direction

ud Desired trim velocity of system CM in b̂1 direction

V Freestream velocity of aircraft

w Velocity of system CM in b̂3 direction

viii

αr Initial wing displacement angle with zero spring displacement

αt Angle of attack of tail, αw − ε− αr

αw Angle of attack of wing, φ+ θ − γw

δe Deflection of elevator

δf Deflection of flaperon

ε downwash, dε
dα
αw + ε0

γt Flight path angle for tail surface

γw Flight path angle for wing surface

ω Frequency

ωw Wing natural frequency

φ Wing displacement relative to the fuselage fixed reference frame

ρ Density of air

τδe Elevator effectiveness parameter

τδf Flaperon effectiveness parameter

θ Vehicle pitch attitude relative to horizontal

˙ First time derivative

¨ Second time derivative

ix

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II 4 DOF LONGITUDINAL MODEL 7

A. Development of 4 DOF Model 9

1. Gibbs-Appell Method 9

2. Newton-Euler Method 11

3. Gust Load . 12

4. Control Effectors . 15

B. Special Cases . 16

1. Case 1: Traditional Longitudinal Equations of Motion 17

2. Case 2: Equation of Motion for Wing Constrained

by Torsional Spring 18

C. Simulations . 19

III CONTROL METHODS . 21

A. PIF-NZSP-CRW Control 21

1. Optimal NZSP . 21

2. PIF-NZSP-CRW . 24

B. Nonlinear Controller . 26

IV RESULTS . 31

A. Open-Loop Response . 31

B. PIF-NZSP-CRW Linear Controller 34

C. Nonlinear Lyapunov-Based Control 42

D. Assumptions . 43

E. Frequency Analysis . 44

V CONCLUSIONS . 53

VI FUTURE WORK . 54

REFERENCES . 57

APPENDIX A: GIBBS-APPELL DERIVATION 61

x

CHAPTER Page

A. Energy of Acceleration . 61

B. Generalized Forces . 68

C. Gibbs-Appell Equations of Motion 72

APPENDIX B: NEWTON-EULER DERIVATION 74

A. Translational Equations of Motion 74

B. Rotational Equations of Motion 76

1. System Rotational Equation of Motion 76

2. Wing Rotational Equation of Motion 79

a. Part 1: Rotational Equation of Motion of Sys-

tem about a Reference Point 80

b. Part 2: Rotational Equation of Motion of Fuse-

lage about Wing Hinge 85

c. Wing Rotational Equation of Motion 89

3. Newton-Euler Equations of Motion 89

APPENDIX C: TEST CASE AND MATLAB CODE 91

A. Main Matlab File: main total.m 92

B. Input File: input 4dof cessna182.m 94

C. Initial Guess Function for Trim Solver: initguess.m 96

D. Trim Solver Function: trim4dof.m 97

E. Nonlinear Constraints for Trim Solver: nonlincon.m 98

F. Aerodynamics File: liftdrag.m 98

G. Equations of Motion File: EOM.m 100

H. Linerization Function: linize.m 101

I. ODE File with Linear Controller: 4dof.m 104

J. ODE File with Nonlinear Controller: 4dof nl.m 107

K. Open-loop Simulation File: openloop.m 109

L. Closed-loop Simulation File with Linear Controller: lin-

earcontrol.m . 114

M. Closed-loop Simulation File with Nonlinear Controller:

nonlinearcontrol.m . 119

N. Discrete LQR Function (written by Dr. Valasek): LQRDJV.m120

O. Quadpartition Matrix Function (written by Dr. Valasek):

LQRDJV.m . 121

P. Constant Step Size ODE Solver (written by Dr. Hur-

tado): runge.m . 122

xi

CHAPTER Page

Q. 4th Order Runga-Kutta Solver (written by Dr. Hur-

tado): rk4.m . 123

R. FFT Function: myfft.m . 123

S. Aerodynamic File for Linear Controller for Nonlinear

Response: liftdragDISCRETE.m 124

VITA . 126

xii

LIST OF TABLES

TABLE Page

I System Parameters . 32

II Input Parameters: Case 1 . 34

III Input Parameters: Case 2 . 34

IV Eigenvalues . 45

V Frequencies and Damping Ratios . 45

VI System Parameters . 91

VII Open-loop Parameters for Low Speed, High Stiffness Case 92

VIII Linear Closed-loop Parameters for Low Speed, High Stiffness Case . . 92

IX Linear Closed-loop Parameters for High Speed, Low Stiffness Case . . 93

xiii

LIST OF FIGURES

FIGURE Page

1 Simplified Representation . 7

2 Body Reference Frames: Body (b), Wing (w), Tail (t) 8

3 Stability Frames: Wing (w), Tail (t) 9

4 One-minus-cosine Gust Idealization 13

5 Velocities of the System CM in the b1 Direction (u) and the b3

Direction (w): Linear/Nonlinear Open-Loop Response 33

6 Fuselage (θ) and Wing (φ) Pitch Angles: Linear/Nonlinear Open-

Loop Response . 33

7 Velocities of the System CM in the b1 Direction (u) and the b3

Direction (w): Linear Response with and without Linear Control . . 35

8 Fuselage (θ) and Wing (φ) Pitch Angles: Linear Response with

and without Linear Control . 36

9 Elevator Deflection Angle, δe, and rate, δ̇e 37

10 Flaperon Deflection Angle, δf , and rate, δ̇f 38

11 Velocities of the System CM in the b1 Direction (u) and the b3

Direction (w): Nonlinear Response with and without Linear Control 39

12 Fuselage (θ) and Wing (φ) Pitch Angles: Nonlinear Response with

and without Linear Control . 40

13 Close Up of One Period of Oscillation for the Wing Pitch Angle,

φ, LCO . 41

14 Velocities of the System CM in the b1 Direction (u) and the b3

Direction (w): Nonlinear Response with and without Nonlinear Control 42

xiv

FIGURE Page

15 Fuselage (θ) and Wing (φ) Pitch Angles: Nonlinear Response with

and without Nonlinear Control . 43

16 Frequency Response as Derived from Simulation of Velocity, u 46

17 Frequency Response as Derived from Simulation of Velocity, w 47

18 Frequency Response as Derived from Simulation of Fuselage Pitch

Angle, θ . 48

19 Frequency Response as Derived from Simulation of Fuselage Pitch

Rate, θ̇ . 49

20 Frequency Response as Derived from Simulation of Wing Pitch

Angle, φ . 50

21 Frequency Response as Derived from Simulation of Wing Pitch

Rate, φ̇ . 51

22 System Free Body Diagram . 75

23 Simplified Wing Model . 81

24 Fuselage Free Body Diagram . 86

25 Wing Free Body Diagram . 86

1

CHAPTER I

INTRODUCTION

Aeroelasticity is the study of the interaction between inertial, structural, and

aerodynamic forces. This area of study is complex due to the coupling nature of these

different forces. Additional complexity is added to due the inherent nonlinearities

in the equations of motion for the system. All real physical responses are nonlinear

and the structure-aerodynamic systems have an infinite number of degrees of freedom

(DOF). Usually, simplifications of the system are made that may allow for a linearized

model and/or a finite number of DOF. The system of interest in this paper is the

longitudinal model of an aircraft with a flexible wing. This system is a finite DOF

problem, and the nonlinearities of the system are retained. If the aeroelastic nonlinear

response of an aircraft is more fully understood, then it may be possible to have a

more optimally designed wing that minimizes weight by of the structure and, in turn,

reduces fuel consumption and improves performance.

Nonlinearities in the equations of motion for an aeroelastic system have been

of much interest in recent years. These nonlinearities have been shown to lead to

Limit Cycle Oscillations (LCOs) and other nonlinear aeroelastic responses[1]. Wing

flexibility in particular is inherently nonlinear and may greatly affect the aeroelastic

response. Patil, Hodges, and Cesnik[2] showed that wing flexibility affected both the

trim solution and values obtained for the short-period and phugoid modes. Areas of

interest for aeroelasticity are multifaceted, incorporating structural modeling, aero-

dynamic modeling, control approaches, and estimation of unknown parameters. Of

This thesis follows the style of IEEE Transactions on Automatic Control.

2

particular interests to the author, and discussed in this paper, are the determination

of the importance of nonlinearities associated with a torsionally flexible wing on a

longitudinal aircraft model and a viable method to control the aircraft during gust

loading. For the following work, estimation of parameters is not included.

An example, demonstrating the need for further investigation of nonlinear aeroe-

lastic systems, is the loss of the NASA Helios aircraft, a powered uninhabited flying

wing with a wingspan of approximately 247 feet. The Helios encountered normal

turbulence which caused a high dihedral angle for the wing which transformed into

growing pitching oscillations, and resulted in the loss of the aircraft. One of the rec-

ommendations for future work was noted to be a need to “develop multidisciplinary

(structures, aerodynamic, controls, etc) models, which may describe the nonlinear

dynamic behavior of aircraft modifications”[3]. It is important to note that it was

not extreme unusual disturbances that caused the failure of the Helios; rather there

was a lack of understanding of the aeroelastic model of the flexible structure.

Shearer and Cesnik[4] investigated nonlinear flight dynamics for a very flexible

aircraft. They determined the 6 DOF equations of motion for an aircraft coupled with

the aeroelastic equations that govern the geometrically nonlinear structural response

of the vehicle. Their analysis focused on analyzing the differences between rigid

body, linearized aeroelastic, and nonlinear aeroelastic aircraft dynamic responses for

various flight maneuvers and aircraft conditions. They found that for simple sym-

metric maneuvers, the results indicated that a linearized solution gave acceptable

results. However, for a heavy weight asymmetric maneuver, results showed signifi-

cant differences in the responses. They concluded that a nonlinear analysis approach

is required to properly capture the vehicle response for asymmetric maneuvering of a

flexible aircraft. Though the current research is a rigid wing with a torsionally flexible

attachment, this approach provides a simplified model of a continuous flexible wing

3

undergoing torsion. Similar to Shearer and Cesnik’s[4] work, a comparison of the

linear and nonlinear response of the vehicle is investigated in this paper.

Numerous studies have been conducted concerning gust load alleviation (GLA)

for various types of aircraft. Gust loadings disturb the system and may excite the

system, leading to a nonlinear aeroelastic response. Increased flexibility leads to

wing structure and vehicle rigid body modes being in the same frequency range,

allowing the nonlinear structural response to have a greater impact on the system

as a whole. Vartio et al.[5] documented the results of a wind tunnel test at NASA

Langley in the Transonic Dynamics Tunnel of a gust load alleviation system for the

Sensorcraft concept. Through the experiment, they demonstrated that a leading

edge/outboard trailing edge control scheme may successfully control the first bending

and pitch modes for a SensorCraft concept. Matsuzaki et al.[6] both analytically and

experimentally demonstrated that a control system using a feedback filter is effective

for both sinusoidal gust loadings and atmospheric turbulence for a transport-type

wing.

Penning et al.[7] investigated GLA and flutter suppression for a Sensorcraft con-

cept using system identification. They included flexible dynamics of wing bending

for a high aspect ratio blended wing-body tailless aircraft and found that deriving

control laws based on the combination system identification technology and flight

control law development achieves GLA and flutter suppression. They verified these

results experimentally. The experiment included wind tunnel tests, conducted at

NASA Langley TDT, on a half span aeroservoelastic model with allowed pitch and

plunge DOF. The results showed that their control laws were able to reduce peak

wing bending moments by more than 50% in many cases, and that body freedom

flutter was suppressed at speeds greater than 20% above the flutter speed.

The current research is building on the previous work in the field of aeroelasticity.

4

Block and Strganac[8] showed the effectiveness of multivariable feedback control on a

wing section with nonlinear stiffness. They showed that although the linear controller

suppressed the LCOs, linear control was not robust enough to be a global controller.

More recently, work by Platanitis and Strganac in adaptive control[9] on the nonlinear

aeroelastic test apparatus (NATA) with a leading- and trailing-edge control effectors

was performed. In this study, an experiment on NATA was performed in the 2’ by 3’

wind tunnel at Texas A&M University. It was determined that, through simulation

and experimentation, a globally stabilizing control law may be achieved by only using

the leading- and trailing-edge control effectors for the 2 DOF system. The interest

in controlling nonlinear aeroelastic responses of a 2 DOF model led to interest in the

nonlinear control of a 4 DOF nonlinear model of an aircraft with a torsionally flexible

wing.

Variations of optimal nonzero setpoint (NZSP) controllers have been used for

many different aircraft applications. Stauffer et al.[10] designed a proportional-

integral-filter controller using nonzero setpoint formulation (PIF-NZSP) for integrated

control of a vertical take-off and landing (VTOL) airplane in hover. Valasek et al.[11]

and Kimmett et al.[12] investigated an optimal nonzero setpoint control rate weight-

ing (NZSP-CRW) control structure to track and dock with a stationery drogue for

in-flight aerial refueling with turbulence. Extending this work, Valasek et al.[13]

derived and implemented a proportional-integral-filter optimal nonzero setpoint con-

troller with control rate weighting (PIF-NZSP-CRW) to aid in their vision-based

sensor and navigation system for autonomous air refueling. The linear controller

used in this research for comparison with the nonlinear controller is based on the

same PIF-NZSP-CRW method derived by Valasek et al.[13].

Specific interest lies in the implementation of a nonlinear Lyapunov-based con-

troller. The Lyapunov approach has been used to control a vast number of nonlinear

5

systems, and has been found to work particularly well with flexible structures. de

Paiva et al.[14] investigated three nonlinear control methods to develop a global non-

linear controller for an autonomous unmanned airship. They found that the backstep-

ping technique, a Lyapunov-based nonlinear control, was a robust tool that enabled

them to simulate a representative flight test of a complete airship mission, including

path tracking under turbulent wind conditions. Also, Suk et al.[15] used Lyapunov

control theory and time-domain finite element analysis to control a slew maneuver

for a flexible space structure. Bhatta and Leonard[16] also implemented Lyapunov

based control for a longitudinal underwater glider model. They used the phugoid-

mode model, a Hamiltonian model of longitudinal dynamics originally studied by

Lanchester[17, 18], as the foundation for their composite Lyapunov function and

proved exponential stability for the model with buoyancy and elevator controls.

The main contribution of this research is to develop a nonlinear 4 DOF longi-

tudinal aircraft model, use the model to determine the adverse consequences pro-

duced by linearizing the equations of motion for an aircraft, and develop nonlinear

Lyapunov-based control laws to perform GLA for the nonlinear system. The research

demonstrates the importance of using both a nonlinear model and nonlinear control

method. Results show that the linear model fails to capture the true nonlinear re-

sponse of the system and the linear controller does not stabilize the nonlinear system.

The equations of motion are general, allowing one to consider models of various other

types of aircraft.

This thesis is organized in the following manner. First the 4 DOF longitudinal

model and important reference frames are presented. Second, the equations of motion

are developed using both Newton-Euler methods and Gibbs-Appell methods to verify

the derivation. Third, the aerodynamic model, gust load model, and control effectors

used are discussed. A section is included to explain the simulation algorithm. Next,

6

outlines for the development and implementation of both the linear PIF-NZSP-CRW

controller and the nonlinear Lyapunov-based controller, respectively, are introduced.

Then, the results are discussed and a comparison between the effectiveness of the

linear and nonlinear controllers are given, elaborating on their respective advantages

and disadvantages. Lastly, future areas of research are presented.

7

CHAPTER II

4 DOF LONGITUDINAL MODEL

The foundation for the current work is the development of a 4 DOF analytical

model of a vehicle in trimmed flight with a rigid wing mounted on a flexible support.

This model is useful since it is a simplified representation of a fully flexible wing. This

base model simulates motion along a flight path, a flight path change, a change in

pitch attitude, and an additional degree of freedom due to the torsion from the wing

attachment. The degrees of freedom are the velocities of the center of mass (CM)

of the system within a plane, u and w respectively, the change in pitch attitude, θ,

and a degree of freedom associated with the torsion of the wing, φ. The simplified

representation including reference frame locations is shown in Fig. 1.

Fig. 1. Simplified Representation

Three degrees of freedom capture classical longitudinal rigid body motion. The fourth

8

degree of freedom is associated with a rigid wing attached to the vehicle with a flex-

ible support. A simple quasi-steady aerodynamic model is used. Nonlinear terms

are retained which permit the onset of an LCO at specific flight conditions. The

derivation of the 4DOF equations of motion was performed using both Newton-Euler

Method and Gibbs-Appell Method to check validity of the development.

For the derivation of the equations of motion reference frames are defined. The

body reference frames are the body axis frame, the wing axis frame, and the tail axis

frame.

Fig. 2. Body Reference Frames: Body (b), Wing (w), Tail (t)

In addition to the body reference frames (Fig. 2), stability frames (Fig. 3) are needed

for lift and drag moment calculations. The lift and drag of the vehicle is divided into

the lift and drag for the wing and tail respectively.

The angle of attack is defined as the angle between the wing body frame axes

9

Fig. 3. Stability Frames: Wing (w), Tail (t)

and the local velocity vector. The equations for the wing and tail angle of attack are

αw = θ + φ− γw (2.1)

αt = αw − ε− αr (2.2)

where ε = ε0 + αw
dε
dα

is the downwash.

A. Development of 4 DOF Model

The Gibbs-Appell Method and the Newton-Euler Method are used to derive and

confirm the equations of motion for the system. Lagrange’s equations are not used

because some of the states are quasi-velocities, i.e. functions of some of the generalized

coordinates. In the current system, two of the states are the velocity of the CG for

the system in the body frame, which are functions of the inertial velocity of the CM

for the system, and the fuselage pitch rate. Quasi-velocities are used to compare with

the same quasi-velocities used in published results[19, 20].

1. Gibbs-Appell Method

The Gibbs-Appell method uses a technique similar to Lagrange’s equations. In La-

grange’s equations a scalar function in velocity terms, i.e. the kinetic energy, is used

10

to derive the equations of motion. For the Gibbs-Appell methods, a scalar function

in acceleration terms, known as the energy of acceleration, is used. The energy of

acceleration equation for the system is

S =
1

2

(
macg/i � acg/i +

1

2

(
α � Ḣcg

)
+α � (ω ×Hcg)

)
(2.3)

where the slash notation ’a�b’ denotes the vector from b to a, and α is the angular

acceleration. Also, ωcg�i = θ̇b̂2 and Hcg = Icgωcg�i; therefore, (ω ×Hcg) = 0.

To obtain the equations of motion, one considers

∂S

∂u̇i
= Ui (2.4)

where i = 1 : m with ’m’ equaling the total number of generalized coordinates, i.e.

there are ’m’ second order equations of motion. Also, ui represents the generalized

coordinates, using the quasi-velocities, and Ui represents the generalized forces of the

system. The generalized forces are determined using the virtual work equation,

δW =
∑

Fj � ∂pj +
∑

Mk∂αk

=
∑

Ui ∂ui

(2.5)

In the above equation, αk represents the angle of rotation for the body, not to be

confused with angle of attack or angular acceleration. Also, the notation uses the

subscript j = 1 : n where ’n’ equals the number of forces acting on the system and

k = 1 : o where ’o’ equals the number of moments acting on the system. Note that the

∂pj term is derived from the inertial velocity vectors of the forces. Time derivatives

in the velocity vector, such as θ̇, are replaced with the respective partial, such as ∂θ.

For full details of derivation, see Appendix A.

11

2. Newton-Euler Method

Newton-Euler derivation of the equations of motion uses Newton’s Second Law for

the derivation of the translational equations of motion and Euler’s equations for a

rotating body for the derivation of the rotational equations of motion.

Newton’s Second law states

∑
F = maCMs�i (2.6)

where F represents the forces on the system. To develop the rotational equations

of motion, Euler’s equations for a rotational body about an arbitrary point, ’∗’, are

used[21].

H∗ = HCM +m (rCM�i − r∗�i)× (vCM�i − v∗�i) (2.7)

Ḣ∗ = l∗ +ma∗�i × (rCM�i − r∗�i) (2.8)

where, H is the angular momentum, CM is the center of mass for each individual

body, r is the inertial position, v is the inertial velocity, and l is the sum of moments on

the system. The total angular momentum for the full system is determined by adding

the contributions from wing and fuselage angular momentums about the system CM.

HCMs = HCMw/CMs + HCMf/CMs (2.9)

Similarly,

ḢCMs = ḢCMw/CMs + ḢCMf/CMs (2.10)

For full details of derivation, see Appendix B.

12

3. Gust Load

A vertical gust load is imposed on the system and acts as a perturbation of the system.

Depending on the initial velocity and spring stiffness for the wing attachment, the

perturbation could cause a nonlinear aeroelastic response, such as an LCO.

The gust load is imposed in the manner of an additional lift on the wing surface.

Some assumptions made are that the wing is the only surface that encounters the

gust and that the gust impacts the total surface of the wing instantaneously.

Lvg = QSwCLα
Vvg
V

(2.11)

and

Lhg =
ρ

2

(
2VhgV + V 2

hg

)
SwCL (2.12)

where Vvg and Vhg are the velocities of a horizontal and vertical gust respectively, and

V is the velocity of the aircraft. The lift due to the horizontal gust acts at the CM

for the wing, and the lift due to the vertical gust acts at the aerodynamic center[22].

This study will only implement a vertical gust, but the equations are written in a

manner that would allow for both a vertical and a horizontal gust. The velocity of

the gust is modeled by a one-minus-cosine idealization.

Vg =
1

2
Vmax

(
1− cos

2πt

2dm

)
(2.13)

where Vmax is the total maximum velocity for the gust and dm is the time to reach

the maximum gust velocity. See Fig. 4 for a diagram depicting the one-minus cosine

13

Fig. 4. One-minus-cosine Gust Idealization

idealization for the gust loading.

Thus, using Eqs. (2.3), (2.4), and (2.5) and including the gust load, the following

equations of motion are constructed

Translational Equation of Motion (in the b̂1 frame):

m
(
u̇+ wθ̇

)
= −mg sin θ −Dw cos (θ − γw) + (Lw + Lvg + Lg) sin (θ − γw)

+ Lt sin (θ − γt)−Dt cos (θ − γt) + T

(2.14)

Translational Equation of Motion (in the b̂3 frame):

m
(
ẇ − uθ̇

)
= mg cos θ −Dw sin (θ − γw)− (Lw + Lvg + Lhg) cos (θ − γw)

− Lt cos (θ − γt)−Dt sin (θ − γt)
(2.15)

14

System Rotational Equation of Motion:

If θ̈ +
mwmf

m

(
d2
c

(
θ̈ + φ̈

)
− ddc

(
2θ̇φ̇+ φ̇2

)
sinφ+ d2θ̈ + ddc

(
2θ̈ + φ̈

)
cosφ

)
+ Iw

(
θ̈ + φ̈

)
= (Lw + Lvg)

((
e− mw

m
dc

)
cosαw +

mf

m
d cos (θ − γw)

)
+ Lhg

mf

m
(dc cosαw + d cos (θ − γw))

+Dw

((
e− mw

m
dc

)
sinαw +

mf

m
d sin (θ − γw)

)
− Lt

(mw

m
dc cosαt +

(mw

m
d+ f

)
cos (θ − γt)

)
−Dt

(mw

m
dc sinαt +

(mw

m
d+ f

)
sin (θ − γt)

)
+ T

mw

m
dc sinφ+Mac

(2.16)

Wing Rotational Equation of Motion:

Iw

(
θ̈ + φ̈

)
+
mwmf

m

(
ddcθ̈ cosφ+ d2

c

(
θ̈ + φ̈

)
+ ddcθ̇

2 sinφ
)

=

− k (φ− αr) + (Lw + Lvg)
(
e− mw

m
dc

)
cosαw + Lhg

mf

m
dc cosαw

+Dw

(
e− mw

m
dc

)
sinαw − Lt

mw

m
dc cosαt −Dt

mw

m
dc sinαt

+ T
mw

m
dc sinφ+Mac

(2.17)

The equations contain nonlinear rotation rate terms that are caused by the rotation of

the fuselage and wing components about their respective mass centers. Additionally,

there are nonlinear terms that arise from the lift and drag terms. Note Mac is the

zero-lift aerodynamic moment, if it exists. One component of the research is to per-

form simulations using the nonlinear equations of motion to determine the nonlinear

aeroelastic response of the vehicle.

The equations of motion for the 4 DOF model have been verified using pub-

lished data for a 3 DOF case. The airplane data used to validate the current model

is the Cessna 182, mainly chosen for the availability of published data[20, 23] for

15

comparisons. Published stability and control derivatives are used to determine the

unknown required input values, such as length and mass ratios. Note, the set of

input values used in the following analysis does not lead to a unique solution, due in

part to the nondimensional nature of the stability and control derivatives, as well as

nonlinearities.

4. Control Effectors

The longitudinal aircraft model uses two control effectors, an elevator and a flaperon.

The elevator is located on the horizontal tail and the flaperon is located on the wing.

Both are trailing edge control effectors and are constrained to deflect symmetrically in

such a way as to not impose a roll moment on the aircraft. Limitations on the elevator

restrict movement to +28◦ and −21◦ [23]. The flaperon control effector is added to

examine alleviation of the wing oscillations from the torsional spring attachment.

Since this control effector has been introduced by the author, the limitations and size

requirements must be defined. The limitations of the flaperon movement are chosen to

be +22◦ and −15◦, which falls within the general guidelines limiting control effectors

to ±30◦[24, 25].

The control effectors impact the lift/drag characteristics for the wing and tail.

The equations for lift and drag of the wing and tail, including the terms originating

from the controls, are

Lw = QwSwCL

= QwSw
(
CL0 + CLααw + CLδf δf

) (2.18)

Dw = QwSwCD

= QwSw
(
CD0 + CDααw + CDδf δf

) (2.19)

16

Lt = QtStCLt

= QtSt

(
CL0t + CLαtαt + CLδeδe + CLθ̇θ̇

) (2.20)

Dt = QtStCDt

= QtSt (CD0t + CDαtαt + CDδeδe)

(2.21)

where Q is the dynamic pressure, S is the wing area, δf is the deflection angle of

the flaperon, and δe is the deflection angle of the elevator. The subscripts t and w

represent the tail and wing respectively. The term CLθ̇ is the induced lift coefficient

due to the induced angle of attack at the horizontal tail from the pitch rate, θ̇. When

there is no canard contribution, i.e. a conventional aircraft, the wing contribution to

CLθ̇ is negligible but the horizontal tail contribution is important to include due to

its large moment arm[20].

B. Special Cases

To further prove the validity of the equations of motion derived in this paper some

special cases are discussed.

17

1. Case 1: Traditional Longitudinal Equations of Motion

The case where the CM of the wing is placed at the wing hinge attachment, i.e. dc = 0

is examined. The system rotational equation of motion, Eq. (2.16), reduces to(
If + Iw+

mwmf

m
d2
)
θ̈ + Iwφ̈ =

(Lw + Lvg)
(
e cosαw +

mf

m
d cos (θ − γw)

)
+ Lhg

mf

m
(d cos (θ − γw))

+Dw

(
e sinαw +

mf

m
d sin (θ − γw)

)
− Lt

(mw

m
d+ f

)
cos (θ − γt)

−Dt

(mw

m
d+ f

)
sin (θ − γt) +Mac

(2.22)

And, the wing rotational equation of motion, Eq. (2.17), reduces to

Iw

(
θ̈ + φ̈

)
= −k (φ− αr) + (Lw + Lvg) e cosαw +Dwe sinαw +Mac (2.23)

Also, assume that the wing is rigidly attached and cannot rotate, i.e. φ̈ = φ̇ = φ = 0.

Therefore, using the translational equations of motion and the system rotational

equation of motion, the longitudinal pitch equations of motion for a rigid aircraft are

obtained,

m
(
u̇+ wθ̇

)
= −mg sin θ +X (2.24)

m
(
ẇ − uθ̇

)
= mg cos θ + Z (2.25)

Iyθ̈ = M (2.26)

where X and Z are the aerodynamic forces in the body frame, M is the total moment

of the system about its CM, and Iy is the total moment of inertia for the system about

18

the axis of rotation. Additionally the wing rotational equation of motion reduces to

Iw

(
θ̈ + φ̈

)
= T

mw

m
dc sinφ+Mac + (Lw + Lvg) e cosαw +Dwe sinαw (2.27)

which is the equation of motion for a rigid wing, rigidly attached.

2. Case 2: Equation of Motion for Wing Constrained by Torsional Spring

A second case to consider is where the wing rotational equation of motion, Eq. (2.17),

reduced to the simple static case. Again assume the CM of the wing is placed at the

wing hinge attachment, i.e. dc = 0. And assume that the fuselage is not rotating,

θ̈ = θ̇ = 0. Using these assumptions, the system rotational equation of motion reduces

to ∑
MCM = 0 (2.28)

which makes since because sum of moments would equal zero if there is no rotation

of the body. The translational equations of motion reduce to

mu̇ = −mg sin θ +X (2.29)

mẇ = mg cos θ + Z (2.30)

And the wing rotational equation of motion reduces to

Iwφ̈ = −k (φ− αr) + (Lw + Lvg) e cosαw +Dwe sinαw +Mac (2.31)

which is the familiar static equation of motion for a wing section with pitch spring

restraints[26].

19

C. Simulations

The response of the 4 DOF system is obtained from an algorithm written in Matlab.

The program uses the initial conditions specified for the system and determines initial

trim condition estimates for the states of the system. The trim condition estimate

values are used in fmincon.m, a Matlab function that solves the nonlinear equations

of motion to find a stable solution. The equilibrium values, obtained from fmincon.m,

are used for the ordinary differential equations (ODEs) to show that the time deriva-

tives of all the states are zero, verifying that it is a stable solution. It is important

that the initial guess is a good approximation and that appropriate constraints are

imposed on the system since there is not a single unique trim solution. For example,

straight and level trim flight requires the flight path angle, γ, equal to zero. There are

equilibrium conditions where the constraint of γ = 0 is not valid. Therefore, to obtain

the straight and level trim condition, γ = 0 must be a constraint on the system.

Next, the trim solution obtained from fmincon.m is used in a linearization rou-

tine. This routine provides the eigenvalues/eigenvectors and provides stability infor-

mation for the system. If the real part of any eigenvalue is positive, then the system

is unstable. Also, this information is used in the verification of the model. If the

torsional spring attaching the wing to the fuselage is rigid, then the 4 DOF equa-

tions reduce to the 3 DOF equations. There is published data[20] on the stability

characteristics of the Cessna 182 for the 3 DOF case.

Then, the trim solution is input into ode45.m, a Matlab continuous ordinary

differential equation solver, to obtain the time history for the states, using the non-

linear equations of motion. Depending on the initial conditions of the system, the

wing torsional spring stiffness, k, and the magnitude of the gust disturbance velocity,

Vg, the system’s response is stable at an equilibrium state or develops into a stable

20

LCO. See section IV for representative plots of the system’s response due to a vertical

gust. Recall, that the degrees of freedom are the velocities of the CM of the system

in the body frame, u and w, the change in pitch attitude, θ, and a degree of freedom

associated with the torsion of the wing, φ.

21

CHAPTER III

CONTROL METHODS

A. PIF-NZSP-CRW Control

To control the 4 DOF system, a proportional-integral-filter (PIF) nonzero setpoint

(NZSP) controller with control rate weighting (CRW), a type of linear quadratic

regulator (LQR) controller, is used. The development of the controller, described

below, is based on the PIF-NZSP-CRW formulation described by Valasek et al.[13].

The proportional integral part of the controller allows the control signal to be changed

at a rate proportional to the magnitude of the error signal. By doing this, the

controller operates with zero steady state error. Control rate weighting allows for

weights to be put on the control rates, which gives the designer the ability to limit

control weights, and avoid control saturation. Control saturation occurs when the

controller requires more control authority than the system is capable of contributing.

1. Optimal NZSP

Optimal nonzero setpoint (NZSP) is defined as a command structure that forces the

plane to a terminal steady-state condition, with guaranteed tracking properties. For

discrete linear time invariant (LTI) systems, the state space representation for the

states is

xk+1 = Φxk + Γuk (3.1)

and for the outputs,

yk = Hxk +Duk (3.2)

22

The desired outcome is to command select outputs, y, to steady-state values, ym, and

to hold that value as t→∞. In the current case, the selected outputs are the velocity

of the CM in the b̂1 direction, u, and the fuselage pitch angle, θ. The commanded

values are the trim condition for the states, denoted by ∗. Therefore the steady-state

system is described as

x∗k+1 = Φx∗k + Γu∗k ≡ 0 (3.3)

and for the outputs,

ym = Hx∗k +Du∗k (3.4)

For guaranteed tracking the commanded outputs, ym must be less than or equal to

the number of controls. In this case there are only two controls, therefore only two

outputs are commanded. The commanded outputs in this work are chosen to be the

velocity of the system CM in the b̂1 direction, u, and the fuselage pitch angle, θ,

which are the states normally associated with the phugoid, long period, mode in 3

DOF longitudinal dynamics. The errors between the current state and control, and

their respective desired state and control are

x̃ = x− x∗ (3.5)

and

ũ = u− u∗ (3.6)

where x̃ is the error state and ũ is the error control. Therefore, the new state equation

is represented as

x̃∗k+1 = Φx̃k + Γũk (3.7)

with the respective quadratic function,

J =
1

2

∫ ∞
0

(
x̃TQx̃ + ũTRx̃u+ ˙̃uTS ˙̃u

)
dt (3.8)

23

To determine the optimal control, which minimizes Eq. (3.8), the solution of the

discrete matrix algebraic Riccati Equation, Eq. 3.9, is used.

P = Q+ (Φ− ΓK)T P (Φ− ΓK) +KTRK (3.9)

where

K =
(
ΓTPΓ +R

)−1 (
ΓTPΦ

)
(3.10)

The optimal control, ũk that minimizes Eq. (3.9) is

ũk = −Kx̃k (3.11)

which makes the feedback control law,

uk = ũk + u∗k

= u∗k −Kx̃k

= (u∗k +Kx∗k)−Kxk

(3.12)

where the constants x∗k and u∗k are solved for directly by inverting the quad partition

matrix (QPM) obtained from Eqs. (3.3) and (3.4),(Φ− I) Γ

H D


−1

=

π11 π12

π21 π22

 (3.13)

Using Eqs. (3.3) and (3.4) and assuming the desired output, y∗, is constant, i.e. x∗

and u∗ are constant and implying ẋ∗ = 0,x∗k

u∗k

 =

π11 π12

π21 π22


0

ym

 (3.14)

Therefore, x∗k = π12ym and u∗k = π22ym. Substituting these values into Eq. (3.12),

u = (π12 +Kπ12) ym −Kx (3.15)

24

2. PIF-NZSP-CRW

Building on the development of the NZSP controller, the proportional-integral-filter

nonzero setpoint with control rate weighting (PIF-NZSP-CRW) controller adds the

integral of the commanded error

ẏI = yk − ym (3.16)

which, using Eqs. (3.2) and (3.4), becomes

ẏI = Hxk +Duk −Hx∗k −Du∗k

= Hx̃k +Dũk

(3.17)

The gains for the PIF system are designed through the LQR cost function, with a

modified weighting matrix. The unmodified cost function, including the integral of

the commanded error and control rate weighting, is

J =
1

2

∫ ∞
0

(
x̃TkQ1x̃k + ũTkRũk + ˙̃uTk S ˙̃uk + yTI Q2yI

)
dt (3.18)

Using an augmented state vector x̃1k = [x̃k, ũk,yI + I]T and letting ũ1k = ˙̃uk, leads

to

J =

∫ ∞
0

(
x̃T1kQmodx̃1k + ũT1kSũ1k

)
dt (3.19)

where Qmod is the modified weighting matrix,

Qmod =


Q1 0 0

0 R 0

0 0 Q2

 (3.20)

25

To determine the optimal control, which minimizes Eq. (3.19), the solution of the

discrete matrix algebraic Riccati Equation, Eq. 3.21, is used.

P = Qmod + (Φ− ΓK)T P (Φ− ΓK) +KTSK (3.21)

where

K =
(
ΓTPΓ + S

)−1 (
ΓTPΦ

)
(3.22)

The optimal control, ũk that minimizes Eq. (3.21) is

ũ1k = −Kx̃1k

= − (K1x̃k +K2ũk +K3yI)

(3.23)

which makes the actual feedback control law,

u1k = ũ1k + u∗1k

= u∗k −K1x̃k −K2ũk −K3yI

= (u∗1k +K1x
∗
k +K2u

∗
k)−K1xk −K2uk −K3yI

(3.24)

As before, the inverse of the QPM leads to x∗k = π12ym and u∗k = π22ym. Recall, from

the control rate weighting, u1k = u̇k; therefore, u∗1k = 0. Therefore, the control law

for the PIF-NZSP-CRW is

u1k = (K1π12 +K2π22) ym −K1xk −K2uk −K3yI (3.25)

The gains, K, are chosen using linear quadratic methods, which provide optimal gains.

The model of the actuator dynamics, as assumed for the PIF-NZSP-CRW controller,

are of the form

Gc =
ω2
c

s2 + 2ζωc + ω2
c

(3.26)

26

where Gc is the transfer function, ωc is the natural frequency, and ζ is the damping

for the actuator. For the elevator and flaperon, the actuators are assumed to have

ωc = 10 rad
s

and ζ = 0.6.

B. Nonlinear Controller

Particular interests are the determination of the adverse consequences of linearizing

the equations of motion for the implementation of a linear controller and the benefits

of using a nonlinear controller. Linearized idealizations of nonlinear systems may not

accurately represent the dynamic response of the system. For example, nonlinear

phenomena such as LCOs cannot be modeled by the linear system. In addition,

in some cases the nonlinear system may be controllable where the linear system is

uncontrollable. Dixon et al.[27] give a simple example, based on work by Canudas

de Wit et al.[28] modeling the motion of a wheeled mobile robot, that demonstrates

where a controllable nonlinear system becomes uncontrollable when linearized.

The simple nonlinear system is represented as follows
ẋ1

ẋ2

ẋ3

 =


cosx3 0

sinx3 0

0 1


u1

u2

 (3.27)

Linearizing the equations about the point x3(t) = 0, the linearized system becomes
ẋ1

ẋ2

ẋ3

 =


1 0

0 0

0 1


u1

u2

 (3.28)

This demonstrates that the dynamics for the state x2 are now uncontrollable since the

controls may have no effect on it. Also, there is the potential for the linear controller

27

to destabilize the nonlinear system, thereby exacerbating the response instead of

alleviating it.

The nonlinear control method chosen to control the current system is based on

the Lyapunov direct method. This method is not restricted to local motion about an

equilibrium point, as is Lyapunov’s linearization method. Rather, it determines the

system’s stability based on the time derivatives of the Lyapunov function, V , which is

similar to the energy of the system[29]. Using the additional insight of Mukherjee and

Chen[30], global asymptotic stability may be confirmed even when the first derivative

of the Lyapunov function is negative semi-definite.

The Lyapunov function chosen for the system is

V =
1

2
eTP1e +

1

2
ėTP2ė (3.29)

where P1 and P2 are symmetric positive definite gain matrices and e is the error state

vector between the current state and the desired equilibrium state.

e =

θ − θeq
φ− φeq

 (3.30)

To satisfy the positive definite requirement for a Lyapunov function, V equals zero

only when at equilibrium, i.e. e = ė = 0, and is positive everywhere else. It should be

noted that, since there are only two control effectors, only two generalized coordinates

may be controlled. In this work the fuselage and wing angles of rotation, θ and φ,

are chosen to be controlled. Due to the coupled nature of the system, and the stable

nature of the body fixed quasi-velocities, u and w, the response of u and w should

stabilize as well.

For the Lyapunov controller method, it is necessary to determine the time deriva-

28

tive of the Lyapunov function.

V̇ = ėTP1e + ëTP2ė

= ėT (P1e + P2ë)

(3.31)

Assuming a negative semi-definite form for V̇ ,

V̇ = −ėT ė (3.32)

The above model is always negative due to the negative quadratic nature of the

function, but V̇ is only negative semi-definite because it is not a function of all the

controlled states, ė and e. Thus, V̇ may only be said to stabilize, not asymptotically

stabilize, the system. This issue will be revisited later.

Using Eqs. (3.31) and (3.32),

−ė = (P1e + P2ë) (3.33)

Let,

ë = G+H

δe
δf

 (3.34)

where G is the vector containing the contribution to ė from the non-control terms

and H is the matrix containing the control term contributions. Using Eqs. (3.33) and

(3.34), the nonlinear control law for stability of the system isδe
δf

 = −H−1[P−1
2 (ė + P1e) +G] (3.35)

P1 and P2 are chosen by the control designer. To simplify the control law, one assumes

P1 is the identity matrix and defines a new gain matrix of the following form, P = P−1
2 .

29

Therefore the simplified control law isδe
δf

 = −H−1[P (ė + e) +G] (3.36)

This control law will be implemented on the nonlinear 4DOF system. Comparing

this control law to the linear control law obtained from the PIF-NZSP-CRW method

will allow for conclusions to be made regarding the effectiveness of each controller.

Recall that the derivative of the Lyapunov function is negative semi-definite

because it is not a function of all the states, e and ė. Using the method described

by Mukherjee and Chen[30], one identifies a set, Z, that makes V̇ = 0. Thus, for Eq.

(3.32),

Z : {e ε <, ė = 0} (3.37)

Mukherjee and Chen state that if the higher order derivatives of V evaluated over

the set Z are zero, and if the first nonzero odd derivative evaluated on Z is negative

definite, then the system is asymptotically stable. Along these lines, the second time

derivative of V evaluated on Z is

V̈|Z =
(
−2ëT ė

)
|Z = 0 (3.38)

The third time derivative of V evaluated on Z is

...
V |Z =

(
−4
(...
e T ė + ëT ë

))
|Z (3.39)

Recall the assumption that P1 is the identity matrix and the definition of a new gain

matrix of the following form, P = P−1
2 . Rearranging Eq. (3.33), one finds

ë = −P (ė + e) (3.40)

30

Substituting Eq. (3.40) into Eq. (3.39),

...
V |Z = −4

(
...
e T ė + (P (ė + e))T (P (ė + e))

)
|Z

= −4
(

(Pe)T (Pe)
) (3.41)

which shows that
...
V is negative definite because it is zero only at e = ė = 0, and is

negative elsewhere. Therefore, the control law derived in Eq. (3.36) is asymptotically

stabilizing for the system.

31

CHAPTER IV

RESULTS

In this section, results from three main areas of interest will be presented: open-

loop response for both linear and nonlinear models, closed-loop response with a linear

controller for both linear and nonlinear models, and closed-loop response with a non-

linear controller for the nonlinear model. Following the results is a discussion of

assumptions.

Results are investigated using the one-minus-cosine gust disturbance, as de-

scribed in section 3. The maximum vertical gust velocity is chosen to be 0.03ud.

Though the equations of motion, Eqs. (2.14) - (2.17), include a lift due to both a

horizontal and vertical gust, this research will focus solely on a vertical gust. The

gust disturbance begins at time equal to 10 seconds for the simulations and has a one

second duration, i.e. dm = 0.5. The gust disturbance is delayed to show that the

system is at trim initially. System parameters are shown in Table I.

A. Open-Loop Response

The first case is the response of the open-loop linear model of the system in comparison

to the full nonlinear model. The linear and nonlinear model responses for the fuselage

pitch angle, θ, and wing pitch angle, φ, and the velocities of the system CM in the b1

direction, u, and in the b3 direction, w, are shown in Figs. 5 and 6.

The main input parameters for this simulation are shown in Table II, where k is

the stiffness for the torsional attachment for the wing, and ud is the desired horizontal

trim velocity for the system.

32

Table I. System Parameters

V ariable V alue Units Description

W 2650 lb Weight

If 1143.8 lb− ft2 Fuselage Moment of Inertia

Iw 201.9 lb− ft2 Wing Moment of Inertia

b 36 ft Span

Sw 174 ft2 Wing Area

c 4.9 ft Wing Chord

xCM 26.3 % System CM location (% chord)

Sδf 15 ft2 Flaperon Area

Sδe 16.61 ft2 Elevator Area

h 5000 ft Altitude

It is apparent by the response, of both the linear and nonlinear models, that this

is a stable condition. Note that the linear model is more oscillatory than the non-

linear model. This response is expected since the nonlinear and higher order terms

are neglected in the linear model, lowering the overall damping in the system. The

linear and nonlinear models have been compared by applying a small disturbance, of

the order of a maximum vertical gust velocity of (−2 × 10−5)ud, and showing both

systems produce the same response.

33

Fig. 5. Velocities of the System CM in the b1 Direction (u) and the b3 Direction (w):

Linear/Nonlinear Open-Loop Response

Fig. 6. Fuselage (θ) and Wing (φ) Pitch Angles: Linear/Nonlinear Open-Loop Re-

sponse

34

Table II. Input Parameters: Case 1

V ariable V alue Units

k 107 lb−ft
rad

ud 228 ft
s

ωw 222.54 rad− s−1

B. PIF-NZSP-CRW Linear Controller

For the next set of simulations, a second case (see Table III) of input parameters

is used to trigger an LCO response. The short duration of the gust disturbance is

chosen in order to excite the elastic mode from the torsional wing[22].

Table III. Input Parameters: Case 2

V ariable V alue Units

k 105 lb−ft
rad

ud 244.5 ft
s

ωw 22.25 rad− s−1

The system is sensitive to the values of the wing torsional stiffness, k, and the

desired trim velocity, ud. The plots that follow show both the closed and open-loop

responses for the linear and nonlinear models with a linear PIF-NZSP-CRW controller

imposed on the systems. It is shown (see Figs. 7 and 8) that the linear controller

controls the linear system. The gains, see section A chapter III, are chosen to achieve

stability and to ensure the control rate and angle limitations are not violated. See

Figs. 9 and 10 for the time history for both controllers. Figures 11 and 12 show

the linear controller applied to the nonlinear system. For this implementation the

35

exact same control law from the PIF-NZSP-CRW linear formulation is imposed on

the nonlinear system.

Fig. 7. Velocities of the System CM in the b1 Direction (u) and the b3 Direction (w):

Linear Response with and without Linear Control

36

Fig. 8. Fuselage (θ) and Wing (φ) Pitch Angles: Linear Response with and without

Linear Control

37

Fig. 9. Elevator Deflection Angle, δe, and rate, δ̇e

38

Fig. 10. Flaperon Deflection Angle, δf , and rate, δ̇f

39

Fig. 11. Velocities of the System CM in the b1 Direction (u) and the b3 Direction (w):

Nonlinear Response with and without Linear Control

40

Fig. 12. Fuselage (θ) and Wing (φ) Pitch Angles: Nonlinear Response with and with-

out Linear Control

41

Figures 11 and 12 show that the input values produce a LCO for the nonlinear

model. The LCO is not present in the linear response (see Figs. 7 and 8) since the

LCO is strictly a nonlinear phenomena. It should be noted that a linear controller

implemented on a nonlinear model can produce an LCO response. This response is

shown in Fig. 12. It is found that the linear controller is unable to stabilize the

LCO, though it is able to reduce the LCO’s amplitude. As seen in Fig. 11, the linear

controller worsens the response of the system, making the amplitude of the oscillatory

response higher than the open-loop response.

Fig. 13. Close Up of One Period of Oscillation for the Wing Pitch Angle, φ, LCO

Figure 13 is a close up of one period of oscillation for the LCO for the nonlinear open-

loop solution. From this the frequency of LCO is determined to be approximately

20.3 rad
s

.

42

C. Nonlinear Lyapunov-Based Control

The input parameters of Table III are used in the simulations provided in Figs. 14 and

15. These cases implement the nonlinear Lyapunov-based controller on the nonlinear

system. The gain matrix, P, for the nonlinear controller, see section B, is chosen to

be of the form

P =

c1ωw 0

0 c2ωw

 (4.1)

where ωw is the natural frequency for the wing, see Table I, and c1 and c2 are arbitrary

constants chosen by the control designer. As shown in Figs. 14 and 15, the nonlinear

controller compensates for the LCOs in the system and stabilizes the system to the

original equilibrium condition.

Fig. 14. Velocities of the System CM in the b1 Direction (u) and the b3 Direction (w):

Nonlinear Response with and without Nonlinear Control

43

Fig. 15. Fuselage (θ) and Wing (φ) Pitch Angles: Nonlinear Response with and with-

out Nonlinear Control

D. Assumptions

As is the case in all analysis, assumptions are required to reduce the problem being

investigated to a manageable level. For the current research, assumptions are made

with respect to the aerodynamics, structure, and controls.

With respect to the aerodynamics, the steady-flow aerodynamics model used is

a simplification of the true aerodynamic model. This is done to focus attention to the

nonlinear dynamics of the structure and to reduce complexity of analysis. In addition,

fuselage aerodynamic effects are neglected. This is done due to lack of information

concerning the aerodynamics of the fuselage for the aircraft, and to further simplify

the model. It is also assumed that the coefficient of drag with respect to the control

surfaces is negligible. This is consistent with other longitudinal aircraft studies[20].

Assumptions in the structural dynamic model partially lie in the reduction of

the full 6 DOF aircraft model to the current 4 DOF model that only includes the

44

longitudinal model. The current model constrains the aircraft from roll and yaw

motions, and translation in the b̂2 direction. In addition, the model assumes a rigid

wing attached to the aircraft with a torsional spring. While this is a simplified model

of a flexible wing in torsion, the true aircraft would have flexibility in many structural

modes including both bending and torsion, and will add many DOFs to the analysis.

Assumptions, made in the controls, allow for a continuous controller that updates

every timestep. In reality, the controller would be unable to update continuously due

to computational and structural limitations.

The author feels that the current assumptions of this research allow for a more

detailed analysis of a simpler problem, and makes the analysis more trackable. The

current model forms a basis for the addition of more complicated aerodynamics and

structural considerations, and allows for a transition between the fully flexible and

the rigid model, which would aid in the validation of flexible models.

E. Frequency Analysis

It is of interest to identify and discuss the amplitudes and frequencies for each of the

states. Frequency characteristics of the linear system will be analyzed and compared

with frequency analysis obtained from the time histories of the state from the simu-

lation. The eigenvalues for the linear system using the physical properties of Table

III are shown in Table IV. The frequencies and damping ratios, see Table V, are

calculated from the eigenvalues.

In order to obtain the plots for amplitude and frequency, a fast fourier transform

(FFT) is performed on the time history for each state. The FFT function in Matlab

assumes a constant sampling size for the data, which makes it important to have a

constant step size for integration solver. For the linear analysis a constant step size

45

Table IV. Eigenvalues

Eigenvalues

−0.203± 24.3

−3.36± 4.62

−1.46× 10−2 ± 0.150

Table V. Frequencies and Damping Ratios

Frequency(rad/s) DampingRatio

24.3 8.36× 10−3

5.70 0.587

0.151 9.71× 10−2

is already implemented, for the nonlinear model, a constant step size Runga Kutta

solver, such as runge.m, should be used instead of a variable time step solver, ode45.m.

The step size is chosen by the designer, but care must be taken to make sure the step

size is small enough to capture the nonlinear response.

In Figs. 16 - 21 the frequency response for the open-loop linear response, us-

ing the second set of physical properties (Table III), are shown. The wing natural

frequency is 22.54 rad− s−1 for this set of initial conditions.

The vertical lines in Figs. 16 - 21 are the system frequencies obtained through

eigenvalue analysis (see Table V). The sharpness of the peaks for each frequency vary

according to the respective damping ratios. The highest frequency has the lowest

damping ratio (see Table V), which is why the peak for the highest frequency is

the most pronounced. The middle frequency, normally referred to as the short period

mode in 3 DOF longitudinal analysis, has the greatest damping ratio, and thus has the

least pronounced peak of the three frequencies. And the lowest frequency, normally

46

referred to as the phugoid mode, has a damping ratio in between the two other

frequencies, and the sharpness of its peak reflects this relationship. These results

show that the simulation of the linear system matches with results from an eigenvalue

analysis, validating the linear simulation. As previously stated, for small disturbances,

the linear and nonlinear simulations of the response are the same, therefore the current

validation for the linear simulation also validates the nonlinear simulation.

Fig. 16. Frequency Response as Derived from Simulation of Velocity, u

47

Fig. 17. Frequency Response as Derived from Simulation of Velocity, w

48

Fig. 18. Frequency Response as Derived from Simulation of Fuselage Pitch Angle, θ

49

Fig. 19. Frequency Response as Derived from Simulation of Fuselage Pitch Rate, θ̇

50

Fig. 20. Frequency Response as Derived from Simulation of Wing Pitch Angle, φ

51

Fig. 21. Frequency Response as Derived from Simulation of Wing Pitch Rate, φ̇

52

It should be noted that for the nonlinear system, the amplitudes and the fre-

quencies are dependent on the initial conditions and the disturbance imposed. For a

complete analysis of the system, bifurcation analysis tools should be used to obtain

the complete frequency-response curves for the nonlinear system.

53

CHAPTER V

CONCLUSIONS

A primary contribution of this research is to examine the adverse consequences

produced in linearizing the equations of motion and in implementing a linear controller

on a nonlinear system. The importance of using a nonlinear model instead of a

linearized model is evident in Figs. 5 and 6. The simulations show that even for

a relatively minor velocity disturbance, the responses for the linear and nonlinear

models differ substantially.

Not only is the nonlinear model important, but also is the implementation of a

nonlinear controller. As seen in Figs. 11 and 12, the linear controller worsens the

response for the velocities and fuselage pitch angle for the system. It is interesting

that the linear controller did help alleviate the amplitude of the LCO that the wing

pitch angle, φ, experiences, see Fig. 12, but linear control cannot completely control

the system because it does not fully compensate for the LCO in the nonlinear model.

As seen in Fig. 8, the linear system does not experience the nonlinear LCO phenom-

ena. The nonlinear model with the nonlinear Lyapunov-based controller stabilizes

the system for the LCO. Figure 14 shows that the uncontrolled states, u and w, also

stabilize to their original equilibrium values.

The results included in this paper show that the linear model fails to capture the

true nonlinear response of the system, for example, the presence of an LCO. Further,

the linear controller based on the linear model does not stabilize the true nonlin-

ear system. The results from the Lyapunov-based control on the nonlinear model

emphasize the importance of treating the fully nonlinear system with a nonlinear

controller.

54

CHAPTER VI

FUTURE WORK

One aspect that is of great interest is bifurcation analysis of the system. The

bifurcation analysis is useful in the rapid and complete determination the character-

istics of the system, including unstable LCOs, stable LCOs, catastrophic divergence,

flutter, etc. and will identify responses where control is necessary. Also, it should

be of interest to perform bifurcation on the closed loop solution of the equations of

motion to determine the stability characteristics of the controlled system.

The ideal next step of this research is to implement a rigidly attached flexible

wing onto the longitudinal model that would allow for torsion and bending. The

wing should be modeled as a cantilever beam with one end rigidly attached and the

other free[31]. The fixed end must be allowed to translate and rotate, which will

allow for the fuselage motion to be imposed onto the wing. One of the complexities

of this problem is due to the inherently coupled nature of the aerodynamics and the

structure. The aerodynamic forces depend on the angle of attack of the wing, but the

wing twist angle also depends on the aerodynamic forces. This is a classic aeroelastic

problem, in which iteration is necessary to obtain a solution.

One issue that must be addressed is the point at which the inertial velocities

of the system are defined. It will be necessary to redefine the inertial velocities for

system as that of the attachment point of the wing instead of the CM of the system,

as is currently used. This is an issue because the CM of the system depends on the

wing configuration and is therefore not fixed. If the attachment point for the wing is

chosen as the defined value, then the fixed end of the cantilever is defined. Otherwise

the fixed end would be a function of the moving CM of the system, which is in turn

55

a function of the twist and bending of the wing, which adds unnecessary complexity

to the problem.

Some additional areas of interest include implementing different nonlinear control

models and a more rigorous aerodynamic model of unsteady flow. The work focused

on a Lyapunov nonlinear control method, which is a fairly robust method, but there

are two additional nonlinear control methods of interest: adaptive control and sliding

mode control. The adaptive control design accounts for the modeling uncertainties

and corrects for the uncertainties caused by the inexact cancellation of nonlinear

terms for the feedback linearization. The control laws developed from the use of

adaptive methods allow for the LCO and flutter to be suppressed during normal

flight operations, with the goal of creating a globally stabilizing controller. Sliding

mode control allows for a stable mode to be achieved and then provides control

to constrain the response to remain at the stable mode. Both methods should be

explored to identify stability characteristics and their effectiveness for flutter and

LCO suppression, as well as gust load alleviation. Also there is the opportunity to

investigate adaptive nonlinear Lyapunov control. This would all the control law to

adapt to better control the response.

The aerodynamic model currently implemented is a steady flow model. For future

work, it is desired to implement a more robust model, such as the unsteady model of

Theodorsen’s unsteady thin-airfoil theory[26]:

L = 2πρ∞UbC(k)

[
ḣ+ Uθ + b

(
1

2
− a
)
θ̇

]
+ πρ∞b

2
(
ḧ+ Uθ̇ − baθ̈

)
(6.1)

where the function C(k) is a function of the reduced frequency, k = bω
U

, b’ is

the semi-chord, a is a dimensionless parameter for the length of the midchord to the

hinge location, U is the velocity, and θ is the pitch angle of the wing.

56

An additional area of interest could be a more realistic gust model. The one-

minus-cosine gust is good for modeling one discrete gust, but a more accurate model

would allow for the gust to be continuous and irregular. An approach for this could be

idealization of the gust as a stationary gaussian random process. Stationary-gaussian

idealization allows for an infinite possible variations in the shape of the individual

gusts, variation of gust magnitude and duration, and superposition of short duration

gusts that excite elastic modes with longer duration gusts that give the largest rigid

airplane loads[22].

One asset of the University is the Nonlinear Aeroelastic Testbed Apparatus

(NATA). NATA is a pitch plunge apparatus that may be used to implement the

nonlinear control algorithms and experimentally validate results obtained through

simulations.

57

REFERENCES

[1] E. Dowell, J. Edwards, and T. Strganac, “Nonlinear aeroelasticity,” Journal of

Aircraft, vol. 40, no. 5, pp. 857–874, 2003.

[2] M. J. Patil, D. H. Hodges, and C. E. S. Cesnik, “Nonlinear aeroelasticity and

flight dynamics of high-altitude long-endurance aircraft,” AIAA Paper 99-1470,

1999.

[3] T. E. Noll, J. M. Brown, M. E. Perez-Davis, S. D. Ishmael, G. C. Tiffany, and

M. Gaier, “Investigation of the helios prototype aircraft mishap,” vol. 1, January

2004, [online article], http://www.nasa.gov/pdf/64317main helios.pdf [retrieved

14 April. 2009].

[4] C. M. Shearer and C. E. S. Cesnik, “Nonlinear flight dynamics of very flexible

aircraft,” Journal of Aircraft, vol. 44, no. 5, pp. 1528–1545, 2007.

[5] E. Vartio, A. Shimko, C. P. Tilmann, and P. M. Flick, “Structural modal con-

trol and gust load alleviation for sensorcraft concept,” in Proc. of the 46th

AIAA/ASME/ASCE/AHS/ASC Structural Dynamics and Materials Confer-

ence, ser. AIAA-2005-1946, Austin, TX, April 2005.

[6] Y. Matsuzaki, T. Ueda, Y. Miyazawa, and H. Matsushita, “Gust load alleviation

of a trasport-type wing: Test and analysis,” Journal of Aircraft, vol. 26, no. 4,

pp. 322–327, 1989.

[7] K. B. Penning, P. S. Zink, P. Wei, A. P. De La Garza, M. H. Love, and J. Mar-

tinez, “Gla and flutter supression for a sensorcraft class concept using system

identification,” in Proc. of the 26th AIAA Applied Aerodynamics Conference, ser.

AIAA-2008-7188, Honolulu, HI, August 2008.

58

[8] J. Block and T. W. Strganac, “Applied active control for a nonlinear aeroelastic

stucture,” Journal of Guidance, Control, and Dynamics, vol. 21, no. 6, pp. 838–

845, 1998.

[9] G. Platanitis and T. Strganac, “Control of a nonlinear wing section using leading-

and trailing-edge surfaces,” Journal of Guidance, Control, and Dynamics, vol. 27,

no. 1, pp. 52–58, 2004.

[10] B. L. Stauffer, R. A. Stuever, and J. L. Vian, “Application of a design method

for integrated control to a vtol airplane in hover,” in Proc. of the AIAA Guid-

ance, Navigation and Control Conference, ser. AIAA-90-3334-CP, Portland, OR,

August 1990.

[11] J. Valasek, J. Kimmett, D. Hughes, K. Gunnam, and J. L. Junkins, “Vision

based sensor and navigation system for autonomous aerial refueling,” in Proc.

of the 1st UAV Conference, ser. AIAA Paper 2002-3441, Portsmouth, VA, May

2002.

[12] J. Kimmett, J. Valasek, and J. L. Junkins, “Autonomous aerial refueling utilizing

a vision based navigation system,” in Proc. of the AIAA Guidance, Navigation,

and Control Conference and Exhibit, ser. AIAA Paper 2002-4469, Monterey, CA,

August 2002.

[13] J. Valasek, K. Gunnam, J. Kimmett, M. Tandale, and J. L. Junkins, “Vison-

based sensor and navigation system for autonomous air refueling,” Journal of

Guidance, Control, and Dynamics, vol. 28, no. 5, pp. 979–989, 2005.

[14] E. de Pavia, F. Benjovengo, S. Bueno, J. Azinheira, and A. Moutinho, “Nonlinear

control approaches for an autonomous unmanned robotic airship,” in Proc. of

59

the 7th AIAA Aviation Technology, Integration and Operations Conference, ser.

AIAA-2007-7782, Belfast, Northern Ireland, September 2007.

[15] J. Suk, S. Boo, and Y. Kim, “Lyapunov control law for slew maneuver using time

finite element analysis,” Journal of Guidance, Control, and Dynamics, vol. 24,

no. 1, pp. 87–94, 2001.

[16] P. Bhatta and N. E. Leonard, “Nonlinear gliding stabiliy and control for vehicles

with hydrodynamic forcing,” Automatica, vol. 44, pp. 1240–1250, 2008.

[17] F. Lanchester, Aerodonetics. London: A. Constable & Company, 1908.

[18] R. von Mises, Theory of Flight. New York, NY: Dover, 1959.

[19] R. C. Nelson, Flight Stability and Automatic Control. New York, NY: McGraw-

Hill Higher Education, 1998.

[20] J. Roskam, Airplane Flight Dynamics and Automatic Flight Controls: Part 1.

Lawrence, KS: DARcorporation, 1995, pp. 480–486.

[21] J. Hurtado, Kinematic and Kinetic Principles. College Station, TX: John E.

Hurtado/Lulu, 2007, p. 113.

[22] F. M. Hoblit, Gust Loads on Aircraft: Concepts and Applications. Washington,

DC: AIAA Education Series, 1988, pp. 1–8.

[23] P. Jackson, Ed., Jane’s All the World’s Aircraft 2007-2008. Alexandria, VA:

Jane’s Information Group Inc., 2007, pp. 718–719.

[24] C. D. Perkins and R. E. Hage, Airplane Performance Stability and Control. New

York, NY: John Wiley & Sons, Inc., 1949, p. 329.

60

[25] J. B. Rathbun, Aeroplane Construction and Operation. Stanton and Van Vliet,

1918, p. 321.

[26] D. H. Hodges and G. A. Pierce, Introduction to Structural Dynamics and Aeroe-

lasticity. New York, NY: Cambridge University Press, 2002.

[27] W. E. Dixon, A. Behal, D. M. Dawson, and S. P. Nagarakatti, Nonlinear Control

of Engineering Systems. Boston, MA: Birkäuser, 2003.

[28] C. Canudas de Wit, K. Khennouf, C. Samson, and O. J. Sordalen, “Nonlinear

control for mobile robots,” in Recent Trends in Mobile Robots, Y. Zheng, Ed.

River Edge, NJ: World Scientific, 1993, pp. 121–156.

[29] J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ:

Prentice Hall, 1991, p. 40.

[30] M. Mukherjee and D. Chen, “Asymptotic stability theorem for autonomous sys-

tems,” Journal of Guidance, Control, and Dynamics, vol. 16, no. 5, pp. 961–963,

1993.

[31] S. S. Rao, Vibration of Continuous Systems. Hoboken, NJ: John Wiley and

Sons, Inc, 2007.

61

APPENDIX A

GIBBS-APPELL DERIVATION

For the Gibbs-Appell methods, a scalar function in acceleration terms, known

as the energy of acceleration, is used. The energy of acceleration equation for the

system is

S =
1

2

(
macg/i � acg/i +

1

2

(
α � Ḣcg

)
+α � (ω ×Hcg)

)
(A.1)

where the slash notation ’a�b’ denotes the vector from b to a. The term α is

the angular acceleration for the body, not to be confused with angle of attack. Also,

ωcg�i = θ̇b̂2 and Hcg = Icgωcg�i; therefore, (ω ×Hcg) = 0.

A. Energy of Acceleration

As shown in Eq. (A.1) the acceleration terms for each of the bodies, wing and

fuselage, are needed. In order to obtain the acceleration components of the fuselage

and wing, their relationship with the CM of the system must be established. Given

the definition of the CM,
N∑
i=1

miri = 0 (A.2)

In order to obtain the velocity relationships, differentiate Eq. (A.2)

N∑
i=1

mivi = 0 (A.3)

Note, vi is the inertial velocity of each body. Expanding Eq. (A.3),

mvCMs = mwvCMf +mwvCMw (A.4)

where the subscript s stands for the system. Investigating the Eq. (A.3) for

62

velocities of the bodies with respect to the CM of the fuselage,

mvCMs�CMf = mwvCMf�CMf +mwvCMw�CMf (A.5)

where vf�f equals zero. Thus,

vCMs�CMf =
mw

m
vCMw�CMf (A.6)

and similarly,

vCMs�CMw =
mf

m
vCMf�CMw (A.7)

Recall that for any body fixed vector,

va/b = −vb/a (A.8)

Therefore,

vCMw�CMs =
mf

m
vCMw�CMw (A.9)

and

vCMf�CMs = −mw

m
vCMw�CMw (A.10)

Taking the time derivatives of both Eq. A.9 and A.10 leads to

aCMw�CMs =
mf

m
aCMw�CMf (A.11)

and

af�CMs = −mw

m
aCMw�CMf (A.12)

Thus, to find both aCMf�CMs and aCMw�CMs, aCMw�CMf is needed. Recall,

rCMw�CMf =
(
db̂1 + dcŵ1

)
= (d+ dc cosφ) b̂1 − dc sinφb̂3

(A.13)

63

with the time derivative

vCMw�CMf = b d

dt
(rCMw�CMf) + ωb�i × (rCMw�CMf)

= −
(
θ̇ + φ̇

)
dc sinφb̂1 −

(
dθ̇ +

(
θ̇ + φ̇

)
dc cosφ

)
b̂3

(A.14)

and the derivative of A.14, the acceleration term,

aCMw�CMf = b d

dt
(vCMw�CMf) + ωb�i × (vCMw�CMf)

= −
((
θ̈ + φ̈

)
dc sinφ+

(
θ̇ + φ̇

)
dc cosφ− dθ̇2

)
b̂1

−
(
dθ̈ +

(
θ̈ + φ̈

)
dc cosφ−

(
θ̇ + φ̇

)2

dc sinφ

)
b̂3

(A.15)

Therefore, combining Eqs. (A.15) and (A.11),

aCMw�CMs = −mf

m

(((
θ̈ + φ̈

)
dc sinφ+

(
θ̇ + φ̇

)
dc cosφ− dθ̇2

)
b̂1

+
(
dθ̈ +

(
θ̈ + φ̈

)
dc cosφ−

(
θ̇ + φ̇

)2

dc sinφ
)
b̂3

) (A.16)

And, combining Eqs. (A.15) and (A.12),

aCMf�CMs =
mw

m

(((
θ̈ + φ̈

)
dc sinφ+

(
θ̇ + φ̇

)
dc cosφ− dθ̇2

)
b̂1

+
(
dθ̈ +

(
θ̈ + φ̈

)
dc cosφ−

(
θ̇ + φ̇

)2

dc sinφ
)
b̂3

) (A.17)

The inertial velocity of the CM for the system is defined as

vCMs�i = ub̂1 + wb̂3 (A.18)

with the time derivative,

aCMs�i = b d

dt
(vCMs�i) + ωb�i × (vCMs�i)(

u̇+ wθ̇
)
b̂1 +

(
ẇ + uθ̇

)
b̂3

(A.19)

Therefore, using Eqs. (A.16) and (A.17), the inertial velocities of the fuselage and

64

wing are

aCMw�i =
(
u̇+ wθ̇ − mf

m

((
θ̈ + φ̈

)
dc sinφ+

(
θ̇ + φ̇

)
dc cosφ− dθ̇2

))
b̂1(

ẇ − uθ̇ − mf

m

(
dθ̈ +

(
θ̈ + φ̈

)
dc cosφ−

(
θ̇ + φ̇

)2

dc sinφ
))

b̂3

(A.20)

and

aCMf�i =
(
u̇+ wθ̇ +

mw

m

((
θ̈ + φ̈

)
dc sinφ+

(
θ̇ + φ̇

)
dc cosφ− dθ̇2

))
b̂1(

ẇ − uθ̇ +
mw

m

(
dθ̈ +

(
θ̈ + φ̈

)
dc cosφ−

(
θ̇ + φ̇

)2

dc sinφ
))

b̂3

(A.21)

Recall, from Eq. (A.1), that the dot product of the inertial acceleration terms

for each body is needed. For simplicity, let

S = Sw + Sf (A.22)

where the subscripts w and f represent the wing and fuselage bodies respectively.

Sw =
1

2
mwaw�i � aw�i +

1

2

(
α � Ḣw

)
(A.23)

The angular momentum for the wing about its CM is defined as

Hw = Iw

(
θ̇ + φ̇

)
b̂2 (A.24)

taking the time derivative

Ḣw = Iw

(
θ̈ + φ̈

)
b̂2 (A.25)

where the angular acceleration for the wing is identified as

αw =
(
θ̈ + φ̈

)
b̂2 (A.26)

Now using Eq. (A.23), the energy of acceleration for the wing in the b̂2 direction

65

is

Sw =
1

2
mwaw�i � aw�i +

1

2

(
αw � Ḣw

)
=

1

2
mw

(
u̇2 + 2u̇wθ̇ − 2

mf

m
u̇
(
dc

(
θ̈ + φ̈

)
sinφ

+ dc

(
θ̇ + φ̇

)2

cosφ+ dθ̇2
)

+ w2θ̇2

− 2wθ̇
mf

m

(
dc

(
θ̈ + φ̈

)
sinφ+ dc

(
θ̇ + φ̇

)2

cosφ+ dθ̇2

)
+
(mf

m

)2

d2
c

(
θ̈ + φ̈

)
+ 2

(mf

m

)2

dcdθ̇
2
(
θ̈ + φ̈

)
sinφ

+ 2
(mf

m

)2

d2
c

(
θ̇ + φ̇

)4

+ 2
(mf

m

)2

dcdθ̇
2
(
θ̇ + φ̇

)2

cosφ

+
(mf

m

)2

d2θ̇4 + ẇ2 − 2ẇuθ̇ − 2
(mf

m

)2

dcdθ̈
(
θ̇ + φ̇

)2

sinφ

− 2
mf

m
ẇ

(
dθ̈ + dc

(
θ̈ + φ̈

)
cosφ− dc

(
θ̇ + φ̇

)2

sinφ

)
+ u2θ̇2 + 2

mf

m
uθ̇

(
dθ̈ + dc

(
θ̈ + φ̈

)
cosφ− dc

(
θ̇ + φ̇

)2

sinφ

)
(mf

m

)2

d2θ̈2 + 2
(mf

m

)2

dcdθ̈
(
θ̈ + φ̈

)
cosφ

)
+

1

2
Iw

(
θ̈ + φ̈

)2

(A.27)

The energy of acceleration for the fuselage in the b̂2 direction is

Sf =
1

2
mfaf�i � af�i +

1

2

(
α � Ḣf

)
(A.28)

The angular momentum for the fuselage about its CM is defined as

Hf = If θ̇b̂2 (A.29)

with the time derivative

Ḣf = If θ̈b̂2 (A.30)

The angular acceleration for the fuselage is

αf = θ̈b̂2 (A.31)

66

Therefore, using Eqs. (A.21) - A.31 and (A.28), the energy of acceleration for

the fuselage in the b̂2 direction is

Sf =
1

2
mfaf�i � af�i +

1

2

(
αf � Ḣf

)
=

1

2
mf

(
u̇2 + 2u̇wθ̇ + 2

mw

m
u̇dc

(
θ̈ + φ̈

)
sinφ

+ 2u̇
mw

m
dc

(
θ̇ + φ̇

)2

cosφ+ 2u̇
mw

m
dθ̇2 + w2θ̇2 + 2wθ̇

mw

m
dθ̇2

+ 2wθ̇
mw

m
dc

(
θ̈ + φ̈

)
sinφ+ 2wθ̇

mw

m
dc

(
θ̇ + φ̇

)2

cosφ+
(mw

m

)2

d2
c

(
θ̈ + φ̈

)
+ 2

(mw

m

)2

dcdθ̇
2
(
θ̈ + φ̈

)
sinφ+

(mw

m

)2

d2
c

(
θ̇ + φ̇

)4

+ 2
(mw

m

)2

dcdθ̇
2
(
θ̇ + φ̇

)2

cosφ+
(mw

m

)2

d2θ̇4 + ẇ2 − 2ẇuθ̇

+ 2
mw

m
ẇdθ̈ + 2ẇ

mw

m
dc

(
θ̈ + φ̈

)
cosφ− 2ẇ

mw

m
dc

(
θ̇ + φ̇

)2

sinφ

+ u2θ̇2 − 2uθ̇]fracmwmdθ̈ − 2
mw

m
uθ̇dc

(
θ̈ + φ̈

)
cosφ

+ 2uθ̇dc
mw

m

(
θ̇ + φ̇

)2

sinφ+
(mw

m

)2

d2θ̈2

+ 2
(mw

m

)2

dcdθ̈
(
θ̈ + φ̈

)
cosφ− 2

(mw

m

)2

dcdθ̈
(
θ̇ + φ̇

)2

sinφ
)

+
1

2
If θ̈

2

(A.32)

The partial derivatives of Sw with respect to each of the generalized accelerations

are

∂Sw
∂u̇

= mw

(
u̇+ wθ̇ − mf

m
dc

(
θ̈ + φ̈

)
sinφ− mf

m
dc

(
θ̇ + φ̇

)2

cosφ− mf

m
dθ̇2

)
(A.33)

∂Sw
∂ẇ

= mw

(
ẇ − uθ̇ − mf

m
dc

(
θ̈ + φ̈

)
cosφ+

mf

m
dc

(
θ̇ + φ̇

)2

sinφ− mf

m
dθ̈

)
(A.34)

∂Sw

∂θ̈
= mw

(
−mf

m

(
u̇dc sinφ+ ẇd− uθ̇d− uθ̇dc cosφ

+ wθ̇dc sinφ+ ẇdc cosφ
)

+
(mf

m

)2 (
d2
c

(
θ̈ + φ̈

)
− ddc

(
2θ̇φ̇+ φ̇2

)
sinφ+ ddc

(
2θ̈ + φ̈

)
cosφ

))
+ Iwθ̈

(A.35)

67

and

∂Sw

∂φ̈
= mw

(
−mf

m

(
ẇdc cosφ− uθ̇dc cosφ

+ wθ̇dc sinφ+ u̇dc sinφ
)

+
(mf

m

)2 (
d2
c

(
θ̈ + φ̈

)
+ ddcθ̇

2 sinφ+ ddcθ̈ cosφ
))

+ Iwφ̈

(A.36)

And, the partial derivatives of Sf with respect to each of the generalized accel-

erations are

∂Sf
∂u̇

= mf

(
u̇+ wθ̇ +

mw

m
dc

(
θ̈ + φ̈

)
sinφ+

mw

m
dc

(
θ̇ + φ̇

)2

cosφ+
mw

m
dθ̇2

)
(A.37)

∂Sf
∂ẇ

= mf

(
ẇ − uθ̇ +

mw

m
dc

(
θ̈ + φ̈

)
cosφ− mw

m
dc

(
θ̇ + φ̇

)2

sinφ+
mw

m
dθ̈

)
(A.38)

∂Sf

∂θ̈
= mf

(mw

m

(
u̇dc sinφ+ ẇd− uθ̇d− uθ̇dc cosφ

+ wθ̇dc sinφ+ ẇdc cosφ
)

+
(mw

m

)2 (
d2
c

(
θ̈ + φ̈

)
− ddc

(
2θ̇φ̇+ φ̇2

)
sinφ+ ddc

(
2θ̈ + φ̈

)
cosφ

))
+ If θ̈

(A.39)

and

∂Sf

∂φ̈
= mf

(mw

m

(
ẇdc cosφ− uθ̇dc cosφ

+ wθ̇dc sinφ+ u̇dc sinφ
)

+
(mw

m

)2 (
d2
c

(
θ̈ + φ̈

)
+ ddcθ̇

2 sinφ+ ddcθ̈ cosφ
)) (A.40)

Obtain the total partial derivatives for the energy of acceleration of the system

with respect to the generalized accelerations by adding the respective components

from the partial derivatives obtained from the wing and fuselage in Eqs. (A.33) -

(A.40).

∂S

∂u̇
= m

(
u̇+ wθ̇

)
(A.41)

68

∂S

∂ẇ
= m

(
ẇ − uθ̇

)
(A.42)

∂S

∂θ̈
=
mfmw

m

(
d2
c

(
θ̈ + φ̈

)
− ddc

(
2θ̇φ̇

+ φ̇2
)

sinφ+ ddc

(
2θ̈ + φ̈

)
cosφ

)
+ If θ̈ + Iw

(
θ̈ + φ̈

) (A.43)

∂S

∂φ̈
=
mfmw

m

(
d2
c

(
θ̈ + φ̈

)
+ ddcθ̇

2 sinφ

+ ddcθ̈ cosφ
)

+ Iw

(
θ̈ + φ̈

) (A.44)

Note, several terms in ∂Sw
u̇i

and
∂Sf
u̇i

cancel each other. With ∂S
u̇i

, the generalized

forces Ui must be derived.

B. Generalized Forces

The generalized forces are determined using the virtual work equation,

δW =
∑

Fj � ∂pj +
∑

Mk∂αk

=
∑

Ui ∂ui

(A.45)

In the above equation, αk is representative of the angle of rotation for the body,

not to be confused with angle of attack. Also, the notation uses the subscript j = 1 : n

where ’n’ equals the number of forces acting on the system and k = 1 : o where ’o’

equals the number of moments acting on the system. Note, that the ∂pj term is

derived from the inertial velocity vector for the force. Time derivatives in the velocity

vector, such as θ̇, are replaced with their respective partial, such as ∂θ.

Note that there are six forces acting on the system and two moments. The six

forces are the lift and drag for each the wing and the tail, weight of the system, and

thrust. The two moments are from the torsional spring and the zero-lift aerodynamic

moment, if it exists.

69

Let the equivalent of

θ̇ = ∂θ (A.46)

for the generalized velocities be represented as

u = ∂ũ (A.47)

and

w = ∂w̃ (A.48)

Inertial velocity vector for the weight of the system,

vCMs�i = ub̂1 + wb̂3 (A.49)

vCMs�i = ∂ũb̂1 + ∂w̃b̂3 (A.50)

Inertial velocity vector for the aerodynamic center of the wing,

vACw�i = vACw�CMw + vCMw�CMs + vCMs�i

=
(
u−

(
θ̇ + φ̇

)(
e− mw

m
dc

)
sinφ

)
b̂1

+
(
w −

(
θ̇ + φ̇

)(
e− mw

m
dc

)
cosφ− mf

m
dθ̇
)
b̂3

(A.51)

∂pCMf�i =
(
∂ũ− (∂θ + ∂φ)

(
e− mw

m
dc

)
sinφ

)
b̂1

+
(
∂w̃ − (∂θ + ∂φ)

(
e− mw

m
dc

)
cosφ− mf

m
d∂θ
)
b̂3

(A.52)

Since thrust is aligned with the body frame, it does not matter which point is

selected if it is aligned with the b̂1 direction. Also, note that the lift and drag on the

tail are assumed to act through the attachment point for the tail since the moment

of these loads about the CM of the system is large compared to the moment about

70

the tail attachment. The inertial velocity vector for the attachment point of the tail,

vt�i = vt�CMf + vCMf�CMs + vCMs�i

=
(
u+

mw

m

(
θ̇ + φ̇

)
dc sinφ

)
b̂1

+
(
w +

mw

m

(
θ̇ + φ̇

)
dc cosφ+

(mw

m
d+ f

)
θ̇
)
b̂3

(A.53)

∂pt�i =
(
∂ũ+

mw

m
(∂θ + ∂φ) dc sinφ

)
b̂1

+
(
∂w̃ +

mw

m
(∂θ + ∂φ) dc cosφ+

(mw

m
d+ f

)
∂θ
)
b̂3

(A.54)

Now, the respective moments are defined.

For the weight of the system,

mgî3 � ∂pCMs�i = mg (cos θ∂w̃ − sin θ∂ũ) (A.55)

For the lift of the wing,

Lw (−ŝ3) � ∂pACw�i = Lw

(
∂ũ sin (θ − γw)− ∂w̃ cos (θ − γw)

+ (∂θ + ∂φ)
(
e− mw

m
dc

)
cosαw +

mf

m
d∂θ cos (θ − γw)

) (A.56)

For the drag of the wing,

Dw (−ŝ1) � ∂pACw�i = Dw

(
−∂ũ cos (θ − γw)− ∂w̃ sin (θ − γw)

+ (∂θ + ∂φ)
(
e− mw

m
dc

)
sinαw +

mf

m
d∂θ sin (θ − γw)

) (A.57)

For the lift of the tail,

Lt (−ŝ3) � ∂pt�i = Lt

(
∂ũ sin (θ − γt)− ∂w̃ cos (θ − γt)

− (∂θ + ∂φ)
mw

m
dc cosαt −

(
f +

mf

m
d
)
∂θ cos (θ − γt)

) (A.58)

71

For the drag of the tail,

Dt (−ŝ1) � ∂pt�i = Dt

(
−∂ũ cos (θ − γt)− ∂w̃ sin (θ − γt)

− (∂θ + ∂φ)
mw

m
dc sinαt −

(
f +

mf

m
d
)
∂θ sin (θ − γt)

) (A.59)

For the thrust of the vehicle,

T b̂1 � ∂pt�i = T
(
∂ũ+

mw

m
dc sinφ (∂θ + ∂φ)

)
(A.60)

For the torsional spring moment,

M∂α = −k (φ− αr) ∂φ (A.61)

And, for the aerodynamic moment of the wing, if it exists at zero lift,

M∂α = Mac (∂θ + ∂φ) (A.62)

Next, combining terms into Eq. (A.45), one obtains the four generalized forces.

Uu = −mg sin θ + Lw sin (θ − γw)−Dw cos (θ − γw)

+ Lt sin (θ − γt)−Dt cos (θ − γt) + T

(A.63)

Uw = mg cos θ − Lw cos (θ − γw)−Dw sin (θ − γw)

+ Lt cos (θ − γt)−Dt sin (θ − γt)
(A.64)

Uθ̇ = Lw

((
e− mw

m
dc

)
cosαw +

mf

m
d cos (θ − γw)

)
+Dw

((
e− mw

m
dc

)
sinαw +

mf

m
d sin (θ − γw)

)
− Lt

(mw

m
dc cosαt +

(
f +

mw

m
d
)

cos (θ − γt)
)

−Dt

(mw

m
dc sinαt +

(
f +

mw

m
d
)

sin (θ − γt)
)

+ T
mw

m
dc sinφ+Mac

(A.65)

72

and

Uφ̇ = Lw

(
e− mw

m
dc

)
cosαw +Dw

(
e− mw

m
dc

)
sinαw

+ Lt
mw

m
dc cosαt −Dt

mw

m
dc sinαt

+ T
mw

m
dc sinφ+Mac − k (φ− αr)

(A.66)

C. Gibbs-Appell Equations of Motion

The equations of motion are derived using

∂S

u̇i
= Ui (A.67)

Thus, the equations of motion from Gibbs-Appell are:

m
(
u̇+ wθ̇

)
= −mg sin θ + Lw sin (θ − γw)−Dw cos (θ − γw)

+ Lt sin (θ − γt)−Dt cos (θ − γt) + T

(A.68)

,

m
(
ẇ − uθ̇

)
= mg cos θ − Lw cos (θ − γw)−Dw sin (θ − γw)

+ Lt cos (θ − γt)−Dt sin (θ − γt)
(A.69)

,

If θ̈ + Iw

(
θ̈ + φ̈

)
+
mfmw

m

(
d2
c

(
θ̈ + φ̈

)
− ddc

(
2θ̇φ̇+ φ̇2

)
sinφ

+ ddc

(
2θ̈ + φ̈

)
cosφ

)
= T

mw

m
dc sinφ+Mac

+ Lw

((
e− mw

m

)
cosαw +

mf

m
d cos (θ − γw)

)
+Dw

((
e− mw

m

)
sinαw +

mf

m
d sin (θ − γw)

)
− Lt

(mw

m
dc cosαt +

(
f +

mw

m
d
)

cos (θ − γt)
)

−Dt

(mw

m
dc sinαt +

(
f +

mw

m
d
)

sin (θ − γt)
)

(A.70)

73

, and

Iw

(
θ̈ + φ̈

)
+
mwmf

m

(
d2
c

(
θ̈ + φ̈

)
+ ddcθ̈ cosφ+ ddcθ̇

2 sinφ
)

=

− k (φ− αr) + Lw

(
e− mw

m
dc

)
cosαw +Dw

(
e− mw

m
dc

)
sinαw

− Lt
mw

m
dc cosαt −Dt

mw

m
dc sinαt

+ T
mw

m
dc sinφ+Mac

(A.71)

74

APPENDIX B

NEWTON-EULER DERIVATION

The Newton-Euler derivations of the equations of motion use Newton’s Second

Law for the derivation of the translational equations of motion and Euler’s equation

for a rotating body for the derivation of the rotational equations of motion.

A. Translational Equations of Motion

Newton’s Second law states ∑
F = maCMs�i (B.1)

where F represents the forces on the system.

Recall, that in Appendix A that the inertial accelerations for the wing and fuse-

lage are derived, refer to Eqs. (A.20) and (A.21). Equation (B.1), using the wing and

fuselage components is written as,

∑
F = mfaCMf�i +mwaCMw�i (B.2)

Since the inertial accelerations of the fuselage and wing are obtained in Ap-

pendix A, the only information needed is the sum of the forces. There are six forces

that act on the system: lift and drag due to each the wing and the tail, weight of the

system, and thrust of the vehicle. See the free body diagram for the system in Fig. 22.

75

Fig. 22. System Free Body Diagram

Therefore, ∑
F = mgî3 + T b̂1 + Lw (− ˆsw3) +Dw (− ˆsw1)

+ Lt (−ŝt3) +Dt (−ŝt1)

(B.3)

Transforming these equations so that they are in the body frame,∑
F =

(
T −mg sin θ + Lw sin (θ − γw) + Lt sin (θ − γt)

−Dw cos (θ − γw)−Dt cos (θ − γt)
)
b̂1

+
(
mg cos θ − Lw cos (θ − γw)− Lt cos (θ − γt)

−Dw sin (θ − γw)−Dt sin (θ − γt)
)
b̂3

(B.4)

Therefore, using Eqs. (A.20), (A.21), and (B.4), the Newton’s equations of

motion for the system in the body frame are obtained.

Translational Equation of Motion (in the b̂1 frame):

m
(
u̇+ wθ̇

)
= T −mg sin θ + Lw sin (θ − γw) + Lt sin (θ − γt)

−Dw cos (θ − γw)−Dt cos (θ − γt)
(B.5)

76

Translational Equation of Motion (in the b̂3 frame):

m
(
ẇ − uθ̇

)
= mg cos θ − Lw cos (θ − γw)− Lt cos (θ − γt)

−Dw sin (θ − γw)−Dt sin (θ − γt)
(B.6)

B. Rotational Equations of Motion

To develop the rotational equations of motion, Euler’s equation for a rotational body

about an arbitrary point, ’∗’, are used[21].

H∗ = HCM +m (rCM�i − r∗�i)× (vCM�i − v∗�i) (B.7)

Ḣ∗ = l∗ +ma∗�i × (rCM�i − r∗�i) (B.8)

where, H is the angular momentum, CM is the center of mass for each individual

body, r is the inertial position, v is the inertial velocity, and l is the sum of moments

on the system.

1. System Rotational Equation of Motion

For the system rotational equation of motion, the arbitrary point, ’∗’, is chosen as

the CM of the system, which reduces Eq. (B.8) to

ḢCM = lCM +ma∗�i × (rCM�i − r∗�i) (B.9)

where rCM�i − r∗�i = 0 at the CM of the system.

The total angular momentum for the full system is determined by adding the

contributions from wing and fuselage angular momentums about the system CM,

refer to Fig. 22 for free body diagram. Recall, the velocities of the CM of the wing

and fuselage with respect to the CM of the system are derived in Appendix A, refer

77

to Eqs. (A.9) and (A.10). Thus, the angular momentum is

HCMw�CMs = Hw +mw (rCMw�CMs × vCMw�CMs)

= Iw

(
θ̇ + φ̇

)
+mw

(mf

m

)2

(rCMf�CMw × vCMf�CMw)
(B.10)

and

HCMf�CMs = Hf +mf (rCMf�CMs × vCMf�CMs)

= If θ̇ +mf

(mw

m

)2

(rCMf�CMw × vCMf�CMw)
(B.11)

Therefore, the total angular momentum, HCMt�CMs, of the system about its CM

is

HCMt�CMs =
(
If θ̇ + Iw

(
θ̇ + φ̇

)
+
mwmf

m
(rCMf�CMw × vCMf�CMw)

)
b̂2 (B.12)

Considering the relationships for rCMf�CMw and rCMf�CMw (see Eqs. (A.13)

and (A.14)), one finds

HCMt�CMs =
(
If θ̇ + Iw

(
θ̇ + φ̇

)
+
mfmw

m

(
d2θ̇

+
(
θ̇ + φ̇

)
ddc cosφ+ ddcθ̇ cosφ+

(
θ̇ + φ̇

)
d2
c

))
b̂2

(B.13)

with the time derivative

ḢCMt�CMs =
(
f θ̈ + Iw

(
θ̈ + φ̈

)
+
mfmw

m

(
d2θ̈ + ddc

(
2θ̈ + φ̈

)
cosφ

− ddc
(

2θ̇φ̇+ φ̇2
)

sinφ+ d2
c

(
θ̈ + φ̈

)))
b̂2

(B.14)

The moments on the system are determined. Note, as with the Gibbs-Appell

formulation in Appendix A, the lift and drag of the wing are assumed to be at the

aerodynamic center, and the vehicle thrust, and the lift and drag of the tail are

assumed to be at the attachment point of the tail. There are 6 moments acting on

the system from the lift and drag of the wing, lift and drag of the tail, vehicle thrust,

and the aerodynamic center (due to an asymmetric airfoil).

78

Recall, the following relationship from the Gibbs-Appell formulation,

rCMw�CMs =
mf

m
rCMw�CMf (B.15)

and

rCMf�CMs = −mw

m
rCMw�CMf (B.16)

where

rCMw�CMf = (d+ dc cosφ) b̂1 − dc sinφb̂3 (B.17)

Moments arms from the forces to the CM of the system are

rACw�CMs = rACw�CMw + rCMw�CMs

= (e− dc) ŵ1 +
mf

m

(
(d+ dc cosφ) b̂1 − dc sinφ

)
b̂3

=
((
e− mw

m
dc

)
cosφ+

mf

m
d cosφ

)
b̂1

−
(
e− mw

m
dc

)
sinφb̂3

(B.18)

rt�CMs = rt�CMf + rCMf�CMs

= −
(
f +

mw

m
(d+ dc cosφ)

)
b̂1 +

mw

m
(dc sinφ) b̂3

(B.19)

Now, all respective moments are determined.

For the lift on the wing,

rACw�CMs × Lw (− ˆsw3) = Lw

((
e− mw

m
dc

)
cosαw +

mf

m
d cos (θ − γw)

)
b̂2 (B.20)

For the drag on the wing,

rACw�CMs ×Dw (− ˆsw1) = Dw

((
e− mw

m
dc

)
sinαw +

mf

m
d sin (θ − γw)

)
b̂2 (B.21)

79

For the lift on the tail,

rt�CMs × Lt (−ŝt3) = −Lt
(mw

m
dc cosαt +

(
f +

mw

m
d
)

cos (θ − γt)
)
b̂2 (B.22)

For the drag on the tail,

rt�CMs ×Dt (−ŝt1) = −Dt

(mw

m
dc sinαt +

(
f +

mw

m
d
)

sin (θ − γt)
)
b̂2 (B.23)

And, for the thrust of the vehicle,

rt�CMs × T b̂1 = T
mw

m
dc sinφb̂2 (B.24)

We must to include the aerodynamic moment at the aerodynamic center, Mac,

if it exists at zero lift.

Therefore, using Euler’s Equation, see Eq. (B.9), the rotational equation of

motion for the system about the CM is

If θ̈ + Iw

(
θ̈ + φ̈

)
+
mfmw

m

(
d2θ̈ + ddc

(
2θ̈ + φ̈

)
cosφ

− ddc
(

2θ̇φ̇+ φ̇2
)

sinφ+ d2
c

(
θ̈ + φ̈

))
=

Lw

((
e− mw

m
dc

)
cosαw +

mf

m
d cos (θ − γw)

)
+Dw

((
e− mw

m
dc

)
sinαw +

mf

m
d sin (θ − γw)

)
− Lt

(mw

m
dc cosαt

(
f +

mw

m
d
)

cos (θ − γt)
)

−Dt

(mw

m
dc sinαt

(
f +

mw

m
d
)

sin (θ − γt)
)

+ T
mw

m
dc sinφ+Mac

(B.25)

2. Wing Rotational Equation of Motion

This equation of motion may be determined in many ways. Note, that the equations

of motion appear differently depending on the reference. For this equation, it is

80

possible to take the rotation of the fuselage about the CM, or the rotation of the

wing about the CM, or the rotation of the wing about an arbitrary point, etc. It may

be difficult to match equations of motion derived using different approaches because

of the reference. This was an obstacle of this research. To match the fourth equation

derived using the Gibbs-Appell Method, Eq. (A.71), it is necessary to derive the

rotational equation of motion for the system about an arbitrary point, to be defined

later, and then subtract the rotational equation of motion for the fuselage about the

hinge. This is shown to be a valid method of deriving an equation of motion, and is

necessary to develop and compare with the same equation of motion derived in the

Gibbs-Appell derivation.

a. Part 1: Rotational Equation of Motion of System about a Reference Point

To develop the rotational equations of motion, Euler’s equation for a rotational body

about an arbitrary reference point, ’∗’, are used[21].

H∗ = HCM +m (rCM�i − r∗�i)× (vCM�i − v∗�i) (B.26)

Ḣ∗ = l∗ +ma∗�i × (rCM�i − r∗�i) (B.27)

where, H is the angular momentum, CM is the center of mass for each individual

body, r is the inertial position, v is the inertial velocity, and l is the sum of moments

on the system. In this case, the ’∗’ location is assumed to be the point defined as

r∗�h =
mw

m
dcŵ1 (B.28)

where h is the hinge attachment point for the wing, see Fig. 23 where the triangle

represents the hinge. Recall, the free body diagram for the system is shown in Fig.

22.

81

Fig. 23. Simplified Wing Model

The position of the wing CM with respect to the star location is defined as

rCMw�∗ =
mf

m
dcŵ1 (B.29)

with the time derivative shown as

vCMw�∗ = w d

dt
(rCMw�∗) + ωw�i × (rCMw�∗)

= −mf

m
dc

(
θ̇ + φ̇

)
ŵ3

(B.30)

mw (rCMw�∗ × vCMw�∗) =

(
mw

(mf

m

)2

d2
c

(
θ̇ + φ̇

))
b̂2 (B.31)

The position of the fuselage CM with respect to the * reference is defined as

rCMf�∗ = db̂1 +
mw

m
dcŵ1

=
(
d+

mw

m
dc cosφ

)
b̂1 −

mw

m
dc sinφb̂3

(B.32)

with the time derivative shown as

vCMf�∗ = b d

dt
(rCMf�∗) + ωb�i × (rCMf�∗)

=
(
−mw

m
dc

(
θ̇ + φ̇

)
sinφ

)
b̂1 −

(
dθ̇ +

mw

m
dc

(
θ̇ + φ̇

)
cosφ

)
b̂3

(B.33)

mf (rCMf�∗ × vCMf�∗) =
(
mfd

2θ̇ +
mwmf

m

(
ddc

(
θ̇ + φ̇

)
cosφ+ ddcθ̇ cosφ

)
+mf

(mw

m

)2

d2
c

(
θ̇ + φ̇

))
b̂2

(B.34)

82

With Eq. (B.26), one finds

HCMw�∗ = HCMw +mw (rCMw�∗ × vCMw�∗) b̂2 (B.35)

and

HCMf�∗ = HCMw +mf (rCMf�∗ × vCMf�∗) b̂2 (B.36)

where

HCMw = Iw

(
θ̇ + φ̇

)
b̂2 (B.37)

and

HCMf = If θ̇b̂2 (B.38)

Therefore, the total angular momentum of the system about the * reference is

HCMs�∗ = HCMw�∗ + HCMf�∗

=
(
If θ̇ + Iw

(
θ̇ + φ̇

)
+mfd

2θ̇

+
mwmf

m

(
ddc

(
2θ̇ + φ̇

)
cosφ+ d2

c

(
θ̇ + φ̇

)))
b̂2

(B.39)

with the time derivative shown as

ḢCMs�∗ =
(
If θ̈ + Iw

(
θ̈ + φ̈

)
+mfd

2θ̈

+
mwmf

m

(
ddc

(
2θ̈ + φ̈

)
cosφ− ddc

(
2θ̇φ̇+ φ̇2

)
sinφ+ d2

c

(
θ̈ + φ̈

)))
b̂2

(B.40)

Now, to determine the rotational equation of motion for the system about the

star location,

ḢCMs�∗ = l∗ +ma∗�i × rCMs�∗ (B.41)

83

, the inertial acceleration of the star location is needed.

r∗�CMs = r∗�CMw + rCMw�CMs

=
mf

m
b̂1

(B.42)

with the time derivative shown as

v∗�CMs = b d

dt
(r∗�CMs) + ωb�i × (r∗�CMs)

= −mf

m
dθ̇b̂3

(B.43)

v∗�i = v∗�CMs + vCMs�i

= ub̂1 +
(
w − mf

m
dθ̇
)
b̂3

(B.44)

and, with the time derivative of Eq. (B.43) shown as

a∗�i = b d

dt
(v∗�i) + ωb�i × (v∗�i)

=
(
u̇+ wθ̇ − mf

d
θ̇2
)
b̂1 +

(
ẇ − uθ̇ − mf

m
dθ̈
)
b̂3

(B.45)

Recall, Eq. (B.29) for the position of the wing CM with respect to the star location.

ma∗�i × rCMs�∗ = −mfd
(
ẇ − uθ̇ − mf

m
dθ̈
)
b̂2 (B.46)

The moments about the * reference, l∗, must be found. As stated previously, there

are 6 moments acting on the system: moments due to the lift and drag of the wing,

lift and drag of the tail, vehicle thrust, and the aerodynamic moment (due to an

asymmetric airfoil).

Distances from the forces to the * reference are,

rACw�∗ =
(
e− mw

m
dc

)
ŵ1 (B.47)

and

rACw�∗ =
(
− (f + d)− mw

m
dc cosφ

)
b̂1 +

mw

m
dc sinφb̂3 (B.48)

84

Moments are as follows,

From the lift on the wing,

rACw�∗ × Lw (− ˆsw3) = Lw

(
e− mw

m
dc

)
cosαwb̂2 (B.49)

From the drag on the wing,

rACw�∗ ×Dw (− ˆsw1) = Dw

(
e− mw

m
dc

)
sinαwb̂2 (B.50)

From the lift on the tail,

rt�∗ × Lt (−ŝt3) = −Lt
(mw

m
dc cosαt + (f + d) cos (θ − γt)

)
b̂2 (B.51)

From the drag on the tail,

rt�∗ ×Dt (−ŝt1) = −Dt

(mw

m
dc sinαt + (f + d) sin (θ − γt)

)
b̂2 (B.52)

For the thrust of the vehicle,

rt�∗ × T b̂1 = T
mw

m
dc sinφb̂2 (B.53)

And, the aerodynamic moment at zero lift, Mac, must be included, if it exists.

Therefore, using Euler’s Equation (see Eq. (B.9)) the rotational equation of

85

motion for the system about the * reference, in the b̂2 direction, is

If θ̈ + Iw

(
θ̈ + φ̈

)
+mfd

2θ̈ +
mwmf

m

(
d2
c

(
θ̈ + φ̈

)
+ ddc

(
2θ̈ + φ̈

)
cosφ− ddc

(
2θ̇φ̇+ φ̇2

)
sinφ

)
=

+ Lw

(
e− mw

m
dc

)
cosαw +Dw

(
e− mw

m
dc

)
sinαw

− Lt
(mw

m
dc cosαt + (f + d) cos (θ − γt)

)
−Dt

(mw

m
dc sinαt + (f + d) sin (θ − γt)

)
+ T

mw

m
dc sinφ+Mac −mfd

(
ẇ − uθ̇ − mf

m
dθ̈
)

(B.54)

b. Part 2: Rotational Equation of Motion of Fuselage about Wing Hinge

Using Euler’s Equation for rotation of a body about an arbitrary point, the angular

momentum for the rotation of the CM of the fuselage about the wing hinge is

HCMf�h = HCMf +mf (rCMf�i − rh�i)× (vCMf�i − vh�i) (B.55)

and

ḢCMf�h = lh +mfah�i × rCMf�h (B.56)

where, H is the angular momentum, CM is the center of mass for each individual

body, r is the inertial position, v is the inertial velocity, h is the wing hinge location,

and l is the sum of moments on the system. The free body diagram for the fuselage

is shown in Fig. 24. The corresponding free body diagram of the wing is presented,

see Fig. 25, to highlight the equal and opposite relationship of the reaction forces,

Rx and Rz, and moment, k(φ − αr), between the fuselage and the wing. Note, that

the reaction forces, Rx and Rz, will not contribute to the sum of moments for the

fuselage about the wing attachment point because they act through the point about

which the moments are being taken.

86

Fig. 24. Fuselage Free Body Diagram

Fig. 25. Wing Free Body Diagram

The position of the fuselage CM with respect to the wing hinge is

rCMf�h = −db̂1 (B.57)

with the time derivative shown as

vCMf�h = b d

dt
(rCMf�h) + ωb�i × (rCMf�h)

= dθ̇b̂3

(B.58)

mf (rCMf�h × vCMf�h) = mfd
2θ̈b̂2 (B.59)

87

The angular momentum for the fuselage CM about the wing hinge is,

HCMf�h = HCMf +mf (rCMf�i − rh�i)× (vCMf�i − vh�i)

=
(
If θ̇ +mfd

2θ̈
)
b̂2

(B.60)

The rotational equation of motion for the fuselage CM about the wing hinge is,

ḢCMf�h = lh +mah�i × rCMf�h (B.61)

The inertial acceleration of the wing hinge is needed. Starting with the velocities,

vh�i = vh�CMs + vCMs�i

=
(
u+

mw

m
dc

(
θ̇ + φ̇

)
sinφ

)
b̂1

+
(
w +

mw

m
dc

(
θ̇ + φ̇

)
cosφ− mf

m
dθ̇
)
b̂3

(B.62)

the time derivative of Eq. (B.62) is

ah�i = b d

dt
(vh�i) + ωb�i × (vh�i)

=

(
u̇+ wθ̇ +

mw

m

(
θ̈ + φ̈

)
sinφ+

mw

m
dc

(
θ̇ + φ̇

)2

cosφ− mf

m
dθ̇2

)
b̂1

+

(
ẇ − uθ̇ +

mw

m
dc

(
θ̈ + φ̈

)
cosφ− mw

m
dc

(
θ̇ + φ̇

)2

sinφ− mf

d
θ̈

)
b̂3

(B.63)

Recall, Eq. (B.29) for the position of the wing CM with respect to the * reference is

mah�i × rCMf�h = −mfd
(
ẇ − uθ̇ − mf

m
dθ̈ +

mw

m

(
θ̈ + φ̈

)
cosφ

− mw

m
dc

(
θ̇ + φ̇

)2

sinφ
)
b̂2

(B.64)

The moments about the wing hinge, lh, are obtained. There are 5 moments

acting on the fuselage: moments due to the lift and drag of the tail, vehicle thrust,

torsional spring, and the aerodynamic center (due to an unsymmetric airfoil). Note,

in this instance the spring torsional moment is included instead of the individual

moments due to the lift and drag of the wing.

88

The distance from the tail forces to the wing hinge is

rt�h = −db̂1 (B.65)

All moments are calculated,

From the lift on the tail,

rt�h × Lt (−ŝt3) = −Lt (f + d) cos (θ − γt) b̂2 (B.66)

From the drag on the tail,

rt�h ×Dt (−ŝt1) = −Dt (f + d) sin (θ − γt) b̂2 (B.67)

From the thrust of the vehicle,

rt�h × T b̂1 = 0 (B.68)

The moments due to the aerodynamic moment at zero lift, Mac, and to the

torsional spring, k (φ− αr) must be included.

Therefore, using Euler’s Equation (see Eq. (B.9)) the rotational equation of

motion, in the b̂2 direction, for the fuselage rotating about the wing hinge is

If θ̈ +mfd
2θ̈ +

mwmf

m

((
θ̈ + φ̈

)
cosφ

− mw

m
dc

(
θ̇ + φ̇

)2

sinφ
)

= k (φ− αr)

− Lt (f + d) cos (θ − γt)

−Dt (f + d) sin (θ − γt) +Mac

−mfd
(
ẇ − uθ̇ − mf

m
dθ̈
)

(B.69)

The rotational equation of motion for the wing, that matches with the previous

Gibbs-Appell formulation, is found by subtracting Eq. (B.54) from Eq. (B.69).

89

c. Wing Rotational Equation of Motion

Iw

(
θ̈ + φ̈

)
+
mwmf

m

(
d2
c

(
θ̈ + φ̈

)
+ ddcθ̈ cosφ+ ddcθ̇

2 sinφ
)

=

− k (φ− αr) + Lw

(
e− mw

m
dc

)
cosαw +Dw

(
e− mw

m
dc

)
sinαw

− Lt
mw

m
dc cosαt −Dt

mw

m
dc sinαt

+ T
mw

m
dc sinφ+Mac

(B.70)

3. Newton-Euler Equations of Motion

Translational Equation of Motion (in the b̂1 frame):

m
(
u̇+ wθ̇

)
= T −mg sin θ + Lw sin (θ − γw) + Lt sin (θ − γt)

−Dw cos (θ − γw)−Dt cos (θ − γt)
(B.71)

Translational Equation of Motion (in the b̂3 frame):

m
(
ẇ − uθ̇

)
= mg cos θ − Lw cos (θ − γw)− Lt cos (θ − γt)

−Dw sin (θ − γw)−Dt sin (θ − γt)
(B.72)

System Rotational Equation of Motion:

If θ̈ + Iw

(
θ̈ + φ̈

)
+
mfmw

m

(
d2θ̈ + ddc

(
2θ̈ + φ̈

)
cosφ

− ddc
(

2θ̇φ̇+ φ̇2
)

sinφ+ d2
c

(
θ̈ + φ̈

))
=

Lw

((
e− mw

m
dc

)
cosαw +

mf

m
d cos (θ − γw)

)
+Dw

((
e− mw

m
dc

)
sinαw +

mf

m
d sin (θ − γw)

)
− Lt

(mw

m
dc cosαt

(
f +

mw

m
d
)

cos (θ − γt)
)

−Dt

(mw

m
dc sinαt

(
f +

mw

m
d
)

sin (θ − γt)
)

+ T
mw

m
dc sinφ+Mac

(B.73)

90

Wing Rotational Equation of Motion:

Iw

(
θ̈ + φ̈

)
+
mwmf

m

(
d2
c

(
θ̈ + φ̈

)
+ ddcθ̈ cosφ+ ddcθ̇

2 sinφ
)

=

− k (φ− αr) + Lw

(
e− mw

m
dc

)
cosαw +Dw

(
e− mw

m
dc

)
sinαw

− Lt
mw

m
dc cosαt −Dt

mw

m
dc sinαt

+ T
mw

m
dc sinφ+Mac

(B.74)

91

APPENDIX C

TEST CASE AND MATLAB CODE

The following sections include the Matlab files used to run the simulations for the

4 DOF model. Recall, the basic algorithm for the simulations is written in section C

chapter II. For a test case, the main inputs (shown in Table VI) were used. Using the

main inputs from Table VI and the inputs from Table VII, Figs. 5-6 were obtained.

Similarly, using the main inputs from Table VI and the inputs from Table VIII, Figs.

7-12 were obtained. And, using the main inputs from Table VI and the inputs from

Table IX, Figs. 14-15 were obtained.

Table VI. System Parameters
V ariable V alue Units Description

W 2650 lb Weight
dm 0.5 s Half-period for Gust
ts 10 s Time to Start Gust
t0 0 s Initial Time
tf 300 s End Time
If 1143.8 lb− ft2 Fuselage Moment of Inertia
Iw 201.9 lb− ft2 Wing Moment of Inertia
ρ 2.0495× 10−3 slug/ft3 Air Density
g 32.2 ft/s2 Gravity
mf 69.95 slug Fuselage Mass
mw 12.34 slug Wing Mass
span 36 ft Wing Span
spant 10.49 ft Tail Span
Sw 174 ft2 Wing Area
Sδf 15 ft2 Flaperon Area
Sδe 16.61 ft2 Elevator Area
c 4.9 ft Wing Chord
ct 2.19 ft Tail Chord
e 0.075c ft Distance from AC to Hinge
dc 0.0078c ft Distance from Wing CM to Hinge
d -0.042c ft Distance from Fuselage CM to Hinge
f 23.6 ft Distance from Tail to Fuselage CM

xCM 26.3 % System CM location (% chord)
CLαw 4.3 Wing Lift Coefficient with respect to (wrt) Angle of Attack (AOA)
CLαt 1.87 Tail Lift Coefficient wrt AOA
CDαw 0.121 Wing Drag Coefficient wrt AOA
CDαt 0 Tail Drag Coefficient wrt AOA
CL0w 0.307 Wing Lift Coefficient with Zero AOA
CL0t 0 Tail Lift Coefficient with Zero AOA
CD0w 0.027 Wing Drag Coefficient with Zero AOA
CD0t 0.0355 Tail Drag Coefficient with Zero AOA
CLδ 0.43 Lift Coefficient wrt Elevator Deflection
CM δ -1.122 Moment Coefficient wrt Elevator Deflection
CLq -12.4 Lift Coefficient due to Pitching Moment
τf 0.25 Flaperon Effectiveness Parameter

92

Table VII. Open-loop Parameters for Low Speed, High Stiffness Case

V ariable V alue Units Description

case 1 Case to Evaluate

k 1× 107 lb−ft
rad

Spring Stiffness

ud 228 ft
s

Desired Velocity

Table VIII. Linear Closed-loop Parameters for Low Speed, High Stiffness Case

V ariable V alue Units Description

case 2 Case to Evaluate

k 1× 105 lb−ft
rad

Spring Stiffness

ud 244.5 ft
s

Desired Velocity

A. Main Matlab File: main total.m

%% 4DOF Longitudinal Model

%% use for open loop responses for linear and nonlinear

close all

clear all

clc

format short g

global xeq rootsA I o E K phi_big gamma_big index od

%% Load Inputs

tic

input4dof_cessna182

load fdinputs

index = 0;

%% Trim Calculation

% Set initial guesses

x0 = initguess(I.u0, I.w0, I)

disp(’Initial Guesses:’)

disp(x0’)

for i = 1:length(x0)

if abs(x0(i)) <= 1e-7

x0(i) = 0;

else

x0(i) = x0(i);

end

end

disp(’Initial Guesses:’)

disp(x0’)

93

Table IX. Linear Closed-loop Parameters for High Speed, Low Stiffness Case

V ariable V alue Units Description

case 3 Case to Evaluate

k 1× 105 lb−ft
rad

Spring Stiffness

ud 244.5 ft
s

Desired Velocity

o = 0; % value that triggers the gust (see liftdrag and dof4)

% define options for Fmincon

options = optimset(’MaxFunEvals’,1000000,’Display’,’iter’,’TolFun’,1e-8,...

’TolCon’,1e-8,’MaxIter’,600000);

[xeq, fval, exitflag] = fmincon(@trimfourdof, x0, [], [], [], [], [], [],...

’nonlincon’, options);

%% Manually set equilibrium values to zero if smaller than 1e-4

% avoids machine error

for i = 1:length(xeq)

if abs(xeq(i)) <= 1e-7

xeq(i) = 0;

else

xeq(i) = xeq(i);

end

end

%% Linearization

[A,B] = linize(xeq,I,o);

[eigVc_A,eigVal_A] = eig(A); %find eigenvectors and eigenvalues

rootsA = eig(A); %find eigenvalues only, save to different variable

[wn,damps] = damp(A); %find freqs and damping ratios from eigenvalues

damp(A)

disp(’System CG Location (percent of chord):’)

disp(100*(0.3 - (I.mw/I.m*(I.d + I.dc*cos(I.alfr)) - I.d)/I.c))

disp(’Aerodynamic Center Location (percent of chord):’)

disp(100*(0.3*I.c - I.e)/I.c)

%% Model

if I.case == 1

openloop

elseif I.case == 2

linearcontrol

else

nonlinearcontrol

end

% Get Frequency Values, could be used for fft analysis

[wn,zeta] = damp(A);

94

I.one = wn(1);

I.two = wn(3);

I.three = wn(5);

B. Input File: input 4dof cessna182.m

%subroutine to define input values for 4DOF model

function input4dof_gen_aviation

%% Input Variables to specify what to run and how long

%kiss = 0, use full model, kiss = 1, use simple model

I.kiss = 1;

I.fftstate = 5; % state to do fft on

I.sim_run = 1; % to run, 1, or not to run, 0

I.tf = 300; %end time

I.t0 = 0; %start time

I.wing = ’b’; % ’a’ will map wing root behavior

I.timesteps = 500*I.tf; %number of time steps (when using ’runge’ for ode)

I.case = 1;

%which model to run, 1-OL (both), 2-Linear (OL/CL), 3-Nolinear (OL/CL)

I.ts = 10; % Time to start disturbance

%% Input Trim Velocity and Instantaneous Disturbance

I.u0 = 244.5; %ft/s, velocity to trim at %% DNE speed is 300

% I.u0 = 228; % use I.u0 = 228 to get LCO (with k = 1e5 or less)

I.w0 = 0;

%Velocities used to verify Linear & Nonlinear are the same for small

%disturbances:

% I.ui = .0001*I.u0;

% I.wi = -.00002*I.u0;

%Regular Velocities:

% I.ui = .01*I.u0;

% I.wi = -.02*I.u0;

I.ui = 0;

I.wi = 0;

%% Gust Velocity

I.dm = 0.5; % Time length for gust to reach maximum velocity

%Velocities used to verify Linear & Nonlinear are the same for small

%disturbances:

% I.Uhg = .0001*I.u0;

% I.Uvg = -.00008*I.u0;

%Regular Velocities:

I.Uhg = 0%0.15*I.u0;

I.Uvg = -.03*I.u0;

% I.Uhg = 0;

% I.Uvg = 0;

%input physical constants

I.rho = 2.0495e-3; % slug/ft^3 air

I.g = 32.2; % gravity ft/s^2

%% Input System Parameters

I.W = 2650; %(lb) (from Roskam pg. 480)

I.m = I.W/I.g; %(slug) total mass of system

95

I.mf = 0.85*I.m; %(slug) total mass of fuselage

I.mw = I.m - I.mf; %(slug) total mass of wing

I.lf = 28; %(ft) length of fuselage

%% Wing

%wing is attached at elastic axis

I.k0 = 1e5; %lbf_ft/rad wing root stiffness

I.alfr = 0; %root angle of attack

I.span = 36; %(ft) wingspan (from JAWA)

I.c = 4.9; %(ft) chord (from Roskam pg. 480)

I.b = I.c/2; %(ft) halfchord

I.S = 174; %wing area, (ft^2) (from Roskam pg. 480)

I.AR = (I.span^2)/I.S; %aspect ratio

I.e = 0.075*I.c; %distance btw aerodynamic center and hinge

I.d = -0.042002*I.c*cos(I.alfr);

I.dc = 0.0078*I.c; %distance btw cgw and hinge

I.k = I.k0;

I.k_1 = I.k;

I.oe = 0.75; %Oswald efficiency

I.R = 1/(pi*I.oe*I.AR);

%% Tail

I.spant = 10.49; %(ft) tail span 14.4

I.St = 22.96; %(ft^2) tail area (from JAWA)

I.Sf = 15; %(ft^2) flaperon area

I.Se = 16.61; %(ft^2) elevator area (from JAWA)

I.ct = I.St/I.spant; %(ft) tail chord

I.bt = I.ct/2; %(ft) tail half chord

I.ARt = (I.spant^2)/I.St; %tail aspect ratio

I.Rt = 1/(pi*I.oe*I.ARt);

I.f = 23.6; %distance btw cg of fuselage and tail pivot

I.lt = I.f + I.d; %(ft) length from tail attachment to cg_sys

%% Moment of Inertia

I.Iy = 1346; % aircraft mass MOI (measured about CG), slug-ft^2

I.Iw = I.Iy*0.15; %wing MOI wrt its cg

I.If = I.Iy - I.Iw - (I.mf*I.mw/I.m)*(I.dc^2 + I.d^2 ...

+ 2*I.d*I.dc*cos(I.alfr)); %MOI of fuselage about its cg

%% Wing Frequency

I.om_wing = sqrt(I.k/(I.Iw + (I.mf*I.mw/I.m)*(I.dc^2))); %natural frequency of wing about support

%% Lift/Drag Coefficients

I.Clalfw = 4.3;

I.Cl0 = 0.307; %(from Roskam pg. 483)

I.Cl0w = I.Cl0;

I.Cd0 = 0.027; %(from Roskam pg. 483)

I.Cd0w = 0.027; %(from Roskam pg. 483)

I.Cdalf = 0.121; %(from Roskam pg. 483)

I.Cdalfw = I.Cdalf;

I.Cdalft = 0;

I.Clalft = 1.87; % Assumption (to better match Roskam values)

I.Cldelta = 0.43; %(from Roskam pg. 483)

I.Cddelta = 0;

I.Clt0 = 0; % Assumption

I.Cdt0 = 0.0355; % Assumption (to better match Roskam values)

I.Cdu = 0;

I.Clu = 0;

I.Clq = 3.9; %(from Roskam pg. 483)

I.Cmq = -12.4; %(from Roskam pg. 483)

I.Cm_de = -1.122; %(from Roskam pg. 483)

96

I.deda = (2*I.Clalfw)/(pi*I.AR);

I.eps0 = (2*I.Cl0)/(pi*I.AR);

%% Control Surface Effectiveness Parameters

I.vt = (I.lt*(I.St))/(I.c*I.S);

I.tau = -I.Cm_de/(I.vt*1*I.Clalft); % approx from Nelson pg 66

I.tau_f = 0.25; % approximation (see Nelson pg. 64)

save fdinputs

C. Initial Guess Function for Trim Solver: initguess.m

function x0 = initguess(u, w, I)

K0 = 6.875678389548968e-006; % /ft

h0 = 5000; % ft

rho0 = 0.00238; % lb-s^2/ft^4

rho = rho0*(1-K0*h0)^(4.25); % slug/ft^3 air

Vh = sqrt((u^2) + (w^2));

% Calculates Velocity Scalar from x and y components

Q = 0.5*rho*(Vh^2);

Qt = Q;

eta = ((Qt*I.St)/(Q*I.S));

CLde = I.Cldelta;

CLdf = I.Clalfw*I.tau_f*(I.Sf/I.S);

Cmac = -0.045;

Mac = Q*I.S*I.c*Cmac;

Mact = 0;

%Building Matrix for Linearized Equations of Motion at TRIM

%(of the format H*x = P)

H(1,:) = [0

-Q*I.S*(I.Cdalfw + eta*I.Cdalft*(1 - I.deda))

0

1]; % From translation equation #1

H(2,:) = [-Q*I.S*CLdf

-Q*I.S*(I.Clalfw + eta*I.Clalft*(1 - I.deda))

-Q*I.S*CLde

0]; % From translation equation #2

H(3,:) = [(I.e - (I.mw/I.m)*I.dc + (I.mf/I.m)*I.d)*CLdf*Q*I.S

(Q*I.S*(I.Clalfw*(I.e - (I.mw/I.m)*I.dc + (I.mf/I.m)*I.d) +...

I.Cd0*(I.e - (I.mw/I.m)*I.dc) - eta*I.Clalft*(1 - I.deda)*...

((I.mw/I.m)*(I.dc + I.d) + I.f) - eta*I.Cdt0*(I.mw/I.m)*...

I.dc*(1 - I.deda)))

-Q*I.S*CLde*((I.mw/I.m)*(I.dc + I.d) + I.f)

(I.mw/I.m)*I.dc*I.alfr]; % From System Moment equation

H(4,:) = [(I.e - (I.mw/I.m)*I.dc)*CLdf*Q*I.S

(Q*I.S*((I.Clalfw + I.Cd0)*(I.e - (I.mw/I.m)*I.dc) - ...

eta*I.Clalft*(1 - I.deda)*(I.mw/I.m)*I.dc - eta*(I.mw/I.m)...

*I.dc*I.Cdt0*(1 - I.deda)) - I.k)

-Q*I.S*CLde*(I.mw/I.m)*I.dc

(I.mw/I.m)*I.dc*I.alfr]; % From Wing Moment equation

97

P = -[-Q*I.S*(I.Cd0 + eta*I.Cdalft*(I.alfr + I.eps0) + eta*I.Cdt0)

I.m*I.g - Q*I.S*(I.Cl0 - eta*I.Clalft*(I.alfr + I.eps0))

(Q*I.S*(I.Cl0*(I.e - (I.mw/I.m)*I.dc + (I.mf/I.m)*I.d) + ...

eta*I.Clalft*(I.alfr + I.eps0)*((I.mw/I.m)*(I.dc + I.d) + I.f) ...

+ eta*I.Cdt0*(I.alfr + I.eps0)) + Mac + Mact)

(Q*I.S*(I.Cl0*(I.e - (I.mw/I.m)*I.dc) + eta*I.Clalft*(I.mw/I.m)...

I.dc(I.alfr + I.eps0) + eta*(I.mw/I.m)*I.dc*I.Cdt0*(I.alfr +...

I.eps0)) + I.k*I.alfr) + Mac];

initial = inv(H)*P;

df0 = initial(1);

phi0 = initial(2);

del0 = initial(3);

T0 = initial(4);

% Set Initial guess for controls and states

x0 = [u

w

w/u

0

phi0

0

del0

df0

T0]’;

D. Trim Solver Function: trim4dof.m

function J = trimfourdof(x)

global I o

%% Bring in initial guess states

u = x(1);

w = x(2);

theta = x(3);

theta_d = x(4);

phi = x(5);

if I.k > 1e8

phi = I.alfr; % to avoid machine zero error

end

phi_d = x(6);

h = x(3) - atan2(x(2),x(1));

del = x(7);

df = x(8);

T = x(9);

%% Solve for Lift and Drag from initial guess states

liftdrag

%% Expression for x_dot

EOM

%% Output

Weight = diag([1 1 1 1 1 1]); % state weighting matrix

J = x_dot’*Weight*x_dot;

98

E. Nonlinear Constraints for Trim Solver: nonlincon.m

function [c,ceq] = nonlincon(x)

global I o

u = x(1);

w = x(2);

theta = x(3);

theta_d = x(4);

phi = x(5);

phi_d = x(6);

h = x(3) - atan2(x(2),x(1));

del = x(7);

df = x(8);

T = x(9);

Is1 = I.Iw + I.If + (I.mf*I.mw/I.m)*(I.dc^2 + I.d^2 + 2*I.d*I.dc*cos(phi));

Is2 = I.Iw + (I.mf*I.mw/I.m)*(I.dc^2 + I.d*I.dc*cos(phi));

Iw1 = I.Iw + ((I.mf/I.m)^2)*I.mw*(I.dc^2 + I.d^2 + 2*I.d*I.dc*cos(phi));

Iw2 = I.Iw + ((I.mf/I.m)^2)*I.mw*(I.dc^2 + I.d*I.dc*cos(phi));

liftdrag

Cmac = -0.045;

Mac = Q*I.S*I.c*Cmac;

Mact = 0;

c = [x(2) - 15

-x(2) - 15

x(7) - (28*pi/180)

-x(7) - (21*pi/180)

x(8) - (22*pi/180)

-x(8) - (15*pi/180)];

ceq = [x(1) - I.u0

(L*sin(theta - gam_w) + Lt*sin(theta - gam_t) - D*cos(theta - gam_w)...

- Dt*cos(theta - gam_t) + T - I.m*I.g*sin(theta))

(-L*cos(theta - gam_w) - Lt*cos(theta - gam_t) - Dt*sin(theta - gam_t)...

- D*sin(theta - gam_w) + I.m*I.g*cos(theta))

((I.mf*I.mw/I.m)*I.d*I.dc*(2*theta_d*phi_d + phi_d^2)*sin(phi) + ...

L*((I.e - (I.mw/I.m)*I.dc)*cos(alpha_w) + (I.mf/I.m)*I.d*cos(theta - gam_w))...

+ D*((I.e - (I.mw/I.m)*I.dc)*sin(alpha_w) + (I.mf/I.m)*I.d*sin(theta - gam_w))...

- Lt*(((I.mw/I.m)*I.d + I.f)*cos(theta - gam_t) + (I.mw/I.m)*I.dc*cos(alpha_t))...

- Dt*(((I.mw/I.m)*I.d + I.f)*sin(theta - gam_t) + (I.mw/I.m)*I.dc*sin(alpha_t))...

+ T*(I.mw/I.m)*I.dc*sin(phi) + Mac)

(-I.k*(phi - I.alfr) - (I.mw*I.mf/I.m)*I.d*I.dc*(theta_d^2)*sin(phi) + ...

L*(I.e - (I.mw/I.m)*I.dc)*cos(alpha_w)...

+ D*(I.e - (I.mw/I.m)*I.dc)*sin(alpha_w) - Lt*(I.mw/I.m)*I.dc*cos(alpha_t)...

- Dt*(I.mw/I.m)*I.dc*sin(alpha_t) + T*(I.mw/I.m)*I.dc*sin(phi) + Mac)

x(3) - atan2(x(2),x(1))

x(4)

x(6)];

F. Aerodynamics File: liftdrag.m

%% Angles

%update physical constants

K0 = 6.8757e-006; % /ft

h0 = 5000; % ft

% h

99

h_t = h + h0;

rho0 = 0.00238; % lb-s^2/ft^4

rho = rho0*(1-K0*h_t)^(4.25); %slug/ft^3 air

% Wing velocity, determined using velocity at system CM and included

% induced velocity due to rotation of Wing CM about system CM

xw_d = u - (I.mf/I.m)*I.dc*(theta_d + phi_d)*sin(phi);

yw_d = w - (I.mf/I.m)*(I.d*theta_d + I.dc*(theta_d + phi_d)*cos(phi));

gam_w = theta - atan2(yw_d,xw_d);

% Tail velocity, determined using velocity at system CM and included

% induced velocity due to rotation of Tail CM about system CM

xt_d = u + (I.mw/I.m)*I.dc*(theta_d + phi_d)*sin(phi);

yt_d = w + (I.d + I.f)*theta_d + (I.mw/I.m)*(I.dc*(theta_d + ...

phi_d)*cos(phi));

gam_t = theta - atan2(yt_d,xt_d);

% Angle of Attack for Wing and Tail

alpha_w = theta + phi - gam_w;

alpha_t = alpha_w*(1 - I.deda) - I.alfr - I.eps0;

% for the system

gam = theta - atan2(w,u);

V = sqrt(u^2 + w^2);

gam_1 = [gam_w

gam_t

gam];

for n = 1:length(gam_1)

if abs(gam_1(n)) <= 1e-7 % avoids machine zero error

gam_1(n) = 0;

else

gam_1(n) = gam_1(n);

end

end

gam_w = gam_1(1);

gam_t = gam_1(2);

gam = gam_1(3);

%% Lift/Drag

% for the wing

Vw = sqrt(xw_d^2 + yw_d^2) ; %Calculates Velocity Scalar from x and y

Q = 0.5*rho*(Vw^2); %Calculates Dynamic Pressure

% for the tail

Vt = sqrt(xt_d^2 + yt_d^2);

Qt = 0.5*rho*(Vt^2);

eta = ((Qt*I.St)/(Q*I.S));

CLde = I.Cldelta;

CLdf = I.Clalfw*I.tau_f*(I.Sf/I.S);

CLw = I.Cl0 + I.Clalfw*alpha_w + CLdf*df;

CLt = I.Clt0 + I.Clalft*(alpha_t) + CLde*del + I.Clq*theta_d;

CDw = I.Cd0 + I.Cdalfw*alpha_w;

CDt = I.Cdt0 + I.Cdalft*alpha_t;

L = CLw*Q*I.S;

100

D = Q*I.S*CDw;

Lt = CLt*Qt*I.St;

Dt = Qt*I.St*CDt;

if o == 1

Lvg = Q*I.S*I.Clalfw*(V_vg/Vw);

Lhg = (rho/2)*(2*V_hg*Vw + V_hg^2)*I.S*CLw;

else

Lvg = 0;

Lhg = 0;

end

G. Equations of Motion File: EOM.m

%% M*x_dot = F_nl

% Moment of inertia quantities:

Is1 = I.Iw + I.If + (I.mf*I.mw/I.m)*(I.dc^2 + I.d^2 + 2*I.d*I.dc*cos(phi));

Is2 = I.Iw + (I.mf*I.mw/I.m)*(I.dc^2 + I.d*I.dc*cos(phi));

Iw1 = I.Iw + (I.mf*I.mw/I.m)*(I.dc^2 + I.d*I.dc*cos(phi));

Iw2 = I.Iw + (I.mf*I.mw/I.m)*(I.dc^2);

% Mass Matrix

M = [I.m 0 I.m*w 0 0 0

0 I.m (-I.m*u) 0 0 0

0 0 1 0 0 0

0 0 0 Is1 0 Is2

0 0 0 0 1 0

0 0 0 Iw1 0 Iw2];

Cmac = -0.045;

Mac = Q*I.S*I.c*Cmac;

Mact = 0;

% Nonlinear Forces

F_nl(1) = (L + Lhg + Lvg)*sin(theta - gam_w) + Lt*sin(theta - gam_t) ...

- D*cos(theta - gam_w)- Dt*cos(theta - gam_t) + T - I.m*I.g*sin(theta);

F_nl(2) = -(L + Lhg + Lvg)*cos(theta - gam_w) - Lt*cos(theta - gam_t) ...

- Dt*sin(theta - gam_t) - D*sin(theta - gam_w) + I.m*I.g*cos(theta);

F_nl(3) = theta_d;

F_nl(4) = (I.mf*I.mw/I.m)*I.d*I.dc*(2*theta_d*phi_d + phi_d^2)*sin(phi) ...

+ (L + Lvg)*((I.e - (I.mw/I.m)*I.dc)*cos(alpha_w) ...

+ (I.mf/I.m)*I.d*cos(theta - gam_w)) + D*((I.e - ...

(I.mw/I.m)*I.dc)*sin(alpha_w) + (I.mf/I.m)*I.d*sin(theta - gam_w))...

- Lt*(((I.mw/I.m)*I.d + I.f)*cos(theta - gam_t) + ...

(I.mw/I.m)*I.dc*cos(alpha_t)) - Dt*(((I.mw/I.m)*I.d + ...

I.f)*sin(theta - gam_t) + (I.mw/I.m)*I.dc*sin(alpha_t))...

+ T*(I.mw/I.m)*I.dc*sin(phi)+ Lhg*(I.mf/I.m)*(I.d*cos(theta - gam_w)...

+ I.dc*cos(alpha_w)) + Mac;

F_nl(5) = phi_d;

F_nl(6) = - (I.mw*I.mf/I.m)*I.d*I.dc*(theta_d^2)*sin(phi) ...

+ (L + Lvg)*(I.e - (I.mw/I.m)*I.dc)*cos(alpha_w)-I.k*(phi - I.alfr) ...

+ D*(I.e - (I.mw/I.m)*I.dc)*sin(alpha_w) ...

- Lt*(I.mw/I.m)*I.dc*cos(alpha_t) - Dt*(I.mw/I.m)*I.dc*sin(alpha_t)...

+ T*(I.mw/I.m)*I.dc*sin(phi) + Mac+ Lhg*(I.mf/I.m)*I.dc*cos(alpha_w);

x_dot = inv(M)*F_nl’;

101

H. Linerization Function: linize.m

function [A,B] = linize(xeq,I,o)

% States

u = xeq(1);

w = xeq(2);

theta = xeq(3);

theta_d = xeq(4);

phi = xeq(5);

phi_d = xeq(6);

h = xeq(3) - atan2(xeq(2),xeq(1));

% Controls

df = xeq(8);

del = xeq(7);

T = xeq(9);

% Bring in Lift/Drag components

%update physical constants

K0 = 6.8757e-006; % /ft

h0 = 5000; % ft

% h

h_t = h + h0;

rho0 = 0.00238; % lb-s^2/ft^4

rho = rho0*(1-K0*h_t)^(4.25); %slug/ft^3 air

% Wing velocity, determined using velocity at system CM and included

% induced velocity due to rotation of Wing CM about system CM

xw_d = u - (I.mf/I.m)*I.dc*(theta_d + phi_d)*sin(phi);

yw_d = w - (I.mf/I.m)*(I.d*theta_d + I.dc*(theta_d + phi_d)*cos(phi));

gam_w = theta - atan2(yw_d,xw_d);

% Tail velocity, determined using velocity at system CM and included

% induced velocity due to rotation of Tail CM about system CM

xt_d = u + (I.mw/I.m)*I.dc*(theta_d + phi_d)*sin(phi);

yt_d = w + (I.d + I.f)*theta_d + (I.mw/I.m)*(I.dc*(theta_d + ...

phi_d)*cos(phi));

gam_t = theta - atan2(yt_d,xt_d);

% Angle of Attack for Wing and Tail

alpha_w = theta + phi - gam_w;

alpha_t = alpha_w*(1 - I.deda) - I.alfr - I.eps0;

% for the system

gam = theta - atan2(w,u);

V = sqrt(u^2 + w^2);

gam_1 = [gam_w

gam_t

gam];

for n = 1:length(gam_1)

if abs(gam_1(n)) <= 1e-4

gam_1(n) = 0;

else

gam_1(n) = gam_1(n);

end

end

102

gam_w = gam_1(1);

gam_t = gam_1(2);

gam = gam_1(3);

%% Lift/Drag

% for the wing

Vw = sqrt(xw_d^2 + yw_d^2); % Calculates Velocity Scalar from x and y

Q = 0.5*rho*(Vw^2); % Calculates Dynamic Pressure

% for the tail

Vt = sqrt(xt_d^2 + yt_d^2);

Qt = 0.5*rho*(Vt^2);

%% Moment of Inertia Terms

Is1 = I.Iw + I.If + (I.mf*I.mw/I.m)*(I.dc^2 + I.d^2 + 2*I.d*I.dc*cos(phi));

Iw1 = I.Iw + (I.mf*I.mw/I.m)*(I.d^2 + I.d*I.dc*cos(phi));

Is2 = I.Iw + (I.mf*I.mw/I.m)*(I.dc^2 + I.d*I.dc*cos(phi));

Iw2 = I.Iw + (I.mf*I.mw/I.m)*I.dc^2;

%% Lift/Drag/Moment Coefficients

eta = ((Qt*I.St)/(Q*I.S));

CLde = I.Cldelta;

CLdf = I.Clalfw*I.tau_f*(I.Sf/I.S);

CLw_1 = I.Cl0 + I.Clalfw*alpha_w;

CLt_1 = (I.Clt0 + I.Clalft*(alpha_t) + I.Clq*eta*theta_d);

CDw_1 = I.Cd0 + I.Cdalfw*alpha_w;

CDt_1 = I.Cdt0 + I.Cdalft*alpha_t;

CLw_u = 0;

CLt_u = 0;

CDw_u = I.R*(CLw_u^2);

CDt_u = I.Rt*(CLt_u^2);

CLw_a = I.Clalfw;

CLt_a = I.Clalft;

CDw_a = I.Cdalfw;

CDt_a = I.Cdalft;

CDwt_u = CDw_u + eta*CDt_u;

CDwt_a = CDw_a + eta*CDt_a*(1 - I.deda);

CLwt_u = CLw_u + eta*CLt_u;

CLwt_a = CLw_a + eta*CLt_a*(1 - I.deda);

CLwf_a = CLwt_a;

CL1 = CLw_1 + eta*CLt_1;

CD1 = CDw_1 + eta*CDt_1;

%% Force Terms

Xu = -((Q*I.S)/(I.m*u))*(2*CD1 + CDwt_u);

Xw = -((Q*I.S)/(I.m*u))*(CDwt_a - CL1);

Xtheta = 0;

Xq = 0;

Xphi = 0;

Xphid = 0;

Zu = -(Q*I.S)/(I.m*u)*(2*CL1 + CLwt_u);

Zw = -(Q*I.S)/(I.m*u)*(CLwt_a + CD1);

Ztheta = 0;

Zq = -Q*I.S*I.c*I.Clq/(2*I.m*u);

Zphi = 0;

103

Zphid = 0;

%% Moment Terms

%for the system

Mu = 0;

Cma = (CLwf_a*(I.e - (I.mw/I.m)*(I.dc) + (I.mf/I.m)*I.d) + ...

I.Cd0*(I.e - (I.mw/I.m)*I.dc)...

- eta*I.Clalft*((I.mw/I.m)*(I.dc + I.d) + I.f)*(1 - I.deda))/I.c;

Mw = (Q*I.S*I.c)/(u)*Cma;

Mw_d = 0;

% Mw_d = 0 is an assumption, since the value is determined from flight

%testing, it is normal to ignore in calculations (but remember

%to state it as an assumption!)

Mphid = 0;

Cmq = -2.0*CLt_a*(eta)*((-I.f - (I.mw/I.m)*(I.d + I.dc*cos(phi)))^2 ...

+ ((I.mw/I.m)*I.dc*sin(phi))^2)/(I.c^2);

Mq = Cmq*(I.c/(2*u))*((Q*I.S*I.c));

%for the wing

a = sqrt((I.e*cos(phi) - (I.mw/I.m)*I.dc*cos(phi) + (I.mf/I.m)*I.d)^2 ...

+ (I.e*sin(phi) - (I.mw/I.m)*I.dc*sin(phi))^2);

b = sqrt((-I.f - (I.mw/I.m)*(I.d + I.dc*cos(phi)))^2 ...

+ ((I.mw/I.m)*I.dc*sin(phi))^2);

Cphia = (a*I.Clalfw + I.Cd0*(I.e - (I.mw/I.m)*I.dc))/(I.c);

Pu = 0;

Pw = (Q*I.S*I.c)/(u)*Cphia;

Pu = 0;

Pw_d = 0; %% since I am making p=r=0 for all time

Pphid = 0;

Cpq = -.2*CLt_a*(eta)*((-I.f - I.d - I.dc*cos(phi))^2 ...

+ (I.dc*sin(phi))^2)/(I.c^2);

Pq = Cpq*(I.c/(2*u))*((Q*I.S*I.c));

Xphi = 0;

Xphid = 0;

Zphi = 0;

Zphid = 0;

Mphid = 0;

Pphid = 0;

%% M*x_dot = K*x....A = inv(M)*K

M = [1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 Is1 0 Is2

0 0 0 0 1 0

0 0 0 Iw1 0 Iw2]

K = [Xu Xw (- I.g) -w Xphi (Xphid)

Zu Zw Xtheta u Zphi Zphid

0 0 0 1 0 0

Mu Mw 0 Mq 0 Mphid

0 0 0 0 0 1

Pu Pw 0 Pq (-I.k) Pphid]

%% Controls Contributions

Z_del_u = -(Q*I.S/I.m)*I.Cldelta;

X_del_u = 0;

104

Cmdel = -(I.Cldelta*(eta)*sqrt((I.f + (I.mw/I.m)*(I.d ...

+ I.dc*cos(phi)))^2 + ((I.mw/I.m)*I.dc*sin(phi))^2))/I.c;

M_del = (Q*I.S*I.c)/(Is1)*Cmdel;

Cpdel = -(I.Cldelta*(eta)*(I.mw/I.m)*I.dc*cos(alpha_w))/I.c;

P_del = (Q*I.S*I.c)/(Iw2)*Cpdel;

CLdf = I.Clalfw*I.tau_f*(I.Sf/I.S);

Z_df_u = -(Q*I.S/I.m)*CLdf;

X_df_u = 0;

Cpdf = -CLdf*((I.e - I.dc)/I.c);

P_df = (Q*I.S*I.c)/(Iw2)*Cpdf;

Cmdf = -CLdf*(sqrt(((I.mf/I.m)*I.d + (I.e -(I.mw/I.m)*I.dc)*cos(phi))^2 ...

+ (-(I.e + (I.mw/I.m))*I.dc*sin(phi))^2)/I.c);

M_df = (Q*I.S*I.c)/(Is1)*Cmdf;

%% Final Output

B = [X_del_u X_df_u

Z_del_u Z_df_u

0 0

M_del M_df

0 0

P_del P_df];

% Remember...no controls on should be on kinematic angles (theta & phi)

A = inv(M)*K

I. ODE File with Linear Controller: 4dof.m

%function to integrate history of 4 dof longitudinal model

function [x_dot] = dof4(t,x)

global rootsA xeq preper I o E K phi_big gamma_big index yk xk od xk_f lk

%% Bring in initial guess states

u = x(1);

w = x(2);

theta = x(3);

theta_d = x(4);

phi = x(5);

phi_d = x(6);

h = x(3) - atan2(x(2),x(1));

del = xeq(7);

df = xeq(8);

T = xeq(9);

index = index + 1;

%% Gust Velocity

V_vg = 0;

V_hg = 0;

if t == 10

if od == 2

load yk_f

yk = yk_f;

end

end

if t <= (10 + 2*I.dm)

105

if t >= 10

o = 1;

V_vg = (I.Uvg/2)*(1 - cos(pi*(t- 10)/I.dm));

V_hg = (I.Uhg/2)*(1 - cos(pi*(t- 10)/I.dm));

end

else

V_vg = 0;

V_hg = 0;

o = 0;

end

dist = zeros(12,1);

dist1 = zeros(6,1);

%% Get new controls (linear), uses same gains, etc as linear model

if od == 2

D = [1 0

0 1];

C1=[eye(14,14)

zeros(2,14)];

D1=[zeros(14,2)

D];

ym = [0 0]’;

dist = zeros(12,1);

if t <= (10 + 2*I.dm)

if t >= 10

liftdragDISCRETE

V_vg = (I.Uvg/2)*(1 - cos(pi*(t- 10)/I.dm));

V_hg = (I.Uhg/2)*(1 - cos(pi*(t- 10)/I.dm));

CLdf = I.Clalfw*I.tau_f*(I.Sf/I.S);

L_vg = (rho/2)*V_vg*Vw*I.S*I.Clalfw;

L_hg = (rho/2)*(2*V_hg*Vw + V_hg^2)*I.S*(I.Cl0 + ...

I.Clalfw*alpha_w + CLdf*xeq(8));

V_bar = (sqrt(xeq(1)^2 + xeq(2)^2)); %velocity magnitude from u & w

dist(1,1) = ((L_vg + L_hg)*sin(theta - gam_w))/V_bar;

dist(2,1) = -(L_vg + L_hg)*cos(theta - gam_w)/V_bar;

dist(3,1) = 0;

dist(4,1) = (L_vg*((I.e - (I.mw/I.m)*I.dc) + (I.mf/I.m)*I.d)+ ...

L_hg*(I.mf/I.m)*(I.d*cos(theta - gam_w) ...

+ I.dc*cos(alpha_w)))/V_bar;

dist(5,1) = 0;

dist(6,1) = (L_vg*(I.e - (I.mw/I.m)*I.dc)+ ...

L_hg*(I.mf/I.m)*I.dc*cos(alpha_w))/V_bar;

dist(1:6,1) = inv(M)*dist(1:6,1);

end

else

dist = zeros(12,1);

end

if t == 0

u_0 = [0 0]’;

x_0 = [zeros(12,1)];

xk = x_0;

lk = u_0;

else

lk = E*ym - K*yk;

106

end

xk1(:,index + 1) = phi_big*xk + gamma_big*lk + dist;

xk = xk1(:,index + 1);

xk_f = xk;

if t < 10

save xk_f

end

l(:,index) = lk;

y(:,index) = C1*[xk;lk]+ D1*lk;

yk = y(1:12,index);

del = xeq(7) + lk(1);

df = xeq(8) + lk(2);

if del > ((7/45)*pi)

del = ((7/45)*pi);

elseif del < -((7/60)*pi)

del = -((7/60)*pi);

end

if df > ((11/90)*pi)

df = ((11/90)*pi);

elseif df < -((1/12)*pi)

df = -((1/12)*pi);

end

end

%% Define angles and determine Lift and Drag

u = x(1);

w = x(2);

theta = x(3);

theta_d = x(4);

phi = x(5);

phi_d = x(6);

h = x(3) - atan2(x(2),x(1));

liftdrag % Calls liftdrag function

%% Expression for x_dot

EOM % Calls EOM function

h = xeq(3) - atan2(xeq(2),xeq(1));

if h <= 1e-7 % Avoids machine zero error

h = 0;

end

%%%

%set a timer

%calculate percent complete

if t == 0

preper = 0;

end

if 100*t/I.tf >= preper + 1

clc

preper = floor(100*t/I.tf);

disp(’equillibrium state’)

107

disp(xeq(1:6))

disp(’equilibrium altitude’)

disp(h)

disp(’equilibrium control’)

disp(xeq(7:8))

disp(’equilibrium thrust’)

disp(xeq(9))

disp(’eigenvalues of state jacobian’)

disp(rootsA)

disp(’natural frequency of wing’)

disp(I.om_wing)

disp(’percent complete’)

disp(preper)

end

J. ODE File with Nonlinear Controller: 4dof nl.m

%function to integrate history of 4 dof longitudinal model

function [x_dot] = dof4_nl(t,x)

global rootsA xeq preper I od theta_dd phi_dd o theta_d df del

%% Bring in initial guess states

u = x(1);

w = x(2);

theta = x(3);

theta_d = x(4);

phi = x(5);

phi_d = x(6);

h = x(3) - atan2(x(2),x(1));

del = xeq(7);

df = xeq(8);

T = xeq(9);

%% Gust Velocity

V_vg = 0;

V_hg = 0;

if t <= (I.ts + 2*I.dm)

if t >= I.ts

o = 1;

V_vg = (I.Uvg/2)*(1 - cos(pi*(t- I.ts)/I.dm));

V_hg = (I.Uhg/2)*(1 - cos(pi*(t- I.ts)/I.dm));

end

else

V_vg = 0;

V_hg = 0;

o = 0;

end

%% Define Angles and Determine Lift and Drag

liftdrag % Calls liftdrag function

Cmac = -0.045;

Mac = Q*I.S*I.c*Cmac;

%% Get new controls (nonlinear)

if od == 2

if t == 0

theta_dd = 0; %initialize as zero, for trim initial condition

phi_dd = 0;

else

end

108

P = [0.005*I.om_wing 0

0 0.3*I.om_wing]; %% Gains for one-minus-cosine input

% P = [1.55*I.om_wing 0

% 0 2.25*I.om_wing]; %% Gains for sinusoidal input

%%Using theta_d and phi_d as controlled states

g1 = ((I.mw*I.mf)/I.m)*(I.d*I.dc*(2*theta_d*phi_d + phi_d^2))...

+ Q*I.S*(I.Cl0 + I.Clalfw*alpha_w)*((I.e - (I.mw/I.m)*I.dc)...

*cos(alpha_w) + (I.mf/I.m)*I.d*cos(theta - gam_w)) ...

+ Q*I.S*(I.Cd0+ I.Cdalfw*alpha_w)*((I.e - (I.mw/I.m)*I.dc)*...

sin(alpha_w) + (I.mf/I.m)*I.d*sin(theta - gam_w)) - ...

Qt*I.St*(I.Clt0 + I.Clalft*(alpha_t) + I.Clq*theta_d)*...

((I.mw/I.m)*I.dc*cos(alpha_t)+ ((I.mw/I.m)*I.d + I.f)*...

cos(theta - gam_t))- Qt*I.St*(I.Cdt0 + I.Cdalft*(alpha_t))*...

((I.mw/I.m)*I.dc*sin(alpha_t) + ((I.mw/I.m)*I.d + I.f)*...

sin(theta - gam_t)) + T*(I.mw/I.m)*I.dc*sin(phi) + Mac;

h_df1 = Q*I.S*CLdf*((I.e - (I.mw/I.m)*I.dc)*cos(alpha_w) + ...

(I.mf/I.m)*I.d*cos(theta - gam_w));

h_de1 = -Qt*I.St*CLde*((I.mw/I.m)*I.dc*cos(alpha_t) + ...

((I.mw/I.m)*I.d + I.f)*cos(theta - gam_t));

g2 = - ((I.mw*I.mf)/I.m)*I.d*I.dc*(theta_d^2)*sin(phi)...

- I.k*(phi - I.alfr) + Q*I.S*(I.Cl0 + I.Clalfw*alpha_w)*...

(I.e - (I.mw/I.m)*I.dc)*cos(alpha_w) + Q*I.S*(I.Cd0 + ...

I.Cdalfw*alpha_w)*(I.e - (I.mw/I.m)*I.dc)*sin(alpha_w)...

- Qt*I.St*(I.Clt0 + I.Clalft*(alpha_t) + I.Clq*theta_d)*...

(I.mw/I.m)*I.dc*cos(alpha_t) - Qt*I.St*(I.Cdt0 + ...

I.Cdalft*(alpha_t))*(I.mw/I.m)*I.dc*sin(alpha_t)...

+ T*(I.mw/I.m)*I.dc*sin(phi) + Mac;

h_df2 = Q*I.S*CLdf*(I.e - (I.mw/I.m)*I.dc)*cos(alpha_w);

h_de2 = -Qt*I.St*CLde*(I.mw/I.m)*I.dc*cos(alpha_t);

Is1 = I.Iw + I.If + (I.mf*I.mw/I.m)*(I.dc^2 + I.d^2 + ...

2*I.d*I.dc*cos(phi));

Is2 = I.Iw + (I.mf*I.mw/I.m)*(I.dc^2 + I.d*I.dc*cos(phi));

Iw1 = I.Iw + (I.mf*I.mw/I.m)*(I.dc^2 + I.d*I.dc*cos(phi));

Iw2 = I.Iw + (I.mf*I.mw/I.m)*(I.dc^2);

Ibig = [Is1 Is2; Iw1 Iw2];

H = -inv(Ibig)*[h_df1 h_de1; h_df2 h_de2];

G = inv(Ibig)*[g1; g2];

df_de(1,:) = inv(H)*(P*([theta_d;phi_d] + ...

[theta - xeq(3); phi - xeq(5)])+ G);

%%%

df = df_de(1,1);

del = df_de(1,2);

%% Make sure the control deflections stay within the operation

%% boundary

if del > ((7/45)*pi)

del = ((7/45)*pi);

elseif del < -((7/60)*pi)

del = -((7/60)*pi);

end

if df > ((11/90)*pi)

109

df = ((11/90)*pi);

elseif df < -((1/12)*pi)

df = -((1/12)*pi);

end

df_de2(1,:) = [df;del];

else

end

CLw = I.Cl0 + I.Clalfw*alpha_w + CLdf*df;

CLt = I.Clt0 + I.Clalft*(alpha_t) + CLde*del + I.Clq*theta_d;

CDw = I.Cd0 + I.Cdalfw*alpha_w;

CDt = I.Cdt0 + I.Cdalft*alpha_t;

L = CLw*Q*I.S;

D = Q*I.S*CDw;

Lt = CLt*Qt*I.St;

Dt = Qt*I.St*CDt;

%% Expression for x_dot

EOM % Calls EOM function

theta_d = x_dot(3);

theta_dd = x_dot(4);

phi_dd = x_dot(6);

h = xeq(3) - atan2(xeq(2),xeq(1));

if h <= 1e-7 % avoids machine zero error

h = 0;

end

%%%

%set a timer

%calculate percent complete

if t == 0

preper = 0;

end

if 100*t/I.tf >= preper + 1

clc

preper = floor(100*t/I.tf);

disp(’equillibrium state’)

disp(xeq(1:6))

disp(’equilibrium altitude’)

disp(h)

disp(’equilibrium control’)

disp(xeq(7:8))

disp(’equilibrium thrust’)

disp(xeq(9))

disp(’eigenvalues of state jacobian’)

disp(rootsA)

disp(’natural frequency of wing’)

disp(I.om_wing)

disp(’percent complete’)

disp(preper)

end

K. Open-loop Simulation File: openloop.m

%% Linear Controller

h_1 = 0.002;

T_1 = 0.002;

110

t_f = I.tf;

wn_1 = 10;

zeta_1 = 0.6;

A_del = [0 1

-wn_1^2 -2*wn_1*zeta_1];

A_T = [0 1

-wn_1^2 -2*wn_1*zeta_1];

A_dT = [A_del zeros(2,2)

zeros(2,2) A_T];

A_new = [A B(:,1) zeros(6,1) B(:,2) zeros(6,1)

zeros(4,6) A_dT];

B_new = [zeros(6,2)

0 0

100 0

0 0

0 100];

H = [1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0];

H1 = [1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0];

D = zeros(2,2);

cont = [B_new A_new*B_new (A_new^2)*B_new (A_new^3)*B_new ...

(A_new^4)*B_new (A_new^5)*B_new];

disp(’Controllability Rank:’)

cont_r = rank(cont)

Obs = [H; H*A_new; H*(A_new^2); H*(A_new^3); H*(A_new^4); H*(A_new^5)];

disp(’Observability Rank:’)

obs_r = rank(Obs)

Abig = [A_new zeros(10,2)

H1 zeros(2,2)];

Bbig = [B_new

zeros(2,2)];

[phi_big,gamma_big] = c2d(Abig,Bbig,h_1);

[phi,gamma] = c2d(A_new,B_new,h_1);

[phi_s,gamma_s] = c2d(A,B,h_1); %% for original system

[phi_3,gamma_3] = c2d(A(1:4,1:4),B(1:4,:),h_1);

[X12, X22] = QPMCALC((phi - eye(10)), gamma, H, D)

phi = [];

Q1 = [10 1 1 5e2 1 1e7];

Qp = [1 1e4 1 1e2];

R = [1 1e6];

Q2 = diag([Q1 R Qp]);

S = diag([1 1]);

N = zeros(12,2);

[K,Qd,Rd,Nd,s,e] = LQRDJV(Abig,Bbig,Q2,S,N,T_1);

K1 = K(:,1:10);

K2 = K(:,11:12);

E = K2*X22 + K1*X12;

111

nframes = t_f/h_1;

D = [1 0

0 1];

C1=[eye(14,14)

zeros(2,14)];

D1=[zeros(14,2)

D];

u_0 = [0 0]’;

x_0 = [zeros(12,1)] + [I.ui;I.wi;zeros(10,1)];

xks(1:6,1) = x_0(1:6);

xks3(1:4,1) = x_0(1:4);

count = 0;

xk1_s = xks;

xk1_s3 = xks3;

xk = x_0;

xk1 = xk;

xk2 = xk;

lk = u_0;

ym = [0 0]’;

time(1) = 0;

dist = zeros(12,1);

dist1 = zeros(6,1);

nspace = linspace(0,I.tf,I.timesteps);

for i = 1:nframes

lk = u_0;

lk1(:,i) = lk;

if time(i) == I.ts

xk = xk + [I.ui;I.wi;zeros(10,1)];

xk2 = xk2 + [I.ui;I.wi;zeros(10,1)];

end

if time(i) <= (I.ts + 2*I.dm)

if time(i) >= I.ts

o = 1;

index = index + 1;

V_vg1(index) = (I.Uvg/2)*(1 - cos(pi*(time(i)-I.ts)/I.dm));

V_hg1(index) = (I.Uhg/2)*(1 - cos(pi*(time(i)-I.ts)/I.dm));

V_vg = V_vg1(index);

V_hg = V_hg1(index);

end

liftdragDISCRETE

CLdf = I.Clalfw*I.tau_f*(I.Sf/I.S);

L_vg = (rho/2)*V_vg*Vw*I.S*I.Clalfw;

L_hg = (rho/2)*(2*V_hg*Vw + V_hg^2)*I.S*(I.Cl0 + ...

I.Clalfw*alpha_w + CLdf*xeq(8));

V_bar = (sqrt(xeq(1)^2 + xeq(2)^2)); %velocity magnitude from u & w

dist(1,1) = ((L_vg + L_hg)*sin(theta - gam_w))/V_bar;

dist(2,1) = -(L_vg + L_hg)*cos(theta - gam_w)/V_bar;

dist(3,1) = 0;

dist(4,1) = (L_vg*((I.e - (I.mw/I.m)*I.dc) + (I.mf/I.m)*I.d)+ ...

L_hg*(I.mf/I.m)*(I.d*cos(theta - gam_w) ...

112

+ I.dc*cos(alpha_w)))/V_bar;

dist(5,1) = 0;

dist(6,1) = (L_vg*(I.e - (I.mw/I.m)*I.dc)+ ...

L_hg*(I.mf/I.m)*I.dc*cos(alpha_w))/V_bar;

dist(1:6,1) = inv(M)*dist(1:6,1);

dist1 = dist(1:6,1);

if time == 0

dist = zeros(12,1);

end

l(:,i) = lk;

xk1(:,i + 1) = phi_big*xk + gamma_big*lk + dist;

xk12(:,i + 1) = phi_big*xk2 + dist;

xk1_s(:,i + 1) = phi_s*xks(1:6) + dist1;%

xk = xk1(:,i + 1);

xk2 = xk12(:,i + 1);

xks = xk1_s(:,i + 1);

else

dist = zeros(12,1);

dist1 = zeros(6,1);

Vg1(i) = 0;

l(:,i) = lk;

xk1(:,i + 1) = phi_big*xk + gamma_big*lk + dist;

xk12(:,i + 1) = phi_big*xk2 + dist;

xk1_s(:,i + 1) = phi_s*xks(1:6) + dist1;%

xk = xk1(:,i + 1);

xk2 = xk12(:,i + 1);

xks = xk1_s(:,i + 1);

end

y(:,i) = C1*[xk;lk]+ D1*lk;

y2(:,i) = C1*[xk2;lk];

y_s(:,i) = xk1_s(:,i + 1);

yk = y(1:12,i);

% pause

count = count + h_1;

%%%

%set a timer

%calculate percent complete

if time(i) == 0

preper2 = 0;

end

if 100*time(i)/I.tf >= preper2 + 1

clc

preper2 = floor(100*time(i)/I.tf);

disp(’equillibrium state’)

disp(xeq(1:6))

disp(’equilibrium control’)

disp(xeq(7:8))

disp(’equilibrium thrust’)

disp(xeq(9))

113

disp(’eigenvalues of state jacobian’)

disp(rootsA)

disp(’natural frequency of wing’)

disp(I.om_wing)

disp(’percent complete’)

disp(preper2)

end

time(i + 1) = i*h_1;

end

%% Integrate time histories

od = 1;

x0_ode = [xeq(1)

xeq(2)

xeq(3)

xeq(4)

xeq(5)

xeq(6)];

del_eq = [xeq(7)

xeq(8)

xeq(9)];

tspan = [0:0.005:(I.ts - 0.01)];

[t1,x1] = ode45(’dof4_nl’, tspan,x0_ode);

x0_ode2(:,1) = x1(end,:)’ + [I.ui;I.wi;0;0;0;0];%

tspan2 = [I.ts:0.005:I.tf];

[t2,x2] = ode45(’dof4_nl’, tspan2,x0_ode2);

%%Use code below instead of ode45 when you need a constant step size,

%%solution takes significantly longer to run:

% tspan = [0,(I.ts - 0.01)];

% [t1,x1] = runge(’dof4_nl’, tspan, I.timesteps,x0_ode);

% x0_ode2(:,1) = x1(end,:)’ + [I.ui;I.wi;0;0;0;0];

%

% tspan2 = [I.ts,I.tf];

% [t2,x2] = runge(’dof4_nl’, tspan2, I.timesteps,x0_ode2);

t = [t1;t2];

x = [x1;x2];

x_f(:,1) = sqrt(x(:,1).^2 + x(:,2).^2);

x_f(:,2) = x(:,3) - atan2(x(:,2),x(:,1));

h = [];

h(:,1) = x(:,3) - atan2(x(:,2),x(:,1));

for i = 1:length(h)

if abs(h(i,1)) <= 1e-4

h(i,1) = 0;

else

h(i,1) = h(i,1);

end

end

toc

if od == 1

x1_ode = x;

t1_ode = t;

x_f1_ode = x_f;

h1_ode = h;

else

x2_ode = x; %% controlled case

t2_ode = t;

x_f2_ode = x_f;

h2_ode = h;

end

114

%% Plots

figure (8)

subplot(2,1,1)

plot(time(1:300000),y2(1,:) + xeq(1),t1_ode,x1_ode(:,1)),...

ylabel(’u (ft/s)’),xlabel(’time (s)’),...

legend(’Linear Open-Loop Response’,’Nonlinear Open-Loop Response’)

subplot(2,1,2)

plot(time(1:300000),y2(2,:) + xeq(2),t1_ode,x1_ode(:,2)),...

ylabel(’w (ft/s)’),xlabel(’time (s)’)

figure (9)

subplot(2,1,1)

plot(time(1:300000),(y2(3,:) + xeq(3))*(180/pi),t1_ode,x1_ode(:,3)*...

(180/pi)),ylabel(’theta (deg)’),xlabel(’time (s)’),...

legend(’Linear Open-Loop Response’,’Nonlinear Open-Loop Response’)

subplot(2,1,2)

plot(time(1:300000),(y2(5,:) + xeq(5))*(180/pi),t1_ode,x1_ode(:,5)*...

(180/pi)),ylabel(’phi (deg)’),xlabel(’time (s)’)

L. Closed-loop Simulation File with Linear Controller: linearcontrol.m

%% Linear Controller

h_1 = 0.002;

T_1 = 0.002;

t_f = I.tf;

wn_1 = 10;

zeta_1 = 0.6;

A_del = [0 1

-wn_1^2 -2*wn_1*zeta_1];

A_T = [0 1

-wn_1^2 -2*wn_1*zeta_1];

A_dT = [A_del zeros(2,2)

zeros(2,2) A_T];

A_new = [A B(:,1) zeros(6,1) B(:,2) zeros(6,1)

zeros(4,6) A_dT];

B_new = [zeros(6,2)

0 0

100 0

0 0

0 100];

H = [1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0];

H1 = [1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0];

D = zeros(2,2);

cont = [B_new A_new*B_new (A_new^2)*B_new (A_new^3)*B_new ...

(A_new^4)*B_new (A_new^5)*B_new];

disp(’Controllability Rank:’)

cont_r = rank(cont)

Obs = [H; H*A_new; H*(A_new^2); H*(A_new^3); H*(A_new^4); H*(A_new^5)];

disp(’Observability Rank:’)

obs_r = rank(Obs)

115

Abig = [A_new zeros(10,2)

H1 zeros(2,2)];

Bbig = [B_new

zeros(2,2)];

[phi_big,gamma_big] = c2d(Abig,Bbig,h_1);

[phi,gamma] = c2d(A_new,B_new,h_1);

[phi_s,gamma_s] = c2d(A,B,h_1); %% for original system

[phi_3,gamma_3] = c2d(A(1:4,1:4),B(1:4,:),h_1);

[X12, X22] = QPMCALC((phi - eye(10)), gamma, H, D)

phi = [];

Q1 = [10 1e2 1 1e2 1 1e3];

R = [5e4 1 1 1e5];

Qp = [1 1];

Q2 = diag([Q1 R Qp]);

S = diag([1 1]);

N = zeros(12,2);

[K,Qd,Rd,Nd,s,e] = LQRDJV(Abig,Bbig,Q2,S,N,T_1);

K1 = K(:,1:10);

K2 = K(:,11:12);

E = X22 + K1*X12;

nframes = t_f/h_1;

D = [1 0

0 1];

C1=[eye(14,14)

zeros(2,14)];

D1=[zeros(14,2)

D];

u_0 = [0 0]’;

x_0 = [zeros(12,1)];

xks(1:6,1) = x_0(1:6);

xks3(1:4,1) = x_0(1:4);

count = 0;

xk1_s = xks;

xk1_s3 = xks3;

xk = x_0;

xk1 = xk;

xk2 = xk;

lk = u_0;

ym = [0 0]’;

time(1) = 0;

dist = zeros(12,1);

dist1 = zeros(6,1);

nspace = linspace(0,I.tf,I.timesteps);

for i = 1:nframes

if abs(count-T_1) < 1e-8

lk = E*ym - K*yk;

% lk = u_0;

lk1(:,i) = lk;

count = 0;

end

116

if time(i) == I.ts % for instantaneous disturbance

xk = xk + [I.ui;I.wi;zeros(10,1)]

xk2 = xk2 + [I.ui;I.wi;zeros(10,1)]

end

dist = zeros(12,1);

dist1 = zeros(6,1);

V_vg = 0;

V_hg = 0;

if time(i) <= (I.ts + 2*I.dm)

if time(i) >= I.ts

o = 1;

index = index + 1;

V_vg1(index) = (I.Uvg/2)*(1 - cos(pi*(time(i)-I.ts)/I.dm));

V_hg1(index) = (I.Uhg/2)*(1 - cos(pi*(time(i)-I.ts)/I.dm));

V_vg = V_vg1(index);

V_hg = V_hg1(index);

end

liftdragDISCRETE

CLdf = I.Clalfw*I.tau_f*(I.Sf/I.S);

L_vg = (rho/2)*V_vg*Vw*I.S*I.Clalfw;

L_hg = (rho/2)*(2*V_hg*Vw + V_hg^2)*I.S*(I.Cl0 + ...

I.Clalfw*alpha_w + CLdf*xeq(8));

V_bar = (sqrt(xeq(1)^2 + xeq(2)^2)); %velocity magnitude from u & w

dist(1,1) = ((L_vg + L_hg)*sin(theta - gam_w))/V_bar;

dist(2,1) = -(L_vg + L_hg)*cos(theta - gam_w)/V_bar;

dist(3,1) = 0;

dist(4,1) = (L_vg*((I.e - (I.mw/I.m)*I.dc) + (I.mf/I.m)*I.d)+ ...

L_hg*(I.mf/I.m)*(I.d*cos(theta - gam_w) ...

+ I.dc*cos(alpha_w)))/V_bar;

dist(5,1) = 0;

dist(6,1) = (L_vg*(I.e - (I.mw/I.m)*I.dc)+ ...

L_hg*(I.mf/I.m)*I.dc*cos(alpha_w))/V_bar;

dist(1:6,1) = inv(M)*dist(1:6,1);

dist1 = dist(1:6,1);

if time == 0

dist = zeros(12,1);

end

l(:,i) = lk;

xk1(:,i + 1) = phi_big*xk + gamma_big*lk + dist;

xk12(:,i + 1) = phi_big*xk2 + dist;

xk1_s(:,i + 1) = phi_s*xks(1:6) + dist1;%

xk = xk1(:,i + 1);

xk2 = xk12(:,i + 1);

xks = xk1_s(:,i + 1);

else

dist = zeros(12,1);

dist1 = zeros(6,1);

Vg1(i) = 0;

l(:,i) = lk;

117

xk1(:,i + 1) = phi_big*xk + gamma_big*lk + dist;

xk12(:,i + 1) = phi_big*xk2 + dist;

xk1_s(:,i + 1) = phi_s*xks(1:6) + dist1;%

xk = xk1(:,i + 1);

xk2 = xk12(:,i + 1);

xks = xk1_s(:,i + 1);

end

y(:,i) = C1*[xk;lk]+ D1*lk;

y2(:,i) = C1*[xk2;lk];

y_s(:,i) = xk1_s(:,i + 1);

yk = y(1:12,i);

count = count + h_1;

%%%

%set a timer

%calculate percent complete

if time(i) == 0

preper2 = 0;

end

if 100*time(i)/I.tf >= preper2 + 1

clc

preper2 = floor(100*time(i)/I.tf);

disp(’equillibrium state’)

disp(xeq(1:6))

disp(’equilibrium altitude’)

disp(h)

disp(’equilibrium control’)

disp(xeq(7:8))

disp(’equilibrium thrust’)

disp(xeq(9))

disp(’eigenvalues of state jacobian’)

disp(rootsA)

disp(’natural frequency of wing’)

disp(I.om_wing)

disp(’percent complete’)

disp(preper2)

end

time(i + 1) = i*h_1;

end

%% Integrate time histories

for od = 1:2

index = 0;

x0_ode = [xeq(1)

xeq(2)

xeq(3)

xeq(4)

xeq(5)

xeq(6)];

del_eq = [xeq(7)

xeq(8)

xeq(9)];

tspan = [0:0.005:9.99];

%

[t1,x1] = ode45(’dof4’, tspan,x0_ode);

x0_ode2(:,1) = x1(end,:)’ + [I.ui;I.wi;0;0;0;0];

118

tspan2 = [10:0.005:I.tf];

[t2,x2] = ode45(’dof4’, tspan2,x0_ode2);

%%Use code below instead of ode45 when you need a constant step size,

%%solution takes significantly longer to run:

% tspan = [0,9.99];

% [t1,x1] = runge(’dof4’, tspan, I.timesteps,x0_ode);

% x0_ode2(:,1) = x1(end,:)’ + [I.ui;I.wi;0;0;0;0];

% tspan2 = [10,I.tf];

% [t2,x2] = runge(’dof4’, tspan2, I.timesteps,x0_ode2);

t = [t1;t2];

x = [x1;x2];

toc

if od == 1

x1_ode = x;

t1_ode = t;

% x_f1_ode = x_f;

% h1_ode = h;

else

x2_ode = x; %% controlled case

t2_ode = t;

% x_f2_ode = x_f;

% h2_ode = h;

end

end

%% Plots

figure (1)

subplot(2,1,1)

plot(time(1:150000),y2(1,:) + xeq(1),time(1:150000),y(1,:) + xeq(1)),...

ylabel(’u (ft/s)’),xlabel(’time (s)’),...

legend(’Linear Open-Loop Response’,’PIF-NZSP-CRW Controller’)

subplot(2,1,2)

plot(time(1:150000),y2(2,:) + xeq(2),time(1:150000),y(2,:) + ...

xeq(2)),ylabel(’w (ft/s)’),xlabel(’time (s)’)

figure (2)

subplot(2,1,1)

plot(time(1:150000),(y2(3,:) + xeq(3))*(180/pi),time(1:150000),(y(3,:) ...

+ xeq(3))*(180/pi)),ylabel(’theta (deg)’),xlabel(’time (s)’),...

legend(’Linear Open-Loop Response’,’PIF-NZSP-CRW Controller’)

subplot(2,1,2)

plot(time(1:150000),(y2(5,:) + xeq(5))*(180/pi),time(1:150000),(y(5,:)...

+ xeq(5))*(180/pi)),ylabel(’phi (deg)’),xlabel(’time (s)’)

figure (3)

subplot(2,1,1)

plot(time(1:150000),(y2(7,:) + xeq(7))*(180/pi),time(1:150000),(y(7,:) + ...

xeq(7))*(180/pi)),ylabel(’delta_e (deg)’),xlabel(’time (s)’),...

legend(’Linear Open-Loop Response’,’PIF-NZSP-CRW Controller’)

subplot(2,1,2)

plot(time(1:150000),y2(8,:),time(1:150000),y(8,:)),...

ylabel(’deltae_d (deg/s)’),xlabel(’time (s)’)

figure (4)

subplot(2,1,1)

plot(time(1:150000),(y2(9,:) + xeq(8))*(180/pi),time(1:150000),(y(9,:)...

+ xeq(8))*(180/pi)),ylabel(’delta_f (deg)’),xlabel(’time (s)’),...

legend(’Linear Open-Loop Response’,’PIF-NZSP-CRW Controller’)

subplot(2,1,2)

plot(time(1:150000),(y2(10,:))*(180/pi),time(1:150000),(y(10,:))*(180/pi))...

119

,ylabel(’deltaf_d (deg/s)’),xlabel(’time (s)’)

figure (5)

subplot(2,1,1)

plot(t1_ode,x1_ode(:,1),t2_ode,x2_ode(:,1)),ylabel(’u (ft/s)’),...

xlabel(’time (s)’),legend(’Nonlinear Open-Loop Response’,...

’PIF-NZSP-CRW Controller’)

subplot(2,1,2)

plot(t1_ode,x1_ode(:,2),t2_ode,x2_ode(:,2)),ylabel(’w (ft/s)’),...

xlabel(’time (s)’)

figure (6)

subplot(2,1,1)

plot(t1_ode,x1_ode(:,3)*(180/pi),t2_ode,x2_ode(:,3)*(180/pi)),...

ylabel(’theta (deg)’),xlabel(’time (s)’),...

legend(’Nonlinear Open-Loop Response’,’PIF-NZSP-CRW Controller’)

subplot(2,1,2)

plot(t1_ode,x1_ode(:,5)*(180/pi),t2_ode,x2_ode(:,5)*(180/pi)),...

ylabel(’phi (deg)’),xlabel(’time (s)’)

M. Closed-loop Simulation File with Nonlinear Controller: nonlinearcontrol.m

%% Integrate time histories

for od = 1:2

x0_ode = [xeq(1)

xeq(2)

xeq(3)

xeq(4)

xeq(5)

xeq(6)];

del_eq = [xeq(7)

xeq(8)

xeq(9)];

%%Use code below instead of ode45 when you need a constant step size,

%%solution takes significantly longer to run:

% tspan = [0,(I.ts-0.01)];

% [t1,x1] = runge(’dof4_nl’, tspan, I.timesteps,x0_ode);

%

% x0_ode2(:,1) = x1(end,:)’ + [I.ui;I.wi;0;0;0;0];

% tspan2 = [I.ts,I.tf];

% [t2,x2] = runge(’dof4_nl’, tspan2, I.timesteps,x0_ode2);

tspan = [0:0.005:(I.ts-0.01)];

[t1,x1] = ode45(’dof4_nl’, tspan,x0_ode);

x0_ode2(:,1) = x1(end,:)’ + [I.ui;I.wi;0;0;0;0];

tspan2 = [I.ts:0.005:I.tf];

[t2,x2] = ode45(’dof4_nl’, tspan2,x0_ode2);

t = [t1;t2];

x = [x1;x2];

toc

if od == 1

x1_ode = x;

t1_ode = t;

else

x2_ode = x; %% controlled case

t2_ode = t;

end

120

end

%% Plots

figure (1)

subplot(2,1,1)

plot(t1_ode,x1_ode(:,1),t2_ode,x2_ode(:,1))...

,ylabel(’u (ft/s)’),xlabel(’time (s)’),...

legend(’Nonlinear Open-Loop Response’,’Lyapunov Controller’)

subplot(2,1,2)

plot(t1_ode,x1_ode(:,2),t2_ode,x2_ode(:,2),t,repmat(xeq(2),1,length(t)))...

,ylabel(’w (ft/s)’),xlabel(’time (s)’)

figure(2)

subplot(2,1,1)

plot(t1_ode,x1_ode(:,3)*180/pi,t2_ode,x2_ode(:,3)*180/pi),...

ylabel(’theta (deg)’),xlabel(’time (s)’),...

legend(’Nonlinear Open-Loop Response’,’Lyapunov Controller’)

subplot(2,1,2)

plot(t1_ode,x1_ode(:,5)*180/pi,t2_ode,x2_ode(:,5)*180/pi,t,repmat(xeq(5)...

,1,length(t))*180/pi),ylabel(’phi (deg)’),xlabel(’time (s)’)

N. Discrete LQR Function (written by Dr. Valasek): LQRDJV.m

function [k,Qd,Rd,Nd,s,e] = lqrdjv(a,b,q,r,nn,Ts)

%%%%%%function [k,s,e,Qd,Rd,Nd] = lqrdjv(a,b,q,r,nn,Ts)

%LQRDJV Discrete linear quadratic regulator design from continuous

% cost function.

%

% **

%

% =====> modified by J. Valasek, 5 Dec 94 <=====

%

% This routine now sends back the Q^, R^, and M^ matrices.

%

% NOTE: the order of the passed-back arguments is NOT the

% same as the original MATLAB version.

%

% **

%

% [K,S,E] = LQRD(A,B,Q,R,Ts) calculates the optimal feedback gain

% matrix K such that the discrete feedback law u[n] = -K x[n]

% minimizes a discrete cost function equivalent to the continuous

% cost function

% J = Integral {x’Qx + u’Ru} dt

% .

% subject to the continuous constraint equation: x = Ax + Bu

%

% Also returned is S, the discrete Riccati equation solution, and

% the closed loop eigenvalues E = EIG(Ad-Bd*K).

%

% The gain matrix is determined by discretizing the continuous plant

% (A,B,C,D) and continuous weighting matrices (Q,R) using the sample

% time Ts and the zero order hold approximation. The gain matrix is

% then calculated using DLQR.

%

% [K,S,E] = LQRD(A,B,Q,R,N,Ts) includes the cross-term N that

% relates u to x in the cost function.

% J = Integral {x’Qx + u’Ru + 2*x’Nu}

%

% See also: C2D, LQED, DLQR, and LQR.

% Clay M. Thompson 7-16-90

% Copyright (c) 1986-93 by the MathWorks, Inc.

121

% Reference: This routine is based on the routine JDEQUIV.M by Franklin,

% Powell and Workman and is described on pp. 439-441 of "Digital Control

% of Dynamic Systems".

error(nargchk(5,6,nargin));

error(abcdchk(a,b));

[nx,na] = size(a);

[nb,nu] = size(b);

[nq,mq] = size(q);

if (nx ~= nq) | (nx ~= mq), error(’A and Q must be the same size.’); end

[nr,mr] = size(r);

if (mr ~= nr) | (nu ~= mr), error(’B and R must be consistent.’); end

if nargin==5,

Ts = nn;

nn = zeros(nb,nu);

else

[nnn,mn] = size(nn);

if (nnn ~= nx) | (mn ~= nu), error(’N must be consistent with Q and R.’); end

end

% Check if q is positive semi-definite and symmetric

if any(eig(q) < -eps) | (norm(q’-q,1)/norm(q,1) > eps)

disp(’Warning: Q is not symmetric and positive semi-definite’);

end

% Check if r is positive definite and symmetric

if any(eig(r) <= -eps) | (norm(r’-r,1)/norm(r,1) > eps)

disp(’Warning: R is not symmetric and positive definite’);

end

% Discretize the state-space system.

[ad,bd] = c2d(a,b,Ts);

% --- Determine discrete equivalent of continuous cost function ---

n = nx+nu;

Za = zeros(nx); Zb = zeros(nx,nu); Zu = zeros(nu);

M = [-a’ Zb q nn

-b’ Zu nn’ r

Za Zb a b

Zb’ Zu Zb’ Zu];

phi = expm(M*Ts);

phi12 = phi(1:n,n+1:2*n);

phi22 = phi(n+1:2*n,n+1:2*n);

QQ = phi22’*phi12;

QQ = (QQ+QQ’)/2; % Make sure QQ is symmetric

Qd = QQ(1:nx,1:nx) ;

Rd = QQ(nx+1:n,nx+1:n) ;

Nd = QQ(1:nx,nx+1:n) ;

% Design the gain matrix using the discrete plant and discrete cost function

[k,s,e] = dlqr(ad,bd,Qd,Rd,Nd);

O. Quadpartition Matrix Function (written by Dr. Valasek): LQRDJV.m

% qpmcalc.m

% This M-file assembles the Quad Partition Matrix (QPM) and returns

% the sub-matrices X12 and X22 from passed A, B, C, and D.

%

% ===

%

% written by: J. Valasek

122

% WMU Aircraft Design and Control Laboratory

% 19 January 1996

%

% ===

% DIGITAL FLIGHT CONTROL SYSTEMS: Analysis and Design

% by

% David R. Downing

% John Valasek

% The University of Kansas - Division of Continuing Education

% 1 September 2003

% ===

function [X12, X22] = QPMCALC(A, B, C, D) ;

%

% .. determine dimenstions of passed matrices and vectors

%

[rowa, cola] = size(A) ;

[rowb, colb] = size(B) ;

[rowc, colc] = size(C) ;

[rowd, cold] = size(D) ;

%

% .. quad partition matrix and its inverse

%

qpm = [A, B ; C, D] ;

qpmi = inv(qpm) ;

%

% .. break out the X12 and X22 quadrants

%

X12 = qpmi(1:rowa, cola+1:cola+colb) ;

X22 = qpmi(rowa+1:rowa+rowc, cola+1:cola+colb) ;

P. Constant Step Size ODE Solver (written by Dr. Hurtado): runge.m

function [time,y]=runge(fname,tspan,npt,yi)

% function [time,y]=runge(fname,tspan,npt,yi)

% fixed time step 4th order runge kutta

% fname : ode name

% tspan : [t0 tf]

% npt : number of points in discretization

% yi initial conditions

tf=tspan(2);

nptp1=npt+1; dt=(tspan(2)-tspan(1))/npt;

c=yi; n=length(yi);

y=zeros(nptp1,n); time=zeros(nptp1,1);

whos n fname t c dt

t=tspan(1); y(1,:)=yi’; time(1)=t;

for i=2:nptp1,

[c]=rk4(fname,n,t,c,dt);

y(i,:)=c’;

123

t=t+dt;

time(i)=t;

end

Q. 4th Order Runga-Kutta Solver (written by Dr. Hurtado): rk4.m

function [x]=rk4(fname,n,t,x,dt)

% function [x]=rk4(fname,n,t,x,dt)

% 4th order runge kutta

% fixed time step

%[x,lmda]=rk4(fname,n,t,x,dt,u)

%eval([’[f2,lmda]=’ fname ’(t2,y2,u);’])

y1=zeros(n,1); y2=y1; y3=y1; y4=y1;

for i=1:n, y1(i)=x(i); end

t1=t;

eval([’[f1]=’ fname ’(t1,y1);’])

for i=1:n, y2(i)=0.5*dt*f1(i)+y1(i); end

t2=t1+0.5*dt;

eval([’[f2]=’ fname ’(t2,y2);’])

for i=1:n, y3(i)=0.5*dt*f2(i)+y1(i); end

eval([’[f3]=’ fname ’(t2,y3);’])

for i=1:n, y4(i)=dt*f3(i)+y1(i); end

t4=t1+dt;

eval([’[f4]=’ fname ’(t4,y4);’])

g=dt*(f1+f4+2.0*(f2+f3))/6.0;

[nr,nc] = size(g); if nc>nr, g=g’; end

x=x+g;

R. FFT Function: myfft.m

%my fft will use matlab’s fft to find frequency content of time domain

%signal and put into more useful form

%outputs frequencies and amplitudes

function [freq,Amp] = myfft(t,x,I);

% function [f,Amp] = myfft(t);

x = x(:,I.fftstate);

x = x - mean(x);

L = length(x); %length of signal vector/matrix

Fs = 1/(t(2) - t(1)) %sample frequency

NFFT = 2^nextpow2(L)

freq = Fs/2*linspace(0,1,NFFT/2); %frequencies

Amp = fft(x,NFFT)/L; %amplitudes

Amp = 2*abs(Amp(1:NFFT/2,:));

figure(18)

loglog(repmat(I.one,1,length(Amp)), Amp, repmat(I.two,1,...

length(Amp)), Amp, repmat(I.three,1,length(Amp)), Amp, freq*2*pi,Amp)...

,legend(’Wn_1’,’Wn_2’,’Wn_3’)

ylabel(’Amplitude’),xlabel(’Frequency (rad/s)’)

124

S. Aerodynamic File for Linear Controller for Nonlinear Response: liftdragDIS-

CRETE.m

%% Angles

if i == 1

u = xeq(1);

w = xeq(2);

theta = 0;

theta_d = 0;

phi = 0;

phi_d = 0;

else

u = xeq(1) + xk(1);

w = xeq(2) + xk(2);

theta = xk(3);

theta_d = xk(4);

phi = xk(5);

phi_d = xk(6);

end

h = theta - atan2(w,u);

%update physical constants

K0 = 6.8757e-006; % /ft

h0 = 5000; % ft

h_t = h + h0;

rho0 = 0.00238; % lb-s^2/ft^4

rho = rho0*(1-K0*h_t)^(4.25); %slug/ft^3 air

% Wing velocity, determined using velocity at system CM and included

% induced velocity due to rotation of Wing CM about system CM

xw_d = u - (I.mf/I.m)*I.dc*(theta_d + phi_d)*sin(phi);

yw_d = w - (I.mf/I.m)*(I.d*theta_d + I.dc*(theta_d + phi_d)*cos(phi));

gam_w = theta - atan2(yw_d,xw_d);

% Tail velocity, determined using velocity at system CM and included

% induced velocity due to rotation of Tail CM about system CM

xt_d = u + (I.mw/I.m)*I.dc*(theta_d + phi_d)*sin(phi);

yt_d = w + (I.d + I.f)*theta_d + (I.mw/I.m)*(I.dc*(theta_d + ...

phi_d)*cos(phi));

gam_t = theta - atan2(yt_d,xt_d);

% Angle of Attack for Wing and Tail

alpha_w = theta + phi - gam_w;

alpha_t = alpha_w*(1 - I.deda) - I.alfr - I.eps0;

% for the system

gam = theta - atan2(w,u);

V = sqrt(u^2 + w^2);

gam_1 = [gam_w

gam_t

gam];

for n = 1:length(gam_1)

if abs(gam_1(n)) <= 1e-4

gam_1(n) = 0;

else

gam_1(n) = gam_1(n);

end

125

end

gam_w = gam_1(1);

gam_t = gam_1(2);

gam = gam_1(3);

%% Lift/Drag

% for the wing

Vw = sqrt(xw_d^2 + yw_d^2); % Calculates Velocity Scalar from x and y

Q = 0.5*rho*(Vw^2); % Calculates Dynamic Pressure

% for the tail

Vt = sqrt(xt_d^2 + yt_d^2);

Qt = 0.5*rho*(Vt^2);

eta = ((Qt*I.St)/(Q*I.S));

CLde = I.Cldelta;

CLdf = I.Clalfw*I.tau_f*(I.Sf/I.S);

% Moment of Inertias

Is1 = I.Iw + I.If + (I.mf*I.mw/I.m)*(I.dc^2 + I.d^2 + 2*I.d*I.dc*cos(phi));

Is2 = I.Iw + (I.mf*I.mw/I.m)*(I.dc^2 + I.d*I.dc*cos(phi));

Iw1 = I.Iw + ((I.mf/I.m)^2)*I.mw*(I.dc^2 + I.d*I.dc*cos(phi));

Iw2 = I.Iw + ((I.mf/I.m)^2)*I.mw*(I.dc^2);

% Mass Matrix

M = [I.m 0 I.m*w 0 0 0

0 I.m (-I.m*u) 0 0 0

0 0 1 0 0 0

0 0 0 Is1 0 Is2

0 0 0 0 1 0

0 0 0 Iw1 0 Iw2];

126

VITA

Amy Marie Lucas received her Bachelors of Science degree in May of 2007 from

Lipscomb University, double majoring in Engineering Mechanics and Spanish. She

entered the Aerospace Engineering Masters program at Texas A&M University in

September 2007 and began research in Aeroelasticity under the advisement of Dr.

Thomas Strganac. She graduated with her Masters degree in Aerospace Engineering

in August 2009. She was awarded the Graduate Research Fellowship from NASA and,

through the fellowship, collaborated with the Aeroelasticity group at NASA Langley

for her research. She plans to pursue a career in the Aerospace Industry focusing on

the area of Dynamics and Control.

Mrs. Lucas may be reached at lucasam28@gmail.com or by contacting Dr.

Thomas W. Strganac, Department of Aerospace Engineering, Texas A&M Univer-

sity, TAMU 3141, College Station, TX 77843.

