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ABSTRACT

Cepheid Variables in M33 and the Extragalatic
Distance Scale. (April 2009)

Andrew Kenneth Bradshaw
Department of Physics
Texas A&M University

Research Advisor: Dr. Lucas Macri
Department of Physics

Cepheid variables constitute the first rung of the extragalactic distance scale. As such,

they can be used to determine distances to nearby galaxies and calibrate secondary

distance indicators, such as type Ia supernovae. A detailed study of Cepheids in

nearby galaxies is required in order to properly characterize their properties and

variations as a function of secondary parameters (such as metallicity).

One such nearby galaxy, M33, was observed by the DIRECT project as part of a long-

term program to improve the extragalactic distance ladder. We present the detection

of Cepheids and other variables in one field of M33 observed by the project.

The analysis consisted of point-spread function photometry of hundreds of individual

images which were referenced to a master frame, followed by the application of sta-

tistical techniques to determine the variability of the stars that were detected. Since

this region of the galaxy was imaged over three consecutive observing seasons, we

were able to search for long-period variables in addition to Cepheids.

Our results include a color-magnitude diagram of the field, light curves of Cepheids
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and some of the interesting long-period variables and Period-Luminosity relations.

We use the latter to estimate the distance to M33.
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CHAPTER I

INTRODUCTION

With the large size of the Universe comes a great diversity in the types of objects

that populate it. One of the most important and useful astronomical objects are

variable stars; stellar objects which, over time, change their brightness. This change

in brightness can then be measured and quantified. Historically this was done using

photographic plates or even with eye-observation; now measurements are made with

modern imaging technology, such as CCDs (Charge-Coupled Devices). Once the

properties of the object (i.e., period of oscillation, rate of change, etc.) are known,

they can sometimes be related to other more fundamental quantities.

The name ’variable star’ can refer to a wide variety of objects, including supernovae,

eclipsing binary stars, or even transiting planets. However, this thesis will be focused

on a specific type of variable star, called a Cepheid variable, which has a characteristic

light curve and a well-defined periodicity ranging from a few days to a few months.

Other variable objects found will also be presented and discussed.

The goal of this research project is to detect and classify Cepheid variable stars in

the nearby spiral galaxy M33, also called the Triangulum Galaxy, shown in Figure

1. Due to the correlation between their period of variability and their luminosity,

measuring the brightness of Cepheids over time presents an opportunity to derive

accurate distances to objects outside of our Milky Way. Using these Cepheid-based

distances and related measurements, we can infer distances to more distant galaxies

This thesis follows the style and format of The Astrophysical Journal.
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and ultimately build a cosmic distance scale with which the overall properties of our

Universe can be investigated.

History of variable stars

Variable stars have only recently come under the scrutiny of scientists, though they

were perhaps noticed long ago. This is because, excluding supernovae and novae

(which are non-periodic objects), variable stars are often too nearly constant for

the eye to discriminate. Thus the first periodic variable star known to Western

civilization, o Ceti, was only discovered in the early 17th century shortly after the

invention of the telescope. A flurry of variable star discoveries followed, but the

situation did not change much until the invention and use of photographic plates.

However, around 1782 a deaf British amateur astronomer by the name of John

Goodricke surprised the scientific world with the confirmation of two new variable

stars, β Lyrae and β Persei. Shortly thereafter he found a new peculiar type of

variable star, δ Cephei, whose light curve exhibited a shape different than those dis-

covered before. This class of stars, later named Cepheids after the prototypical δ

Cephei, were in the early 1900’s found to be intrinsically pulsating rather than the

familiar binary system eclipses.

Cepheids finally became a useful phenomena, rather than an oddity, when in 1912

Henrietta Leavitt discovered a correlation between the apparent brightness and period

of Cepheids in the Small Magellanic Cloud (Leavitt & Pickering 1912). A modern

version of this relation is shown in Figure 2. This relation is now commonly referred

to as the Cepheid Period-Luminosity (P-L) relation and it allows one to derive the
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Fig. 1.— A mosaic of M33 indicating the location of our field (white rectangle). Its

size is 11’ x 11’.



4

luminosity of a Cepheid once its period is known. By comparing the stellar flux (a

distance-dependent quantity) with its derived luminosity, the distance to the object

can be estimated.

Applications of Cepheid variables

It was in 1926 that Edwin Hubble presented his discovery of Cepheid variables in

Local Group galaxies which were previously believed to be ’nebulae’ within our own

Milky Way. Then, using the P-L relation set forward by Leavitt, he showed that

these objects must be far outside of our own Milky Way galaxy. Later, he attempted

to calibrate a “secondary distance indicator” (the luminosity of the brightest star

in a galaxy) to determine the distances of more distant galaxies. He coupled these

distances to velocities that had been measured through spectral Doppler shifts by

Slipher, and found a striking relation: the further away a galaxy is, the larger the

Doppler shift of the galaxy was (Hubble 1929). Using Einstein’s equations of General

Relativity, this lead directly to the confirmation of the Big Bang theory presented

by Friedmann in 1922. All Cepheid distance measurements made today follow this

simple process first set out by Dr. Hubble.

Interestingly, the usefulness of Cepheid variables can be purely left to an empirical

basis. An understanding of the physical mechanism behind the variability, though an

interesting problem, was not necessary for their initial application. However, eventu-

ally the problem was solved and simultaneously provided insight into the evolution of

stars as a whole. Originally these strange periodic variable stars were thought to be

binary star eclipsing events, perhaps because stars were considered to be such perfect

and constant sources of light. This binary hypothesis was later abandoned of course,
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Fig. 2.— A period-luminosity relation for Cepheids in the small magellanic cloud,

from Udalski et al. (1999).
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along with similar hypotheses requiring the rotation of sunspots across the surface of

the star. The true mechanism of their variability was not known until Eddington put

forward several models in the 1920’s. After failing to describe their long-lived pul-

sation using simple Newtonian dynamics and pressure laws, Eddington modeled the

Cepheid as a star with layers of ionizable gas. The so called κ-mechanism (Eddington

1930) describes shells within the star that are partially ionized. When gravitationally

compressed, the regions tend to use some of the work from compression to ionize,

instead of heat up, the layer. This disrupts the star’s equilibrium and pushes the

layers outward until ionization (and thus opacity) decreases, which leads to gravita-

tional collapse back to the beginning of the cycle. This process is shown graphically

in Figure 3. The various points along the curve indicate major changes in stellar

processes, as follows: A: Star cannot halt gravitational collapse, begins contracting.

B: Star continues collapsing and more heat is generated, ionization increases and thus

opacity increases. C: Opaque layers are pushed outward due to radiation pressure.

D: Outward acceleration slows, and gravitational collapse beings again.

But how does a star become a Cepheid variable in the first place? Figure 4 displays a

so-called “Hertzsprung-Rusell” diagram which plots the temperature and luminosity

of stars. The track plotted in this figure represents the different positions over time

for a star of 7 solar masses. After its pre-main sequence evolution (points a-c) the star

spends the majority of its life at point (d) where it fuses hydrogen to helium in its

core. Once this reservoir of fuel is exhausted, it starts a rather convoluted post-main

sequence evolution during which it crosses a region known as the “instability strip”

which is represented by two dashed lines in that figure. It is only within this narrow

range of temperature that stable pulsations (as described above) can take place. The

Cepheid phase of the star takes place between points (h) and (j) in the diagram.
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Fig. 3.— Light (top) and radial velocity (center) curves for δ Cephei. The bottom

pannel shows a schematic representation of the oscillation.
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Fig. 4.— Evolutionary track of a 7-solar-mass star based on the models of Siess et al.

(2000) and Alibert et al. (1999).
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The Cepheid phase is therefore a transient phenomena experienced only by stars with

masses between 5 and 12 times that of the Sun. Because of this, relatively few stars

are exhibiting this behavior at any given time. Out of a hundred billion stars in our

Galaxy it is estimated that there are only a few million pulsating stars (and even fewer

Cepheid variables), indicating that variability is around a .001 percent effect in any

given sample. These odds are slightly improved when considering that most Cepheids

are supergiant stars with high luminosities, but the effect still remains rare. This is

the reasoning behind comprehensive star surveys, such as the one in this thesis, which

must be mounted to discover these special stars within a particular galaxy.

Project overview

The observations used in this thesis were obtained as part of the DIRECT project, an

initiative to calibrate the Cepheid Period-Luminosity relation with greater accuracy

by discovering large samples of these stars in the nearby galaxies M31 and M33. The

observations were made using the F.L. Whipple Observatory’s 1.2 meter telescope

between September 1996 and December 2000. Three different broadband filters were

used during observation: V, I, and B. Within each band the project obtained 265,

78, and 35 images, respectively, resulting in several gigabytes worth of data. The raw

data was corrected for several instrumental characteristics, including the removal of

electronic noise (bias correction) and fluctuations in the relative sensitivity of each

pixel in the array (flat-fielding).

After the data was properly reduced, each image was processed to detect all stars

within it and to determine its particular orientation relative to a user-specified ref-

erence frame. We carried out these procedures using the DAOPHOT/ALLFRAME
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suite of programs developed by Peter Stetson. Once the photometry had been ob-

tained, we performed additional photometric corrections and searched for variables

in the data. Lastly, an automated procedure classified some of these variables as

Cepheids, which were eventually used to form multi-band Period-Luminosity rela-

tions and estimate the distance to M33.
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CHAPTER II

THEORY

This chapter is meant to flesh out some of the mathematical details behind stellar

pulsation in general. Though such details have long been known and understood, their

derivation can still provides useful insight. In this chapter we look into the actual

mechanisms that allow stars to be such consistent and long-lived objects, while at the

same time modeling their instability.

Using tools such as thermodynamics and Newton’s laws we are able to make two

separate approximations, both leading to a rough sketch of stellar pulsation. The

first model assumes that the pulsation is due to acoustic waves propagating through

the star and then infers the pulsational period. The second method, a little more

complex, does not make such assumptions. Rather it is a perturbation of the basic

hydrodynamic model of stars. Both methods arrive at similar (and roughly correct)

pulsational periods for a given mass and radius (or density). Because the pulsational

period is the physical quantity we observe, knowing its mechanism can provide some

insight into the physics behind stellar pulsation.

Hydrostatic equilibrium

Before we begin to pulsate our star it is important that we establish the basics. All

stars are basically balls of gas which are in a constant balancing act: gravity pulls the

outer layers of gas inward and pressure pushes the layers outward. A force diagram

of this situation is shown in Figure 5.
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Fig. 5.— A force diagram for a mass element dm with radius dr.

Using Newton’s Second Law, we start with Equation 2.1:

dm
d2r

dt2
= ΣF = Fg + FP,t + FP,b. (2.1)

We then make the substitution FP,t = −(FP,b + dFp), where dFp accounts for the

pressure difference between r and r + dr, so that

dm
d2r

dt2
= Fg − FP,b − dFp + FP,b = Fg − dFp. (2.2)

But we also know that dFp
A

= dP and that Fg = −GMrdm
r2

, where Mr =
∫ r

0
4πr2dmdr.

Also we can substitute for the mass dm the density equation dm = Adrρ. Thus we

end up with an equation for radial motion, Equation 2.4:

Adrρ
d2r

dt2
= −GMrρAdr

r2
− AdP (2.3)
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or, after dividing by volume,

ρ
d2r

dt2
= −GMrρ

r2
− dP

dr
. (2.4)

However, we assume the star to be in equilibrium so that a = 0, or, ΣF = 0:

dP

dr
= −GMrρ

r2
= −ρg (2.5)

where g ≡ GMr

r2
. Equation 2.5 is the equation for hydrostatic equilibrium. This equa-

tion shows that it is actually the pressure gradient, rather than simply the pressure,

which prevents the star from collapsing. Finally, assuming the (unrealistic) case of

constant density throughout the star so that Mr = 4
3
πr3ρ, Equation 2.5 becomes

dP

dr
= −GMrρ

r2
= −4

3
πGρ2r (2.6)

which we will use later.

First approximation: acoustic oscillations

Now we can implement one of the simplest models of stellar pulsation. This model

assumes that the pulsations are purely radial and are the result of sound waves (pres-

sure/density waves) resonating within a star. To begin with this assumption we must

first calculate the speed of sound within the star then find the time it takes to cross

the entire diameter (which becomes the period of pulsation). But how do we calculate

the speed of sound in a star? Consult the First Law of Thermodynamics:

dU = δQ− δW (2.7)

We then approximate the oscillations as adiabatic (i.e. no heat transfer), and therefore

we set δQ = 0. Also we know that the differential work is equal to the differential
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volume change times the pressure, δW = PdV . Thus

dU = −PdV. (2.8)

We now use the ideal gas equation PV = nkT , in differential form

V dP + PdV = nkdT (2.9)

and heat capacity relation

dU = CvdT ⇒ dT =
dU

Cv
= −PdV

Cv
. (2.10)

We know that Cp = Cv + nk and that γ ≡ Cp
Cv

, so that γ = 1 + nk
Cv

, which we use in

the equation for adiabatic gases, Equation 2.12:

V dp = 1− γ − Pdv (2.11)

γ
dV

V
= −dP

P
(2.12)

The speed of sound in a material is related to its compressibility (or bulk modulus)

κ ≡ −V dP
dV

and its density ρ such that

vsound =

√
κ

ρ
=

√
γP

ρ
(2.13)

where Equation 2.12 has been used. But according to Equation 2.13 vsound depends

on P , which depends on the radius r, according to the following equation:

dP

dr
= −4π

3
Gρ2r integrate−−−−−−→

∫ r

R

dP = −4π

3
Gρ2

∫ r

R

r′dr′. (2.14)

Assuming that P = 0 at r = R, then we are led to the following equation for pressure
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P as a function of radius r:

P (r) =
2π

3
Gρ2(R2 − r2) (2.15)

and to the equation for vsound as a function of r:

vsound =

√
2π

3
γGρ(R2 − r2). (2.16)

Finally, we can use this velocity to determine the time it takes for an adiabatic

pressure wave to cross the diameter of the star:

Π ≈ 2

∫ R

0

dr

vsound
. (2.17)

Using the equation above and inserting Equation 2.16 we arrive at:

Π ≈ 2

∫ R

0

dr√
2π
3
γGρ(R2 − r2)

(2.18)

=
2√

2
3
γπGρR2

∫ R

0

dr√
1− ( r

R
)2

(2.19)

=
2√

2
3
γπGρR2

∫ R

0

R cos θdθ

sqrt1− sin2θ
(2.20)

=
2√

2
3
γπGρR2

∫ R

0

R cos θdθ

cos θ
(2.21)

=
2√

2
3
γπGρ

[sin−1(
r

R
)|R0 (2.22)

=

√
3π

2γGρ
(2.23)

where in the above equations we used the substitution r = R sin θ and dr = R cos θdθ.

The final line, Equation 2.23, illustrates the period-density relation. It shows that as

the density of a star increases so does its period. Qualitatively this is confirmed by
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observation: giant and supergiant stars, having smaller densities, have longer periods

than the much more dense white dwarf stars. Quantitatively we can use the example

of a star with typical Cepheid properties of M = 5M� and R = 50R�. Plugging

these numbers into equation 2.23 yields a period of ≈ 10 days, which is reasonable

considering the typical properties used. We now move on to a slightly more complex

derivation of stellar pulsation.

Second approximation: perturbations

The previous model had a major problem with it in assuming that the radius is fixed

and that the star ultimately remains in equilibrium during the pulsations. Observa-

tions have shown that this is clearly not the case, with a typical Cepheid star changing

in radius as much as a few percent. In this model we assume then that the radius

changes are small and then perform a perturbation of the radius such that:

r0 → r(t) = r0[1 + ∆(t)] (2.24)

dr = dr0[1 + ∆(t)]. (2.25)

Similarly we can perturb the density, assuming that there is no mass loss out of the

(now moving) shell at radius r:

ρ4πr2dr = ρ04πr
2
0dr0 → ρ = ρ0[1 + ∆(t)]−3. (2.26)

Again we assume (slightly unrealistically) that the expansion is adiabatic in that there

is no energy or heat transfer between the shells. From thermodynamics we get that:

P

P0

= (
ρ

ρ0

)γ → P = P0(
ρ

ρ0

)γ (2.27)
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Bringing all of these perturbations together and Taylor expanding them (assuming

that ∆ is small):

ρ = ρ0(1− 3∆) (2.28)

P = P0(1− 3γ∆) (2.29)

r−2 = r−2
0 (1− 2∆) (2.30)

But simply perturbing won’t be enough. Because we assume now that the radius is

changing, we must also get rid of the requirement that a = d2r
dt2

= 0 and ΣF = 0.

Looking back at Equation 2.4 we can say, after multiplying by dV :

dP

dr︸︷︷︸ = −GMrdm

r2
ρ︸ ︷︷ ︸− ρd

2r

dt2︸ ︷︷ ︸
pressure gravitational inertia (2.31)

The pressure term on the left of Equation 2.31, dP
dr

can be re-expressed using the

chain rule and another Taylor expansion as follows:

dP

dr
=

dP

dr0

dr0
dr

=
dP0

dr0
(1− 3γ∆)(1−∆) (2.32)

=
dP0

dr0
[1−∆(3γ + 1)] (2.33)

where second order terms in ∆ have been thrown out. But we also know from hydro-

static equilibrium (Equation 2.5) that

dP0

dr0
= −GMr0

r2
0

ρ0 (2.34)

so that our perturbation of the pressure term of Equation 2.31 becomes

dP

dr
= −GMr0

r2
0

[1−∆(3γ + 1)]. (2.35)
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Now insert the perturbation into the gravitational term of Equation 2.31

−GMrdm

r2
ρ = −GMr0dm

r2
0

ρ0(1− 2∆)(1− 3∆) (2.36)

= −GMr0dm

r2
0

ρ0(1− 5∆) (2.37)

where again second order ∆ terms have been thrown out. Finally, apply the pertur-

bation to the inertial term of Equation 2.31:

−ρd
2r

dt2
= −ρ0(1− 3∆)r0

d2∆

dt2
. (2.38)

Now put all of these terms from Equations 2.35, 2.37, and 2.38 back into our equation

of motion, Equation 2.31, to get:

−GMr0

r2
0

ρ0[1−∆(3γ + 1)] = −GMr0

r2
0

ρ0(1− 5∆)− ρ0(1− 3∆)r0
d2∆

dt2
. (2.39)

Solving, we get:

−GMr0

r2
0

∆
(3γ − 4)

(1− 3∆)
= r2

0

d2∆

dt2

⇒ GMr0

r3
0

(4− 3γ)∆ =
G
4π
3

ρ∆(4− 3γ) =
d2∆

dt2
. (2.40)

where we made the substitution ρ = M
4π
3
r3

. Cleaning things up a little bit, we arrive

at the following differential equation in terms of ∆:

d2∆

dt2
+

9Gρ

4π
(γ − 4

3
)∆ = 0. (2.41)

This differential equation is analogous to the simple harmonic motion of a spring

with a mass attached. The solutions are waves of the form ∆(t) = ∆0e
iωt, where

ω2 =
9Gρ(γ− 4

3
)

4π
. Using the known relation between the period and frequency, Π = 2π

ω
,
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we are led to the final equation for the period of oscillations:

Π =

√
16π3

9(γ − 4
3
)

1

Gρ
(2.42)

or more simply:

Π ∝ (Gρ)−
1
2 . (2.43)

At first sight this result is very similar to Equation 2.23. However, one important

difference lies in the solution of Equation 2.41 where ω has been found to include the

term γ − 4
3
. Because of this, solutions that are stable exist only for γ > 4

3
. Stability

in this case means that the star returns to equilibrium after a small perturbation,

and in most cases γ = 5
3

which keeps the star stable. However, if γ is less than 4
3
,

then the solution of the differential equation becomes a damped exponential of the

form ∆(t) = ∆0e
−κt. Thus the star actually collapses because gravitational forces

overcome the outward pressure. This case of γ ≤ 4
3

is extremely interesting, as

it actually explains a special type of supernovae, called a core-collapse supernova,

which occurs in supergiant stars.

The period luminosity relationship

We can take the derivation of the pulsation period a little further and roughly derive

the Period-Luminosity relationship which is much more useful observationally, as we

can’t actually measure the density of a star! Starting with Equation 2.43:

Π ∝ ρ−
1
2 ∝ M− 1

2R−
3
2 ∝ R−

3
2 ∝ L−

3
4 (2.44)

where we have used the relationship between density and mass/radius and the black-

body relationship L = 4πσR2T 4 ∝ R2. But we also know that Mv = −2.5 logLv +
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const. so:

Mv = −2.5 logLv + C (2.45)

= −2.5(
4

3
log Π) +D (2.46)

= −20

6
log Π +D ≈ −3 log Π +D (2.47)

which is remarkably close to the actual equation for (galactic) Cepheids

Mv = −2.81 log Π− 1.6.

Physical mechanism

In this section we finally delve into the actual mechanism driving the pulsations.

Though we simplistically assumed in the first section that the pulsations are due to

sound waves, how would such sound waves be carried? Or, in our second model, what

property of the star acts as the ’spring’ in our simple model?

But first, why couldn’t observations be described by the simple binary-star hypothesis

popular in the 19th century? Importantly, as it turns out, the spectral lines of a

second star are never detected. This would require the one of the pair to be relatively

faint. In addition, it was rather suspicious to 19th century astronomers that after

theoretical calculations of the Cepheid’s mass and radius (using visible magnitudes

and colors) a clear trend in ρ versus Π emerges. This is of course the relation derived

in Equation 2.43. These reasons and more led to the abandonment of the binary

theory and acceptance of new single-star models.

Taking the models of the previous sections to be approximately true we are still

left without a physical mechanism. This mechanism must satisfy dual requirements.
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First, because Cepheids are a rare phenomena, the mechanism must not allow all

stars to have self-reinforcing pulsation. Second, the mechanism must provide energy

to an appropriate depth. The first requirement requires that a non-Cepheid that

has been disturbed, possibly by an approaching star, has damped rather than driven

oscillations. The second requirement is actually very useful in the fact that it elim-

inates any nuclear process. Eddington originally proposed the nuclear mechanism

as a type of heat-valve when using the analogy of a Cepheid as a heat engine. It

seems reasonable that nuclear processes which generate energy are related to both

the temperature and density of the gas. When the gas is compressed, increases in

temperature and density should spur more nuclear reactions and the star expands.

Again, though, this process applies to all stars. In addition, our second requirement

is violated: the greatest effect would be seen at the center of the star where density

and temperature are large, but pulsation has been shown to only occur in the outer

layers.

Eddington later went on to propose a different kind of heat engine wherein the ’valve’

is varying instead of the amount of heat. He suggested, correctly, that this was due

to a change in the absorption law for opacity within the star. Typically, for stellar

material it is assumed that the opacity varies according to

κ ∝ ρ

T
7
2

. (2.48)

However, Eddington suggested that under some unknown hypothetical conditions the

exponent may be changed to become

κ ∝ ρ

T
5
2

. (2.49)

This slight change in exponent has the effect of making the star more ’heat-tight’
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when compressed than when it is expanded. The ’leakiness’ of Eddington’s valve is

dependent on the proportionality between ρ and T . Because under normal circum-

stances the temperature goes like T−3.5, the opacity of compressed layers tends to

increase rather then decrease. Changing the exponent to T−2.5 drastically changes

the situation, and opacity increases during compression (Eddington, A. S. 1926).

Only later (Zhevakin 1963) was it found by that this valve is actually the absorption

of partial-ionization layers in a star, typically helium, which increase absorption dur-

ing times of compression. Thus work is done on the gas (by ionizing Helium) instead

of raising the temperature of the layer. This high-opacity layer is pushed outward

by radiation pressure until the density and temperature is low enough to allow re-

combination of the ionized Helium; the layer collapses inward and the process begins

again.



23

CHAPTER III

DATA ANALYSIS AND METHOD

The data used in this thesis was collected over a period of three years at Fred Whip-

ple Observatory 1.2-meter telescope in southern Arizona. Observations were made

through three wide-band filters: B, V, and I, with central wavelengths near 440, 555,

and 830 nanometers, respectively. The galaxy we are interested in, M33, is centered

at (RA, Dec) = 1h 33m 50.9s,+30o 39′ 36′′ (J2000). M33 was broken up into several

observing regions; the field used in this thesis was labeled “C” and “Y3”, depending

on the camera being used to obtain the images. The approximate center and extent

of the field is shown by the white box in Figure 1. The images had been previously

reduced, but had never been analyzed as a complete three-year data set.

PSF photometry was carried out using the DAOPHOT/ALLSTAR and ALLFRAME

packages developed by Dr. Peter Stetson. We analyzed 265, 78 and 35 frames in

the V, I and B filters, respectively. Over 40,000 stellar objects were detected. We

then matched our images to a world-coordinate system and corrected our magnitudes

to the standard system, which involved zeropoint and color corrections. Finally, a

variable search was performed, utilizing both the TRIAL software package developed

by Dr. Peter Stetson and additional software developed at A&M by Dr. Anne Pellerin

Photometry

The data was initially processed using the DAOPHOT/ALLSTAR package (Stetson

1987), which carries out photometry in each of our images. Photometry is a technique

used to measure the flux of a point source by counting the electrons collected in a CCD
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detector. These electrons, originally created by photons incident on the detector, are

linearly correlated to the apparent brightness of a star. Since our fields contain stars

that are very close to each other, the proper method for performing this photometry

is to derive a Point Spread Function (PSF) using bright isolated stars in each image

and then scale this function to fit all fainter objects. PSF stars may vary from image

to image.

Once photometry of each individual frame has been completed we use the (x,y) coor-

dinates of each star determined through PSF fitting to correlate stars from one image

to the next. This is done using two programs called DAOMATCH and DAOMAS-

TER. We then used these coordinate transformations to make a median image of

the field with a program called MONTAGE. This median image is then run through

PSF photometry again several times, using a process of image subtraction with ALL-

STAR, then finding additional stars and adding these new stars to the list. This

process found 3.2× 104, 4.0× 104, and 2.7× 104 objects in V, I, and B, respectively.

The process of inter-frame magnitude correlation is done by using ALLFRAME. This

process measures the magnitude of every star in the list for each individual frame

and filter. This generated approximately 107 photometric measurements. We then

would like to know how magnitudes scale from frame to frame. To do this we chose

reference stars based on their magnitude, error, and whether or not they appeared in

all frames. A magnitude versus error plot is shown in Figure 6.

We then set the frame-to-frame zeropoint magnitude based on these “secondary stan-

dard stars” using a program called CCDAVE. Knowing the relative magnitude from

frame-to-frame and the date of each magnitude allows us to make lightcurves such as
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Fig. 6.— Photometric error as a function of magnitude, indicating typical photometry.

the ones shown in Figure 7 which illustrate magnitude variation from one observation

to the next.

Photometric calibration

The instrumental magnitudes for all stars must now be transformed to the standard

system. This is usually done by observing so-called “standard stars” at a variety

of elevations during several clear nights within the observing season. However, the

DIRECT project had to cover a lot of fields in M31 and M33 each night and thus

had very little time to devote to this type of observations.

M31 and M33, along with many other Local Group galaxies, were recently surveyed

by a collaboration led by Dr. Phil Massey of the United States Naval Observatory in

Flagstaff, AZ. The scientific goal of their project was to identify very massive stars

in these galaxies through accurately-calibrated broad- and narrow-band photome-
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Fig. 7.— Three sample lightcurves.
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Fig. 8.— RA-Dec coordinate matching, showing a match within .3”.

try. These observations were presented in Massey et al. (2006). While accurately

calibrated, this survey has no variability information.

Given the relative paucity of standard star observations in the DIRECT project,

we decided to calibrate our photometry by matching bright stars in our field to the

Massey et al. database. However, to do this we first needed to map the CCD x-

y coordinates to celestial coordinates (also known as a World Coordinate System

transformation). To set the world coordinate system of our images, we used the

IMWCS program which is part of the WCSTools package (Mink 2002). Once we have

the Right Ascension (RA) and Declination (Dec) of our stars we can match them to

the database of Massey et al. Figure 8 indicates the results of this match, including

a tight, well-matched set of stars near position (0,0).
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These matched stars are then used to find the transformation from instrumental to

standard magnitudes. This process involves two steps. First, we must correct for the

slight differences in central wavelength and bandwidth of the filters originally used to

define the standard system and those used in the cameras at the Whipple Observatory.

Additionally, this correction takes care of the different relative efficiencies of the

photoelectric equipment used to originally define the standard system and modern

CCD cameras. This process is known as “color-term correction.” Hicken et al. (2009)

determined very accurate color terms for the cameras we used, so we adopt their

equations listed below:

(vobs − Vstd) = color term× (B − V )std (3.1)

= 0.0366× (B − V )std (3.2)

(b− v)obs = 0.8928× (B − V )std (3.3)

(v − i)obs = 1.0166× (V − I)std. (3.4)

These equations can be seen graphically in Figure 9, which shows that by using the

color terms we are essentially making our colors equivalent to those in the standard

catalog. The left panels of Figure 9 show the uncorrected relation between instru-

mental and standard magnitudes, while the right panels show the same relations after

we applied the color-term corrections of Hicken et al. The y-axis intercept defines the

other term in this calibration process, which is known as the “zeropoint” value. We

derived zeropoints of V = 2.904, I = 2.731, and B = 2.291 magnitudes.
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Fig. 9.— Determination of photometric zeropoints using colorterms from Hicken et

al. (2009).
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Thus, the equations we used to correct our magnitudes are the following:

Vapparent = vobs − Vzpt − color term(v−V ) ×
(bobs −Bzpt)− (vobs − Vzpt)

color term(B−V )

(3.5)

Bapparent = Vapparent +
(bobs −Bzpt)− (vobs − Vzpt)

color term(B−V )

(3.6)

Iapparent = Vapparent −
(vobs − Vzpt)− (iobs − Izpt)

color term(V−I)
. (3.7)

Variable search

Once the magnitude of each star in every frame is known, it becomes possible to

look for variations as a function of time, such as the ones shown in Figure 7. Our

variable search was performed using the modified Welch-Stetson variability index

(Stetson 1996), which identified over 1,200 objects as possible variables. A plot of

variability index versus magnitude is shown in Figure 10. As part of this variability

search, a program called TRIAL will output a data file for each suspected variable

containing the time of each observation and the calibrated magnitude of that star

in that particular image. These so-called “light curve” files are then run through a

template-fitting algorithm developed by Dr. Peter Stetson and implemented at A&M

by Dr. Anne Pellerin. These template Cepheid curves are similar to the one shown in

Figure 3. By stretching and phasing a template curve, candidate variables can then be

identified as Cepheids. This process eventually found approximately 100 Cepheids of

varying periods. In addition, the algorithm fits both a constant and a linear equation

to the light curve. Light curves which were better represented by constants were

thrown out, and those that are better represented by a constant (rather than a model

Cepheid light-curve) were flagged as possible long-period variables. Histograms of

the resulting χ2 values are shown in Figure 11. After the fitting was performed, a

variable must have a χ2 < 60 in order to be considered a candidate Cepheid.



31

Fig. 10.— A graph of the Stetson variability index for all stars, showing the cutoff at

JS = .75.
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Fig. 11.— A histogram of the Cepheid fitting chi-squared values.
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CHAPTER IV

CONCLUSIONS AND DISTANCE TO M33

After completing the variable search and classification we have a full set of possible

Cepheid variable stars which can be used to estimate the distance to M33. To get a

precise and accurate distance, several additional cuts and corrections to the sample

must be made. For instance, the flux of some of our candidate Cepheids will be con-

taminated by light from nearby, unresolved stars and these objects must be removed

from the sample. Other objects will not be subject to this contamination but will lie

along a line of sight that contains a larger amount of interstellar dust, an effect that

must be corrected.

Cepheid selection criteria

With our full list of possible variables, approximately 103 objects, we first apply a

simple χ2 cut to throw out variables which had poor model lightcurves fit to the data.

An appropriate value of χ2 was chosen by considering Figure 11 shown in the previous

chapter. Immediately following the cut in model χ2 we require that the amplitude

ratio of the candidate be in within a certain range. We chose to cut using the ratio

of the amplitudes in the I and V band, as shown in Figure 12. This ratio arises from

the blackbody nature of the Cepheid spectral energy distribution. As the Cepheid

changes in temperature, the flux emitted in the V band will fluctuate more than

the flux emitted in the I band. The expected trend is such that the ratio of I-to-V

amplitude should be about 0.4. We adopted a very generous range of amplitude ratios

that spanned 0.2 to 0.65, depicted in Figure 12.
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Fig. 12.— A graph of all candidate Cepheids with our cut in I-to-V amplitude ratio

indicated by the blue lines.
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After cutting by χ2 and by the amplitude ratio criterion we had reduced our number

of possible variables to approximately 100 objects. These final objects were then

checked using their deviation from the fiducial Period-Luminosity (P-L) relation using

a procedure developed by Dr. Barry Madore. This test is shown in Figure 13. Plotted

in the top section is the difference between measured magnitude and the best fit P-

L relation magnitude (for both V and I on the X and Y axes, respectively). The

trend which becomes visible when these two variables are plotted against each other

represents another well known property of Cepheids. Due to the intrinsic width of the

instability strip, some Cepheids are intrinsically bluer (or redder) than others. This

trend from blue to red can be seen as the diagonally-rising line in the top panel of

Figure 13. At the tip of this line a few more candidate Cepheids can be seen. These

are identified as highly reddened Cepheids, most likely due to dust. This diagonally-

rising direction is the only direction in which an object can be reddened by dust.

Therefore we make our cut using the P-L relation by eliminating those candidates

which are not near this blue-red line or near the red tip. The objects which pass the

cut are shown in red boxes in Figure 13, where the P-L relation has also been plotted

to show the effect of this cut on our I-band. Approximately half of our candidates

were rejected using this method.

P-L relations and reddening

Having now made several cuts, we have reduced our possible Cepheid pool from

approximately 1000 to around 50. These final candidates are the most reliable sample

for performing distance measurements. A few of their lightcurves are shown in Figure

14. Their location on the color-magnitude diagram is shown in Figure 15.
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Fig. 13.— The P-L relation cut, where red boxed objects were kept and unboxed were

thrown out.
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Fig. 14.— A sample of some well-defined Cepheid light curves from our data.
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Fig. 15.— Color-magnitude diagram showing the distribution of stars and Cepheids

(shown in color).
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In order to derive a distance to M33 using these Cepheids, we first need to adopt a

fiducial set of Period-Luminosity relations. These come from the OGLE II project

which discovered over 600 Cepheids in the Large Magellanic Cloud (LMC) (Pietrzyn-

ski & Udalski 1999). The Cepheids which compose the data set have periods between

2 and 30 days, and were observed in the B, V, and I filters, making them ideal for

our data. The fiducial P-L relations take the form:

mB = −2.439 (logP − 1) + 14.929, σ = 0.239 (4.1)

mV = −2.779 (logP − 1) + 14.287, σ = 0.160 (4.2)

mI = −2.979 (logP − 1) + 13.615, σ = 0.107 . (4.3)

However, the magnitudes in these equations are apparent magnitudes, owing to the

distance to the LMC. In order to find the distance modulus µ to M33 then we must

take into account the distance to the LMC; a number which is somewhat controversial.

In this thesis we adopt an LMC distance of 48.3 ±1.4 kpc, corresponding to a distance

modulus of µLMC = 18.42 ± .03 mag (Fitzpatrick et al. 2003). Subtracting this

number from Equations 4.1, 4.2, and 4.3 to get the absolute magnitude MB, MV , and

MI . Then we form the distance moduli in each observed band (b, v, and i) using

µ = m−M :

µB = b − [−2.439 (logP − 1)− 3.491] (4.4)

µV = v − [−2.779 (logP − 1)− 4.133] (4.5)

µI = i − [−2.979 (logP − 1)− 4.805]. (4.6)

Period-Luminosity relations for the final set of M33 Cepheids are plotted in Figure

16. We fix the slope of these relations to those of the LMC relations and solve for the

distance modulus. This figure includes an additional panel which plots the Wesenheit



40

Fig. 16.— Period-luminosity relations for our final set of Cepheids.
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relation W = 2.45 (V − I) (to be described later). We find the following distance

moduli: µB = 25.299, µV = 25.103, µI = 24.848, and µW = 24.604.

The range of µ values found above is due to the fact that there exists a certain amount

of dust between the observer and Cepheid, so all objects will suffer from a reduction

in the flux, a process called “extinction”. This process preferentially affects shorter

wavelengths, giving rise to increasingly larger apparent distance moduli as a function

of inverse wavelength. All of this can be accounted for, however, using a model for

the interstellar extinction of light (Cardelli et al. 1989). Assuming a value of total-

to-selective extinction RV (= AV
E(B−V )

) of 3.1 we can then use models that span the

ultraviolet, optical and infrared regions of the electromagnetic spectrum to account

for this effect. This is done by fitting curves to the observed magnitudes in several

bands. An equivalent method is fitting it to the distance moduli in each band, which

we do in Figure 17. The red line in Figure 17 consists of the infrared model, and

the green line refers to the optical/UV model. By extending the infrared model all

the way to λ−1 = 0, or λ = ∞, we are essentially modelling what the magnitude

would be like without any dust effects. Thus the point at which the infrared model

intersects the y-axis is our true distance modulus, µ0. Using the µ values calculated

in each band and then performing the extinction correction we arrive at a value of

µ0 = 24.49 ± 0.01 mag. However, this is not the only source of uncertainty in the

distance estimate. Other sources of error are characterized in the next section.

Error budget and distance to M33

Several sources of uncertainty must be included in our analysis. The photometry

was calibrated against the database of Massey et al. (2006) and exhibited an overall
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Fig. 17.— Distance determination using extinction correction.
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uncertainty of ± 0.04 (statistical) and ± 0.03 mag (systematic). In addition, the

uncertainty in the distance modulus of the LMC was estimated to be ± 0.03 mag.

Thus our total error in the distance modulus is ±0.07, or µ0 = 24.49± .07 mag. This

distance modulus corresponds to a distance of D = 790± 25 kiloparsecs.
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