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ABSTRACT 

 

Extraction of Spin Polarization of Bulk and Measurement of Transport Properties of 

Thin GdxSi1-x Near the Metal-Insulator Transition. (May 2009) 

Raj Vibhuti Anand Srivastava, B.Sc.; M. Sc., Indian Institute of Technology, India; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Winfried Teizer 

 

 Since the early 1960s, Abrikosov-Gorkov theory has been used to describe 

superconductors with paramagnetic impurities. Interestingly, the density of states 

resulting from the theoretical framework has to date only been known approximately, as 

a numeric solution of a complex polynomial. An analytical solution to the theory was 

discovered and applied to extract the spin polarization from the tunneling conductance of 

superconducting aluminium with 3-dimensional (3-D) amorphous (a-) 

gadoliniumxsilicon1-x (GdxSi1-x) as a counter electrode (Al/Al2O3/a-GdxSi1-x planar tunnel 

junction measured at T = 25 mK and H ≤ 3.0 T) in the quantum critical regime (QCR). 

The analytical solution is valid in the whole regime of Abrikosov–Gorkov theory 

independent of the presence of an energy gap. 

Applying the spin polarized Abrikosov-Gorkov theory to describe aluminium 

gives a larger spin polarization in GdxSi1-x than the spin polarized Bardeen-Cooper-

Schrieffer (BCS) theory. The purpose of this study is to extract polarization at various 

applied magnetic fields, but no specific relationship between the two could be 
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determined. Results obtained shows a transition from a superconductor with a gap to a 

gapless superconductor in varying external magnetic fields was observed. 

 To improve understanding of GdxSi1-x near the metal-insulator transition (MIT) 

and compare it with prior work, the initial experimental attempts to investigate the 

transport property of GdxSi1-x near the MIT in the 2-dimensional limit are presented. A 

low temperature ultra high vacuum quench condensation system was used to make thin 

films of GdxSi1-x and in-situ measurements were performed. The transport properties for 

different values of x and thicknesses were measured for T = 4.2 K to ~10 K. In addition 

to other possible causes, the uncertainty in the electron impact emission spectroscopy 

(EIES) appeared to be a major reason behind the observed error in x when gadolinium 

and silicon are co-evaporated. The problems faced during the co-evaporation are also 

discussed. 
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CHAPTER I 

 

INTRODUCTION 

 

 The existence of solids as either metals or insulators has been a fundamental 

physical observation. In a metal electrons are free to move around, whereas in an 

insulator electrons are bound to their atoms. To provide one specific theory to explain 

metal-insulator transition (MIT) phenomena has been a challenge for many decades. The 

age-old question, “What mechanism at the atomic scale changes the physical properties 

of the bulk material?” becomes even more interesting and tricky in the context of the 

MIT. 

 

A. OVERVIEW 

 

The MIT is one of the most interesting phenomena in condensed matter physics.1 

Different MITs can be classified depending on structural, electronic or correlation 

effects (electron-exciton interactions), magnetic (either orbital or spin) interactions, 

variable valence effects, order-disorder transitions and others.2 Some MITs are the result 

of more than one of the above effects. 

 
____________ 
This dissertation follows the style of Physical Review B. 
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 No single comprehensive theory exists that can explain all the different types of MITs, 

however, depending on the system and the internal conditions, a specific explanation 

prevails for each observed MIT.    

Recently, the field of MIT has resurfaced and received considerable attention, 

mainly due to the discovery of high Tc-superconductivity and colossal magneto 

resistance (CMR) in perovskite-like metal-oxide cuprates and manganites.3-11 The  MIT 

has been revisited in recent years to improve the understanding of the Mott transition,3-

9,12 which is controlled by the electron density at zero temperature. The Mott transition 

occurs at a critical density nc, which is a result of the Mott criterion. The Mott transition 

theory fails to explain some other observed phenomena in the MIT such as magnetic 

effects, electron-phonon coupling (polarons), disorder (Anderson Localization) and other 

interactions.12 

The MIT in doped semiconductors has been a well known subject of 

investigation for many years,3-6 and is studied in detail in a large number of experiments 

related to the MIT field, for example Ref.13-21 and references within. Random doping can 

cause a system to become extremely disordered; that increasing disorder leads to an 

Anderson transition where the carriers become localized. Contrary to localization due to 

disorder, the correlation of electrons becomes important and the system is close to a 

Mott transition. Some systems show both Mott and Anderson effects, and as the doping 

concentration is increased, semiconductors reach the percolation limit (Anderson-Mott 

transition) and become insulator. 
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B. METAL-INSULATOR TRANSITIONS 

 

Generally, MITs are divided into two categories depending on the method of 

physical effects -- structural effects and electronic effects. While the former lead to a 

change in the band gap that changes the conduction electrons and hence causes a MIT, 

the latter can further be divided into two classes: a transition affected by electronic 

correlation and a transition affected by disorder. The first is known as a Mott transition 

and the second as an Anderson transition. 

 

B.1. THE MOTT TRANSITION 

 

In the late 1920s, Bloch, Peierls and Wilson gave a successful quantum 

mechanical explanation for physical properties of metals and non metals. In 1937, Boer 

and Verwey pointed out that nickel oxide does not show metallic behavior, although 

according to the Bloch, Peierls and Wilson theory, it should have shown metallic 

behavior due to the partially filled d-band of the Ni2+ ion. The lack of consistency in 

theory and experiment stimulated further investigation of descriptions for transitions of 

metals and non metals. 

Mott explained the MIT for a crystalline system by considering a system made of 

hydrogen-like atoms with a lattice parameter a, which can be varied. Mott calculated that 

a MIT will occur when  
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2.03
1

≅Han       (I-1) 

where n is the number of lattice points per unit volume and aH is the hydrogen radius. 

When a ~ (n)-1/3 is small, the system is a normal metal; however, when a is large, the 

system is an insulator. Somewhere between these two ranges, there is a sharp transition 

from a normal metal to an insulator. At zero temperature, there will be a sudden, sharp 

change in conductivity from infinity to zero. The formula in Eq. (I-1) gives successful 

results in heavily doped semiconductors. In the Mott transition at T=0, the number of 

carriers vanishes.22 

 

B.2. THE ANDERSON TRANSITION 

 

For disordered systems, a different form of MIT occurs. It is known as the 

Anderson transition. In these systems, electrons can stay localized at a range of energies. 

At zero temperature, the system will not conduct, even though the density of states is 

non zero near the Fermi level. 

 In 1958, Anderson showed that in certain random fields, when the random 

potential difference, V0, is larger than the band width, B, the electron wave function can 

be localized, which leads to zero conductivity. Figure I-1 shows a random potential 

energy model as introduced by Anderson. 
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FIG. I-1. Random potential energy introduced by Anderson (a) V0=0. (b) V0/B large.3 

 

  

 If the random potential model has fluctuations within the limits of ±1/2 Vo then, 

for a critical value of (Vo/B) critical at zero temperature, the diffusion of electrons is not 

possible. Figure I-2(b) shows localized wave functions that lead to zero conductivity. 
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FIG. I-2. Wave function of an electron when L ~ a (a) Extended states, (b) weakly 

localized states (L is mean free path).3 

 

C. MAGNETICALLY DOPED SEMICONDUCTORS 

 

In the late 1970s and early 1980s many materials were tested if a MIT was 

observed as the doping concentration was varied. For each material, a sample was 

prepared to check whether it was a metal or an insulator. The doping parameter was then 

altered to make another sample to measure the same physical property. The process of 

making different samples features one external parameter, which gives a discrete data set 
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that is available to tune the material through the MIT. In some studies, the densities of 

states for each sample were also measured by tunneling with a discretely varying doping 

parameter.23  

In 1983, Hertel et al. measured the density of states and conductivity near the 

MIT as well as other physical properties of NbSi.24 The group then sought out a method 

through which a sample could be tuned by an external parameter.  Later, Dynes and 

coworkers substituted Nb with Gd to see a similar MIT, but gained an extra external 

control to drive the system through the MIT by magnetic field. By doping silicon, a 

prepared sample can be tuned and measured through the MIT. GdxSi1-x has been 

rigorously studied and measurements of different physical properties like structure,25 

conductivity,26,27 density of states,28 magnetization,29 specific heat,30 the Hall effect,31,32 

optical/IR conductivity33 and spin polarization34 have been measured in the 3-D case. 

Other groups found it was possible to tune or drive the sample through the MIT using an 

external parameter like pressure (stress),35 light (illumination of electro-magnetic 

radiation)36 or magnetic field.37 

As mentioned before, some materials can be driven through the MIT using 

external parameters, allowing for the measurement of the conductivity as a function of 

the external parameter such as magnetic field, illumination or pressure. In each case of 

an externally controlled MIT, one critical sample can be made that can be driven from an 

insulating phase to a metallic phase by varying an external parameter. It is also useful 

and important to measure the density of states during the MIT as it will give more 
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physical understanding of the mechanism that the system undergoes and how the 

external parameter alters the density of states (DOS). 

One of the methods to measure the DOS in a system is to measure a tunnel 

conductance across a barrier. Of the external parameters mentioned above, only the 

magnetic field can be used successfully. In the case of an external parameter such as 

pressure (stress), the tunnel barrier may be destroyed.  In the case of using light as an 

external parameter, the material is covered under the tunneling leads, always leaving 

doubt whether the material under the tunnel barrier is affected by the illumination or not.  

The best candidate for the external parameter is magnetic field, which can be used to 

measure the DOS without any experimental difficulties.  

 

D. DILUTE MAGNETIC SEMICONDUCTORS 

 

If a semiconductor crystal is doped with magnetic impurities, then the system 

shows both semiconducting and magnetic properties. In early 1970s there were 

numerous attempts to make samples with magnetic impurities to study the electron spin 

resonance in magnetic ions. Semiconductors doped with transition ions such as Mn2+ or 

Fe2+ were classified as dilute magnetic semiconductors.38,39,40 In these systems the 

magnetic ion is randomly substituted in the crystal site with charge conservation. These 

crystals were also known as semi magnetic semiconductors or dilute magnetic 

semiconductors (DMS).41 The magnetic ion changes the electric and magnetic properties 

of the parent crystal. Examples of change in properties are the spin Zeeman splitting, and 
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Faraday rotation. These significant changes in the physical property can be used in 

various optical and electrical devices for example magneto-optical drive. 

 The sample under study for this project is far from the regime of a DMS as the 

doping concentration of the magnetic material is larger than the transition ions used in 

the DMS mentioned above. In addition, most of the DMS doping elements only have 

unfilled d-shell electron(s), while for higher doping concentrations elements with f-shell 

electrons are preferred. 

 Gd42 and Tb43 are metallic, but their magnetic behaviors are very well described 

by the localized spins of the incomplete ionic f- shell, which interacts with a 

semiconductor like silicon. In summary, GdxSi1-x demonstrates very rare physical 

properties that are interesting to investigate further in the dimensionality and the disorder 

limit near the QCR.  

 

E. BRIEF SUMMARY 

 

 This dissertation is composed of eight chapters, starting with this introduction. 

Chapter II gives a brief introduction to the material under study, GdxSi1-x, and provides 

the motivation for the experimental setup. Chapter III introduces an analytical solution 

of the Abrikosov-Gorkov theory and explains its usefulness for calculating the density of 

states for a superconductor in an external magnetic field. The solution will then be used 

in Chapter IV to extract spin polarization in a tunneling experiment. Chapter V describes 

the experimental setup and different components of the experiment and Chapter VI will 
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cover the calibration and measurement part of making the thin films. The results and 

analysis are covered in Chapter VII. Finally the last chapter will conclude with a 

summary of the issues and other problems faced during this work, which can be used as 

a reference for further research. 
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CHAPTER II 

 

 MOTIVATION 

 

The introductory chapter explained the development of magnetically doped 

semiconductors and elaborated on how the resulting samples possess many interesting 

physical properties along with the roles they play in the theory of the metal-insulator 

transition (MIT). Chapter II introduces gadoliniumxsilicon1-x (GdxSi1-x), a magnetically 

doped semiconductor and shows different physical properties of it.  This alloy shows a 

MIT phenomenon. Chapter II also gives a brief introduction to different theories 

explaining the phenomenon and motivates for the use of GdxSi1-x for this study. 

  

A. PHYSICAL PROPERTIES OF GdxSi1-x 

 

The variation of the concentration of gadolinium atoms in amorphous silicon, 

GdxSi1-x, leads to a MIT as in Fig. II-1. The conductivity is very sensitive to the value of 

x (x is the fraction of gadolinium atoms in GdxSi1-x). Figure II-1 shows that the fit for x = 

14% has weak localization and Altshuler and Aranov type interactions.44 
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FIG. II-1. Conductivity of GdxSi1-x for different values of x (from Ref.45). 

 

A comparison conductivity of gadolinium doped silicon with the counter element 

yttrium doped silicon, which has almost the same atomic size but no magnetic property, 

clearly shows that affects of magnetic moment of gadolinium are at much higher 

temperature (Fig. II-2). 
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FIG. II-2. Conductivity of GdxSi1-x and YxSi1-x for same value of x.45 

 

Bokacheva et al27 prepared several GdxSi1-x samples with different values of x, 

shown in Fig. II-3. Their samples show negative magneto resistance (NMR). In fact, 

sample (#3) which can be tuned from an insulator to a metal using a magnetic field and 

hence highlights the fact that GdxSi1-x experiences a magnetically tuned MIT. 
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FIG. II-3. Low temperature conductivity σ(H) of seven different samples versus the 

applied magnetic field. At H= 0.1 T samples #1 and #2 are insulating, sample #3 is at the 

transition, sample #4 and #5 are slightly metallic, samples #6 and #7 are in the metallic 

regime (from Ref.27). 

 

To summarize, GdxSi1-x is a special alloy that experiences a MIT if the value of x 

varies.  For x ≈ 14%, it undergoes the MIT in an external magnetic field. Measured 

conductivities (Fig. II-3.) are below the Mott minimum conductivity [~ 500 (Ω cm)-1] for 

all samples (more than two orders lower for some of them), and demonstrate strongly 
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correlated electron effects deep in the quantum critical regime. The material has disorder 

and strongly correlated electrons, which implies an Anderson-Mott transition.  

Under these specific physical limits, Sample #3 was used for a tunneling 

experiment to understand the density of states of the system near the MIT, which will be 

described in Chapter III.  

The unique set of properties mentioned above was also the motivation to 

understand and probe further into the MIT in 2-dimension (2-D); this study is aimed at 

better understand the basic theory of the electron-electron interactions. The experiment 

also helps to further understand the role of magnetic impurities and (or) external 

magnetic fields in a 2-D magnetically doped semiconductor. 

In addition to properties mentioned above, normalized conductance 

measurements of thin Al/Al2O3/amorphous GdxSi1-x planar tunnel junctions at T= 25 mK 

in an applied magnetic field, H ≤ 3.0 T, display spin polarization. In contrast to previous 

attempts34 using the Bardeen-Cooper-Schrieffer theory,46 the Abrikosov-Gorkov theory47 

was applied to extract the spin polarization, which will be discussed in detail in Chapter 

III.  

 The Anderson-Mott transition shows a large change in the resistance in an 

applied magnetic field that is similar to colossal magneto resistance (CMR) but opposite 

in sign. The reason behind the CMR effect is not the same as in the Anderson-Mott 

transition. GdxSi1-x shows negative magneto-resistance as compared to non-magnetic 

YxSi1-x. GdxSi1-x shows a unique convolution of the two theories in one sample.48  
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B. SCALING THEORY 

 

MIT can also be understood by the most powerful theory of localization which is 

the scaling theory of Abrahams et al.49 The basic concept of scaling theory is very 

simple. Assume there is a bag full of resistors. If two resistors with the same values of 

resistance are hooked together, then they are indistinguishable; that is, it does not matter 

which one is connected first. The underlying mechanism in the physical reasons for 

resistance is considered to be the same as for the density of states or disorder. Further, a 

larger scale resistor can be made using these resistors. If l identical resistors of resistance 

r are connected then the total resistance will be a function of r and l only. 

To simplify it further, the resistors can be reduced to a basic quantum of 

resistance RH= h/e2 ~ 25K ohm. 

Let the length of the material needed to have resistance RH be l0; then the 

resistance of any other length L of the same material can be related as 

R1(l)=R1(l/l0) .    (II-1) 

 The main hypothesis of the scaling theory is that there is only one function R1(l), 

and the resistance of every quantum resistor changes with length. 
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To appreciate the power of the scaling theory, suppose the function of R1(l) is 

known, then whatever material is used, if the resistance for a given length is known,  the 

resistance for any desired length can be derived. The one functional dependence 

hypothesis can be extended to two and three dimensions, as well, though the way these 

resistors will be hooked together is slightly different. The resistance of a square with side 

length L can be written as R2(L)=R2(L0/L) and the same way for 3-D. More generally, for 

a dimension d, dependence can be written as Rd ~ L(d-2). 

In d=1 and d=2, there is no problem supporting that R rises monotonically with 

L, but in d=3, R shrinks as a function of L when it is small and is very large when L is 

large. To guess the function, Abrahams proposed a function that is not related to 

resistance but to the conductance g~1/R of the material. 

L
LgLg

ln
)(ln)((

∂
∂

=β      (II-2) 

Figure II-4 shows the prediction of Eq. (II-2) for different dimensions. 
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FIG. II-4. Plot of β(g) vs. ln(g) for d > 2, d = 2, d = 3. g(L) is normalized ‘local 

conductance.” The approximation )ln(
cg

gs=β  is shown for d > 2 as the solid-circled 

line; the unphysical behavior necessary for a conductance jump in d=2 is shown dashed. 

 

Fig II-4. shows that there is only one critical point with the cross-over on the y=0 

axis. According to the scaling hypothesis, the MIT is possible only when d=3. The 

observation of a MIT at B=0 and in 2 dimensions50 gave an indication that Abrahams49 

theory does not include all mechanisms and considers only non interacting electron 

system. Punnoose and Finkelstein51 included electron-electron interaction at low 
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temperature with the disorder. They showed that in the presence of impurities, the charge 

perturbation and the spin densities relax diffusively over a large distance. In highly 

correlated systems, either electron-hole interactions (defined as cooperon), or electron-

electron interaction (defined as diffuson) can occur between two electrons with each 

quasi particle having its own channel to interact and conduct.  

In GdxSi1-x, when a magnetic field is applied to the sample, disorder from the 

magnetic impurity (Gd) is reduced. The applied magnetic field orients the magnetic 

impurity and results in a reduction in randomness. In turn, the reduction in randomness 

leads to a reduction of the localization of the electrons, and eventually the conductivity is 

increased. The magnetic field indirectly controls the degree of disorder in the system, 

which is rarely observed in other systems. 

As the system is reduced to 2-D, the effects of both quasi particles start showing 

up in different ways. Each channel (interaction mode) is affected by the magnetic 

impurities and the external magnetic field. It is crucial to know the spin relaxation and 

scattering amplitudes to understand the system. Dimensionality defines the relation 

between the conductivity of the sample and the temperature. The conductivity is a 

logarithmic function of temperature in 2-D and a square root function in 3-D.  We 

attempted to probe the 2-D MIT GdxSi1-x. 

In recent years, the MIT of semiconductors and amorphous metal-semiconductor 

mixtures has been considered an example of a continuous quantum phase transition with 

certain scaling properties. The scaling theory of the MIT describes the critical behavior 
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of a system by an analogy with second order phase transitions, on the basis of power 

functions of the coherence length. 

ν

ξ
cn

n−= 1      (II-3) 

The scaling theory deals with the spatial scale (size) of the correlation length in a 

critical region where it increases infinitely. In the critical region, the system’s local 

properties do not play an important role, and the correlation length (diverging at T→ Tt) 

is the only parameter that defines the phase transition (where Tt is the transition 

temperature). The same behavior of ξ in a doped semiconductor is observed for n→ nc, 

and the value of ξ is equal to the localization radius R on the insulator side of the 

transition. On the metallic side, σ, the conductivity goes to zero as n→nc as given by Eq. 

(II-4). 

µσ )1(
cn

n−≈      (II-4) 

The exponent μ in Eq. (II-4) is related to the correlation length exponent, ν, and 

the dimensionality6, d. given by Eq. (II-5)  

)2( −= dνµ        (II-5) 

The relation predicts that the MIT (Anderson) is a continuous phase transition 

and the conductivity of the doped semiconductor has the form of Eq. (II-4). Thus, 

scaling theory is an important tool to extract physical information about the system at 

MIT, which is dependent on the dimensionality of the sample and the type of element 

(magnetic or non magnetic) introduced in the semiconductor. 
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C. QUANTUM PHASE TRANSITION 

 

Quantum phase transitions (QPT), from insulator to superconductor or from 

insulator to metal, depend only on disorder or external magnetic field and are 

independent of temperature, as opposed to processes like the melting of ice. In the QPT 

scenario, the tuning parameter transforms one quantum mechanical system to another, 

e.g., from a localized to an extended electronic state. All quantum phase transitions are 

observed at absolute zero temperature and are thus governed by the quantum critical 

point at T = 0. 

 

D. DIMENSIONALITY EFFECT ON PHYSICAL PROPERTY 

 

D.1. ONE DIMENSIONAL EFFECTS 

 

According to Peierls theorem, a true one-dimensional metal does not exist as its 

fermi surface is destroyed by periodic lattice distortions that change the crystal 

periodicity.52 But it is not obvious that a periodic lattice distortion is energetically 

favorable, as it will be opposed by the elastic energy resulting from the short-range 

forces caused by the periodicity in the lattice. Thus an appropriate Peierls distortion can 

destroy the metallic behavior in a 1-D lattice. In addition, according to Peierls theorem, 

in a 1-D system, electronic perturbation always destroys the conductivity. However, it is 
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possible to have a 1-D superconductor, which allows a temperature induced 

superconductor-insulator transition in one-dimensional systems. 

 

D.2. TWO AND THREE DIMENSIONAL EFFECTS 

 

To understand the interaction of the electrons in strongly doped semiconductors, 

it is important to include all possible interactions between the electrons, such as lattice 

disorder, band structure, polarons, binding to defect sites, and Coulomb forces. 

Initially it was predicted that a MIT would not occur in a 2-D system with 

disorder, 49 or in other words, no quantum diffusion of electrons would take place in 2-D 

in a disordered system at zero temperature. Even a small disorder will trap electrons and 

no net current will be produced. The scaling theory does not include any interaction 

between electrons, but highly correlated electrons have been shown to lead to a MIT in 

2-D systems. 

Another way to look at a MIT is through topological defects. In 1-D any one 

defect will lead to a bound state and prohibit conductivity through the system. Using the 

same reasoning in 2-D, no topological path is likely to avoid defects and make the 

system conductive. The defects will have exponentially decaying bound states 

throughout the system hence no conductivity. Whereas in 3-D, some topological path 

around the impurities or defects should be able to lead to a conductive path but still have 

local bound states. 
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CHAPTER III 

 

ANALYTICAL SOLUTION OF ABRIKOSOV-GORKOV THEORY* 

 

A. INTRODUCTION 

 

The basic microscopic theory of superconductivity by Bardeen, Cooper, and 

Schrieffer46 (BCS) is based on the pairing of electrons with opposite physical properties 

such as momentum and spin, and leads to various spin-dependent properties. The 

original BCS theory was formulated in such a way that it covers only homogeneous 

superconductors and excludes superconductors with either intrinsic or extrinsic 

inhomogeneous states. Yosida53 showed that the spin susceptibility of superconductors 

goes to zero as the temperature reaches zero. Subsequently, Chandrasekhar54 and 

Clogston55 identified an upper limit of the critical magnetic field for a thin film of a 

superconductor whose thickness approaches zero. Fulde56 noted that the density of states 

(DOS) for the quasiparticles splits into separate densities of states for each spin 

population. 

The DOS of a clean conventional superconductor is customarily described by 

BCS theory through a model of paired electrons. Bogoliubov et al.57 and Valatin58  

 
________________________ 
*Part of this chapter is reprinted with permission from “Analytical density of states in 
the Abrikosov-Gorkov theory” by R. V. A. Srivastava and W. Teizer, 2008. Solid State 
Comm, 145, 512-513, Copyright © 2007 Elsevier Ltd. 
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independently found a canonical transformation of the Hamiltonian, thus simplifying the 

mathematics of the BCS theory. Using the canonical transformation, Abrikosov et al.59 

decoupled the Green’s functions equations of motion to extend BCS theory for external 

potentials and gauge invariance.  

Reif60 had shown a shift in the nuclear magnetic resonance frequency (Knight 

shift) in mercury before the publication of the BCS theory. Thereafter the same effect 

was shown for tin,61 vanadium,62,63 and aluminum.64 Ferrell65 and Anderson66 suggested 

that the spin-orbit interaction is of a general kind, which affects the spin states and the 

pairing between the time-reversed states. Finally, Abrikosov and Gorkov67 (AG) further 

improved BCS theory to develop a general theory for superconductors.  

The AG theory has been used to describe superconductors with paramagnetic 

impurities. This chapter introduces an exact analytical solution to the above framework 

and shows the solution is valid in the whole regime of the AG theory independent of the 

presence of an energy gap. The solution has computational benefits in the evaluation of 

integrals for tunneling conductances and allows for an analytic description of materials 

with densities of states that are modeled from the basic AG density of states. 

Abrikosov and Gorkov67,68 used the BCS model interaction and described the 

impurities as point scattering sources with short-ranged effects. These impurities can 

change the electromagnetic properties of superconductors by removing the anisotropy, 

changing the electronic density of states and even altering the effective interaction.69 The 

exchange interaction between the impurity spins and conduction electrons give an 

indirect exchange coupling between the impurity spins that can lead to magnetic 
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ordering at low temperature.70,71  AG theory assumes that the interactions between 

impurity spins are negligible, and the impurity potential is assumed to be short-ranged; 

the correlations between the impurities are negligible. 

The AG DOS typically is derived by numerically evaluating the solutions to a 

complex, fourth-order polynomial: 

  ( ) 0212 222234 =−+−++− ξξαξξ uuuu ,   (III-1) 

where ξ represents the energy difference to the Fermi energy and α is a free parameter. 

One of the roots u (selected according to the boundary conditions) is then used to 

numerically construct the DOS, ρ, according to  
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The approach is quite inconvenient and requires significant computational power 

in projects where finite temperature requires numerical evaluation of folding integrals 

with Fermi functions, such as in the case of evaluating tunneling conductances. No 

analytic expression of the AG DOS has been described to date. 

 

B. RESULTS 

 

Despite the recent efforts72 to achieve a specific microscopic understanding of 

superconductors with paramagnetic impurities, there was an absence of an exact DOS 

expression in AG theory, which is important for ongoing work in several systems.70,73,74 
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Srivastava and Teizer constructed75 an analytical solution for the AG DOS from an 

analytic form for u, which was found as an explicit solution of Eq. (III-1): 
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where the values of A, B, C, D and E are given as: 
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Eq. (III-1) has four solutions which exist in pairs of complex conjugates. Out of 

these two sets of complex conjugate solutions one set is discontinuous and is therefore 

abandoned as unphysical. The other conjugate pair of complex solutions leads to the 

same AG DOS in Eq. (III-2). Eq. (III-3) is that choice of the complex conjugate pair 

which results in a positive DOS. The expression can readily be introduced into Eq. (III-

1), leading to an identical cancellation and thus constituting a solution to the equation.  

In Eq. (III-4), the order parameter is α, and varying the value of α produces different AG 

DOSs. Depending on the value of α, the system can be in a gapless regime (α > 1) or a 

regime with gap (α < 1). For α equal to zero, the system reverts to the standard BCS 

model. Figure III-1 shows plots of ρ=N(u) (using u from Eq. (III-3)) versus ξ which are 

reminiscent of numerical solutions used for decades;76 however, the curves shown are 
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representations of the exact analytic solutions  Eq. III-3. The analytical solution to the 

AG theory facilitates the construction of more complex theoretical DOSs, including 

combinations of several AG DOS and other superconducting systems. 

 
 
FIG. III-1. AG density of states vs. normalized energy for different values of α, (a) α < 1, 

and (b) α ≥ 1. 

 

 In addition, Eq. (III-3) does not require a verification of the solution’s 

independence of the numeric process. The general analytic form with free parameters ξ 
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and α is a significant step forward from the numeric evaluation. (Appendix A shows the 

analytical form and computed AG density of states.) 
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CHAPTER IV 

 

EXTRACTION OF SPIN POLARIZATION NEAR THE METAL-INSULATOR 

TRANSITION USING ABRIKOSOV-GORKOV DENSITY OF STATES* 

 

A.  INTRODUCTION 

 

 The metal-insulator transition (MIT) is a very interesting phenomenon used to 

observe a quantum phase transition (at T=0 K). To explore the MIT in the quantum 

critical regime (QCR), a reversible tunable sample in an external magnetic field H was 

used. From previous work, conductivity, density of states, magnetization, specific heat 

and the Hall Effect were obtained. The Abrikosov-Gorkov (AG) theory was used to 

extract the spin polarization for a 3-D Al/Al2O3/a-GdxSi1-x at T = 25 mK and in different 

external magnetic fields.  

 

B.  SAMPLE PREPARATION 

 

 A (5 nm) thin aluminum (Al) film was thermally evaporated, and then a thin 

native oxide layer was grown by exposing the film to atmosphere for approximately 30 

min. On top of the oxide layer, 100 nm of gadolinium (Gd) and silicon (Si) were  

___________________________ 
*Part of this chapter is reprinted with permission from “Using AG theory to model a 
S/I/N tunnel junction”by R. V. A. Srivastava,W. Teizer, F. Hellman and R. C. Dynes, 
2008. Solid State Comm, 403, 1321-1322, Copyright © 2007 Elsevier Ltd. 
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co-evaporated using dual e-beam evaporation in high vacuum. As a result, a planar 

tunnel junction with Al2O3 as a tunnel barrier was produced. Bulk Al/Al2O3/a-GdxSi1-x, 

with proper values of x (≈14%) and application of an external magnetic field can be 

changed from an insulating to a metallic material.77 

 

C.  TUNNELING THEORY 

 

To measure the density of states of a system, a tunneling experiment was 

employed, as the tunneling conductance is proportional to the DOS. There are different 

types of tunnel junctions that can be used for tunneling experiments: superconductor-

superconductor tunnel junctions (SS), superconductor-normal metal tunnel junctions 

(SN), as shown in Fig. IV-1, and normal metal-normal metal tunnel junctions (NN).78 

The sample was designed with one superconducting counter electrode made of thin Al 

and another made of GdxSi1-x, which is an SN tunnel junctions. 

 

 

FIG. IV-1. The energy diagram of an SN junction in the semiconductor representation; 

(a) V=0, (b) V>Δ/e, (c) the I-V characteristic at T = 0.79 
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Tunneling between a superconductor and a normal metal is given by Giaver and 

Megerle.80 

In this case the tunneling current ISN is given by 

[ ]∫
∞

∞−

+−= dEevEfEfECI SNSN )()()(ρ ,  (IV-1) 

 Where CN, the conductance between the metals when the superconductor is in the 

normal metal state, is given by,  

)0()0()/2( 2
SNN NNMheC π= .   (IV-2) 

M is the tunneling matrix element, NN(E) is the density of states of the normal metal and 

NS(E) is the density of states of the superconductor in the normal state. 

 The normalized conductance of the junction G(V) is given by 
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At T=0 the function degenerates into a d function and )()( 0 eVVG ST ρ== , thus at T=0 

the measured conductance is exactly proportional to the superconducting density of 

states. In a finite temperature range but still in a superconducting regime, the kernel of 

the integral is still sharply peaked and the conductance measured is the density of states 

with some broadening due to temperature.81 
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FIG.  IV-2. Superconductor-normal-metal tunneling. (a) BCS density of states as 

function of voltage. (b) Temperature-dependent kernel in the integral expression for the 

conductance. (c) Theoretically normalized conductance σ.81 

 

Figure IV-2 shows the effect of temperature on the density of states which is symmetric 

near Fermi energy. Spin polarized tunneling will be discussed in detail in spin 

polarization section. 
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D. EXPERIMENTAL SETUP 

 

 The tunnel plane of the sample was aligned in-situ with the external magnetic 

field to < 1°. The tunnel junction was subjected to an external magnetic field from two 

specific directions. One direction is parallel to the planar junction and another direction 

is at an angle of 45° to the plane of the tunnel junction. In the parallel case, an 

appropriate magnetic field was used such that the thin Al remained superconducting, 

whereas in the 45° case superconductivity is quenched as shown in Fig. IV-3. With a 

parallel magnetic field, the junction is an SN tunnel junction, and with a magnetic field 

at 45°, the junction is an NN tunnel junction. The ratio of a tunnel conductance of an SN 

junction (parallel magnetic field) with a tunnel conductance of an NN junction (magnetic 

field at 45°) gives the density of states of the superconducting thin Al with the affect of 

the spin polarization of GdxSi1-x as will be discussed in more detail in section spin 

polarization. 

 For H ≤ 1.5 T, the a-GdxSi1-x is insulating and the conductance is too small to be 

measured accurately. H > 3.0 T quenches the superconducting behavior of Al. Thus, in a 

small range of external magnetic field the spin polarized tunneling conductance can be 

observed and the polarization extracted. The data collected for different magnetic fields 

displayed an asymmetric tunneling conductance. 
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FIG. IV-3. Schematic diagram for the experimental measurement set up and magnetic 

fields direction. 

 

E.  INITIAL ATTEMPTS TO EXTRACT POLARIZATION 

 

E.1. USE OF BCS DENSITY OF STATES 

 

The main observation by Cooper82 was that if two electrons were excited slightly 

above the fermi sea, they could form a bound state which leads to the BCS theory. The 

electron phonon interaction provides a weak attractive potential. The bound state has 

lowest energy if its net momentum is zero, i.e., if the wave function is composed of two 

electrons with equal and opposite momentum. The BCS density of states is given by the 

following equation: 
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                 (IV-4) 

 

 

where Δ is the gap parameter or 2Δ is the energy gap. Figure IV-4 shows the BCS DOS. 

Numerical graphs are truncated at the boundary (as explained in Appendix B). 
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FIG. IV-4. BCS density of state vs. normalized energy. 
 
 
 
 
Fig. IV-4. clearly shows that no states exist within the gap (|E|<∆) and singularities occur 

at the gap edges (|E|=∆). Far from the gap edge (|E|>>∆), the density of states 

asymptotically approaches 1.   
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E.2. SPIN POLARIZATION (SP) 

 

If the population of spin up electrons and spin down electrons are different, then 

the net polarization in the system is defined as: 

↓↑

↓↑

+
−

=
nn
nn

P         (IV-5) 

where, ↑n = number of electrons with spin up, ↓n = number of electrons with spin down 

and ↓↑ + nn = total number of electrons. 

 

 

 

FIG IV-5 . (a) Magnetic field splitting of the density of quasiparticle states into spin-up 

(dotted) and spin-down (dashed) densities. (b) Spin-up conductance (dotted), spin-down 

conductance (dashed), and total conductance (solid line).81 
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Figure IV-5 shows that in a magnetic field there is no asymmetry in the net normalized 

total conductance. To fit the asymmetry in the experimental data we included a 

polarization in the system.  

 

 

FIG. IV-6 (a) BCS density of states of a superconductor as a function of voltage in a 

magnetic field. (b) Temperature-dependent kernels for each spin direction in the integral 

expressions for conductance. (c) Theoretical normalized conductance for each spin 

direction (dotted and dashed curves) and the total conductance (solid line).81 
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 The asymmetry in Fig. IV- 6(c) is due to the polarization in the normal side of 

the tunnel junction, i.e. in the normalized tunnel conductance measured in Al/Al2O3/a-

GdxSi1-x  it is due to GdxSi1-x. In the next section we will show steps to extract the spin 

polarization from the normalized tunnel conductance. 

 

E.3. USE OF SPIN POLARIZED BCS DENSITY OF STATES  

 

After including polarization (P), thermal effects, Zeeman Effect, and lifetime 

effects of quasiparticles (Γ)83, the BCS DOS (Eq. (IV-4)) becomes a spin polarized (SP) 

BCS DOS (Eq. (IV-6)), which is normalized with a tunneling conductance at T=0. Using 

Eq. (IV-6) a SP BCS DOS is plotted as shown in Fig. IV-7. Only the polarization factor 

can lead to an asymmetry in the DOS. 
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FIG. IV-7. Spin polarized tunneling data and fits at T = 25 mK and H = 2.5 T. The fits 

assume a spin polarized BCS density of states. The black curve fit is for no polarization, 

the red curve is for P = 0.10. The asymmetry of the data is better fit by P ~ 0.10.34  

 

F. FURTHER ATTEMPTS TO EXTRACT THE POLARIZATION 

 

Use of a SP BCS DOS does not properly fit the data at the gap edge, as shown in 

Fig. IV-7.  
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There are three well-known experimental methods of determining the 

polarization in a given system: (1) spin-polarized photoemission,84  (2) Andreev 

reflection85 and (3) spin-polarized tunneling.86 Giaever87 first introduced tunneling 

measurements in superconductors which allowed for the measurement of properties such 

as the density of states,88 the de-pairing effect, and the phonon spectrum.89 SP tunneling 

was subsequently established by Meservey and Tedrow.90 

Maki91 extended the effect of Pauli paramagnetism on superconductors to an 

arbitrary temperature using the results given by Clogston55 and Chandrasekhar54. He 

found interesting outcomes for Abrikosov’s mixed state using the generalized Ginzburg-

Landau equation including Pauli terms in the general Gorkov equation, also known as 

the Maki equation,92 and is particularly useful for extremely thin film (thickness d~10 

Å).  We used AG theory instead of Maki’s equation due to the thickness of the 

amorphous Al sample.  

In prior work, Teizer et al 34  implemented SP BCS DOS to find the polarization 

within a system but did not achieve a satisfactory result.  
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F.1. USE OF ABRIKOSOV- GORKOV DENSITY OF STATES 

 

According to the AG theory, paramagnetic impurities do not affect the excitation 

spectrum of a superconductor in any magnetic field.68 Maki93 and Maki and Fulde94 

showed that an essentially identical DOS can describe a superconductor in a high 

magnetic field and a superconductor with nonmagnetic impurities. We have assumed 

that the samples have nonmagnetic impurities. Thus, in a magnetic field these impurities 

can be treated as paramagnetic impurities.  

 

F.2. NUMERICAL METHOD 

 

As the concept of numerical method implies, no exact expression is possible for 

some independent variables. The method generates discrete values of the expression for 

specific values of independent variables. In the AG theory, we get individual values of u 

for the specific value of α and ξ, as given in Eq. (III-1). These u values are then used to 

find the AG DOS as given in Eq. (III-2). Numerical methods allow the computation of 

discrete values of the DOS with discrete values of ξ and α. Including an effect of Fermi 

distribution over these DOSs requires numerical integration over discrete values; these 

integration results depend on the increment of the discrete density of states. 
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F.3. USE OF ANALYTICAL SOLUTION 

 

To circumvent the process above, we have found an analytical solution for the 

AG density of states.75 The analytical method has advantages over the numerical method 

as it does not depend on the iteration value of ξ. Appendix C describe further benefits of 

the analytical solution.  

In Fig. IV-7, a fit can be obtained either at E=0 or at |E|=Δ, but not fit well in 

both regions simultaneously. Paramagnetic impurities affect the excitation spectrum of a 

superconductor as given by the AG theory. As can be seen in Fig. IV-4, the experimental 

density of states is less than the BCS DOS at the gap edge. Achieving a better fit of the 

experimental DOS requires a model that has a lower DOS at the gap edge. At zero 

temperature, the AG theory has a lower DOS at the gap edge, so we used the AG DOS 

with a Fermi distribution and including the Zeeman split to model the DOS. Figure IV-8 

shows the effect of temperature on the AG DOS with the Zeeman shift. 
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FIG. IV-8. AG DOS with the Zeeman shift at T=25 mK, 100 mK, 200 mK and 350 mK. 

 

An increase in temperature smoothes the edges of the DOS plot. Γ cannot be 

included in the AG theory as the AG DOS depends on u, a complex root of Eq. (III-1). 

Including Γ as the imaginary term, as in the BCS approach, yields unreasonable results. 
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The only parameter that allows for control of the sharpness vs. smoothness of the 

data is temperature. Achieving smooth data, as observed in the experiment, requires a 

higher temperature than in the case of BCS. 

 

F.4. PURE ZEEMAN SYSTEM (PZS) 

  

The only way to include asymmetry in normalized tunneling conductance is to 

include polarization in the DOS. If the electron population splits into two independent 

carrier populations, then the net AG DOS is given by Eq. (IV-7): 

)(
2

1)(
2

1)(1 HuNPHuNPuN µµ −
+

++
−

=    (IV-7) 

N(u±μH) is the standard AG density of state as given by Eq. (III-5). Figure IV-9 shows 

the Zeeman shift in AG theory and the combined AG DOS. The net AG DOS is sum of 

two Zeeman shifted AG DOSs and has a bump at the gap (at T =900 mK).  
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FIG. IV-9. Zeeman Shift and combined AG density of states versus energy. 
 
 
  

If only the polarization is included, the fit at E=0 as shown in Fig. IV-10 is not 

good. Fitting the data using AG theory requires one more electron population to decrease 

the DOS at the gap. 
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FIG. IV-10. Normalized conductance at external magnetic field (H = 2.5 T) with three 

different spin polarized AG densities of states versus biased voltage. 

 

F.5. NON PURE ZEEMAN SYSTEM (NPZS) 

 

If all the tunneling electrons are affected by the external magnetic fields and are 

divided into two populations, let us define the system as a pure Zeeman system (PZS). 

Since a fit with the PZS did not represent the data well, we hypothesized that the system 
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is a non pure Zeeman system (NPZS). An NPZS has an extra population of electrons that 

is not affected by the external magnetic field. Thus a NPZS includes three kinds of 

populations: electrons that are spin up, spin down and electrons that are not affected by 

the Zeeman Effect. The cause for the last population may be that over the whole 

scattering path in an NPZS, an external magnetic field prevents a net split. We 

heuristically added the AG DOS that was unaffected by the magnetic field to the 

Zeeman split AG DOS. The ad-hoc model allows for a better fit of experimental data 

simultaneously at the gap edge and the gap. 

Assuming the NPZS and using the three AG DOS functions improves the fit for 

normalized tunneling conductance both at the gap edge (E=0) and at the gap (|E|=Δ). To 

achieve a better fit, we introduced a new parameter x that is the fraction of electrons 

affected by the Zeeman shift in NPZS. Eq. (IV-9) gives the net AG DOS in NPZS with 

the three-population model. Where, N1(u) is from Eq. (IV-7) and N(u) from Eq. (III-5). 

)()1()()( 12 uNxuxNuN −+=                             (IV-8)  

Eq. (IV-8) yields the density of states as shown in Fig. IV-11. Figure IV-11 shows three 

populations and the net AG DOS in NPZS. Half of the electrons undergo a Zeeman split 

in this example. 
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FIG. IV-11. Total AG DOS with three different types of populations (non pure Zeeman 

system) with x = 0.5 versus normalized energy. 
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FIG. IV-12. Normalized conductance at external magnetic field (H = 2.5T) with three 

different spin polarized AG (non pure Zeeman system) densities of states versus biased 

voltage. 

 
Fig. IV-12 shows three fits with different polarization. Clearly the NPZS AG 

DOS is a better approach than the PZS AG DOS, resulting in reasonable improvement in 

the fit using AG theory over BCS theory. 

Further improvement was obtained by using different values of Δ as shown in 

Fig. IV-13. The increase in Δ increases the gap width. Vertical lines on the Fig. IV-13 
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show the highest point of the AG DOS (three-population). The values of Δ and α are 

selected to satisfy values at E=0 and |E|=Δ simultaneously. 

. 
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FIG. IV-13. AG density of states in non pure Zeeman system with constant α = 0.3, x = 

0.5 and P = 0.0 and varying gap energy (Δ = 0.30, 0.35 and 0.40). 

 

To compare the result with the BCS theory, we made two sets of graphs for each 

magnetic field, as shown in Fig. IV-14(A,B,C) and Fig. IV-15(A,B,C). The first set 

shows different values of Δ for both AG (NPZS) and BCS theories; the second set of 

graphs has the same Δ for both theories.  
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FIG. IV-14A. Normalized experimental conductance collected at external magnetic field 

(H = 2.25 T) plotted with SP BCS density of states with P = 0.0 and SP AG densities of 

states with P = 0.0, 0.4 (NPZS). 
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FIG. IV-14B. Normalized experimental conductance collected at external magnetic field 

(H = 2.5 T) plotted with SP BCS density of states with P = 0.1 and SP AG densities of 

states with P=0.0, 0.3 (NPZS). 
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FIG. IV-14C. Normalized experimental conductance collected at external magnetic field 

(H = 2.75 T) plotted with SP BCS density of states with P = 0.0 and SP AG densities of 

states with P = 0.0, 0.3 (NPZS). 
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FIG. IV-15A. Normalized experimental conductance collected at external magnetic field 

(H = 2.25 T) plotted with SP BCS density of states with P = 0.0 and SP AG densities of 

states with P = 0.0, 0.4, and 0.6 (NPZS) with same Δ=0.35. 
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FIG. IV-15B. Normalized experimental conductance collected at external magnetic field 

(H = 2.5 T) plotted with SP BCS density of states with P = 0.1 and SP AG densities of 

states with P = 0.0, 0.3, and 0.5 (NPZS) with same Δ = 0.29. 
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FIG. IV-15C. Normalized experimental conductance collected at external magnetic field 

(H = 2.75 T) plotted with SP BCS density of states with P = 0.0 and SP AG densities of 

states with P = 0.0, 0.3, and 0.5 (NPZS) with same Δ = 0.26 

 

 In both sets of graphs, the AG (NPZS) theory shows a better agreement with the 

experimental data than the BCS theory. Different Δ values for the same sample improve 

the fit. The external magnetic field could change the energy gap, although that is not 

clear theoretically; however the values used for the energy gap decrease with an increase 

in the magnetic field. The values of all the parameters for the best fit are given in the 

results and conclusions section. 
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G. RESULTS AND CONCLUSIONS 

 

An analytical solution of the AG theory applied to the observed experimental 

data successfully extracted the values of polarization at different magnetic fields. The 

NPZS method showed an improved fit of the tunneling conductance vs voltage curve. 

Table IV-1 gives the extracted polarization of the experimental data at different 

magnetic fields. We also tried error analysis to improve the fit, as mentioned in 

Appendix D. 

 

TABLE IV-1. Values of best fit parameters using BCS and AG (NPZS) theory fits with 

different values of Δ in AG with respect to BCS for different magnetic fields. 

 
Parameters for AG theory     
 H α x P T Δ   
 2.25 0.8 0.3 0.4 0.35 0.35   
 2.50 0.86 0.5 0.3 0.35 0.29   
 2.75 1.425 0.4 0.3 0.35 0.26   
Parameters for BCS theory     
 H P T Δ Γ   
 2.25 0.2 0.025 0.26 0.074   
 2.50 0.1 0.025 0.26 0.130   
 2.75 0.0 0.025 0.26 0.259   
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TABLE IV-2. Values of best fit parameters using BCS and AG (NPZS) theory fits with 

same values of Δ in AG with respect to BCS for different magnetic fields. 

 
 
Parameters for AG theory    
 H α x P T Δ 
 2.25 0.8 0.3 0.4 0.35 0.35 
 2.50 0.86 0.5 0.3 0.35 0.29 
 2.75 1.425 0.4 0.3 0.35 0.26 
       
Parameters for BCS theory    
 H P T Δ Γ  
 2.25 0.0 0.025 0.35 0.12  
 2.50 0.1 0.025 0.29 0.16  
 2.75 0.0 0.025 0.26 0.259  

 
 

 
 
 Using the values of Table IV-2, we plotted Fig. IV-16 and Fig. IV-17 As the 

external magnetic field is increased, the required α to fit the graph also increases. The 

system transforms from a superconductor with a gap to a gapless superconductor. The 

horizontal line in Fig. IV-16 shows the boundary between gapless superconductivity and 

superconductivity with a gap, also showing that the increase in the magnetic field 

reduces the Δ (gap energy) of the best fit. Thus, the gap energy is reduced by an external 

magnetic field, and the system ultimately becomes a gapless superconductor.95 The gap 

energy from the best fit for an external magnetic field of 2.75 T matches with the bulk 
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gap energy (0.26 meV) of Al. The positive values of P indicate that more spins are 

aligned to the direction of the external magnetic field.  

 

 

 

FIG. IV-16. The best fit α value plotted against different external magnetic field for AG 

density of states (NPZS). 



 60 

2.2 2.3 2.4 2.5 2.6 2.7 2.8

0.26

0.28

0.30

0.32

0.34

0.36

 

 

Va
lu

es
 o

f ∆
 in

 A
G

 D
O

S

Applied Magnetic field (T)
 

 

FIG. IV-17. The best fit Δ value plotted against different external magnetic field for AG 

density of states (NPZS). 

 
Using the values given in Table IV-2, we plotted Fig. IV-18 containing data with 

all the magnetic fields and the best AG (NPZS) DOS with different Δ. 
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FIG. IV-18. Experimental normalized tunnel conductance with AG densities of states 

(NPZS) with polarization and in different magnetic fields. 

 
Although the results are ambiguous about any dependence of polarization in the 

system to the applied external magnetic field, they unambiguously establish the 

existence of a surprisingly large polarization (~ 0.3). The AG theory shows a better fit 

than the BCS theory with experimental data especially at the gap edge. The results are 

better with NPZS (three types of carrier populations) than PZS (two types of carrier 

populations).  The intrinsic96 or the atomic scale97 inhomogeneities can be responsible 

for smooth data points. The fits indicate the existence of spin polarization in the 
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tunneling experiments in magnetic field that are yet to be explored near the quantum 

critical regime (QCR). 

The SP BCS DOS fits the experimental data at the gap but does not fit at the gap 

edge. If attempts were made to fit at the gap edge the gap does not fit. The SP AG DOS 

with PZS achieved the fit at the gap edge, but lost it at the gap. The fit was substantially 

improved by using a SP AG DOS with NPZS and then both the gap and the gap edge 

were fit well simultaneously. 

The superconducting gap can be reduced by a number of factors, including for 

example, magnetic impurities, which can reduce the superconducting transition 

temperature as well as reduce the gap energy. There can be a concentration of impurities 

where the transition temperature is not zero but the gap is zero, a phenomenon known as 

gapless superconductivity. For a given magnetic field, aluminum becomes a gapless 

superconductor as shown in Fig. IV-16. 
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CHAPTER V 

 

EXPERIMENTAL APPARATUS 

 

A. VAPOR DEPOSITION SYSTEM  

 

 The vapor deposition system has two important parts: an ultra high vacuum 

(UHV) deposition chamber and a cryostat to do in-situ measurements of quenched films 

as shown in Fig. V-1. The UHV chamber has two 10KW Airco Temescal electron (e-) 

guns powered by a Sloan Pak 12 to evaporate two materials separately and 

simultaneously at different rates. To measure the evaporation rates, there are two 

electron impact emission spectroscopy instruments (EIES, see appendix E) arranged to 

independently measure the evaporation rates for each material. An Inficon Sentinel 200 

Quartz Crystal Microbalance (QCM) measures the combined thickness of the two 

materials. The QCM is water cooled to maintain the operating temperature during e-gun 

operation. 

 The vacuum chamber was custom made made by Vacuum Generators now 

known as VG Scienta. The chamber uses an 18" diameter Edwards diffusion pump with 

a liquid nitrogen (LN2) cooled trap (model # E09) filled with Santovac 5 oil. The whole 

system is made of stainless steel with glass viewports that allow visual observation of 

the deposition sources. All seals are made with copper gaskets with the exception of 

three Viton O rings, one sealing the top of the vacuum chamber, one on the gate valve 
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and one on the chamber isolation valve.  Further details of the instrument are provided 

by Nicoli.98 

 

B. CRYOSTAT 

 

 The cryostat has two main parts, the superconducting magnet and the sample 

space. In the sample space, the substrate is kept at low temperature. The cryostat (Fig. V-

1) is separated from the UHV chamber by a gate valve. The rapid-quench condensation 

of co-evaporated material into thin films occurs in the deposition system. The in-situ 

measurement of resistance vs. temperature is done in the cryostat. The cryostat assembly 

consists of a liquid helium (LHe) magnet Dewar (Janis) which contains a 

superconducting magnet (American magnetic) capable of producing a homogeneous 

magnetic field up to 7 T. Inside the superconducting magnet lies an extendable LHe 

cryostat that holds a silicon substrate. On the inside and outside of the magnet dewar are 

two LN2 reservoirs that are used to prevent radiation losses to the surroundings. The 

outer most jacket is pumped to 10-6 Torr to prevent any thermal loss due to convective 

heat flow. 
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FIG. V-1. Cross-section of the UHV low-temperature evaporator (Adapted from Nikoli 

98). 
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C.  ELECTRONICS 

 

To measure the conductivity of co-evaporated thin films, two reversible constant 

current sources are used to supply current to both the sample and carbon glass 

thermometer. Separate Keithley 174 digital multi-meters are used to measure voltage 

across the sample and thermometer, and results are recorded using LABVIEW. Figure 

V-2 shows the circuit diagram to measure the resistance of the co-evaporated films. 

Figure V-3 shows the circuit diagram to measure the voltage across the carbon glass 

thermometer. The voltage across the thermometer is converted to degrees Kelvin using a 

program written in MATHEMATICA.  

 

 

FIG. V-2. The circuit diagram to measure the current and the voltage across the co-

evaporated film. 
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FIG. V-3. The circuit diagram to measure the voltage across the thermometer resistor. 
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D.  SUBSTRATE PREPARATION 

 

A 1.5 cm square substrate is cut from a factory supplied Si/SiO2 wafer. The 

square is then cleaned using acetone and iso-propanol and dried using nitrogen (N2) gas. 

The silicon oxide (SiO2) layer is removed using a buffer HF solution. The substrate is 

kept in the buffer solution for a minute as the SiO2 layer is very thin on factory supplied 

wafers.  

The silicon sample is then mounted with the desired mask on a sample holder 

and placed inside a thermal evaporation chamber. After the chamber pressure has been 

pumped to ~6×10-6 Torr, silver is evaporated at a rate of ~4 Å per second and a silver 

film of ~500 Å gets deposited on the substrate. The silver pattern is used as contact pads 

for the transport measurement. FigureV-4. shows the schematic procedure to prepare a 

required pattern for four point transport measurements.  

 After the process outlined in Fig. V-4 is completed, the substrate is inserted in a 

UHV low-temperature evaporator for the co-deposition of Gd and Si.  
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a) Si/SiO2 wafer cut in a 1.5cm square shape. 

 

b) Buffer HF solution used to remove SiO2 layer from the top. 

 

c) Silver contacts made using thermal evaporator. 

 

d) Thin film of GdxSi1-x evaporated using e-beam in UHV system on cold substrate. 

 

FIG. V-4. Schematic diagram to show the procedure for sample preparation. 
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E. BAKE AND COOL PROCESS 

 

 After a typical substrate is prepared by the process mentioned above, the inner 

cryostat is removed from the top of the whole cryostat and mounted on a homemade 

wooden frame. Two copper clamps are then attached to avoid flexible movement of the 

extendable bellows. The inner cryostat is then turned upside down to allow access to the 

bottom of the sample space. A silicon substrate with silver contacts is then mounted in 

the sample space. All wire contacts are checked before the inner cryostat is returned to 

the Dewar with magnet. The inner cryostat is sealed to the outer cryostat with a 3 and 

3/8" oxygen-free high-conductivity (OFHC) copper gasket. The connections are checked 

again before the whole cryostat is placed on the UHV vacuum chamber with the help of 

an electrically operated pulley. The whole cryostat is sealed to the UHV chamber with a 

10" OFHC copper gasket.  

 The outer jacket and the cryostat are connected to two independent diffusion 

pumps. During the preparation process three diffusion pumps are connected to the 

system. The outer jacket and cryostat are pumped overnight through nitrogen traps. Once 

the outer jacket is pumped to a pressure of ~5×10-5 Torr and the cryostat is pumped to 

~2×10-6 Torr, the valves to the traps are closed. The gate valve is then opened to the 

UHV diffusion pump and the system is baked after a base pressure of 10-8 Torr has been 

achieved. The baking process continues for 20 hrs at 110°C and then for 16 hrs at 120°C. 

The uniformity of the temperature distribution, which defines the effectiveness of the 

baking process, is more important than the magnitude of the temperature. During the 
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baking process, the Dewar with magnet is filled with LN2 to avoid any damage from 

overheating. 

 Just after the bake, the LN2 trap is filled with cooled N2 gas and then finally with 

LN2 to stop any backflow of contamination. After a couple of hours, the outer jacket, 

magnet space and inner jacket are filled with LN2 for thermal insulation. Once the 

sample space reaches ~77 K temperature, LHe is transferred to the helium reservoir 

above the sample space.  

 

F. CO-EVAPORATION OF SILICON AND GADOLINIUM 

 

 Before the sample can be lowered and exposed to the e-guns for evaporation, the 

EIES and the QCM are calibrated by the method discussed in Chapter VI. For each 

evaporation step, the sample is lowered 5" from the center of the magnet and exposed to 

the e-guns. The shutter is opened for approximately 20 sec for each evaporation step. 

The sample is then pulled up to the center of the magnet. If the magnet is not used, the 

sample is pulled only halfway, until both the N2 and He thermal shutters are closed as 

shown in Fig. V-5. During the process of evaporation, the sample space temperature can 

rise to as high as 30oK. Even if the evaporation shutter is not open but the thermal 

shutter is open, the sample space will be heated.  

 A desired rate is set and then the sample space is moved down. During the 

descent of the sample, the desired evaporation rate tends to drift. It is not clear whether 

fixing an evaporation rate before bringing the sample down or bringing down the sample 
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1. L He Radiation shield 10. Mask 
2. Thermal transfer rod 11. LHe Radiation shield shutters 
3. Sapphire heat sink (1/2" dia) 12. Shutter push pins 
4. RuO2 Substrate heater 13. LN2 radiation shield shutters 
5. Substrate holder 14. Tungsten spring 
6. Carbon glass thermometer 15. Square sapphire heat sinks 
7. Silicon substrate 16. Teflon thermal insulator 
8. Platinum foil leads 17. Shutter plate guideposts 
9. Teflon substrate clamps  

 

FIG. V-5. A cross section of the sample space with different shutters.  
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and then aiming for a desired evaporation rate is better. In both cases the sample space is 

exposed to the e-gun radiations for a long time. 

 Figure V-5 shows different components in and around the sample space. The 

whole sample space is lowered till both the LHe and LN2 shutters are opened. For each 

evaporation process, the sample is lowered, and once the evaporation is done, it is pulled 

back until both shutters are closed. The size of the Helium reservoir requires refilling 

liquid helium in the reservoir after every evaporation process. In a few of the 

evaporation steps, the liquid helium in the reservoir boiled off before a desired co-

evaporation rate could be achieved. The disproportionate boiling off of LHe leads to 

irregularities in the temperature coverage for the sample measurements. The range over 

which sample data can be collected depends on the amount of LHe left after the 

evaporation. Each evaporation is started with a full He reservoir (assumed, since the 

reservoir has no Helium level detector).  

During co-evaporation, two numbers were observed to fix the value of x (fraction 

of gadolinium in GdxSi1-x). One combined evaporation rate is given by a QCM and a 

second gadolinium evaporation rate is given by the EIES. The EIES rate is interpreted 

instantaneously and subtracted from the evaporation rate of the QCM to estimate the 

evaporation rate of Si. Every process aims for a pre-calculated evaporation ratio. To start 

the evaporation, the QCM and the EIES are reset at the same time to record the total 

thickness at the same instant that the evaporation shutter is opened. To reduce the error 

of approximately a second during the reset time of each instrument, opening the shutter 

for more than 20 sec reduces the error to less than 5%. Better control on the evaporation 
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rate and the total time are possible within a minimum thickness of 4 nm at x=14%. 

Chapter VI discusses the calibration problems in more detail. 
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CHAPTER VI 

 

CALIBRATION AND MEASUREMENT  

 

 In the process of co-evaporation, the final thickness and respective thicknesses of 

the two materials are requisite to estimate the atomic ratio. Thickness measurements can 

easily be done with two different electron impact emission spectroscopes (EIES see 

appendix E) for each respective material and a quartz crystal microbalance (QCM) for 

the total thickness. Appendix E shows the working of the EIES.99 

 This chapter explains the different calibration steps taken to extract the thickness. 

Measuring the individual thickness of each material is crucial as the ratio of each 

material during co-evaporation depends on its individual thickness. EIES cannot be used 

for the thickness measurement for silicon as silicon has a very poor optical signal. One 

QCM is used for total thickness and one EIES is used for the thickness of gadolinium 

only. 

 Calibrating and measuring the whole thickness requires five steps as given 

below: 

A. Calibrate QCM 

B. Calibrate EIES with respect to QCM 

C. Calibrate silicon thickness to gadolinium thickness using QCM. 

D. Conduct co-evaporation process 

E. Extract individual thickness after completion of co-evaporation 
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F. Measure finite conductivity 

A.  CALIBRATE QCM 

 

The substrate and the QCM are at different distances from the evaporating source, which 

leads to a difference in the thickness measured at the QCM and the actual thickness at 

the substrate as shown in Fig. VI-1. The QCM is calibrated by repeated evaporation of 

pure gadolinium and pure silicon to a known thickness and then compared to the actual 

thickness measured using atomic force microscopy (AFM). 

 

Fig. VI-1. Different thickness at different distance from the evaporating source 

 

The calibration includes the geometric effects, or tooling factor, of the QCM. The 

volume of the evaporated material at the top and midpoint of the evaporation path is the 

same for a given solid angle and for a given time. Approximating each volume to be a 

cuboid, the volume at different distances from the source will be equal: 

2
2
21

2
1 44 dRdR ππ =      (VI-1) 
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Eq. VI-1 gives the relation of the thickness recorded at the QCM to the actual thickness 

evaporated. In the data, the actual thickness is reported for each sample. 

The value of 
1

2

d
d  is observed as 0.3 from the AFM scan as shown in Fig. VI-2. The 

thickness ratio approximately matches the geometric ratio of 
2

1

R
R . In the evaporation 

system, R1 is approximately 50 cm and R2 is approximately 90 cm. 

 

 

 

 

FIG. VI-2. Atomic force microscopy image and data for gadolinium film (d1 = 200 nm). 
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B. CALIBRATE EIES WITH RESPECT TO QCM 

 

First, the EIES sensor is left on for 30 min to make sure the electronics are stable 

and have a constant filament current. The desired frequency is set on the EIES for 

gadolinium, and gadolinium is evaporated. Both QCM and EIES values are recorded 

manually. EIES thickness is plotted against different QCM thicknesses in Fig. VI-3. The 

graph is fit to a straight line and the slope is used in steps C and D.  After the calibration 

process, the EIES reading can be used to estimate the thickness of gadolinium given by 

QCM. Appendix E explains EIES in more detail. 
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 FIG. VI-3. EIES thickness plotted against QCM thickness of gadolinium. 
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C. CALIBRATE SILICON THICKNESS TO GADOLINIUM THICKNESS USING 

QCM 

 

The QCM uses AT-cut α-quartz crystals so shear vibrations can be measured. 

The crystal wafer is prepared by cutting the quartz at approximately 35.17° from its Z-

axis. A typical crystal plate is a cylindrical disk with a diameter of 1 cm and a thickness 

of about 0.1 mm to 0.7 mm for resonant operation in the 2 to15 MHz frequency range.  

The film thickness is related to the change in resonant frequency of the quartz 

crystal. The relation is given by Eq. VI-2: 
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where 

t = thickness of film deposited  

Nq= frequency constant for AT-cut quartz crystal ~ 1.668×1013 Hz/Å 

ρq= density of quartz 2.648 gm/cm3 

ρm= density of film material in gm/cm3 

Fc= frequency of loaded crystal (after deposition) in Hz 

Fq= frequency of unloaded crystal (prior to deposition) in Hz 
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z= z factor of film material = 
2
1










mm

qq

µρ
µρ

 

µq= shear modulus of quartz ~ 2.947×1011 gm/(cm s2) 

µm= shear modulus of the material deposited 

The QCM instrument requires the density (ρ) and the z-ratio of a given material 

to estimate the evaporation rate and thickness. In the QCM calibration of silicon, the z-

ratio and the density of gadolinium are used while silicon is evaporated. Once the silicon 

is evaporated, the z-ratio and the density were changed from gadolinium values to 

silicon values on the QCM and the thickness is recorded. The ratio of the QCM value 

with gadolinium settings to the QCM value with silicon settings is a constant for any 

given thickness. Figure VI-4 relates the QCM thicknesses for silicon, with the use of 

silicon density and z-ratio, vs. silicon, with the use of gadolinium density and z-ratio. 

The value of the slope from the above calibration will be used to determine the 

individual thicknesses and percentage of gadolinium co-evaporated with silicon. 
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FIG. VI-4. Quartz crystal microbalance thickness measurement for silicon with use of 

silicon density and z-ratio and gadolinium density and z-ratio. 

 

D. CONDUCT CO-EVAPORATION PROCESS 

 

During co-evaporation of gadolinium and silicon, EIES is used to observe the 

desired evaporation rate of gadolinium, and QCM is used to observe the total thickness 

of gadolinium and silicon. The only way to get information about the rate at which 

silicon is evaporated is to subtract the calibrated evaporated rate of EIES (as done in 
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Step B) from the QCM evaporation rate. The relative evaporation rate is very crucial for 

the whole experiment as even a small change in the evaporation rate will lead to an 

significant change in the ratio of gadolinium and silicon. Silicon is a poor conductor of 

electrons when bombarded by an e-gun, so it is better to set the evaporation rate for 

silicon first and then adjust the evaporation rate of gadolinium. The gadolinium 

evaporation rate is easier to set than the silicon evaporation rate once it has been turned 

off and on again. 

  

E.  EXTRACT INDIVIDUAL THICKNESSES AFTER THE COMPLETION OF 

EVAPORATION 

 

Once the process of evaporation is completed, two measurements are recorded: 

the total thickness of co-evaporation using QCM and the total thickness of gadolinium 

evaporated using EIES. First, the EIES value is changed to the QCM equivalent 

thickness using the calibration method described in Step B. The gadolinium QCM 

thickness is then subtracted from the total QCM value. The remaining QCM value left is 

the thickness of silicon in terms of gadolinium z-ratio and density. The remainder is 

changed to the thickness of the silicon with z-ratio and density of silicon as described in 

Step C.  

Let us assume that the QCM gives a thickness tq and EIES gives a thickness te in 

Angstrom at the end of the evaporation. Let the slope of the fit be m in the calibration of 

EIES and the slope for the different z-ratio is n. 
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The step-wise calculation to find the value of x and total thickness evaporated, where 

x is the fraction of gadolinium atoms in GdxSi1-x, follows. 

1. The equivalent thickness of EIES in QCM is mtt e ×=1 . 

2. The net Si thickness evaporated with z ratio set to gadolinium is )( mtt eq ×− . 

3. The net Si thickness evaporated with z ratio set to silicon is nmttt eq ××−= ))((2 . 

We assumed that a co-evaporated film is equivalent to two films with respective 

thickness of gadolinium and silicon as shown in Fig. VI-5. 

 

 

 

 

 
FIG. VI-5. Equivalence of two different thin films in thickness. 

 

Both films have the same cross-sectional area but different thicknesses. The 

volumes of the films are V1 and V2 respectively for gadolinium and silicon. The density 

and atomic weight of gadolinium are d1 and w1 and of silicon are d2 and w2. The 

percentage of gadolinium atoms in total number of gadolinium and silicon atoms is 

defined as x. 

4. x is calculated from Eq. VI-3, 

Si (t2) 

GdxSi1-x 
t1+t2 

 

Equivalent  
Gd (t1) 
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where k is defined as 
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and is constant for two materials. Therefore, x is defined as 

1
2

1

2

1

+
=

t
tk

t
tk

x   ,   (VI-6) 

This process can be used to find the total thickness as t1+t2 and the fraction of Gd in 

GdxSi1-x as x. 
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F.  MEASURE FINITE CONDUCTIVITY 

 

First, we carried out co-evaporation until a conductive film was formed, 

confirming the continuity of the film by measuring the voltage across the film. Extreme 

precautions are taken to make sure that the film does not get destroyed during 

measurement. Once a finite conductivity is measured by a four point DC method (Fig. 

V-2), the sample is moved up to the center of the cryostat and the resistance is measured 

against temperature. Safety measures are observed as the heater is used with a constant 

current source to slowly increase the temperature to the desired value. Since a phase lag 

occurs between the application of the current and an increase in temperature, the 

temperature must stabilize before the sample voltage and carbon glass thermometer 

voltage are recorded using LABVIEW. A similar process is carried out during the cool 

down. The manual adjustment leads to steps in the data acquisition. 
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CHAPTER VII 

 

EXPERIMENTAL RESULTS AND ANALYSIS 

 

 This chapter discusses the experimental results obtained and uncontrolled 

parameters involved during the experiment. Films with nominal values of x (fraction of 

gadolinium in GdxSi1-x) and thicknesses were also analyzed to understand the transport 

properties near the metal-insulator transition (MIT). For some time,3 the sign of the 

derivative of conductivity with respect to temperature, evaluated at low temperature, was 

considered a main indicator to determine whether the material is an insulator or a metal. 

Materials with 0≤
∂
∂
T
σ  were considered metals, while those with 0>

∂
∂

T
σ  were considered 

insulators.  Including quantum corrections to the conductivity showed that the 

conductivity derivative may be positive, 0>
∂
∂

T
σ , for metals as well.99 Thus, the sign of 

the derivative, 
T∂
∂σ , cannot be considered a reliable criterion to differentiate metals from 

insulators.44 If conductivity of a material is extrapolated to T=0 and has some finite 

conductivity then it is considered as a metal. All films prepared in this work are metals 

by this criterion, except one. 

We prepared the GdxSi1-x thin films by the method described in the previous 

chapter, and took transport measurements for different thicknesses and for different 

values of percentage of gadolinium(x). The resistances and the conductivities of the thin 

films were then measured at different temperatures as shown in Figs. VII-1 and VII-2 
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respectively. The colors red, blue and green represents the samples evaporated in the 

same experimental run. Each run has either three or four successive film depositions. A 

careful look at the graph reveals two parameters competing against each other, x and 

thickness, to determine whether one film will be more conductive than another film. As 

expected, the conductivity increases as both the percentage (x) and thickness increase. 
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FIG. VII-1. DC conductivity vs. temperature for thin films with different thicknesses and 

x values. 
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FIG. VII-2. Resistance vs. temperature for thin films with different thicknesses and x 

values. 
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FIG. VII-3. Percentage of x vs. thickness achieved for different thin films. 

 
 
 In each experiment, a film was measured, then an additional film segment was 

added on top with the aim of having the same x (Fig. VII-3). However, every evaporated 

film segment had a different x. The set of computational graphs (Figs. VII-4 to VII-7) 

shows the fluctuation in the evaporation of pure silicon, which further led to a 

fluctuation in x.   
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FIG. VII-4. Computer generated evaporation rate fluctuation of silicon and gadolinium. 
 
  

Fig. VII-4 shows the fluctuation in the evaporation rates of pure silicon and 

gadolinium generated by adding random numbers to a desired rate. The magnitudes of 

the random numbers were set by the observed fluctuation during the evaporation 

process. As Fig. VII-4 shows, the evaporation of gadolinium is stable and has a 

negligible fluctuation (0.1 Å) within the instrument minimum range, while during the 

evaporation of silicon, the evaporation rate changed up to 30% within seconds. There 

was also an overall drift in the rate which was observed over a long time, which although 

included in the graph is not very prominent. Figure VII-4 shows the actual rate required 
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to achieve a desired x=14% as discussed Chapter VI. Silicon has to be evaporated at a 

rate approximately four times larger than gadolinium. 
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FIG. VII-5. Simulated instantaneous percentage of x during the evaporation. 
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 Fig. VII-5 shows the instantaneous value of x calculated from the values shown 

in Fig. VII-4. The fluctuation in the rate of evaporation of silicon led to a fluctuation in 

the values of x. The fluctuation also led to irregularity in the thickness of the co-

evaporated film as shown in Fig. VII-6. 
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FIG. VII-6. Simulated instantaneous thickness during evaporation. 

 
  

Keeping the rate of evaporation of pure silicon stable during co-evaporation is 

difficult. During the process, the evaporation rates were chosen in a way to achieve 

x=14%, defined as the desired value of x, whereas after the evaporation, a given x value 
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was computed from the measured values of the QCM and EIES, defined as the achieved 

value of x. Figure VII-7 shows the desired and achieved values of x for different 

experimental runs. In Fig.VII-7, the x-axis denotes the thickness of the film segment 

added to a previously made film or thickness of a new film (note that it is not the 

cumulative thickness of the film). 
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FIG. VII-7 Achieved and desired values of x in percentage vs. the increment in the 

thickness.  

 

The x value will always deviate from the desired value of x because of the 

fluctuation of evaporation of pure silicon. To cross check the value of x, we performed 



 94 

wavelength dispersion spectroscopy (WDS) on the thin films. Compositional analyses 

were carried out on a four spectrometer Camera SX50 electron microprobes at an 

accelerating voltage of 15 KV and beam current of 100 nA.  All quantitative work 

employed wavelength-dispersive spectrometers.  The analyses were carried out after 

daily standardization using well-characterized compounds or pure elements; standard 

checks were run on known samples to verify standardizations. 

The X-ray maps were obtained at 15 kV and 100 nA beam current as shown in 

Fig. VII-8 and Fig. VII-9.  The beam was scanned in a 512 × 512-point grid, with a grid 

width of 185 µm and a total time of 200 or 300 seconds.  Two images were acquired: 

silicon (X-ray counts) and gadolinium (X-ray counts).  The brightness is proportional to 

the number of back-scattered electrons (BSE) from X-rays measured at each pixel 

(normalized). 
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FIG. VII-8. X-ray map at 15 kV and 100 nA beam current for silicon. 

 

Typical accuracy for major elements (> 10 wt %) is about =+/- 1 to 2% of the 

amount present; the uncertainty would increase as the concentration is decreased, with 

the uncertainty reaching 100% at the lower limit of detection.  The lower limit of 

detection for most elements is typically 0.05 to 0.10 wt %. 

Figure VII-8 shows clusters of white spots which are not uniformly distributed, 

whereas in Fig. VII-9 white spots are uniformly distributed over the scanned area. This 

may be due to the difference in the evaporation of gadolinium and silicon. Gadolinium is 
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conductive and evaporates atomically, on the contrary, silicon is insulating and do not 

evaporate atomically but sputters in small clusters of molecules. The sputtering of silicon 

may be responsible for the fluctuation in the evaporation rate. 

 

 

 

FIG. VII-9. X-ray map at 15kV and 100nA beam current for gadolinium. 

  

Thin film analyses were processed using the program GMRFILM by Waldo on 

the WDS data. No significant difference appeared between the WDS x value and the 

value from the GMRFILM program.  
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Figure VII-10 shows the error in the value of x obtained from QCM and EIES 

with respect to the value obtained by WDS, and Fig. VII-11 shows the error in the values 

of x with respect to the estimated value of x using QCM and EIES. Figure VII-11 shows 

that the lower the concentration of gadolinium, the higher the error in the value of x. The 

error in concentration could lead to error in the thickness of gadolinium evaporated 

during a co-evaporation step. The thickness of gadolinium evaporated, as reported by 

EIES, was compared with the thickness calculated from the x value given by WDS, as 

shown in Fig. VII-12. In the WDS thickness calculation it was assumed that there was no 

error due to z- ratio of QCM or equivalent film thickness. The thickness of co-

evaporated films was also measured using atomic force microscopy (AFM), which does 

not match with the calculated values from the QCM and EIES. AFM thicknesses are 

greater than the estimated value given by QCM and the EIES method. The error in the 

thickness may be the reason why thin films of x<14% have higher conductivity than 

those with x>14%. The resistance of a given film is reproducible, but reproducing a film 

with the same thickness and same x is very difficult.  
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FIG. VII-10. Percentage error in x with respect to WDS. 
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FIG. VII-11. Percentage error in x with respect to QCM and EIES. 
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FIG. VII-12. Percentage error in thickness of gadolinium evaporated vs. percentage of x 

obtained using QCM and EIES. 

 
 To understand the conductivity of the thin co-evaporated films, the experimental 

data were fitted with two different formalisms as shown in Fig. VII-13 and Fig. VII-14. 

On the insulating side of the transition, conductivity is due to the nearest- neighbor 

hopping process; on the metallic side of the transition, the conductivity includes the 

electron-electron scattering process. The theory is dealt with in more detail in Ref. 43. 

Both conductivity relations are given below. 

Thopp /1)ln( ∝σ     (VII-1) 

2
1

Tcond ∝σ      (VII-2) 
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FIG. VII-13. Log(σ) vs. inverse temperature for samples with different thicknesses and x 

values. 

 
 The experimental value of the thicknesses and x are listed in Table VII-1 for the 

different samples. The thickness of the first film evaporated in each experimental run 

was smaller than the last one. The range of thicknesses was reduced in successive 

experiments to produce thinner films, as can be seen in Table VII-1.  

All experimental data were fitted with the expressions given in Eq. (VII-1) and 

Eq. (VII-2). The values of the correlation coefficient (R) from both fits are plotted 

against the number of samples as shown in Fig. VII-15. The correlation coefficient 

indicates how well the line approximates the data.  If |R| = 1, the line is a perfect fit to 

the data; if |R| = 0, the line does not fit the data at all. In general, the closer |R| is to 1, the 

better the fit. 



 102 

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

 15.4nm x= 6.6
 31.9nm x= 5.3
 48.5nm x= 4.8
  9.4nm x= 2.05
 19.3nm x= 2.01
 35.3nm x= 1.97
  5.3nm x=18.8
  8.4nm x=30.5
 13.3nm x=26.6
 19.4nm x=23.7co

nd
uc

tiv
ity

  σ
 (Ω

m
)-1

T1/2 (K1/2)

 

 

 

FIG. VII-14. Conductivity vs. T1/2 for samples with different thicknesses and x values. 

 

TABLE VII-1. Thicknesses in Å and x in percentage for different samples. 

 

Sample # x (%) Thickness (Å) 
1 6.6 154.2 
2 5.3 319.4 
3 4.8 485.4 
4 2.05 94.2 
5 2.01 193.0 
6 1.97 353.5 
7 18.8 53.2 
8 30.5 84.3 
9 26.6 133.0 
10 23.7 194.5 
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FIG. VII-15. Correlation coefficient R from the fits for [Log (σ) vs. 1/T] and [σ vs. T1/2] 

vs. sample number. 

 
 

Fig. VII-15 shows that only Sample #7 has a better fit for [Log (σ) vs. 1/T] than 

(σ vs. T1/2). All the samples were metals except Sample #7, which was an insulator.  
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CHAPTER VIII 

 

SUMMARY AND CONCLUSIONS 

 

Theoretical and experimental study in the field of highly correlated electronic 

systems has increased in the last decade. This work evaluated spin polarization and the 

effect of an external magnetic field on a superconductor. Thin films of the magnetically 

doped semiconductor (GdSi) were made to further investigate the metal-insulator 

transition (MIT). 

The spin polarization was extracted from the density of states measurement of 

Al/Al2O3/GdxSi1-x at x=14% near the MIT. To obtain the spin polarization from the 

density of states, we derived an analytical solution of the AG theory. The analytical 

method is an improvement to the numerical method commonly used to calculate 

complex densities of states. The spin polarization extracted using AG DOS is greater 

than the spin polarization previously extracted from the BCS DOS. In the presence of 

AG DOS, the system goes from a superconductor with a gap to a gapless superconductor 

in an external magnetic field.  

 An attempt was made to probe the MIT in 2-D by making thin films of GdxSi1-x. 

The thin film work explored the transport properties of thin GdxSi1-x near the MIT. While 

the initial aim was to fix x and allow the thickness to vary, the subsequent attempts 

revealed that both x and the thickness changed from one film to another. Numerous 

attempts to prepare two samples with the same x but different thicknesses or with the 
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same thickness but different x values met with failure. Thus, in the experimental part, the 

co-evaporation of thin films had two possible sources of error. One was the fluctuation 

in the evaporation rate of pure silicon and the other was the calibration of EIES for 

gadolinium. Figure VII-8 suggests that silicon was not evaporated but sputtered, as seen 

from the brighter spots in the X-ray scan. Silicon sputtering may have interfered with the 

EIES signal and hence reduced the emission intensity of gadolinium vapor. The error in 

the EIES is related to the amount of silicon evaporated since the z-ratio of the QCM is 

assumed to be correct. The large amount of silicon suggests an error in the estimated 

gadolinium thickness determined by the EIES.  

 The interference of the silicon evaporation described above is similar to the 

emissions from common residual gases that may interfere with the vapor flux, and can 

cause an erroneous flux measurement. The interference is most pronounced when 

measuring low flux density in the presence of gases, such as in a reactive deposition 

processes. The EIES problem can be solved by using two QCMs, each measuring the 

thickness and evaporation rate of an individual material, but fluctuations in x will remain 

as in silicon fluctuates. It has become increasingly evident that the accuracy of the 

gadolinium rate of the co-evaporation plays a significant role in controlling the x in 

GdxSi1-x. A new arrangement is required to better monitor the evaporation rates during 

co-evaporation.  

 Experimental data suggests that the films produced are metallic as the 

conductivity is nonzero at zero temperature. The co-evaporation involves multiple 

calibration processes that complicated the experiment. The stability of the rate at which 
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silicon can be evaporated also played an important role in the control of x in the co-

evaporation process. A POCO graphite crucible was used to get a smoother evaporation, 

but the silicon wet the crucible and made it usable only for a couple of evaporations 

before it shattered. Film Thickness as measured by AFM was larger than that measured 

by QCM measurements, which suggests a possible error in the assumptions of the z-ratio 

for the QCM measurement. The QCM thickness error is also related to x, which makes 

the error difficult to remove; hence, the QCM error should be further investigated if this 

project is continued. 

There is a possibility that the large fluctuation in the evaporation rate of silicon 

can be removed by making an alloy with tantalum. It is not clear whether including 

tantalum as an impurity will affect the physical properties of the GdxSi1-x alloy. At 

present, attempts have been made to observe a MIT in 2-D caused by impurities.   

GdxSi1-x could be used to study the phenomenon. A 2-D MIT is still open for further 

investigation.  
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APPENDIX A 

 

ANALYTICAL EXPRESSION 

 

Due to space constraints, the long form of the analytical solution is not included 

in the dissertation. Figure A-1 shows the same expression but written with a different 

style to show the simplicity of the complex expression. Figure A-2 shows the AG 

density of states output of the expression in Fig. A-1 in MATHEMATICA. The program 

to plot the AG DOS is added as a supplement to this dissertation. 

 

 

 

FIG. A-1. Analytical expression (from MATHEMATICA). 
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FIG. A-2. AG density of states for different values of α (from MATHEMATICA). 
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APPENDIX B 

 

INTEGRATION RANGE 

 

The BCS density of state is given by the following equation. 

 

 

(B-1) 

 

where Δ is the gap parameter, and 2Δ is the energy gap. Figure B-1 shows the BCS 

DOS.  

Figure B-1 shows the BCS density of states. As we include the temperature 

effects with a Fermi distribution, Fig. B-1 changes to Fig. B-2 for a temperature T=25 

mK. The values of the iteration step increment are taken in such a way that the values of 

the integrated function do not change to the 10th decimal place. 
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FIG. B-1. BCS density of state versus normalized energy.  
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FIG. B-2. BCS DOS at temperature T = 25 mK. 
 

 

Even a small change in temperature can affect the BCS DOS. We observe a 

sudden fall in the density of states at the graph boundary, an artifact of the integration 

being carried out only upto the boundary. For the rest of the graphs, we will show data 

only where the integration is carried out to sufficiently high |E| to avoid the artifact. 

The calculation shows that at finite temperature the singularity in the DOS at the 

gap edge is reduced to finite values and a density of states appears in the gap.  
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APPENDIX C 

 

FLOWCHART 

 

 Figure C-1 compares two different flow charts. The left one is the flow chart 

used before the analytical solution of the AG theory was discovered. In the left 

flowchart, for every iteration step the computer has to find a numerical value of the AG 

density of states for a given set of parameters. The process consumes a lot of 

computation time if the number of iteration steps is large. The flowchart on the right side 

of Fig. C-1 does not have that problem, as the program does not compute the solution at 

every iteration step. The arrow specifies the change in the step from the older numerical 

approach to the newer and better method. 
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FIG. C-1. Flowcharts for two different methods, the right with analytical solution and 

the left without it. 
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APPENDIX D 

 

ERROR ANALYSIS 

 

Once we were able to plot different graphs using the analytical solution, we also did 

error analysis. We tried different error methods to find the best fit as mentioned below. 

1. Least squares difference in x axis 

2. Least squares difference in y axis 

3. Combination of both 1 and 2 

In Method 1 we take the theoretical data at a given x and experimental data at the 

same x, take the difference, square it, and then sum it over all values of x. With the help 

of this method, we were able to move the theoretical fit close to the gap where the data is 

dense and does not give a convergence to find a local minimum. 

In Method 2 we were not able to implement this method as there were two to four 

values of x for a given y which leads to an undefined relation to compute, the same is the 

case for method 3.  

We also wrote a program to find best fit or global minima using error in a D-4 space, 

and then followed the path with least error value as shown in the Fig. D-1. In each step 

the path is decided by the error as defined in Method 1. This method does not give the 

best visual fit as the densities of data points, which influence the error, are different at 

different crucial area of the graph. Figure D-2 shows the areas that were under scrutiny 

during visual fit. We decided the best fit by making a matrix of possible best fit graphs 
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and picking it visually. Reduction in calculation time using the analytical solution 

enabled error analysis. 

 
 

 

 

 

FIG. D-1. Flowchart to find a best fit with error analysis. 
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FIG. D-2. Normalized conductance data vs. applied voltage. Ovals shows areas under 

inspection. 

 

Error calculation was not able to give a better fit, as we changed parameters to 

reduce error. In this process it increases the error locally at the some areas, as shown in 

Fig. D-2, but reduces the error at other part of the graph. This fails to fit crucial points 

and still has a small error. The error method was not further used to find the best fit. 
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APPENDIX E 

 

ELECTRON IMPACT EMISSION SPECTROSCOPY 

 

This appendix explains the electron impact emission spectroscopy (EIES). For 

co-evaporating, EIES has an advantage over a standard quartz-crystal microbalance. In 

EIES, the evaporated flux is allowed to enter the sensor just above the specific source as 

shown in Fig. E-1, and does not allow flux to enter from another source in the multi 

evaporated system. 

 A known cross-sectional area of vapor is bombarded with electrons with known 

cross-sectional area, which is formed by an emitter assembly at a potential of -175 V 

with respect to rest of the assembly. This results in the fraction of vapors getting excited, 

and ends up emitting a specific spectrum for a given material. The total emission current 

is controlled at 6mA and is chopped at 320 Hz by the regulating anode current. In this 

manner, interference of the signal with induced and thermal emfs may be subtracted and 

thus reduce the background noise. An optical channel collects the photon emission and 

passes it though a vacuum-sealed optical window to a photo-detection system located 

outside the UHV region. This detection unit contains a grating that allows a specific 

frequency to be detected. At a specific electron excited energy, emission intensity of the 

characteristic lines from any material is proportional to the number density of that 

constituent in the vapor flux. The optical output signal is linearly proportional to the 

deposition rate. 
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 The relationship of the emission to rate is given below. 

For any material mass deposition rate per unit area, D is given by Eq. E-1. 

D = m v N       (E-1) 

where m is mass and v is the average velocity of the evaporated particles, and N is the 

number density near the substrate.  

 The relationship between the optical intensity, I, and the mass deposition rate can 

be approximated by Eq. E-2. 

2
1

T

gDI =       (E-2) 

 where T is the temperature and g is the gauge constant which depends on the material, 

electron energy and the sensitivity of the photo detector. Hence, intensity is linearly 

proportional if g and T are constant. 
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FIG. E-1. Basic features of the EIES sensor. 



 128 

VITA 

 

Raj Vibhuti Anand Srivastava was born in Lucknow, India. He is the son of Mrs. 

Pushpa Lata Srivastava and Mr. Triloki Nath Srivastava.  

He entered Indian Institute of Technology, Kharagpur, in September 1997 and 

majored in physics. Upon completion of his Bachelor of Science degree in May 2000, he 

began his Master of Science program under the direction of Dr. Anushree Roy at Indian 

Institute of Technology, Kharagpur. He received the Master of Science in physics, with 

emphasis on the Piezo-electric property of fresh chicken bones, in May 2002. 

He joined Texas A&M University in August 2002 and conducted research under 

the direction of Dr. Winfried Teizer. He received the Master of Science in physics, with 

emphasis of making thin films of Mn12FAc using pulsed laser depositions, in May 2005 

and received his Ph.D. degree in physics in May 2009 from Texas A&M University. His 

email address is rajvibhuti@yahoo.com.  

 

c/o Dr. Winfried Teizer 

Department of Physics 

Texas A&M University 

College Station, TX 77843-4242 

 


	B. RESULTS
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