
ARCHITECTURAL SUPPORT FOR EFFICIENT COMMUNICATION

IN FUTURE MICROPROCESSORS

A Dissertation

by

YU HO JIN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2009

Major Subject: Computer Engineering

ARCHITECTURAL SUPPORT FOR EFFICIENT COMMUNICATION

IN FUTURE MICROPROCESSORS

A Dissertation

by

YU HO JIN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Eun Jung Kim
Committee Members, Duncan M. H. Walker

Rabi N. Mahapatra
A. L. Narasimha Reddy

Head of Department, Valerie E. Taylor

May 2009

Major Subject: Computer Engineering

iii

ABSTRACT

Architectural Support for Efficient Communication

in Future Microprocessors. (May 2009)

Yu Ho Jin, B.S., Korea Advanced Institute of Science and Technology;

M.S., Korea Advanced Institute of Science and Technology

Chair of Advisory Committee: Dr. Eun Jung Kim

Traditionally, the microprocessor design has focused on the computational as-

pects of the problem at hand. However, as the number of components on a single chip

continues to increase, the design of communication architecture has become a crucial

and dominating factor in defining performance models of the overall system. On-chip

networks, also known as Networks-on-Chip (NoC), emerged recently as a promising

architecture to coordinate chip-wide communication.

Although there are numerous interconnection network studies in an inter-chip

environment, an intra-chip network design poses a number of substantial challenges

to this well-established interconnection network field. This research investigates de-

signs and applications of on-chip interconnection network in next-generation micro-

processors for optimizing performance, power consumption, and area cost. First,

we present domain-specific NoC designs targeted to large-scale and wire-delay dom-

inated L2 cache systems. The domain-specifically designed interconnect shows 38%

performance improvement and uses only 12% of the mesh-based interconnect. Then,

we present a methodology of communication characterization in parallel programs

and application of characterization results to long-channel reconfiguration. Recon-

figured long channels suited to communication patterns enhance the latency of the

mesh network by 16% and 14% in 16-core and 64-core systems, respectively. Finally,

we discuss an adaptive data compression technique that builds a network-wide fre-

iv

quent value pattern map and reduces the packet size. In two examined multi-core

systems, cache traffic has 69% compressibility and shows high value sharing among

flows. Compression-enabled NoC improves the latency by up to 63% and saves energy

consumption by up to 12%.

v

To My family

vi

ACKNOWLEDGMENTS

This dissertation is dedicated to my parents. They were always with me when

I started the PhD journey in Texas. I am deeply honored by their patience, under-

standing, and commitment throughout my life. I am in debt for their tremendous

moral and financial support.

I would like to thank my two sisters and non-Texas A&M friends. They have

provided many experiences and perspectives to last a lifetime. They always supported

my endeavors, never doubted my abilities, and deserve much thanks.

My education at Texas A&M University, College Station has been a life-changing

experience. I would like to thank my advisor Eun Jung Kim for her many years

of patience, wisdom, and encouragement. I sincerely appreciate all her advice and

anecdotes, and she has certainly made my graduate experience an enjoyable one. I

thank Duncan Walker, Rabi Mahapatra, and Narasimha Reddy. I appreciate their

time and advice on all aspects of my research, and for providing insightful feedback

on my research and presentations. I also thank Ki Hwan Yum for providing excellent

technical advice and teaching me essential skills for good writing.

I thank the numerous students in High-Performance Computing Lab, where a

multitude of people with lots of talent come together for a common purpose. I am

grateful to have met a wonderful group of people, including Hogil Kim, for listening to

my various rants and raves over the years, Manhee Lee, for encouraging me in various

ways, Heungki Lee, for always showing confidence in me, Minseon Ahn, for helping

me jump into a new simulation tool, and, Baiksong An, for arranging everything in

a perfect way during hectic examination times. I also thank other students, Inchoon

Yeo, Lei Wang, Babatunde Azeez, Gopinath Vageesan, Varrian Hall, Jay Iyer, Sungho

vii

Park, Chih-Chun Liu, and Poornachandran Kumar. They have been always good

colleagues in the lab.

I thank the professors that influenced me to pursue the field of Computer Science

in KAIST and Texas A&M University. Jin Hyung Kim, my master degree advisor,

offered my first opportunity for conducting research. Lastly, I thank Jian Li for his

mentoring and stimulating my work when I had internship in IBM Research.

viii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Networks-on-Chip . 1

B. Dissertation Contributions 2

1. NoC Designs for Large Cache Systems 3

2. Communication Characterization Towards Recon-

figurable NoCs . 3

3. Adaptive Data Compression in NoCs 5

C. Dissertation Organization 6

II BACKGROUND: NETWORKS-ON-CHIP 7

A. NoC Building Blocks . 7

1. Topology . 7

2. Router . 7

3. Link . 9

B. NoC Applications . 10

III NOC DESIGNS FOR LARGE CACHE SYSTEMS 14

A. Overview . 14

B. Related Work . 17

C. Designing Communication for Cache Architecture 19

1. Fast-LRU Replacement 19

2. Performance Gain Estimation 24

D. Interconnection Network Topology and Layout 27

E. Designing Multicast Single-Cycle Router 33

F. Experimental Methodology 36

G. Experimental Results . 39

1. Performance of Multicast Fast-LRU Replacement . . . 39

2. Performance Comparison of Different Interconnec-

tion Network Designs 42

3. Area Comparison of Different Network Designs 46

4. Performance Model Evaluation 47

IV COMMUNICATION CHARACTERIZATION TOWARDS RE-

CONFIGURABLE NOCS . 50

ix

CHAPTER Page

A. Motivation . 50

B. Related Work . 53

C. Characterization Methodology 55

D. Characterizing Spatio-Temporal Behavior 58

E. Phase-based Characterization 61

1. Feature Vector Construction 62

2. Phase Classification 63

3. Phase-Classified Performance and Power Behavior . . 65

4. Network Topology Effects 67

F. Applying Characterized Results to Long Channel Con-

figuration . 72

V ADAPTIVE DATA COMPRESSION IN NOCS 77

A. Motivation . 77

B. Related Work . 78

C. Data Compression in On-Chip Networks 80

1. On-Chip Network Architecture 80

2. Compression Support 82

3. Table Organization . 85

D. Optimizing Compression 86

1. Shared Table . 86

2. Streamlined Encoding 91

3. Dynamic Compression Management 92

E. Methodology . 94

F. Experimental Results . 96

1. Compressibility and Value Pattern 97

2. Effect on Packet Latency 101

3. Effect on Contention in Router 103

4. Effect on Network Power Consumption 104

5. Comparison with Wide- and Long-Channel Networks . 107

VI CONCLUSIONS . 109

REFERENCES . 111

VITA . 122

x

LIST OF TABLES

TABLE Page

I Global Interconnect Characteristic 11

II Global Interconnect Delay/Power . 12

III NoC Design Parameters in Existing CMPs 12

IV System Parameters . 37

V Latencies and Energies for Bank Access 38

VI SPEC2000 Benchmarks Used for Experiments 39

VII Different Interconnection Network Designs 43

VIII Area Analysis of Network Designs . 46

IX 16-core and 64-core System Parameters 56

X Summary of Executed Benchmarks 58

XI Value Table Area Analysis . 90

XII CMP System Parameters for Data Compression 95

XIII Delay and Power for Interconnect for Data Compression 96

XIV Encoding Table Hit Rates for Private and Shared Tables 102

xi

LIST OF FIGURES

FIGURE Page

1 Two Unicast LRU Replacement Schemes in a Networked Cache . . . 20

2 Fast-LRU Replacement with Multicast Support 22

3 An 8 × 8 Mesh Network for a Large Scale Cache System 28

4 XYX Routing Algorithm . 29

5 Deadlock Freedom in XYX Routing 30

6 Domain-Specific Development of Network Designs for Large Cache

Systems . 31

7 Single-Cycle Router Architecture with Multicast Support 33

8 Latency Distributions of L2 Cache Accesses in the Unicast LRU

Environment . 40

9 Way Distributions of Promotion and LRU 40

10 L2 Cache Access Latency and Energy Comparison 41

11 Performance Comparison in Different Designs 44

12 Energy Comparison in Different Designs 45

13 Energy Breakdown in Different Designs 45

14 Spike-5 Halo Network Design for L2 Cache 47

15 Performance Gain Estimation Using Analytical Model 48

16 Tiled CMP with On-Chip Networks 51

17 Spatio-Temporal Traffic Change in 16-Core 59

18 Temporal Variation Summary . 60

xii

FIGURE Page

19 Flow Dominancy Analysis . 61

20 Dimension Reduction in Flow Feature Vector 62

21 Clustering Result Comparison for Different Number of Phases 64

22 Phase Classification Toward Time-Varying Analysis 65

23 Relation between Phases and Performance Behaviors in equake 68

24 Relation between Phases and Performance Behaviors in swim 69

25 Time-Varying Packet Latency and Power Consumption in Differ-

ent Networks . 70

26 Performance Comparison in Different Topologies 71

27 Mesh Network with Long Channels 72

28 Hybrid Network Architecture . 73

29 Performance for Mesh with Reconfigured Long Channels 75

30 On-Chip Networks in CMPs . 80

31 Packet Compression Example . 83

32 Shared Table Structure . 87

33 Shared Table Management . 88

34 Area Comparison for Private and Shared Tables 90

35 Streamlined Encoding Example . 91

36 Communication Data Compressibility 98

37 Compression Ratios . 99

38 Value Spatial Distribution . 100

39 Data Compression: Latency Comparison 101

xiii

FIGURE Page

40 Behavior of Dynamic Compression Management 103

41 Data Compression: Waiting Time in Router Components 104

42 Data Compression: Energy Comparison 105

43 Data Compression: Traffic and Energy Relationship 106

44 Data Compression: Network Comparison for TILED-CMP 107

1

CHAPTER I

INTRODUCTION

The advancement of microprocessors is driven by Moore’s Law, which predicts that

the number of transistors on microprocessors doubles every two years. The substantial

performance improvement for the past decade has been mined from increasing clock

frequency, which currently almost stopped due to power consumption constraint. In

these scaling trends, current microprocessor designs attain performance from parallel

processing by integrating a large number of cores in a single die.

Achieving performance for multi-core or many-core has embarked on a design

paradigm shift from computation-centric to communication-centric aspects. Future

chip multiprocessors (CMPs) that have tens or hundreds of cores and multi-megabyte

on-chip caches will require a communication substrate interconnecting components

and coordinating data exchange among them. Without well-designed interconnect,

the multi-core system will lose the design merits and deteriorate performance advan-

tage.

A. Networks-on-Chip

Traditional interconnects such as shared buses and dedicated wiring suffer from scal-

ability as well as increase complexity of chip designs [1, 2]. Networks-on-Chip (NoC)

is a proposal to use a switched network by abstracting a communication unit as a

packet. NoC is used for a communication architecture in next-generation chips such

as Intel Teraflop 80-core [3], Tilera 64-core [4], RAW [5], and TRIPS [6].

Though NoC is conceptually similar to the chip-to-chip network, NoC has dif-

This dissertation follows the style of IEEE Transactions on Computers.

2

ferent characteristics for chip-wide communication support. First, the end-to-end

latency is ultra-low, taking a few clock cycles per hop. Routers and links share a high

frequency clock with processors. Next, abundant metal resources enable wide-channel

links and thus achieve high-bandwidth. Increasing metal layers in future technology

may provide another opportunity for high-bandwidth networks. Finally, the cost of

NoC is constrained in terms of power and area. In fact, NoC power consumption is

significant at 28% of the tile power in Teraflop [3] and 36% of the total chip power in

16-tile RAW chip [5]. In the operand network of TRIPS, the router takes up 10% of

the tile area mostly due to FIFO buffers [7].

The design of a low-latency, high-bandwidth, low-power, and area-efficient NoC

can be extremely challenging, because different objectives conflict with each other.

Generally, high-bandwidth networks achieve low latency by using much resource but

tend to consume more power and take more area. In other words, NoC design must

be carefully considered for better performance with power and area envelopes of a

chip. NoC must be co-designed with other chip components and its design must

be evaluated in a total system perspective. Application-driven workload is essential

to compare different designs and show the NoC effect on the system. Variability

such as injection rates and traffic patterns in real applications also provides excellent

opportunities for implementing adaptive hardware in NoC.

B. Dissertation Contributions

This section describes the research contributions of the dissertation. Although each

contribution targets a differently configured system, the developed techniques easily

adapt to other designs.

3

1. NoC Designs for Large Cache Systems

Chapter III develops a domain-specific NoC design in a large-scale cache systems.

Taking a network-oriented approach to a last-level cache design reduces a growing

wire delay in a cache access time [8]. The monolithic cache is broken into multiple

banks that can be accessed at different latencies through an NoC. NoC plays a key

role in managing cache operations as well as determining the cache access latency.

However, using a general-purpose NoC to a specific problem domain may cause large

network delay and under-utilization of network resources, since the network is not

optimized for the domain. Reducing both latency and resource of the network requires

re-examination of NoC design, particularly how NoC interacts with the rest of the

multi-bank cache architecture.

The primary contribution includes: (i) a single-cycle router architecture with

multicast support as the basic building block of the interconnection networks; (ii)

Fast-LRU replacement that can reduce the network latency; (iii) appropriate deadlock-

free XYX routing algorithm that requires no horizontal links in a mesh except the

first row to save area and power; (iv) a new network topology, called a halo network,

where the MRU banks are of the same distance from the core; and (v) a halo network

with non-uniform sized banks, thus reducing the wasted area on the processor die.

2. Communication Characterization Towards Reconfigurable NoCs

For NoCs towards CMPs, characterizing communication in multi-threaded applica-

tions can bring many new optimization opportunities. Assessment of real application

behavior in NoC is still in nascent stage. There are no standard benchmarks for

NoC study, and even previous work depends on results of synthetic traffic from out-

dated applications. Therefore, understanding communication in applications is a first

4

step to design efficient interconnects. Scientific and commercial workloads are good

candidates for CMP applications. Chapter IV presents a characterization method

in OpenMP-style parallel applications. The OpenMP programming model achieves

performance enhancement mainly by exploring parallelism in a loop. Furthermore,

every loop iteration exhibits quite consistent behavior. Communication behavior is

understood as multiple phases, where each phase represents a unique spatio-temporal

property. This method can capture time-varying traffic variation of one loop iteration

in the same application. We explore the recurring behavior of loop execution and use

this property to reconfigure an interconnect.

We build a traffic model for the fixed interval of executed instructions. We

construct a traffic matrix, where each element has the amount of traffic for one flow,

and each row and column specifies source and destination address, respectively. The

matrix is regarded as a feature vector for grouping similar intervals as a phase. We

use a machine learning technique that clusters similar intervals and classifies each

interval as a phase. After this step, one loop iteration behavior is summarized as a

sequence of phases.

In each phase, we identify hot flows or hot sources that require a large volume of

communications. Additionally, we identify long-distance communications based on a

physical distance between a source and a destination. We use this information in a

hybrid network, which has a well-designed topology with multiple long channels to

overcome limitation of the physical topology. These long channels are dynamically

reconfigured to reduce the packet latency by allocating each of them to a router and

hence providing an express path.

5

3. Adaptive Data Compression in NoCs

In cache traffic for cache-coherent multi-core systems, a packet data that includes a

long cache line exhibits frequent bit patterns [9, 10, 11, 12]. Exploiting this property

enables a long packet payload to be compressed (encoded) as a short index, hence

reducing a packet size. Packet compression increases the designed network bandwidth

at runtime, and reduces power consumption by resulting in less switching activity in

routers and links.

Chapter V presents the main contributions as co-designing compression architec-

ture with NoC architecture to enhance performance and power consumption with a

small cost of the compression hardware. First, we propose the shared table scheme,

which stores identical values into a single entry from different sources or destinations

and removes the network-size dependence. We also present the efficient table manage-

ment protocol for consistency. Next, we propose performance improvement schemes.

Streamlined encoding reduces the encoding latency by overlapping encoding with flit

injection. Finally, we present the dynamic compression management that compresses

packets on-demand in varying workloads to maximize the performance.

We identify 69% compressibility of cache traffic in a suite of scientific and com-

mercial benchmarks for two CMP designs; 8-core with NUCA and 16-core tiled. Ad-

ditionally, we observe that a large portion of communication data is shared among

different flows. Finally, the detailed simulation results show that data compression

improves the latency by 55% and saves the energy by 12%. Furthermore, dynamic

compression management achieves 63% latency improvement with 7% energy saving.

6

C. Dissertation Organization

This dissertation is organized as follows. Chapter II presents architectural compo-

nents for NoC and examines exploratory NoC-enabled chips. Chapter III presents

NoC design consideration in wire-delay dominated cache systems. Chapter IV presents

traffic characterization methods with its use for long-link reconfiguration. Chapter V

develops data compression for two CMP systems, followed by the conclusion of the

research in Chapter VI.

7

CHAPTER II

BACKGROUND: NETWORKS-ON-CHIP

A. NoC Building Blocks

1. Topology

The network topology determines the various characteristics of the network, such as

the average hop count and bisection bandwidth. Because every topology needs to be

laid out on 2D die, regular networks such as mesh, torus, or ring are mostly adopted

for NoCs. Ring is a simple topology for moderately-sized networks, but the linear

hop count dependency and poor bandwidth support make it undesirable for large

networks. Torus provides the higher bisection bandwidth and the smaller average

hop count than mesh, but power dissipation goes up to almost two times of mesh due

to the long links [13]. High radix topology networks which have express channels,

such as butterfly [14] or fat trees, require high wiring resource and increase router

complexity for a large number of ports. Moreover, it is shown that no single network

provides optimal performance across different traffic patterns [15].

2. Router

The router design plays a vital role in switched networks. The pipelined router uses

wormhole switching for small buffer requirement, virtual-channels (VCs) to alleviate

Head-Of-Line (HOL) blocking, and credit-based flow control. The pipeline stages of

a conventional router consist of route computation (RC), virtual channel allocation

(VA), switch allocation (SA), and switch traversal (ST) [16]. First, RC stage directs

a packet to the proper output port of the router by looking up the packet destination

address. Next, VA stage allocates one available VC of the downstream router deter-

8

mined by RC. SA stage arbitrates input and output ports of the crossbar, and then

successfully granted flits traverse the crossbar (ST). After ejecting from the router,

the flit crosses over a link to the next router (LT). Therefore, for each hop, head

flits require four cycles (RC+VA+SA+ST), while middle/tail flits require two cycles

(SA+ST).

Even though an aggressive design can merge adjacent operations into a single-

cycle operation, this dependency still exists. Moreover, recent results show that the

operating clock cycle for the router is 12 fanout-of-four (FO4) delays [17], which

is close to the optimal pipeline delay of the modern superscalar processor [18]. To

minimize and break the serial dependency, we use the following techniques.

• Lookahead routing: The routing decision is made one hop ahead of the cur-

rent router. It eliminates the routing delay by removing the serial dependency

between routing and VC allocation like the SGI SPIDER chip [19]. The routing

outcome is stored in a flit and hence used to allocate VC or the switch output

port in the next router.

• Buffer bypassing: If the input buffer designated for the VC is empty, a flit

directly goes to the crossbar or the VC allocator (if it is a head flit) through a

bypass path without being stored at the tail entry of the input buffer. It can

remove the delay for the read and write operations of buffer.

• Speculative switch allocation: Switch allocation is performed speculatively

at the same instance of VC allocation so that a head flit enters into the crossbar

right after VC allocation [20]. This speculative switch allocator is only applied

to head flits and cannot be granted if the normal switch allocator reserves all the

available ports. In this way both VC and switch allocations can be performed

at the same cycle.

9

• Arbitration precomputation: Arbitration of competing requests for a VC or

a switch port is precomputed and stored for the next arbitration after one output

VC in VC allocator or input/output port of the crossbar in switch allocator is

granted [17]. The grant signals of the arbiter are generated as the product of

the precomputed grant enable signals and incoming arbitration requests. Hence

arbitration outcomes are prepared one cycle ahead and latched for the next

cycle.

All these techniques except lookahead routing work well in a lightly loaded network

where the possible cases for each scheme occur frequently. Our router design maxi-

mizes these chances and eventually delivers a flit in a single clock cycle by reducing

the critical path in a traditional pipelined router.

Router buffers are instrumental in the NoC design, because the buffer space takes

up silicon area and dissipates the significant portion of the router power. Though

wormhole switching makes a buffer size less than a packet size, it lowers down buffer

utilization. Deadlock avoidance routing algorithms that separate flows into different

VCs also incur imbalance of VC utilization for some traffic patterns. Sharing buffer

space [21] and controlling the number of VCs [22] reduce expensive cost of the buffer.

3. Link

Links that connect neighbor routers use parallel global wires. Compared with small

pin bandwidth limitation in off-chip networks, multi-layer fabrication processes enable

the use of wide links in on-chip networks. However, high wiring density will give

less space for logic such as cores or caches. Because long wires are implemented as

buffered wires with repeaters and latches, the global long wires are difficult to be

routed over logic [23]. Over-providing metals to the links for an on-chip network may

10

easily exhaust top-level metal resources, hence making it hard to route and place

power/ground interconnects.

The number (hopt) and sizing (kopt) of repeaters and one segment delay (τopt) are

determined as following RC equations [24].

hopt =

√

2rs(c0 + cp)

rwcw

kopt =

√

rscw

rwc0

τopt = 2
√

rsc0rwcw(1+

√

1

2
(1 +

cp

c0

)) (2.1)

where c0, cp, and rs are the input capacitance, the output capacitance, and the

output resistance of the minimum size repeater, and cw and rw are the unit length

capacitance and resistance of the wire. Then, the delay of uniformly buffered wire

for a given length L is log 2 × τopt × L
hopt

. Also power consumption of a buffered wire

comes from charging and discharging both wire and repeater capacitances. For Vdd

supply voltage, unit length for a buffered wire consumes the following power (Ew).

Ew = 0.5V 2
dd(

kopt

hopt

(c0 + cp) + cs + ci) (2.2)

We model the wire capacitance (cw) into two parts: wire-substrate capacitance (cs)

and inter-wire coupling capacitance (ci).

We obtain the wire property from ITRS [2] and PTM model [25], and the repeater

property from [26]. Table I shows interconnect property from 65nm to 22nm. Table II

presents delay, power, and area of global wire for each technology generation.

B. NoC Applications

Several forms of NoC designs have been proposed to interconnect processing compo-

nents on a die. Tile networks have high scalability to many-core designs because an

identical tile having a core and a SRAM memory can be replicated easily [3, 4]. Cache

networks are another trend in a large-scale L2 cache design to mitigate increased wire

11

Table I. Global Interconnect Characteristic
Year 2007 2010 2013 2016
Technology 65nm 45nm 32nm 22nm

supply voltage, Vdd (V) 1.1 1.0 0.9 0.8
clock freq. (GHz) 6.73 11.51 19.3 28.8

pitch (nm) 210 135 96 66
aspect ratio 2.3 2.4 2.5 2.6
width (nm) 105 68 48 33
spacing (nm) 105 68 48 33
thickness (nm) 241.5 163.2 120 85.8
height(ILD) (nm) 241.5 163.2 120 85.8
dielectric permittivity 2.85 2.65 2.25 2.15

Rw (Ohm/mm) 867.593 1982.41 3819.444 7770.007
cs (fF/mm) 21.955 19.569 15.948 14.647
ci (fF/mm) 81.354 79.297 70.425 70.251
cw = 2cs + 2ci (fF/mm) 206.618 197.732 172.746 169.796

delay and share a large capacity effectively [27, 28]. Bypass networks are intended to

connect multiple ALUs to overcome increased complexity and delay of bypass path in

microprocessors [5, 6]. Communication in tile networks or cache networks are cache

traffic that transports cache lines and manages coherence in shared data, while short

operand traffic moves in bypass networks.

Table III shows the main NoC features in recent designs. RAW is the proposal to

schedule operands in ALU networks and overcome the wire-delay problem for super-

scalar processors [5]. A mesh network connecting 16 tiles has two physical networks

(static and dynamic). The static network controls operands among distributed ALUs,

and the dynamic network transports all other traffic such as memory, interrupts, and

user-level message passing codes. TRIPS is a distributed processor consisting of mul-

tiple tiles connected through two networks [6]. The L2 cache consists of 24 network

tiles and 16 memory tiles in on-chip network (OCN), while a processor has 16 execu-

tion tiles and other 9 tiles in operand network (OPN). TRIPS prototype shows that

an OPN router takes up a significant chip area (10% of the execution tile and 14% of

12

Table II. Global Interconnect Delay/Power
Year 2007 2010 2013 2016
Technology 65nm 45nm 32nm 22nm

hopt (mm) 0.491 0.318 0.268 0.190
kopt 47.113 38.248 36.794 36.536
one segment wire delay (ps) 59.175 58.086 66.528 66.528
unit length delay (ps/mm) 20.542 182.750 247.896 350.543
unit length delay (FO4/mm) 5.151 11.281 21.519 44.260

unit length dynamic power (mW/mm) 2.045 1.513 1.119 0.869
unit length leakage power (uW/mm) 1.441 1.625 1.777 2.338
unit length sc power (mW/mm) 0.331 0.257 0.214 0.184
unit length total power (mW/mm) 2.378 1.771 1.336 1.056

Table III. NoC Design Parameters in Existing CMPs
Architectures Topology Router Link (bits) Routing Flow control Clock

RAW 2 4x4 meshes 3/5-stage, no VC 256/32 static credit-based 425MHz
TRIPS OPN 5x5 mesh 1-stage, no VC 142 static (YX) on-off 400MHz
TRIPS OCN 4x10 mesh 1-stage, no VC 138 static (YX) credit-based 400MHz

Tilera chip 5 8x8 meshes 1/2-stage, no VC 32 (per mesh) static credit-based 1GHz
Cell EIB 4 rings - 128 (per ring) minimal PCS 1.6GHz
Teraflop 8x10 mesh 5-stage, 2 VCs 39 source routing on-off 5GHz

UltraSparc T1 crossbar - 103 - - 1.2GHz

a processor core) mainly because the router has 2.2 kilobits storage for buffers [7].

Tile processor recently announced by Tilera has 5 physical 2D mesh networks to

connect 64 cores [4]. The five networks are user dynamic network (UDN), I/O dy-

namic network (IDN), static network (STN), memory dynamic network (MDN), and

tile dynamic network (TDN). The rationale behind this design comes from the bene-

fit of logical networks from independent physical networks, which allows for privilege

isolation of traffic, independent flow control, and traffic priotization. Cheap wiring

due to multi-layer metal resources makes this realization cost effectively free, while

inexpensive buffering (1.1% of tile area for each network) is achieved by excluding

use of virtual channels in a router.

Cell processor uses Cell Element Interconnect Bus (EIB) as an on-chip intercon-

13

nect [29]. In four 16B ring-networks for data bus, two networks are dedicated for data

transport of one direction. Cell has an additional shared command bus structured

as a tree and a star-like central data bus arbiter. Analytical characterization of EIB

shows that the command phase, which coordinates connection-oriented end-to-end

transfers, consumes almost 50% of the total zero-load packet latency and that the

sustainable network throughput is reduced by a single element causing hot spot or

circuit switching.

The Intel Teraflops Processor architecture contains 80 tiles arranged in 2D array

and connected by a mesh network [3]. Mesh network provides two virtual channels for

instruction and data to prevent short instruction packets from being mixed with long

data packets. Experimental results in 65-nm process technology fabrication shows

that a 5-port router requires 17% of the total 3-mm2 tile and its power dissipation is

28% of the tile power. Because this significant network power consumption does not

meet the chip power envelope (less than 10% of the total chip power), they concluded

that pipeline reduction techniques such as speculation and bypassing in the router

are not desirable and fine-grained power management schemes are necessary.

Sun’s 32-way Multithreaded Sparc Processor has a single crossbar for commu-

nication among Sparc pipes, L2 cache banks, and I/O subsystem [30]. Crossbar

interconnect provides 200GB/s bandwidth and queues up to 96 transactions each

way. Global arbitration based on age-based priority scheme enables memory ordering

for the machine 1.

1In Table III, link width is calculated from a 200GB/s bandwidth crossbar and 13
ports (8 Sparc pipes, 4 L2 cache banks, 1 I/O).

14

CHAPTER III

NOC DESIGNS FOR LARGE CACHE SYSTEMS

A. Overview

With the current rate of technology advancement, increasing wire delays in modern

microprocessor designs [31, 1] leads to various techniques to minimize the impact of

slow on-chip communication. Typically, on-chip communication has been conducted

via shared buses or dedicated wires. Dedicated wires can provide the best customiza-

tion to applications. However, these interconnects are influenced by various parasitic

capacitance and crosstalk from adjacent wires that cannot be predicted until the ac-

tual layout and routing are performed [32]. For shared buses, a single communication

exclusively uses the whole bus even if multiple communications could operate simul-

taneously on different parts of the bus. Using global buses is not a scalable solution

because the bus bandwidth may become a major bottleneck as the number of chip

components increases.

Another way to design an on-chip communication is with a switched network. All

the components are connected to the network that routes packets among them, which

has the advantages of structure, performance, and modularity [33, 34, 35, 36]. There

has been much research on the architectures of future chip multiprocessor (CMP)

designs [37, 6, 38] using switched networks for better scalability and resource sharing.

Furthermore, these networks have been adopted to overcome wire delay in specific

domains such as large scale cache designs [8, 27].

The regular topologies, such as meshes and tori, have been used in on-chip net-

work designs. However, a general-purpose network with regularly distributed network

resources can cause problems in the following two cases: under-provisioning and over-

provisioning of network resources. Under-provisioning network resources below com-

15

munication requirement causes poor performance. On the other hand, when network

resources are over-provisioned, underutilization of the network resources occurs and

large network delays are caused by the increased network size. Furthermore, over-

providing network resources results in wasting the chip area. Therefore, it is critical to

design an optimal network for a specific domain by breaking the regularity of the in-

terconnection network. It is also important to exploit the potential parallelism of the

interconnection networks in the problem domain. Achieving these two goals requires

specific knowledge of both interconnection networks and the application domain.

In some large scale cache designs [8, 27], 2D mesh networks have been adopted

to interconnect small cache banks to overcome wire delays. For example, in Non-

Uniform Cache Architectures (NUCAs) [8], the cache is broken into multiple banks

that can be accessed at different latencies through an on-chip network. D-NUCA

(Dynamic NUCA) allows cache blocks to migrate among cache banks in such a way

that recently accessed cache blocks can move towards the core, which helps reduce the

average cache access time. However, the network delay is still a dominant portion of

the cache access time. A 16MB D-NUCA using a 16×16 mesh network demonstrated

an average access time of 17 cycles without network contention while the bank access

time is only 3 cycles. The worst case is when the requested cache block is not found

in the L2 cache. In this case, all the cache banks in the bank set 1 must be checked

sequentially before memory is accessed. In addition, 20% of the total links in a mesh

network are never used, while the network occupies 41% of the total cache area.

The main purpose of this research is to investigate the design in the intercon-

nection framework and, particularly, how it interacts with the rest of the multi-bank

cache architecture. The research proceeds as follows: first, we propose a single-cycle

1To implement a set associative cache in a networked cache system, a set is dis-
tributed across multiple banks. This is named a bank set [8].

16

wormhole router architecture that supports multicast efficiently. Because multicast

can significantly reduce large network delay, it decreases the total cache access time

dramatically. Unlike the existing multicast routers proposed before, the proposed

router takes only one cycle in each hop and does not require any extra storage. It be-

comes the basic building block of the interconnection network design for the proposed

large scale cache systems.

Next, we present Fast-LRU replacement in which cache replacement occurs con-

currently with tag-matching. We investigate detailed operations in the network in-

cluding tag-matching, replacement, and placement for a cache hit and miss. Fast-LRU

can be further improved by parallelizing required operations with multicast support.

The proposed networked cache system performs best when it uses Multicast Fast-LRU

replacement.

Finally, we propose a deadlock-free XYX routing algorithm and a new halo net-

work topology to reduce the cache access time and minimize the number of links in

the cache system. We discuss how the L2 cache layout on the processor die can help

reduce the cache access time. In the XYX routing algorithm, the normal XY routing

is used for delivering cache requests from the core to the banks while the replies from

each bank to the core are transfered in the Y direction first. Compared with XY

routing, the XYX routing algorithm saves most horizontal links in a mesh network.

Removing horizontal links leads to the removal of all the associated input buffers

and the simplification of both arbiter and crossbar designs. Incorporating small radix

routers also results in short pipeline stage latency as well as small chip area. With the

halo topology, all the closest banks of each column in the mesh network are placed in

the same one-hop distance from the core.

Simulation results with SPEC2000 benchmarks show that the networked cache

system with all of the proposed techniques improves the IPC by 38% and uses only

17

12% of the interconnection area of the D-NUCA system with Multicast Promotion

replacement [8]. Specifically, Multicast Fast-LRU replacement improves the IPC by

20% in the mesh network and the halo network further improves it by 18%. We also

present analytical models for different communication network designs, which further

verifies the performance improvement shown through simulation.

B. Related Work

Several studies explore the large on-chip cache designs to overcome the wire delay

problem. NUCA [8] shows that the traditional large cache based on partitioned sub-

banking is ineffective because its access latency is determined by the slowest (i.e.

farthest from the core) subbank. One of the proposed designs, Static NUCA (S-

NUCA), uses dedicated wires to each bank and incurs significant area overhead. In

another Dynamic NUCA (D-NUCA) design that organizes banks with a switched

network, they exploited cache block migration, partial-tag search for early miss de-

tection, and multicast for fast bank access. NuRAPID [39], which accesses tag and

data sequentially, decouples each placement in separate storages. This flexible man-

agement increases energy-efficiency in NUCA by filtering most misses from only tag-

array accesses. However, it has an overhead to maintain pointer structures in the

existing bank architecture. TLC (Transmission Line Caches) [40] uses communica-

tion medium for banks as a fast transmission line having short inductive-capacitance

(LC) delays. Although transmission line can provide express channels, its application

is limited due to the high area requirement. Heterogeneous interconnects are used to

improve performance for NUCA such as sending critical address bits on fast L-wires

for early bank look-up [41]. Wire and router designs are considered in the cache

model used in CACTI 6.0 [42]. Additionally, some of those designs were examined

for cache sharing environment in CMPs [27, 43, 28].

18

An on-chip network that enables low-latency from its high bandwidth is used in

partitioned architectures such as CMPs [37, 6] and Networks-on-Chips (NoCs) [33,

34, 35, 36]. A few research showed that the network design must be tailored to the

communication behavior of applications running on the network for resource saving

and performance improvement. A mesh network was optimized to each parallel appli-

cation by analyzing its requirement of both links and routers [44]. Instead of assigning

buffering resources uniformly in a 2D mesh network, the allocation of different buffer-

ing size in each channel reduces the implementation cost and increases performance

in the NoC design of media applications [45].

Router design directly impacts the performance of the on-chip network. It is

difficult to achieve one-cycle flit delivery in a conventional pipelined router due to

dependencies between pipeline stages. Speculative switch allocation breaks the de-

pendency chain between virtual channel allocation and switch allocation [20]. A

recently proposed low-latency router delivers a flit in a single cycle [17]. It eliminates

control overheads (routing and arbitration logic) from the critical path by input buffer

bypassing, lookahead routing, and pre-computation of arbitration decisions.

To support one-to-many communication primitives, multicast routers have been

designed especially for multistage networks and 2D mesh/hypercube topologies [46,

47]. Due to the nature of multicast, we need to provide extra storage to hold packets

and a deadlock prevention mechanism. In a chip-to-chip domain, the central-buffer-

based design showed better performance over the input-buffer-based design, because

the queuing capability of the central buffer is superior for unicast packets [46]. How-

ever, the additional storage is not desirable in the on-chip domain where area budget

is very tight. There are two ways to prevent deadlock: deadlock avoidance/recovery

and complete packet buffering. While deadlock avoidance routing causes inefficient

resource utilization and deadlock recovery mechanisms are highly complex, complete

19

buffering requires large buffer storage. Therefore, the main challenge of multicast

support in an on-chip network is to prevent deadlock without extra storage require-

ments.

C. Designing Communication for Cache Architecture

In this section, we explain communication operations in mesh-connected banks to

manage blocks for LRU replacement. We present Fast-LRU replacement that merges

tag matching and replacement operations in a single packet. During the course of

this work, fast LRU replacement is extended with a multicast network. Finally, we

develop an analytical performance model for different communication designs.

1. Fast-LRU Replacement

In this section, we propose Fast-LRU replacement with multicast to reduce the long

latency of the LRU replacement scheme after examining its optimization with unicast.

We briefly explain cache operations in D-NUCA [8]. As shown in Figure 1 (a),

the cache is broken into multiple banks that can be accessed through a mesh network.

One column of the mesh represents a set of a set-associative cache, which is statically

determined by the low-order bits of the block address. Cache blocks in a set are

spread across multiple banks in the column. Each set distributed in a column is called

a bank set. Thus, the cache system searches for a block by first selecting the column,

selecting the set within the column using direct-mapping, and finally performing a

tag-match on distributed blocks. Note that each way has a different network latency

depending on the distance from the core. Although a bank set can be distributed on

every column to give approximately equal access time across all bank sets, we do not

consider this configuration due to the larger hop count.

20

(a) LRU Replacement (b) Fast-LRU Replacement

Fig. 1. Two Unicast LRU Replacement Schemes in a Networked Cache

To reduce the average access time, we should place frequently used data in the

banks closer to the core, which can be achieved with LRU replacement. The LRU

generates 14% higher cache hit rate than Promotion [8], which swaps the hit block

with a block in the bank that is next closest to the core. Therefore, it makes the first

way and the last way be placed on the closest (MRU) bank and the farthest (LRU)

bank, respectively. However, maintaining the LRU order in a bank set requires a

large overhead because it incurs many swaps of blocks between banks.

Figure 1 (a) shows the LRU replacement policy by depicting the required com-

munications among banks. Assuming that a data request is a hit in Bank 4, the

request traverses from Bank 1 to Bank 4 ((1) ∼ (4)). Then the hit block is sent to

Bank 1 ((5)), resulting in the corresponding blocks in Bank 1, 2, and 3 being moved to

Bank 2, 3, and 4 ((7) ∼ (9)), respectively. In this example, the total communication

21

time is 21 hops including the notification of completion; the initial tag-match time

to find a hit bank is 7 (1+2+2+2) hops and the remaining part is 14 (4+2+2+2+4)

hops. It is clear that the cache hit latency can be decomposed into two parts— tag-

match and move (replace) operations. Therefore, the total communication time for

block movement after finding a hit can easily exceed the initial tag-match time. A

cache miss needs tag-match along all banks and a new block placement to the MRU

bank incurs multiple block movements.

In Figure 1 (b), the proposed Fast-LRU replacement allows the tag-match op-

eration to overlap with the replace operation. If there is a miss in a bank, the

corresponding block in the bank is evicted and immediately transferred to the next

bank with the data request ((1) ∼ (4)). Unless the request is a hit in the MRU bank,

the corresponding block in the bank is pushed to the next bank consecutively until

the final (LRU) bank. Once there is a hit in a bank, that block is transferred to the

MRU bank where its corresponding frame is already empty ((5)). If all the banks

generate misses, the request is forwarded to the off-chip memory, and the requested

memory block is read. Then this new block is stored in the MRU bank and sent to the

core. Since the invariant property of LRU is that all the banks ahead of the hit bank

generate misses, the total communication time of the Fast-LRU replacement scheme

is 12 (1+2+2+2+4+1) hops in Figure 1 (b). In addition, this scheme almost halves

the number of bank accesses since both tag-match and replacement are performed

simultaneously.

Next, we further investigate how to reduce the cache access time by exploiting the

multicast router proposed in Section E. Even though Fast-LRU replacement reduces

the hit latency, a hit on the LRU bank or a miss on a cache (i.e. all banks produce

misses) still suffers from the long latency, which is the sum of the bank access time

over all banks in a bank set and the network latency. Multicast relieves this problem

22

...

notify hit

tag match
(right after miss detection)

...

notify completion

move

bank 2

bank 3

bank 4

bank 2

bank 3

bank 4

bank 1 bank 1

notify miss

������

��������

����
����
����
����

����
����
����
����

��������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

hit

miss

�����
�����
�����

�����
�����
�����

empty

�����
�����
�����
�����

miss

miss

net
net

net

netbank4net

miss notification

hit decision

replacement

replacement

tag match

hit completion

bank1

net
netnet

net
net

net

bank3net
bank2

bank4
bank3

bank2

net

bank1

(a) Cache Hit with Time Diagram

...

bank 16 (LRU)

... ����
����
����
����

���
���
���
���

if the victim is dirty

...
move

replacement
done

tag match

bank 1

bank 2

write back

newly fetched
block

notify miss
core corememorymemorycore

���
���
���

���
���
���

������

��������
����
����
����
����

miss

miss

miss net
net

net
net

bank1
bank2

bank3
bank4

net
net

net
net

net net
netnet

core netnet memory net bank1bank16

net bank2
net bank3

net bank4 net

bank16net net memory

...

miss decision

bank15

victim to memory...

new block placement

miss completion

replacement

tag match

(b) Cache Miss with Time Diagram

Fig. 2. Fast-LRU Replacement with Multicast Support

23

by allowing concurrent accesses of multiple banks for tag-match.

Figure 2 (a) illustrates a cache hit for Multicast Fast-LRU replacement with the

time diagram of each operation. When the multicast router attached to the MRU

bank (Bank 1) receives a data request, it forwards the request to two destinations,

the MRU bank and the second MRU bank (Bank 2), at the same time. The router

attached to the second MRU bank (Bank 2) also forwards the request to the attached

bank and the next bank (Bank 3), and so on. If the requested block is found in

the MRU bank, no block replacement is required and the core is notified of a cache

hit. Otherwise, the MRU bank initiates Fast-LRU replacement by sending its evicted

block to the second MRU bank. Each non-MRU bank that experienced a cache miss

waits for the evicted cache block from the next closest bank from the core. As soon

as it receives the evicted block, it also sends its own evicted block to the next LRU

bank. This operation stops at the bank where the requested block is found, since

the requested block is sent to the MRU bank, not the next LRU bank. Note that

the replacement packet (including an evicted block) can never catch the data request

packet and that the data request packet always reaches the LRU bank if the router

performs arbitration in a FIFO manner. Each non-MRU bank should not initiate its

evicted block transfer to the next LRU bank unless it receives an evicted block from

the previous bank.

A cache miss occurs when all the banks in the bank set produce misses as depicted

in Figure 2 (b). It incurs the off-chip memory access and write-back from the LRU

bank (Bank 16) to the memory, if necessary. The core waits for all the banks to report

misses, and then invokes the memory access. When the memory sends a new block

to the MRU bank, the MRU bank sends this newly incoming block to the core. The

block movement is similar with that of a cache hit, except the LRU bank notifies the

core of the replacement completion and writes back the victim to the memory if the

24

block is dirty.

In this scenario, more optimization techniques can be used to improve the per-

formance further.

• In a cache hit, the hit notification and the hit block can be merged into a single

packet. This packet is replicated at the router that is attached to the MRU

bank. Then the original packet goes to the MRU bank for LRU replacement

while the replica is sent to the core.

• In a cache miss, the core does not have to wait for the miss notifications from

all the banks, if some banks have invalid cache blocks. Initially the cache is

empty and all the blocks are invalid. As cache blocks are read into the banks,

all the invalid blocks are pushed down towards the LRU bank. Therefore, the

core receives a miss notification from an invalid block, thus implying that all

the banks farther than this bank have invalid blocks. In fact, the core should

keep track of miss notifications from all the banks that are closer to the core

than the bank that produces a compulsory miss. This can expedite the memory

access and deliver the required data to the core earlier.

2. Performance Gain Estimation

We build an analytical model of communications for each replacement policy and

estimate the efficiency of Multicast Fast-LRU replacement. It can be used as an early

design tool to estimate the networked cache performance. Furthermore, it can be

generalized to other replacement policies and be applicable to predict performance

for other workloads.

A c-bank, w-way cache system requires a c × w mesh network. We can break

down its access latency into bank access latency (lb), memory access latency (lm), and

25

network latency (ln). The network latency 2 (ln(d)) is proportional to the hop count,

d. It also can be represented as ln(i → j) between two communication entities, i and

j, and each entity is one of core (C), banks ({bx,y|x ∈ [1, c], y ∈ [1, w]}), or off-chip

memory (M). Bank bx,y stands for y-th way in x-th column of the mesh.

We show how the average access time can be estimated in the memory hierarchy

including a L2 cache and an off-chip memory with different communication designs.

Average Access Latency: To estimate the average L2 cache access latency

(LP) for a replacement policy (P), we consider hit latency (HP) and miss latency

(MP) separately. When the request comes into the network, it accesses banks in

only one column x of the mesh network. Let hx,y be the hit rate of bank bx,y and

HP (x, y) be the hit latency. Summing up each hit rate of all banks is less than

1 (
∑c

x=1

∑w
y=1 hx,y ≤ 1). Then, column x’s portion for the average access latency

is addition of two parts: the sum over each bank’s hit latency weighted by its hit

rate, and the product of the miss rate and miss latency. The miss rate is computed

by subtracting the sum of the hit rate of all banks in column x. The miss rate is

later weighted by the ratio of requests going to the column x to total requests, rx

(
∑c

x=1 rx = 1). We calculate LP as:

Lp =
c∑

x=1





w∑

y=1

(hx,y · Hp(x, y)) + (rx −
w∑

y=1

hx,y) · Mp(x)





Unicast LRU, Unicast Fast-LRU, and Multicast Fast-LRU policies are denoted as

u-LRU, u-fLRU, and m-fLRU.

Unicast LRU: The cache hit on the MRU bank (the first way, bx,1), H u-LRU(x, 1),

does not need block movement. Its latency includes a single bank access, lb, and a net-

work round-trip between core and the MRU bank, which is the sum of ln(C → bx,1)

2For simplicity, we assume that our network is contention free.

26

and ln(bx,1 → C). However, the cache hit on other banks, H u-LRU(x, y), needs

multiple bank accesses. The hit on the bank bx,y causes banks from bx,1 to bx,y−1 to

generate misses and each network latency to the neighbor is 2 hops, which is ln(2).

Additionally it needs recursive block movements from the hit bank to the MRU bank

to maintain the order for LRU replacement.

H u-LRU(x, 1) = ln(C → bx1) + lb + ln(bx,1 → C)
︸ ︷︷ ︸

hit

H u-LRU(x, y) = ln(C → bx,1) + lb + (y − 1) · (ln(2) + lb)
︸ ︷︷ ︸

(y−1) misses + y−th bank hit

+ ln(y) + lb + (y − 1) · (ln(2) + lb) + ln(bx,y → C)
︸ ︷︷ ︸

move

The cache miss latency, M u-LRU(x), has three components. It detects cache

miss by visiting all w banks, goes to the memory controller to fetch a new block, and

then places it to the MRU bank. This placement of a new block incurs additional

block movement until the bank does not have a valid block. If the y′-way bank is the

last one for movement, the number of additional movements is y′.

M u-LRU(x) = ln(C → bx,1) + lb + (w − 1) · (ln(2) + lb)
︸ ︷︷ ︸

w misses

+ ln(bx,w → M) + lm
︸ ︷︷ ︸

memory

+ ln(M → bx,1) + lb + y′ · (ln(2) + lb) + ln(bx,y′ → C)
︸ ︷︷ ︸

place

Unicast Fast-LRU: Fast-LRU replacement has no extra movements caused

by placing the hit block to the MRU bank, because the block is already moved to

its neighbor. Furthermore, in case of a miss, when a new block from the memory

is placed on the MRU bank, the corresponding frame in the MRU bank is already

invalid. Therefore, it does not have y′ movements for Unicast LRU policy.

27

H u-fLRU(x, 1) = ln(C → bx,1) + lb + ln(bx,1 → C)
︸ ︷︷ ︸

hit

H u-fLRU(x, y) = ln(C → bx,1) + lb + (y − 1) · (ln(2) + lb)
︸ ︷︷ ︸

(y−1) misses + move + y−th bank hit

+ ln(y) + lb + ln(bx,1 → C)
︸ ︷︷ ︸

move

M u-fLRU(x) = ln(C → bx,1) + lb + (w − 1) · (ln(2) + lb)
︸ ︷︷ ︸

w misses

+ ln(bx,w → M) + lm
︸ ︷︷ ︸

memory

+ ln(M → bx,1) + lb + ln(bx,1 → C)
︸ ︷︷ ︸

place

Multicast Fast-LRU: Because multicast packets for the cache request produce

a copy at each router and each of them arrives at a bank concurrently, the hit latency

consists of the hit bank access and the round-trip starting at the core. Note that block

movements for LRU replacement initiated by the hit bank are not on the critical path

compared with the Unicast Fast-LRU scheme. When the miss notification from the

last bank arrives at the core, the corresponding request is identified as a miss, and

hence, the core directly asks the memory for sending a new block to the MRU bank.

H m-fLRU(x, y) = ln(C → bx,y) + lb + ln(bx,y → C)
︸ ︷︷ ︸

hit

M m-fLRU(x) = ln(C → bx,w) + lb + ln(bx,w → C)
︸ ︷︷ ︸

miss

+ ln(C → M) + lm
︸ ︷︷ ︸

memory

+ ln(M → bx,1) + lb + ln(bx,1 → C)
︸ ︷︷ ︸

place

D. Interconnection Network Topology and Layout

We analyze the utilization of the interconnection network for large scale cache systems

and explore a few alternatives for simplification and optimization. The limited chip

resource should be efficiently distributed to both computational and communication

units. Over-provisioning causes the waste of valuable chip resources, while under-

28

provisioning incurs performance degradation. Therefore, the chip design needs a

careful analysis of each unit’s resource requirement and their interactions to draw the

optimal configuration.

hit

miss
A

D

A’

G

B E B’

C

F

memory

core

memory

core

(a) Communication Patterns (b) Minimal Link Requirement

Fig. 3. An 8 × 8 Mesh Network for a Large Scale Cache System

Figure 3 (a) shows all possible XY routing communication patterns of a large

scale L2 cache system on an 8 × 8 mesh network. The core is attached to the fourth

router on the top row and the memory is attached to the fifth router on the bottom

row. Forwarding a data request to the appropriate bank set needs the traversal of the

first row (A) and the traversal of banks within a column (B) until there is a hit in one

bank. When a bank replies the requested cache block to the core, the communication

path is either D from a non-MRU bank or E from a MRU bank. The data movement

between two banks occurs only in one column of the mesh (B or C). While a cache

miss has the same communication patterns (A’ and B’) as a cache hit, it fetches a

new data block from the memory and places it on the MRU bank (F). After this new

block placement, an evicted dirty block is replaced with the block in the next farther

bank (B’) or is written back to the memory (G), if dirty.

29

One observation of these patterns is that a single direction is used in most hori-

zontal links except on the first row, the last row, and links between the core-attached

column and the memory-attached column. Figure 3 (b) shows the minimum set of

links after removing all the unnecessary horizontal links. In general, we can remove

(n − 2)2 links among the total 4(n − 1)2 links of an n × n mesh, which reduces the

link area by 25%.

Another observation is that the horizontal links except on the first row, are

infrequently used, because they are used only when a bank needs to communicate

with the core (i.e. the cache controller) or the memory. Considering the data locality,

horizontal link utilization for the last row becomes low because those links are only

used for the memory accesses. The number of these underutilized links3 is n2 − 2.

Inputs: coordinates of source bank(Xsrc, Ysrc)
coordinates of destination bank(Xdest, Ydest)

Outputs: Selected output Channel
Procedure:

Xoffset := Xdest − Xsrc;
Yoffset := Ydest − Ysrc;
if Yoffset ≥ 0 then

if Xoffset > 0 then Channel := X+;
else if Xoffset < 0 then Channel := X−;
else if Yoffset = 0 then Channel := Internal;
else Channel := Y +;
endif

else
Channel := Y −;

endif

Fig. 4. XYX Routing Algorithm

They can be eliminated at the expense of small bandwidth loss. This simplified

3In a mesh network requiring a minimal number of links, rows from the second
to the last second have n vertical links. The last row has 2(n − 1) vertical links.
Therefore, the total number of underutilized links is n(n − 2) + 2(n − 1).

30

Y+

X+

Y−

X−

5, 6, 13

14, 19 20

11

18 17

12

223 5 241

2 19 4

14

7

9

8

13

21

10

6 23

1516

(2, 2)

(0, 0)

(a) Totally Ordered Channels (b) Turn Model

Fig. 5. Deadlock Freedom in XYX Routing

mesh can remove additionally 25% of total links. However, it causes the change of the

routing scheme since communications from the banks to the core/memory start in the

Y direction first, which violates the XY routing rule. Thus, we propose a new routing

scheme called XYX routing to overcome this problem. XYX routing is deadlock-free

because we enforce the total order of channels in the mesh network.

Figure 4 shows the XYX routing algorithm for k-ary 2-cubes. The routing func-

tion routes packets in the X dimension first and in the Y dimension next for the XY

direction or in the Y dimension first and in the X dimension next for the YX direc-

tion. Figure 5 (a) and (b) show the deadlock freedom in a 3×3 mesh network. When

all the channels are ordered totally in Figure 5 (a), packets that lie on the different

channels do not produce a cycle in the network. Any path in XYX routing follows

increasingly numbered channels such as two paths, (14, 19) and (5, 6, 13). XYX rout-

ing algorithm allows only four turns out of total eight turns in the turn model [48].

Cycles are prevented by prohibiting four of the turns, as shown in Figure 5 (b).

In the view of the router design, expunging horizontal links leads to the elimi-

nation of all the input buffers associated with those links and to the simplification

of both the arbiter and the crossbar. This simplified router also reduces the pipeline

31

latency as well as saves its area.

memory

core memorycore

(a) Mesh (b) Simplified Mesh

...

...

...

...

...

... ...
...

core

memory

memory

core

(c) Halo with Uniform Banks (d) Halo with Non-uniform Banks

Fig. 6. Domain-Specific Development of Network Designs for Large Cache Systems

One of the disadvantages in a mesh network is uneven network latencies for MRU

banks depending on the distance from the core. Since there is only one path between

the core and one special MRU bank, the leftmost or rightmost MRU banks cannot

avoid suffering from long network latency (Figure 6 (a) and (b)). So it is crucial to

provide a direct communication path between the core and each MRU bank. For

this purpose, we choose a topology in which the core is located in the same distance

32

from all the MRU banks. We call this topology a halo network shown in Figure 6

(c). The core plays a role of a hub to control the departure and the arrival of cache

requests. A bank set is distributed over multiple banks within a spike branched from

a hub, which bidirectionally connects all the banks in the order of the way. In this

design, we assume that the cache controller supports multiple ports/interfaces to the

networked cache. We put a small queue for each spike such as a multiple issue queue.

Thus, a cache request is first stored in each spike queue to be subsequently forwarded

to the L2 cache. When the size of these queues becomes very high to connect many

spikes, multiple spikes can share one queue with an address decoding logic. Spike

queue sharing will reduce the cost of queues and reduce the concentration degree to

the core/memory, hence achieving better scalability. However, the spike access will

be delayed when there are multiple cache requests for different spikes in the queue.

When the size of all banks that build a spike is identical, the banks positioned at

the end of the spike cannot fill the increased area entirely in Figure 6 (c). Although we

can curve a spike and connect banks within a spiral spike, this layout incurs the longer

wire delay than the straight spike layout. If the bank size increases along the spike, we

can reduce the wasted area and draw a compact design by tightly integrating banks on

a chip die as shown in Figure 6 (d). As a bank is located farther from the core, its size

becomes larger and its access time increases due to the increased capacity. Therefore,

capacity-increased banks have more than one way. A halo network incorporated with

non-uniform size banks has a topological benefit by giving the same access time to

all the MRU banks, and it enjoys a better area utilization over a halo network with

the uniform size banks. Note that the memory controller is located in the center of

the cache. To access the off-chip memory from the memory controller, the wire delay

in a halo is longer than in a mesh network.

Mathematical model described in Section 2 can be directly applied to the halo

33

network with small modification. The required change is that the halo network has

zero hop count in x direction due to the direct links for each bankset. Thus all the

latency components account for only the y coordinate in the mesh network. Adop-

tion of non-uniform banks in the halo network requires different bank latency lb and

network latency, resulting in an accumulated form for miss latency calculation.

E. Designing Multicast Single-Cycle Router

control path

data path

routing

credits out

X−

Y−

crossbar

to downstream router

VC id

replicator

bypass

VC buffer

X−

Y+

Y−

inject

X+

Y+

eject

replicator...

precomputation precomputation

X+

precomputation

credits in
VC allocator

SAspeculative
SA

PC id

Fig. 7. Single-Cycle Router Architecture with Multicast Support

In this research, we use wormhole routers due to small buffer requirement and

high throughput. Figure 7 shows the major components of a wormhole router. It has

5 Physical Channels (PCs) that connect four neighbors and one injection/ejection

unit, and each PC is divided into multiple Virtual Channels (VCs). VCs from the

same PC share one crossbar port to reduce the crossbar complexity. While middle/tail

flits require three operations (input buffering, switch allocation, and switch traversal),

34

head flits require two additional operations (routing and VC allocation).

Although an aggressive design can merge adjacent operations into a single-cycle

operation, this dependency still exists. The design of the router pipeline has a high

impact on the internal clock time of the router. Recent results of the different single

cycle router designs [17, 49, 50], showed 12 – 35 (fanout-of-four) FO4 delays, which

is larger than the optimal pipeline delay (6 – 8 FO4) in the modern superscalar

processor [18]. Although increasing complexity of the router pipeline may increase the

clock cycle time, the following techniques can break and reduce the serial dependency

between different operations, thus achieving a single-cycle router.

• Lookahead routing: The routing decision is made one hop ahead of the cur-

rent router. It eliminates the routing delay by removing the serial dependency

between routing and VC allocation like the SGI SPIDER chip [19]. The routing

outcome is stored in a flit and hence used to allocate VC or the switch output

port in the next router.

• Buffer bypassing: If the input buffer designated for the VC is empty, a flit

directly goes to the crossbar or the VC allocator (if it is a head flit) through a

bypass path without being stored at the tail entry of the input buffer. It also

removes the delay for the read and write operations of buffer.

• Speculative switch allocation: Switch allocation is performed speculatively

at the same instance of VC allocation so that a head flit enters into the crossbar

right after VC allocation [20]. This speculative switch allocator is only applied

to head flits and cannot be granted if the normal switch allocator reserves all

the available ports. In this way both VC and switch allocations are performed

at the same cycle.

35

• Arbitration pre-computation: Arbitration of competing requests for a VC

or a switch port is pre-computed and stored for the next arbitration after one

output VC in VC allocator or input/output port of the crossbar in switch al-

locator is granted [17]. The grant signals of the arbiter are generated as the

product of the pre-computed grant enable signals and incoming arbitration re-

quests. Hence arbitration outcomes are prepared one cycle ahead and latched

for the next cycle.

Our router design maximizes these chances and eventually delivers a flit in a single

clock cycle by shortening the critical path in a traditional pipelined router. All these

techniques except lookahead routing work well in a lightly loaded network where the

possible cases for each scheme occur frequently. However, when the router experiences

high contention, the router cannot transfer flits in one cycle. For example, when

speculative switch allocation is failed, switch allocation and VC allocation are done

with different cycles. Additionally, when the switch arbiter does not grant this request

due to port contention for other requests, switch allocation cannot be performed at

the same cycle of the switch traversal.

We recognize that multicast plays a vital role in deciding a cache hit/miss in the

networked cache system to access multiple banks concurrently. Multicast replicates

flits inside the router to forward each copy to a destination. Synchronous replication

copies flits after reserving all destination ports in a lock-step, which easily results in

a deadlock situation. Asynchronous replication allows the router to forward flits to a

subset of the destination ports. While synchronous replication does not require extra

buffers, asynchronous scheme needs additional buffers in order to hold flits until all

copies are transmitted. We cannot apply either replication scheme to the router design

directly for a following reason: With a stringent chip area constraint, synchronous

36

replication is a natural choice to implement multicast; however, synchronous repli-

cation in wormhole switching is susceptible to deadlocks because of the small buffer

size. Therefore, we aim to design a replication scheme without extra buffers and to

handle each replica independently in an asynchronous manner.

Communication pattern analysis in Section D shows that PCs in some routers

within the network are not fully utilized. This property makes us choose a hybrid

scheme that exploits the underutilized input buffer space to store replicated flits. The

router shown in Figure 7 copies the original flit to one VC of a different PC, when

a multicast packet needs replication. A replicator selects a PC that has at least one

free VC. When there are multiple PC candidates, least frequently used one is chosen.

A free VC of another PC can be easily obtained by checking the input buffer status.

If there is no available VC for replication, flit forwarding is blocked. We observe

that blocking rarely occurs in the cache systems. This hybrid scheme mitigates the

multicast overhead in a low latency router since the changes in the existing VC/switch

allocators are not required, and only replication logics are needed to find a free VC

of other PCs and connecting wires to their input buffers.

F. Experimental Methodology

We use sim-alpha simulator [51] that models an Alpha 21264 core [52] to generate L2

cache accesses. The clock frequency of the core is scaled to 5 GHz. To measure the

contention effect of the banks and the interconnection networks in detail, a separate

L2 cache simulator with an interconnection network was developed. Since the input

of the simulator is all the L2 cache accesses from the core, the sim-alpha directly

sends a chunk of L2 accesses to the L2 simulator. We use Cacti [53] to estimate

the latency and the power consumption of a cache bank. The latency and power

37

consumption of global-level wires is estimated considering the first order RC effect [54]

for delay-optimized repeater insertion at 65nm technology. We obtain the resistance

and capacitance of the wire from ITRS [55], and the wire length is determined by the

bank size. Orion [56] is used to report power consumption for input buffers, crossbars,

and arbiters inside the routers. Each stage in the router pipeline takes one cycle. All

latency values are converted to the cycle unit. The base configuration is a 16MB L2

cache by interconnecting 256 64KB banks with a 16 × 16 mesh network. The core

is attached at the center of the top row, and the memory is attached at the center

of the bottom row to evenly distribute traffic. Main parameters are summarized in

Table IV.

Table IV. System Parameters

L1 I & D caches 64B block, 2-way, 64KB, 3-cycle hit

Flit buffer size 4 flits

Number of VCs per PC 4

Flit size 128 bits

Packet size address packet (1 flit), data packet (5 flits)

Memory 64B block, 130 cycles + 4 cycles per 8 bytes

When we evaluate the different size of banks for the networked cache, we use

Table V to model the latency and power consumption per bank access. As the bank

size increases, the latency and power consumption of the bank and the link increase

together. We determine the link length for the bank from the area of both the bank

and the router. In 65nm, a repeated wire in the link exhibits 121 ps/mm for latency

and 2.38 mW/mm for power consumption.

38

Table V. Latencies and Energies for Bank Access

Bank Bank Link

size Tag matching(+replacement) delay Energy Delay Energy

(cycles) (nJ) (cycles) (nJ)

64KB 2 (3) 0.1392 1 0.0285

128KB 4 (5) 0.2207 2 0.0400

256KB 4 (5) 0.3743 2 0.0528

512KB 5 (6) 0.6661 3 0.0759

To measure various design impacts, we use SPEC2000 benchmarks for simula-

tion. We skip 2 billion instructions, warm up the L2 cache for the next 100 million

instructions, and measure the performance for remaining instructions. Table VI shows

the IPC with the perfect L2 cache and L2 cache access behavior of each benchmark.

A 32-bit address can be divided into 4 fields: tag (12 bits), index (10 bits), bank-

column (4 bits), and offset (6 bits). The bank-column is used to select one out of

16 columns while the index identifies one block in each bank of the selected column.

With uniformly sized 64KB banks, the bank is organized as a direct-mapped cache,

and the blocks distributed to each bank on the same column form a 16-way bank set.

In the traditional cache design, the cache is connected to two buses: address

bus and data bus. Since a cache network delivers a structured data as a packet,

the switched network does not need the separate network for address and data. In

wormhole switching, converting a packet into flits requires the overhead data [33]

for each flit such as flit type (2 bits for specifying head/middle/tail), size (7 bits for

the size of flit data), routing (16 bits for source and destination only required for a

head flit), and communication flag (1 bit for unicast/multicast). Since the link width

39

Table VI. SPEC2000 Benchmarks Used for Experiments
benchmark instr. perfect L2 L2 L2 accesses
name exec. L2 IPC read write per instr.

applu(FP) 500M 0.43 9.444M 4.428M 0.028

apsi(FP) 1B 0.40 12.375M 8.204M 0.021

art(FP) 500M 0.40 63.877M 13.578M 0.155

galgel(FP) 2B 0.43 19.415M 4.137M 0.012

lucas(FP) 1B 0.44 19.506M 13.226M 0.033

mesa(FP) 2B 0.40 2.907M 2.656M 0.003

bzip2(INT) 2B 0.39 16.301M 4.233M 0.010

gcc(INT) 500M 0.29 26.201M 14.827M 0.082

mcf(INT) 250M 0.34 29.500M 15.755M 0.181

parser(INT) 2B 0.38 18.257M 6.915M 0.013

twolf(INT) 1B 0.38 20.283M 7.653M 0.028

vpr(INT) 1B 0.41 12.459M 5.024M 0.017

is 16B, a read request packet or a notification packet that has only 32-bit address

needs one flit even with the flit overhead data. When a packet includes a block data

for write request, replacement, memory access, or hit data forwarding, one packet

consists of 32-bit address, 64B data and overhead bits, which are divided into 5 flits.

G. Experimental Results

We present the L2 cache latency access result and its analysis to inspect the efficiency

of communication support for Fast-LRU replacement in Section 1. Impact of various

interconnect designs to the overall system performance is examined in Section 2. The

area consumption of router, wire, and cache in each interconnect design is analyzed

in Section 3.

1. Performance of Multicast Fast-LRU Replacement

Figure 8 shows how the total average cache access latency is divided into bank access,

network traversal, and memory access for benchmarks in 16MB L2 cache with uniform

40

 0

 20

 40

 60

 80

 100

applu
apsi

art galgel
lucas

mesa
bzip2

gcc
mcf

parser
twolf

vpr
avg

pe
rc

en
ta

ge
 (

%
)

bank
network
memory

Fig. 8. Latency Distributions of L2 Cache Accesses in the Unicast LRU Environment

 0

 0.2

 0.4

 0.6

 0.8

 1

applu
apsi

art galgel
lucas

mesa
bzip2

gcc
mcf

parser
twolf

vpr

ra
tio

promotion LRU

way 1
way 2
way 3
way 4
way 5
way 6
way 7-16

Fig. 9. Way Distributions of Promotion and LRU

size banks. A significant portion of the total average latency is network access (65%

on the average) while bank access (25%) and memory access (10%) are relatively

small. In Figure 9, we show the way distributions of two different cache replacement

schemes, Promotion [8] and LRU. Excluding art, galgel, and lucas, LRU is a better

policy than Promotion since more hits occur in the MRU (fastest) banks. Specifically,

LRU shows a hit increase by 5-19% at the MRU banks.

In Figure 10, we compare performance results from the Multicast Fast-LRU with

Multicast/Unicast Promotion [8] 4 Unicast LRU, and Unicast Fast-LRU. Figure 10

4In our implementation of cache miss for Promotion, the incoming block from the
memory evicts the data in the closest bank and causes recursive replacement. In [8],

41

 0

 50

 100

 150

 200

 250

 300

applu
apsi

art
galgel

lucas
m

esa
bzip2

gcc
m

cf
parser

twolf
vpr

avg

la
te

nc
y

(c
yc

le
s)

unicast+promote
unicast+LRU
unicast+fastLRU
multicast+promote
multicast+fastLRU

 0

 20

 40

 60

 80

 100

 120

applu
apsi

art
galgel

lucas
m

esa
bzip2

gcc
m

cf
parser

twolf
vpr

avg

la
te

nc
y

(c
yc

le
s)

(a) Access Latency (b) Hit Latency

 100

 200

 300

 400

 500

applu
apsi

galgel

lucas
m

esa
bzip2

gcc
m

cf
parser

twolf
vpr

avg

la
te

nc
y

(c
yc

le
s)

 0

 2

 4

 6

 8

 10

applu
apsi

art
galgel

lucas
m

esa
bzip2

gcc
m

cf
parser

twolf
vpr

avg

av
g

en
er

gy
pe

r
re

qu
es

t (
nJ

)

unicast+promote
unicast+LRU
unicast+fastLRU
multicast+promote
multicast+fastLRU

(c) Miss Latency (d) Access Energy

Fig. 10. L2 Cache Access Latency and Energy Comparison

(a) illustrates the average access latency while hit and miss latencies are depicted in

Figure 10 (b) and (c) 5. In the unicast environment, LRU naturally increases the

average access latency by 4.4% over Promotion, but Fast-LRU reduces it by 30.2%.

Recall that Fast-LRU has fewer bank accesses than Promotion, and it concentrates

hits to the MRU banks. Multicast Fast-LRU reduces the average access latency

by 46% over Unicast LRU and 27% over Unicast Fast-LRU. Also Multicast Fast-

LRU reduces the average hit and miss latencies of Unicast LRU by 48% and 32%,

the victim block can be directly moved to the memory (zero-copy) or once to the
lower-priority bank (one-copy), resulting in losing critical data from the cache.

5We omit art results in Figure 10 (c) since there is no cache miss except compulsory
misses during our simulation.

42

respectively. Its latency improvement over Multicast Promotion is 37%, and the IPC

is improved by 20%. Figure 10 (d) shows energy consumption results for various

policies. For unicast, the results show that Fast-LRU outperforms Promotion and

LRU by reducing total amount of traffic and the number of bank accesses. For

multicast, Fast-LRU increases the average energy consumption by 3% over Promotion.

This result occurs mainly because Fast-LRU needs more packets than Promotion to

reorganize spread blocks in a column for the LRU order.

Furthermore, if we look at the performance results of individual benchmarks,

we have more interesting observations. In lucas, which has the lowest hit rate (0.41)

among all the benchmarks, the hit latency in Multicast Promotion is increased by 29%

over Unicast Promotion because hit requests should compete with increased number

of operations to place incoming block from the miss requests. In mcf and parser,

Multicast Fast-LRU shows almost 59% and 53% reduction of the average latency

over Unicast Promotion because it increases the hit rate of MRU banks by 48% and

33% and decreases the hit latency by 60% and 54%.

2. Performance Comparison of Different Interconnection Network Designs

In this section we inspect the performance of the L2 cache with varying network

size, network topology, bank size, and the position of the core and the memory. We

evaluate six designs summarized in Table VII. All configurations have the same cache

capacity (16MB) and use efficient Multicast Fast-LRU replacement. Design A, the

baseline configuration, uses a 16 × 16 mesh network to connect 256 64KB banks.

Design B uses the same size simplified network by removing most horizontal links

and moving the memory controller next to the core shown in Figure 6 (b). A small

mesh network (16×4) and large banks (256KB) are incorporated in Design C. Design

D still uses a mesh network, but non-uniform size banks are used. One bank set for

43

a column comprises five banks: two 1-way 64KB banks, one 2-way 128KB bank, one

4-way 256KB bank, and one 8-way 512KB bank in the order of the distance from

the core. As a result, Design D maintains the same associativity as Design A. In

16 × 5 mesh, we set the same 3-cycle link delay in the horizontal direction as for

512KB bank while the link delay in the vertical direction increases as the bank size

increases. Design E and Design F use the halo topology with 16 spikes. While Design

E has sixteen uniform banks in a spike, Design F has five non-uniform banks in a

spike similarly to one column of the Design D mesh network. The memory controller

located at the center of the chip increases the wire delay for the off-chip memory.

Those increased delays are 16 and 9 cycles in Designs E and F, respectively. We set

the size of the spike queue as two entries in the halo topology.

Table VII. Different Interconnection Network Designs

Design Interconnection Network Bank Size

A 16 × 16 mesh uniform (64KB)

B 16 × 16 simplified mesh uniform (64KB)

C 16 × 4 simplified mesh uniform (256KB)

D 16 × 5 simplified mesh non-uniform

E spike-16 halo (16 spikes) uniform (64KB)

F spike-5 halo (16 spikes) non-uniform

Figure 11 shows the relative IPC normalized to that of Design A. The simplified

mesh network in Design B achieves almost the same performance results as Design

A despite the decreased bandwidth due to horizontal link elimination. Even low hit

rate benchmarks, applu and lucas, show the IPC increase by 7% and 10%. The main

44

 0.4

 0.6

 0.8

 1

 1.2

 1.4

applu apsi art galgel lucas mesa bzip2 gcc mcf parser twolf vpr avg

no
rm

al
iz

ed
 IP

C
Design A Design B Design C Design D Design E Design F

Fig. 11. Performance Comparison in Different Designs

reason of the performance enhancement is the reduced miss latency. Designs C and

D show the average performance degradation by 14% and 12% respectively, due to

the long wire latency from the large bank size. The halo topology in Designs E and

F improve performance by 12% and 13%. Design E has longer miss latency than

Design F due to the larger chip size, which increases the wire delay to the memory.

High miss rate benchmarks such as applu, apsi, and lucas take better advantage of

this. However, art having no misses in our simulation shows performance degradation

due to increased wire delay for large banks. Design F achieves 1.13 times the IPC

increase over Design A. We observe this improvement in both high and low hit rate

benchmarks (1.33 times in art and 1.19 times in lucas). Compared with Multicast

Promotion NUCA with a mesh network, Multicast Fast-LRU NUCA with a halo

network offers 1.38 times of IPC increase.

We plot average energy consumption per request in Figure 12 and break it down

into router, link, and bank in Figure 13. In Design A, router, link, and bank show

12%, 26%, and 62% of the total power consumption, respectively. Design B shows

the same power consumption for bank as Design A, but reduces it for link and router

by 17% because of the reduced distance between core and memory when handling

cache misses.

45

 0

 2

 4

 6

 8

applu apsi art bzip2 galgel gcc lucas mcf mesa parser twolf vpr avg

av
g

en
er

gy
pe

r
re

qu
es

t (
nJ

)

Design A Design B Design C Design D Design E Design F

Fig. 12. Energy Comparison in Different Designs

 0

 1

 2

 3

 4

 5

A B C D E F

av
g

en
er

gy
pe

r
re

qu
es

t (
nJ

)

router link bank

Fig. 13. Energy Breakdown in Different Designs

When we compare Design B and Design C, the large network (16× 16 simplified

mesh) with small banks (64KB) consumes 1.5 times more power than the small net-

work (16 × 4 simplified mesh) with large banks (256KB). In fact, large bank incurs

an increase for bank access in terms of latency and dissipated power, but reduces the

hop count and the energy consumption of routers due to the small network. However,

as shown in Figure 13, Design C reduces energy consumption for bank access by 32%

and network traversal by 35% over Design B. This result occurs mainly because one

256KB bank shows only 67% power consumption of four 64KB banks based on Cacti.

Recent study on bank count showed that 16 or 32 banks achieve the delay-optimal

and energy-optimal points in 32MB cache [41].

46

Design D with non-uniform banks shows comparable power consumption to De-

sign C. The LRU replacement mechanism that offers many hits to banks closer to the

core trades off an increase in bank energy for a decrease in router and link energy. De-

sign F provides the smaller hop count than Design E in the halo network. Compared

with Design D that has the same bank organization, the halo network in Design F

uses the short links for the small banks, while the mesh network in Design D uses the

same links where the length is determined by the largest bank. As a result, the halo

network takes only 17% of power consumption when accessing cache in Design F.

3. Area Comparison of Different Network Designs

We estimate the required area on the banks, routers, and links of a 16MB L2 cache

system. The bank area is extracted from Cacti [53]. Orion [56] is used for the router

area, accounting for mainly flit buffers and crossbars. The link area is computed

from its width and length. Assuming the wire pitch is 1µm, a bidirectional link that

transmits 128-bit flit consists of 256 wires, which has 256µm width. To estimate the

link length expanding one tile, we use the sum of both router and bank areas. We

assume that there is no additional area for repeaters and latches in a wire because

wires are not routed over banks.

Table VIII. Area Analysis of Network Designs

Design bank (%) router (%) link (%) L2 cache (mm2) chip (mm2)

A 58.2 8.7 32.5 466.23 552.49

B 74.3 5.4 20.3 365.17 478.59

E 75.3 5.5 19.2 360.44 1447.65

F 92.1 1.9 6.0 294.76 359.03

47

Table VIII describes the area consumption of each component for four designs

discussed in Section 2. The last column is the size of the minimal rectangular chip

that includes the L2 cache. Design A (16 × 16 mesh) uses almost 41% of the cache

area for the network. Design B (16 × 16 simplified mesh) consumes the 49% smaller

network area than Design A by removing almost half of the links and incorporating

the simple 3-port router that takes up only 45% area for the 5-port router. For halo

networks (E, F), we assume that a 4mm × 4mm core is placed in the center of a

L2 cache. Design E (a halo network connecting uniform size banks) has almost the

same area for the L2 cache as Design B, but its L2 cache uses only about a quarter

of the total die. Applying the non-uniform size banks (Design F) not only reduces

17 times the unused chip area over Design E, but also consumes 63% of the L2 area

of Design A. The main reason for its compact layout is the small size of the network

that requires fewer routers and links. Area estimation for Design F is based on the

configuration shown in Figure 14.

Fig. 14. Spike-5 Halo Network Design for L2 Cache

4. Performance Model Evaluation

To simplify the analysis, we have the following assumptions: The contention-free

network makes the network latency as ln(d) = d + f − 1, where f is the number

48

of flits in one packet for the serial latency in wormhole switching. Data packet and

address packet have each 1 and 5 flits. We use the same latency parameters for bank,

memory, router, and link as our simulation.

We first apply our analysis to a 16 × 16 mesh network, assuming that a hit

distributions follows the geometric progression with common ratio as K. In other

words, a cache hit at y-th way has the Ky probability and an overall miss rate can

be computed as 1 − ∑16
y=1 Ky. We further assume that cache requests are evenly

distributed to each column in the mesh network.

 1

 1.5

 2

 2.5

u-LRU u-fLRU m-fLRU

la
te

nc
y

sp
ee

du
p

K=0.4
K=0.45
K=0.48

K1=0.62 K=0.18

 0

 0.1

 0.2

 0.3

lucas mcf parser mesa avg

er
ro

r
ra

te

u-LRU 16x16 mesh
u-fLRU 16x16 mesh
m-fLRU 16x16 mesh
m-fLRU 16-spk halo
m-fLRU 5-spk halo

(a) Synthetic Hit Distribution in Mesh (b) Comparison with Experiment Results

Fig. 15. Performance Gain Estimation Using Analytical Model

Figure 15 (a) shows the performance gain of Multicast Fast-LRU on different

hit behaviors determined by K. As cache hits concentrate to the closer banks (larger

K), Multicast Fast-LRU shows the large performance improvement. For K=0.48, the

speedups of Multicast Fast-LRU over Unicast LRU and Unicast Fast-LRU are 1.10

and 1.47 each. Moreover, we highly skew the hit rate (K1=0.62) only for the first way

and use geometric progression (K=0.18) to other ways, similarly to the benchmark

behavior as shown in Figure 9. This distribution shows that Multicast Fast-LRU

achieves more than 2 times latency improvement over Unicast LRU. It implies that

49

the interconnect to banks for the first way should be carefully designed, because its

latency is critical to the overall performance.

Next, we use each benchmark simulation result for model validation by assigning

each bank hit rate in the model. Figure 15 (b) shows the error rate of our analytical

model for three replacement policies in the mesh network and Multicast Fast-LRU

in two halo networks. Error rate is calculated as |Model−Exp

Model
|, where Model and Exp

are the access latency from our model and simulation. lucas and mcf have a high

miss rate and give a high load to a network, while parser and mesa show the opposite

characteristic. In lucas and mcf, u-fLRU can reduce large traffic reduction (better

accuracy) but increased traffic due to multicast shows low accuracy again. In parser

and mesa, the experiment show a longer miss latency than the analytical model due

to the high access burst for the main memory despite their low miss rates. The overall

difference between analytical results and experiments is within 14% on average.

The main error source is resource contention from bursty cache traffic such as

pipeline stalls in router and memory so that the underlying model mostly under-

estimates the latency. Introducing a contention model to our analytical model will

improve the accuracy. For example, we can use the blocking probability inside the

switch of the router and use the queuing model for the average service time of the

cache bank or the memory. However, when we consider relatively a high hit rate of

the cache and a low injection rate of the network, parameterizing the average behavior

have limitations.

50

CHAPTER IV

COMMUNICATION CHARACTERIZATION TOWARDS RECONFIGURABLE

NOCS

A. Motivation

As Chip Multi-Processors (CMPs) have emerged as a promising way to provide high

performance and to increase processor efficiency, we should examine on critical is-

sues regarding these goals. One of the bottlenecks to performance and efficiency in

CMPs is communication [57]. To alleviate communication problems, first we need

to understand the communication behavior of CMP applications. Motivated by the

fact that programs in microprocessor exhibit very different runtime behaviors with

a certain pattern [58, 59, 60, 61, 62], we attempt to characterize the communication

behavior of CMP applications. This will give better understanding of the interplay

between communications and core architectures, and lead us the new design spaces

and optimizations of CMPs.

Although CMPs are currently evolving in different directions with various design

goals, a scalable CMP design is necessary to accommodate a large number of cores in

a die. On-chip interconnection networks [33] are a recent communication architecture

paradigm that overcomes the negative effect of technology scaling on global inter-

connects [1]. Furthermore, the interconnection network coupled with directory-based

coherence protocols, can leverage a more scalable design over the shared bus with

snoop-based coherence protocols. The tiled CMPs, as shown in Figure 16, can easily

support many cores and share the large L2 cache. Each tile has a processor core,

private L1 caches and a slice of on-chip L2 cache, and a router. A router is the basic

51

CPUL1D$ L1I$

Cache Controller

Directory Controller

L2$ Bank

Directory

Router

Y+

X+

Yû

Xû

(a) 16-core Tiled CMP (b) Structure of One Tile

Fig. 16. Tiled CMP with On-Chip Networks

building block of inter-tile communication for a switched network 1.

Most studies on the performance of interconnection networks use synthetic work-

loads, assuming that the temporal behavior represented as a message inter-arrival

time follows an exponential distribution and the spatial behavior is given by a traffic

pattern, such as random or permutation traffic. Recognizing the importance of real

application behavior assessments in the computer architecture research, there have

been previous studies that use the application-driven workloads to evaluate intercon-

nection networks in parallel machines [63, 64, 65, 66]. Though CMP is similar to

Symmetric Multiprocessing (SMP) on a chip, on-chip communications have signifi-

cantly different characteristics, such as short latency, wide channel, and chip budget

constraints. However, to the best of our knowledge, there has been no attempt to

understand the communication behavior of CMPs in detail.

Recently there has been much interest in investigating the runtime behavior of

1It has two local ports to support L1 and L2 caches and multiple inter-tile connec-
tion ports In Figure 16 (b), it has 4 inter-tile connection ports for a mesh network.

52

applications [58, 60, 62]. It has been demonstrated that the time-varying application

behavior can be understood through phase analysis. Each phase has portions of exe-

cution that exhibit similar behavior regardless of temporal adjacency and represents

a distinct behavior that is significantly different from those of other phases. This can

be exploited by means of phase-based reconfigurable hardware [59, 61]. However, all

of the prior research based on phase analysis was conducted only in a processor archi-

tecture domain. We believe that CMPs will take more advantage of reconfiguration

for high performance and low power due to their nature of redundancy. Therefore,

our research focuses on the development of a phase-oriented communication charac-

terization/prediction framework, in contrast to the traditional analysis techniques or

the traffic models to synthesize workload.

In this chapter, parallel applications are used to characterize their communication

behavior in a tiled-CMP architecture. The full system simulator is used to collect

all the communication activities of each application in the CMP system. On-chip

network simulator using these traces is used to analyze performance/power behavior

related with the communication behavior for different network designs.

We apply the conventional characterization methods to the communication work-

load for volume, time, and space aspects. Volume behavior shows that the total vol-

ume can be directly estimated from the packet injection rate despite of two different

packet sizes. Temporal behavior shows that there is a high variation among injection

rates of each source. Spatial behavior shows that there are hot destinations that each

source prefers to communicating with, which can generate hot spots in the network.

We observe that the temporal/spatial behavior of an application cannot be repre-

sented as a single inter-arrival time distribution or a particular traffic pattern. To

account for this time-varying spatial-temporal characteristics, a phase-based method

groups similar regions of the application’s execution into the same phase by clus-

53

tering techniques. We propose a communication-aware feature vector construction

and a period detection method. Using the on-chip network simulator, we show that

the changes in the performance and power consumption strongly correlate with the

phase changes in the application even with different network designs. We propose

two phase prediction mechanisms to control the network proactively rather than re-

actively. Periodicity in communication behavior motivates the design of String Match

predictor that aligns the recent behavior to the past history, while tolerating a vari-

ability of periods. To handle a workload with weak or little periodicity, we propose

Tournament predictor that combines String Match and Last Value predictors. We

evaluate its prediction effectiveness for frequency/voltage scaling to links to reduce

power consumption, and distributed injection throttling to improve performance if

the bandwidth is insufficient to the communication requirement.

B. Related Work

There is considerable research evaluating the workload of parallel applications in chip-

to-chip style shared memory machines and clusters. Most studies used scientific or

commercial workloads [66, 67]. Singh et al. argued that communication analysis for

parallel applications is incomplete without considering its relationship with local data

replication [68]. Based on this insight, Abandah and Davidson divided the applica-

tion characterizations into configuration independent and configuration dependent

parts [65].

Besides memory characterization for application-specific working set and sharing

degree, a few studies focused on communication characterization itself. Chodnekar

et al. showed that the inter-arrival time cannot always be deduced from a proper

distribution function, and there is a spatial distribution unlike the uniform traffic

pattern [63]. Heirman et al. observed long bursts in a set of node pairs and showed

54

the possible performance improvement by adding the extra links [64]. Johnson showed

that exploiting the communication locality can give a performance benefit in a non-

uniform latency interconnection network based on the performance model [69].

As an interconnection network is becoming a scalable solution for on-chip com-

munication, some CMP design proposals use an on-chip network for a memory hi-

erarchy [27, 70, 28]. Though it is conceptually similar to the traditional off-chip

processor-memory network, on-chip communications have several different features:

much shorter latency, about a few processor clock cycles per hop, which depends on

the physical location in a die; high bandwidth channels due to abundant wiring re-

sources; and chip budget constraints, such as power and area. Recently, Soteriou et

al. suggested the on-chip traffic model based on hop count, burstiness, and spatial in-

jection distribution [71]. Varatkar and Marculescu exploited the self-similar property

of MPEG-2 video applications in System-on-Chip (SoC) architecture [72]. However,

those parameters fail to capture the time-varying and architecture-dependent char-

acteristics of applications.

On the other hand, there have been significant efforts to analyze dynamically

changing application behaviors in microprocessor design [58, 59, 60]. Researchers pri-

marily focused on phase analysis studies for the efficient simulation and the dynamic

optimization of single-thread applications. The application execution is divided and

grouped into multiple similar regions. Basic block vector for control flow [58], data

locality [61], and hardware counter for power consumption [62] are used for features

in application phase classification. Selection of the proper feature can separate the

application behavior into well-defined phases for the problem domain. However, there

has been no attempt to analyze communication phases of multi-thread applications

using communication-aware features.

55

C. Characterization Methodology

The goal of this research is characterizing communications from the coherence pro-

tocol in tiled CMPs that share the L2 cache. We present two strategies to separate

network architecture-independent and network architecture-dependent analyses. The

network architecture-independent strategy analyzes the communication behavior that

each application produces due to its sharing amount and replication effect from other

architectural components such as finite cache and coherence mechanism. The network

architecture-dependent strategy investigates the communication cost for each unique

behavior across different network platforms. We use two simulators for each strat-

egy. The network architecture-independent behavior is analyzed using traces that

the CMP simulator generates. The on-chip network simulator that uses the collected

traces is employed to measure the impact of the interconnection network architecture.

The CMP simulator simulates the instruction execution in the core of each tile

and the on-chip cache accesses in the memory hierarchy. The simulator consists of

Simics [73] that can fully simulate a system, and GEMS [74] that provides a detailed

memory system. Simics is configured as UltraSPARCIII+ multiprocessors running

Solaris 9. We intentionally increase the network bandwidth modeled in the underlying

network of the full system simulator. Point-to-point network is used to relax the

constraint given by the network topology and reduce the network simulation time.

Table IX shows our configuration. We obtain the basic results from CMP simulation

and collect traces for all tile-to-tile communications for further analysis. The trace

has the information about the source and destination tiles, the type, the size, and the

generation time. Because of the long execution time of an application, we summarize

its runtime communication characteristics for each one million-cycle interval.

We build the cycle-accurate interconnection network simulator, and use the traces

56

Table IX. 16-core and 64-core System Parameters
Configuration 16-core 64-core

Private L1 I & D cache 32KB, 4-way, 2 cycles, LRU 32KB, 4-way, 2 cycles, LRU

Shared L2 cache 16MB, 8-way, 6 cycles, LRU 32MB, 16-way, 10 cycles, LRU

Memory controllers 8 8

Cache block size 64B

Memory latency 256 cycles

Network 3 cycles per hop, 16B link width

Cache coherence write-invalidation MESI protocol

generated by the CMP simulator as an input. It models pipelined virtual-channel

(VC) routers and links. The router architecture resembles that described in [20].

After a head flit determines the downstream router in the routing stage, the VC

allocator assigns one VC in its input channel. The switch allocator arbitrates the

use of a switch in a flit level, and then a flit is allowed to traverse the switch. An

additional speculative switch allocator permits the VC allocator to operate at the

same cycle, if there are available switch ports after normal switch allocation.

We assume that one tile size is 3mm × 3mm, and the total chip size is 144

mm2 for a 16-core model. Link traversal is assumed to take one cycle and buffers

are inserted if its latency does not fit one cycle for long-channel topologies. The

power consumption of routers and links is modeled from Orion [56] with 1.0V supply

voltage and 4GHz clock in 45nm technology. The on-chip network simulator is used

to measure the packet latency and the network power consumption.

We examine the communication behavior for five different networks in Section 4.

The router in each network has four 4-flit deep VCs. Wormhole-switching and credit-

based flow control are used. A brief explanation of each network follows.

• Mesh: It is the most widely used in a 2D chip design for its simplicity. The

packet is routed first in X dimension and next in Y dimension. The switch in a

57

router has 6 ports that consist of 4 ports to communicate neighboring routers

and 2 local ports for private L1 cache and shared L2 cache.

• Torus: It has an additional wrap-around channel in each dimension compared

with a mesh network. Folding the torus network provides channels of equal

length, which are two times as long as those in a mesh network. We use the

deadlock-free dimension-order routing suggested in [75].

• Hierarchical Mesh (H-Mesh): It is constructed from a mesh network by

adding 2-hop express channels in each dimension so that the router supports

a maximum of eight neighbor channels [76]. To reduce the hop count, packets

are routed first on express channels and then regular channels in the order of

dimension.

• Doubled Radix-4 Mesh (D-Mesh): Each router services four tiles and is

connected to either of two mesh networks. The generated packet from the

source tile travels in one mesh network selected in the round-robin fashion using

dimension-order routing.

• Fat Tree: Its structure consists of 4-ary tree layers, and two dimensional layout

forms butterfly [77]. It uses adaptive routing to the common ancestor (upward)

and deterministic routing to the destination (downward). The router has four

up-channels and four down-channels.

We study the runtime communication behavior for standard OpenMP bench-

marks (SPEComp2001) [78]. We chose medium sized benchmarks, compiled them

on a Sun Studio 11 compiler, and executed with reference data sets. Before tracing

communication data in each benchmark, we fastforward initial stages of the program

by inserting Simics magic breakpoints because most initialization is executed only

58

Table X. Summary of Executed Benchmarks
16-core 64-core

Benchmark billion instr. L2 misses injection billion instr. L2 misses injection
executed per instr. load executed per instr. load

(B/instr) (B/instr)

ammp 1.630 0.100 11.5 1.986 0.195 22.0

applu 8.335 0.047 6.1 1.755 0.145 18.1

apsi 18.493 0.003 0.5 8.581 0.012 2.0

art 3.412 0.137 14.7 2.420 0.116 13.3

equake 9.271 0.064 7.2 1.169 0.132 14.9

fma3d 9.718 0.046 5.5 1.833 0.154 19.2

gafort 38.855 0.015 1.8 8.390 0.027 4.0

mgrid 10.986 0.050 6.0 1.940 0.137 16.3

swim 8.744 0.080 9.6 2.529 0.105 12.9

wupwise 38.072 0.017 2.0 5.853 0.021 2.7

once and is hardly related to its own characteristics. Table X summarizes all the

benchmarks used in this work.

D. Characterizing Spatio-Temporal Behavior

In this section, we characterize time-varying behavior of cache traffic in temporal and

spatial aspects together. We show the the injection rate variation (temporal property)

with different spatial abstractions such as source, destination, and source-destination

pair.

Generally, the temporal side of communication is described as the injection rate

of the source, which is defined as the average number of injected packets per cycle.

The synthetic traffic mostly uses the parameter λ of an exponential distribution to

determine the average inter-arrival time.

Additionally, it assumes the same injection rate over all injection processes. To

observe the time-varying characteristics of benchmarks, we measure the average and

the standard deviation over packet injection rates of each tile for one interval. Fig-

59

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

av
g.

 in
je

ct
io

n
ra

te
(p

kt
/in

st
r/

no
de

)

executed. instr (x 1000000)

avg
avg +/- std/2

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

av
g.

 in
je

ct
io

n
ra

te
(p

kt
/in

st
r/

no
de

)

executed. instr (x 1000000)

avg
avg +/- std/2

(a) Temporal Change in fma3d (b) Temporal Change in swim

Fig. 17. Spatio-Temporal Traffic Change in 16-Core

ure 17 shows the long-term transition of the average injection rate (solid line) over-

lapped with the line that is the sum of the average and the standard deviation (dotted

line). Although the packet injection rate of an individual tile is not shown, we notice

that all tiles have a tendency to change in unison. The difference between the two

lines exhibits the difference in each tile’s injection rate. Most benchmarks show a

significant difference between a tile’s injection rate for a part of execution, which is

illustrated as a large area between two lines.

Prior work shows that program execution highly depends on the structure of the

program. In OpenMP programs that achieve loop-level parallelism, we observe this

property as a recurring traffic pattern as shown in Figure 17. We instrumented the

program by inserting special instructions at the begining and ending part of the main

loop body and sub-procedures. Traffic behavior in each iteration is almost identical

when we align the time scale of each iteration at the same point. We believe that

this periodic behavior is one of the most useful communication characteristics. If an

application is expected to show the past behavior again and the future behavior is

speculative, it can be used by any reconfigurable hardware/software mechanism.

60

 0

 0.5

 1

 1.5

 2

 2.5

ammp applu apsi art equakefma3d gafort mgrid swimwupwise

C
oV

16-core
64-core

Fig. 18. Temporal Variation Summary

To identify the degree of temporal variability in each benchmark, we take an

average injection rate as one sample for each interval. We then calculate the average

and the standard deviation of all interval samples. Finally, we use a Coefficient of

Variation (CoV) metric, which is defined as the ratio of standard deviation to the

average. CoV represents the degree of dispersion in a distribution. Figure 18 shows

that apsi, gafort, and wupwise have large temporal variability over samples (large

CoV value). We also observe that the relative variablity of one benchmark to other

benchmarks is maintained across 16-core and 64-core.

We further analyze spatial distribution in the unit of the flow. We first calculate

the number packets for each flow over the total execution and sort them in the ascend-

ing order. Figure 19 shows the cumulative contribution on the total traffic according

to the number of flows. The half of the total flows contributes 91.6% and 79.9% of the

total number of packets in 16-core and 64-core systems, respectively. Even when we

consider only top 25% of the total flows, the traffic coverage is 71.1% and 51.3% each.

Note that the diagonal lines in Figure 19 are the counterpart of the uniform traffic

pattern. These results show that there are some sources and destinations dominating

communications.

61

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 100 150 200 250

ac
cu

m
ul

at
ed

 c
ov

er
ag

e

flow (sorted by #pkts)

ammp
applu

apsi
art

equake
fma3d
gafort
mgrid
swim

wupwise
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

ac
cu

m
ul

at
ed

 c
ov

er
ag

e

flow (sorted by #pkts)

ammp
applu

apsi
art

equake
fma3d
gafort
mgrid
swim

wupwise

(a) 16-core (b) 64-core

Fig. 19. Flow Dominancy Analysis

In summary, all the above analysis shows that parallel program execution in

cache-coherence systems has very a unique property across different programs. An-

other important conclusion is that they are very dissimilar from synthesized traffic

with a fixed set of simple parameters. Here, we take a systematic approach for clas-

sifying intervals into similarly-behaved groups in terms of both time and space.

E. Phase-based Characterization

In the previous section, we found the traditional traffic analysis models cannot capture

runtime dynamic behavior. Motivated by our finding, we propose a phase analysis

methodology to solve this problem.

First, after constructing the communication-aware feature vector for each interval

sample, we use clustering techniques to group similar samples together. We examine

the relationship between the classified phases and performance/power behaviors in

several network designs.

62

1. Feature Vector Construction

Because a router in a network has two injection channels from the L1 cache and

the L2 cache (directory), the sum of the two injection rates determines how one tile

affects the network. To entirely account for both the temporal distribution and the

spatial distribution for one interval, we build an N2-dimensional feature vector for

the N -core network. Each element of the feature vector specifies the average injection

rate of a flow from one source tile to one destination tile.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30

cu
m

ul
at

iv
e

en
er

gy
 (

%
)

number of dimensions

Fig. 20. Dimension Reduction in Flow Feature Vector

However, because the size of the feature vector has a quadratic dependence on

the size of the network, finding communication patterns in large networks easily

falls into a classical problem of the curse of dimensionality in machine learning and

requires a long analysis time. We use Principle Component Analysis (PCA), which

reduces the original N2 features into a small number of features without much loss of

information [79]. PCA sorts N2 principle axes (eigenvectors) in the order of decreasing

eigenvalues, which represent the distribution of the original data’s energy among each

of the eigenvectors. Selecting a subset of the eigenvectors projects high dimensional

data into low dimensional subspace in a way that is optimal in a sum-squared error

63

sense. We select the number of reduced dimensions for each benchmark by allowing

the cumulative energy in the reduced dimensions to be within 95%. Figure 20 shows

the relationship of each flow’s injection rate behaviors. It implies that there is a strong

dependence among flows. Even in art benchmark, which has the highest variability,

we find that 25 dimensions are enough to represent its original data.

2. Phase Classification

Phase is defined as a set of intervals where each interval’s behavior does not change

significantly, regardless of temporal adjacency [59]. All the intervals in the same

phase need to have similar per-flow packet injection rates. To merge similar intervals

in one phase, we use agglomerative clustering, which starts with n singleton clusters

and forms a sequence by successively merging the two closest clusters. When we stop

merging in the middle of iterations, the resulting clusters are classes (phases) that

group similar samples. To minimize variation in the same cluster, Ward’s method

is applied to compute a distance between clusters as the error of sum-of-squares,

meaning it minimizes the within-cluster variance [80]. We use the PCA-reduced

feature vector for clustering.

Without prior knowledge of the data samples, it is not easy to determine the

number of clusters. Considering that the final clusters are configuration states that

the system can support, assigning too many clusters frequently causes a configuration

change, and therefore incurs the large reconfiguration overhead. On the other hand,

assigning too few clusters causes the loss of information and misconfiguration of the

system to an incorrect state. Instead of determining the number of clusters in terms

of the quality of resulting clusters [79], we regard it as a system parameter to adapt

its structure or a function that maps a phase to a proper configuration.

Figures 21 (a) and (b) show the number of phase transitions and the inter-

64

 0

 500

 1000

 1500

 2000

 2500

 4 6 8 10 12 14 16 18 20

nu
m

be
r

of
 p

ha
se

 tr
an

si
tio

ns

number of phases

ammp
applu

apsi
art

equake
fma3d
gafort
mgrid
swim

wupwise
jbb2000

(a) Phase Transitions

 1e-04

 0.001

 0.01

 0.1

 4 6 8 10 12 14 16 18 20

in
te

r-
ph

as
e

pe
r-

flo
w

 v
ar

ia
tio

n

number of phases

ammp
applu

apsi
art

equake
fma3d
gafort
mgrid
swim

wupwise
jbb2000

(b) Inter-Phase Variation

Fig. 21. Clustering Result Comparison for Different Number of Phases

phase variation for varying number of phases. To obtain the inter-phase variation,

we calculate per-flow standard deviations of each phase, weight them by the portion

of execution that the phase covers, and take the average on all the flows. Obviously,

the large number of phases produces the larger number of transitions and smaller

inter-phase variation than the small number of phases. Compared with the clustering

results using the original 256 features, the reduced features only increase 5% and

1% of inter-phase variation for 10-phase and 20-phase on average. We use 10-phase

65

results for further analysis.

 0

 0.05

 0.1

 0.15

 0.2

 2000 2050 2100 2150 2200

av
g.

 p
ac

ke
t i

nj
ec

tio
n

ra
te

(p
kt

/c
yc

le
/n

od
e)

elapsed cycle (x 1000000)

 0

 0.05

 0.1

 0.15

 1600 1650 1700 1750 1800 1850 1900 1950 2000

av
g.

 p
ac

ke
t i

nj
ec

tio
n

ra
te

(p
kt

/c
yc

le
/n

od
e)

elapsed cycle (x 1000000)

 0

 2

 4

 6

 8

 10

 2000 2050 2100 2150 2200

ph
as

e
ID

elapsed cycle (x 1000000)

 0

 2

 4

 6

 8

 10

 1600 1650 1700 1750 1800 1850 1900 1950 2000
ph

as
e

ID

elapsed cycle (x 1000000)

(a) equake (b) mgrid

Fig. 22. Phase Classification Toward Time-Varying Analysis

Figure 22 shows the classified phase change over execution time (top graphs)

with the overall network behavior summarized as the average packet injection rate

(bottom graphs). In equake, even though each peak looks similar, two slightly different

consecutive peaks are repeated. In mgrid, we observe that the repetition on the

average injection rate is not clear unlike equake result, because each flow behaves

much differently among repeating regions.

3. Phase-Classified Performance and Power Behavior

We investigate how the classified phases are correlated with the architectural metrics.

We start with the relationship between performance and phase in the mesh network.

Figures 23 and 24 show time-varying average packet latency and power behaviors

66

coupled with the characterized phases, taken from the middle of equake and swim.

Because each phase represents the part of execution as one distinct spatio-temporal

distribution, the change of packet latency and power consumption follows phase tran-

sitions.

In equake as shown in Figure 23, execution regions that belong to Phases 2, 3,

9, and 10 show much high latency because the large portion of total packets drains

into a small set of tiles. For Phase 2 (Figure 23 (c)), tile 3 receives 30% of the

total packets and has only two channels to support the tile in the corner of the mesh

topology. The asymmetry in the mesh topology and unbalanced traffic pattern cause

this congestion in parts of the network, although its average offered load is much

smaller than the saturation load in the uniform distribution. Interestingly, Phase 2

has the average offered packet load of 0.13, which is 20% lower than 0.16 in Phase

4 (Figure 23 (d)), where the injection rate of all the flows are almost uniform. This

weak correlation between offered load and average latency is observed in the TRIPS

on-chip network [81].

In swim as shown in Figure 24, the similar load imbalance also appears on the

part of execution regions, while it does not have congestion like equake. For Phase

1 (Figure 24 (c)), only four tiles send 72% of total packets and receive 49% of total

packets on average. For Phase 8 (Figure 24 (d)), the load concentration to tile

0 causes relatively high latency and low power consumption compared with other

phases. While Phase 1 has the average offered load 4.33 times over Phase 8, it shows

the network power consumption 2.97 times over Phase 8. In other words, Phase 8

has a larger portion of long-distance communications than Phase 1.

In summary, when the workload shows the spatially unbalanced communications,

the packet delivery latency and the power consumption are highly sensitive to the

spatio-temporal distribution. Furthermore, the severe imbalance incurs congestion

67

although the offered load is relatively low, unlike the uniform traffic.

4. Network Topology Effects

Figure 25 shows the time-varying average packet latency and network power consump-

tion according to phase transitions in each network topology for swim and mgrid. We

see that the latency fluctuation trend in each network is almost identical. As ex-

pected, the long-channel networks show the latency improvement by reducing the

hop count. For 1724M-1733M cycle and 1772M-1778M cycle regions in mgrid, we

observe the latency change, while the phase classification result has no phase tran-

sitions. Further investigation into those regions shows that burstiness for the short

time in each interval is different even though the average burstiness in each interval

is similar. It should be emphasized that this is a problem of the particular interval

length used here, rather than a problem of phase characterization of communication,

and further work can develop the variable length interval dissection schemes based

on fine-grain dynamic burstiness analysis.

Figure 26 shows packet latency, network power consumption, energy-delay (ED)

product, and average hop count in 200M-cycle simulation results, taken from in the

middle of each benchmark execution to cover at least 80% of all the different phases.

Packet latency and ED product is normalized to that of the mesh network.

As Figure 26 (a) depicts, all long-channel networks show performance improve-

ment over the mesh network. The fastest D-mesh reduces 54% of the packet delivery

latency in the mesh network by reducing 45% of the average hop count in the mesh

network. Fat tree is also an effective topology for decreasing the hop count, but does

not always outperform a mesh network since its router shows longer contention in the

10-port switch than in the 6-port switch of a mesh network under the high offered

load. D-mesh, where a router has also 10-port switch, solves this contention problem

68

 0

 2

 4

 6

 8

 10

 2000 2020 2040 2060 2080 2100

ph
as

e
ID

elapsed cycle (x 1000000)

(a) Classified Phases

 10

 100

 1000

 2000 2020 2040 2060 2080 2100
 0

 2

 4

 6

 8

 10

 12

 14

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

ne
tw

or
k

po
w

er
 (

W
at

ts
)

elapsed cycle (x 1000000)

latency
power

(b) Performance Behavior

 0 4 8 12 0
 4

 8
 12

 0
 0.01
 0.02
 0.03
 0.04
 0.05

packet injection rate
(pkt/cycle)

source
destination

packet injection rate
(pkt/cycle)

 0 4 8 12 0
 4

 8
 12

 0
 0.01
 0.02
 0.03
 0.04
 0.05

packet injection rate
(pkt/cycle)

source
destination

packet injection rate
(pkt/cycle)

(c) Spatio-temporal Distribution (d) Spatio-temporal Distribution

in Phase 2 in Phase 4

Fig. 23. Relation between Phases and Performance Behaviors in equake

69

 0

 2

 4

 6

 8

 10

 1000 1050 1100 1150 1200

ph
as

e
ID

elapsed cycle (x 1000000)

(a) Classified Phases

 14

 15

 16

 17

 18

 19

 20

 1000 1050 1100 1150 1200
 0

 2

 4

 6

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

ne
tw

or
k

po
w

er
 (

W
at

ts
)

elapsed cycle (x 1000000)

latency
power

(b) Performance Behavior

 0 4 8 12 0
 4

 8
 12

 0

 0.01

 0.02

packet injection rate
(pkt/cycle)

source
destination

packet injection rate
(pkt/cycle)

 0 4 8 12 0
 4

 8
 12

 0

 0.01

 0.02

packet injection rate
(pkt/cycle)

source
destination

packet injection rate
(pkt/cycle)

(c) Spatio-temporal Distribution (d) Spatio-temporal Distribution

in Phase 1 in Phase 8

Fig. 24. Relation between Phases and Performance Behaviors in swim

70

 5

 10

 15

 20

 1000 1020 1040 1060 1080 1100
 0

 2

 4

 6

 8

 10

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

ph
as

e
ID

elapsed cycle (x 1000000)

mesh
torus

D-mesh
H-mesh

fat tree

 10

 15

 20

 25

 1700 1720 1740 1760 1780 1800
 0

 2

 4

 6

 8

 10

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

ph
as

e
ID

elapsed cycle (x 1000000)

mesh
torus

D-mesh
H-mesh

fat tree

 0

 5

 10

 15

 20

 1000 1020 1040 1060 1080 1100
 0

 2

 4

 6

 8

 10

po
w

er
 c

on
su

m
pt

io
n

(W
at

ts
)

ph
as

e
ID

elapsed cycle (x 1000000)

mesh torus D-mesh H-mesh fat tree

 0

 5

 10

 15

 20

 25

 30

 1700 1720 1740 1760 1780 1800
 0

 2

 4

 6

 8

 10

po
w

er
 c

on
su

m
pt

io
n

(W
at

ts
)

ph
as

e
ID

elapsed cycle (x 1000000)

mesh torus D-mesh H-mesh fat tree

(a) swim (b) mgrid

Fig. 25. Time-Varying Packet Latency and Power Consumption in Different Networks

of the high-radix switch by distributing the overall load into two mesh networks.

Figure 26 (b) shows that the torus network consumes power 85% higher than the

mesh network because its hop count reduction does not trade off the increased channel

length to span two tiles. Fat tree network exhibits highest power consumption due to

the long channel and high-radix router. However, we should mention that the large-

size torus and fat tree networks can achieve better power consumption than mesh

networks because the effect of hop count reduction is large. Figure 26 (c) shows that

D-mesh is most energy-efficient, which corroborates the benefits of a second network

in synthetic workloads [13].

71

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

am
m

p

applu
apsi

art
equake

fm
a3d

gafort

m
grid

swim
wupwise

jbb2000

re
la

tiv
e

av
g.

 p
ac

ke
t l

at
en

cy

mesh
torus

H-mesh
D-mesh
fat tree

 0

 1

 2

 3

 4

 5

 6

 7

 8

am
m

p

applu
apsi

art
equake

fm
a3d

gafort

m
grid

swim
wupwise

jbb2000

po
w

er
 (

W
)

mesh
torus

H-mesh
D-mesh
fat tree

(a) Relative Packet Latency (b) Network Power Consumption

 0

 0.5

 1

 1.5

 2

am
m

p

applu
apsi

art
equake

fm
a3d

gafort

m
grid

swim
wupwise

jbb2000

re
la

tiv
e

E
D

mesh
torus

H-mesh
D-mesh
fat tree

 1

 2

 3

 4

 5

am
m

p

applu
apsi

art
equake

fm
a3d

gafort

m
grid

swim
wupwise

jbb2000

av
er

ag
e

ho
p

co
un

t

mesh
torus

H-mesh
D-mesh
fat tree

(c) Relative Energy-Delay Product (d) Average Hop Count

Fig. 26. Performance Comparison in Different Topologies

72

router

channel for mesh

long channel

Fig. 27. Mesh Network with Long Channels

F. Applying Characterized Results to Long Channel Configuration

We apply traffic characterization results to long-channel reconfiguration. The physical

implementation has two networks: The baseline network has a high-bandwidth scal-

able mesh topology, and the supplementary network has only long channels span the

chip edge. Each long channel can connect all routers aligned in one direction as shown

in Figure 27. Long channels are implemented on an ample metal resource, which is

relatively cheaper than transistor resource and would increase with increasing metal

layers. These long channels are used for some routers that require long-distance

communications. Packets that traverse through long channels bypass intermediate

routers. Bypassing routers help to enhance the latency by avoiding a router latency

as well as the energy consumption.

Figure 28 (a) shows the router architecture supporting our heterogeneous net-

work. The router has 4 ports to west, east, south, and north directions, 1 port to

tile, 1 port to long channels. One long vertical and one long horizontal channels share

one port of the router using different VCs. We assume that a long channel is directly

to connected to the core as well as the router. Because we allow each long channel

73

…

…

h
o
riz

o
n
ta

l lo
n
g
 c

h
a
n
n
e
l

vertical long channel

high load routers

split

(a) Router (b) Split Long Channel

Fig. 28. Hybrid Network Architecture

to have a single source and multiple destinations, it is similar to a multi-drop bus.

Unlike an unidirectional channel used for a regular topology, a long channel provides

bi-directional packet transfer, hence doubling efficiency in the use of the interconnect.

Moreover, arbitration is not needed for resolving conflicts from sending requests. As a

result, the transaction time of the long channel is determined only by the interconnect

latency, unlike two times of the interconnect latency for request and grant in a bus.

If a long channel provides a direct path to the tile, a packet starts to traverse a long

channel first or ends transmission at a long channel. This feature saves one router

latency for packets that starts or ends transmission at a long channel.

Furthermore, we investigate increasing parallelism in a long channel by splitting

a long channel into two short channels as shown in Figure 28 (b). Note that split

short channels are still longer in the length than the channels in the baseline mesh

network. Like a single long channel, two split channels have each source and a set of

destinations. In Figure 28 (b), two packet deliveries (R1→R4, R7→R5) on the same

long channel occur simultaneously if split.

Now we discuss a reconfiguration algorithm of long channels. First, we need to

74

decide if each long channel is split. If split, a split point should be determined. Next,

we need to select one router as a source on the long channel or split the channels. This

decision process occurs periodically with available characterized results and changes

configuration.

When we have a traffic matrix where each element has a packet injection rate

between a source and a destination (flow), we can calculate the zero-load latency for

a baseline topology. We use a deterministic dimension order routing algorithm that

allows a packet to forward first in one dimension and next in the other dimension. The

rate of flow can be further divided into each rate for horizontal or vertical direction.

We describe two schemes to configure the long channel.

Flow-greedy: We first sort all flows in ascending order of the packet injection

rate. We allocate each flow to long channels one by one in the greedy manner. When

one flow does not fully utilize one long channel, we split this long channel into two

short channels and dedicate one split channel to this flow. Other split channel can be

used for another flow. When the flow takes a turn in a mesh topology, we can provide

two (horizontal or vertical) long channels to this flow. If some part of channel is

already allocated to other flow which has higher injection rate than the current flow,

the maximum part of the long channel can be used. This algorithm offers a latency

benefit when there are a small number of dominating flows in communication.

Whole: The next algorithm does not have a channel splitting process. Based on

the traffic matrix, we can compute the total traversing rate of each router in horizontal

or vertical direction. When a flow needs communication in both directions, the rate

of this flow is accumulated to the all the routers on the path in either a horizontal or

a vertical direction. After we map the injection rate of all flows to the routers, each

router has the global information on the all flows that use this router. Finally, we

select one router that has the highest rate across routers as the source for the long

75

channel.

We further exploit latency improvement in different routing algorithms. In a

mesh network, XY or YX routing algorithms lead a different long-channel configu-

ration. We calculate the enhanced latency for each routing algorithm and select a

routing algorithm for the use of the long channels. For this objective, the baseline

mesh network must provide deadlock freedom for XY and YX packet traversal. We

divide a set of VCs into XY packets and YX packets. We enforce packet traversal

using only one VC set.

When the long channel configuration is changed with a new characterized result,

the related routers (sources in the long channel) stop using the long channel and use

the baseline network. After no packets on the long channel are confirmed, the long

channel configuration is changed and then newly assigned routers for the long channel

source start to send packets on the long channel. This localizes synchronization

overhead in routers on the same long channel. Moreover, this does not introduce any

deadlock because packets always move in XY or YX direction.

 9

 10

 11

 12

 13

 14

 15

ammp
applu

apsi
art equake

fma3d
gafort

mgrid
swim

wupwise

avg

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

mesh
flow-greedy

whole

 16

 17

 18

 19

 20

 21

 22

 23

 24

ammp
applu

apsi
art equake

fma3d
gafort

mgrid
swim

wupwise

avg

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

mesh
flow-greedy

whole

(a) 16-core (b) 64-core

Fig. 29. Performance for Mesh with Reconfigured Long Channels

76

Figure 29 shows latency reduction when long channels are applied to the mesh

network. In 16-core, average packet latency is improved by 14% from flow-greedy

scheme and by 16% from whole scheme. In 64-core, average packet latency is improved

by 8% from flow-greedy scheme and by 14% from whole scheme. Whole scheme

achieves better performance improvement because it uses the aggregated rate of flows

rather than the rate of one flow.

77

CHAPTER V

ADAPTIVE DATA COMPRESSION IN NOCS

A. Motivation

The design of a low latency on-chip network is critical to provide the overall high

system performance, because the network is tightly integrated with the processors

as well as the on-chip memory hierarchy operating with a high frequency clock. To

provide low latency, there have been significant efforts on the design of routers [50, 82]

and network topologies [14]. However, due to the stringent constraints such as power

and area budgets in a chip, simple routers and network topologies are more desirable.

In fact, conserving metal resource for link implementation can provide more space

for logic such as cores or caches [23]. Therefore, we focus on maximizing bandwidth

utilization in the existing network.

Data compression has been adopted in hardware designs to improve performance

and save power. Cache compression increases the cache capacity by compressing

recurring values and accommodating more blocks in a fixed space [10, 83]. Bus

compression also expands the bus width by encoding the wide data as the small

size code [84, 85]. Recently data compression is explored in the on-chip network

domain for performance and power [12].

In this research, we investigate adaptive data compression for on-chip network

performance optimization, and propose a cost-effective implementation. Our design

uses a table-based compression approach by dynamically tracking value patterns in

traffic. Using a table for compression hardware can process diverse value patterns

adaptively rather than taking static patterns [12]. However, the table for compression

78

requires a huge area to keep data patterns on a flow 1 basis. In other words, the

number of tables depends on the network size, since communication cannot be globally

managed in a switched network. To address this problem, we present a shared table

scheme that can store identical values as a single entry across different flows. In

addition, a management protocol for consistency between an encoding table and a

decoding table works in a distributed way so that it allows out-of-order delivery in a

network.

We demonstrate performance improvement techniques to reduce the negative

impact of compression on performance. Streamlined encoding combines encoding

and flit injection processes into a pipeline to minimize the long encoding latency.

Furthermore, dynamic compression management optimizes our compression scheme

by selectively applying compression to congested paths.

B. Related Work

This research is motivated by a large body of prior work in value-centric architectures.

Particularly, our work shares some common interests with cache compression and bus

compression.

Value locality: Value locality as a small portion of recurred values by load

instructions was reported in programs to predict load values [86]. Furthermore it is

shown that programs have a set of frequent values across all load and store instruc-

tions [9].

Cache compression: Cache compression has been proposed to expand the

cache capacity by packing more blocks than given by the space [10, 83]. Alameldeen,

et al. used the frequent pattern compression (FPC) scheme to store a variable number

1A flow represents a pair of source and destination. Therefore, an n-node network
has n2 flows.

79

of blocks in the data array of the L2 cache [10]. Due to the increased hit latency

for decompression, they developed an adaptive scheme to determine if a block is

stored in a compressed form. However, apart from compression hardware cost, cache

compression requires significant modification to existing cache designs for the flexible

associativity management.

Bus compression: Bus compression can increase the bandwidth of a narrow

bus for wide data. Bus-Expander stores the repeated high order bits of data into a

table [84]. For one data transfer, the index into the table is sent along with the lower

bits of data. All the tables on the bus maintain the same content by snooping. How-

ever,a snooping mechanism is not suitable for switched networks. Also a replacement

in a table causes another replacements in all the tables, though a newly placed data

is directly relevant to only two tables in a sender and a receiver. This global replace-

ment can evict a productive index for compression and result in a low compression

rate. Power Protocol takes a similar scheme for bus energy reduction [85].

Bus encoding techniques have been proposed to reduce the energy consumed

in high-capacitance buses [87, 88, 89]. By detecting bit transition patterns on a

bus, encoding hardware converts data into a low-transition form stored in a table.

Introducing a special code for encoding further reduces energy consumption of the

bus. An extra-bit line is needed to indicate whether the data is encoded or not.

Bus-invert method transmits either original or inverted data depending on which

would result in a small number of bit transitions [90]. Transition pattern method

encodes data into pre-built code that accounts for both inter-wire and intra-wire

transitions [87]. It requires an encoder at the sender side and a decoder at the receiver

side to synchronize consistency. A Content-Addressable Memory (CAM)-based value

table is usually used to store repeated data and convert them into the energy-efficient

encoded indices [85, 91, 89].

80

Most of these schemes assume bus-style interconnects, where data for compres-

sion is perfectly synchronized across all the nodes. A switched network, where each

node needs to communicate with multiple nodes asynchronously, makes this problem

challenging. Simply duplicating tables on a per-flow basis is not scalable towards a

large scale network with many cores. Moreover, compression can increase the commu-

nication latency because a compression process is performed before a communication

process. Thus we need to develop a compression solution to minimize the negative

impact on performance.

C. Data Compression in On-Chip Networks

In this section, we briefly present the on-chip network architecture and discuss benefits

from data compression. Next, we propose a table-based data compression scheme to

reduce the packet payload size.

1. On-Chip Network Architecture

Each processing element (PE) such as a core, a cache, and a special processing engine

is interconnected through a network. A switched network consists of routers and links

whose connection determines a network topology with a proper routing algorithm.

��������
��������
��������
��������

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���������
���������
���������
���������

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

L2 cache
router

core (+ L1 cache)

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

router

L2 cache
tile

core (+ L1 cache)

(a) 8-core SNUCA-CMP (b) 16-core TILED-CMP

Fig. 30. On-Chip Networks in CMPs

81

Figure 30 shows each network layout for 8-core and 16-core CMP systems. The

first design is SNUCA-CMP integrating many fast cache banks to reduce a long access

time of the monolithic L2 cache [27]. In an 8× 8 mesh network, each router connects

four cache banks and bridges to four neighboring routers 2.

The second design is TILED-CMP connecting homogeneous tiles to aim for the

many-core paradigm. Each tile has a core, private L1 caches, a part of a shared L2

cache, and a router. An N -core CMP has an N -tile network. Each router has two

local ports for L1/L2 caches in its own tile and four ports to neighbor tiles for a mesh

network.

In both designs, most communication is cache requests/responses and coherence

operations for shared memory systems. Traffic has a bimodal-length distribution,

depending on whether communication data includes a cache block or not. In other

words, a packet payload has one of the followings: address only (address packet), or

both address and cache block (data packet).

Router: The router uses wormhole switching for small buffer cost, virtual chan-

nels (VCs) for low Head-Of-Line (HOL) blocking, and credit-based flow control. The

pipeline stages of a conventional router consist of route computation (RC), VC alloca-

tion (VA), switch allocation (SA), and switch traversal (ST) [16]. First, the RC stage

directs a packet to a proper output port of the router by looking up a destination

address. Next, the VA stage allocates one available VC of the downstream router

determined by RC. The SA stage arbitrates input and output ports of the crossbar,

and then successfully granted flits traverse the crossbar (ST). In this 4-stage pipeline,

the RC and VA stages are required only for head flits.

2Most routers have eight ports. Additionally, twelve routers have nine ports to
connect a core (eight routers at periphery) or a memory controller (four routers in
the center).

82

In our study, we use a 2-stage pipeline, which adopts lookahead routing and

speculative switch allocation [20]. Lookahead routing removes the RC stage from the

pipeline by making a routing decision one hop ahead of the current router. Spec-

ulative switch allocation enables the VA stage to be performed with the SA stage

simultaneously. A separate switch allocator finds available input and output ports of

the crossbar after the normal switch allocator reserves them.

Network Interface: A network interface (NI) allows a PE to communicate

over a network. An NI is responsible for packetization/de-packetization of data and

flit fragmentation/assembly for flow control as well as high-level functions such as

end-to-end congestion and transmission error control.

Link: Links for connecting routers are implemented as parallel global wires on

metal resources. Setting a link width equal to the address packet size may increase

link utilization and allow more metal resources for power and ground interconnects.

Buffered wires are used to fit a link delay within a single cycle [1].

2. Compression Support

In a switched network, communication data is transmitted as a packet. At a sender

NI, a packet payload is split into multiple flits for flow control, and then enters into a

network serially. After traversing the network, all flits belonging to the same packet

are concatenated and restored to the original packet.

If a specific value appears repeatedly in communication, it can be transmitted as

an encoded index, while any non-recurring value is transmitted in the original form.

This is done by accessing a value encoding table that stores recurring values in the

sender NI. When a packet with an encoded index arrives, it is restored to the original

value by accessing a value decoding table in the receiver NI. Because the index size

is much smaller than the value size, encoding can compress the packet.

83

no encoding

encoding

v3 v4 v5

0

encoding status (0: unencoded, 1: encoded)

compressed packet

original packet

flit sequence id

(5 flits)

(3 flits)

v1 v3 30

v1 v2

flit

1 1 4e4 e5e2

Fig. 31. Packet Compression Example

Figure 31 shows an example of how to encode a packet payload data as flits.

We assume that the value size for a single encoding operation is the same as the flit

size. In a compressed packet, the encoded indices (e2, e4, e5) follow the original

data (v1, v3). This structure enables multiple flits to be successfully packed into a

flit. Although it changes the data order in the original packet, it simplifies encoded

index alignment with unencoded values and flit assembly at the receiver side. Because

packet data can be partially compressed, reconstruction of the original packet requires

two additional data: One bit indicating an encoding status for each flit and a flit

sequence identifier for encoded flits to arrange all the flits in the order of the original

packet data. Additionally, we do not consider a specific energy-aware coding when

building an index [87, 88, 89], because sharing links for different flows makes it hard

to predict wire switching activities.

We show how packet compression changes the packet delivery latency and power

consumption. The contention-free packet delivery latency (T0) consists of router delay

(Tr), wire delay (Tw), and serialization latency (Ts). The hop count (H) determines

the total router delay as (HTr) and the total length of wire that affects wire delay

(Tw). Serialization latency (Ts) is determined as L/b, where the packet length is L

84

and channel bandwidth is b.

T0 = HTr + Tw + Ts(= L/b) (5.1)

As the network load increases, more conflicts on ports and channels contribute to

longer intra-router delay or wire delay so contention delay (Tc) is appended to T0.

Compressing a long packet (L) into a short packet (L′ ≤ L) reduces serialization

latency at the cost of encoding and decoding latencies (Te and Td).

T ′

0 = HTr + Tw + T ′

s(= L′/b) + Te + Td (5.2)

Compression may increase the normal contention-free latency. However, in wormhole

switching, the reduced packet size can achieve better resource utilization. Because

the average load for each router is reduced, this leads to less contention for shared

resources.

Energy consumption Ep of a packet is given by

Ep = L/b(DElink + HErouter), (5.3)

where D is the Manhattan distance, H is the hop count, Elink is the unit length link

energy consumption, and Erouter is the router energy consumption. By reducing L to

L′, compression reduces the number of flits in a packet from L/b to L′/b. Hence the

router and link energy for a packet can be reduced at the cost of encoder and decoder

energy (Eenc and Edec). It can be derived as:

E ′

p = L′/b(DElink + HErouter) + Eenc + Edec. (5.4)

Longer-distance communication packets (larger D and H) can save more energy,

because the required energy for routers and links becomes much larger than the

energy for compression. This additional energy for compression mainly depends on

85

the size of value tables. Next, we explain table organizations to store recurring values.

3. Table Organization

In an n-PE network, each PE needs n encoding tables to convert a value into an

index and n decoding tables to recover a value from a received index. We call this

organization private table scheme, because it maintains a separate table for each flow.

The encoding table that has value-index entries is constructed using a CAM-tag cache,

where a value is stored in a tag array for matching while an associated encoded index

is stored in a data array. Those indices can be pre-built or read-only because they do

not need to be altered at runtime. In the decoding table that has index-value entries,

the received index is decoded to select the associated value. Since the decoding table

is simply organized as a direct-mapped cache, the received index can uniquely identify

one value. A PE address is used to activate a proper table.

One encoding table and its corresponding decoding table need to be consistent

to precisely recover a value from an encoded index. Both tables have the same

number of entries and employ the same replacement policy. If a packet data causes a

replacement in the encoding table, it must also replace the same value in the decoding

table upon arrival. Furthermore, the network must provide in-order packet delivery

to make replacement actions for both tables in the same order. To guarantee in-order

delivery, a network needs a large reorder buffer at receivers, which requires additional

area cost, or it should restrict dynamic management such as adaptive routing.

The private table scheme relies on the decoding ability from per-flow value man-

agement. This does not provide a scalable solution as the network size increases. A

substantial chip area must be dedicated for implementing private tables. Moreover,

it is possible that an identical value is duplicated across different tables, because each

table is exclusively used for a single flow. Therefore, despite the large table capacity,

86

the private table scheme cannot manage many distinct values effectively.

D. Optimizing Compression

In this section, we present table organization and its management to overcome a

huge cost of the private table scheme. We propose two performance improvement

techniques; overlapping encoding with flit injection and dynamically controlling com-

pression for workload.

1. Shared Table

Table Structure: Each PE has one encoding table and one decoding table by merg-

ing the same values across different flows. We call it shared table organization. Value

analysis in two CMP architectures reveals that one sender transmits the same value

to a large portion of receivers and vice versa (See the detailed results in Section 1).

Therefore, having a network-wide single entry for each value in tables can dramat-

ically reduce the table size. Unlike the private table scheme, a receiver finds value

patterns used for encoding. When a receiver places a new value in the decoding table,

it notifies the corresponding sender of the new value and the associated index. After

a sender receives the index for the new value, it can begin to compress that value.

In the encoding table, a value is associated with multiple indices constructed as

a vector. The position of the index vector indicates one PE as the receiver. Each

element has an index value that will select one entry in the corresponding decoding

table. In the decoding table, one entry has three fields: a value, an index, and a use-

bit vector. Each bit in the use-bit vector tells if the corresponding sender transmits

the associated value as index. Figure 32 shows the structure of each table for a 16-PE

network, where the encoding table is for PE4 and the decoding table is for PE8. The

encoding table shows that A, the value of the first entry, is used by six receiver PEs

87

value

Each element shows a binary index for value at decoder.

A

B

C

D 10

11

00

11

10

00

10

01

0111 11

01

01 01

10 1001

00 01 0000

00 00 11

10 1100

10

for PE8

index vector

(a) Encoding Table in PE4

A

E

D

01

00

B

10

11

0

1

0

1

0

1

1

0 0

0 0

0

0

0

0

0 1

1

0

1

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

0

0

1

0

0

0

1

1

0

0

0

0

0

0

0 1

1 0

1

0

0

0

0

0

11

1

1

index

Each bit indicates a value status of encoder.

for PE4

use−bit vector

0

value

(b) Decoding Table in PE8

Fig. 32. Shared Table Structure

(0, 4, 7, 8, 12, 14). Likewise, the decoding table shows that A, the value of the second

entry, is used by four sender PEs (2, 4, 11, 15). The encoding table in PE4 indicates

that three values (A, B, and D) can be encoded when transmitted to PE8.

Table Consistency: Value-index association between a sender and a receiver

must be consistent for correct compression/decompression. In other words, a sender

must not transmit an index from which a receiver cannot restore the correct value in

its decoding table. Specifically, an index associated with the value in the decoding

table can be used in multiple encoding tables. Changing a value associated with an

index in the decoding table requires some actions in tables that use the index. Thus,

a consistency mechanism is required between encoding tables and decoding tables.

For this purpose, we propose a simple management protocol for the shared table

scheme. Note that a receiver tracks new values. As a result, inserting a new value

88

into the decoding table starts at a receiver. When a specific value appears repeatedly,

the receiver does one of the following two operations – If a new value is not found

in the decoding table, the receiver replaces an existing value with the new value. If

a value is found but the use-bit for the sender is not set, the receiver updates the

corresponding use-bit of the decoding table. After either replacement or update, the

receiver notifies the corresponding sender of the associated index for the new value.

Finally, the sender inserts the index and the new value in the encoding table.

G

A

B

E

00 1 0 .. 1

01 1 0 .. 1

10 0 1 .. 0

11 0 1 .. 1

A

B

H

D

11 00 … 10

01 01 … x

10 x … x

x x … 00

A

B

C

G

10 11 … x

x 00 … 10

00 01 … 01

x x … 00

EN0

EN15

DE1

Find a new value F (from EN0) and

select B as a victim

Send “INVALIDATE B” command

F

…

A

B

C

G

00 1 0 .. 1

01 1 0 .. 1

10 0 1 .. 0

11 0 1 .. 1

G

A

B

E

A

B

H

D

11 00 … 10

01 x … x

10 x … x

x x … 00

10 11 … x

x 00 … 10

00 x … 01

x x … 00

EN0

EN15

DE1

Invalidate B at encoders

Send ACK to DE1

…

00 1 0 .. 1

01 1 0 .. 0

10 0 1 .. 0

11 0 1 .. 1

G

A

B

E

A

B

F

D

11 00 … 10

01 x … x

10 01 … x

x x … 00

A

F

C

G

10 11 … x

x 00 … 10

00 x … 01

x x … 00

EN0

EN15

DE1

Replace B with F

Send “REPLACE with F” command to EN0

Replace H with F

…

(a) Replacement

G

A

B

E

00 1 0 .. 1

01 1 0 .. 1

10 0 1 .. 0

11 0 1 .. 1

A

B

H

D

11 00 … 10

01 01 … x

10 x … x

x x … 00

A

B

C

G

10 11 … x

x 00 … 10

00 01 … 01

x x … 00

EN0

EN15

DE1

Find a new value F (from EN0) and

select B as a victim

Send “INVALIDATE B” command

F

…

A

B

C

G

00 1 0 .. 1

01 1 0 .. 1

10 0 1 .. 0

11 0 1 .. 1

G

A

B

E

A

B

H

D

11 00 … 10

01 x … x

10 x … x

x x … 00

10 11 … x

x 00 … 10

00 x … 01

x x … 00

EN0

EN15

DE1

Invalidate B at encoders

Send ACK to DE1

…

00 1 0 .. 1

01 1 0 .. 0

10 0 1 .. 0

11 0 1 .. 1

G

A

B

E

A

B

F

D

11 00 … 10

01 x … x

10 01 … x

x x … 00

A

F

C

G

10 11 … x

x 00 … 10

00 x … 01

x x … 00

EN0

EN15

DE1

Replace B with F

Send “REPLACE with F” command to EN0

Replace H with F

…

(b) Update

Fig. 33. Shared Table Management

Figure 33 (a) illustrates a replacement example with two encoding tables (EN0

and EN15 for PE0 and PE15) and one decoding table (DE1 for PE1) in a 16-PE

89

network. DE1 has two values (A and B) for EN0 and three values (A, B, and G)

for EN15. When a new value F comes to DE1 (1©), the decoding table needs a

replacement for F and decides to evict B. Then, it requests all the related encoding

tables (2©) for invalidation of B (3©) and waits for invalidation acknowledgment from

the encoding tables (4©). DE1 replaces an old value B with a new value F (5©) and

then sends replacement to related encoding tables (6© and 7©).

Figure 33 (b) illustrates an update example. A sender (EN0) transmits a new

value G, which is in the decoding table but the use-bit for EN0 is not set. DE1 sets

the corresponding bit of the use-bit vector (2©) and sends UPDATE command for G

to EN0 (3©). Finally, EN0 has G (4©).

This management protocol makes sure that the encoding table encodes only val-

ues that the decoding table has. Note that an encoding table update action for a

sender is initiated by a receiver. The decoding table can have more entries than the

encoding table to accommodate many distinct values from different senders. Further-

more, it does not need an in-order packet delivery mechanism.

Increasing Compression Effectiveness: Because a single decoding table han-

dles value locality from multiple flows, the shared table may experience many replace-

ment operations due to the increased number of non-recurring values, causing a low

compression rate. One replacement operation in a decoding table requires at least

two packet transmissions to be consistent with an encoding table, increasing control

traffic.

To mitigate this problem, we employ another table, value locality buffer (VLB),

that filters undesirable replacement for the decoding table. VLB has a simple asso-

ciative structure where each entry has a value and a counter for frequency. When

a value arrives at a receiver, it is stored in VLB. VLB follows the least frequently

used replacement. Whenever a value hit occurs in VLB, the counter of the entry

90

Table XI. Value Table Area Analysis

Private Table Shared Table

Encoder value: v · e · n (CAM) value: v · e (CAM)

index: log e · e · n (RAM) index vector: log d · e · n (RAM)

Decoder index: 0 index: log d · d (CAM)

value: v · d · n (RAM) value: v · d (CAM)

use-bit vector: d · n (RAM)

VLB: v · d (CAM)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

16 32 64 128 256

ar
ea

 (
m

m
2)

PE count

Pv
Sh

Sh d=8
Sh d=16

Fig. 34. Area Comparison for Private and Shared Tables

is increased by one. When a counter is saturated, the associated value results in

replacement for a decoding table. In other words, VLB is used for confirming the

temporal locality of new values.

Table Area: The associative search part of a table needs CAM implementation

and other parts are constructed as RAM. To compare the private and shared table

schemes, we estimate each area as the sum of CAM and RAM cells. Table XI shows

the required number of RAM and CAM cells for each scheme, where n is the PE

count, v is the value size in bits, and e/d is the number of entries in encoding/decoding

91

table. We do not account for counters and valid bits. We scale the cell area for 45nm

from [92]. It gives us 0.638 µm2 for RAM (6 transistors) and 1.277 µm2 for CAM (9

transistors). Figure 34 shows huge area overhead of Private table (Pv) for 8-entry 8B

value as the number of PEs increases. Though the decoding table has more entries

than the encoding table such as 8 (Sh d=16) and 16 (Sh d=32), the increased area

for shared table is still scalable.

2. Streamlined Encoding

To hide the long encoding latency, we propose streamlined encoding. In general,

packet injection into a network begins after all flits of the packet participate in the

encoding process. In this situation, the long access time of an encoding table and

multiple table accesses increase the overall network latency as depicted in Eq. 2.

Furthermore, we exploit the fact that multi-cycle encoding for the table access can

be divided into multiple stages in a pipeline using a cache pipelining technique [93].

Integrating flit injection and encoding processes into a pipeline can make each process

work concurrently.

2 3 4 5

I

I

I

I

I

M1

cycle

M3

M2

H

1

T

I

E

E

E

E

I

I

cycle

H

M1

M2

M3

T

C=M1+M3+T

3 4 5 6 8 10 1121 97

I

E1 E2

E1 E2 I

E1 E2

E1 E2

I

cycle

H

M1

M2

M3

T

C=M1+M3+T

3 4 5 621

(a) No Encoding (b) Encoding (c) Streamlined Encoding

- 5 cycles - 11 cycles - 6 cycles

Fig. 35. Streamlined Encoding Example

Figure 35 shows the latency benefit of streamlined encoding for a 5-flit packet,

92

which requires 5 cycles for flit injection (Figure 35 (a)). Figure 35 (b) shows that 8

cycles are required to encode for four flits (M1, M2, M3, T) when the encoding table

access needs 2 cycles 3 . Then, injection takes 3 cycles for two uncompressed flits

(H, M2) and one compressed flit(C). Figure 35 (c) shows that streamlined encoding

increases the latency by only 1 cycle using a three-stage pipeline, which has two stages

for encoding and one stage for injection.

Early injection of head flits can reduce cycle stalls in a router pipeline by decreas-

ing resource conflicts required for following flits. If a head flit reserves a necessary

VC early, following flits can avoid stalls for VC allocation. However, it may cause low

buffer utilization due to increased VC reservation time.

3. Dynamic Compression Management

Despite streamlined encoding, the decoding latency for compressed packets is still re-

quired and increases the packet delivery latency. In a lightly loaded network, compres-

sion is not favored because packets are delivered almost free of contention. Moreover,

if the packet data is found to be incompressible, encoding and decoding operations

just increase the network latency.

To further optimize performance, we propose a dynamic management of data

compression to workload. It identifies routers that experience high congestion, and

applies data compression to packets that go through congested paths. Because com-

pression begins at a sender side, compressing all the packets going through congested

paths can help to alleviate congestion. Congestion is detected by measuring a specific

delay component from a network architecture.

Congestion detection at senders: A packet generated by a PE is stored in

3In cache traffic, a head flit for a packet is constructed with only the memory
address, so that a head flit does not need compression.

93

a buffer of the attached NI. Each packet waits until it is fragmentefragmented into

flits and injected to a router. When one PE instantly generates many packets, it

causes to oversubscribe the injection port bandwidth of the router. In this case, a

packet stays in the NI buffer for a long time. This queuing delay is used as one unit

of congestion abstraction. By estimating the queuing delay, compression is applied

to packets if the queuing delay is beyond a threshold. In our experiment, zero is used

for the threshold value. When considering shallow buffers in a wormhole router and

the use of back pressure, congestion is instantly propagated to the network if not

controlled immediately. Additionally, we use a buffer status of both NI and router for

a compression decision. If the NI buffer has at least one packet or the router buffer is

full, it implies that there is a non-zero queuing delay for the next or current packet.

If none of three conditions is met, the packet data is not compressed.

Congestion detection at receivers: Congestion also arises in the middle of

delivery paths, because routers and links are shared. When a flit or a packet fails

to reserve a necessary resource, it is stored in the flit buffer, hence, increasing the

network delay. This type of congestion appears as contention delay, which is an extra

delay component added to the zero-load delay (Eq 1.). Contention delay is computed

by subtracting zero-load delay from measured network delay, when a sender attaches a

network injection timestamp to a packet. A receiver makes a decision for compression

of a sender by comparing a measured contention delay against a given threshold.

Additionally, a receiver keeps a compression status of each sender and sends a control

packet only if the status is changed. The threshold can be preset at the design time

or be adjusted for a specific application.

Estimating delay: The last k packets are used to estimate the queuing delay

and contention delay. A small k can detect highly bursty injection for a short period

of time and react congestion immediately. Meanwhile, a large k can smooth out

94

workload behavior but does not increase control traffic much.

E. Methodology

Our evaluation methodology consists of two parts. First, we used Simics [73] full-

system simulator configured for UltraSPARCIII+ multiprocessors running Solaris 9

and GEMS [74] that models directory-based cache coherence protocols to obtain real

workload traces. Second, we evaluated the performance and estimated the dynamic

power consumption of varying compression schemes using an interconnection network

simulator that models routers, links, and NIs in detail.

Table XII shows main parameters of 8-core SNUCA-CMP and 16-core TILED-

CMP designs for 45nm technology as shown in Figure 30. We chose the 4GHz fre-

quency, which respects power limitation in future CMPs guided by [94]. All the

cache related delay and area parameters are determined by Cacti [95]. Both designs

accommodate 16MB networked L2 cache and superscalar cores configured similarly

with [27]. Assuming that each chip area is 400mm2, the cache network in SNUCA-

CMP has 2mm hop-to-hop links to connect 1mm2 banks and then the partitioned L2

cache lies on 256mm2. Tiles in a 4 × 4 mesh network of TILED-CMP are connected

with 5mm long links.

The network simulator that takes care of generated packets from the CMP simu-

lator, models the detailed timing and power behaviors of the routers, links, encoders

and decoders. The router in each CMP design is configured to fit its pipeline delay 4

for one cycle of 4GHz clock using the logical effort model [20]. Each router has 4-flit

buffers for each virtual channel and one flit contains 8B data. We estimate router

4VC allocator (R→p) has the longest latency among others and determines the
delay of a router pipeline in both designs. Therefore, the number of VCs is selected
for one clock cycle time.

95

Table XII. CMP System Parameters for Data Compression
CMP design SNUCA-CMP TILED-CMP

clock frequency 4 GHz 4 GHz

core count 8 16

L1 I & D cache 2-way, 32 KB, 2 cycles 2-way, 32 KB, 2 cycles

L2 cache 16-way, 256×64 KB, 16-way, 16×1 MB
3 cycles (per bank) 10 cycles (per bank)

L1/L2 cache block 64B 64B

memory 260 cycles, 4 GB DRAM 260 cycles, 8 GB DRAM

coherence protocol MOSI MSI

network topology 8×8 mesh 4×4 mesh

power consumption from Orion [56]. High connectivity networks need high radix

routers that require a longer pipeline delay and consume more power than low radix

routers. Thus higher radix routers in SNUCA-CMP require more power consump-

tion than those in TILED-CMP. Table XIII (a) shows the router pipeline delay and

the energy consumption of each router component. The second column specifies the

channel property as the number of physical channels (p), the number of VCs (v), and

the flit buffer depth (d).

To overcome the long global wire delay, repeaters are inserted to partition the

wire into smaller segments, thereby making the delay linear with its length. Wire

delay and power characteristics are drawn from Chapter II. Because the link power

behavior is sensitive to value patterns, we consider the actual bit pattern crossing a

link and the coupling effect on adjacent wires [87]. We divide the wire capacitance

(cw) into two parts: wire-substrate capacitance (cs) and inter-wire capacitance (ci).

ci is known to become more dominant than cs as technology shrinks [89]. Thus we

can drive energy drawn in a multi-wire link (Elink).

Elink = 0.5V 2
dd(α(

kopt

hopt

(c0 + cp) + cs) + βci)L, (5.5)

96

where α and β are the transition counts for wire-substrate and inter-wire, respec-

tively. At 45nm targeting year 2010, global wires having 135nm pitch has 198 fF/mm,

where inter-wire capacitance is four times higher than wire-substrate capacitance. Ta-

ble XIII (b) shows the delay and power models of the global wire.

Table XIII. Delay and Power for Interconnect for Data Compression
CMP Channel Delay Buffer Crossbar Arbiter Leakage

(p, v, d) (ns) (pJ) (pJ) (pJ) (pJ)

TILED 6, 3, 4 0.250 11.48 34.94 0.22 9.05

SNUCA 8, 2, 4 0.230 15.30 61.23 0.32 15.12
9, 2, 4 0.235 17.22 77.12 0.39 18.73

(a) Router
Delay Dynamic power Leakage power

wire-substrate inter-wire one wire

183 (ps/mm) 1.135 (mW/mm) 0.634 (mW/mm) 0.0016 (mW/mm)

(b) Link

The benchmarks considered in this research are six parallel scientific (SPEComp)

and two server (SPECjbb2000, SPECweb99) workloads. SPEComp programs are

compiled on a Sun Studio 11 compiler and executed for parallel regions with reference

data sets.

F. Experimental Results

We conducted experiments to examine how communication compression affects the

performance and power consumption of on-chip interconnection networks. In a 64B

cache block and 8B-wide channel networks, we assume that the address packet has a

single flit and the data packet is broken down to nine flits, where the first flit has an

address and other flits have the part of cache block data starting from its most signif-

icant bit position. We apply compression only to cache block data, because address

97

compression requires another table and does not give a high return for packet length

reduction. Furthermore, we use four 2B-entry tables to compress the corresponding

part of 8B flit data concurrently.

1. Compressibility and Value Pattern

Since one cache block contains 16 4B words, data redundancy can exist within a cache

block. In addition, a value pattern detection method such as LRU and LFU affects

compressibility. LRU replacement gives significance to the recently used one, while

LFU replacement runs based on the reuse frequency. We put two fixed-size tables

at sender and receiver sides like private table and use a hit rate as a compressibility

metric. We changed the table size by varying the number of entries from 4 to 256

and the size of entry from 1B to 64B.

Figure 36 shows the trend of the average hit rate for two replacement policies 5.

As the size of entry is smaller or the number of entries is larger, the hit rate is

better. For a fixed size table, making the entry size smaller increases the hit rate

better than providing more number of entries due to the partial value redundancy.

In 128B-table with LFU in TILED-CMP, 2Bx64 has 5%, 13%, and 30% higher hit

rate than 4Bx32, 8Bx16, and 16Bx8, respectively. Although it is not easy to show

which replacement policy is better in our experiments, LFU hit rate is less sensitive

across the different number of entries in the table, which implies that multi-threaded

programs have a set of frequent values like single-threaded programs [9]. This result

shows high compressibility in cache traffic even with small tables.

Figure 37 compares compression ratios for three compression schemes: FPC

(Frequent Pattern Compression), our table based approach, and LZW-variant com-

pression algorithm. FPC compression algorithm detects six different sizes of zero data

5We put the value table at the router rather than each node in SNUCA-CMP.

98

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 8 16 32 64 128 256

hi
t r

at
e

number of entries

1B
2B
4B
8B

16B
64B

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 8 16 32 64 128 256

hi
t r

at
e

number of entries

1B
2B
4B
8B

16B
64B

(a) LRU for SNUCA (b) LFU for SNUCA

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 8 16 32 64 128 256

hi
t r

at
e

number of entries

1B
2B
4B
8B

16B
64B

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 8 16 32 64 128 256

hi
t r

at
e

number of entries

1B
2B
4B
8B

16B
64B

(c) LRU for TILED (d) LFU for TILED

Fig. 36. Communication Data Compressibility

and one word of repeated bytes. Therefore, it needs 3-bit prefix compression overhead

for each word. We use the gzip unix utility for LZW compression, which combines the

LZW deflate algorithm with Huffman encoding of codewords in the dictionary. Our

table approach uses the 8-entry table, which needs a 3-bit index representation for

compressed data. Additional overhead due to the compression is 1 bit compression

status for each word. While our scheme and FPC achieves the fast compression, our

table based compression provides 16% higher compression ratios than FPC. Com-

pared with the idealistic compression algorithm, the table based approach achieves

56% of the gzip compression.

99

 0

 4

 8

 12

apsi equake fma3d gafort mgrid swim wupwise web jbb avg

C
om

pr
es

si
on

 R
at

io

FPC
Table

gzip

(a) SNUCA

 0

 4

 8

 12

apsi equake fma3d gafort mgrid swim wupwise web jbb avg

C
om

pr
es

si
on

 R
at

io

17 18 42

FPC
Table

gzip

(b) TILED

Fig. 37. Compression Ratios

We examine value sharing property by analyzing values across different flows that

have a common source (sender) or destination (receiver). The destination sharing

degree is defined as the average number of destinations per value. For a 10K-cycle

interval, we calculate the destination sharing degree for one source by taking the

average number of destinations of each value, weighting it with the percentage of

accesses that each value accounts for, and summing up the weighted destination

counts. We finally take the average for all sources. Similarly, we obtain the source

sharing degree. We do the same analysis considering only top n values ordered by

the number of accesses.

100

 0

 5

 10

 15

 20

 25

 30

equake

fm
a3d

gafort

m
grid

swim
wupwise

web
jbb avg

sh
ar

in
g

de
gr

ee dest (all)
dest (top 4)
src (all)
src (top 4)

(a) SNUCA-CMP

 0

 4

 8

 12

 16

equake

fm
a3d

gafort

m
grid

swim
wupwise

web
jbb avg

sh
ar

in
g

de
gr

ee dest (all)
dest (top 4)
src (all)
src (top 4)

(b) TILED-CMP

Fig. 38. Value Spatial Distribution

Figure 38 shows sharing degrees for 2B value in each benchmark. Regarding top

(frequently accessed) four values shows much higher sharing degree than taking all

values 6. Particularly, TILED-CMP shows that top four values are involved almost 12

nodes (75% in the network). This result suggests that organizing encoding/decoding

tables by sharing frequent values can keep a high compression rate. We select 2Bx8

table and LFU policy, which is fairly small but has a high hit rate, to evaluate our

compression techniques further.

6The destination sharing degree (dest) is the average number of destinations for
each value. The source sharing degree (src) is the average number of sources for each
value.

101

2. Effect on Packet Latency

 0

 10

 20

 30

 40

 50

 60

equake fma3d gafort mgrid swim wupwise web jbb avg

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

267 159 82
Baseline

Pv
Sh

Sh+Str
Sh+Str+DM

(a) SNUCA-CMP

 0

 10

 20

 30

 40

 50

 60

 70

equake fma3d gafort mgrid swim wupwise web jbb avg

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

122 109 117
Baseline

Pv
Sh

Sh+Str
Sh+Str+DM

(b) TILED-CMP

Fig. 39. Data Compression: Latency Comparison

Figure 39 shows the average packet latency of different compression architec-

tures compared with the baseline. Private and shared table schemes are indicated

by Pv and Sh. Streamlined encoding and dynamic compression management are

indicated by Str and DM. A shared table has an 8-entry VLB in a decoding table.

In most benchmarks, we can see that private table (second bar) achieves 51% and

60% latency reduction in TILED-CMP and SNUCA-CMP. Especially, compression

improves the latency dramatically by resolving high congestion in some benchmarks

(equake/fma3d/gafort/web in TILED-CMP and mgrid/web in SNUCA-CMP).

Shared table (third bar) achieves almost the same improvement: 50% in TILED-

102

CMP and 59% SNUCA-CMP due to high value sharing as explained in Section 1.

It penalizes the latency by only 4.7% (TILED-CMP) and 0.2% (SNUCA-CMP) over

private table (second bar) from a compression hit loss. The average hit rate in en-

coding tables decreases 6.4% and 1.8% each. The hit rates are listed in Table XIV.

We found that management traffic for the shared table scheme increases the overall

traffic by less than 1%.

Table XIV. Encoding Table Hit Rates for Private and Shared Tables
CMP arch. scheme equake fma3d gafort mgrid swim wupwise web jbb avg.

SNUCA private 0.358 0.252 0.800 0.455 0.093 0.449 0.583 0.661 0.457
shared 0.355 0.251 0.792 0.453 0.094 0.447 0.532 0.661 0.448

TILED private 0.640 0.617 0.795 0.667 0.258 0.741 0.601 0.964 0.660
shared 0.521 0.525 0.781 0.662 0.253 0.727 0.519 0.955 0.618

In Figure 39, streamlined encoding (fourth bar) reduces the latency for shared

table (third bar) on average by 6% (4.3 cycles). Dynamic compression management

(fifth bar) further reduces the latency by 3% (2.1 cycles). In summary, the design

using all the techniques (fifth bar) improves the latency up to 88% with an average

of 63% compared with the baseline (first bar).

Figure 40 shows the runtime latency behavior. As expected, compression in-

creases the latency for the baseline in lightly loaded network, but it significantly de-

creases the latency by activating packet compression to congested paths. In contrast,

dynamic compression management applies compression on-demand for time-varying

workload and shows the finely tuned behavior. In other words, it follows the low

latency in the baseline architecture by shutting off compression latency overhead in

a light load, and lowers down the high latency by eliminating congestion in a high

load.

103

 30

 40

 50

 60

 70

 80

 90

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

time

Baseline
Sh

Sh+Str
Sh+Str+DM

(a) SNUCA-CMP (fma3d)

 10

 20

 30

 40

 50

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

time

Baseline
Sh

Sh+Str
Sh+Str+DM

(b) TILED-CMP (wupwise)

Fig. 40. Behavior of Dynamic Compression Management

3. Effect on Contention in Router

We now investigate compression effect on contention in a router pipeline. In wormhole

switching, a VC reserved by a head flit cannot be used until a tail flit releases it. The

size-reduced packet from compression has less flits so that it can reduce the time to

hold a VC for the original packet. For the same reason, packet compression reduces

input/output port contention in a switch across competing flows stored in buffers.

Figure 41 illustrates the average waiting delay for VC allocation and switch

allocation in five configurations. Each allocation operation takes one cycle in a

contention-free router pipeline. When the speculative switch allocation is done with

the VC allocation at the same cycle, we regard switch allocation delay as zero cycle.

104

 0

 1

 2

 3

SNUCA-CMP TILED-CMP

w
ai

tin
g

tim
e

(c
yc

le
s)

baseline
Pv
Sh

Sh+Str
Sh+Str+DM

 0

 1

 2

 3

 4

 5

SNUCA-CMP TILED-CMP

w
ai

tin
g

tim
e

(c
yc

le
s)

baseline
Pv
Sh

Sh+Str
Sh+Str+DM

(b) Virtual Channel Allocation (b) Switch Allocation

Fig. 41. Data Compression: Waiting Time in Router Components

In TILED-CMP, shared table (third bar) reduces VC allocation delay and switch al-

location delay over the baseline (first bar) by 35% and 62%, respectively. In SNUCA-

CMP, each delay is reduced by 35% and 44%. As we expected, streamlined encoding

(fourth bar) increases the VC allocation delay slightly by 3.3% over non-streamlined

encoding (third bar), because packets reserve the necessary VCs earlier but release

them at almost the same time as the non-streamlined encoding scheme. Longer VA

delay produces fewer competitors to switch ports, resulting in shorter switch alloca-

tion delay (i.e. switch contention reduction), because switch allocation is performed

after VC allocation. Finally, the configuration using all the techniques (last bar)

improves VC allocation delay by 30% and switch allocation delay by 60%.

4. Effect on Network Power Consumption

Figure 42 shows energy reduction relative to the baseline 7. Private table (second

bar) and shared table (third bar) saves energy over the baseline (first bar) by 11.9%

(TILED-CMP) and 12.2% (SNUCA-CMP) on average, respectively. As long-distance

communication data is more involved with compression, energy saving is more effec-

7We omit Sh+Str that has almost the same result as Sh.

105

 0

 0.2

 0.4

 0.6

 0.8

 1

equake fma3d gafort mgrid swim wupwise web jbb avg

re
la

tiv
e

en
er

gy
 c

on
su

m
pt

io
n Baseline

Pv
Sh

Sh+Str+DM

(a) SNUCA-CMP

 0

 0.2

 0.4

 0.6

 0.8

 1

equake fma3d gafort mgrid swim wupwise web jbb avg

re
la

tiv
e

en
er

gy
 c

on
su

m
pt

io
n Baseline

Pv
Sh

Sh+Str+DM

(b) TILED-CMP

Fig. 42. Data Compression: Energy Comparison

tive. For example, fma3d exhibits the hop count as 3.16 and 17% energy saving for

private table in TILED-CMP, while mgrid exhibits the hop count as 2.76 and 10%

energy saving. Our examination in swim for very low energy saving exhibits that

swim has a huge number of different values and a low hit rate on tables.

Dynamic compression management (fourth bar) reduces energy saving over shared

table (third bar), because it applies compression adaptively and diminishes traffic

volume reduction. Note that control packets are required for dynamic management.

Energy saving is 6.4% in TILED-CMP and 7.1% in SNUCA-CMP.

In link power estimation, we find that using link utilization overestimates its en-

ergy consumption rather than accounting bit patterns. In benchmarks we examined,

link utilization shows an average of 7% (up to 24%) while bit pattern analysis for

106

intra-wire switching gives us an average of 2% activity factor (up to 7%).

 0

 0.2

 0.4

 0.6

 0.8

 1

Baseline Pv Sh Sh+Str+DM

re
du

ct
io

n
ra

tio

Traffic Router Link En/Decoder

(a) SNUCA-CMP

 0

 0.2

 0.4

 0.6

 0.8

 1

Baseline Pv Sh Sh+Str+DM

re
du

ct
io

n
ra

tio

Traffic Router Link En/Decoder

(b) TILED-CMP

Fig. 43. Data Compression: Traffic and Energy Relationship

Figure 43 shows a traffic (left bar) and energy (right bar) relationship in dif-

ferent schemes. It further breaks down each energy consumption in routers, links,

and encoding/decoding tables. We observe that energy reduction is less than traffic

reduction, because more repeated values in traffic implies smaller switching activ-

ity. Additionally, encoding indices from compression introduce a new pattern that

is not in the original workload, causing extra switching activities. Routers consume

12% (TILED-CMP) and 39% (SNUCA-CMP) of the total network energy in base-

line configurations. Note that SNUCA-CMP has higher-radix and more routers than

107

TILED-CMP. In fact, energy consumption ratio for each component depends on net-

work parameters (buffer depth, router radix, link length) and workload characteristics

(average hop count, bit pattern). In the shared table scheme, encoders and decoders

consume only less than 3% (TILED-CMP) and 2% (SNUCA-CMP) of the total en-

ergy, because the table cost is minimized in our designs.

5. Comparison with Wide- and Long-Channel Networks

mesh 8B-link mesh 16B-link express cube 8B-link

 0

 20

 40

 60

 80

w/o w/

pk
t l

at
en

cy
 (

cy
cl

es
)

 0

 1

 2

 3

w/o w/

re
la

tiv
e

en
er

gy

(a) Packet Latency (b) Energy

 0

 3

 6

 9

w/o w/

ar
ea

 (
m

m
2)

 0

 10

 20

 30

w/o w/

la
te

nc
y*

en
er

gy
*a

re
a

(c) Area (d) Overall Efficiency

Fig. 44. Data Compression: Network Comparison for TILED-CMP

We applied compression scheme (Sh+Str+DM) to a mesh network with 16B-

wide links and an express cube [96] with one-hop express links. In the express cube,

we use a deterministic routing algorithm that first uses the express channels and

then regular channels. Figure 44 shows latency, energy, area, and overall efficiency

108

as a product of them. Left (w/o) and right (w/) groups represent the baseline and

compression architectures each. Compression improves the latency on average by

43% in all networks. It should be mentioned that using deterministic routing in

the express cube does not fully utilize large path diversity. Since dynamic energy

contributes the small portion of the total energy, compression does not save much

energy. Moreover, wide and long channels increase static energy consumption and

take larger area. Figure 44 (c) shows that the table area is almost negligible (less

than 0.01% in total area). In summary, compression improves the overall efficiency

by 11% in the 16B-wide link mesh, and by 59% in the express cube.

109

CHAPTER VI

CONCLUSIONS

The computer industry has seen a shift from using abundant on-chip resources in

monolithic designs to replicating components in modular designs. This transition

to multi-core processors places significant challenge on interconnect system design.

On-chip interconnection networks are a key component toward achieving high band-

width, low latency, and lower power consumption. This dissertation makes several

contributions in the space of communication-centric chips.

First, we recognize that interconnection network designs are critical for perfor-

mance in a large-scale L2 cache. We explore a communication design for LRU replace-

ment and a network topology development. Specifically, our contribution includes: (i)

a single-cycle router architecture with multicast support as the basic building block of

the interconnection networks; (ii) Fast-LRU replacement that can reduce the network

latency; (iii) appropriate deadlock-free XYX routing algorithm that requires no hori-

zontal links in a mesh except the first row to save area and power; (iv) a new network

topology, called a halo network, where the MRU banks are of the same distance from

the core; and (v) a halo network with non-uniform sized banks, thus reducing the

wasted area on the processor die.

Second, we contribute the characterization methodology of on-chip communica-

tions for parallel applications in tiled CMPs. From initial analysis, it is hard to sum-

marize overall temporal/spatial behavior of an application as a single inter-arrival

time distribution or a particular traffic pattern. For the time-varying and spatio-

temporal characteristics, we conduct a phase-based analysis that is widely accepted

in the microprocessor domain. We introduce a phase-based characterization using a

machine learning approach. We observe that the program has a recurring behavior

110

due to the loop structure and its performance is determined by the performance of

loop execution. We introduce a reconfigurable long-channel architecture that utilizes

the characterized communication behavior for one iteration of the loop. Mapping

high-load sources or flows to long channels reduces the latency by bypassing interme-

diate routers on the delivery path.

Third, we explore data compression application for NoC-enabled multi-core sys-

tems. We introduce a table-based compression scheme utilizing frequent value pat-

terns. For a low cost of the table implementation, we propose the shared table scheme,

which stores identical values into a single entry from different sources or destinations

and removes the network-size dependence. We also present the efficient table man-

agement protocol for consistency. For a compression latency overhead, we present

two performance enhancement schemes. Streamlined encoding reduces the encoding

latency by overlapping encoding with flit injection. Applying dynamic compression

management increases performance, especially when congestion occurs in a part of

the network.

Looking to the future, there are significant opportunities in emerging technolo-

gies, workload characterization, and increased hardware support for communication.

Leveraging the expertise in interconnection networks and many previous established

work will open a new challenge and need innovative idea to redesign the entire system.

As evidenced by my dissertation research that applies interconnection knowledge to

the cache design value-based communication, co-designing two subsystems in a unified

way is critical in multi-core chips.

111

REFERENCES

[1] R. Ho, K. Mai, and M. Horowitz, “The Future of Wires,” in Proceedings of the

IEEE, pp. 490–504, 2001.

[2] SIA, “International Technology Roadmap for Semiconductors,” 2005.

http://public.itrs.net.

[3] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-GHz Mesh

Interconnect for a Teraflops Processor,” IEEE Micro, vol. 27, no. 5, pp. 51–61,

2007.

[4] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mat-

tina, C.-C. Miao, J. F. B. III, and A. Agarwal, “On-Chip Interconnection Archi-

tecture of the Tile Processor,” IEEE Micro, vol. 27, no. 5, pp. 15–31, 2007.

[5] M. B. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwal, “Scalar Operand

Networks: On-Chip Interconnect for ILP in Partitioned Architecture,” in Pro-

ceedings of HPCA, pp. 341–353, 2003.

[6] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keck-

ler, and C. R. Moore, “Exploiting ILP, TLP, and DLP with the Polymorphous

TRIPS Architecture,” in Proceedings of ISCA, pp. 422–433, 2003.

[7] P. Gratz, K. Sankaralingam, H. Hanson, P. Shivakumar, R. G. McDonald, S. W.

Keckler, and D. Burger, “Implementation and Evaluation of a Dynamically

Routed Processor Operand Network,” in Proceedings of NOCS, pp. 7–17, 2007.

[8] C. Kim, D. Burger, and S. W. Keckler, “An Adaptive, Non-Uniform Cache Struc-

ture for Wire-Delay Dominated On-Chip Caches,” in Proceedings of ASPLOS,

pp. 211–222, 2002.

112

[9] Y. Zhang, J. Yang, and R. Gupta, “Frequent Value Locality and Value-Centric

Data Cache Design,” in Proceedings of ASPLOS, pp. 150–159, 2000.

[10] A. R. Alameldeen and D. A. Wood, “Adaptive Cache Compression for High-

Performance Processors,” in Proceedings of ISCA, pp. 212–223, 2004.

[11] A. R. Alameldeen and D. A. Wood, “Interactions Between Compression and

Prefetching in Chip Multiprocessors,” in Proceedings of HPCA, pp. 228–239,

2007.

[12] R. Das, A. K. Mishra, C. Nicopolous, D. Park, V. Narayan, R. Iyer, M. S. Yousif,

and C. R. Das, “Performance and Power Optimization through Data Compres-

sion in Network-on-Chip Architectures,” in Proceedings of HPCA, pp. 215–225,

2008.

[13] J. Balfour and W. J. Dally, “Design Tradeoffs for Tiled CMP On-Chip Networks,”

in Proceedings of ICS, pp. 187–198, 2006.

[14] J. Kim, J. Balfour, and W. J. Dally, “Flattened Butterfly Topology for On-Chip

Networks,” in Proceedings of MICRO, pp. 172–182, 2007.

[15] M. M. Kim, J. D. Davis, and T. Austin, “Polymorphic On-Chip Networks,” in

Proceedings of ISCA, pp. 101–112, 2008.

[16] W. J. Dally and B. Towles, Principles and Practices of Interconnection Networks.

San Francisco: Morgan Kaufmann, 2003.

[17] R. D. Mullins, A. West, and S. W. Moore, “Low-Latency Virtual-Channel

Routers for On-Chip Networks,” in Proceedings of ISCA, pp. 188–197, 2004.

113

[18] M. S. Hrishikesh, D. Burger, S. W. Keckler, P. Shivakumar, N. P. Jouppi, and

K. I. Farkas, “The Optimal Logic Depth Per Pipeline Stage is 6 to 8 FO4 Inverter

Delays,” in Proceedings of ISCA, pp. 14–24, 2002.

[19] M. Galles, “Scalable Pipelined Interconnect for Distributed Endpoint Routing:

The SGI SPIDER Chip,” in Proceedings of Hot Interconnect, pp. 141–146, 1996.

[20] L.-S. Peh and W. J. Dally, “A Delay Model and Speculative Architecture for

Pipelined Routers,” in Proceedings of HPCA, pp. 255–266, 2001.

[21] Y. Tamir and G. L. Frazier, “High-Performance Multi-Queue Buffers for VLSI

Communication Switches,” in Proceedings of ISCA, pp. 343–354, 1988.

[22] C. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S. Yousif, and C. R. Das,

“ViChaR: A Dynamic Virtual Channel Regulator for Network-on-Chip Routers,”

in Proceedings of MICRO, pp. 333–346, 2006.

[23] D. N. Jayasimha, B. Zafar, and Y. Hoskote, “Interconnection Networks:

Why They are Different and How to Compare Them,” tech. rep., Micro-

processor Technology Lab, Corporate Technology Group, Intel Corp, 2007.

http://blogs.intel.com/research/terascale/ODI why-different.pdf.

[24] H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI. MA:

Addison-Wesley, 1990.

[25] “Predictive Technology Model (PTM),” 2007. http://www.eas.asu.edu/∼ptm.

[26] M. L. Mui and K. Banerjee, “A Global Interconnect Optimization Scheme for

Nanometer Scale VLSI with Implications for Latency, Bandwidth, and Power

Dissipation,” IEEE Transaction on Electron Devices, vol. 51, no. 2, pp. 195–203,

2004.

114

[27] B. M. Beckmann and D. A. Wood, “Managing Wire Delay in Large Chip-

Multiprocessor Caches,” in Proceedings of MICRO, pp. 319–330, 2004.

[28] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler, “A NUCA

Substrate for Flexible CMP Cache Sharing,” in Proceedings of ICS, pp. 31–40,

2005.

[29] T. W. Ainsworth and T. M. Pinkston, “Characterizing the Cell EIB On-Chip

Network,” IEEE Micro, vol. 27, no. 5, pp. 6–14, 2007.

[30] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-Way Multithreaded

Sparc Processor,” IEEE Micro, vol. 25, no. 2, pp. 21–29, 2005.

[31] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger, “Clock Rate versus

IPC: The End of the Road for Conventional Microarchitectures,” in Proceedings

of ISCA, pp. 248–259, 2000.

[32] M. Lajolo, M. S. Reorda, and M. Violante, “Early Evaluation of Bus Intercon-

nects Dependability for System-on-Chip Designs,” in Proceedings of Fourteenth

International Conference on VLSI Design, pp. 371–376, 2001.

[33] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Interconnection

Networks,” in Proceedings of DAC, pp. 684–689, 2001.

[34] L. Benini and G. D. Micheli, “Networks on Chips: A New SoC Paradigm,” IEEE

Computer, vol. 35, no. 1, pp. 70–78, 2002.

[35] G. Varatkar and R. Marculescu, “Traffic Analysis for On-Chip Networks Design

of Multimedia Applications,” in Proceedings of DAC, pp. 795 –800, 2002.

[36] M. Forsell, “A Scalable High-Performance Computing Solution for Networks on

Chips,” IEEE Micro, vol. 22, pp. 46 –55, Sep/Oct 2002.

115

[37] M. B. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwal, “Scalar Operand

Networks,” IEEE Trans. Parallel Distrib. Syst., vol. 16, no. 2, pp. 145–162, 2005.

[38] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz, “Smart

Memories: A Modular Reconfigurable Architecture,” in Proceedings of ISCA,

pp. 161–171, 2000.

[39] Z. Chishti, M. D. Powell, and T. N. Vijaykumar, “Distance Associativity for

High-Performance Energy-Efficient Non-Uniform Cache Architectures,” in Pro-

ceedings of MICRO, pp. 55–66, 2003.

[40] B. M. Beckmann and D. A. Wood, “TLC: Transmission Line Caches,” in Pro-

ceedings of MICRO, pp. 43–54, 2003.

[41] N. Muralimanohar and R. Balasubramonian, “Interconnect Design Considera-

tions for Large NUCA Caches,” in Proceedings of ISCA, pp. 369–380, 2007.

[42] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing NUCA

Organizations and Wiring Alternatives for Large Caches With CACTI 6.0,” in

Proceedings of MICRO, pp. 3–14, 2007.

[43] Z. Chishti, M. D. Powell, and T. N. Vijaykumar, “Optimizing Replication, Com-

munication, and Capacity Allocation in CMPs,” in Proceedings of ISCA, pp. 357–

368, 2005.

[44] W. H. Ho and T. M. Pinkston, “A Methodology for Designing Efficient On-

Chip Interconnects on Well-Behaved Communication Patterns,” in Proceedings

of HPCA, pp. 377–388, 2003.

[45] J. Hu and R. Marculescu, “Application-Specific Buffer Space Allocation for

Networks-on-Chip Router Design,” in Proceedings of ICCAD, pp. 354–361,

116

November 2004.

[46] C. B. Stunkel, R. Sivaram, and D. K. Panda, “Implementing Multidestination

Worms in Switch-Based Parallel Systems: Architectural Alternatives and their

Impact,” in Proceedings of ISCA, pp. 50–61, 1997.

[47] X. Lin and L. M. Ni, “Deadlock-Free Multicast Wormhole Routing in Multicom-

puter Networks,” in Proceedings of ISCA, pp. 116–125, 1991.

[48] C. J. Glass and L. M. Ni, “The Turn Model for Adaptive Routing,” in Proceedings

of ISCA, pp. 278–287, 1992.

[49] R. D. Mullins, A. West, and S. W. Moore, “The Design and Implementation

of a Low-Latency On-chip Network,” in Proceedings of ASP-DAC, pp. 164–169,

2006.

[50] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, “Express Virtual Channels:

Towards the Ideal Interconnection Fabric,” in Proceedings of ISCA, pp. 150–161,

2007.

[51] R. Desikan, D. Burger, S. Keckler, and T. Austin, “Sim-alpha: A Validated,

Execution-Driven Alpha 21264 Simulator,” Tech. Rep. TR-01-23, The University

of Texas at Austin, Department of Computer Sciences, 2001.

[52] R. E. Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, vol. 19, no. 2,

pp. 24–36, 1999.

[53] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An Integrated Cache Timing, Power

and Area Model,” Tech. Rep. WRL-2001-2, Compaq Computer Corporation,

2001.

117

[54] R. H. J. M. Otten and R. K. Brayton, “Planning for Performance,” in Proceedings

of DAC, pp. 122–127, 1998.

[55] SIA, “International Technology Roadmap for Semiconductors,” 2003.

http://public.itrs.net.

[56] H. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: a Power-Performance Sim-

ulator for Interconnection Networks,” in Proceedings of MICRO, pp. 294–305,

2002.

[57] L. Cheng, N. Muralimanohar, K. Ramani, R. Balasubramonian, and J. B. Carter,

“Interconnect-Aware Coherence Protocols for Chip Multiprocessors,” in Proceed-

ings of ISCA, pp. 339–351, 2006.

[58] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically Charac-

terizing Large Scale Program Behavior,” in Proceedings of ASPLOS, pp. 45–57,

2002.

[59] T. Sherwood, S. Sair, and B. Calder, “Phase Tracking and Prediction,” in Pro-

ceedings of ISCA, pp. 336–347, 2003.

[60] A. Dhodapkar and J. E. Smith, “Managing Multi-Configuration Hardware via

Dynamic Working Set Analysis,” in Proceedings of ISCA, pp. 233–244, 2002.

[61] X. Shen, Y. Zhong, and C. Ding, “Locality Phase Prediction,” in Proceedings of

ASPLOS, pp. 165–176, 2004.

[62] C. Isci and M. Martonosi, “Phase Characterization for Power: Evaluating Con-

trol Flow-Based and Event-Counter-Based Techniques,” in Proceedings of HPCA,

pp. 122–133, 2006.

118

[63] S. Chodnekar, V. Srinivasan, A. S. Vaidya, A. Sivasubramaniam, and C. R. Das,

“Towards a Communication Characterization Methodology for Parallel Applica-

tions,” in Proceedings of HPCA, pp. 310–319, 1997.

[64] W. Heirman, J. Dambre, J. V. Campenhout, C. Debaes, and H. Thienpont,

“Traffic Temporal Analysis for Reconfigurable Interconnects in Shared-Memory

Systems,” in Proceedings of IPDPS - Workshop 3, 2005.

[65] G. A. Abandah and E. S. Davidson, “Configuration Independent Analysis for

Characterizing Shared-Memory Applications,” in Proceedings of IPDPS, pp. 485–

491, 1998.

[66] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2

Programs: Characterization and Methodological Considerations,” in Proceedings

of ISCA, pp. 24–36, 1995.

[67] L. A. Barroso, K. Gharachorloo, and E. Bugnion, “Memory System Characteri-

zation of Commercial Workloads,” in Proceedings of ISCA, pp. 3–14, 1998.

[68] J. P. Singh, E. Rothberg, and A. Gupta, “Modeling Communication in Parallel

Algorithms: A Fruitful Interaction Between Theory and Systems?” in Proceed-

ings of SPAA, pp. 189–199, 1994.

[69] K. L. Johnson, “The Impact of Communication Locality on Large-Scale Multi-

processor Performance,” in Proceedings of ISCA, pp. 392–402, 1992.

[70] M. Zhang and K. Asanovic, “Victim Replication: Maximizing Capacity while

Hiding Wire Delay in Tiled Chip Multiprocessors,” in Proceedings of ISCA,

pp. 336–345, 2005.

119

[71] V. Soteriou, H. Wang, and L.-S. Peh, “A Statistical Traffic Model for On-Chip

Interconnection Networks,” in Proceedings of MASCOTS, pp. 104–116, 2006.

[72] G. Varatkar and R. Marculescu, “Traffic Analysis for On-Chip Networks Design

of Multimedia Applications,” in Proceedings of DAC, pp. 795–800, 2002.

[73] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. H̊allberg,

J. Högberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A Full System

Simulation Platform,” IEEE Computer, vol. 35, no. 2, pp. 50–58, 2002.

[74] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.

Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s General

Execution-driven Multiprocessor Simulator (GEMS) Toolset,” Computer Archi-

tecture News, vol. 33, no. 4, pp. 92–99, 2005.

[75] W. J. Dally and C. L. Seitz, “Deadlock-Free Message Routing in Multiprocessor

Interconnection Networks,” IEEE Trans. Computers, vol. 36, no. 5, pp. 547–553,

1987.

[76] S. Hauck, G. Borriello, and C. Ebeling, “Mesh Routing Topologies for Multi-

FPGA Systems,” IEEE Trans. VLSI Systems, vol. 6, no. 3, pp. 400–408, 1998.

[77] C. E. Leiserson, “Fat-Trees: Universal Networks for Hardware-Efficient Super-

computing,” IEEE Trans. Computers, vol. 34, no. 10, pp. 892–901, 1985.

[78] SPEC, “SPEC OMP (OpenMP Benchmark Suite),” 2001. http://www.spec.org.

[79] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern and Classification. New York:

John Wiley & Sons, 2001.

120

[80] S. D. Kamvar, D. Klein, and C. D. Manning, “Interpreting and Extending Clas-

sical Agglomerative Clustering Algorithms using a Model-Based Approach,” in

Proceedings of ICML, pp. 283–290, 2002.

[81] P. Gratz, C. Kim, R. McDonald, S. W. Keckler, and D. Burger, “Implementation

and Evaluation of On-Chip Network Architectures,” in Proceedings of ICCD,

pp. 477–484, 2006.

[82] P. Abad, V. Puente, J.-Á. Gregorio, and P. Prieto, “Rotary Router: An Effi-

cient Architecture for CMP Interconnection Networks,” in Proceedings of ISCA,

pp. 116–125, 2007.

[83] E. G. Hallnor and S. K. Reinhardt, “A Unified Compressed Memory Hierarchy,”

in Proceedings of HPCA, pp. 201–212, 2005.

[84] D. Citron and L. Rudolph, “Creating a Wider Bus Using Caching Techniques,”

in Proceedings of HPCA, pp. 90–99, 1995.

[85] K. Basu, A. N. Choudhary, J. Pisharath, and M. T. Kandemir, “Power Protocol:

Reducing Power Dissipation on Off-Chip Data Buses,” in Proceedings of MICRO,

pp. 345–355, 2002.

[86] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value Locality and Load Value

Prediction,” in Proceedings of ASPLOS, pp. 138–147, 1996.

[87] P.-P. Sotiriadis and A. Chandrakasan, “Bus Energy Minimization by Transition

Pattern Coding (TPC) in Deep Submicron Technologies,” in Proceedings of IC-

CAD, pp. 322–327, 2000.

[88] T. Lv, J. Henkel, H. Lekatsas, and W. Wolf, “A Dictionary-Based En/Decoding

Scheme for Low-Power Data Buses,” IEEE Trans. VLSI Syst, vol. 11, no. 5,

121

pp. 943–951, 2003.

[89] V. Wen, M. Whitney, Y. Patel, and J. Kubiatowicz, “Exploiting Prediction to

Reduce Power on Buses,” in Proceedings of HPCA, pp. 2–13, 2004.

[90] M. Stan and W. Burleson, “Bus-Invert Coding for Low-Power I/O,” IEEE Trans-

action on VLSI, vol. 3, no. 1, pp. 49–58, 1995.

[91] J. Yang, R. Gupta, and C. Zhang, “Frequent Value Encoding for Low Power

Data Buses,” ACM Trans. Design Autom. Electr. Syst., vol. 9, no. 3, pp. 354–

384, 2004.

[92] M. Zhang and K. Asanovic, “Highly-Associative Caches for Low-Power Proces-

sors,” in Kool Chips Workshop, MICRO-33, 2000.

[93] A. Agarwal, K. Roy, and T. N. Vijaykumar, “Exploring High Bandwidth

Pipelined Cache Architecture for Scaled Technology,” in Proceedings of DATE,

pp. 10778–10783, 2003.

[94] N. Kirman, M. Kirman, R. K. Dokania, J. F. Mart́ınez, A. B. Apsel, M. A.

Watkins, and D. H. Albonesi, “Leveraging Optical Technology in Future Bus-

based Chip Multiprocessors,” in Proceedings of MICRO, pp. 492–503, 2006.

[95] D. Tarjan, S. Thoziyoor, and N. P. Jouppi, “Cacti 4.0.,” Tech. Rep. HPL-2006-

86, HP Laboratories, 2006.

[96] W. J. Dally, “Express Cubes: Improving the Performance of k-Ary n-Cube In-

terconnection Networks,” IEEE Trans. Computers, vol. 40, no. 9, pp. 1016–1023,

1991.

122

VITA

Name: Yu Ho Jin

Address: Department of Computer Science and Engineering

Texas A&M University

College Station, TX 77843-3112

Email Address: yuho@cse.tamu.edu

Education: B.S., Computer Science, KAIST, Korea, 1995

M.S., Computer Science, KAIST, Korea, 1999

Ph.D., Computer Engineering, Texas A&M University, 2009

