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ABSTRACT

Ensemble Statistics and Error Covariance in a Rapidly Intensifying Hurricane. (May
2009)
Matthew Charles Rigney, B.S., Rice University

Co-Chairs of Advisory Committee: Dr. Fuqing Zhang
Dr. Kenneth Bowman

This thesis presents an investigation of ensemble Gaussianity, the effect of non-
Gaussianity on covariance structures, storm-centered data assimilation techniques, and
the relationship between commonly used data assimilation variables and the underlying
dynamics for the case of Hurricane Humberto. Using an Ensemble Kalman Filter
(EnKF), a comparison of data assimilation results in Storm-centered and Eulerian
coordinate systems is made. In addition, the extent of the non-Gaussianity of the model
ensemble is investigated and quantified. The effect of this non-Gaussianity on
covariance structures, which play an integral role in the EnKF data assimilation scheme,
is then explored. Finally, the correlation structures calculated from a Weather Research
Forecast (WRF) ensemble forecast of several state variables are investigated in order to
better understand the dynamics of this rapidly intensifying cyclone.

Hurricane Humberto rapidly intensified in the northwestern Gulf of Mexico from
a tropical disturbance to a strong category one hurricane with 90 mph winds in 24 hours.
Numerical models did not capture the intensification of Humberto well. This could be

due in large part to initial condition error, which can be addressed by data assimilation
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schemes. Because the EnKF scheme is a linear theory developed on the assumption of
the normality of the ensemble distribution, non-Gaussianity in the ensemble distribution
used could affect the EnKF update. It is shown that multiple state variables do indeed
show significant non-Gaussianity through an inspection of statistical moments.

In addition, storm-centered data assimilation schemes present an alternative to
traditional Eulerian schemes by emphasizing the centrality of the cyclone to the
assimilation window. This allows for an update that is most effective in the vicinity of
the storm center, which is of most concern in mesoscale events such as Humberto.

Finally, the effect of non-Gaussian distributions on covariance structures is
examined through data transformations of normal distributions. Various standard
transformations of two Gaussian distributions are made. Skewness, kurtosis, and
correlation between the two distributions are taken before and after the transformations.
It can be seen that there is a relationship between a change in skewness and kurtosis and
the correlation between the distributions. These effects are then taken into consideration
as the dynamics contributing to the rapid intensification of Humberto are explored

through correlation structures.
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1. INTRODUCTION

Although there have been improvements in forecasting the intensity and genesis of
mesoscale events (Hawblitzel 2007), accurately forecasting the genesis and evolution of
tropical cyclones remains challenging. Data assimilation, one of the most important sub-
fields in numerical weather prediction, holds one key in addressing this predictability
problem. This sub-field of numerical weather prediction encompasses efforts to
combine all available data to optimally estimate the state of the atmosphere. Because the
evolution of weather systems is highly sensitive to the accuracy of the initial conditions
of the system, improving the estimation of the initial atmospheric state is vital. This
sensitivity is especially present in tropical systems. Although track-forecasting skill has
drastically increased in recent years (Elsberry 2007), and 48-hour track forecasts are now
as accurate as 24-hour forecasts from 10 years ago (Franklin 2005), Hurricane Humberto
(2007), along with many other tropical cyclones over the past decade, show that intensity
forecasts have not made the same progress (Franklin 2005).

None of the initial models used to forecast Humberto (2007) predicted the
cyclone to become a hurricane, and in fact, most kept the system at minimal tropical
cyclone strength. Evaluating data assimilation schemes provide one way of continuing
to improve our ability to forecast these complex systems. Previous studies of Hurricane
Humberto have shown that the use of an Ensemble Kalman filter data assimilation

scheme assimilating Doppler radar observations produces forecasts superior to those

This thesis follows the style of Monthly Weather Review.



used operationally (Zhang, et al. 2009). In this study, new applications of the Ensemble
Kalman filter will be explored and ensemble statistics used in the Ensemble Kalman
filter scheme will be examined to determine the suitability of the scheme in areas with
nonlinear dynamics.

Several data assimilation schemes have been used operationally, but this
manuscript will focus on the promising EnKF scheme. The 3D-variational method
(3DVAR), the most prominently used operational method, uses a cost function to
optimally minimize error. It also requires an adjoint model to operate. More recently,
the 4D-variational method (4DVAR) has been developed as an extension of the 3DVAR.
In the 4DV AR, the cost function is also minimized with respect to time. In contrast, the
EnKF is a sequential data assimilation scheme. As observations are made, they are
sequentially fed into the assimilation scheme and assimilated according to the equations
developed to maximally reduce error. Sequential data assimilation has shown promise in
multiple situations from synoptic scale to mesoscale (Zhang 2005, Hawblitzel et al.,
2007).

Most operational data assimilation schemes such as the 3DVAR use isotropic,
stationary background error covariance structures. The EnKF and ensemble forecasting
provide a means to garner essential information in estimating flow-dependent
background error covariance and applying that information to improve data assimilation
schemes. Numerous studies, from idealized examples to full-scale assimilation of real
observations have shown promising results for ensemble based assimilation schemes.

Until recently, however, the evolution of these flow-dependent background error



covariance structures had not been closely studied. Zhang (2005) used an ensemble to
demonstrate the anisotropic growth of background error covariance structures in the case
of a rapidly intensifying winter storm over the mid-Atlantic region. In simulations of the
event, initial, random perturbations quickly evolved into coherent structures with spatial
correlations between the same and different forecast variables. Further investigation
showed the strongest coherence and highest correlations of this cross covariance
(covariance/correlation between different state variables) in areas with high potential
vorticity gradients, active moist dynamics, or over regions of strong cyclogenesis.
Ultimately, these correlation structures were shown to be anisotropic and their evolution
governed by the underlying dynamics of the system. Thus, EnKF schemes, governed by
dynamic correlation structures allow data assimilation schemes to evolve with the
system.

One other field of recent interest involves comparing the assimilation of
observations in a Storm-centered versus Eulerian assimilation window. Assimilation
done in a Storm-centered scheme is object oriented (Lawson and Hansen, 2005), whereas
the Eulerian assimilation window is geographically oriented. A Storm-centered
assimilation system could prove especially useful for smaller mesoscale systems. In the
case of a hurricane, assimilating in an object-oriented frame could improve calculations of
ensemble based covariance structures since all storms and relevant features of storms are
centered at the same place.

Tempering enthusiasm about the EnKF, ensemble non-Gaussianity could



potentially lead to a degradation of the EnKF scheme's results. Two major assumptions
are made when developing and using the EnKF. First, it is assumed that all errors are
Gaussian and secondly, that all error structures evolve linearly. Most atmospheric
systems include local areas of nonlinear evolution, and with unlimited computing power,
the extended Kalman filter could be implemented to perfectly solve for nonlinear
systems (Jazwinski, 1970). However, today's resources are limited, and instead,
adaptations must be made to the EnKF. Lawson and Hanson (2005) found that the
EnKF could be adapted to find a minimum variance solution of the EnKF in nonlinear
cases. This is not nearly as useful of a solution as the most probable solution. Although
adaptations have been attempted, they have generally been on simple, lower-dimensional
systems. The severity and extent of non-Gaussianity still must be explored for real
atmospheric systems.

The sequential EnKF scheme was first proposed by Evensen (1994) as an
approximation of the computationally demanding extended Kalman filter, first proposed
by Kalman (1960). The EnKF estimates the state of the atmosphere by combining a
prior or short term forecast with a set of observations. With each new set of
observations that is fed into the assimilation scheme, the state of the atmosphere is
updated by an amount proportional to the difference between the forecast at the location
of the observation and the observation. This difference is known as the innovation. The
relationship between the true state of the atmosphere, the forecast (or background), and

the innovation can be written as:



x,=x, +Kly, —H(x,)]  (1.1).
In (1.1), X« is the analysis state vector (i.e. the best estimate of the true state of

the atmosphere), X» is the “first guess™ or prior, Yo is the observation vector, and H is a
transformation matrix that maps the prior forecast or “first guess” to observation space
through a chosen interpolation scheme.

K is the Kalman gain matrix. This gain matrix controls the amount by which the
background forecast is changed by each set of observations in order to minimize the
analysis error. In the EnKF, this matrix is given by

K=BH' (HBH' +R)" (1.2).
and the analysis error is given by

P'=B"'+H'R'H (1.3)

B is the background covariance error matrix and R is the observation error covariance.
Thus, the value of the Kalman gain matrix is controlled completely by the ratio of the
forecast uncertainty to the total uncertainty (forecast uncertainty plus observational
uncertainty). Because the gain matrix is intimately tied to the background covariance
error, and background covariance error has been shown to be flow-dependent and
dependent on the dynamics of a system (Zhang 2005), a data assimilation scheme that
does not have a time-varying background error covariance will be inferior in calculating
the analysis of the atmospheric state. This gain matrix will fail to capture errors brought

about by the dynamical evolution of the system.



Unlike other data assimilation schemes such as the 3-D variational method, which
has an isotropic, and essentially time-invariant background error covariance (Houtekamer
and Mitchell, 1998), the EnKF allows for a flow-dependent background covariance
through its ensemble nature. In an EnKF scheme, ensemble spread is used to estimate

the background covariance structures by
1 % - -
S =00-y) (L4),
N i=1

In (1.4), x and y are state variables, x and ; are the ensemble means of the state
variables, and N is the number of ensemble members. Since the background covariance
error is based upon the ensemble, it is then also based solely upon the dynamics of the
ensemble and is completely flow dependent and non-isotropic. This allows, in theory,
for better estimation of the Kalman gain matrix, and in turn a better representation of the
true state of the atmosphere.

In previous studies, the EnKF has performed well. Zhang et al. (2005) used an
EnKF scheme in a study of the “surprise” snowstorm of 2000. Although there were
limitations in the study, such as a perfect model assumption, the EnKF scheme
significantly reduced (60-80%) the large-scale error when compared to an ensemble with
no data assimilation scheme. In addition, the EnKF proved to remain effective under
adverse circumstances, such as large observational errors or complete loss of sounding
data. Cases with “imperfect models” have also shown promising results. Investigating

the same “surprise” snowstorm, Meng and Zhang (2007) showed a 36-67% reduction in



error. Other studies at larger, synoptic scales have also shown promising performance
for the EnKF (Houtekamer et al. 2005).

Hurricane Humberto will be used as the test bed for this study. As stated
previously, data assimilation is of key importance for predicting the evolution of
systems in which there is potential for rapid intensification or intensification is
predicated on warm, moist dynamics. Humberto, one of the most rapidly intensifying
tropical cyclones ever recorded (Blake 2007) fits into both of these categories, and thus

is an ideal system to study new data assimilation methods and ensemble characteristics.



2. ENSEMBLE STATISTICS OF A LORENZ SYSTEM

Evensen (1994) developed the EnKF system based upon assumptions of
ensemble linearity and normality, following the rules of Gaussian statistics. Currently,
statistical characteristics of ensemble distributions used in EnKF schemes have not been
thoroughly investigated. Before examining a real world numerical weather prediction
simulation, however, it will be beneficial to inspect a simpler case to lay the expectations
and framework for a more in depth study. By evaluating the statistical characteristics of
an 80-variable, 10,000-member ensemble, the groundwork for a larger study using a
operational Weather Research and Forecasting (WRF) model can be laid.

The L95 Lorenz model is an 80 variable Lorenz model. At time ¢, in this study,
the model’s basic state value is between four and five. Small, random perturbations are
added to the initial state of all 80 variables to initialize the ensemble. The model is then
integrated forward in time for 14,400 time steps or approximately 10 years with no data
assimilation. After integration, the model output can be systematically examined to
determine the time evolution characteristics of the L95 Lorenz model.

First, the distribution of several variables is visually inspected. The ensemble
distributions of two particular variables are plotted as a histogram with a Gaussian
overlay (Fig 2.1). Although the distributions appears mostly Gaussian, it should be
noted that it is actually slightly flatter at the top of the distribution and has more
restricted tails than a Gaussian distribution. In addition, it is also slightly skewed. This

histogram can be referenced to sample distributions (Fig 2.2), which are simple



distributions plotted for various values of kurtosis. This distribution is representative of
many points in the Lorenz model, and it is for distributions such as these that the effect
of the non-Gaussianity must be determined.

Next, the ensemble mean of the model (Fig. 2.3) is examined. The ensemble
mean is calculated by averaging the value of all ensemble members for each of the 80
variables in the model. It is noted that the values for the 80 variables range from a
minimum of approximately 2.25 to a maximum of approximately 2.43. This range of
values is below the basic state of four to five, indicating that, the Lorenz model has more
strongly diverged in a negative direction in the absence of data assimilation.

To determine the amount of spread among ensemble members, the standard
deviation of each variable is studied (Fig. 2.3). Standard deviation indicates the spread
of a variable about the mean. Larger standard deviations indicate a distribution higher
dispersion around the mean value. The range of standard deviation is approximately 3.59
to 3.69. Given the ensemble mean ranged from 2.25 to 2.43, and the original basic state
value of the model was four meaning that the standard deviation is almost as great as the
basic state value of the variable and larger than the ensemble mean after integration
forward in time, indicating high ensemble spread. This high spread is due to two factors.
First, no data assimilation was performed throughout the integration, and thus each
variable was allowed to freely diverge from its initial state. Secondly, a Lorenz model
has multiple attractor basins. As each variable with a slightly different initial condition

wanders towards distinct attractors, the spread between variables increases.
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Skewness (Fig. 2.4) is the third statistical moment and indicates whether a
distribution is “leaning” to the right or left in comparison to a Gaussian distribution. It is
the first statistical moment that gives information regarding the Gaussianity of a
distribution. For the L95 model in this study, the skewness ranges from 0.0497 to
0.1341. Positive values of skewness point to a right skewed distribution. Being right
skewed means that the distribution, when compared to a Gaussian distribution, has a
heavier tail to the right and a shorter, less significant tail on the left side of the
distribution. This is the first sign that the distribution in the L95 Lorenz model could be
non-Gaussian in nature.

Finally, the fourth statistical moment, kurtosis (Fig 2.4), indicates the amount of
peakedness in a distribution. A value of zero indicates a Gaussian function. For this
L95 Lorenz model, the values of kurtosis range from -0.5716 to -0.4640. These values
show a platykurtic distribution, meaning that there is less peakedness than in a Gaussian
distribution and the distribution has a peak more like a semi-circle compared to a
Gaussian distribution.

Synthesizing the data on the 10,000-member L95 Lorenz model shows that there
are elements of non-Gaussianity in the ensemble distribution. Values of kurtosis with
magnitude as high as 0.5716 indicate levels of non-Gaussianity diverging significantly
from the normal. Although a 10,000-member, L95 Lorenz model does not necessarily
behave like an operational primitive equation model, these initial results motivate the

continuation of this study.
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Determination of ensemble size has been largely empirical and dictated by the
need for an ensemble with adequate spread and an ensemble that is computationally
efficient and feasible. Since operational ensembles cannot have 10,000 members due to
computational costs, it will be beneficial to explore the extent that ensemble size affects
the ensemble distribution statistics. If decreased ensemble size increases non-
Gaussianity, problems with an EnKF scheme could occur. In most of today’s ensemble
based forecasting, an ensemble size of between 20 and 50 members is used. Because
the L95 Lorenz model is efficient and computationally quick, it can be used to indicate
potential behavior of primitive equation numerical models’ ensemble distributions for
ensemble sizes that are small when compared to many ensembles used in the statistics
field. Determining the optimal size of an ensemble for computational cost while
maintaining key statistical features is integral if ensemble forecasting is to continue to
evolve and improve.

To examine the effect of size on ensemble statistics, 30 ensemble members are
randomly selected and ensemble statistics calculated. These 30 members were selected
using MATLAB’s randn() function to generate 30 random numbers between 1 and
10,000. The numbers generated were the ensemble members selected for the 30-
member ensemble. Table 2.1 shows values of the first through fourth statistical
moments for both ensembles. For each moment, the maximum, minimum, mean, and
standard deviation is noted. This gives a complete description of the data for both

ensembles and each moment.
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Comparing the ensemble mean shows that the mean of the ensemble mean is
almost identical in the two ensembles. In fact, the mean of the ensemble mean of the 30-
member ensemble is only 1.7% higher than that of the 10,000-member ensemble.
Although the mean is approximately the same for both ensembles, ensemble mean is not
overly important to the Gaussianity of the EnKF. It does, however, show the
distributions will look similar in their prediction of events, even if the underlying
distributions turn out to differ.

Comparing skewness and kurtosis of the two ensembles more directly addresses
the amount of non-Gaussianity in the distribution and the potential impact of ensemble
size on the EnKF scheme. Skewness, the third statistical moment, of the 30-member
ensemble has a mean skewness value of 0.1357. It was 0.0940 in the 10,000-member
ensemble, a 44.3% increase. In addition, the range of values for the 30-member
ensemble is much higher than the 10,000-member ensemble. It is hard to make
definitive conclusions about the skewness based on this data because the standard
deviation of the 30-member ensemble is high enough to encompass the mean of the
10,000-member ensemble, but the smaller ensemble size shows marked increase in
skewness. Average kurtosis increases to 3.4395, a 655% increase in magnitude and a
change in sign. This indicates that reducing ensemble size not only can increase the
kurtosis of a distribution, but it can also completely change the type of non-Gaussianity
present in a distribution. This portion of the study gives evidence that non-Gaussianity
is introduced into an ensemble through both the dynamical evolution of the system and

the inherent inability of a small ensemble to capture all possible evolutions of a system.
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Studying the 10,000-member L95 Lorenz model has yielded preliminary
information on ensemble distributions in atmospheric science models. It is determined
that the L95 Lorenz model exhibits non-Gaussian characteristics in both a 10,000-
member ensemble and a 30-member ensemble. The non-Gaussianity noted is greater in
30-member ensemble. This is especially true of the skewness and kurtosis values, which
increase significantly in the smaller ensemble. Because the simple L95 Lorenz model
shows evidence of non-Gaussianity, motivation exists to characterize the non-
Gaussianity present in a numerical weather simulation of a system involving intense

convection and non-linear processes.
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3. ENSEMBLE STATISTICS OF A TROPICAL CYCLONE

3.1 Synoptic Setup

On September 5, a frontal boundary sagged south off the coast of Florida into the
southeast Gulf of Mexico. Over the next several days, this trough moved to the west-
northwest in response to ridging over the southeastern United States. By September 11,
convection began to fire southeast of Galveston and that night a surface low began to
form. At 0900 UTC on September 12, 2007, the National Hurricane Center in Miami,
Florida classified the system as a tropical depression (Blake 2007).

Within three hours of the initial advisory, the National Hurricane Center upgraded
the tropical depression to tropical storm Humberto. As the system drifted slowly
northward towards the Texas coast, well-defined banding features became more
prominent on radar from Houston and the rapid intensification of Humberto continued
throughout the day. As evening approached, the storm turned to the north-northeast
around the western periphery of the ridge and took aim at the Texas/Louisiana state line.

By the early morning hours of September 13, 2007, radar and reconnaissance
indicated that the storm had reached hurricane intensity. At 0400 UTC 13 September,
Humberto reached its peak intensity of 80 kts about 20 miles south of High Island,
Texas (Blake 2007). About three hours later, Humberto made landfall just east of High

Island, Texas, with a minimum pressure of 985 millibars. It then quickly weakened over
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the next 12-24 hours before finally dissipating as it moved northeastward over Louisiana
and Mississippi.

None of the major operational models (GFDL, UKMET, ECMWF, and
NOGAPS) forecasted the rapid intensification of Humberto, and this was reflected in the
official forecast from the National Hurricane Center. In one of the first advisories issued
on Humberto at 1500 UTC on September 12, less than 24 hours before peak intensity,
the National Hurricane Center predicted Humberto to reach a peak intensity of 40 kt.
Twelve hours later, when Humberto had reached an intensity of 55 kt and was only 4
hours from landfall, the National Hurricane Center predicted that “some additional
strengthening could occur before the center makes landfall...and winds could be
approaching hurricane force” (NHC Forecast Discussion, 2007), however, it was not
explicitly forecast to become a hurricane and no hurricane warnings or watches were
issued at the time. Ensemble forecasting is intended to capture some of the variability
inherent in forecasting intense weather systems and because of the poor performance of
deterministic models, Humberto makes an attractive case study on the use of ensemble
forecasting and the effect of data assimilation in tropical cyclone forecasting.

3.2 The Forecast Model

The advanced WRF (ARW) is used for this study. WREF is a fully compressible,

nonhydrostatic mesoscale model (Skamarock et al. 2005). The vertical coordinate

follows the terrain using hydrostatic pressure, and the model uses an Arakawa-C grid.
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Prognostic variables are column mass of dry air, velocities (u, v, w), potential
temperature, geopotential, and mixing ratio for water vapor, cloud, rain, ice, snow, and
graupel.

In the control experiments, three model domains with two-way nesting are used.
The coarse domain covers the contiguous United States with 160x121 grid points and a
grid spacing of 40.5 km, and the inner domain D2 (D3) cover the central United States
with 160x121 (253x253) grid points and a grid spacing of 13.5 (4.5) km (Fig. 3.1). All
model domains have 35 vertical layers, and the model top is set at 10 hPa. The physical
parameterization schemes include the Grell-Deveni cumulus scheme (Grell and Devenyi
2002), WRF Single Moment 6-class microphysics with graupel (Hong et al. 2004) and
the Yonsei University (YSU) scheme (Noh et al. 2003) for planetary boundary layer
processes. The NCEP GFS operational analysis at 00Z 12 September and its forecast
are used to create initial and boundary conditions. Data assimilation is performed for all
domains, but all verification is performed for D3. Ensemble size was set to 30 members
in this study. In previous studies (e.g., Houtekamer and Mitchell 2001, Anderson 2001;
Snyder and Zhang 2003; Zhang 2005; Zhang et al. 2006; Meng and Zhang 2007; Meng
and Zhang 2008a,b), an ensemble size of 20-50 was found to be both reasonable and
affordable.

3.3 Ensemble Statistics
WREF ensemble statistics will be explored using the same methodology as with

the L95 model in the previous section. These calculations are important to determine if
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the linear assumptions upon which the EnKF is based are valid. By calculating the first
through fourth statistical moments of the ensemble, the Gaussianity of the ensemble can
be analyzed. Because the EnKF scheme is based upon Gaussian statistics, any
significant non-Gaussianity of the ensemble distribution will produce less than optimal
results. Quantifying the effects of non-Gaussianity will also be a major component of
this section.

To analyze the ensemble characteristics of the WRF model run, the first through
fourth statistical moments across the entire model domain will be calculated at each grid
point at 0900 UTC on 13 September when Humberto was at peak intensity near landfall.
In this portion of the study, statistical moments will be averaged spatially and at each
vertical level for several state variables important to EnKF data assimilation to
determine the Gaussianity across the entire domain. Variables that show evidence of
high non-Gaussianity will be looked at more closely by re-calculating statistics over a
smaller domain size centered on the storm in order to investigate the role that convection
plays in producing non-Gaussianity in the WRF ensemble.

One of the primary variables assimilated in many data assimilation schemes is
mixing ratio (Fig. 3.2) since one of the primary areas of error growth is in locations with
moist dynamics (Zhang, 2005). First it should be noted that the average mixing ratio
decreases rapidly with height, becoming negligible around 12 km. In addition, as
domain size becomes more tightly focused on the storm, mixing ratio increases at the
surface from 14 g/kg when averaged over the entire domain to just over 19 g/kg in a

20x20 gridpoint sub-domain centered over Humberto. Skewness reaches a maximum in
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the large domain in the mid-levels, where values reach almost 1.1. As the domain size
decreases, meaning that a larger percentage of the domain is convective in nature, the
skewness decreases across most levels. In fact, for the smallest domain (21x21
gridpoints), skewness reaches a maximum value of 0.7 at 4 km and then increases
rapidly above 8 km as the amount of moisture in the atmosphere quickly decreases.
Finally, kurtosis is found to greatest when averaged over the entire domain. In the case
of averaging over the entire 252x252 gridpoint domain, the kurtosis reaches a maximum
value of 2.5 between 2 km and 4 km in height. When averaged over smaller domain
sizes, the kurtosis decreases to values of approximately 1.0 at a height of 5 km. This
corresponds well to the high values of skewness at approximately the same height. In
conjunction with each other, it can be concluded that the ensemble distribution of mixing
ratio exhibits significant non-Gaussianity in the mid-levels of the atmosphere.
Interestingly, values of skewness and kurtosis are actually larger over larger domains.
This is somewhat counter-intuitive since we expect non-Gaussianity to increase with
increasing presence of non-linear dynamics. However, since mixing ratio is extremely
low at many points in the larger domain, we could expect areas with large amounts of
non-Gaussianiy in the larger domains.

Zonal (Fig. 3.3) and meridional (Fig. 3.4) winds also play an integral role in data
assimilation schemes. Because horizontal winds are one of the easiest of all state
variables to observe and are explicitly calculated within the model, they are one of the
most data rich and important variables to assimilate. In the data from the WRF model

for Hurricane Humberto, both meridional and zonal averaged winds increase in
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magnitude as the domain size decreases. Winds also decrease to near zero in the upper
troposphere in the smaller domain size, indicating high pressure aloft. This setup is
conducive for strengthening. Skewness values remain relatively constant and have
similar values for both meridional and zonal winds. Skewness ranges from about 0.5 to
0.9 near the surface and then remains fairly constant with height, decreasing slightly to
approximately 0.5. At the surface, smaller domains have slightly larger skewness
values.

Finally, kurtosis values range from 0.8 (zonal winds) to 1.8 (meridional winds) and
remain constant with height. All three domain sizes exhibit comparable amounts of
kurtosis at all vertical levels. Compared to mixing ratio, zonal and meridional winds
have moderate degrees of non-Gaussianity. However, non-Gaussianity is still present
and possibly significant to the execution of an EnKF scheme.

Pressure is another measure of tropical cyclone strength. Since it is observed
frequently, it is a useful variable in assimilation schemes. In this study, skewness and
kurtosis of pressure was found to have significant differences between larger domains
and smaller domains (Fig. 3.5). As expected, pressure is slightly lower when averaged
over successively smaller domains. In addition, as domain size is decreased, standard
deviation increases, especially near the surface. This is expected since the pressure
gradient is strong near the center of the storm. Both skewness and kurtosis of pressure
paint interesting pictures of convection’s role in the Gaussianity of the ensemble
distribution. Looking first at skewness, the values averaged over the entire 252x252

gridpoint domain range from 0.4 at the surface, increases in the mid-levels, and then
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decreases again in the upper levels. Although these values are moderate skewness
values, they pale when compared to the values when averaged over smaller, storm-
centered domains. In fact, when averaged over the 50x50 gridpoint domain, the
skewness at the surface increase over 100% in magnitude to 0.85. The magnitude again
increases to 1.15 when averaged over the 20x20 domain. This indicates significant
skewness in the distribution of pressure when measured around the ensemble mean
center of the storm and is the first strong evidence that convection plays a key role in
significant non-Gaussianity.

This trend continues in the kurtosis of pressure. At the surface, the values of
kurtosis in the large domain are around 0.9 in the lowest kilometer of the atmosphere.
Like skewness, however, this value increases to 1.5 when averaged over the 50x50
gridpoint domain and to 2.2 when averaged over the 20x20 gridpoint domain. Although
the difference between the kurtosis values at different domain sizes decreases with
height, pressure at the surface is the most relevant measurement to storm strength. Thus,
the distribution of pressure is non-Gaussian near the surface, and highly non-Gaussian in
areas of intense convection. This could be due in part to the non-linear nature of
convective dynamics. Even more importantly, however, it raises questions about the use
of a data assimilation scheme based on linear statistics.

The assumption of Gaussian ensemble distributions has been shown to be a good
approximation in many cases at many vertical levels, such as pressure in the mid and
upper levels and meridional and zonal winds. This assumption has been shown to be

even more accurate when the ensemble domain is largely non-convective. However,



21

some cases, highlighted most strongly by surface pressure, show strong non-Gaussian
behavior in areas of intense convection. What affect this non-Gaussian distribution has
on correlation structures and in turn the EnKF scheme then becomes a key question.
3.4 Area Averaging (“Bundling”)

Area averaging (bundling) was performed on several state variables to observe its
affect on the non-Gaussianity of the distributions. An observed decrease in skewness
and kurtosis would advocate for the usefulness of “super-obbing”. Super-obbing is the
practice of taking an average, or subset, of observations (such as radial velocities from a
radar) and incorporating them into one observation used as representative of the entire
area. In this investigation, averages are taken over a 2x2 grid point area, 4x4 grid point
area, and an 8x8 grid point area. Examining the skewness and kurtosis of pressure (Fig.
3.6), there are only negligible changes in skewness and kurtosis. However, when the
domain size is reduced to a 51x51 grid point storm-centered area, the 4x4 area averages
begin to show reduced skewness and kurtosis. When the domain size is reduced even
further to a 21x21 grid point, storm-centered box, skewness and kurtosis is even more
noticeably reduced. In fact, at low to mid-levels, skewness is reduced by over 10% and
kurtosis by almost 15%.

Similar findings, although not as uniform, can be found when inspecting the results
for mixing ratio (Fig. 3.7). In this particular case, however, the skewness and kurtosis
are generally reduced at all levels in the 252x252 domain, while at the smaller domain
sizes, the improvement is not evident at all vertical levels. Although these results are not

as persuasive as the findings for pressure, there is still evidence present that area-
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averaging can improve Gaussianity.

Finally, vertical velocity shows the most potential improvement by bundling.
Figure 3.8 shows clear decreases in kurtosis at all domain sizes. Reductions at all
domain sizes and most vertical levels are greater than 50% for the 4x4 grid point
averages. Skewness also shows a decrease at almost every vertical level and every
domain size. The evidence here is most conclusive out of all of the variables examined.

It has been shown that across multiple variables, area-averaging increases
Gaussianity. In the most significant cases, kurtosis is reduced by more than half. This
lends support to the practice of super-obbing in order to create more normal ensemble
distributions. By creating and using super-obs in a EnKF scheme, the potentially more
normal distribution has the ability to perform better under the linear assumptions
imposed by the EnKF.

3.5 Non-Gaussianity’s Effect on Correlation Structures

The effect of non-Gaussianity on correlation structures will be explored through an
empirical investigation of correlation structures from Gaussian distributions put through
data transformations. Ideally, each non-Gaussian distribution from the WRF Humberto
run would be analyzed to investigate the effect on that particular correlation structure.
However, the statistics involved would be highly complex and beyond the scope of this
study. Instead, known Gaussian distributions will be subjected to data transformations.
Correlations will be calculated between two Gaussian distributions and two transformed
distributions. In addition, the correlation between a Gaussian distribution, “A,” and a

post-transformation distribution, “B,” will be calculated. By examining the effect on
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correlation that these data transformations have, a reasonable inference can be made on
whether non-Gaussianity affects the results of the EnKF data assimilation scheme.
Table 3.1 details the results of this study. In addition to correlation values,

skewness and kurtosis values of each distribution are also recorded. The original

) . o 1 .
Gaussian distributions are transformed with x°, x°, and — transformations. For
X

transformed data in Table 3.1, “Correlation 1” refers to the correlation between one
Gaussian distribution and one transformed distribution and “Correlation 2” refers to the
correlation between two transformed distributions. One clear result of this limited study
is that correlation structures were changed significantly only when the mean of the
distribution was near zero. In the x> and x’ case, however, the lower correlation was

only noted when one transformed Gaussian distribution was correlated with a Gaussian

distribution. In the — transformation, two transformed, non-Gaussian distributions and
X

one transformed distribution paired with a Gaussian distribution both showed almost no
correlation.

Interestingly, the other two cases (mean = 270 and mean = -15) show little
decrease in correlation values after the transformation. However, when comparing the
values of skewness and kurtosis for these transformations, it is noticed that they are
much lower than in the first case with mean zero. In fact, there is no appreciable
increase in the non-Gaussianity of the post-transformation distributions for the case with
mean set to 270. In addition, for the case where mean is set to -15, skewness and

kurtosis increase after the data transformation, but levels are still generally below one



24

which may not be significant enough to impact correlation structures in this particular
case.

This simple study shows that for small increases in non-Gaussianity, correlation is
not greatly affected (see cases where mean = 270 and mean = -15). However, as non-
Gaussianity increases greatly, correlation structures change greatly, as in the case where
the mean is zero. While this study is preliminary, it shows that excessive non-
Gaussianity in ensemble distributions can potentially affect correlation structures of
those ensembles. These results should motivate further study in this area to detail the
specific effect that ensemble non-Gaussianity has on correlation structures used in data

assimilation schemes.
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4. ERROR COVARIANCE STRUCTURES

Covariance structures of state variables can provide key information in
understanding the dynamical setup of Humberto. Why Hurricane Humberto
strengthened as rapidly as it did as it approached the upper Texas coast remains a vexing
question, especially in the face of a model consensus unanimously opposed to the idea.
Ultimately, knowledge of the dynamical setup surrounding the storm will lead to a better
understanding of what environmental conditions contribute to intensification. In
addition, if variables important to data assimilation also play a key role in the dynamics
and intensification of Humberto, further weight can be given to the value of an EnKF
scheme. In this section, correlation structures will be used to analyze the major factors
contributing to the rapid strengthening of Humberto. Vorticity at 850-hPa is used as a
proxy for storm strength. Correlations of 850-hPa potential vorticity averaged over a 10
gridpoint square surrounding the storm center with several state variables are looked at
to determine what role various factors play in the strengthening or weakening of the
storm. In particular this study will examine correlations at peak intensity with zero time
lag, and correlations of storm strength with variables frequently used in data assimilation
schemes. Thus, this study ultimately looks at what factors present at the time of peak
intensity contributed to the rapid intensification of Humberto.

Correlations between 850-hPa potential vorticity and surface mixing ratio and
850-hPa potential vorticity and surface temperature will be looked at first (Fig. 4.1).

Correlation of 850-hPa potential vorticity with surface mixing ratio shows two broad
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areas of moderate to strong correlation. One area of moderate positive correlation
stretches northeast from the storm center and then turns south, forming a comma shaped
pattern. Values over this broad area are greater than 0.2, with many areas reaching
values of 0.35 and some areas reaching values of 0.5. In this study, correlations greater
than 0.3 have 90% significance. Conversely, an area of negative correlation exists on the
western side of the storm center and curls around the southeast side of the storm. South
of the storm there are several areas of correlation values less than -0.35. West and
northwest of the storm, however, these values increase in magnitude to greater than -
0.65. As Hurricane Humberto rapidly strengthened, it benefited from the warm, moist
tropical air located to its south and east. This moist air was drawn northwards and into
the center of the storm, leading to the positive correlations on the eastern and southern
side of the storm. Conversely, the rapid strengthening of Humberto led to increased
northerly winds on the west side of the storm. These strong winds drew cooler, drier air
from behind the cold front southward. Thus, high negative correlations are seen on the
northwest side. In addition, lower temperatures also being drawn down the western side
of Humberto.

In conjunction with those findings, the correlation structure of 850 hPa potential
vorticity with surface temperature shows negative correlation areas northwest of the
storm, an area of positive correlation centered directly under the storm, and a tongue of
negative correlation extending from south of the storm, to just east of the storm. Clearly,
the area of positive correlation directly under the storm indicates that warm air directly

under the storm fuels the intensification process primarily through wind-induced surface
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heat exchange (WISHE). The large area of negative correlation wrapping around the
storm can be explained in much the same way as the negative correlation of mixing
ratio. As the storm strengthens (potential vorticity increases), cold air from behind the
cold front is pulled southward and wrapped around the storm.

Next, in order to better understand the upper level environment surrounding
Humberto, the correlation of 850 hPa potential vorticity with 200 hPa zonal and
meridional winds is explored (Fig. 4.2). When inspecting the correlation with 200 hPa
zonal winds, an area of moderate negative correlation exists southwest of the storm and
moderate positive correlation to the southeast of the storm. Together, these correlation
fields indicate that a stronger storm is associated with upper level divergence south of
the storm. When this is compared to a map of correlation of 850 hPa with reflectivity, a
stronger storm is also correlated with higher reflectivity to the south of the storm. Thus,
divergence in the upper level winds aid in the “venting” of convection, leading to a
strengthened storm. The same general phenomenon can be seen in the correlation of 850
hPa potential vorticity with 200 hPa meridional winds. Although the correlation
structures are not as strong as in the zonal wind case, there is still an area of divergence
east and south of the storm center aiding in the ventilation of the storm at upper levels.

For the purposes of impact on data assimilation, the dynamics of Hurricane
Humberto have been explored through correlation structures of variables important to
assimilation schemes. It is found that the variables important to data assimilation indeed
played an important role in the intensification of Hurricane Humberto. In addition,

Hurricane Humberto strongly influenced the surrounding environment. Upper air data
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contains significant amounts of data about storm strength and should be assimilated
when possible. Venting of the storm through divergent upper level winds was associated
with the development of strong convection in all quadrants of the mature Hurricane

Humberto.
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5. IMPACT OF STORM-CENTERED ASSIMILATION SCHEME

Significant amounts of non-Gaussianity have been found in the WRF Humberto

ensemble distribution and these have been shown to potentially affect correlation
structures. Because of this, it becomes even more important to find techniques that can
improve the EnKF scheme. Assimilating observations in a Storm-centered (storm-
centered) frame is one potential method for improvement that is independent of the
issues related to non-Gaussianity. In this section, the benefits and drawbacks of a
Storm-centered assimilation window will be characterized.

This study theorizes that assimilating observations in a Storm-centered frame
may prove especially effective for intense mesoscale storm systems such as MCVs,
intense extratropical lows, and tropical cyclones by centering the storm in the spatial
assimilation window. In most assimilation schemes, including the EnKF, the
assimilation domain remains fixed while the weather features and storm system move
within it. When an ensemble forecast is used, however, ensemble spread of a storm
center’s position can be significant (up to 80 km in this study). Because of this, smaller
scale features of the system can be smeared out when the ensemble average is taken and
used in assimilation updates (Eq. 1.1). In the setup for the Storm-centered coordinate
system, each ensemble member is shifted so that the minimum surface pressure is co-
located with the ensemble mean position. Once each ensemble members’ storm center
has been co-located with the ensemble mean minimum pressure location, the new

ensemble mean intensity is calculated, covariance matrices are constructed, and the
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EnKF update is performed in accordance with equations 1.1-1.3. Position updates will
still be performed in the Eulerian frame. After the ensemble mean is updated, individual
ensemble members are updated using

x!—%, =[I-BE/DHIx, -%') (5.1
and then translated back to their original position on the Eulerian grid using the same

linear transformation as in the first step. For this study, B is set to one. In equation 5.1,
the term on the left hand side, x{ —X_, is the analysis perturbation, or the difference
between the analysis of ensemble member n and the ensemble mean, I is the identity

matrix, ¢ is the forecast covariance of the state variable with observed variable, d is the
sum of the forecast covariance of the observation variable and the observation error
(variance), and H is a transformation matrix that maps model space to observation space.
Finally, (x/ —X’) is the forecast perturbation of ensemble member n. Thus, in a simple
example, the analysis perturbation is the forecast perturbation reduced by one minus the
Kalman gain matrix. Once this calculation has been performed, the updated ensemble
members can be used as the new background state and the process repeated with a new
set of observations.

Results from the two methods will be compared, looking at the amount of error
reduction from each method. Assimilation of an intensity observation only is a
straightforward experiment from which comparisons can be made. Ensemble member
eleven is sufficiently accurate in describing the true evolution of Humberto to be chosen
as the “truth” member. The pressure field for this truth member is shown in Figure 5.1.

From the truth member, a simulated pressure observation is taken at the gridpoint with
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minimum pressure and random Gaussian noise with ¢ =1 millibar is added. The
observation is then treated as if it is co-located with the ensemble mean and assimilated
in both the Eulerian and Storm-centered schemes.

Comparing the initial Storm-centered and Eulerian ensemble means as shown in
Figure 5.2, the most notable difference is the smaller, more compact, storm center noted
in the Storm-centered frame. The Storm-centered agrees more closely with the truth and
also agrees well with the idea that the Eulerian mean tends to smear mesoscale features
of the mesoscale system. Using the EnKF scheme outlined in the introduction of this
manuscript, the posterior pressure distributions shown in Figure 5.3 are obtained. These
estimates appear similar, with the Storm-centered update being slightly more
symmetrical and the Eulerian update being slightly weaker on the west side. In contrast,
the Storm-centered and Eulerian update have different patterns in the increment. Unlike
the Eulerian increment, which has a dipole pattern, the Storm-centered update is
extremely symmetrical around the storm center. This indicates that the Storm-centered
update focuses on an area concentrated around the storm center while the Eulerian
update is affected by the different locations of the storm center.

To fully understand the quality of the update in each frame, the performance of
the Storm-centered and Eulerian update after transforming the ensemble members from
the Storm-centered update back to the Eulerian frame is examined. While updating
intensity in the storm-centered frame, position is updated with a position observation
taken from the truth member in the Eulerian frame. Thus, the ensemble mean from the

intensity update in the storm-centered frame is then moved to the location indicated by
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the position update. The post-transformation Storm-centered update ensemble mean
remains fairly symmetrical, but is stronger than the original ensemble mean. Unlike the
Eulerian update, the transformed Storm-centered update shows no erosion on the
western side of the storm and presents a very symmetrical ensemble mean.

To quantitatively assess the quality of the two methods of assimilating pressure

observations, a new measure of error is introduced. This measure can be written as

E _ ‘Eprior - ‘Ep()st
N T —

prior

(5.2)

where E,, is the normalized error, E . 1is the error in the prior estimate, £, is the

prior post

error in the posterior estimate, and E . = 1is the error in the prior estimate averaged over

prior
the entire domain. Error is measured by comparing the ensemble mean to the chosen
truth member. E |, is calculated at each gridpoint. By using this measure of error instead
of simply measuring the error as the magnitude of the perturbation from truth (in mb),
errors of different magnitudes can be compared on equal footing. Thus, a value of zero
by this measure indicates no change in the error from the prior to posterior estimate,
large positive values indicate large decreases in magnitude of the error, and large
negative values indicate large increases in the magnitude of the error.

Looking at this measure of performance (Fig 5.4), and the associated analyses it
can be seen that both the Storm-centered and Eulerian methods have similar error
reduction properties, but different analyses. Firstly, the Eulerian update produces
significant improvement in a narrow band on the northeast side of the storm (the area

between the ensemble mean and truth) while there is a larger area of negative E, to the



33

southwest. The storm-centered scheme shows a similar pattern, but magnitudes, both
positive and negative, that are slightly lower.

Overall, then, both methods reduce error in the analysis. The main difference
comes in the structure of the analyses. In the Eulerian scheme analysis, the pressure
field looks distorted, with higher pressures on the southwest side of the storm and an
elongation of the storm from northwest to southeast. In contrast, the storm-centered
update looks very symmetrical and agrees more closely with the truth member of the
ensemble (Fig. 5.1). While the Eulerian method provides the highest magnitude
normalized error reduction in limited areas, it does not provide as accurate of a picture of
the structure of the storm. Each type of assimilation method produces more accurate
initial conditions for a model; however, the Storm-centered technique presents a new and
exciting alternative for an EnKF scheme that does not distort the shape and orientation

of the storm.
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6. SUMMARY AND CONCLUSIONS

A study of current data assimilation methods, their strengths, and their
weaknesses has been outlined. The main focus has been a characterization of ensemble
Gaussianity for a L95 Lorenz model and a rapidly intensifying tropical cyclone and the
potential impact non-Gaussianity may have on the quality of the EnKF. In addition, an
alternative, Storm-centered, or storm-centered, method of performing the EnKF update
has been explored. Finally, correlation structures have been used to study the underlying
dynamics leading to the rapid intensification of Hurricane Humberto. It has been shown
that non-Gaussianity is present in the ensemble distribution and that the variables
important in the EnKF scheme were important in the rapid intensification of Humberto.

While ensemble non-Gaussianity presents a unique statistical problem to be
resolved in the theoretical world of atmospheric science research, it also presents
problems for operational forecasting. Investigating the size of an ensemble necessary to
retain Gaussianity may be an important question to find an answer to, but a more
pressing question, in this day of limited computational resources, might be how to
address the non-Gaussianity present in current ensembles. Performance of the EnKF
depends on solving this non-Gaussianity problem since the EnKF is a linear theory.

In this manuscript, the initial questions surrounding these problems are
formulated, and initial findings and steps to the solutions are presented. Non-
Gaussianity has been firmly established in the ensemble distribution for the WRF

forecast of Hurricane Humberto. To demonstrate the effect that non-Gaussianity can
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have on correlation structures data transformations were performed on randomly
generated Gaussian distributions. Correlations between these transformed data sets were
shown to change, sometimes significantly, in a number of cases. Thus, it can be inferred
that in at least a number of cases, the non-Gaussianity of the ensemble distribution
affects the correlation structures used in the EnKF update.

To address the problems presented by ensemble non-Gaussianity, a storm-
centered, Storm-centered assimilation method has been tested. This potential framework
for performing data assimilation presents a method to potentially counteract the
implications of the non-Gaussianity. By making the mesoscale system (Hurricane
Humberto in this case) the center of the assimilation window, ensemble averages tend to
be smoothed less. Because of this more accurate depiction of the mesoscale system,
correlation structures near the storm will be more accurately calculated. In turn, more
accurate correlation structures will lead to a more accurate EnKF update. However, this
method presents a new set of problems. Although error is more greatly reduced in the
storm-centered update, the transformation back to the Eulerian frame introduces new
error, somewhat reducing it’s effectiveness. In the end, this method should be tested in
a broader array of environments and circumstance to determine if the promise shown in
this study is real.

Finally, some of the dynamics underlying the intensification of Hurricane
Humberto were explored. In particular, the role in intensification of variables important
to data assimilation was explored. One of the more interesting findings was the large

amount of information transferred from upper levels (200-hPa) to lower levels (850-hPa)
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as seen in the correlation of upper level zonal and meridional winds to 850-hPa potential
vorticity. This finding would urge the data assimilation community to not discount
assimilation of unconventional observations (upper level winds), as they may prove vital
to assimilation schemes.

In the end, a view of ensemble characteristics, data assimilation methods, and the
relation between dynamics and data assimilation has been presented from a new
perspective. However, the conclusions and observations drawn from this data are
limited by the fact that they come from a single case. For example, do other model
ensembles show the same non-Gaussianity as the WRF model did in this particular case?
Does the Storm-centered method of data assimilation produce similar results for other
storms or non-tropical systems? Few papers have answered these questions. They are
questions that must be answered to continue the march towards better forecasting. It
will not only further improve our understanding of numerical weather prediction and

tropical cyclones, but it will save money and lives.
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APPENDIX A

Figure 2.1: Sample ensemble distributions of L95 Lorenz model. Red
line indicates Gaussian overlay.
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Figure 2.2: Sample distributions of unimodal distributions. Kurtosis values range
from -1.2 to 3.0.
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Figure 2.3: Ensemble mean (top) and standard deviation (bottom) of L95 Lorenz model.
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Figure 2.4: Ensemble skewness (top) and kurtosis (bottom) of L95 Lorenz model.



Ensemble Size N =10,000 N=30
Mean STD 3.6386 3.5943
Max STD 3.6892 4.5561
Min STD 3.6386 2.7174
STD(STD) 0.0203 0.3905
Mean Skew 0.0940 0.1357
Max Skew 0.1314 1.4416
Min Skew 0.0497 -1.1651
STD(Skew) 0.0184 0.4961
Mean Kurtosis -0.5172 3.4395
Max Kurtosis -0.4640 7.2326
Min Kurtosis -0.5716 1.7024
STD(Kurtosis) 0.0189 1.1686
Mean(Ensemble Mean) 2.3433 2.3849
Max Ensemble Mean 2.4312 4.0473
Min Ensemble Mean 2.2528 0.8714
STD Ensemble Mean 0.0397 0.6982

Table 2.1: Effect of ensemble size on Gaussianity. Left hand column shows
descriptive statistics for 10,000 member ensemble. Right hand column shows
descriptive statistics for 30 member ensemble.
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Figure 3.1: Configuration of the WRF model domains 1, 2, and 3. Horizontal grid spacings of
40.5, 13.5, and 4.5 km, respectively. Also depicted are NHC best-track estimate of Humberto
with intensity color-coded and three WSR-88D radar locations.
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Figure 3.2: Ensemble mean mixing ratio (top) (in g/kg), skewness (middle), and kurtosis (bottom). Black
line indicates area average over 252x252 gridpoints, red line indicates average over 50x50 gridpoints, and
green line indicates average over 20x20 gridpoints.
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Figure 3.3: Ensemble mean zonal winds (top) (in m/s), skewness (middle), and kurtosis
(bottom). Black line indicates area average over 252x252 gridpoints, red line indicates
average over 50x50 gridpoints, and green line indicates average over 20x20 gridpoints.
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Figure 3.4: Ensemble mean meridional winds (top) (in m/s), skewness (middle), and kurtosis
(bottom). Black line indicates area average over 252x252 gridpoints, red line indicates average
over 50x50 gridpoints, and green line indicates average over 20x20 gridpoints.
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Figure 3.5: Ensemble mean pressure (top) (in mb), skewness (middle), and kurtosis
(bottom). Black line indicates area average over 252x252 gridpoints, red line indicates
average over 50x50 gridpoints, and green line indicates average over 20x20 gridpoints.
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Figure 3.6: Effect of area averaging on Gaussianity of pressure. Left hand column skewness of pressure
and right hand column shows kurtosis. Top row averages over entire 252x252 gridpoint domain,
middle column averages over 50x50 gridpoint domain, and bottom row averages over 20x20 domain.

In top row, black line indicates no averaging, red line averaging over 2x2 box, blue a 4x4 box, and
green an 8x8 box. In the bottom two rows, blue indicates no averaging, red indicates averaging over a

2x2 box, and black indicates averaging over a 4x4 box.
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Figure 3.7: Effect of area averaging on Gaussianity of mixing ratio. Left hand column skewness of
mixing ratio and right hand column shows kurtosis. Top row averages over entire 252x252
gridpoint domain, middle column averages over 50x50 gridpoint domain, and bottom row averages
over 20x20 domain. In top row, black line indicates no averaging, red line averaging over 2x2 box,
blue a 4x4 box, and green an 8x8 box. In the bottom two rows, blue indicates no averaging, red
indicates averaging over a 2x2 box, and black indicates averaging over a 4x4 box.
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Figure 3.8: Effect of area averaging on Gaussianity of vertical velocity. Left hand column shows
skewness and right hand column shows kurtosis. Top row averages over entire 252x252
gridpoint domain, middle column averages over 50x50 gridpoint domain, and bottom row
averages over 20x20 domain. In top row, black line indicates no averaging, red line averaging
over 2x2 box, blue a 4x4 box, and green an 8x8 box. In the bottom two rows, blue indicates no
averaging, red indicates averaging over a 2x2 box, and black indicates averaging over a 4x4 box.

51



52

Gaussian x"2 x"3 1/x
Distribution | Transformation | Transformation | Transformation
Mean =0,
Std. Dev. =
1
Correlation 1 0.0076 0.0588 0.7491 0.0393
Correlation 2 N/A 0.9932 0.9849 0.0096
Skewness A 0.0492 2.7271 0.1316 21.5788
Skewness B 0.0856 3.1520 1.6469 -23.5874
Kurtosis A 0.0450 9.8026 25.3083 622.1828
Kurtosis B 0.0798 14.7053 42.2425 670.1089
Mean = 270,
Std. Dev. =
1
Correlation 1 .9984 0.9984 0.9983 -0.9985
Correlation 2 N/A 0.9984 0.9984 0.9984
Skewness A -0.0953 -0.0842 -0.0731 0.1175
Skewness B 0.0020 0.0140 0.0140 0.0221
Kurtosis A -0.0072 -0.0093 -0.0110 -0.0017
Kurtosis B 0.0696 0.0684 0.0677 0.0735
Mean = -15,
Std. Dev. =
1
Correlation 1 0.9965 -0.9950 0.9901 -0.9913
Correlation 2 N/A 0.9965 0.9962 0.9958
Skewness A -0.0074 0.2559 -0.5242 -0.4624
Skewness B -0.0347 0.2671 -0.4967 -0.4684
Kurtosis A 0.4096 0.7296 1.3749 0.5173
Kurtosis B 0.3367 0.3915 0.6687 0.9984

Table 3.1: Effect of non-Gaussian transformations on correlation structures. Correlation one
corresponds to the correlation of one transformed distribution with one Gaussian distribution.
Correlation 2 indicates correlation of two transformed distributions (except in case of “Gaussian
Distribution” in which “Correlation 1” is the correlation of two Gaussian distributions).
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Figure 4.1: Correlation of 850 hPa potential vorticity with surface mixing ratio (top) and surface
temperature (bottom). Dashed contours indicate negative correlation, solid contours indicate
positive correlation. Lowest magnitude correlation value represented by thinnest line at a
magnitude of 0.2. Filled contours show surface temperature in Kelvin.
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Figure 4.2: Correlation of 850 hPa potential vorticity with 200 hPa zonal wind (top) and
meridional wind (bottom). Dashed contours indicate negative correlation, solid contours
indicate positive correlation. Lowest magnitude correlation value represented by thinnest line
at a magnitude of 0.2. Filled contours show surface temperature in Kelvin.
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Figure 5.1: Pressure field of ensemble member 11 (“truth” member). Storm is shown in Storm-
centered coordinates (top) and Eulerian coordinates (bottom). Pressure scale is in millibars.
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Figure 5.2: Ensemble mean pressure of storm-centered (top) and Eulerian frames
(bottom). Pressure scale is in millibars.
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Figure 5.3: Storm-centered coordinate system (top left) and Eulerian coordinate system (top right) analyses. Analysis

increment shows the difference between the posterior analysis and the prior estimate for the Storm-centered frame

(bottom left) and Eulerian frame (bottom right). Pressure scale is in millibars.
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Figure 5.4: Normalized measure of error reduction. EnKF analysis in the Eulerian frame (top left), Storm-centered
frame (top right). Normalized error reduction of Eulerian update (bottom left) and storm-centered frame (bottom

right).
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