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ABSTRACT 

 

Photodissociation Dynamics of Halogen Oxide Species. (May 2009) 

Kristin S. Dooley, B.S., University of Central Arkansas 

Chair of Advisory Committee: Dr. Simon W. North 

 

The focus of this dissertation is the study of the photodissociation dynamics of 

halogen oxide species (XO, X = Cl, Br, I).  These radical species are known to be 

important in stratospheric and tropospheric ozone depletion cycles.  They are also useful 

benchmark systems for the comparison to current theoretical methods where they 

provide insight into the dynamics occurring beyond the Franck-Condon region.  These 

systems are studied using velocity map ion imaging, a technique that measures velocity 

and angular information simultaneously.  Photofragment species are state-selectively 

ionized for detection using 2+1 REMPI (Resonance Enhanced Multi-Photon Ionization).  

The instrumentation employs a molecular beam of the XO radicals formed using 

pyrolitic and photolytic methods. 

The current work involves the measurement of fundamental physical constants of 

the XO species.  The bond dissociation energy of IO is measured.  Vibrational level 

dependent correlated final state branching ratios of the predissociation of the A(2Π3/2) 

state of ClO and BrO are reported, and comparison to theoretical methods is discussed. 
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CHAPTER I 

INTRODUCTION 

 

 Halogen oxides (ClO, BrO, and IO) play an important role in the atmosphere 

where their photochemistry makes them key players in the chemistry of that region, most 

notably the chemistry surrounding ozone destruction in the stratosphere, but also in the 

troposphere and marine boundary layer (MBL).  In order to fully understand and 

correctly model important chemistry in both the troposphere and stratosphere it is 

imperative to fully characterize the photochemistry and dynamics of the halogen oxide 

species.  Because halogen oxide radicals are small open-shell species, they are also 

interesting on a purely fundamental level to the molecular dynamics community as they 

can be used as benchmark systems for the comparison of theory and experiment.    

 

A.  Atmospheric Relevance of Halogen Oxides 

 The structure and composition, and thus the chemistry, of the atmosphere change 

with increasing altitude.  The temperature of the atmosphere as a function of altitude is a 

valuable parameter since the slope of its profile (shown in Figure 1) changes with 

increasing altitude.  The regions of the atmosphere are most commonly defined by the 

altitude where this slope change occurs.  The temperature generally decreases with 

increasing altitude in the troposphere due to the irradiative heating of the air by the 

earth’s surface.  Because warmer air rises due to its lower density, the warm air at the 

earth’s surface rises causing a persistent vertical mixing to occur in the troposphere.  

This means that in a matter of a few days pollutants can move from the ground level to 

the tropopause-the region surrounding the temperature inversion that separates the 

troposphere from the stratosphere.   

 

_________________ 

This dissertation follows the style of the Journal of Chemical Physics. 
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Figure 1: Temperature profile of the atmosphere as a function of height measured from the earth's 
surface.  Regions of the atmosphere are labeled on the figure with approximate altitudes of the 
division of regions noted with horizontal lines.1 

 
 

The temperature then begins to increase throughout the stratosphere from about -

70ºC to -5ºC due to a series of photochemical reactions first hypothesized by Lord 

Chapman in 1930.2  This cycle is shown below in Equations 1.1-1.4 involving ozone and 

molecular oxygen, and is commonly known as the “Chapman cycle.” 

 O2 + h� � 2 O, 1.1 

 O2 + O + M � O3, 1.2 

 O + O3 � 2 O2, 1.3 

 O3 + h� � O + O2, 1.4 

Wavelengths of sunlight less than ~240 nm are absorbed by molecular oxygen in 

Equation 1.1.  In Equation 1.4, wavelengths of light from 240 nm to 310 nm are 
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absorbed by ozone.   Energy is then passed out of this cycle through a three-body 

collision in Equation 1.2 to other stratospheric molecules (M), transferring energy to M, 

thus causing the increase in temperature.  Temperature is highest at the highest point in 

the stratosphere where the most light is absorbed.  At lower altitudes, these wavelengths 

of light have been filtered out of the actinic flux decreasing the effect of these reactions 

on the observed temperature.  This series could contribute to temperatures in other 

regions of the atmosphere, however at higher altitudes the pressures are too low for the 

effect of this cycle to be significant and in the troposphere where the pressures are 

adequate, the necessary wavelengths of light are absent as they have been filtered by the 

stratosphere. 

 The chemistry of the troposphere and the chemistry of the stratosphere are 

somewhat isolated from each other due to the temperature inversion occurring between 

them.  The temperature inversion forms a kind of lid on the troposphere keeping 

tropospheric air and pollutants from mixing with the stratosphere.  While stratospheric 

chemistry is dominated by chemical cycles surrounding ozone, in the troposphere, 

chemistry is influenced by the OH oxidation of hydrocarbons.  Although halogen species 

are most commonly thought of as key players in stratospheric chemistry, they can 

actually also influence the chemistry in the troposphere, especially in the regions of the 

troposphere directly influenced by seawater known as the marine boundary layer (MBL).   

 The chemistry of the stratosphere is focused mainly around ozone.  The 

Chapman cycle (Equations 1.1-4) is responsible for the ozone layer which is a region 

within the stratosphere where the concentration of ozone is at its maximum (from 2 to 8 

ppm).  This maximum in ozone concentration occurs due to a unique combination of 

atmospheric pressure and photon density.  Here the pressure is sufficient for three-

bodied collisions to take place allowing the reaction of atomic oxygen with molecular 

oxygen to form ozone (Equation 1.2) to occur at a high rate.  There is also ample high 

frequency light at this altitude allowing the photolysis reaction of molecular oxygen via 

Equation 1.1 to occur.  Because of the absorption of ozone, and the concentration of 
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ozone in this layer, most of the sunlight’s shorter wavelengths are filtered preventing the 

formation of appreciable amounts of ozone by the Chapman cycle at lower altitudes. 

   The stability of the ozone layer is crucial to life on earth as we know it.  Ozone is 

the only molecule of considerable abundance in earth’s atmosphere that has a significant 

absorption in the UV region.  The absorption spectrum of ozone is shown in Figure 2.3  

There are three main sections of the ozone absorption spectrum: the Hartley bands4,5 in 

the UV region (200 < � < 300 nm), the Huggins bands6 in the visible region (300 < � < 

360 nm), and the Chappuis bands7 that span the visible and infrared regions (440 < � < 

850 nm).    As can be seen in Figure 2, the Hartley bands absorb UV-C and UV-B light 

keeping it from reaching the troposphere.  These wavelengths are destructive to plants, 

known to damage DNA, and cause malignant skin cancer and eye damage in humans.  

Figure 3 shows how the intensity of the sun’s radiation as a function of wavelength 

hitting the earth’s surface is affected by the presence of the ozone layer.  As can be seen 

from the figure, the ozone layer in the stratosphere protects us from a significant amount 

of this harmful light.  It is for this reason that the fate of the ozone layer and the 

chemistry surrounding ozone continues to remain a topic of much interest as it must be 

protected in order to preserve the current state of the planet. 

Ozone remains in equilibrium with molecular and atomic oxygen due to the 

Chapman cycle; however, there is a large discrepancy between the ozone concentration 

predicted using only the Chapman cycle and the notably lower measured ozone 

concentration in the stratosphere.  Other chemical species, both naturally occurring and 

man-made, can interrupt this equilibrium and change the steady state concentration of 

ozone.  There has been a significant amount of work done to identify these species and 

understand their effect on this discrepancy.   

One such disruption that depletes ozone occurs by the following catalytic cycle 

first proposed by Crutzen in 1970:8 

 NO + O3 � NO2 + O2, 1.5 

 NO2 + hv � NO + O, 1.6 

 NO2 + O � NO + O2. 1.7 
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Figure 2: Absorption spectrum of ozone, adapted from Burrows et al.3 
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Figure 3: Solar radiation spectrum shown as spectral irradiance (W/m2) vs. wavelength (nm).  The 
plot shows the calculated irradiance based on a blackbody at 5250 ºC, the actual spectrum of the 
sun’s irradiance (yellow) and the sun’s radiation that reaches the earth’s surface which shows the 
effects of absorbing species such as ozone in the atmosphere.9 

 
 
 
NO can be formed in the stratosphere from reactions of N2O which is formed at the 

earth's surface from biological processes but is unreactive in the troposphere.  Because 

of its sufficiently long lifetime, it can travel into the stratosphere where it will be 

photolyzed via the following reaction10: 

 N2O + hv � N2 + O(1D) 1.8a 

  � NO + N(4S) 1.8b 

The quantum yield of Equation 1.8b was studied by Bates and Hays in 1967 and 

determined to be about 20% which makes this natural source of ozone depletion quite 

significant.  However, this result was later revisited by Greenblatt and Ravishankara in 

1990 and determined to be no larger than a modest 1%.11  Nevertheless, naturally 

occurring N2O is still the major source of nitrogen oxide compounds in the stratosphere 

through via reaction of N2O with electronically excited atomic oxygen produced when 

ozone or molecular oxygen photodissociates12, 13: 

 N2O + O(1D) � N2 + O2 1.9a 

  � 2 NO 1.9b 
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Although natural sources of NOx are not significant sources of stratospheric 

ozone depletion, concern was raised that NOx was being emitted directly into the 

stratosphere from supersonic transport aircraft (SST).14  Although this problem was 

averted in the 1970's as the number of SST's produced and flown were far fewer than 

expected, this issue has reemerged into the forefront as the possible use of high-speed 

civil transport (HSCT) aircraft is debated. 

 Halogens as a source of ozone loss in the stratosphere was first suggested in 

1974 by Cicerone and Stolarski.15  They proposed that if atomic chlorine was present in 

the stratosphere, it could participate in a catalytic ozone destruction cycle: 

 Cl + O3 � ClO + O2 1.10 

 ClO + O � Cl + O2 1.11 

 Net: O3 + O � 2 O2 1.12 

Other radical species such as Br, I, NO, and OH can replace Cl in this cycle.   

Shortly after the mechanism shown in equations 1.10-1.12 was proposed, Molina 

and Rowland predicted that because of their stability, chlorofluorocarbons (CFC's) 

should be expected to reach the stratosphere.  CFC's were commonly used for purposes 

such as refrigeration and computer chip production where their low reactivity makes 

them highly advantageous.  Unfortunately, it is this low reactivity that allows them to 

escape removal in the troposphere.  Instead, CFC's dissociate upon absorption of UV 

radiation leading to the formation of chlorine atoms in the stratosphere.  Similarly, 

halons, molecules like CFC's but also containing bromine, which were used primarily as 

fire retardants, can releasing atomic bromine into the stratosphere through 

photodissociation.  Because of the obvious correlation of CFC and halon use and ozone 

concentration decrease, international regulations such as the Montreal Protocol have 

phased out the use of these molecules.  Despite these efforts by the global community, 

the damage caused by past use of halogen containing compounds will continue due to 

their extremely long lifetime on the order of decades.  According to a study published by 

the World Meteorological Society in 1995, the chlorine concentrations in the 

stratosphere peaked around 1997, and, with the current regulations of CFC use in place, 
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should return to levels seen in 1980 (the concentration level at which ozone depletion 

due to chlorine became detectable) in the year 2050.16 

It is currently estimated that more than 85% of the chlorine in the stratosphere is 

from anthropogenic sources.  Other sources of chlorine include the release of methyl 

chloride by oceans and biomass burning.  Besides halons which make up about 40% of 

the stratospheric bromine budget, 55% of this budget is the result of the other major 

source of bromine, methyl bromide, which is produced in modest amounts by biological 

activity but is also heavily used in agriculture as a soil fumigant.  Iodine can also 

participate in catalytic ozone destruction.  The most abundant source of stratospheric 

iodine is naturally occurring methyl iodide. 

Once the atomic halogen species enter the stratosphere, they participate in a 

number of reactions forming reactive intermediate species and reservoir species.  These 

reactions form an intricate web of species with the catalytic ozone destruction reactions 

proposed by Cicerone and Stolarski in equations 1.10 to 1.12 as the central focus.15  A 

simplified halogen reaction cycle is shown in Figure 4 where X represents the halogen 

species.  The catalytic ozone destruction cycle is terminated when the radical 

intermediate species X and XO react to form relatively stable species via three reactions: 

 X + X � X2 1.13 

 X + CH4 � HX + CH3 1.14 

 XO + NO2 � XONO2 1.15 

The stability of these halogen reservoir species is just as important as the overall 

concentration in determining the significance of a particular halogen species in ozone 

destruction.  For example, the total bromine concentration in the stratosphere is on the 

order of 100 times less than the total chlorine concentration.  However because the 

chlorine reservoir species are much more stable than their bromine counterparts, on a per 

atom basis, bromine is 100 times more efficient at ozone destruction.  This means that 

chlorine and bromine are roughly equally important factors in ozone destruction despite 

the lower concentration of bromine.  The approximate lifetimes of the relevant reservoir  
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Figure 4: Stratospheric halogen cycle. 
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 Because the lifetime of HBr is much shorter than HCl, HBr is not the most abundant 

bromine containing species in the stratosphere.  In fact, because of the short lifetimes of 

all bromine reservoir species, the most abundant stratospheric bromine species are 

atomic bromine and BrO, both active players in the ozone destruction mechanism. 

 

 

 

 

Figure 5: Altitude profile of chlorine containing species in the stratosphere. 
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Figure 6: Altitude profile of bromine containing species in the stratosphere. 

 

 

Fluorine is also present in the stratosphere and can also participate in catalytic 

ozone destruction.  However, because HF is extremely stable with respect to possible 

reaction pathways shown in Figure 4, fluorine is only a minor contributor to ozone 

depletion.  Conversely, due to the instability and short lifetime of its reservoir species, 

iodine is more efficient at ozone destruction than bromine or chlorine despite its lower 

concentration of 0.2 pptv.21  However, the major sources of iodine (CH3I and CH2I2) are 

rapidly photolyzed in the troposphere and are then removed from the gas phase by 

moisture.  Because of this, the concentration of iodine is much less than that of chlorine 

or bromine.  It was once thought that because of its low concentration that its 

contribution like that of fluorine was negligible; however, due to the brief lifetime of HI 

and other reservoir species, and the interaction of IO in the Br and Cl cycles, Solomon et 

al. propose that iodine could make a major contribution to ozone destruction below 

about 20 km at a total species concentration of just 1 ppt.22  A study by Wennberg et al. 
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concluded that the total stratospheric iodine concentration is about 0.2 ppt with an upper 

limit of 0.3 ppt.21  Pundt et al. also concluded that at altitudes less than 20 km, the iodine 

concentration is below 0.2 ppt.23  While this limits the importance of iodine in 

stratospheric ozone destruction, there are strong meteorological events that can directly 

introduce troposheric air directly into the stratosphere.  This type of event could force a 

large amount of iodine containing species into the stratosphere before they react in the 

troposphere.  For example, Davis et al. observed concentrations of CH3I of 1 ppt at an 

altitude of 10-12 km following a typhoon.24 

Because iodine containing organic species decompose in the troposphere, 

understanding the tropospheric photodissociation and reaction pathways of iodine 

containing molecules in this region is important.  As mentioned earlier, methyl iodide 

(CH3I) is the major source of iodine in the atmosphere, although there are other iodine 

containing species such as CH2I2, ClCH2I, and CH2IBr.  These species occur naturally 

from biological processes in the ocean.  Therefore, iodine chemistry plays an important 

role especially in the marine boundary layer (MBL).  Methyl bromide and methyl 

chloride are also formed in marine areas, but only methyl iodide is photolyzed by 

wavelengths of light that reach the troposphere and produce atomic iodine.  The iodine 

atoms react with tropospheric ozone via the same reaction that occurs in the stratosphere 

shown in Equation 1.10 producing IO.  The concentration of IO in a coastal site was 

directly detected and measured at concentrations up to 6 ppt.25  IO can oxidize dimethyl 

sulfide (DMS) to form dimethyl sulfoxide (DMSO), regenerating the iodine atom: 

 IO + CH3SCH3 � I + CH3S(O)CH3 1.16 

It is also known to seed formation of small aerosol particles in the tropospohere. 

 In summary, halogen oxide species play important roles in both the stratosphere 

and troposphere where they undergo chemical and photolysis reactions.  Understanding 

the photochemistry and fundamental constants of these molecules, such as the bond 

dissociation energies, are useful towards further understanding the roles of these species 

in atmospheric chemistry. 
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B.  The Relevance of Halogen Oxides Studies in Physical Chemistry 

 When studying the photodissociation of a species, the principle goal is to fully 

understand and characterize its dynamics as it moves out of the Franck-Condon region, 

through a barrier if there is one, and into the resulting asymptotic channels.26  For 

diatomic species such as those which are the focus of this dissertation, there are a 

number of questions that molecular dynamics attempts to answer when studying a 

photodissociation event.  Some of these are: 

• What are the quantum states of the reactant species and the product fragments? 

• Given a quantum state of the reactant species, what are the branching ratios for 

possible dissociation channels?  

• What is the lifetime of the excited molecule before it dissociates? 

• What is the dissociation energy of the diatomic molecule?  Subsequently, after 

dissociation, how is the remainder of the energy distributed among the 

translational and electronic energies of the fragments? 

• Does the dissociation occur via one potential, or does the excited state couple to 

numerous dissociative potentials? 

• Do the dissociative potentials couple in the exit channel? 

Although this list is not exhaustive, it serves as an example of the types of 

inquiries made to form a full understanding of a photodissociation event.  The velocity 

map ion imaging technique described in this dissertation is a useful tool for answering or 

providing unique insight into these questions.  The field of photodissociation dynamics 

has grown immensely since the advent of tunable lasers in 1966 that allow 

experimentalists to vary the dissociation wavelength providing them with the ability to 

investigate the wavelength dependence of the measurement.27, 28  Lasers also open up 

many useful avenues for detection of the photofragments using techniques that are 

electronic state selective.26, 29, 30, 31, 32 

Photodissociation dynamics is a subject that permeates many fields of chemistry 

such as environmental chemistry, quantum scattering theory, and gas-surface 

chemistry.29   For example, the branching ratio of the electronic state of the oxygen 
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fragment is very important to the chemistry of the troposphere.  The oxygen atoms in the 
1D electronic state are the major sources of OH in the troposphere.33   Experimental 

photodissociation dynamics also provide insight into the validity of assumptions made in 

computational methods.  For example, transition state theory which is used to calculate 

the rates of chemical reactions works under the fundamental assumptions that the 

nuclear and electronic components of the eigenfunctions of a molecule are separable and 

that there is a rapid redistribution of vibrational energy.29  The experimental study of the 

photodissociation  dynamics of systems can be compared to computational results to 

help assess the validity of these assumptions. 

In addition to being atmospherically relevant, halogen monoxide species are 

interesting systems on a fundamental level.  These species are excellent benchmark 

systems for comparing theoretical models to experimental numbers.  Being diatomic, 

halogen monoxide species are able to be fully studied using current theory.  

Nevertheless, they are challenging for theorists to study, as the halogen species 

possesses large spin-orbit coupling, and the bound potentials are crossed by a number of 

repulsive states.  Comparison of calculated values to good experimental measurements 

aids in our understanding of current theoretical models and their ability to correctly 

predict molecular dynamics.   

The spectroscopy of halogen oxide molecules has been studied extensively.  The 

spectra were investigated for their insight into fundamental physical properties long 

before they were thought of as environmental participants.  The absorption spectra of the 

halogen oxides are qualitatively quite similar with sharp structural features below the 

dissociation threshold resulting from predissociation of the bound excited state followed 

by a broad feature beginning at the excited state dissociation threshold and continuing to 

lower wavelengths.  Figure 7 shows plots of the absorption spectra of ClO (a), BrO (b), 

and IO (c).34, 35, 36  Although the overall shapes of the spectra are similar, they show 

major differences as well.  For example, in the ClO spectrum, bandhead data from 

predissociation of vibrational levels are visible extending to �´ = 0.  This allows accurate 

measurement from only spectroscopic methods of the bond dissociation energy of ClO 



 15

using common Birge-Sponer extrapolation methods.37  The absorption cross sections of 

BrO diminish as the �´ = 0 band is approached requiring the use of approximation 

techniques such as the Birge-Sponer method.  An extrapolation becomes quite 

impossible with IO as only a few vibrational bands can be seen in the spectrum.  Very 

accurate measurements of the bond dissociation energies of these molecules are 

important when determining the thermodynamics of reactions involving the halogen 

oxides.  There are a number of atmospherically relevant reactions involving BrO or IO 

that are near thermoneutral. Therefore, accurate measurements of the bond dissociation 

energies of these radicals (uncertainties of less than a kilocalorie) are necessary for 

accurate atmospheric modeling. 

Photodissociation and predissociation of a diatomic molecule involve the 

absorption of a photon of light followed by the fragmentation of the molecule into two 

atoms.  Photodissociation in combination with a large barrier to recombination is 

explained by the impulsive model which assumes that after the photon is absorbed the 

molecule’s bond breaks before a statistical redistribution of the energy has time to 

occur.38  During photodissociation, the molecule absorbs a photon of light raising it 

above the dissociation threshold of its potential into the continuum.  Predissociation can 

occur when the photon of light absorbed is not energetic enough to reach the dissociation 

threshold.  Instead, the molecule is raised to a vibrational level within a bound excited 

state of the molecule.  If the bound excited state is crossed by a repulsive state, the 

molecule can cross to this curve and dissociate.  The halogen oxide species are 

extremely interesting with respect to predissociation.  The diatomic radicals have 

numerous repulsive potentials that cross the lowest bound excited state.  In independent 

theoretical papers by Orr-Ewing and coworkers and Persico and coworkers, ClO was 

studied and seen to have 17 repulsive potentials that were capable of predissociating the 

A 2Π state.39, 40  BrO and IO are also heavily predissociated with very similar potential 

energy surfaces to that of ClO. 

Because they have numerous repulsive potentials and readily predissociate, these 

molecules are very interesting to the field of molecular dynamics.  The spectroscopy of 
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Figure 7:  Absorption spectra of halogen oxide species ClO, BrO, and IO, Panels (a), (b), and (c), 
respectively.  Data shown in this figure are the results of References 34, 35, 36. 
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the XO molecules, especially the ClO molecule, gives insight into the coupling of the 

repulsive states to the bound excited state.  Which states couple, as well as how strongly 

the states are coupled, can be determined for these molecules from first principles.  This 

information can then be used to calculate the predissociation lifetimes of each state using 

Fermi’s golden rule calculations as was done by Orr-Ewing and coworkers.39 

From a molecular dynamics standpoint, the halogen oxide systems are extremely 

important to consider.  While measuring the spectroscopy of the halogen oxide molecule 

provides some insight to the couplings of the potentials in the system within the Franck-

Condon region, spectroscopy cannot detect dynamics occurring in the exit channel.  

Fully correlated final state branching ratios of the systems provide the information that 

spectroscopy is lacking.  The branching can be predicted by using one of two models to 

explain the transition occurring at a curve crossing.  The adiabatic model assumes that 

the process (in our case the predissociation of the A(2Π3/2) state) occurs sufficiently 

slowly to allow the bound state eigenfunction to change very gradually into an 

eigenfunction of the unbound state.  In this model, the Born-Oppenheimer 

approximation is assumed, as the nuclear motion must be gradual enough so that the 

electronic motion can slowly adapt.  However, if the molecule experiences a rapid 

nuclear change, a breakdown of the Born-Oppenheimer approximation may occur.  In 

this instance, the dynamics are described using a diabatic (or non-adiabatic) model.  This 

model is often termed the “sudden” model as the nuclear motion occurs very quickly, not 

allowing the electronic motion to adapt to the changing nuclear conditions.  If this 

occurs, the electronic structure will not change to an eigenfunction of the final state, 

instead, a linear combination of initial eigenstates will be seen that add to form the initial 

probability density.   

In the specific case of predissociation, the adiabatic model indicates that as 

predissociation occurs the electronic eigenstate of the molecule gradually changes to 

become an eigenstate corresponding to fragments in specific electronic states. 

Conversely, in the diabatic limit, the fragments produced will be a combination of final 

states that sum to the initial eigenstate of the bound species.  For the case of the 
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predissociation of a halogen oxide radical species, XO, there are six possible final state 

outcomes corresponding to three possible states of O, O(3PJ=2, 1, 0) in correlation with two 

possible states of X, X(2P3/2, 1/2).  In the adiabatic limit, the eigenstate of the XO species 

will be allowed to gradually evolve in to an unbound state corresponding to only one of 

the six possible combinations of O(3PJ) + X(2PJ).  So, for each dissociative curve that 

couples to the bound A(2Π3/2) state of XO, only one final state of O(3PJ) + X(2PJ) will be 

observed.  In the diabatic limit, a linear combination of the six possible final states will 

occur which would form the eigenstate of the initial XO species.  In this case, each 

dissociative state to which the A(2Π3/2) state couples will result in the observation of 

multiple final states. 

  

C. Advantages and History of Velocity Map Ion Imaging 

Photodissociation dynamics is a young field that has grown explosively in the 

last few decades as experimental methods have begun to advance.  As mentioned earlier, 

much of the advancement can be attributed to the development of tunable lasers.26, 29, 30, 

31, 32  This allowed for new techniques to be developed that allow the user to better 

characterize the reactant molecule and the product fragments.  One such technique is 

Velocity Map Ion Imaging, which is used in all of the experiments described in this 

dissertation. 

Ion imaging was pioneered by Chandler and Houston in 1987 when they 

combined a molecular beam time of flight instrument with a position sensitive detector 

consisting of an MCP/phosphor screen assembly to detect the entire ion cloud produced 

after the photodissociation of CH3I.41  This method was modified by Eppink and Parker 

who replaced the ion optic meshes which disrupted the ion cloud with an Einzel lens 

assembly.42  With this advancement, velocity map ion imaging was originated.   

 The instrument allows for the detection of the entire ion cloud providing speed as 

well as angular information with a single measurement.  Using this method, it is possible 

to excite parent molecules to a well-defined internal energy while also detecting the 

quantum states of the fragments produced.  The quantities measured can be described as 
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scalar or vector quantities.  Examples of scalar quantities include the bond dissociation 

energy of the parent molecule and correlated fine structure branching ratios.  Examples 

of vector quantities include the angular distribution of the fragments providing 

information about the dissociation process. 

 

D:  Introduction to Subsequent Chapters 

Understanding photodissociation of halogen oxides is key to understanding the 

chemistry of the stratosphere and to a lesser degree the troposphere.  These molecules 

are also useful benchmark species to study in order to better understand the fundamental 

physical behaviors of molecules.  They are small enough to be easily studied, but 

complex enough to be a challenge to theory making them perfect benchmark systems for 

a better understanding of molecular dynamics.  The photodissociation dynamics of the 

ClO, BrO, and IO species are the central focus of this dissertation.  The following 

chapters will detail the studies done in this work on the halogen oxide radicals. 

Experimental details surrounding the velocity map ion imaging instrument used 

in these studies are provided in Chapter II.   Information about the instrument was 

included in much detail in a previous dissertation43, and will be more briefly described 

here.  Some improvements and modifications to the original instrument and setup will be 

explained in more detail.  In particular new data collection software and ion optics have 

been installed.  Data analysis using pBASEX as well as BASEX methods are discussed 

and compared.  Radical beam sources used in the production of ClO, BrO, and IO 

molecular beams are explained.  The ClO and BrO sources were described in detail 

elsewhere and will only be briefly explained here.  The photolytic radical source used in 

producing the IO molecular beam will be described in detail including kinetic 

simulations used to characterize the source. 

In Chapter III, we examine the photodissociation dynamics of expansion-cooled 

IO at 454.9 nm corresponding to the band head of the v’=1 level of the A(2Π3/2) 

�X(2Π3/2).  This is the first study to look at IO in a molecular beam.  In this experiment, 

we present a direct measurement of the bond dissociation energy of the IO radical.  This 
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is accomplished by analyzing the speed distributions derived from images of the I(2P3/2) 

photofragment.  

In Chapter IV we study the v’-dependent photodissociation dynamics of the ClO 

A(2Π3/2) state.  Experimental final correlated state branching ratios, i.e. Cl(2PJ) + O(3PJ) 

channels, have been measured for v’= 0-6, extending a previous study that focused on 

the measurement of the v’=6-11 branching ratios.  The branching ratios are found to be 

highly v’-dependent and are non-statistical and inconsistent with adiabatic dissociation 

dynamics. Using previously reported v’-dependent predissociation rates, the coupling 

constants between the A 2Π3/2 state and several dissociative excited state potentials have 

been optimized, as have the locations of the crossing points. Using the optimized 

potentials and coupling constants, the branching ratios have been modeled using the 

diabatic and adiabatic limits.  The modeled results are compared to the measured 

branching ratios and similarities and differences are discussed.  

 Chapter V is similar in content to Chapter IV.  Its focus is the photodissociation 

dynamics of the A(2Π3/2) state of BrO.  In this study, the v’-dependent correlated fine 

structure branching ratios of the A(2Π3/2) predissociation for v’=4-18 are measured.  The 

BrO system is thought to be more adiabatic than the ClO system based on the larger spin 

orbit coupling of bromine which makes it an interesting model for exploring the 

photodissociation dynamics.  Because most of the vibrational bands of the BrO 

absorption are rotationally unresolved, anisotropy parameter measurements are used to 

determine predissociation lifetimes for some of the vibrational levels of the A(2Π3/2). A 

bond dissociation energy of BrO was recently measured using velocity map ion imaging.  

Using the extensive amount of data collected here, we provide a second look at this 

measurement. 

 Finally, we end with a Summary in Chapter VI which explores the significance 

of this work to the molecular dynamics and atmospheric communities.  Insight into the 

significance of the work presented here will be discussed.  A look toward future 

experimental directions will also be addressed. 
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CHAPTER II 

EXPERIMENTAL DETAILS 

 

A. Ion Imaging Apparatus 

 The velocity map ion imaging system employed in the studies described in this 

dissertation is based on the work of Chandler and Houston and Eppink and Parker 

described in the Introduction.41, 42  The instrument consists of a stainless steel 

differentially pumped vacuum chamber with a position sensitive detector assembly.  The 

cross-sectional view of the vacuum chamber is shown in Figure 8.  

 

 

 

Figure 8:  Cross-sectional view of the velocity map ion imaging vacuum chamber described              
in the text.   

 

 

It is a differentially pumped vacuum chamber comprised of three regions.  The 

source region is where gas samples are introduced into the chamber using a solenoid 

pulsed valve (Series 9, Parker Hannifin) or, for the radical beams studied in this work, 

custom-built pulsed valve assemblies that will be described in full detail in Sections I, J, 
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and K of this chapter.  The gas sample undergoes a free jet expansion into the source 

region where it is collimated by a stainless steel conical skimmer with an orifice 

diameter of 0.8 mm into the main chamber region.  The main chamber region houses the 

ion optics used for expanding and focusing the photofragment ion spheres and 

accelerating them onto the detector.  The photodissociation of the molecules and 

subsequent ionization of the fragment of interest occur via laser beams focused between 

the first and second ion optic located in this region.  The detector region is separated 

from the main region by a gate valve and consists of a field free time of flight tube 

which allows for the expansion of the ion cloud as well as mass separation.  At the end 

of the flight tube is the MCP plate/phosphor screen position sensitive detector assembly. 

 The source and main chamber regions are differentially pumped using 6 inch 

diffusion pumps (Varian) backed by Welch 1410 mechanical pumps.  The detector 

region is pumped using a turbo pump to avoid oil contamination of the MCP plates.  The 

mechanical gate valve between the main and detector regions allows the detector region 

to remain under vacuum at all times providing protection to the detector, while the 

source and main chamber are only pumped down when during the experiment.  Typical 

pressures in the regions are 9 × 10-7 torr for the source region, 5 × 10-7 torr for the main 

region, and 3 × 10-8 torr in the detector region when there is no gas load.  Under typical 

operating conditions when the pulsed valve is running at 10 Hz with an opening time of 

500 �s, pressures are near 5 × 10-5 torr in the source region and 5× 10-6 torr in the main 

region.   

 The ion optics assembly used in this instrument consists of four mesh-free ion 

optics as opposed to the three used in traditional velocity map ion imaging as introduced 

by Eppink and Parker.44  The ion optics assembly is explained in full detail in Section C 

of this chapter. 

 The position sensitive detector consists of a 40 mm diameter dual chevron 

matched set of MCPs with a 10 �m channel diameter and a channel length to diameter 

ratio of 60:1 (Burle, Part Number 31332).  The dual MCP assembly is placed directly in 

front of a P47 phosphor screen with a lifetime of a few nanoseconds. 
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B.  Newton Sphere Analysis 

 The purpose of molecular reaction dynamics is to fully understand simple two 

body chemical events such as bimolecular reactions, inelastic scattering, 

photoionization, and photodissociation.45  With the development of experimental 

techniques such as tunable lasers, molecular beams, and position sensitive detectors, 

molecular reaction dynamics has become a central field in physical chemistry.  

Measurement of the asymptotic properties of the reactants and products, one can 

elucidate details about the actual event itself.  A better understanding of these events 

allows for the critical evaluations of assumptions and models used in calculating reaction 

rate constants such as the separability of nuclear and electronic motion and rapid 

vibrational energy redistribution.46 

Such studies require accurate characterization of both the reactant species and 

product species.  These measurements are of two types, scalar quantities and vector 

quantities.  Scalar properties include the translational and internal energy states of the 

products, and correlations of these quantities.  Vector quantities include the relative 

recoil velocity and the angular momentum vectors of the products and, in dissociation 

reactions, the transition dipole moment of the reactant and correlations of these.47 

In the case of a molecule, AB, undergoing photodissociation to fragments A and 

B, the magnitudes of the fragment velocity are directly related to the kinetic energy 

release.  By energy conservation, the total translational energy of the fragments is the 

energy remaining after the bond dissociation energy and the internal energies of the 

fragments have been subtracted from the energy of the photon used to dissociate AB and 

the internal energy of the parent molecule.  

The velocity of each fragment is given by linear momentum conservation: 
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where mA  and mB are the masses of the fragments respectively, mAB is the mass of the 

parent molecule AB, and Etrans is the total translational energy as described above. 

The angular direction of the recoil vector is determined by the photodissociation 

process, the transition dipole moment of the parent molecule and the photon 

polarization.  Molecules whose transition dipole moment (�) is aligned with the laser 

polarization will preferentially absorb the photons.  If the lifetime of the molecule after it 

absorbs the photon is much shorter than a rotational period (~1 ps) the velocity vectors 

will correlate to the dipole moment.  In the simple case of a diatomic, this transition is 

called parallel if the dipole moment lies along the bond axis and perpendicular if the 

dipole moment lies perpendicular to the bond axis.  The distribution of intensities can be 

described as a function of � only since there is cylindrical symmetry about the z-axis.  

This distribution for a one-photon transition is given by Equation 2.2, 

))(cos(1(
4
1

)( 2 θβ
π

θ PI +=  (2.2)  

where � is the anisotropy parameter, and P2(cos�) is the second Legendre polynomial.48  

In the case of prompt diatomic dissociation parallel transitions, �=2, and for 

perpendicular transitions, � = -1.  If � = 0, the distribution is isotropic.  In the case of 

prompt dissociation, mixed absorption will lead to an intermediate value of �.  In the 

case of predissociation, the lifetime of the excited state molecule may be on the order of 

the rotational lifetime of the parent molecule, so the lifetime of this state with respect to 

the rotational lifetime can be determined using �.45 

C. Experimental Setup 

 The experimental setup includes pulsed laser light sources for photodissociation 

of a parent molecule and electronic state selective ionization of the photofragment of 

interest.  The lasers intersect the molecular beam at a perpendicular angle between the 

first two ion optics, a space known as the interaction region.  A schematic diagram of the 

general experimental setup used in these experiments is shown in Figure 9. 
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Figure 9:  Block diagram of the experimental setup used for the experiments described in this 
dissertation.  Solid lines represent laser propagation.  SHG: Second Harmonic Generation.  PB: 
Pellin-Broca prisms. 
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an Nd:YAG (Spectra Physics 150-10) whose output is frequency doubled using a BBO 

(beta barium borate) crystal.  The doubled light is used to ionize the appropriate atomic 

photofragment in a specific electronic state using 2+1 REMPI (Resonance Enhanced 

Multi-Photon Ionization).  More detail about the 2+1 REMPI technique will be supplied 

in Section C of this chapter.  The doubled and fundamental outputs of this laser system 

are separated using a series of four pellin broca prisms.  The four pellin broca prisms 

compensate for the changing refraction angle of the light as the wavelength allowing us 

to scan the wavelength of the ionization laser in order to image different electronic states 

without compromising the overlap of the photodissociation and ionization laser beams.   

 Typical output powers for the Nd:YAG lasers are: 330 mJ/pulse for the 532 nm 

output of the photodissociation system and 200 mJ/pulse for the 355 nm output from the 

ionization system.  The power of the fundamental output of the dye lasers depends not 

only on the power of the pump laser, but depends strongly on the dye efficiency curve of 

the dye being used.  The dye Coumarin-450 (C-450) is commonly used in the ionization 

dye laser, and typically gives about 20 mJ/pulse of fundamental output.  Doubling by the 

BBO usually yields about 0.8 to 1.0 mJ/pulse which is significantly less than the 10% 

efficiency expected from a BBO crystal.  Although these powers are sufficient for the 

experiment, it is believed that with more careful alignment of the BBO, the doubled 

output power could be improved.  Under the current experimental conditions, the output 

power of this system after the set of pellin broca prisms needs to be only about 0.2 

mJ/pulse or higher to have ample 2+1 REMPI signal. 

Using Rhodamine 590, the normal power output of the PDL-1 is about 60 

mJ/pulse of fundamental output at the peak of the dye efficiency curve.  Doubled output 

from the WEX-1 typically has powers of about 5% to 10% of the fundamental output 

power.  Frequency mixing of the doubled dye output with the Nd:YAG fundamental 

(1064 nm) by the WEX-1 usually yields less than 5% of the fundamental power.  We 

have found that powers as low as about 0.3 mJ/pulse after the polarization optics are 

sufficient for the photodissociation laser. 
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 The wavelengths of the fundamental dye emission of both laser systems are 

calibrated using a neon-copper cathode opto-galvanic (OG) lamp.  The grating of the 

LDL 2051 dye laser is controlled by a computer interface (Wavescan OG) which allows 

the dye laser output wavelength to be selected, calibrated, and scanned.  Wavescan OG 

also controls the angle of the BBO crystal insuring that the doubled power is optimized 

by adjusting the crystal angle as the fundamental wavelength is changed.  The 

fundamental output of the LDL 2051 dye laser is calibrated using an OG lamp that is 

housed inside the laser.  A fraction of light from the oscillator shines into the lamp using 

a fiber optic.  The wavelength of the fundamental dye output of the PDL-1 is controlled 

by either a PDL stepper motor controller or by manually turning a dial on the laser itself.  

The dial has an analog counter box with conversion factors allowing the grating order 

and approximate wavelength needed to be calculated.  Calibration is done manually with 

an OG lamp giving a more specific counter number to wavelength conversion formula. 

 The photodissociation and ionization beams are combined using an appropriate 

dichroic mirror which allows the ionization wavelength to pass through the back while 

reflecting the photodissociation laser light.  The beams are then passed through a lens, 

focusing them into the interaction region within the chamber.  The focal point of the lens 

is wavelength dependent, but is about 20 cm, and can be adjusted using a horizontal 

adjustment stage.  The lens is adjusted to maximize the signal while minimizing the 

noise which can occur due to a tightly focused beam which can ionize non-resonant 

species if the photon density is too high.  There is also some trade-off between a tighter 

focus of the photodissociation beam or the ionization beam in the interaction region 

caused by the wavelength dependence of the focal point; again, adjustments are made 

during the experiment to maximize signal and minimize noise.  This adjustment is very 

dependent on the relative laser powers as there is a need to avoid multi-photon processes 

by the dissociation laser and dissociation by the ionization laser.   

 The molecular beam is made by seeding a few percent of a sample gas in 1 atm 

of He.  The gas mix is introduced into the chamber through a solenoid pulsed valve 

(Series 9, Parker Hannifin).  Currently, only Teflon poppets are used in the pulsed 
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valves.  Although they wear more quickly than the Kel-F poppets, they seal more easily 

and produce a stronger molecular beam in this application.  The radical beams used in 

this study are produced using custom made fittings for the commercially available 

pulsed valve.  These are explained in full detail in later sections of this chapter.  The 

valve assembly is mounted at a distance of about 1 cm from the skimmer (orifice 

diameter: 0.8 mm).  This ensures that the gas sample entering the main chamber is at 

terminal velocity.  Placing the assembly the correct distance from the skimmer is 

accomplished by flowing high pressure helium (~30 psi) through an open pulsed valve 

as the assembly is slowly slid along its mount towards the skimmer.  By listening to the 

helium flow coming through to the Main Chamber side of the skimmer, optimal 

positioning of the pulsed valve assembly can be obtained.  The helium flow sounds 

loudest and has a uniform pitch when the pulsed valve assembly is placed at the proper 

distance from the skimmer.   

 The laser delay is adjusted so that it crosses the molecular beam at the proper 

time to give maximum signal.  This timing is especially critical in the experiments 

described in this work due to the fact that the halogen oxide radicals studied are 

produced within the chamber by a reaction of two molecules or by decomposition of a 

precursor molecule.  This causes the variations in composition of the molecular beam at 

different times, and optimum timing with respect to the molecular beam must be found 

where concentrations and conditions of the reactants are best for producing the most 

halogen oxide species of interest.  After photodissociation of the halogen oxide species, 

the atomic photofragment of interest is ionized using a 2 + 1 REMPI transition.  The 

ionization laser is timed to reach the interaction region 15 to 20 ns after the dissociation 

laser.  This interval gives the dissociation sufficient time to take place while still ionizing 

the fast moving fragments traveling perpendicular to the laser propagation from escaping 

the interaction region. 

 The ionized photofragments are then accelerated and focused onto a position 

sensitive detector consisting of a set of dual chevron MCP plates and a phosphor screen.  

The accelerated ions are projected onto the grounded front MCP plate with an electron 
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gain of ~106 or ~107 electrons which are accelerated onto the phosphor screen by a large 

potential energy difference.  In order to achieve this potential energy difference, the 

phosphor screen is held at a constant 5000 V.  The second MCP plate’s voltage is 

alternated between 2200 V and 1600 V.  The MCP voltage is supplied through a DEI 

high voltage pulse driver.  In order for phosphor screen to flash brightly enough to be 

detected by the CCD camera and not be discarded as camera noise, the gain voltage of 

the MCP plates should be no less than 1850 V.   Pulsing the voltage of the MCP between 

2200 V and 1600 V allows for mass selection while reducing the shock to the MCP of a 

full voltage drop. 

 A CCD (charge-coupled device) camera (Mintron MS-2821 E/C) is placed 

directly behind the phosphor screen.  The focus of the camera on the phosphor screen is 

extremely critical to the success of data collection.  Proper focus is achieved by adjusting 

the camera position and focus while the instrument is running.  Adjustment of the 

camera focus is made while observing a real time monitor of the camera image such that 

each ion event is as bright and sharp as possible.  A photomultiplier tube (PMT) is 

placed off-axis behind the phosphor screen to collect the overall intensity of the signal.  

This signal is sent to an SRS (Stanford Research Systems) boxcar averager unit that 

allows collection of a mass spectrum and aids in maximizing signal intensity through 

proper laser and MCP pulse timing.  The PMT signal is also sent to the computer 

interface of the LDL 2051 where the software Wavescan OG collects the intensity as it 

scans the laser wavelength so that 2 + 1 REMPI intensities can be recorded.  The CCD 

camera and the PMT are housed inside a black plexiglass enclosure to minimize stray 

light from interfering with signal collection. 

The camera image is collected using a National Instruments frame grabber (PCI-

1405) and associated computer software interface.  The data collection software used 

(IMACQ) was developed by Suits and co-workers.49  Image reconstruction is done using 

both BASEX (BAsis Set EXpansion) and pBASEX softwares.50, 51  The advantages of 

each of these methods will be discussed in a later section of this chapter.  The camera 

signal is also sent to two black and white monitors so that instantaneous images of the 
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signal can be seen while laser alignment and timings are adjusted which is a great 

assistance during signal optimization. 

 Proper timing of all of the components of the experiment is critical to its success.  

The CCD camera runs at 30 Hz, and provides master-clock for the rest of the 

experiment.  The camera provides an external trigger for a pulse generator (BNC) which, 

in turn triggers the opening of the pulsed valve(s), the gate for the MCP pulse driver 

(DEI), and a separate pulse generator (SRS) that triggers the lamps and Q-switches of 

both lasers.  Widths and delays of all of these components are essential to having proper 

signal.  The pulsed valves are usually operated using a pulse width of 180 ns, although 

pulse widths of up to 800 �s are not uncommon.  The pulse width of the MCP gate is 

usually set to 500 �s, which is narrow enough to discriminate against unwanted masses 

yet wide enough to ensure that all events from a given mass are counted.  

 

D. Ionization of Photofragment Atoms Using 2 + 1 REMPI 

 Photofragment atoms are detected using 2 + 1 REMPI (Resonance Enhanced 

MultiPhoton Ionization).  This technique requires that each photofragment atom absorb 

three photons of light in order to be ionized.  Two photons of the same frequency are 

simultaneously absorbed by the photofragment to reach a resonant excited state.  This 

resonant state is sufficiently long lived to allow a third photon of the same frequency to 

be absorbed to ionize the fragment.  As an example of this process, ionization of oxygen 

atoms using 2 + 1 REMPI is shown in Figure 10.   

This detection method is invaluable to ion imaging for a number of reasons.  

Firstly, the ionization potentials of the atoms studied in this work have ionization 

potentials larger than 10 eV which are too large for single photon ionization process 

using the current laser systems.  Secondly, and more importantly, 2 + 1 REMPI 

transitions are state-selective processes, meaning that only fragments in a specific 

quantum state are detected.  This means that not only can the mass of the photofragment 

be selected using the MCP gating and time of flight tube, but fragments of a specific 

internal energy can be selectively ionized as well by simply tuning the ionization laser  



 31

 

Figure 10:  Schematic energy diagram of the 2+1 REMPI transition of O(3PJ).  The diagram shows 
the absorption of two photons of light by the oxygen atom, raising it to a resonant intermediate 
energy level.  The atom then absorbs one more photon of the same frequency light to eject an 
electron forming an O+ species. 

 

 

the wavelength specific to the electronic state that is desired.  This highlights one of the 

key advantages of using velocity map ion imaging with 2+1 REMPI detection.  This 

method allows us to obtain correlated information about the photodissociation process.  

Because of the state selectivity of 2+1 REMPI detection, the electronic state of the 

detected fragment is known.  In addition, the internal energy of the unseen fragment is 

also measured as a result of the measured speed distribution of the detected fragment. 

The 2 + 1 REMPI transitions of atomic species studied in this work are given in Table 1. 
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Table 1:  2+1 REMPI transitions of atomic species of interest in this study.  The table includes the 
original electronic state of the fragment being detected, the intermediate resonant state reached by 
absorbing two photons of the wavelength of light listed. 

Atomic 
Species 

Electronic 
State Intermediate State Wavelength 

(nm) Reference 

O 3P2 3p 3P2,1,0 225.572 52 

 3P1 3p 3P2,1,0 225.974 52 

 3P0 3p 3P2,1,0 226.149 52 

Cl 2P3/2 4p 2D0
3/2 235.336 53 

 2P1/2 4p 2P0
3/2 235.205 53 

Br 2P3/2 5p 4P0
3/2 266.650 54 

 2P1/2 5p 3S0
3/2 266.713 54 

I 2P3/2 6p 2D5/2 304.67 55 

  2P1/2  6p 4D1/2 304.02  55 

 

 

 

The measured 2 + 1 REMPI transitions of oxygen arising from the 

predissociation of the �´ = 2 transition of ClO at 307.9 nm are shown in Figure 11.  The 

intensities of the peaks can be integrated and used to determine the branching ratios of 

the oxygen states for this transition.  Because the 2 + 1 REMPI process requires the 

absorption of two photons in order to reach a resonant electronic state, the two photon 

transition probabilities for the specific transitions must be included in order for 

branching ratios calculated from the transition intensities to be accurate.  The two photon 

transition probabilities for the three oxygen spin orbit states (3PJ) at transitions near 226 

nm are identical allowing them to be ignored in the branching ratio measurements of 

BrO and ClO done in this work.52  In contrast the transition probabilities for the halogens 

are unequal and the 2+1 REMPI signals must be corrected. 

Photodissociation results in photofragments released over a range of angles 

forming a Newton sphere.  The frequency of light from the ionization laser must be 

adjusted for fragments that are moving toward or away from the direction of laser 
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Figure 11:  O(3PJ) 2 + 1 REMPI transition intensities for the photodissociation of ClO at 299.5 nm.  
From these intensities, the branching ratios of the ClO dissociation into the three oxygen states can 
be determined. 

 

 

propagation due to the Doppler effect.  The amount of adjustment is given by the 

following equation: 

 )1(0 c
u±=νν   (2.3) 

where � is the adjusted frequency, �0 is the 2 + 1 REMPI transition of a fragment with 

zero velocity in the direction of laser propagation, u is the projection of fragment 

velocity along the direction of laser propagation, and c is the speed of light.  In order to 

ionize all of the fast-moving fragments, the Doppler Effect is non-trivial.  For example, 

the O(3P2) fragment in the case of ClO photodissociation near 300 nm is traveling 

greater than 3000 m/s.  If the fragment is traveling either directly toward or away from 

the laser propagation, the 2+1 REMPI transition for this fragment will shift by about 

0.003 nm.  Although this seems relatively small, it is about 0.5 cm-1 which is on the 

same order as common bandwidths of doubled dye lasers.  To ensure detection of 

fragments moving in any direction, the 2+1 REMPI ionization laser used must either 

have a broad enough bandwidth to ensure all of the fragments are ionized at once, or 

must be scanned over the Doppler profile while the image data is collected.  For images 
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that illustrate this effect, see reference 43.  The advantage of using a broad bandwidth 

laser is evident as it allows the entire image to be collected at once.  However, one 

disadvantage is that the laser power is distributed over a larger wavelength range 

meaning laser powers are sometimes too low for two photon processes to occur readily 

as the probability of the transition decreases quadratically with laser power.   

The LAS laser system used in the experiments described here has a bandwidth of 

~0.1 cm-1, and the while the PDL has a bandwidth of ~1 cm-1 or more.  In the ClO and 

BrO experiments described in this dissertation, the narrow band LDL 2051 is used for 

ionization.  The Doppler effect is compensated for by scanning the laser wavelength 

across the transition.  In the IO experiment, the PDL-1 is used to ionize the I(2P3/2), and 

because of the larger bandwidth of this laser and the slow speed of the iodine fragment, 

no scanning was necessary. 

 

E. Ion Optics 

 Two-dimensional ion imaging was pioneered by Chandler and Houston in 

1988.56  They used a position sensitive detector allowing visualization of the 

photodissociation event while obtaining the speed and angular distribution in one 

measurement.  Although this novel technique could collect all angular and speed 

information with one experiment, the images collected using this instrument were 

blurred due to fine meshes used in the ion optic assembly.  These meshes blurred the 

velocity distributions by slightly deflecting the ions, and also significantly lowered the 

signal intensity by only transmitting ~60% of the beam through each mesh.  However, 

the most significant problem with the meshes was that the photofragment ion was 

projected onto the detector at a position that was dependent of where the fragment was 

formed.  Because of the finite size of the photodissociation laser beam and molecular 

beam, dissociation events occurred at various positions which caused the photofragments 

to be projected to different positions on the detector.  Because the relative size of the 

interaction region is a few millimeters and the detector size is generally about 20 

millimeters, the velocity resolution using this technique was limited to about 10%.  This 
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low kinetic energy resolution caused imaging to be less favorable in some instances than 

time of flight methods.42 

 Eppink and Parker modified the ion optic assembly used in the ion imaging by 

replacing the meshes with an Einzel lens assembly of electrostatic stainless steel disks 

with open electrodes.57  The Einzel lens assembly exploits the full potential of ion 

imaging by project all photofragment ions with the same velocity vector to the same 

position on the detector regardless of the origin of the dissociation.  The advance in the 

ion optics warranted adding “velocity map” to the term ion imaging.  This improvement 

made velocity map ion imaging a more useful quantitative tool to the molecular 

dynamics community as it effectively increased the velocity resolution.  In the original 

velocity map ion imaging paper of Eppink and Parker, trajectory simulations showed a 

blurring of about 0.4 mm in each dimension using a 2.12 mm ion source (equivalent to 

an interaction region) and a 20 mm radius, limiting the velocity resolution to about 2%.  

The velocity map ion imaging system used in the experiments described here 

consistently provide us with a velocity resolution of 3%.   

Recently, Suits and coworkers proposed a modification of the Einzel lens 

assembly that allows for the stretching of the ion cloud along the flight axis.58  Although 

other groups have also explored experimental methods to allow for the imaging of only 

the center slice of the image through various techniques, the dc-slicing technique of 

Suits and coworkers provides all of the advantages of image slicing without some of the 

negative results of other methods such as image blurring and difficult 

implementation.58,59,60,61,62  Using the DC-slicing technique, the ion cloud can be 

stretched temporally to about 300 ns, so that it is possible through gating the detector to 

select only the center 50 or 60 ns of the ion cloud.  The resulting image is the center slice 

which is the equivalent to the result of the reconstruction methods.  It boasts an 

improvement of the velocity resolution to below 0.2% using the same initial conditions 

for a trajectory simulation as that of Eppink and Parker that produced a 2% velocity 

resolution using the traditional ion optics.  Another advantage of the slicing is that it 

circumvents the need for mathematical image reconstruction methods, eliminating both 
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the noise from inversion methods as well as the need for cylindrical symmetry in the 

data.   

 The velocity map ion imaging instrument used in the experiments described here 

has been recently modified to include a set of four Einzel lenses so that image slicing 

using DC-slicing is possible.  The ion optics assembly consists of 4 stainless steel plates 

(7.6 cm outer diameter, .16 cm thick) with center bores cut in each.  Diameters of the 

center bore of each ion optic, in order beginning with the optic nearest the source region 

are: 6 mm, 12 mm, 32 mm, and 40 mm.  The cross sectional view and full dimensions of 

the ion optics are shown in Figure 12.  The ion optics are assembled on 0-80 stainless 

steel threaded rod that is insulated from the optics using a vespel ceramic tube.  Vespel 

spacers of varying lengths are used to achieve the desired spacings between the ion 

optics of 29 mm, 21 mm, and 14 mm in order beginning with the space nearest the 

source region.  Voltages applied to the first three ion optics vary depending on the type 

of ion being imaged, and the desired size of the image.  The ion optic nearest the 

detector is always grounded.  Optimum focusing of the ion cloud was found to be 

achieved when the voltages of the second and third ion optic are given voltages of 

approximately 0.88 and 0.78 of the ion optic closest to the source.  Specific voltages 

used during each experiment are discussed in subsequent chapters.  The assembly is 

mounted in the main chamber region such that the ion optics are perfectly parallel to the 

detector and centered exactly around the molecular beam. 
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Figure 12:  Cross-sectional view and photograph of the ion optics assembly used in the experiments 
described in this dissertation.  Top image shows the cross sectional view of ion optic assembly.  
Shown with dimensions (in mm) of spacings.  Lower image shows a picture of the ion optics 
assembled in the main region of the imaging chamber. 
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 Simion 7 software was used to simulate the ion trajectories of these ion optics to 

demonstrate their focusing and temporal stretching of the ion cloud.63  The simulation 

results are shown in Figure 13 using the 303 nm photodissociation of ClO with imaging 

of the Cl fragment as an example of the abilities of the ion optics assembly.  The ions in 

the simulations originate halfway between the first two ion optics.  The ions begin their 

trajectories from three points along the direction of laser propagation by expanding in all 

directions, typical of a photodissociation event.  Image (a) in Figure 13 shows the ability 

of the ion optics assembly to focus ions of the same velocity to a certain point on the 

detector regardless of the starting position of the ion clouds.  Images (b) and (c) show the 

spread of the ion cloud along the axis of the molecular beam at positions within the ion 

optics and later, just before the ion cloud strikes the detector.  A third image (d) is used 

to show the velocity of the ion cloud by showing the distance traveled by the ion cloud 

in a given amount of time (5 �s).  Using the velocity derived from (d), the temporal 

spread of the ion cloud in Images (b) and (c) can be calculated.  The minimum temporal 

stretch of the ion cloud for dc-slicing to be useful is 300 ns.  Below this, the MCP 

voltage gate is not short enough to slice the center of the image and will blur the speed 

distribution. 

  The new ion optic assembly was tested by imaging the Cl(2P3/2) fragment of ClO 

photodissociation at 235 nm.  Although slicing was observed, this technique was not 

used in the current study for several reasons.  Firstly, this technique discards many 

events from each ion cloud.  This loss of signal cannot be afforded during experiments 

such as the photodissociation of IO where signal is already low and not stable for periods 

of time long enough to allow long averaging times.  It was noted above that image 

slicing is only possible when the fragment ion is heavy enough to allow significant 

stretching of the ion cloud.  In the case of the BrO and ClO experiments performed, the 

oxygen fragment is too light for adequate stretching given the size of the detector used in 

the instrument.  Although the full potential of the new ion optic assembly was not taken 

advantage of in these experiments, adding an extra focusing lens seems to have 

improved the focus of the images collected. 
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Figure 13:  Simion 7 simulations of the ion optic assembly.  Top image (a) shows the full simulation 
length from the interaction region to the detector.  Voltages used in this simulation are listed above 
the ion optic.  Image (a) demonstrates the velocity focusing ability of the ion optic assembly.  Center 
images, (b) and (c), show the ion cloud near the interaction region (b), and near the detector (c).  
The dimensions of the ion clouds along the axis of propagation are shown below the ion clouds in 
mm.  The lower image (d) shows the distance traveled by the ion cloud in 5 �s.   
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Figure 13: (Continued.) 
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F.  Data Acquisition 

The CCD camera collects images of the phosphor screen at a rate of 30 Hz. 

Because the rest of the instrumentation functions at only 10 Hz, a maximum of one out 

of every three camera images collected by the computer interface will contain image 

data.  In order to maximize the number of frames containing data, the CCD camera 

serves as a trigger for the rest of the instrumentation. Digital pulse generators triggered 

by the CCD camera establish proper timing of the pulsed valves, the MCP gate pulse, as 

well as the lasers.   

Although the Einzel lens assembly provides much better focusing of the image 

than the original meshes, the images collected from this instrument still has noise due to 

the relatively large spot generated when the phosphor screen flashes. The ion event spot 

is roughly 5 x 5 pixels, although the spot size will increase if the MCP voltage is 

increased and is dependent on the camera focus and the chip dimensions. The large spot 

generated by each event causes the raw image to be blurred and the velocity information 

to be broadened significantly. Centroiding is an event counting technique that effectively 

enhances the image resolution when the ion count rates are low.  Centroiding first sets a 

threshold to discriminate against events and noise. This is achieved by defining a 

threshold pixel intensity below which the event is disregarded. For those events above 

the threshold intensity, the pixel of local maximum intensity is found in both the X and 

Y directions defining a “centroid” position. The computer then places one count on that 

pixel. Centroiding effectively enhances the resolution dramatically by reducing the ion 

spot size and also effectively removes essentially all noise events from the collected 

image.64 

Although centroiding can be a useful tool in ion imaging, some conditions should 

be met to ensure optimal use.  First, care should be taken that the threshold value is 

sufficiently high to reject noise while remaining low enough to count all events from 

true signal.  Second, low enough count rates are required such that there are not 

overlapping events with each laser shot. This is because overlapping events are 
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recognized as single event when using centroiding, causing distorted speed and angular 

distributions. 

A technique developed by Arthur Suits and coworkers called megapixel imaging 

further increases the resolution of the image to sub-pixel resolution by building 

somewhat on the idea of centroiding.49  In theory, the ion spot has a Gaussian 

distribution of intensity, so it should be ideal to fit each ion spot with a Gaussian 

distribution to determine the origin of the spot.  This is unrealistic for several reasons.  

Firstly, the ion spot should cover very few pixels (at most seven) which is too few to 

ensure a proper Gaussian fit.  Secondly, fitting the intensity of each ion spot with a 

Gaussian is too calculation intensive to be functional during real-time data collection.  

Lastly, some spots may not have a Gaussian distribution of intensity.  Some spots are 

seen to have a Boltzman-like distribution of intensity.  As a result, the center-of-mass of 

each ion spot is found and the ion count is placed at this point.  This calculation provides 

the same position as the center of a Gaussian distribution but is more practical as it is 

much less computationally intensive and is useful even when the spots do not have a 

Gaussian distribution of intensity.  The resolution achieved by centroiding is the 

resolution of the camera, or 480 by 480 pixels in our case.  Using the software provided 

by Suits and coworkers, each pixel is divided into a number of subpixels (up tp 100) 

chosen by the user.  For each center of mass thet lies within each subpixel, the subpixel 

receives an ion count,  Using this method, the user is able increase the resolution of the 

camera up to 10x10 times its original resolution of the camera.  Suits and co-workers 

found that a 5x5 increase in resolution was sufficient, producing a velocity resolution of 

0.1%.49  

Real-time image data collected by the CCD camera is sent to a frame grabber 

(National Instruments PCI-1405) which is interfaced to an image accumulating software 

called IMACQ, an image collection interface written by the group of Arthur Suits.  

IMACQ allows the user to set a low threshold such that small signals due to noise will 

be rejected during image counting, and a high threshold so that overlapping events are 

also rejected.    
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IMACQ allows the user to save the image data in up to three ways: as a raw 

image with no event counting method, as a centroided image, and as a binary file of the 

center of mass data for each ion spot.  The centroid image is saved as a .tiff file making 

it easy to convert using ImageJ65, an open source general image viewer, for use in 

BASEX or pBASEX.  The megapixel file is a binary file and must be read into the 

IMAN program also available from Suits et al. to convert the file to a megapixel image 

of numerous resolutions of the user’s choice, up to 5 times the resolution of the camera.  

For the studies discussed in this dissertation, only centroided data is used for the 

speed distributions, anisotropy parameter data, and image reconstruction.  The reason for 

this is that the main drawback to collecting a megapixel image is the large amount of 

time it takes to collect a satisfactory image is very long.  Although using this technique 

is very desirable, it is unrealistic for our work with radical species as the molecular beam 

can become unstable during the course of image collection.   

 

G.  Data Analysis 

Because the detector is 2D, the images that are collected are a 2D projection of a 

3D Newton sphere. A schematic of this is shown in Figure 14.  For this reason, the 

information needed to obtain proper velocity and angular information is contained within 

the center slice of the Newton sphere.  There are two methods of obtaining this center 

slice.  The first method involves selecting only the center slice using experimental 

techniques.  One such technique was introduced by Tonokura and Suzuki using laser 

sheet ionization to selectively ionize photofragments along the center of the Newton 

sphere.59  Another slicing technique was pioneered by Suits and coworkers and was 

explained in detail in Section D of this chapter which utilizes four ion optics to stretch 

the Newton sphere temporally so that only the center slice is imaged.58  When 

experimental methods are not used or are not feasible, analytical methods must be used 

to recover the center slice of the Newton sphere.  To this end, mathematical inversion 

methods must be used to reconstruct the 3D data so that accurate velocity and angular 

distributions can be obtained.   
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Figure 14: Schematic diagram of the detection of a 2D projection of a 3D Newton sphere. 

 

 

Because experimental methods to extract only the center of the Newton spheres 

were not used in the experiments that follow in this dissertation, analytical methods were 

used to reconstruct all of the data shown in Chapters III-V.  Fortunately, because the 

dissociation laser is vertically polarized, there is cylindrical symmetry in the Newton 

sphere making common mathematical reconstruction techniques possible through 

forward convolution methods.   Currently, we use two inversion methods to analyze the 

imaging data collected from the ion imaging instrument called BASEX (BAsis Set 

EXpansion) and pBASEX (polar BAsis Set EXpansion).  The two reconstruction 

methods will be explained further, and a comparison of the advantages of these methods 

will follow. 
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BASEX is a commercially available program which was developed by Reisler 

and coworkers.66  The reconstruction begins by building a 2D projection from a basis set 

of functions that are analytical projections of well-behaved functions similar to Gaussian 

functions.  The expansion coefficients found by building this projection provide the 

information needed to construct the 3D velocity distribution.  Because the 2D projection 

of the Newton sphere has cylindrical symmetry, it can be described using an Abel 

integral: 
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where the z-axis lies along the symmetry axis (laser polarization vector), the x-axis lies 

also in the plane of the detector perpendicular to the z-axis and r is the result of 

converting to polar coordinates (r2 = x2 + y2).  In this equation, I(r,z) is the intensity of 

the signal as a function of r (the distance from the center of the image) and z, or the 

original 3D intensity distribution which is depicted in the schematic in Figure 15. 

 

 

 

Figure 15: Schematic diagram of the 3D intensity (I(r,z)) being projected into 2D.   Each slice of the 
3D Newton Sphere is projected as a line.  Figure adapted from Reference 43. 
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However, because the experiment bins the data into discrete pixels, we can write the 

projection as a function P. 
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Assume a set of basis functions and their corresponding projection, G. 
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where h(x,z) is an instrumental function.  The idea is now to make an expansion of this 

function in terms of a basis of known projection functions.  Next, the 3D velocity 

distribution I(r,z) can be written as a function of the basis set: 
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And the 2D projection (data) can be written: 
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From here, matrix algebra will allow for solving C.  Finally, the reconstructed speed 

distribution can be obtained. 

Once fit, the basis set analytically calculates the original 3D Newton sphere from 

the data.  Finally, a 2D slice is then taken from the center of the 3D calculation for 

velocity and angular distribution calculations.66   

A more recent 2D image inversion method called pBASEX was introduced in 

2004 by Garcia, Nahon, and Powis.67  The goal of pBASEX is essentially the same as 

that of BASEX: to reconstruct a 3D Newton sphere from a 2D projection by fitting the 

projection with a set of basis functions with a known inverse Abel integral.  The 

inversion method is based on the same algorithm as BASEX, the main difference being 

the choice of a polar coordinate system rather than the Cartesian coordinate system used 

by BASEX.66   Polar basis sets are advantageous as photoionization processes have polar 

symmetry, so pBASEX should better optimize velocity and angular information while 

minimizing CPU time and noise.   
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Briefly, the energy distribution of the photofragments can be described using a 

discrete number of Gaussian functions with a given width (	) using the expression: 
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where � is the angle measured with respect to the polarized direction of linearly 

polarized light or propagation direction for circularly or unpolarized light, lP  is the 

Legendre polynomial of order l , and kR  is the center of the thk  Gaussian.  Because the 

image data will always be Cartesian due to the matrix of pixels in the camera image, the 

value of 	 should be set to about one pixel width to correct for this.  The image data can 

then be converted from Cartesian coordinates to polar coordinates.   

When linearly polarized light is used, the odd Legendre terms will disappear 

from Equation 2.9b , considerably lowering the number of basis functions pBASEX uses 

to invert the image as compared to the number used by BASEX, thus significantly 

reducing the computing time of the method.  If there exists cylindrical symmetry in the 

image, the Abel integral: 
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relates the projected image, )','( θRP , to the original image, ),( θRF .  The basis 

functions, having analytic inverse Abel solutions, can then be selected so that a linear 

expansion of the selected basis functions can be used to describe the projected image 

through the expression, 

 ��=
k l

lklk RgcRP )','()','( ,. θθ  (2.11) 

where )','(, θRg lk  is the projection of a particular basis function, and lkc , is that 

function’s coefficient.   

 Currently, we use both BASEX and pBASEX to analyze the images collected in 

these experiments.  The BASEX software used is commercially available.66  The 
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software for pBASEX was obtained from Dr. Lionel Poisson who has implemented the 

pBASEX code using LABVIEW.  His contact information is provided in Note 9.68  We 

continue to use both of these methods as they both offer different advantages.   

Although the methods of reconstruction are similar for pBASEX and BASEX, 

the most notable difference in the methods is the difference seen in the reconstructed 

images.  A reconstructed image using BASEX accumulates noise toward a central band 

running vertically through the image.  The method pBASEX collects noise towards the 

center point of the image.  As an example, Figure 16 shows a raw, centroided image, the 

image after it has been reconstructed using BASEX, and the image after reconstruction 

with pBASEX.  The advantage of pBASEX in the reconstructed image is clear from 

looking at these images.  The reconstruction by BASEX posseses a significant amount of 

noise along the vertical centerline of the image.  The reconstruction by pBASEX is much 

more desirable as the noise generated by the method is minimal and is centered around 

the centerpoint where there is no speed element from the data.  It is also more visually 

pleasing and provides a clear visual of the angular distribution of the data that is lost in 

the BASEX reconstruction. 

Although a significant advantage was seen by Garcia, Nahon, and Powis in the 

speed distributions of images collected with unpolarized light, little difference was seen 

in the speed distributions when the photofragments originated from linearly polarized 

light.67   Figure 17 shows the speed distributions of the data shown in Figure 16 analyzed 

using BASEX and pBASEX.  Our experience with these methods reinforces this 

similarity as can be seen in Figure 17.  The two reconstruction methods produce very 

similar speed distributions with comparable amounts of noise.   
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Figure 16:  Centroided raw image data (a) and reconstructions using BASEX (b) and pBASEX (c).  
Example data shown are O(3P2) images taken from the photodissociation of ClO at 291.7 nm 
corresponding to the v’=6 band. 

(a) 

(b) 

(c) 
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Figure 17:  Speed distributions of data shown in Figure 16 from BASEX (red trace) and pBASEX 
(blue trace) methods. 

 

 

 

The anisotropy parameter (�) was calculated for the Cl(2P3/2) fragment data 

shown in Figure 16 and are seen to be 0.53 and 0.54 for BASEX and pBASEX, 

respectively.  The anisotropy parameters obtained by BASEX and pBASEX methods 

were examined by Garcia, Nahon, and Powis and are seen to be nearly identical .67  As 

can be seen from Table 2.2, the resulting anisotropy parameters obtained from the two 

methods are similar in our case as well.  From experience with these two programs, the 

BASEX program has a clear advantage over the pBASEX code as it is much easier to 

use and for this reason is more convenient.  

Because the results are very similar, we choose to use BASEX for most of our 

analysis as it is simpler to use than the pBASEX LABVIEW code.  The pBASEX 
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method does have a clear advantage when the reconstructed images are needed as 

pBASEX reconstruction produces minimal noise, and the noise is relegated to near the 

center point of the image. 

 

H.  Sources of Velocity Broadening  

 For velocity map ion imaging to be used as a quantitative technique, some 

sources of blurring in the images must be avoided or corrected.  Two major sources of 

image blurring have been addressed earlier in this chapter.  The first was the blurring 

due to the finite interaction region which is corrected by using an Einzel lens assembly 

rather than electrostatic meshes to guide the ions onto the detector.  The second was the 

large spot that each event makes on the detector that spreads the image intensity over 

many pixels.  This is corrected using event counting methods such as centroiding or 

megapixeling the data.  Other sources of blurring are addressed briefly in this section.  

While the effects of these sources are minor under most circumstances, they can be 

significant enough to have an effect on the overall errors associated with the data.  One 

instance where slight blurring effects become important is when multiple velocity 

features are very close to each other, even minimal blurring could cause these features to 

be unresolved or even overlooked.  Imaging the O fragment from the photodissociation 

of ClO is a good example of this as the velocity features arising from the two spin-orbit 

states of Cl are quite close.  Another prime example of needing to reduce even the 

slightest source of blurring occurs when measuring the bond dissociation energy of a 

diatomic species such as IO.  In this instance, any blurring of the image causes 

broadened velocity distributions which, in turn, lead to increased error in the measured 

bond dissociation energy for the diatomic species. 

 One cause of image blurring is the space charge effect which occurs when there 

are too many ions made with each laser shot.  It can become a significant effect as ions 

of any mass/charge ratio can disrupt the imaged ions, even ions of a different and 

undetected mass.  Space charge effects can lead to oval shaped images as the image will 

be distorted along the axis of highest ion density.  This effect can also broaden the rings, 
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lowering the image resolution, if there are too many ions focused to the same point on 

the detector.  A good rule of thumb is that the formation of ~100 ions with each laser 

shot is enough to cause this effect to be large enough to be detected.  For example, 

assume the interaction region is a sphere with a diameter of 200 �m, with 100 ions 

formed by the laser shot that are equally spaced.  Using Coulomb’s law for charged 

particles under these conditions, an oxygen fragment ion traveling at 3000 m/s will be 

repelled about 5 m/s in 10 �s (approximately the time it takes to reach the end of the 

time of flight tube).  This corresponds to a 
v/v of about 0.2% which is relatively small 

compared to other sources of velocity distribution broadening.  However, if the number 

of ions is increased to 1000, 
v/v becomes a nontrivial 0.7%. 

  Corrections for this problem are rather simple.  Using a focused laser beam 

causes the photon density to be very large across a small area, leading to many ions 

being formed there.  Defocusing the laser at the interaction region even by a very small 

amount can dramatically reduce this effect.  Lowering the signal intensity by reducing 

the percentage of sample in the molecular beam or by shortening the pulsed valve 

opening time is also an option that eliminates space charge effects.   

Ionization using 2 + 1 REMPI, can lead to some broadening of the speed 

distribution through ion recoil.  REMPI ionizes a photofragment (A) through the reaction 

shown below where A is the photofragment being ionized by 2 + 1 REMPI and n=3. 

 A + nh� � A+ + e- + KETotal (2.12) 

The energy absorbed by A from the three photons will ionize A, and provide some 

amount of extra kinetic energy to the ion and electron formed.  This total kinetic energy 

(KETotal) will provide A+ and e- with a velocities based on the conservation of 

momentum.  Although the masses of the ion and the electron are significantly different, 

it cannot always be assumed that the small amount of energy partitioned to the ion can 

be ignored.  The effect of ion recoil from the REMPI process is dependent on the 

fragment mass, the total excess energy available from the ionization process, and the 

speed of the fragment from the dissociation step.  For example, oxygen atoms are 

ionized by a 2+1 REMPI transition near 226 nm which provides 2.9 eV of excess energy 
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above the ionization potential for oxygen of 13.6 eV.  While most of this energy is 

partitioned to the ejected electron due to its small mass, the energy partitioned to the 

oxygen atom corresponds to a velocity of 20 m/s.  The affect of this added velocity 

depends on the velocity of the oxygen fragment from the dissociation process.  For ClO 

at near 300 m/s, the added velocity results in an experimental error of about 0.6%.  If the 

effect of the ion recoil is such that it cannot be ignored, the only solution is to lower the 

amount of excess energy placed in the system from the ionization process.  One way this 

can be accomplished is to use two-color REMPI where the resonant state is reached 

through absorbing photons of one color, and then one photon of another color is 

absorbed to ionize the fragment.  The wavelength of light used to ionize can be chosen 

so that its energy is enough to barely clear the ionization energy threshold of A, ensuring 

that KETotal is minimized.  

Another cause of slight image blurring which leads to uncertainty in the velocity 

distribution is the bandwidth of the photodissociation laser.  This broadening is very 

minor for dye laser systems with a bandwidth of about 1 cm-1.  For this bandwidth, the 

velocity resolution is 0.003% at 300 nm.  The laser bandwidth is the minimum 

achievable broadening of the velocity distribution of this instrument. 

 

I.  Synthesis of Cl2O and Production of ClO Radical Beam 

 Because Cl2O is a highly reactive and unstable species, it requires careful 

laboratory synthesis under vacuum.  Cl2O is synthesized under vacuum by the following 

reaction by the method of Cady.69 A schematic of the vacuum synthesis of Cl2O is 

shown in Figure 18.  Cl2O is formed via the reaction of liquid Cl2 with powdered HgO 

shown in Equation 2.11: 

 2Cl2(l) + HgO(s) � Cl2O(l) + HgCl2(s) (2.13) 

The mercuric oxide (HgO) must be baked in a vacuum oven at 100 - 120°C for at least 4 

hours to insure that it is dry.  The reaction will not proceed if any moisture is allowed 

inside the reaction vessel. It is also crucial to use yellow mercuric oxide as it is a finer 

powder than the red. Small glass beads are added to the reaction vessel to increase the 
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surface area producing much greater product yield.  Cl2 (Aldrich 99%) is used directly 

from the cylinder without further purification. The Cl2 is trapped in an evacuated glass 

tube cooled with liquid nitrogen. The trap is then warmed in a dry ice/acetone bath to 

melt the Cl2.  The Cl2 is then transferred into the evacuated reaction vessel containing 

mercuric oxide by holding the reaction vessel at the nitrogen temperatures. The reaction 

vessel is then held in a dry ice/acetone bath for at least eight hours to allow the reaction 

to proceed, although our experience indicates that the yield is greater if the reaction is 

allowed to proceed for longer times up to a week. Cl2O and unreacted Cl2 are removed 

from the reaction vessel through vacuum extraction into a trap held in liquid nitrogen.  

It should be noted that liquid Cl2O is dark brown while liquid Cl2 in yellow providing a 

clear indication of the success of the reaction.   

 Excess HgO is used so that as much Cl2 as possible is consumed in the reaction 

making purification of the Cl2O much easier.  Although Cl2 contamination was not a 

concern for the ClO experiments shown in this dissertation because only the oxygen 

photofragment was imaged, Cl2 can be easily removed from the Cl2O using vacuum 

distillation if pure Cl2O is required.  Although contamination of the Cl2O sample was not 

a major concern, excessive Cl2 in the sample causes problems getting a strong molecular 

beam of Cl2O because of the much larger vapor pressure of Cl2 compared to that of Cl2O 

at -78°C (about 10 times higher). 

The molecular beam of ClO was formed by the flash pyrolysis of a Cl2O/He 

mixture.  The Cl2O was kept at -78ºC to provide an approximately 5% mix in 1 atm of 

He.  The Cl2O/He sample was introduced into the instrument through a commercially  



 55

 
 

 

Figure 18:  Schematic diagram of Cl2O synthesis.  Panel (a) shows the method of collecting Cl2 for 
the reaction by trapping it in a glass vessel kept in liquid N2.  Panel (b) shows the transferring of the 
Cl2 from the collection vessel to the round bottom flask that contains HgO and glass beads. 
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available pulsed valve (Parker Hannifin Series 9) fit with a pyrolytic nozzle assembly.  

The pulsed valve with the pyrolytic assembly is shown in Figure 19.  The active region 

of the nozzle assembly consisted of a 3 cm long alumina tube wrapped in nickel-

chromium alloy wire allowing the tube to be resistively heated to approximately 800 K.  

The nozzle is then covered in a high temperature ceramic paste (Wale) to ensure even 

heating throughout the nozzle.  This is done by applying a DC current of 4A across a 24 

AWG nickel-chromium wire.  The endcap and front plate of the assembly are cooled by 

flowing cold water (~5°C) through the copper tubing that surrounds them.  The cooled 

endcap serves to protect the pulsed valve from the heat of the pyrolysis tube.  The cooled 

front plate modestly cools the molecular beam as it passes through the center bore before 

expanding into the chamber. We observe ClO rotational temperatures of approximately 

100 K following expansion. 

 

 

 

 

 

Figure 19:  Cross-sectional view of the pyrolytic assembly used to produce a radical beam of ClO 
through the decomposition of Cl2O. 
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J.  Production of BrO Radical Beam 

 The BrO radical molecular beam was generated using a flash pyrolysis technique 

that uses two pulsed valves and a heated nozzle to react O3 and gaseous Br2.  Camden et 

al. reported a late-mixing pulsed nozzle to allow the co-expansion into vacuum of two 

reactive species.70  Our dual-pulsed valve flash pyrolytic nozzle expands on this idea, 

combining the dual pulsed valve assembly for late-mixing of reactants with a heated end 

nozzle to act as a flash kinetic reactor.  A similar design has been used by Reisler and 

co-workers to study CH2OH radicals; however, their design utilizes a photolytic end 

nozzle instead of a pyrolytic nozzle as is described here.71 The products of the reaction 

are then expanded into vacuum before further reactions can take place.  The nozzle 

assembly will be described briefly here as full design details of the dual-pulsed valve 

flash pyrolytic assembly used in this experiment can be found in a paper by Kim et al. 72   

 

 

 

 

Figure 20:  Cross-sectional view of the dual-pulsed valve pyrolytic nozzle assembly used in the 
production of the BrO radical molecular beam. 
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 The design of the dual pulsed valve assembly is shown in Figure 20.  It employs 

two commercially available pulsed valves (Series 9, Parker Hannifin) attached to a 

custom built nozzle assembly.  Each pulsed valve is seated into its own endcap and 

secured with screws.  The lower endcap is water cooled to protect the pulsed valve from 

the heat of the pyrolysis nozzle by flowing cold (5°C) water through copper tubing 

surrounding the endcap.  A stainless steel tube connects the upper endcap to a channel 

cut into the lower endcap.  This channel is intersected by a perpendicular channel that 

extends from the lower pulsed valve allowing the gases to mix before exiting the endcap.  

The mixed gases then pass into the heated region of the nozzle.  The heated nozzle is 

constructed from an alumina tube (1.0mm I. D., 2.4mm O. D., Scientific Instrument 

Services, Inc.) wrapped in 24 AWG  nickel-chromium wire.  The heated region is then 

covered in a high temperature ceramic paste (Wale) to ensure uniform heating.  The 

optimal length of the nozzle was found to be about 2 cm for the heated region.  The 

alumina nozzle is seated into the front of the lower endcap on one side and into a cooled 

front plate on the other.  The cooled front plate serves to modestly cool the beam before 

expansion.  It also holds the alumina tube straight making certain that the beam is 

directed correctly into the skimmer. 

 A strong beam of BrO is dependent on both proper nozzle temperature as well as 

correct reactant concentrations.  The reactant concentrations are controlled using their 

vapor pressures. In the case of BrO, the reactants used are Br2 and O3.  The suitable 

vapor pressure (30 torr) of Br2 is achieved by holding it in a bubbler at -35°C using a dry 

ice/acetone slurry.  The O3 is trapped over silica gel (3-6 mm, Fluka) in a bubbler held at 

-78°C using a dry ice/acetone bath. The bubbler is then warmed to -45°C to attain the 

correct vapor pressure of O3 (30 torr).  Both gas samples are combined with 760 torr of 

He, using a single He line split to go into each sample at the same pressure.  This is 

important because any deviation of the total pressures from each line can lead to back 

flowing of one of the samples into the other which is not only a problem because it will 

hinder the molecular beam but also because with two reactive species, it could 

potentially be dangerous.   
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The nozzle used for BrO production is much shorter than the one used in the ClO 

experiments. This is because the rate constants of reactions that consume BrO are rather 

high at the temperatures needed to produce BrO from the O3/Br2 reaction. From our 

kinetic simulations we see that a maximum number density of BrO is achieved using 

high nozzle temperatures near 700 K and very short residence times of only a few 

microseconds. By noting where the maximum BrO signal is seen, the proper nozzle 

temperature is achieved using 24  gauge nickel-chromium wire heated   using  a DC 

current  of 4.5 A, 8 V. 

 

K.  Production of IO Radical Beam 

 The dual pulsed valve pyrolytic nozzle assembly used in the production of the 

BrO molecular beam was tried unsuccessfully in the production of an IO beam. Kinetic 

simulations using various sources of iodine atoms (I2, CH3I, CF3I, and IBr) reacting with 

ozone were done and showed only modest success at producing IO radicals. The 

maximum concentrations of the IO produced from these reactions was sufficient for 

detection by the velocity map ion imaging instrument; however, the IO radical was very 

short-lived in these simulations. For this reason, we attempted to use very high 

temperature nozzles that were very short. We hoped that the high temperature would 

increase the rate constants of the IO production reactions sufficiently, while the short 

nozzle would have a short enough resident time for the IO radicals to escape 

recombination reactions. Numerous nozzles of various sizes were tested, each at a 

variety of temperatures. The 24 gauge nickel-chromium wire cannot survive DC currents 

above 5 A for more than a few minutes, which limited the temperature of the nozzle. 

From the kinetic simulations, we chose to try using I2 and CF3I as possible iodine atom 

sources. Unfortunately, no combination of nozzle length and temperature with either 

iodine atom source produced an IO radical molecular beam. 

 Because we were unable to produce an IO radical molecular beam using a 

pyrolytic nozzle, we chose to try a photolytic reaction instead.  I2 was chosen as an ideal 

photolytic precursor for producing iodine atoms.  I2 is also very easy to work with as it is 
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a solid at room temperature and can be easily and safely transferred into a bubbler for 

use in the experiment. It is also an ideal choice because two iodine atoms are released 

with each photolysis, and there are no unwanted radicals produced that could interfere 

with the production of IO. A mixture of I2 and O3 in Helium, each introduced from 

separate solenoid valves, was irradiated in a quartz tube (0.1 cm I.D.) by the 248 nm 

output of an excimer laser (GAM Laser, EX10). It is important to note that based on the 

relative cross sections at 248 nm, it is photolysis of ozone which initiates the reactions 

with only minor contribution from I2 photolysis. The resulting bimolecular reactions 

generate IO during the transit time to the nozzle exit.   

New kinetic simulations were done assuming the use of I2 and O3 as reactants in 

the photolysis tube.  In these simulations we assume an initial concentration of iodine 

and oxygen atoms based on the Excimer laser power, wavelength of laser output, the I2 

and O3 vapor pressures used (~2 torr for I2 and ~30 torr for O3), and the absorption cross 

sections of the species at 248 nm.   For our simulations we assume an initial 

concentration of iodine atoms of 5.57×1014 molecules/cm3 and an initial concentration of 

oxygen atoms of 1.06×1017 molecules/cm3.  Using these simulations, it was seen that the 

maximum IO concentration was achieved when the bubbler of O3 trapped over silica gel 

was held at -45°C, giving a vapor pressure of about 30 torr. Figure 21 shows the 

concentrations of IO as a function of time using these optimal conditions. The 

simulations are done using reactions and rate constants shown in Table 2.  The residence 

time of the reacting species inside the quartz tube before expansion into vacuum is about 

10 �s.  At this time, the simulation shows the IO concentration to be about 5.0×1015 

molecules/cm3. 

 



 61

IO Simulation Results: Concentration of IO vs. Time
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Figure 21:  Kinetic simulation data for the concentrations of I, O, and IO species as a function of 
time assuming T = 298K, and the initial concentrations of I and O are 5.57 x 1014 molecules/cm3 and 
1.06 x 1017 molecules/cm3, respectively.  These are found to be the optimal conditions for producing 
the maximum amount of IO. 

 

Table 2:  Reactions and rate constants used in kinetic simulations for the production of the IO 
radical. Units for Rxn Order 2 and 3 are: cm3/molecule�s,  and cm6/molecule2

�s, respectively. 

 Reaction Rxn Order Rate Constant at 298K Reference 
1 CF3I + O � CF3 + IO 2 6.51 × 10-12 73 
2 CF3I + CF3 � C2F6 + I 2 3.01 × 10-16 74 
3 CF3I + I � CF3 + I2 2 3.39 × 10-11 75 
4 I2 + O � I + IO 2 1.2 × 10-10 76 
5 O3 + I � O2 + IO 2 1.28 × 10-12 76 
6 IO + O � O2 + I 2 1.4 ×10-10 77 
7 IO + IO � IO2 + I 2 3.8 × 10-11 77 
8 IO + IO � O2 + I + I 2 5.2 × 10-11 78 
9 IO + IO � O2 + I2 2 5.0 × 10-12 79 

10 O3 + IO � 2O2 + I 2 1.2 × 10-15 80 
11 O3 + IO � O2 + IO2 2 2.3 × 10-16 80 
12 I + I � I2 3 1.9 × 10-32 81 
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Figure 22:  Front (a) and back (b) views of the dual-pulsed valve photolytic nozzle used in the 
production of the IO radical molecular beam.  Cross-sectional view (c) of the channels cut in the 
block that holds the pulsed valves. 
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The basic design of the new pulsed valve assembly is similar to that used to 

produce the BrO radical molecular beam. The design of this dual pulsed valve assembly 

is shown in Figure 22.  The pulsed valves are seated in a solid brass block with 1 mm 

diameter channels bored to provide a mixing region for the reactive species.  The 

channels can be seen in the cross-section view in Figure 22.  The long vertical channel 

was constructed by first drilling a 2 mm bore from the top of the brass block connecting 

the two short channels from each pulsed valve opening.  The end of the long channel is 

then filled and sealed up to the point of the first horizontal channel.  After mixing, the 

gases expand into a 1 mm I. D., 3 mm O. D. quartz tube.  Because of the design of the 

vacuum chamber, the excimer laser beam enters from behind the pulsed valve assembly.  

For this reason, we use one 90° quartz prism to direct the beam through the quartz tube.  

The other prism is used to direct the light back out of the chamber to aid in alignment 

through the quartz tube.  The rapid self-reaction of IO radicals requires short transit 

times which can be achieved by irradiation close to the exit of the quartz nozzle. 

Figure 23 shows images taken that show that the ring associated with IO is only 

present when both O3 and I2 are present, the 248 nm photolysis laser is on to initiate the 

reaction.  In panels (d) and (e), it is also shown that the IO ring is also only present when 

the 455 nm photolysis and the 303 nm ionization beams are present.  It was also noted 

that there was no signal or IO ring when the ionization laser is moved off-resonance, 

although there is not a panel in Figure 23 depicting this.  The panels in Figure 23 were 

taken sequentially.  Panel (a) shows that when all the lasers and pulsed valves are on, the 

image shows rings associated with I2 photodissoiation and with IO photodissociation.  

Panel (b) shows an image with no O3, although the O3 pulsed valve is still allowed to 

open, introducing pure helium into the nozzle.  Panel (c) shows the result of the excimer 

being turned off, O3 and I2 are present, and both the 304 nm and 455 nm lasers are firing.  

Panel (d) shows the image when only the 455 nm light is absent.  Only the center spot 

from entrained iodine atoma and a very weak ring associated with I2 photodissociation at 

303 nm is seen in this image.  Panel (e) was collected with only the 303 nm laser off.  As 

expected, there is no signal observed.  Panel (f) was collected after the series of panels  
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described to show that when everything is turned back on, the IO ring reappears.  In 

between the collection of each panel, the presence of the IO ring was observed before 

moving on to the next settings.  

 

 

 

 

Figure 23:  Images showing IO beam production.  Panel (a) shows an image with all lasers and 
pulsed valves on, showing the IO feature.  In all subsequent panels, O3 and I2 pulsed valves are on, 
and all lasers  (248 nm, 303 nm, and 455 nm) are on except what is noted. Panel (b) was collected 
with  O3 off.  Panel (c) was collected with 248 nm laser off.  Panel (d) shows an image with the 455 
nm laser off.  Panel (e) was collected with the 303 nm laser off.  Panel(f) shows an image with all 
lasers and pulsed valves on. 

 

 

(a) (b) (c) 

(d) (e) (f) 
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CHAPTER III 

 

DIRECT DETERMINATION OF THE BOND DISSOCIATION ENERGY OF IO* 

 

A. Introduction 

The thermochemistry of IO, surprisingly, has been the subject of some 

controversy. The need for a reliable IO bond dissociation energy (BDE) is the result of 

IO reactions that are close to thermoneutral. For example, the IO + BrO reaction has 4 

thermodynamically accessible channels82:   

 

IO + BrO  � Br + OIO 
H � 0 kcal/mol (3.1) 

 � Br + I + O2 
H = -4.1 ± 2.6 kcal/mol (3.2) 

 � I + OBrO  
H = 5.5  ± 8.6 kcal/mol (3.3) 

 � IBr + O2 
H = -46.5  ± 2.6 kcal/mol (3.4) 

 

By comparison, the thermochemistry of the other halogen oxides, ClO and BrO, 

can be derived from Birge-Sponer83 extrapolation using the vibronic levels of the bound 

A 2Π3/2 state.84  Since only the lowest 6 vibrational levels are clearly resolved in the IO 

A 2Π3/2 - X 2Π3/2 absorption spectrum, due to strong perturbations induced by spin-orbit 

coupling to low lying repulsive electronic states85, there is considerable uncertainty 

associated with a Birge-Sponer extrapolation.  Predissociation of the (1-0) band of the A 
2Π3/2 state provides a rigorous upper bound to the ground state bond dissociation (BDE) 

of <62.8 kcal/mol. Birge-Sponer extrapolation of the lowest 6 vibrational levels in the A 
2Π3/2 state by Vaidya and co-workers yielded a BDE of 43.8±4.6 kcal/mol.86 Subsequent 

studies using a similar spectroscopic analysis have reported comparable values.84,87,88  

                                                 
* Reproduced in part from “Ion imaging study of IO radical photodissociation: Accurate bond dissociation 
energy determination” K. S. Dooley, J. N. Geidosch, and S. W. North, Chem. Phys. Letts., 457, 303 
(2008).  Copyright 2008 Elsevier. 
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Phillips and Sugden measured IO emission as a function of temperature in an I2 seeded 

H2/O2 flame.89 The results were interpreted in terms of the equilibrium reaction, 

MIOMOI +↔++     (3.5) 

and on the basis of variation of the equilibrium constant with temperature the authors 

deduced a much higher IO BDE value of 57±6 kcal/mol. Molecular beam scattering 

measurements of the O(3P) + ICl → IO + Cl reaction yielded a value of 53±3 kcal/mol 

based on statistical modeling of the product kinetic energy distribution.90 Subsequent 

molecular beam studies by Buss et al. recommended a slightly larger value of 55±2 

kcal/mol.91,92 Recently, Peterson et al. reported an IO BDE of 54.2±0.6 kcal/mol based 

on high-level ab initio calculations using both direct methods and employing ionization 

energies and ion cycles.93    The authors also reported an experimental value derived 

from the measured ClO + IO → OClO + I reaction enthalpy94 and an improved value for 

the OCl-O BDE95  yielding an IO BDE of 55.3±0.5 kcal/mol in reasonable agreement 

with calculations.  There has also been a recent paper by Kaltsoyannis and Plane that 

report quantum chemical calculations on various atmospherically relevant iodine 

containing species including IO.96 A summary of the previous measurements and 

calculations of the bond dissociation energy can be found in Table 3.   
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Table 3:  IO bond dissociation energy determinations from past measurements. 

 
Study Method BDE (kcal/mol) 

Gaydon (1948) Birge-Sponer Extrapolation 46±5 

Huber and Herzberg (1979) Birge-Sponer Extrapolation 43 

Radlein et. al. (1975) Cross Molecular Beam Study of 
ICl + O � IO + Cl 53 

Reddy et al (1989) Fitting 5 vibrational lines (bad) 58.64±.3 

Ruscic and Berkowitz (1994) Mean of Radlein and Gaydon 50±5 

IUPAC (2000) Based on kinetic data for IO ClO 
reaction by Bedjanian (1997) 57.4 

Peterson and coworkers 
(2005) Theory 54.31±1 

Kim et. al. (2006) Calculated based on 
fH(BrO) and 
kinetic data for I + BrO � IO + Br 55.8±1 

 

 

 

 Velocity-map ion imaging is a powerful method for the direct determination of 

accurate bond dissociation energies.97,98,99  Wrede et al. have shown that for jet-cooled 

closed-shell species, spectroscopic accuracy is possible in the case of IBr.  We have 

recently reported BDE values for the ClO and BrO radicals of 63.45±0.06 kcal/mol and 

55.9±0.1 kcal/mole respectively using photodissociation ion imaging.100 In this chapter, 

the study of halogen oxide photodissociation dynamics is extended to include IO which, 

to our knowledge, has not been investigated using the molecular beam method. 

 

B. Experimental Details 

Experiments were performed using a velocity-map ion-imaging apparatus that 

has been described in detail in Chapter II.  The dissociation beam at 454.9 nm, 
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corresponding to the bandhead of the 1-0 transition, was generated using the Exciton dye 

Coumarin 450 in the LAS laser system.  No frequency doubling was needed. The probe 

beam was generated by using the PDL laser operating on the dye Rhodamine 640 

followed by frequency doubling.  No scanning of the Doppler profile of the REMPI 

transition was needed due to the broad bandwidth of the laser and the slow velocity of 

the iodine fragments. The iodine atoms I(2P3/2) were probed using 2+1 REMPI 

transitions at 304.67 nm (5p 2P3/2 � 6p 2D5/2).101 The IO molecular beam was produced 

using the dual pulsed valve photolytic assembly described in Section J of Chapter II.  Ion 

optic voltages in order starting at the optic closest to the skimmer are: 2000 V, 1784V, 

and 1560V. 

 

C. Results and Discussion 

The photodissociation of IO at 454.9, corresponding to the A 2Π3/2 - X 2Π3/2    

(1-0) bandhead region, was selected for two reasons. Firstly, the (v′,0) bands with v′=0-5 

of the A 2Π3/2 - X 2Π3/2 transition have been studied using cavity ring-down spectroscopy 

and the (1-0) band was shown to be strongly predissociated.102  Newman et al. 

determined a predissociation lifetime of 0.88 ps implying that the photofragment angular 

distribution should be highly anisotropic near the bandhead.103   In addition, the (1-0) 

band represents a compromise between the higher cross section of the (4-0) band and the 

increased sensitivity to the available energy closer to threshold.    

The upper panel in Figure 24 shows a typical image (left) and reconstruction 

(right) arising from the photodissociation laser at 454.9 nm and the probe laser at 304.6 

nm with the 248 nm source laser off. Only features consistent with I2 photodissociation 

at 454.9 nm and 304.6 nm are observed in the image. The lower panel in Figure 24 

shows raw and reconstructed I(2P3/2) images with the 248 nm source laser on. An 

additional ring, corresponding to 454.9 nm photodissociation of IO to yield the I(2P3/2) + 

O(3PJ) channel is clearly observed. The feature was not observed with either the probe or 

photodissociation laser blocked, either pulsed valve off, or with the probe laser tuned 

off-resonance. In addition, the appearance of the IO signal is sensitive to the 
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photodissociation wavelength. At shorter photodissociation wavelengths, beyond the 

bandhead, the signal is lost while at longer wavelengths the anisotropy is first observed 

to decrease significantly before the signal is finally lost. A similar effect has been 

recently reported, and its origin discussed, in the case ClO photodissociation.103  

Figure 25 shows the speed distribution (closed circles) derived from the images shown in 

the lower panel of Figure 24. The upper panel shows an expanded region from 900 m/s 

to 1200 m/s. The two features in the speed distribution are associated with I2 

photodissociation.104,105 The peak at 948 m/s is due to I2 photodissociation at 454.9 nm 

to give I(2P3/2) + I(2P3/2) fragments. We also observe the minor I(2P3/2) + I(2P1/2) channel 

which is not shown but can be seen in the raw and reconstructed images. The peak at 

1100 m/s is due to I2 photodissociation at the probe wavelength of 304.67 nm to give 

I(2P3/2) + I(2P1/2).106 The FWHM of these peaks correspond to a ∆v/v~0.03 which is close 

to the instrumental resolution and these two peaks provide an accurate pixel-speed 

calibration of the images. The lower panel shows an expanded region to highlight the 

feature, centered at 240 m/s, due to IO photodissociation at 454.9 nm. The FWHM of the 

feature associated with the I(2P3/2) + O(3PJ) channel arising from IO photodissociation at 

454.9 nm is approximately 24 m/s and is the result of several factors. The additional 

kinetic energy imparted to the iodine atom due to the ionization process is 3.4 m/s.45  It 

is also difficult to resolve spin-orbit states of the coincident oxygen atoms. The effect of 

the unresolved oxygen fine-structure distribution will be discussed below.     
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Figure 24: Labeled raw and reconstructed images of the I(2P3/2) fragment. Upper panel: raw I(2P3/2) 
ion image (left) and  reconstruction (right) collected with the source laser off. Lower panel: raw 
I(2P3/2) ion image (left) and  reconstruction (right) collected with the source laser on.    

 

 

 
I2 + 454.8 nm → I(2P3/2) + I(2P3/2)  

I2 + 304.5 nm → I(2P1/2) + I(2P3/2)  

I2 + 454.8 nm → I(2P1/2) + I(2P3/2)  

IO + 454.8 nm → I(2P3/2) + O(3PJ)  
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In Figure 25 the solid lines represent the forward-convolution simulation based 

on energy conservation,  

  

                             O
e

I
e

total
trans

IO
eJv EEEIODEhv ++=−+ )(0

0,,  ,   (3.6) 

 

where hv is the energy of the dissociation photon, )(0
0 IOD  is the bond energy of IO, 

I
eE and O

eE are the spin-orbit energies of I and O, and IO
eJvE ,,  is the initial internal energy 

of the IO radical.  

 An assumed statistical distribution of oxygen fine-structure states, i.e. O(3P2): 

O(3P1): O(3P0) = 0.625:0.375:0.125, provides a reasonable forward-convolution fit to the 

observed width of the speed distribution. We adjust a single value for the bond 

dissociation energy to provide the best forward-convolution fit to the I(2P3/2) + O(3PJ) 

channel shown as the solid line in the lower panel of Figure 25. We find a value of 54.9 

kcal/mol for the IO BDE provides the best fit to the data.  The width of each spin-orbit 

feature was fixed as the instrumental response function broadened by the additional 

kinetic energy imparted from the ionization process. Our assumption of a statistical 

distribution of oxygen fine structure states is consistent with previous measurements of 

the ClO and BrO oxygen spin orbit state distributions. If no O(3P2) fragments were 

formed in the dissociation the BDE would be overestimated by approximately 0.4 

kcal/mol.  Iterative adjustment of the spin-orbit branching ratios to obtain the best fit 

provided only marginal improvement. In all cases the best fits required a dominant 

contribution from the O(3P2) and lesser contributions from O(3P1) and O(3P0) states. Fits 

employing only a single oxygen spin state were markedly worse. 
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Figure 25: Speed distributions derived from I(2P3/2) images with the source laser on (closed circles). 
For clarity the relevant regions of the speed distribution are expanded and the identities of the peaks 
are clearly labeled. The solid lines are forward-convolution fits to the speed distribution.   
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In the following section, we address possible sources of experimental error 

arising from uncertainties in IO internal energy, wavelength calibration, the pixel to 

speed scaling, and ionization process. We conclude that these represent minor effects in 

the present experiment and do not alter the reported value or error bounds. Given the 

resolved nature of the bound-bound transitions in the excitation step, the role of spin-

orbit or vibrationally excited  IO photodissociation is minimal. In addition, such initial 

internal energy would be resolved in the speed distribution and is not observed. Since we 

excite near the rotational bandhead we estimate that the parent rotational energy is <0.1 

kcal/mol.  Any error in the photon energy of the dissociation laser has a direct effect on 

the derived bond dissociation energy. The dissociation wavelength was calibrated using 

a Cu-Ne hollow cathode lamp. An unlikely error of 0.1 nm in the wavelength would only 

change the derived bond energy of IO by ±0.02 kcal/mol. The pixel to speed scaling 

factor, which is critical in providing speeds from the measured images was determined 

accurately by fitting the data arising from I2 photodissociation at two wavelengths using 

the accurate bond dissociation energy for I2.107  We believe that any uncertainty caused 

by scaling factor is less than 0.6% leading to errors of only 1.5 m/s in the speed of I 

fragments associated with IO photodissociation and, therefore, a negligible difference in 

derived BDE. Although the I(2P3/2) fragment speeds are affected by excess kinetic 

energy imparted to the cation during the 2+1 REMPI process, this effect will not change 

the peak positions, but would only contribute to the observed width of the peaks. Given 

the sources of errors and the sensitivity of the measurement to the A 2Π3/2 threshold we 

believe a conservative estimate of the uncertainty in the bond dissociation energy is 
2.0
4.09.54 +

−  kcal/mol.  This value is within the error bounds of previous IO flame studies 

(57 ± 6 kcal/mol)89 and molecular beam studies (53 ± 3 kcal/mol and 55 ± 2 kcal/mol)90, 

91, 92 and  in excellent agreement with a more recent calculated value by Peterson of 55.2 

± 0.5 kcal/mol.108  

The photofragment angular distribution was fit according to109 

              )],(cos1[
4
1

)( 2 θβ
π

θ PI +=              (3.7) 
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where β  is the spatial anisotropy parameter which is +2 for a purely parallel transition 

(∆Ω=0) and –1 for a purely perpendicular transition (∆Ω=±1), )(cos2 θP  is the second 

Legendre polynomial, and θ  is the angle between the fragment recoil direction and laser 

polarization direction. Using pBASEX, we find a best-fit anisotropy parameter of 

1.8�0.1 for the I(2P3/2) + O(3PJ) channel.  This value is consistent with the parallel 2Π3/2 

– X  2Π3/2.  In a recent article, Kim et. al. studied the change in the photofragment 

anisotropy as a function of excitation wavelength within vibrational bands of ClO. 103  

The observation of stronger anisotropy near the bandhead and more isotropic 

distributions for higher rotational levels was described using the treatment of Mukamel 

and Jortner.110
  Because the measurement anisotropy parameter for IO photodissociation 

in the present experiments is nearly limiting, we conclude that we are exciting near the 

bandhead of the 1-0 vibrational transition.  This provides further confirmation of the 

dissociation wavelength, and increases our confidence that we are observing only the 

lower rotational states of IO. 

 

D.  Summary 

We have studied the wavelength-dependent photodissociation dynamics of 

expansion-cooled IO radical using velocity map ion imaging. This study represents the 

first reported molecular beam study of the IO radical. Based on the measured 

photofragment speed distribution following excitation at 454.9 nm we have directly 

determined the ground state bond energy of IO to be )(0
0 IOD  = 2.0

4.09.54 +
−  kcal/mol.  

Using thermochemical constants of I and O ( )(0 OH K
f∆ = 58.98 ± 0.02, )(298 OH K

f∆ = 

59.55 ± 0.02, )(0 IH K
f∆ = 25.61 ± 0.01, )(298 IH K

f∆ = 25.52 ± 0.01, all values given are in 

kcal/mol)111, our determined )(0
0 IOD  corresponds to a 298 K heat of formation of 

)(298 IOH f∆ = 4.0
2.02.29 +

−  kcal/mol.  This measurement reduces the uncertainty of this value 

and hence other thermodynamic values that rely on the IO heat of formation. We are 
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confident that this study will aid in the improvement of atmospheric modeling 

particularly in the marine boundary layer where IO is especially relevant. 

Kim et al. recently studied the photodissociation of BrO and measured the bond 

dissociation energy.  Given the value for the heat of formation of BrO at 298K  

( 1.05.29)( ±=∆ ° BrOHf  kcal/mol) determined in that work and the forward and 

reverse rate constants determined by Bedjanian et al112, 113  for the reaction 

 IBrOIOBr
f

r

k

k

++ ↔  (3.8) 

)(IOHf
°∆ at 298K was calculated to be 29.5 kcal/mol, which is within the error bounds 

of the value determined in the current work. 
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CHAPTER IV 

 

PREDISSOCIATION DYNAMICS OF ClO 

 

A. Introduction 

 It is well established that halogen oxides are important intermediates in the 

catalytic destruction of stratospheric ozone.114, 115, 116 These species are also ideal 

benchmark systems for open-shelled photodissociation dynamics, particularly the 

comparison of experiment and theory, for several reasons; their electronic spectroscopy 

is well studied, both atomic fragments can be probed using state-selective ionization, and 

diatomic molecules are amenable to interrogation using high-level ab initio theory. A 

recent study of the state-selected photodissociation of OH (A 2Σ+) highlights the progress 

in describing such systems.117,118 

 The electronic spectroscopy of ClO, in particular transitions between the bound X 
2Π3/2 and A 2Π3/2 states, has been well studied.119,120,121,122,123 Vibronic transitions to 

bound levels of the A 2Π3/2 state are responsible for resolved bands at wavelengths 

between 316 nm and the dissociation threshold at 263.01±.01 nm.  At wavelengths 

shorter than 263 nm the spectrum is characterized by a broad continuum that terminates 

near 220 nm, a manifestation of the continuity of the Franck-Condon intensity involving 

the A 2Π3/2 state .  

There have been two recent ab initio investigations of the ClO excited state 

potentials.   Lane et al. employed large Dunning basis sets and the complete active space 

self-consistent field (CASSCF) method to calculate the ground and excited state 

potentials of ClO.124  In an independent study, Toniolo et al. used a multiconfigurational 

SCF plus CI method to calculate the ClO excited states. 125  A focus of both studies was 

to gain an understanding the origin modeling of the vibrational-dependent 

predissociation rates of the A 2Π  state.  Because it is a small, open-shelled species, it 

makes accurate theoretical calculations challenging, but possible.  For example, one 

challenging aspect is that there are 17 calculated unbound electronic states that cross the 
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A 2� �  and couples it to the X 2� �  state products Cl(2PJ) + O(3PJ). 126  Figure 26 shows a 

schematic of the potential energy surfaces of ClO.  Below the O(1D2) threshold, the 

A(2Π3/2) state will predissociate via one of the repulsive states that crosses it leading to 

dissociation to one of six possible asymptotic states. 

 

 

 

 

Figure 26:  Schematic diagram of the predissociation of ClO. 
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 There have been several recent experimental studies of ClO photodissociation in 

the continuum region,127,128,129 near the O(1D) threshold,129,130,131 and below the O(1D) 

threshold.129,132  Most of these studies focused on assessing the relative importance of the 

O(1D) and O(3P) product channels.  Below the dissociation threshold of the A 2Π3/2 state, 

there are six correlated fine-structure states that are energetically accessible: 

 

ClO(X 2�3/2)  →   ClO(A 2�3/2)  → Cl(2P3/2) + O(3P2)   (4.1) 

     → Cl(2P3/2) + O(3P1)   (4.2) 

     → Cl(2P3/2) + O(3P0)   (4.3) 

     → Cl(2P1/2) + O(3P2)   (4.4) 

     → Cl(2P1/2) + O(3P1)   (4.5) 

     → Cl(2P1/2) + O(3P0)   (4.6) 

 

Recently Kim et al. examined the v′-dependent predissociation of ClO below the O(1D) 

threshold and reported product state branching ratios.132 Although fine-structure 

distributions averaged over the coincident fragment state provide considerable insight, 

the correlated fine-structure distributions are often far more revealing. The observed 

correlated branching ratios measured by Kim et al. were non-statistical and highly 

dependent on the initial A 2Π3/2 vibrational state (v′=6-11). Figure 27 is an illustration of 

the correlated state branching ratios of the 11-0 band.  The numbers inside the boxes 

indicate the branching for each individual channel, while the bars along the edges show 

the overall branching across an atomic state.  The image on the right is simulated data in 

the case that the dynamics are statistical.  The image on the right is the measured data for 

the 11-0 band.  The measured branching appears statistical at the state averaged level but 

is highly structured at the correlated level.  An advantage of ion imaging is that we are 

able to measure the correlated branching ratios which show that the dynamics are not in 

fact statistical. 
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Figure 27: Illustration of the statistical and experimental correlated branching ratios of the 
predissociation of the v’=11 band of ClO. 

 

 

Such measurements reflect not only the coupling of the A 2Π3/2 state to 

dissociative states in the Franck-Condon region (the crossing region) but also coupling 

between the dissociative states at longer internuclear separation (the recoupling zone). 

Initial analysis indicated that the fine-structure branching was more consistent with the 

diabatic (sudden) than the adiabatic limit using the couplings in the Franck-Condon 

region derived from the work of Lane et al.124 However, there were significant 

differences between the diabatic prediction and experiment suggesting errors in the 

initial coupling and/or dynamical effects in the exit channel. In the present paper we 

extend the experimental work of Kim et al. to lower vibrational levels of the A 2Π3/2 state 

(v′=0-5) and expand the analysis of Lane et al. to include additional predissociative 

states. In addition, a comparison between the diabatic limit and the results of coupled 

channel calculations provide insight into the role of exit channel coupling in the 

dissociation. 
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B. Experimental Details 

 The velocity-map ion-imaging apparatus employed in the present experiments 

has been described in Chapter II.  The photolysis beam (285-310 nm) was generated by 

the PDL laser system with output frequency doubling by a Spectra Physics WEX-1.  The 

oxygen atoms [O(3P2,1,0)] were state-selectively probed using 2+1 REMPI transitions 

near 226 nm133  using the frequency doubled output of the LAS laser system.  The 

molecular beam of ClO was formed by the method outlined in Section H of Chapter II. 

 

C. Results and Discussion 

Experimental Measurements 

 Figure 28 shows typical O(3P0,1,2) ion images (left) and reconstructions (right) 

arising from ClO photodissociation at 299.50 nm corresponding to the bandhead region 

of the v′ = 4 level of the A 2Π3/2 state.  As previously noted, it is possible to resolve the 

contributions from Cl(2P3/1) and Cl(2P1/2) formed in coincidence with each probed 

oxygen fine-structure state. The two rings evident in the O(3P2) image correspond to the 

formation of coincident Cl(2P3/2) and Cl(2P1/2) fragments. The single ring observed in the 

O(3P1) and O(3P0) images indicate that these states are only formed in coincidence with 

Cl(2P3/2).  Figure 29 shows velocity distributions that correspond to the images shown in 

Figure 28.  Forward convolution fitting (solid line) of the speed distributions permits an 

accurate measurement of the Cl(2P3/2)/ Cl(2P1/2) branching ratio for each O(3PJ) fragment.  

These ratios are highly reproducible, with an estimated error of less than 3%.  Once the 

Cl(2P3/2)/ Cl(2P1/2) branching ratio has been determined for each oxygen fine-structure 

state the correlated fine-structure branching ratios for each vibrational level probed are 

obtained by including the weighting of each oxygen state based on the integrated 2+1 

REMPI signals.134  Figure 30 shows Doppler profiles of the 2 + 1 REMPI signals and 

their fits.  Integral values shown in Figure 30 provide the O(3PJ) weighting for the v’= 4 

transition.  Combining the Cl(2P3/2)/ Cl(2P1/2) branching ratio determined from Figure 4.4 

with the O(3P2)/ O(3P1)/ O(3P0) branching ratios from the 2 + 1 REMPI data make  
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Figure 28:  Raw O(3PJ) images (left panels) and reconstructed images (right panels) arising from 
ClO photodissociation at 299.50 nm. 
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Figure 29: Speed distributions arising from the O(3PJ) images shown in Figure 28 from the 
photodissociation of ClO at 299.5 nm.  The traces show data as symbols (�) overlaid with a forward 
convolution fit (solid line).  Ratios of the peak areas (Cl(2P1/2) /Cl(2P1/2)) are shown in the upper right 
corner of each panel. 
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Figure 30:  2 + 1 REMPI signals for the O(3PJ) states taken while the probe laser is scanned across 
the transition during the dissociation of ClO using 299.5 nm light.  The traces show the data as a 
solid black line, and a forward convolution fit of the data as a solid red line.  Integral values of the   
2 + 1 REMPI signals are shown beside the traces. 

 

 

possible the calculation of full state-dependent correlated branching ratios for the 

predissociation of each vibrational band studied.  For example, the data shown in Figures 

28 and 29 provide the correlated branching ratios for the v’=4 band shown as 

“Experimental” in Table 4. 

 Table 4 shows the experimental correlated branching ratios measured in this 

study for v′=0-5 and includes previous data from ref. 132 (bold). Uncertainty in the 

experimental branching ratios is dominated by determination of the oxygen fine-

structure ratio. We observe that the O(3P2) signal is affected by a small amount of probe 

laser background which was minimized by employing low probe laser power. Based on 

multiple measurements, we find that the O(3P2)/ O(3P1)/ O(3P0) ratio for a given v′ state 

is very reproducible and we estimate that the uncertainty for this ratio is approximately 

10%.  In contrast, the Cl(2P3/2)/Cl(2P1/2) branching derived from a single oxygen state are 

very robust with errors of less than 3%.  It should be noted that we assume that 

experimental branching ratios for each vibrational state are independent of J′. Howie et 

al. observed no evidence of J′-dependent predissociation indicating that the primary 
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interaction of the dissociative states with the A 2Π3/2 state is via spin-orbit coupling.123 In 

addition, the J′-dependence of the correlated state branching ratios was explicitly 

examined by Kim et al. for the v′=6 and v′=10 bands. No change in correlated state 

branching ratios was observed as the photolysis laser was tuned from the bandhead to 

higher J′-states.132  There are several immediate conclusions that can be reached from 

even a cursory analysis of the experimental branching data. First, by inspection the 

results are inconsistent with a statistical (strong coupling) limit and exhibit a clear v′-

dependence. Second, the results are inconsistent with adiabatic dynamics which does not 

predict the number of asymptotic channels that are observed in the experiment.  This is 

in agreement with previous photodissociation experiments above the O(1D) threshold. In 

these experiments dissociation originating from excitation to the continuum of the A 2Π 

state, based on observed parallel anisotropy, resulted in only a minor yield of O(3PJ) 

fragments suggesting little curve crossing. Finally, the Cl(2P1/2) + O(3P0) channel, despite 

being energetically accessible, is not observed at any wavelength.  

 

 

Table 4:  Correlated fine-structure branching ratios from ClO photodissociation.  The bold values 
are from experiment and underlined values exceed the limits of the diabatic model. 
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 The present experiments involve the X 2Π3/2 - A 2Π3/2 parallel transition (
� = 0) 

corresponding to an intrinsic anisotropy parameter of � = 2. We observe no differences, 

i.e. with the mutual error bounds, between the spatial anisotropies of individual O(3PJ) 

images at a given photolysis wavelength. This is consistent with a common origin for the 

products and suggests that fragment orbital alignment is not influencing the measured 

signals. However, we observe anisotropy parameters less than the limiting value for all 

ClO data collected. Since the O(3P0) fragment has no angular momentum the measured 

ion images reflect only the spatial anisotropy.  For the v´ = 4 image shown in Figure 28, 

the O(3P0) is best fit by an anisotropy parameter of 0.65±0.10. A recent study provides a 

method to evaluate photofragment spatial anisotropy as a function of excitation 

frequency, dissociative state lifetime, and the rotational structure. 135,136  We find that the 

measured anisotropy parameters are well reproduced using the reported spectroscopic 

information.  

 

Modeling of the Correlated Fine-Structure Distributions 

 In our initial study on ClO predissociation132 we employed the 3-state model of 

Lane et al. to calculate the fine-structure branching ratios in the adiabatic and diabatic 

limits. The significant differences between the experiment and the diabatic limit 

treatment at the correlated level were attributed to two factors; 1) incorrect coupling of 

the dissociative potentials to the A 2Π3/2 state which provides initial weightings of the 

dissociative potentials for the diabatic analysis 2) the neglect of exit channel couplings 

which can alter the distribution established in the crossing region. Although both of 

these factors ultimately influence the fine-structure branching ratios, only errors in the 

coupling in the Franck-Condon region will affect the predissociation rates. Therefore, as 
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 a first step in modeling the experimental branching ratios we have re-optimized the 

dissociative potentials of Lane et al., altering both the locations of the crossings with the 

A 2Π3/2 state and the coupling constants, using the experimental predissociation rates as 

the constraint.121,123  The BCONT program137,138 was used to calculate predissociation 

rates and an optimization code, based on an amoeba algorithm, iteratively adjusted 

coupling constants between each dissociative state and the A 2Π3/2 state and floated the 

crossing point for each dissociative state until the best fit to the experimental rates was 

obtained.  We have used R-independent coupling constants for potentials in BCONT, 

including the 3 2Π state despite the strong electrostatic coupling with the A 2Π3/2 state 

which should be R-dependent as noted previously.124     

 We find that only four dissociative potentials are required to obtain an acceptable 

fit to the experimental rates:  the 24


- , 12

, 14


, and 32
�.  It should be noted that the 14


 

and the 14


+ states both cross the A 2Π3/2 state near R=1.95 Å and thus the relative 

importance of each state is difficult to assess. We chose to fit only the 14

 state based on 

the relative 14

 and the 14


+ coupling constants reported by Toniolo et al.  Our derived 

coupling constant for the 1 4∆ should, therefore, be considered as a sum of the coupling 

constants for both the 14

 and 14


+ states. The inclusion of additional dissociative states 

beyond the four states employed did not provide significant improvement of the fit.  The 

results of the optimization are shown in Figures 30 and 31.  
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Figure 31:  The A 2ΠΠΠΠ3/2 excited state potentials for ClO from reference 123 and the A 2ΠΠΠΠ3//2 
vibrational states are indicated by the solid lines and the dashed lines represent the results of the 
optimization described in the text. RKR curve calculated in reference 122.  

 

Figure 32: V’-dependent predissociation rates for ClO.  Experimentally determined v’-dependent 
predissociation rates of the A 2ΠΠΠΠ3/2 state (Reference 123).  The dashed line is the model from 
Reference 124 and the solid line is the result of the optimization described in the text.  
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 Figure 31 illustrates that the final potentials are very close to the initial 

potentials of Lane et al. The largest shift is found for the 1 2∆ state which crosses the A 
2Π3/2 state near the inner wall. The predissociation rates predicted for this potential 

results in a broad, non-oscillatory, v′-dependence as discussed by Lane et al. We find a 

significant improvement to the fit of the experimental predissociation rate data (Figure 

32) compared to the model of Lane et al. which included only the 3 2Π, 1 4Σ+, and the 2 
4Σ- dissociative states.  The local maximum in the v′-dependent rates coincides with the 

crossing of 3 2Π state.124 The coupling constants between the dissociative states and the 

A 2Π3/2 state derived from the optimization are given in Table 5. The ab initio coupling 

constants calculated by Toniolo et al. and the derived coupling constants of Lane et al. 

are provided in Table 5 for comparison.  Overall there is excellent agreement with the 

optimized results of Lane et al. and purely ab initio results of Toniolo et al. considering 

the combined treatment of the 14

 and 14


+ states. We do find, however, a lower 

coupling constant for the 3 2Π state of approximately 20%. The lower derived coupling 

constant for this state, whose interaction with the A 2Π3/2 state is dominated by 

electrostatic coupling, is consistent with the lack of observed perturbation in the vibronic 

spectrum. The decrease in the 3 2Π coupling is a consequence of including the broad v′-

dependence contribution of the 1 2∆ state and the constraint of matching the 

predissociation rate maximum at v′=6. 

 

 

Table 5:  Coupling constants between the A 2ΠΠΠΠ3/2 state and dissociative electronic states. 

  ref 40 ref 39 this work 

14
+  49.7 cm-1 13 cm-1 N/A 

24
-  82 cm-1 69 cm-1 71.6 cm-1 

32
�  125.4 cm-1 124 cm-1 99.2 cm-1 

14

  N/A 28 cm-1 46.5 cm-1 

12

  N/A 57 cm-1 59.9 cm-1 
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 The fine-structure branching ratio for each vibrational state is obtained by 

multiplying the normalized weighting of each dissociative state, based on the BCONT 

predissociation rates for each state, by the diabatic matrix (Table 6) which reflects the 

partial contribution of atomic states to each molecular state.132,139,140 The adiabatic 

correlation diagram is shown in Figure 33.  The fine-structure branching ratios 

calculated using this procedure are provided in Table 3. We find that the branching 

calculated from the optimized potentials provide an overall better fit to the experimental 

data than the original 3-potential model of Lane et al.  Given the complex nature of the 

observables it is often more instructive to examine alternative representations, in this 

case summed over coincident fragment populations. The diabatic prediction of the 

overall v′-dependent Cl(2P1/2):Cl(2P3/2) distributions shown in the bottom panel of Figure 

34 is in reasonable agreement with experiment. By comparison, the adiabatic limit  

 

 

Table 6:  Partial contributions of atomic fine-structure states to ClO molecular states as calculated 
in reference 18.   

    ClO Molecular States   
Atomic States 1 4+ 2 4- 3 2� 1 2
 1 4
 

Cl(2P3/2) + O(3P2) 0.2500 0.2778 0.3333 0.1667 0.1667 
Cl(2P1/2) + O(3P2) 0.3333 0.2778 0.3611 0.1111 0.2222 
Cl(2P3/2) + O(3P1) 0.2500 0.2778 0.2222 0.3889 0.2778 
Cl(2P1/2) + O(3P1) 0.0000 0.0556 0.0278 0.1111 0.2222 
Cl(2P3/2) + O(3P0) 0.1667 0.1111 0.0556 0.2222 0.1111 
Cl(2P1/2) + O(3P0) 0.0000 0.0000 0.0000 0.0000 0.0000 
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Figure 33:  The adiabatic correlation diagram for the ClO A(2ΠΠΠΠ3/2) predissociation.  This diagram 
shows the asymptotic limit of each dissociative state.  Color bars (left) represent the fraction of 
predissociation due to the repulsive state, and branching ratio (right). 

 

 

predicts primarily Cl(2P1/2) in contrast to observation. The overall Cl(2P1/2):Cl(2P3/2) 

branching is consistent with the statistical prediction despite clear evidence at the 

correlated level for non-statistical behavior and demonstrating the advantage of 

correlated measurements.  Both exhibit fluctuations around a similar average value 

although the variation in the experimental data is considerably larger. Since the 

individual atomic contributions to each molecular state (Table 5) do not show significant 

variability, the diabatic prediction, which represents a linear combination of these 
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values, is not expected to exhibit large fluctuations in the product branching ratios. The 

v′-dependent O(3PJ) distributions are shown in Figure 35. The experimental values (top 

panel) again exhibit greater fluctuations than the diabatic model. Interestingly both 

experiment and the diabatic model on average show significantly higher yields for the 

O(3P1) and O(3P0) products than predicted by the statistical (strong coupling) limit.  

However, the increased yield of O(3P0) from v′=3 to v′=8, due to an increase in the 

Cl(2P1/2) + O(3P0) channel over this range of v′, is not well reproduced.  

 A better comparison between experiment and theory, both from the standpoint of 

experimental confidence in the values and an increased level of detail, involves the 

Cl(2P1/2):Cl(2P3/2) branching fractions for each O(3PJ) state and is shown in Figure 36. 

The absence of the Cl(2P1/2) formed in coincidence with O(3P0) is consistent with the 

diabatic prediction. This is not surprising given the lack of contribution from this atomic 

channel to any of the dissociative considered in the model. The experimental data exhibit 

clear trends in the Cl(2P1/2):Cl(2P3/2) branching, however, which are not reproduced by 

the model. As discussed previously these values are derived from the relative intensities 

of features associated with the formation of Cl(2P1/2) and Cl(2P3/2) in a single image and 

are therefore relatively insensitive systematic errors. These differences, specifically the 

increase in the Cl(2P1/2) between v′=4 and v′=10 in coincidence with O(3P1), is 

inconsistent with the diabatic model. We also note that several fine-structure states are 

observed with populations that exceed their partial contributions to any dissociative 

states. These values are underlined in Table 4.  The fact that these observations cannot 
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Figure 34:  Overall Cl(2P3/2) (black) and Cl(2P1/2) (white) branching ratios as a function of A 2ΠΠΠΠ3/2 
vibrational level. The results from experiment, closed channel calculations, and the diabatic limit 
model, are shown in the top, middle and bottom panels respectively. 
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Figure 35:  Overall O(3P2) (black), O(3P1) (grey), and O(3P0) (white) populations for each as a 
function of A 2ΠΠΠΠ3/2 vibrational level. The results from experiment, closed channel calculations, and 
the diabatic limit model, are shown in the top, middle and bottom panels respectively  
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Figure 36:  Cl(2P3/2) and Cl(2P1/2) branching ratios for each oxygen fine structure state as a function 
of A 2ΠΠΠΠ3/2 vibrational level. The results from experiment, closed channel calculations, and the 
diabatic limit model, are shown in the top, middle and bottom panels respectively.  

 

 

 

be achieved by any set of the potentials considered in the model, including the 1 4Σ+ 

state, is clear evidence that exit channel coupling must play a role.   

 

D.  Summary 

 In an effort to assess the role of exit channel coupling we have performed closed 

channel calculations using the optimized potentials. The results of the calculations are 

given in Table 5 and shown in Figures 32-34. The coupled channel calculations are 

generally in better agreement with experiment than the diabatic model predictions. In 

most cases where the measured branching ratio for a specific final state exceeded the 

diabatic prediction the closed channel calculation approaches the experimental value. In 
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particular, the Cl(2P1/2):Cl(2P3/2) branching for the O(3P1) from the closed channel 

calculation captures the distinctive trend observed in the experiment (Figure 34). In 

summary, progress towards a detailed understanding the dissociative dynamics of ClO is 

encouraging but differences between experiment and theory, outside the estimated 

experimental error bounds, remain. Further work to resolve these outstanding issues is 

warranted. 
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CHAPTER V 

 

PHOTODISSOCIATION DYNAMICS OF BrO 

 

A.  Introduction 

 The absorption spectroscopy of BrO has been well studied.141, 142, 143, 144, 145, 146, 

147, 148, 149  The spectrum consists of a vibrational progression from 380 nm to 285 nm, 

near the A 2Π3/2 dissociation limit.  Figure 37 shows the absorption spectrum of BrO as 

recorded by Wilmouth et al.149  Most of the states are broadened due to the speed of the 

predissociation, although some bands (v’= 4, 7, and 12) are somewhat rotationally 

resolved.  Recent studies by Wilmouth et al. and Orr-Ewing and coworkers have 

characterized the predissociation lifetimes of the v’= 7, and 12 vibrational bands by 

fitting the rotational structure of the band.148,149   

The results are somewhat contradictory as Orr-Ewing and coworkers found the 

lifetime across the band to be a constant value while Wilmouth et al. found that the  
 

 

 

Figure 37: Absorption spectra of the 7-0 (a) and 12-0 (b) vibrational bands measured and modeled 
by Reference 149.   
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lifetime varied across the bands.  Orr-Ewing and coworkers employed cavity ring-down 

spectroscopy to study the rotationally resolved 7-0 and 12-0 transitions and determined 

predissociation lifetimes for these transitions of 1.7±0.2 ps for the 7-0 band and 1.3±0.2 

ps for the 12-0 band based on the spectral linewidths.148  In contrast, Wilmouth et al. 

observed J’-dependent linewidths for the 7-0 and 12-0 bands indicating predissociation 

induced by molecular rotation as well as spin-orbit coupling, in contrast to the case for 

ClO.149   

 The BrO radical has been studied through ab initio studies as well, although the 

difficulty of this system due to the large spin orbit coupling of bromine has caused this 

task to be attempted in only a few studies.150, 151, 152  The optimized geometry of the BrO 

radical and cation was determined through high level ab initio calculations by Francisco 

et al.150   In this study, they also determined the adiabatic electron affinity 

and ionization potentials of BrO.  In a subsequent study, Li et al.  used high level 

calculations to investigate the unbound states that predissociate the A 2Π3/2 state of BrO 

as well as the vertical excitation energies for the excited states of BrO.151
  K. Peterson 

has recently done extensive ab initio work on the BrO system, providing electronic 

energy potentials including the ground (X 2Π3/2) and excited (A2Π3/2) bound states, as 

well as numerous unbound excited states.  He also determined coupling constants for the 

predissociation of the A2Π3/2 state by the calculated unbound states.152  We are 

extremely grateful to him for sharing his unpublished work with us, as it is an important 

foundation for the work shown here.  The potentials look very similar to the ones shown 

in Figure 26. 

 Similar to the case of IO, accurate thermodynamic measurements of BrO are 

important to the atmospheric modeling community as there are reactions that depend 

strongly on the accuracy of these constants.  A fundamental physical constant of much 

importance is the bond dissociation energy of BrO.  Nevertheless, in the past, studies 

that determine this value rely on spectroscopic measurements to determine the bond 

dissociation energy of the molecule based on the positions of the vibrational band 

origins.  These methods require some estimation from the use of a graphical 
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extrapolation method such as that of Birge-Sponer or Berstein-Leroy extrapolation.  

Unfortunately, the intensities of the absorption of the low vibrational levels is very low 

in the case of BrO as can be seen in Figure 37 causing large errors in the derived bond 

dissociation energy from the extrapolation methods.  Recently, Wilmouth et al. 

determined the bond dissociation energy of BrO using a graphical Birge-Sponer method 

resulting in a value of 55.2±0.4 kcal/mol.149  In a time of flight mass spectrometry 

(TOFMS) study, Zou et al. estimated the BrO bond dissociation energy to be 55.8±1.0 

kcal/mol based on the derived speed distribution at 355 nm.153 We recently measured the 

bond dissociation energy of BrO using the velocity map ion imaging technique that has 

been shown recently to provide accurate direct measurement of bond dissociation 

energies of diatomic molecules.154, 155, 156
 In this investigation, measurements of low 

velocity photofragments resulting from photodissociation just above the O 1D2 threshold 

provide an accurate and direct determination of the A 2Π3/2 state dissociation threshold 

of 35418 ± 35 cm−1, leading to a ground state bond energy of D0
0 (BrO) = 55.9 ± 0.1 

kcal/mol.   

 To date, the photodissociation of BrO has received less attention than the 

analogous ClO system. To our knowledge, there have been only two experimental 

studies of BrO photodissociation that has measured the nascent products.153, 157 Zou et al. 

studied the photodissociation of BrO in a molecular beam produced by electric discharge 

through a mixture of Br2 + O2 using state-selected time-of-flight mass spectroscopy 

(TOFMS).153  In this study, Zou et al. measured a relative Br(2P3/2)/Br(2P1/2) branching 

ratio of 1.5 in coincidence with O(3P2) at 355 nm.  Kim et al. presented a more detailed 

examination of the photodissociation dynamics of BrO at 355 nm and at wavelengths 

between 278 and 281.5 nm. This study focused on the relative electronic product 

branching ratio and photofragment angular distributions at 355 nm to address the role of 

predissociation dynamics. Kim et al. also presented an investigation of the 

Br(2PJ)+O(1D2) channel just above the O(1D2) dissociation threshold. 

 Correlated fine structure branching ratios of the predissociation of BrO are 

measured in the current study.  Similar to that of ClO which were presented in Chapter 
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IV, these measurements facilitate the comparison of experimental measurements to ab 

initio calculations.  The previous study by Kim et al. introduced above provides a 

measurement of the correlated branching ratios for the v’=4 band at 355 nm.  The 

current study measures the branching ratios for predissociation of v’= 18-5.  Below 

v’=4, the absorption coefficient is inadequately low to make further measurements 

feasible.   

 The current work also provides another direct measurement of the bond 

dissociation energy of BrO which complements the determination of Kim et al.157
 

Although the current measurement has a much larger error associated with the bond 

dissociation energy, it is in agreement with the measurement of Kim et al.  We also use 

the software BCONT to explore the ab initio results of K. Peterson.  The potentials and 

coupling constants calculated in that study are shifted and adjusted to provide insight 

into the predissociation of the A 2Π3/2 state of BrO. 

 

B.  Experimental Details 

The velocity-map ion-imaging apparatus employed in the present experiments 

has been described in Chapter II.  The photolysis beam (285-310 nm) was generated by 

the PDL laser system with output frequency doubling by a Spectra Physics WEX-1.  The 

oxygen atoms [O(3P2,1,0)] were state-selectively probed using 2+1 REMPI transitions 

near 226 nm158  using the frequency doubled output of the LAS laser system.  The 

molecular beam of BrO was formed by the method outlined in Section I of Chapter II.  

Ion optic voltages used for this experiment are 3000 V for the repeller, 2662 V for Lens 

1, and 2370 V for Lens 2. 

 

C.  Results and Discussion 

Experimental Branching Ratio Results 

 Figure 38 shows typical O(3P0,1,2) ion images (left) and pBASEX reconstructions 

(right) arising from BrO photodissociation at 329.6 nm corresponding to the bandhead 

region of the v′ = 9 level of the A 2Π3/2 state.  The images were reconstructed using the 
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commercially available software BASEX for speed distributions.  Figure 39 shows the 

velocity distributions derived from the images shown in Figure 38.  The velocity 

distribution data is shown with a forward convolution fit overlay.  Similar to the case of 

ClO explained in Chapter IV, the full state-dependent correlated branching ratios can be 

determined by weighting the information from the forward convolution fit with the 

O(3PJ) state fractions derived from the numerical integration of the intensities 2 + 1 

REMPI transitions near 266 nm.159  For integration purposes, the Doppler profiles of the 

2 + 1 REMPI transitions of the O(3PJ) states are modeled using a forward convolution fit 

as shown in Figure 40.   As can be seen from the top panel in Figure 38, both Br(2P3/2) 

and Br(2P1/2) are formed in coincidence with O(3P2) as is evident from the two rings seen 

in that panel. The single ring observed in the O(3P1) and O(3P0) images indicate that 

these states are only formed in coincidence with Br(2P3/2).  These ratios are highly 

reproducible, with an estimated error of less than 3%.  Similar to the ClO branching ratio 

data given in Chapter IV, the uncertainty in the experimental branching ratios is 

dominated by determination of the oxygen fine-structure ratio which we estimate to be 

less than 10%.  To ensure that the 2 + 1 REMPI intensity collected for the O(3P2)/ 

O(3P1)/ O(3P0) ratios in the measurement are as accurate as possible, we use low probe 

beam powers to minimize signal intensity from probe laser background.  Nevertheless, 

in a few cases when measuring the low vibrational levels (v’ = 5-9), background signal 

from the probe laser was corrected for as it could not be effectively minimized while 

retaining reasonable signal to noise of the 2-laser BrO signal.  In these cases, 2 + 1 

REMPI Doppler profiles were collected while the dissociation laser was blocked to 

allow for the subtraction of background signal from the intensities of the 2 + 1 REMPI 

profiles collected while both lasers were on.  This is especially useful as the background 

tends to be larger for the O(3P2) fragment than the O(3P1) or O(3P0) fragments which 

would skew the branching ratios to favor the O(3P2) channels.  Final Correlated 

branching ratios for the v’= 4-18 are given in Table 7. 
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Figure 38:  Images of O(3PJ) fragments from BrO photodissociation at 329.6 nm. 
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Figure 39:  Velocity distributions of the O(3PJ) fragment images shown in Figure 38 for the v’=9 
band. 

 

 

 

 

Figure 40:  2+1 REMPI transitions providing the O(3P2)/O(3P1)/O(3P0) branching ratios for the v’=9 
band.  Data is shown (black) overlaid with a Gaussian fit (red). 
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Table 7:  Experimental correlated final state branching ratios for v'=4-18. 

  v’ Level 
Asymptotic States 18 17 16 15 14 13 11 12 10 9 8 7 6 5 4 

O(3P2) + Cl(2P3/2) 0.12 0.30 0.49 0.21 0.26 0.23 0.14 0.29 0.27 0.23 0.20 0.35 0.21 0.22 0.38 

O(3P2) + Cl(2P1/2) 0.13 0.10 0.07 0.08 0.20 0.26 0.29 0.27 0.16 0.04 0.37 0.25 0.31 0.09 0.12 

                              

O(3P1) + Cl(2P3/2) 0.50 0.51 0.36 0.55 0.45 0.42 0.24 0.37 0.42 0.55 0.36 0.29 0.45 0.60 0.39 

O(3P1) + Cl(2P1/2) 0.14 0.01 0.00 0.06 0.00 0.05 0.18 0.00 0.06 0.00 0.04 0.04 0.00 0.00 0.00 

                              

O(3P0) + Cl(2P3/2) 0.11 0.08 0.07 0.10 0.09 0.05 0.14 0.07 0.09 0.18 0.03 0.07 0.02 0.09 0.10 

O(3P0) + Cl(2P1/2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

 

 

Based on the experimental branching data, there are some conclusions about the 

dynamics that can be made.  First, it is immediately clear that, similar to the ClO system, 

the branching ratios are non-statistical.  It is obvious by inspection that there is a strong 

v’-dependence in the branching ratios.  Also, the Br(2P1/2) + O(3P0) channel is not 

observed in any of the v’-levels measured although it is energetically accessible.  In the 

ClO case, it was seen through previous photodissociation experiments above the O(1D) 

threshold that originated from excitation to the continuum of the A 2Π state, resulted in 

only a minor yield of O(3PJ) fragments suggesting little curve crossing.129  The BrO 

system is assumed to be more adiabatic than the ClO due to the larger spin-orbit 

coupling and the slower moving fragments resulting from the BrO dissociation.  The 

absence of the Br(2P1/2) + O(3P1) channel until v’ � 7 is a very interesting feature of the 

data and provides insight into the coupling of the A(2Π3/2) to the dissociative 3 2Π and 2 
4Σ-, the states that correlate to this channel. 

 Above the v’=6 level, the Br(2P1/2) + O(3P1) channel appears which is a very 

interesting difference between the ClO and BrO.  In the ClO system, O(3P1) is formed in 

coincidence with only the Cl(2P3/2) state, however, in the BrO system, we see O(3P1) 

formed in coincidence with both Br(2P3/2) and Br(2P1/2) at some of the higher vibrational 

levels.  The O(3P1) images for the BrO system are shown in Figure 41.  As you can see 
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from the images, the O(3P1) + Br(2P1/2) channel (inner ring) is present in some of the 

images based on the vibrational level being accessed.  This oscillation suggests that there 

is a dissociative state crosses through the A(2Π3/2) state that is in a position that makes 

the wavefunction of the dissociative state add constructively and destructively with the 

wavefunctions of the different vibrational levels of the bound A(2Π3/2), making the 

predissociation of BrO to Br(2P1/2) + O(3P1) come and go.   

In the case of ClO, we assume that the branching ratios for each vibrational state 

to be independent of J’ based on the observations of Howie et al. who observed no J’ – 

dependent predissociation which indicated that the interaction of the dissociative states 

with the A 2Π3/2 state is via spin-orbit coupling.39  This was further backed up by the 

measurement of correlated state branching ratios for the v′=6 and v′=10 bands of ClO as 

the photolysis laser was tuned from the bandhead to higher J′-states, which produced no 

observation of J′-dependence in the branching ratio measurements.132  However, unlike 

ClO, Wilmouth et al. observed a J’-dependence in the lifetime in the measured in the v’ 

= 7 and v’ = 12 transitions of BrO.149  In contrast, the same measurement by Orr-Ewing 

and coworkers showed no J’-dependence in the measurement of the predissociation 

lifetime in the measured v’ = 7 and v’ = 12 transitions of BrO.148  In our study, we have 

measured the correlated branching ratio for the v’ = 12 level of BrO, and have seen some 

evidence of J’-dependence in the branching ratios measured along this band.  Further 

measurements are currently being made to fully characterize the branching ratios across 

this band. 
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Figure 41:  BrO O(3P1) images for the vibrational bands listed below each image. 

 

 

Bond Dissociation Energy 

As was mentioned in the introduction of this chapter, previous measurements of 

the bond dissociation energy of BrO were obtained through extrapolating spectroscopic 

measurements of the bound A 2Π � X 2Π transitions resulting in a bond dissociation 

energy value of 55.3±0.6 kcal/mol.157  Spectroscopic extrapolation using the linear 

Birge-Sponer method or the exponential LeRoy-Berstein methods are particularly 

challenging in the case of BrO where lifetime broadening does not afford rotational 

resolution of single isotopomers, and rotational resolution is only seen in a few bands.  

Consequently, previous analysis has relied on the peak position of vibronic bands rather 
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than accurate band origins. One reason that extrapolating is not a valid method for the 

determining accurate bond dissociation energy for BrO is that it is well known that some 

molecules, particularly excited states of diatomic radicals, exhibit positive curvature on a 

Birge-Sponer plot. A linear Birge-Sponer extrapolation is consistent with a Morse 

potential function, but this potential provides a poor description near threshold where 

long range interactions are important. LeRoy and Bernstein have advocated an 

alternative extrapolation based on the −1/ rn  form of the long-range interaction.  

Wilmouth et al. reported a )(0
0 BrOD value of 55.6 kcal/mol based on such analysis 

applied to their recent absorption spectrum measured at 10 cm−1 resolution. 149 Our 

own analysis using the peak positions of the 10 cm−1 spectra of Wilmouth et al. yields 

values ranging from 55.2 to 56.1 kcal/mol depending on the number of vibrational 

bands included in the extrapolation.  

A more recent extrapolation by Fleischmann et al. based on Fourier transform 

spectroscopy measurements resulted in a bond dissociation energy value for BrO  of 

55.4±0.5 kcal/mol although this value reflects a compromise between Birge-Sponer and 

LeRoy-Bernstein derived values.160 The results of their LeRoy-Berstein analysis on band 

origins was 55.8 kcal/mol, much closer to the value directly measured by Kim et al. of 

55.9 ± 0.1 kcal/mol using velocity map ion imaging.   

In the study by Kim et al., Br(2P3/2) fragments were imaged from the dissociation 

of BrO at wavelengths just above the O(1D) threshold.  These images were treated using 

two complementary methods.  The first approach relied on extracting the total fragment 

translational energy at each wavelength independently. The translational energies 

associated with J’=0, v’=0 BrO were obtained using forward-convolution fits of the 

speed distributions.  A single value for the bond dissociation energy to provide the best 

forward convolution fit to all the speed distributions associated with the Br(2P3/2) 

+O(1D2) channel above the A 2Π threshold. A value of 55.9 kcal/mol for the BrO bond 

dissociation energy provides consistent fits to the data. 

In the second method, A plot of measured translational energy versus photon 

energy should yield a straight line for each asymptotic electronic channel with the 
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intercept of each line corresponding to the threshold of the respective channel based on 

the conservation of energy of the system given by Equation 5.1: 

 O
e

Br
etransavail

BrO
rve EEEEEBrODhv ++==+− ,,

0
0 )(  5.1 

where h� is the energy of the dissociation photon, )(0
0 BrOD  is the bond energy of BrO,  

Br
eE  and O

eE  are the spin-orbit energies of Br and O, respectively, and BrO
JeE ,,ν  is the 

internal energy of the BrO prior to dissociation.  Re-writing Equation 5.1 and assuming 

that BrO
JeE ,,ν  is zero the equation becomes: 

 )(0
0 BrODEEEh O

e
Br
etrans +++=ν  5.2 

 Using the images to determine transE , a linear fit of the transE  vs. νh  produces an 

intercept equal to the bond dissociation energy plus the spin orbit energies of the Br and 

O fragments.  Using wavelengths near the O(1D) threshold, the velocities of the Br(2P3/2) 

state will be very small, reducing the error in the measurement.  The data presented by 

Kim et al. provides an A 2Π3/2 dissociation threshold, corresponding to the threshold for 

formation of Br(2P3/2) and O(1D) fragments, of 35 418±35 cm−1. Given the oxygen 

term value of 15 867.7 cm−1161 corresponding to a ground state bond dissociation of 

19551±35 cm−1 or 55.9±0.1 kcal/mol. 

 In the current study, we use the same method described above to provide another 

measurement of the bond dissociation energy of BrO.  Because our data corresponds to 

the O(3PJ) + Br(2PJ) channels, the measurement was less precise due to the larger speeds 

of the O(3PJ) fragments.  Nevertheless, the bond dissociation energy derived from this 

data is 55.8 ± .4 kcal/mol which is within the error bounds of the previous measurement.  

Because the speed to pixel calibration can change from day to day based on ion optic 

voltage fluctuations, pixels were used instead of velocity calculate a value that is 

proportional to Etrans.  This became the independent variable while the photon energy 

minus the spin orbit energies of the oxygen and bromine fragments became the 

independent variable.  In this way, the intercept of a linear fit will still produce the bond 

dissociation energy of BrO.  The plots of these data points, their linear fits, and the 

equation of best fit are shown in Figure 42. 
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Figure 42:  Plot providing measurements of the bond dissociation energy of BrO.  The legend gives 
the v’ level of each data point.  The linear regressions on the left are in order, starting at the top, for 
v’=6-17. 

 

 

Theoretical Treatment 

 The theoretical treatment of the BrO is very similar to the treatment described in 

Chapter IV for the ClO system.  BCONT, developed by LeRoy137 and described in more 

detail in Chapter IV, was used to calculate the v’-dependent predissociation lifetimes 

based on the coupling constants and the potential energy curves calculated by K. 

Peterson.152  These were then used to calculate the final state correlated branching ratios 

for each vibrational level using the diabatic and adiabatic limits.   

In the ClO case, the potentials and coupling constants were adjusted to achieve a 

best fit of the experimental v’-dependent predissociation lifetime data using an amoeba 

program described in Chapter IV.  This provided us with the assurance that the potentials 

and coupling constants used correctly predicted the Franck-Condon region before 

extending our predictions to the exit channel. Fitting the well-established lifetime data 
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enables us to more confidently use the calculated potentials and coupling constants when 

using them to predict the branching ratios allowing us to comment on the effects of exit-

channel coupling on the system.   Unfortunately, the adjustment procedure used on the 

potentials and coupling constants for the ClO case is not useful for the BrO system as 

there are only two bands (v’= 7 and 12) that have published lifetime measurements due 

to the extremely short predissociation lifetime of the other vibrational bands which 

causes a lack of rotational resolution.  The published lifetimes of these bands are 2.65, 

and 0.66 ps for the v’ = 7 and 12 bands, respectively.149  It was noted in Reference 148 

that the v’ = 4 level has some rotational structure, so we can assume that the lifetime of 

this band is somewhat long allowing us to assume that it also is a minimum 

predissociation rate.  The predissociation rates of these bands have been used to 

constrain the potentials, but do not provide the level of confidence achieved in the ClO 

case where the lifetimes of numerous vibrational bands are accurately measured.  Instead 

of using the amoeba program used to adjust the ClO potentials and coupling constants, 

the potentials have been adjusted by hand.  The coupling constants used by the BCONT 

program to calculate the predissociation rates for each repulsive potential that crosses the 

A 2Π3/2 state were calculated by K. Peterson.152  These coupling constants are used as 

reported by K. Peterson with no adjustment, and are listed in Table 8. 

 

 

Table 8:  BrO potentials and coupling constants (cm-1) used to calculate the v’-dependent correlated 
branching ratios.  Calculated coupling constants are from Reference 108.  These values were used to 
calculate the predissociation rates for each vibrational level using BCONT. 

 
BrO Repulsive Potential Calculated Coupling Constant 

1 2
 80 

1 4
 400 

1 4+ 200 

1 4- 650 

1 4� 40 

2 4� 70 

3 2� 220 
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The fitting process for the potentials is quite rudimentary, and a description of 

the process follows.  Because the 4, 7, and 12 vibrational bands are the only ones with 

measurable rates, we deduce that they must be minima in the predissociation rates for the 

bands.  Because we have no further constraints on the model, the potentials were 

adjusted slightly so that the minima of the rates calculated using BCONT fell on the v’ = 

4, 7, and 12 levels.  First, the ab initio bound A 2Π3/2 state was shifted up in energy by 

1600 cm-1.  Then, the unbound 1 4- state was shifted .01 Å to the left, toward shorter 

bond distances.  These slight adjustments caused the calculated predissociation rates to 

have the correct minima.  The predissociation rates calculated using BCONT are shown 

in Figures 43 and 44.  Figure 43 shows the calculated rates using the original potentials, 

and Figure 44 plots the rates resulting from the slight shifts of the A 2Π3/2 and the 1 4- 

states. This plot illustrates that although the minimum predissociation lifetimes are easily 

shifted to their appropriate positions with only slight adjustments made to the A 2Π3/2 

state and the coupling constants, more predissociation lifetimes are needed in order to 

fully constrain the overall shape of the calculated lifetimes. 

The “Overall” vibrational level dependent rate is influenced mostly by the 1 4- 

state due to its very large coupling constant.  As is evident from the “Overall” trace in 

Figure 43, the calculated lifetimes are much larger than the previously reported 

spectroscopic values.  This is due to the calculated coupling constants being too large.  

However, because the actual values of the vibrational level dependent predissociation 

rates is not known over more bands, the shape of the calculated “overall” rate cannot be 

constrained.  The shape of the overall rate is extremely important to the adjustment of 

the coupling constant.  Therefore, to lower the overall rate to better fit the rates of the 4, 

7, and 12 vibrational bands, it is suggested that the coupling constants all be lowered by 

a common factor such that the weighting established by the original ab initio calculation 

is not changed.  Because this method does not change the weighting of the various 

repulsive states, the branching ratios that are calculated using the adiabatic and diabatic 

limits will not change. 
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Figure 43:  BCONT calculated v’-dependent predissociaiton rates for the A 2ΠΠΠΠ3/2 state of BrO.  
These rates are calculated using the original potentials as calculated by Peterson in reference 152.  
Each repulsive state’s individual contribution to the overall predissociation rate of each vibrational 
level is shown.  “Overall” denotes the sum of all of the repulsive potential contributions.  

 

 
Figure 44: BCONT calculated vibrational level dependent predissociation rates using shifted 
potentials.  Potentials are shifted as described in the text. 
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Vibrational level dependent final state branching ratios were calculated using the 

same diabatic matrix of state weightings as listed previously in Table 5.  The adiabatic 

correlation diagram lists the states in order of increasing energy in the Franck-Condon 

region.  Therefore, if the potentials shift, this diagram will change which could change 

the calculated branching ratios in this limit significantly.  The results of the adiabatic and 

diabatic limits are provided in Tables 9 and 10. 

 

 

Table 9: Calculated vibrational level dependent branching ratios for the predissociation of the              
A 2ΠΠΠΠ3/2 of BrO using the adiabatic limit. 

 

 
Cl(2P3/2) + 

O(3P2) 
 

Cl(2P1/2) + 
O(3P2) 

 

Cl(2P3/2) + 
O(3P1) 

 

Cl(2P1/2) + 
O(3P1) 

 

Cl(2P3/2) + 
O(3P0) 

 

Cl(2P1/2) + 
O(3P0) 

 
0 0.0187 0.9801 0.0000 0.0000 0.0011 0.0000 
1 0.7174 0.2181 0.0000 0.0000 0.0645 0.0000 
2 0.8681 0.0029 0.0000 0.0000 0.1290 0.0000 
3 0.7207 0.0111 0.0000 0.0000 0.2683 0.0000 
4 0.6058 0.3791 0.0000 0.0000 0.0151 0.0000 
5 0.3140 0.5297 0.0000 0.0001 0.1563 0.0000 
6 0.3137 0.6758 0.0000 0.0010 0.0095 0.0000 
7 0.0788 0.6758 0.0000 0.0665 0.1768 0.0000 
8 0.1733 0.5396 0.0000 0.1455 0.1340 0.0000 
9 0.4737 0.1653 0.0000 0.2688 0.0614 0.0000 
10 0.3801 0.5800 0.0000 0.0171 0.0015 0.0000 
11 0.3800 0.2327 0.0000 0.3340 0.0483 0.0000 
12 0.0477 0.6296 0.0000 0.0251 0.2375 0.0000 
13 0.0311 0.6579 0.0000 0.1763 0.1294 0.0000 
14 0.2457 0.5328 0.0000 0.0461 0.1618 0.0000 
15 0.6424 0.0940 0.0000 0.0802 0.1487 0.0000 
16 0.5820 0.1774 0.0000 0.1869 0.0513 0.0000 
17 0.4809 0.4148 0.0000 0.0872 0.0124 0.0000 
18 0.4329 0.5445 0.0000 0.0062 0.0008 0.0000 
19 0.4092 0.5543 0.0000 0.0179 0.0020 0.0000 

 

 

Although the branching ratios calculated in the adiabatic limit are significantly 

different from those measured in this study, there are some general statements that can 

be made about this model.  First, the Cl(2P1/2) + O(3P0) state is not present in the 
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calculated results which is consistent with our experimental results.  Second, the 

Cl(2P3/2) + O(3P1) channel is absent in the modeled results for all vibrational levels.  This 

is very inconsistent with our findings as this channel is present at every band we 

measured.  In contrast, the Cl(2P1/2) + O(3P1) channel shows a trend which is seen in our 

data (Figure 41).  This channel is absent in both the model and our data at low 

vibrational levels (v’� 6).  Although the adiabatic model does not predict that this 

channel should completely disappear at any level above v’ = 6, it does predict 

fluctuations in the branching that are very near zero at some levels.  From the images in 

Figure 41, and the values in Table 7, it can be seen that we observe similar fluctuations 

in the branching of this channel, and the actual vibrational levels where the branching 

ratio minima exist are correct or very close in all cases although the magnitude of the 

maxima are predicted to be much higher than is actually observed. 

 

 

 

Figure 45:  Vibrational level dependent branching ratios for the Cl(2P1/2) + O(3P2) channel.  This plot 
shows both the measured branching ratios as well as the modeled branching ratios using the 
adiabatic limit. 
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Table 10 shows the results of the vibrational level dependent correlated 

branching ratios as modeled in the diabatic limit.  Similar to the case of ClO, this model 

predicts that all channels are present except for the Cl(2P1/2) + O(3P0) channel which is 

consistent with most of the data that we have collected for this system.  However, in 

some cases we see that the Cl(2P1/2) + O(3P1) channel is absent which is not predicted by 

the diabatic limit.  This observation is better predicted by the adiabatic limit. 

 

 

 

Table 10: Calculated vibrational level dependent branching ratios for the predissociation of the              
A 2ΠΠΠΠ3/2 of BrO using the diabatic limit. 

 

 
Cl(2P3/2) + 

O(3P2) 
 

Cl(2P1/2) + 
O(3P2) 

 

Cl(2P3/2) + 
O(3P1) 

 

Cl(2P1/2) + 
O(3P1) 

 

Cl(2P3/2) + 
O(3P0) 

 

Cl(2P1/2) + 
O(3P0) 

 
0 0.1668 0.1134 0.3867 0.1131 0.2201 0.0000 
1 0.1721 0.2051 0.3002 0.1836 0.1389 0.0000 
2 0.1775 0.2362 0.2745 0.1932 0.1186 0.0000 
3 0.1899 0.2520 0.2708 0.1610 0.1264 0.0000 
4 0.2035 0.2349 0.2841 0.1589 0.1187 0.0000 
5 0.2358 0.2645 0.2764 0.1005 0.1228 0.0000 
6 0.2409 0.2575 0.2796 0.1082 0.1139 0.0000 
7 0.2580 0.2717 0.2795 0.0625 0.1283 0.0000 
8 0.2617 0.2803 0.2678 0.0760 0.1143 0.0000 
9 0.2442 0.2649 0.2571 0.1305 0.1033 0.0000 

10 0.2401 0.2486 0.2746 0.1233 0.1135 0.0000 
11 0.2470 0.2750 0.2640 0.1114 0.1026 0.0000 
12 0.2758 0.2615 0.2650 0.0645 0.1333 0.0000 
13 0.2787 0.2908 0.2669 0.0513 0.1125 0.0000 
14 0.2478 0.2661 0.2725 0.0910 0.1228 0.0000 
15 0.2104 0.2389 0.2675 0.1614 0.1219 0.0000 
16 0.2182 0.2562 0.2701 0.1472 0.1083 0.0000 
17 0.2270 0.2526 0.2749 0.1350 0.1105 0.0000 
18 0.2318 0.2457 0.2768 0.1316 0.1142 0.0000 
19 0.2350 0.2475 0.2761 0.1275 0.1139 0.0000 
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D.  Summary 

 The final correlated state branching ratios have been experimentally measured 

for the predissociation of the v’=4-18 levels of the BrO A 2Π3/2 state.  Similar to the case 

of ClO, the branching ratios are seen to be non-statistical.  However, the branching ratios 

are much different than that of ClO.  In particular the O(3P1) fragment observed across 

the BrO vibrational states is much different than that state observed along the ClO 

vibrational states.  In ClO, the O(3P1) + Cl(2P1/2) channel is never observed.  This 

channel is observed for BrO, and it is seen to appear and disappear as a function of 

vibrational level which provides insight into the positions and coupling of the excited 

state potentials. 
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CHAPTER VI 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 This dissertation focused on molecular beam studies of the photodissociation 

dynamics of halogen monoxide radicals using velocity map ion imaging.  Velocity map 

ion imaging is a powerful tool for the study of molecular dynamics allowing the 

collection of the entire Newton sphere, which provides simultaneous angular and speed 

information in a single measurement.  Great detail about a reaction can be learned 

through this technique. Through velocity map ion imaging, information about the 

energetics of a reaction or molecule can be determined.  For instance, the internal energy 

of the reactant and product species can be measured, or in the case of the reactant, even 

prepared, and using 2+1 REMPI detection, the measurements made are specific to a 

particular electronic state.  Accurate bond dissociation energies of diatomic species can 

also be determined.  In the studies reported here, velocity map ion imaging has been 

used to provide a direct measurement of the bond dissociation energy of IO.  One of the 

greatest advantages of velocity map ion imaging is that it provides information about the 

unseen fragment allowing one to measure correlated scalar distributions.  In the studies 

described in this dissertation, the potential of the correlated measurement has been 

exploited to measure the correlated fine structure branching ratios for the predissociation 

of ClO and BrO. 

A description of the instrumentation and commentary about recent modifications 

are the focus of Chapter II.  Modifications have been made in the data collection and 

analysis methods as well as the focusing ion optics.  These modifications have provided 

several advantages.  The ion optic assembly allows DC-slicing capability which requires 

no reconstruction, allowing images without cylindrical symmetry to be analyzed.  It also 

circumvents the added noise to the data attributed to reconstruction methods.  Other 

modifications include data collection software that calculates a megapixel image in real 

time, improving on the centroiding, the conventional method of event counting.  The 
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purpose of these modifications is to increase velocity resolution in the images collected 

by the instrument.  Unfortunately, the data shown in Chapters III-V do not take full 

advantage of these modifications.  We are optimistic that the full potential of these 

modifications will be exploited in future endeavors.    

Chapter III discusses the direct measurement of the bond dissociation energy of 

the IO radical species.  This was the first instance of IO being seeded into a molecular 

beam which was possible through a late-mixing dual pulsed valve photolytic nozzle.  

The production of a molecular beam of IO was non-trivial.  It required ideal conditions 

and introduces a myriad of potential challenges from the timing of three lasers to 

multiple pulsed valve delays and opening times.  We are able to not only form molecular 

beams of these transient species, but we are able to make accurate and relevant 

measurements of IO photochemistry.   The bond dissociation energy measurement is one 

of the most fundamental physical measurements that can be made of a diatomic species.  

However, until now, the best measurements of the IO bond dissociation energy relied on 

combining kinetic data with the thermodynamic constants of other species such as BrO.  

The error bounds associated with these calculations are large, causing the error bounds 

on the recommended value of the bond dissociation energy of IO to be at best about ±1 

kcal/mol.  Acquiring accurate thermodynamic parameters are critical for atmospherically 

relevant reactions involving IO which are near thermoneutral.  One example of this is the 

IO + BrO reaction that could proceed via several pathways, most of these pathways are 

near thermoneutral and have large errors associated with their enthalpies of reaction 

which makes it difficult to determine which pathways are actually favorable.  For this 

reason, the bond dissociation energy of IO is very important to the atmospheric 

modeling community –especially for modeling in the marine boundary layer where up to 

50% of the average daily ozone loss has been attributed to iodine and bromine, or in the 

stratosphere after certain weather events such as typhoons.162, 22 

Chapters IV and V outline the measurement of correlated final state branching 

ratios for ClO and BrO.  These measurements are valuable to the molecular dynamics 

community as they provide a rigorous assessment of the validity of the current state of 
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theoretical calculations.  A review by Butler notes that most of the work in the field of 

molecular dynamics is theoretical and that there is a need for detailed experimental data 

in order to gauge the state of the field and improve the current modeling.  This is 

particularly true for systems that exhibit non-Born-Oppenheimer dynamics.163  This 

parity of information results from the lack of techniques that allow for the measurement 

of detailed information of both the reactants and the products.  Velocity map ion imaging 

is a novel technique that provides detailed, internal state correlated information.   

ClO and BrO are perfect molecules to study as benchmarks for comparison to 

theory.  They are small, making theoretical calculations from first principles possible, 

yet, due to the spin orbit coupling of the large halogen atom, full calculations of the 

potential energy surfaces and coupling constants remain challenging.  Studying the 

dynamics, especially the final correlated state branching ratios of the predissociation of 

the A 2Π3/2 state of ClO and BrO, provides insight into the potential energy surfaces and 

the coupling between the bound A 2Π3/2 state and the many unbound electronic states 

that cross it.  The results of these experiments on a qualitative level support the idea that 

the ClO predissociation should be more diabatic, while the BrO predissociation is better 

described in the adiabatic limit.  However, our measurements show that there are 

differences between the limiting models and the experimental results.  This is likely the 

result of exit-channel coupling in the predissociating potentials.  The measurements 

highlight the need for a better model to describe the predissociation of these systems. 

Because velocity map ion imaging is a versatile technique, there are many 

possibilities for future directions.  The work described in this dissertation provides a 

foundation for numerous new studies which fall under two broad categories based on 

their relevance: those that are atmospheric in nature, and those that focus on 

understanding fundamental chemical physics. 

One possibility of an atmospherically relevant study would concentrate on 

understanding the photodissociation dynamics of the ClO dimer.  This species is known 

to play a role in the springtime destruction of Antarctic ozone.164, 165  The photolysis of 

the ClO dimer has been implicated in significant ozone loss through the mechanism: 
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 ClO + ClO + M � Cl2O2 + M (6.1)  

 Cl2O2 + h� � Cl + ClOO (6.2) 

 ClOO + M � Cl + O2 + M (6.3) 

 2(Cl + O3 � O2 + ClO) (6.4) 

Overall: 2O3 �3 O2 (6.5) 

where M is any other molecule.166  Understanding the wavelength dependent branching 

ratio of the photolysis of Cl2O2 would be very useful for modeling the chemistry during 

these ozone destruction events.  Cl2O2 can dissociate via the following pathways: 

 Cl2O2 + hv � ClO + ClO  (6.6) 

  Cl + ClOO  (6.7) 

  2Cl + O2  (6.8) 

  Cl + O + ClO (6.9) 

Since ClO is inert to ozone, the wavelength dependent relative branching of Cl/ClO is 

critical in ozone destruction. It was recently reported that channel 6.8 is the major 

channel for photolysis of Cl2O2 at 248 nm and 303 nm.167  Knowing how often the 

photolysis result given in Equation 6.2 occurs would be very useful in knowing the 

importance of the mechanism proposed.  This is an especially relevant topic currently as 

Cl2O2 has been the center of much debate in the past year concerning its absorption 

spectrum which is an integral piece of data that dictates the way that the ozone 

destruction events are understood.168  A major experimental concern is the difficulty of 

producing a Cl2O2 molecular beam.  It is possible that either a pyrolytic or photolytic 

assembly similar to the ones described in this text could be used to produce ClO which 

would then be passed through a cold portion of the nozzle to cause the ClO to form the 

dimer species. 

Another future experiment that would have atmospheric relevance would be to 

study the photodissociation of OBrO.  The concentration of OBrO in the midlatitude 

stratosphere was spectroscopically measured to be as high as 20 pptv at night.169  This 
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measurement makes OBrO the major nighttime bromine reservoir.  The absorption 

spectrum of OBrO is shown in Figure 46, below.   
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Figure 46:  Absorption spectra of OBrO (blue trace) and OIO (pink trace) species.  OBrO spectrum 
adapted from Reference 170.  OIO spectrum is adapted from 171. 

 

 

 

OBrO dissociates by the following mechanism: 

 OBrO + h� � Br + O2 (6.10) 

  �O + BrO (6.11) 

 

The channel shown in 6.10 would initiate ozone destruction by releasing a bromine 

atom.  The channel shown in 6.11 would actually form ozone through the reaction of the 

odd oxygen with an oxygen atom.  Understanding the branching ratios of these two 

channels and their wavelength dependence is important to the accuracy of current 
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atmospheric modeling.  In a recent theoretical study, it was reported that the O + BrO 

channel has a threshold of near 485 nm.172  At wavelengths below this, the O + BrO 

channel is believed to be dominant.   

 Similar investigations of OIO would also be interesting.  The long wavelength 

threshold for photodissociation to form O + IO is near 435 nm, below the observed 

absorption spectrum for OIO (Figure 46).  For this reason, the OIO species is believed to 

be a stable reservoir for iodine with a slow photolysis rate in the visible region.173  

Understanding the dynamics of the photolysis of OIO would be extremely useful to 

modeling iodine chemistry as other iodine reservoir species are highly unstable. 

From a fundamental standpoint, investigation of orbital alignment effects of ClO 

and BrO would be intriguing.  The dissociation of ClO or BrO will produce fragments 

with their angular momenta aligned either perpendicular or parallel to the recoil axis.  

The alignment gives insight into the nature of the dissociation and provides a much more 

detailed probe of the photodissociation dynamics.  For example, ion imaging has been 

used to study the alignment effects of the O(1D) fragment from the photodissociation of 

O2 by Eppink et al. 174  Also, the v-J correlations of Cl2 photodissociation were examined 

using the ion imaging technique by Bracker et al.175 The fragment atoms had angular 

momenta aligned perpendicular to the fragment recoil axis predicting an adiabatic 

transition. 

Another experiment that is interesting on a fundamental level is the 

determination of the predissociation lifetimes of BrO through an anisotropy 

measurement.  The predissociation lifetimes of most of the v’ levels of BrO are unable to 

be determined by spectroscopy due to the lack of rotational structure.  Therefore, the 

estimation of the lifetimes is possible through the measurement of the J’-dependent 

anisotropy parameter for the vibrational bands.   
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 The measured anisotropy parameter is related to the lifetime by the following 

expression based on the semi-classical model by Jonah who calculated for a parallel 

transition176: 

 
τωτω

τωτωτωθθ
14

)1)((cos
)(

2

+
++=I  (6.12) 

where � is the lifetime of the molecule and � is the classical angular frequency of the 

molecule.  This expression assumes that the P, Q and R branches of the transition are 

excited equally, and thus provides only an estimation of the lifetime in cases where only 

single or subsets of rotational transitions are excited.  Using this expression, it can be 

seen that as the lifetime goes to zero, the anisotropy parameter goes to the limiting value 

of 2.0, and as it becomes large, the anisotropy parameter drops to a lower limit of 0.5. 

 Houston and coworkers recently developed a program that calculates the 

anisotropy parameter as a function of wavelength for a given transition based on 

spectroscopic data used as input.103  More details about the betaofnu program can be 

found in Chapter IV.   It was seen in that paper that the anisotropy parameter of a 

parallel transition decreases as you move across the J’ states of a transition and is highly 

dependent on the lifetime. Therefore, by using measured anisotropy parameters from 

across the vibrational band, it is possible to approximate the predissociation lifetime of 

the vibrational level by fitting the anisotropy data as a function of wavelength with 

calculated anisotropy parameters from betaofnu.  

These are just a few of the many exciting experiments that velocity map ion 

imaging is capable of performing.  As is evident, this method can be used to study many 

systems which are interesting to a variety of fields.  Velocity map ion imaging can reach 

into many fields due to the numerous types of data, and the state-correlated nature of the 

data, that can be obtained by this method. 
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