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ABSTRACT

Decentralized, Cooperative Control of Multivehicle Systems:

Design and Stability Analysis. (May 2009)

Lesley Anne Weitz, B.S., The State University of New York at Buffalo;

M.S., Texas A&M University

Chair of Advisory Committee: John E. Hurtado

This dissertation addresses the design and stability analysis of decentralized, cooper-

ative control laws for multivehicle systems. Advances in communication, navigation,

and surveillance systems have enabled greater autonomy in multivehicle systems, and

there is a shift toward decentralized, cooperative systems for computational efficiency

and robustness. In a decentralized control scheme, control inputs are determined

onboard each vehicle; therefore, decentralized controllers are more efficient for large

numbers of vehicles, and the system is more robust to communication failures and

reconfiguration.

The design of decentralized, cooperative control laws is explored for a nonlinear

vehicle model that can be represented in a double-integrator form. Cooperative con-

trollers are functions of spacing errors with respect to other vehicles in the system,

where the communication structure defines the information that is available to each

vehicle. Control inputs are selected to achieve internal stability, or zero steady-state

spacing errors, between vehicles in the system.

Closed-loop equations of motion for the cooperative system can be written in a

structural form, where damping and stiffness matrices contain control gains acting on

the velocity and positions of the vehicles, respectively. The form of the stiffness matrix

is determined by the communication structure, where different communication struc-



iv

tures yield different control forms. Communication structures are compared using

two structural analysis tools: modal cost and frequency-response functions, which

evaluate the response of the multivehicle systems to disturbances. The frequency-

response information is shown to reveal the string stability of different cooperative

control forms.

The effects of time delays in the feedback states of the cooperative control laws

on system stability are also investigated. Closed-loop equations of motion are mod-

eled as delay differential equations, and two stability notions are presented: delay-

independent and delay-dependent stability.

Lastly, two additional cooperative control forms are investigated. The first con-

trol form spaces vehicles along an arbitrary path, where distances between vehicles

are constant for a given spacing parameter. This control form shows advantages over

spacing vehicles using control laws designed in an inertial frame. The second control

form employs a time-based spacing scheme, which spaces vehicles at constant-time

intervals at a desired endpoint. The stability of these control forms is presented.
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CHAPTER I

INTRODUCTION

This dissertation investigates the design and analysis of decentralized, cooperative

control laws for multivehicle systems. Advances in communication, navigation, and

computational systems have enabled greater autonomy in multivehicle systems, and

there has been a shift toward decentralized, cooperative systems where decision-

making occurs at the individual vehicle level. Applications include decentralized, co-

operative control of robotic vehicles, unmanned or micro air vehicles (UAVs/MAVs),

automated highway systems, and next-generation air traffic systems.

Cooperative control involves the control of a group of dynamic vehicles that are

working collectively to meet a common objective by using state and environmental

information to influence control decisions [1]. The basis of a cooperative control

scheme lies within the ability to use state information from other vehicles and the

environment to determine appropriate control inputs to each vehicle in the system.

Understanding the dynamic behavior that governs these multivehicle systems is key to

designing cooperative control laws that will influence how vehicles interact to achieve

a desired goal. Decentralized cooperative control, sometimes referred to as distributed

control, is a subset of cooperative control where vehicles use the state information

of other vehicles to autonomously determine their own control inputs that achieve

the group objective. A decentralized control regime is typically considered superior

to more traditional centralized controllers. A central control authority uses state

and environmental information to determine the control inputs for all vehicles in

the system. This is an effective method for controlling a small number of vehicles,

�The journal model is IEEE Transactions on Automatic Control.
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but centralized control becomes computationally inefficient as the number of vehicles

increases. Moreover, decentralization is more robust to communication failures and

structural reconfigurations [2].

The design of decentralized, cooperative control laws is largely based upon the

communication structure of the multivehicle system. The communication structure

defines the information available to each vehicle in the system, which may be con-

strained by sensing, communication, or computational limitations. For example, in

many applications, vehicles only communicate with their “nearest neighbors” rather

than all vehicles in the system. Past research has shown that control laws that

achieve the desired objective in the absence of disturbances may not reject some

disturbances, thus driving the system unstable. Additionally, decentralized control

schemes are subject to time delays in feedback control due to delays in measurement

and communication. Therefore, the design of communication structures and decen-

tralized, cooperative control laws must investigate internal stability to ensure that

the desired system objective is met, as well as disturbance rejection and time-delay

effects on system stability.

The development of decentralized, cooperative control theories has been investi-

gated for ground-based robotic applications in homeland security, search-and-rescue

missions, and extra-terrestrial exploration. The distribution of tasks amongst many

smaller, expendable vehicles ensures that the loss of a single vehicle will not compro-

mise mission success when compared to the loss of a single, expensive vehicle. For-

mation control for robotic vehicles has been investigated by Feddema, et al., where

the system of robotic vehicles is modeled as a large-dimensional interconnected sys-

tem derived from a distributed communication structure that couples the individual

vehicles [3]. Robinett and Hurtado have investigated decentralized localization of

unknown sources using a gradient-based feedback control approach [4, 5].
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The work in decentralized formation control of UAVs and MAVs has been ex-

tensive and varied. Stipanov́ıc, et al. investigated control of UAVs by modeling the

formation as interconnected and overlapping subsystems that can be expanded into

a higher-dimensional space where the subsystems appear decoupled [6–8]. Caicedo,

et al. investigated formation control using a structurally-analogous dynamic inver-

sion control law where the formation tracks the mass center of the vehicle system

[9]. Graph theory has also been applied to the formation-control problem in order

to investigate the effects of information flow on system stability [10, 11]. Fax and

Murray show that the eigenvalues of the graph Laplacian, derived from the desired

communication structure, can be used to determine stability of the formation using

the Nyquist-stability criterion [11]. This graph-theory approach was extended to eval-

uate the stability of interconnected systems subject to disturbances and time delays

[12].

Automated highway systems have been examined as a means to improve the ca-

pacity and efficiency of highways, and several references explore different control-law

forms to achieve desired spacing characteristics in a platoon of vehicles. Research

in control-law development for automated highways addresses the concept of string

stability, which is a measure of how spacing errors between adjacent vehicles propa-

gate through a string, or sequence, of vehicles. Whereas a string-stable control form

attenuates disturbances and spacing errors decrease along the string, inter-vehicle

spacing errors increase along the string when a string-unstable control form is used.

Researchers have investigated string stability for a variety of communication struc-

tures, or control forms, and spacing policies [13–17]. Many of these approaches use a

frequency-domain analysis to investigate spacing-error transfer functions that deter-

mine how spacing errors propagate through a vehicle string.

The increased demand for air travel is stressing the current, mostly human-
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operated, air traffic management system. Several research institutions are inves-

tigating next-generation air traffic systems for the development of a decentralized

system with some autonomous operations. Researchers at NASA Langley Research

Center (LaRC) have developed an aircraft-centric spacing algorithm for autonomous

terminal-area merging and spacing operations. This tool has been tested in several

simulation environments including flight and fast-time experiments [18–20]. Whereas

system stability has been demonstrated using Monte-Carlo analysis, formal theoret-

ical analysis has not been used to prove internal stability between aircraft pairs and

string stability of a sequence of aircraft.

This research seeks to address some of the challenges in the control-law design

for and stability analysis of multivehicle systems. In the aforementioned multivehicle-

control applications, several design challenges are encountered when analyzing the

stability and performance of a decentralized, cooperative system. Different control

forms, which are defined based upon the information that is available to each vehicle,

can lead to very different stability and performance. This dissertation research will

specifically focus on addressing some of the challenges in the development and stability

analysis of decentralized, cooperative control laws using a mechanics-based approach.

The new contributions of this dissertation include:

1. a unifying approach to the design of decentralized, cooperative control laws as

motivated by a differentially-flat nonlinear vehicle model;

2. the analogy of cooperative control laws to structural systems, and subsequently,

the analysis and design of cooperative control laws using the structural form to

express the closed-loop equations of motion;

3. the investigation of time-delay effects on the stability of decentralized, cooper-

ative vehicle systems by exploiting the structural form; and
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4. the design of decentralized, cooperative control laws using non-inertial spacing

parameters.

The four research contributions are briefly described here.

A. Design of Decentralized, Cooperative Control Laws

The design of decentralized, cooperative control laws is investigated for a formation-

control problem using a planar, nonlinear vehicle model that represents vehicles with

negligible sideslip. This vehicle model represents a wide range of vehicles including

differentially-driven robotic vehicles and planar UAV flight with regulated sideslip.

The nonlinear model is differentially flat, which allows the model to be represented

by a linear form that is decoupled in the x and y directions.

The design objective is the development of cooperative control laws to maintain

the internal stability of the formation, i.e., drive errors between vehicle pairs to zero

[21]. Error variables are defined using a double-integrator model for the vehicles,

which is an exact linear representation of the nonlinear model. Closed-loop error

dynamics are written, and a form for the control laws is chosen to drive the error

variables to zero in order to achieve the desired formation. A leader-follower com-

munication structure is assumed, where each vehicle receives state information from

its immediately preceding vehicle only. In addition, the lead vehicle in the formation

tracks a reference trajectory.

Different control forms can be achieved by setting certain control gains equal to

zero. If each vehicle tracks both its immediately preceding vehicle and the reference

trajectory, the cooperative control law is string stable. Tracking the immediately

preceding vehicle only leads to a string-unstable control form for certain reference

trajectories. In addition, rate-estimation and rate-free control forms are investigated,
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which reveal challenges in assuming the linear vehicle representation when all vehicle

states are not measured or known.

The primary contribution of this research thrust is the decentralized, coopera-

tive control design, which is motivated by the nonlinear vehicle model. This design

approach can be extended to any vehicle model or system that can be expressed as

decoupled double integrators. Therefore, a multivehicle system can achieve a desired

formation or spacing by selecting control laws based upon a desired communication

structure that drive inter-vehicle spacing errors to zero.

B. Structural Analogies in the Design and Analysis of Cooperative Control Laws

The cooperative control laws developed in this dissertation are shown to be analogous

to structural systems where the multivehicle systems are coupled through shared state

information. Error terms in the control laws mimic physical connections between

vehicles, and the equations of motion can be written in a structural form.

Mẍ + Cẋ+Kx = Du

Here, x is a vector of vehicle positions, and the C andK matrices are referred to as the

damping and stiffness matrices, respectively. The form of the stiffness and damping

matrices is determined by the assumed communication structure, which defines the

information that is shared between vehicles. The system’s natural frequencies and

mode shapes are in turn determined by the form of the stiffness matrix. Thus, it is

intuitive that multivehicle systems can respond very differently to disturbances based

upon the assumed communication structure.

There are several structural analysis tools available in the literature to evaluate

the disturbance response of structural systems. This research thrust explores the
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application of these structural-analysis tools to the multivehicle control application

to both evaluate and compare communication structures. In addition, these tools can

be used to determine appropriate control gains to achieve a desired response. Two

analysis tools are investigated: modal cost and frequency-response functions. Modal

cost compares the communication structures based upon system response to impulsive

disturbances, and frequency-response functions are used to evaluate system response

to periodic excitation. The traditional structural-analysis tools do not directly apply

to the cooperative control of multivehicle systems, and thus, the tools have been

interpreted and modified for the multivehicle-control application. Frequency-response

information is shown to reveal the string stability of a cooperative control form, which

indicates that disturbance effects are mitigated along a string of vehicles.

The primary contributions of this research thrust are the analogy of the closed-

loop control laws to structural systems and the application of structural-analysis tools

to evaluate disturbance rejection and string stability of the different control forms.

Whereas other researchers have explored the structural analogy of cooperative control

laws, the structural analogy has been treated literally in that only communication

structures that are representative of physical systems were considered. Here, the

structural form for the equations of motion is exploited, but the theory includes

systems that are not able to be represented by physical systems. Additionally, the

modal-cost and frequency-response analysis tools have not previously been applied

to evaluate disturbance response. The structural form enables control-gain design to

achieve desired system performance and string stability.



8

C. Investigation of Time-Delay Effects on Formation Stability

Time-delay effects due to measurement, actuation, communication, or operator delays

are introduced as system complexity increases, and these delays can affect system

stability and performance. Delay differential equations (DDEs) have been used to

determine stability bounds on time delays [22,23]; however, the determination of delay

bounds may require the solution to linear matrix inequalities [24,25], the selection of

a Lyapunov-Krasovskĭi function [23], or expensive, problem-specific computation [26].

The structural form of the closed-loop equations of motion is exploited to investigate

delay-independent and delay-dependent stability for the multivehicle system. The

innovation of this research is the development of a straightforward method to quantify

stable time delays in the feedback states of decentralized, cooperative control laws

[27].

The method to determine maximum allowable delays is motivated by the ability

to write the closed-loop equations of motion in a structural form. The coupled equa-

tions of motion are decoupled using a modal-coordinate transformation, and results

for a first-order scalar DDE are applied to determine the maximum allowable delay.

The estimation of the maximum delay requires only the solution to an eigenvalue

problem in order to decouple the equations of motion. Simulation results are used to

support the theoretical developments; however, some challenges are encountered in a

key assumption in the theory to determine the maximum delay.

The primary contribution of this research thrust is using the structural form of

the closed-loop equations of motion in order to investigate the effects of feedback

delays on system stability. Decoupling the equations of motion has not previously

been explored to determine maximum allowable time delays for a coupled system.
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D. Control Law Design using Non-Inertial Spacing Parameters

In the previous research thrusts, cooperative control laws are designed and stability

is analyzed for spacing vehicles in an inertial reference frame with constant desired

distances between vehicles. The double-integrator representation allows the model

to be decoupled in the x and y directions; therefore, spacing errors are defined in

the x and y directions, and control laws can be chosen such that the errors in the

x and y directions go to zero. This approach can be extended to spacing vehicles

with non-constant distances; however, in some cases, it may be difficult to determine

how desired inter-vehicle distances change as a function of time, which motivates a

different approach to designing spacing control laws. This research thrust investigates

the development of control laws where vehicles are spaced using a non-inertial spacing

parameter. Two applications are investigated: spacing vehicles along an arbitrary

path and time-based spacing to a desired endpoint.

In the first application, an arbitrary reference path is parameterized using an ar-

clength parameter. Along-path and perpendicular-to-path spacing errors are defined

between adjacent vehicles. From the spacing-error definitions, a reference position,

velocity, and acceleration are determined relative to the immediately preceding vehi-

cle’s arclength and perpendicular distance from the path. Control laws are designed

to track the reference position, velocity, and acceleration, which are nonlinear, im-

plicit functions of the preceding vehicle’s states. In this implementation, all vehicles

require knowledge of the reference path.

A time-based spacing control law is designed to space vehicles with constant-

time intervals at a desired endpoint. Constant-time spacing is more ideal for some

multivehicle applications, such as airport terminal-area spacing operations where the

vehicles in a string are decelerating. A time-based spacing scheme will also allow
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vehicle spacing on dissimilar trajectories, where the relative time between vehicles

can be determined with respect to a desired endpoint. Inter-vehicle spacing errors

use the time-to-go as the spacing parameter, which is the time it will take to reach the

desired endpoint from the current position. Similarly to the control development for

spacing along an arbitrary path, a reference position, velocity, and acceleration are

determined from the preceding vehicle’s time-to-go. Each vehicle tracks the generated

reference to achieve the desired time-based spacing at the endpoint.

A common control strategy is used for the two applications explored here. In-

ternal stability is proved using a cascade approach; however, string stability is more

difficult to investigate for this control form due to the generated reference trajectory

that each vehicle tracks.

The primary contribution of this research thrust is the approach to develop co-

operative spacing control laws using non-inertial spacing parameters. This control-

design framework follows from the previous research thrusts and provides a theoretical

development for real-world spacing applications.

E. Dissertation Organization

The dissertation is organized as follows. The assumed vehicle model and linear repre-

sentation that have motivated the decentralized, cooperative control design approach

are presented in Chapter II. The decentralized, cooperative control design develop-

ment and simulation examples are shown in Chapter III, and background on string

stability is reviewed in Chapter IV. In Chapter V, the analogy of cooperative control

laws to structural systems is presented, including some of the mathematical prelimi-

naries necessary for the analysis of structural systems. The use of structural analysis

methods to analyze the disturbance-rejection properties of cooperative control laws
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is described in Chapter VI. Time-delay effects on multivehicle formation stability are

presented in Chapter VII. In Chapter VIII, deviations from the cooperative control

development in the inertial frame are explored for two applications: spacing vehi-

cles along an arbitrary path and time-based spacing. The research is summarized in

Chapter IX. The included appendices provide further background on various topics

throughout the dissertation as noted.
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CHAPTER II

VEHICLE MODEL

The theoretical developments presented in this dissertation are based upon a commonly-

used nonlinear vehicle model. The derivation of the vehicle model is presented here,

and the model is shown to be differentially flat. The differential-flatness property

allows the nonlinear model to be represented in a linear form.

A. Nonlinear Vehicle Model

The nonholonomically-constrained vehicle model shown in Figure 1 represents a wide

variety of vehicle types, where the nonholonomic nature of the vehicle prevents motion

perpendicular to the heading direction. For example, planar motion of a UAV with

negligible sideslip has been described using this model, as well as differentially-driven

robotic platforms where the wheel friction prevents motion perpendicular to the wheel

direction. Figure 1 shows a top view of the vehicle with a body-fixed reference frame

aligned with the vehicle’s heading. Inputs to the vehicle are a force F aligned with

the vehicle heading, and a torque T in the b̂3 direction.

The vehicle configuration is uniquely described by the generalized coordinates,

q = [x, y, θ]T . Kinematic equations for the inertial position and velocity of the center

of the vehicle can be derived.

r = xn̂1 + yn̂2 (2.1)

ṙ = ẋn̂1 + ẏn̂2 (2.2)

Coordinatizing the inertial velocity vector in the body-fixed frame yields the following

expression from which the nonholonomic constraint is determined by setting the b̂2
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Fig. 1.: Nonholonomically-constrained vehicle model.

component equal to zero.

ṙ = (ẋ cos θ + ẏ sin θ)b̂1 + (−ẋ sin θ + ẏ cos θ)b̂2 (2.3)

Therefore, the constraint can be written in the following matrix form.

φ(q, q̇, t) =

[
− sin θ cos θ 0

]


ẋ

ẏ

θ̇


 = Cq̇ = 0 (2.4)

The equations of motion can be determined using Lagrange’s equations subject

to nonholonomic constraints [28].

d

dt

(
∂L

∂q̇j

)
− ∂L
∂qj

= Qj − CT
jiλi, j = 1, ..., n, i = 1, ..., l (2.5)

Here, n is the number of generalized coordinates, and l is the number of nonholonomic

constraints. For this system, n = 3 and l = 1. The Langrangian function, L, is equal
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to the kinetic energy of the vehicle in the absence of conservative forces.

L = T =
1

2
m
(
ẋ2 + ẏ2

)
+
1

2
Iθ̇2 (2.6)

Generalized forces, Qj , can be found using the work/energy rate principle as described

by Junkins and Kim [29] and restated below.

dEj

dt
=
d

dt
(Tj + Vj) = Q

T
j q̇ = Ẇtrans + Ẇrot (2.7)

Therefore, the generalized forces are the terms acting on the time derivatives of the

generalized coordinates found from the expression for the work rate. The work rate

for this problem is shown.

Ẇ = Ẇtrans + Ẇrot

= F · ṙ + T · ω

= F b̂1 ·
[
(ẋ cos θ + ẏ sin θ)b̂1 + (−ẋ sin θ + ẏ cos θ)b̂2

]
+ T b̂3 · θ̇b̂3 (2.8)

The generalized forces are determined directly from Equation (2.8).

Qx = F cos θ; Qy = F sin θ; Qθ = T (2.9)

The seventh-order differential-algebraic equations of motion can then be derived.

mẍ = F cos θ − λ sin θ (2.10)

mÿ = F sin θ + λ cos θ (2.11)

Iθ̈ = T (2.12)

Subject to: − ẋ sin θ + ẏ cos θ = 0 (2.13)

Suppose that new velocity quantities called generalized speeds are defined. The

generalized speeds are linearly related to the true velocities, or time rates of change
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of the generalized coordinates, and the linear relationship is invertible.

v1

v2

v3


 =



cos θ sin θ 0

− sin θ cos θ 0

0 0 1






ẋ

ẏ

θ̇


⇔



ẋ

ẏ

θ̇


 =



cos θ − sin θ 0

sin θ cos θ 0

0 0 1






v1

v2

v3


 (2.14)

Note that v1 is the inertial velocity in the b̂1 direction; v2 is the inertial velocity in

the b̂2 direction, or the constraint equation, and is therefore equal to zero; and, v3 is

the angular velocity. The kinematic equations can thus be simplified as shown.

ẋ = v1 cos θ; ẏ = v1 sin θ; θ̇ = v3 (2.15)

To determine the dynamical equations, Equations (2.10) and (2.11) are multiplied by

cos θ and sin θ, respectively, and added together.

mẍ cos θ +mÿ sin θ = F (2.16)

Expressions for ẍ and ÿ are determined from the kinematic relationships and substi-

tuted into Equation (2.16).

m(v̇1 cos θ − v1v3 sin θ) cos θ +m(v̇1 sin θ + v1v3 cos θ) sin θ = F (2.17)

Equation (2.17) can be simplified to mv̇1 = F . Redefining v = v1 and ω = v3, the

fifth-order system of ordinary differential equations can be written.

ẋ = v cos θ (2.18)

ẏ = v sin θ (2.19)

θ̇ = ω (2.20)

mv̇ = F (2.21)

Iω̇ = T (2.22)
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If the inputs to the vehicle are the velocity, v, and angular turn rate, ω, the

vehicle motion can be described by the kinematic equations alone: Equations (2.18) -

(2.20). The full set of equations is used if the vehicle inputs are the force and torque.

B. Linear Representation of the Nonlinear Vehicle Model

The development and design of the decentralized, cooperative control laws presented

in this dissertation are based upon a vehicle model described by the kinematic equa-

tions of motion in Equations (2.18), (2.19), and (2.20). Therefore, the vehicle states

are the inertial position of the vehicle, x and y, and the heading angle, θ, and the

control inputs are the velocity, v, and angular turn rate, ω.

The nonlinear, kinematic vehicle model is affine in control with codimension one

(3 states and 2 controls); and thus, the model is differentially flat with flat outputs x

and y [30, 31]. Differential flatness is further explained in Appendix A. Because the

model is differentially flat, the state θ and the two control inputs can be written as

functions of the flat outputs and their derivatives as shown below.

θ = tan−1

(
ẏ

ẋ

)
; v =

√
ẋ2 + ẏ2; ω =

ÿẋ− ẏẍ
v2

(2.23)

The second derivatives of the flat outputs are the highest derivatives that appear in

the control ω. A derivative of the vehicle velocity reveals the second derivatives of

the flat outputs.

v̇ =
ẋẍ+ ẏÿ

v
(2.24)

Therefore, new control inputs can be defined as (ẍ, ÿ) = (u, w). This transfor-

mation enables the nonlinear system in Equations (2.18)-(2.20) to be represented as
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uncoupled double integrators.


ẋ

ẏ

ẍ

ÿ



=




0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0







x

y

ẋ

ẏ



+




0 0

0 0

1 0

0 1





u
w


 (2.25)

Thus, the control-law design is made easier by the transformation to the linear rep-

resentation. It should be noted that Equation (2.25) is not a linear approximation

of the nonlinear vehicle model, but an exact linear representation. The behavior of

the differentially-flat system enables the design of arbitrary trajectories in the flat-

output (x, y) space, which can then be mapped to the appropriate inputs using a

linear transformation.
v̇
ω


 =

1

v


 ẋ ẏ

− ẏ
v

ẋ
v




u
w


 = T (ẋ, ẏ)


u
w


 ; v =

√
ẋ2 + ẏ2 (2.26)

Here, the velocity v is a state, and the control inputs to the vehicle are v̇ and ω.

ẋ = v cos θ; ẏ = v sin θ; θ̇ =
ẋw − ẏu
v2

; v̇ =
ẋu+ ẏw

v
(2.27)

These equations completely characterize the nonlinear vehicle model for the control

inputs designed using the decoupled, double-integrator representation.

Whereas the kinematics vehicle model presented here is for planar vehicle mo-

tion, a guidance model for vehicle motion in three dimensions is also shown to be

differentially flat. Therefore, the nonlinear vehicle model can also be represented as

uncoupled double integrators: (ẍ, ÿ, z̈) = (ux, uy, uz), and the theory presented in this

dissertation in two dimensions also holds for three-dimensional vehicle motion. The

derivation of the three-dimensional guidance model and control transformations are

presented in Appendix B.
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CHAPTER III

DECENTRALIZED, COOPERATIVE CONTROL DESIGN

In this chapter, control-law design and the internal stability of multivehicle formations

are explored. The differential-flatness property of the nonlinear vehicle model is

exploited, which allows the vehicle motion to be described using the linear form [32–

34]. The control-law design is then approached from an error-dynamics perspective

where the form of the vehicle model is used to formulate error variables between

neighboring vehicles in the formation. In addition to the control-law design, two rate-

estimation techniques are explored. Using rate estimates complicates the nonlinear-

to-linear model transformation, and stability is difficult to analyze. To deal with this

problem, rate-estimation equations are designed using the linear model representation

and formation stability is explored using simulation results. Last, a rate-free control

law is designed, which does not require state information from other vehicles in the

formation to implement.

The major contributions of this chapter are the straightforward formation-control

design for an accelerating formation using the linear form of the vehicle model, the

exploration of rate-estimation techniques and associated challenges related to the non-

linear model, the rate-free control-law development including an asymptotic stability

proof of the rate-free control law using Lyapunov theory, and finally, the comparison

of these control techniques for a multivehicle formation.

The development of the cooperative control laws, as well as the form of the

system error dynamics are presented in Section A, and rate-estimation techniques are

presented in Section B. The development of the rate-free controller is in Section C.

Simulation results using both the simple, nonlinear model and a six degree-of-freedom

UAV model are presented in Section D.
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A. Control-Law Development

A leader-follower communication structure is assumed for the decentralized formation-

control problem. Figure 2 shows a five-vehicle formation where each leader-follower

vehicle pair is denoted by the dashed lines, and communication flow is shown by the

arrows between vehicles [6]. For example, V2 receives state information from its lead

V1, and V3 receives information from V2. V1 will be referred to as the formation lead.

Figure 2 shows two vehicle platoons; the formation control laws for each platoon can

be implemented independently. The vehicle indices in the development below are

consistent with platoon 1; however, all development is also applicable to platoon 2.

V
1

V
2

V
3

V
4V

5

V
1

V
2

V
3

V
4V

5

Platoon 1: V1, V2, V3

Platoon 2: V1, V4, V5

Fig. 2.: Leader-follower communication structure for a multivehicle formation.

The design focus is on the internal stability of the formation, i.e., the ability to

achieve the desired formation in the steady state. The control laws are developed

by defining error variables between the leader-follower vehicle pairs as shown below.

The defined errors are in the x-direction only. Due to the uncoupled nature of the
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equations of motion, the development is identical in the y-direction.

e1 = xr − x1 − d1; ė1 = ẋr − ẋ1; ë1 = ẍr − ẍ1 = ẍr − u1

e2 = x1 − x2 − d2; ė2 = ẋ1 − ẋ2; ë2 = ẍ1 − ẍ2 = u1 − u2

...
...

...

ei = xi−1 − xi − di; ėi = ẋi−1 − ẋi; ëi = ẍi−1 − ẍi = ui−1 − ui

(3.1)

The formation lead tracks a reference trajectory, xr, at some constant distance, d1, as

denoted by the e1 equation; e2 is the relative error between vehicles 1 and 2 separated

by some constant distance d2; and, the error equation of the ith vehicle with respect

to the (i− 1)th vehicle can be generalized as shown above.

The control objective is to design control inputs, ui, that stabilize the error

dynamics for a system of n vehicles described by the differential equation ė = Ae +

BU .

e =

[
e1 ė1 e2 ė2 . . . en ėn

]T

(3.2)

U =

[
ẍr u1 u2 . . . un

]T

=

[
ẍr u

]T

(3.3)

A =




0 1 0 0 . . . 0 0

0 0 0 0 . . . 0 0

0 0 0 1 . . . 0 0

0 0 0 0 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0 1

0 0 0 0 . . . 0 0




; B =




0 0 0 . . . 0 0

1 −1 0 . . . 0 0

0 0 0 . . . 0 0

0 1 −1 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 0 0

0 0 0 . . . 1 −1




(3.4)

Here, A is a 2n× 2n matrix, and B is a 2n× (n + 1) matrix. The following form is
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assumed for the control inputs ui.

u =




kp1 kv1 0 0 . . . 0 0

0 0 kp2 kv2 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . kpn kvn



e+




cp1 cv1 0 0 . . . 0 0

cp2 cv2 cp2 cv2 . . . 0 0

...
...

...
...

. . .
...

...

cpn cvn cpn cvn . . . cpn cvn



e+ẍr

(3.5)

The ith control law can be generalized, and the terms are expanded using the defini-

tions for the error terms in Equation (3.1).

ui = kpi
ei + kvi

ėi + cpi
(e1 + e2 + · · ·+ ei) + cvi

(ė1 + ė2 + · · ·+ ėi) + ẍr

= kpi
(xi−1 − xi − di) + kvi

(ẋi−1 − ẋi)+

+ cpi
(xr − xi −

i∑
j=1

dj) + cvi
(ẋr − ẋi) + ẍr (3.6)

This choice of u yields homogeneous error dynamics of the form ė = Acle such that

there are no steady-state spacing errors.

Due to the selected leader-follower communication structure, the homogeneous

error dynamics always have a lower-diagonal block form. The closed-loop character-

istic polynomial can then be determined from the diagonal blocks. Therefore, the

characteristic polynomial of the closed-loop error dynamics has the following form,

and the equivalent eigenvalues are easily found.

n∏
i=1

[
s2 + (kvi

+ cvi
)s+ (kpi

+ cpi
)
]
= 0 ⇒

⇒ λi1,2 = −(kvi
+ cvi

)

2
±
√
(kvi

+ cvi
)2 − 4(kpi

+ cpi
)

2
(3.7)

Based upon the form of the general control law in Equation (3.6), some specific

control-gain choices are presented here.
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• Case 1: kp, kv �= 0, cp, cv = 0. For this choice of gains each vehicle tracks its

lead vehicle’s position and velocity.

• Case 2: kp, kv = 0, cp, cv �= 0. In this case, each vehicle tracks the reference tra-

jectory rather than its assigned lead vehicle’s position and velocity. Therefore,

it would be assumed in this case that each vehicle knows the reference trajec-

tory of the formation lead, as well as its desired separation from the reference

trajectory.

• Case 3: kp, kv, cv �= 0, cp = 0. Case 3 combines some of the behaviors in the

previous two cases: the ith vehicle tracks its lead’s position and velocity and

the reference velocity.

• Case 4: kp, kv, cp, cv �= 0. In this case, the control law combines both reference-

trajectory and lead-vehicle tracking schemes.

Case 4 leads to both lead-vehicle and reference-trajectory tracking strategies where

the gains are chosen based upon the desired weighting of each strategy. Case 1 may

be utilized if the reference trajectory is not known by all vehicles in the formation,

whereas Case 2 may be chosen if lead-vehicle information is unavailable.

B. Rate-Estimation Control

In the previous control-law developments, the control input to the ith vehicle requires

knowledge of its own position and rates: xi, yi, ẋi, and ẏi. To implement the control

law in Case 4, position and rate information from the assigned lead vehicle (xi−1,

yi−1, ẋi−1, and ẏi−1) and reference-trajectory position and rate information (xr, yr,

ẋr, and ẏr) are required. In this section, control-law implementation without direct

measurement of vehicle velocity, v, from which the rates ẋ and ẏ can be determined is
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explored. In many aerospace applications, full-state measurement eliminates the need

for rate estimation, but interest in this development stems from vehicle applications

with limited sensor packages, such as small robotic vehicles or cheap, easily deployable

UAVs.

When rates are known, the computation of the control inputs in the nonlinear

form is straightforward using u and w from the linear control design. However, this

relationship is complicated if rates are unknown. When rate estimates for ẋ and ẏ,

denoted as ˙̂x and ˙̂y, are used to compute the original controls, “estimation dynamics”

are added to the system response as shown below.
v̇
ω


 =

1

v̂


 ˙̂x ˙̂y

− ˙̂y
v̂

˙̂x
v̂




u
w


 = T

(
˙̂x, ˙̂y
)u
w


 ; v̂ =

√
˙̂x2 + ˙̂y2 (3.8)

From a first-order linearization of T
(
˙̂x, ˙̂y
)
about ẋ and ẏ, it can be seen that a rate-

estimation scheme adds error terms to the control transformation. These errors terms

are related to the errors between the actual and estimated rates.

T
(
˙̂x, ˙̂y
)
≈ T (ẋ, ẏ) + ∂T

∂ ˙̂x

∣∣
ẋ

(
˙̂x− ẋ

)
+
∂T

∂ ˙̂y

∣∣
ẏ

(
˙̂y − ẏ

)

≈ T (ẋ, ẏ) +


1

v
− ẋ2

v3 − ẏẋ
v3

2ẏẋ
v4

1
v2 − 2ẋ2

v4


( ˙̂x− ẋ)+


 − ẋẏ

v3
1
v
− ẏ2

v3

− 1
v2 +

2ẏ2

v4 −2ẋẏ
v4


( ˙̂y − ẏ)

(3.9)

These rate-estimation errors are amplified through the Jacobian of the transformation

evaluated at the true rates. Because the stability of the above transformation is

difficult to determine analytically, rate-estimation schemes are designed using the

double-integrator model in Equation (2.25). System stability is then evaluated using

simulation results for the nonlinear system using the control transformation with rate

estimates in Equation (3.8).
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Vehicle rate estimation is explored in two ways. First, a Luenberger-observer

method is presented, which is a straightforward derivation given the linear vehicle

model and the control-law form described in Equation (3.6). Second, a first-order

passive filter of the position states is explored.

1. Luenberger Observer

Rate estimation using a Luenberger observer [35] is an alternative to measuring all

required states using onboard sensing. The general control law for the ith vehicle

in Equation (3.6) requires the following state information: (xi, ẋi, xi−1, ẋi−1, xr, ẋr).

The objective is to estimate the vehicle rates, ẋi and ẋi−1; the estimated states are

denoted as ˙̂xi and ˙̂xi−1, respectively. In addition, it is assumed that the (i -1)th

vehicle communicates its own rate estimate to the ith vehicle. Note that estimating

the rate of the (i -1)th vehicle onboard the ith vehicle would not meet the leader-

follower communication structure that was previously defined because the ith vehicle

would then need state information from all of the preceding vehicles to implement

the observer.

The closed-loop equations of motion for the ith vehicle are expressed in the

matrix form below assuming full-state knowledge.
ẋi

ẍi


 =




 0 1

−(kpi
+ cpi

) 0


+


0 0

0 −(kvi
+ cvi

)






xi

ẋi


+


 0 0

kpi
kvi




xi−1

˙̂xi−1


+

+


 0 0 0

cpi
cvi

1





xr

ẋr

ẍr


+


 0

−kpi
di − cpi

∑i
j=1 dj


 (3.10)
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Equation (3.10) is rewritten in the following matrix notation.

ẋi = (A1 + A2)xi +B1xi−1 +B2xr +B3 (3.11)

Here, the A1 matrix represents the kinematics and contains the position gains from

the control law, and A2 contains the velocity gains. The A1 and A2 matrices are

divided into terms that will act on known states and terms that will act on estimated

states. The B1 matrix is the input matrix from the (i -1)th vehicle, the B2 matrix is

the input matrix for the reference trajectory states, and the B3 matrix is the input

matrix for the desired spacing of the ith vehicle with respect to its lead vehicle and

the reference trajectory. The vectors in this matrix representation are defined as xi

= [xi, ẋi]
T , xi−1 = [xi−1, ˙̂xi−1]

T , and xr = [xr, ẋr, ẍr]
T .

In developing the state estimator for the ith vehicle, it is assumed that the

vehicle position is known and the measured position, xim , can be represented by a

linear equation.

xim = Cxi, C =

[
1 0

]
(3.12)

The closed-loop estimator can be written by replacing xi with x̂i and by adding an

error term between the estimated and the measured quantities. The estimation-gain

matrix, Li, is selected to drive the estimated states to the actual states.

˙̂xi = (A1 + A2)x̂i +B1xi−1 +B2xr +B3 + Li(xim − Cx̂i)

= (A1 + A2 − LiC)x̂i +B1xi−1 +B2xr +B3 + LiCxi (3.13)

From Equations (3.11) and (3.13), the equations for the feedback system to estimate

both xi and ẋi can be determined; the rate estimate ˙̂xi is used in place of ẋi in the

feedback control law. The overall system of equations for the ith vehicle has the
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following form.
ẋi

˙̂xi


 =


 A1 A2

LiC A1 + A2 − LiC




xi

x̂i


+


B1

B1


xi−1 +


B2

B2


xr +


B3

B3


 (3.14)

Note that only the kinematics term in the matrix A1 acts on ẋi, and the position-gain

term acts on xi, which is known. The matrix A2 only acts on the rate term in x̂i,

which is an estimated quantity. The top row of Equation (3.14) represents the vehicle

dynamics responding to the control input with estimated rates, and the bottom row

is the onboard filter that determines the estimated states.

The stability of the closed-loop control law with the filter in Equation (3.14) can

be evaluated using the eigenvalues of the matrix that acts on [xi x̂i]
T . Stability is

achieved if the estimation-gain matrix, Li, is chosen such that the estimation filter

is faster than the closed-loop dynamics. The eigenvalues for the overall system of n

vehicles are equal to the union of the eigenvalues of each individual vehicle; therefore,

the state-estimation filters can be designed for each individual vehicle independently.

The system eigenvalues are shown below.

λi1,2 =
−(kvi

+ cvi
)

2
±
√
(kvi

+ cvi
)2 − 4(kpi

+ cpi
)

2

λi3,4 =
−Li1

2
±
√
L2

i1
− 4(kpi

+ cpi
+ Li2)

2
; Li = [Li1 Li2 ]

T (3.15)

Thus, the rate-estimation scheme leads to the following general control form.

ui = kpi
(xi−1 − xi − di) + kvi

( ˙̂xi−1 − ˙̂xi) + cpi
(xr − xi −

i∑
j=1

dj) + cvi
(ẋr − ˙̂xi) (3.16)

When there is no error in the initial rate estimates, i.e., the estimated and true rates

are equal at time zero, the formation behavior is identical to the behavior with known

states because the Luenberger observer is an exact estimate of the closed-loop vehicle
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response.

2. Passivity Filter

Using a passivity filter is another method for estimating rate information. There are

several examples in the literature of using passive filters to estimate rate information

for control of robotic manipulators and attitude stabilization [36–38]. These concepts

are utilized here to develop an expression to estimate vehicle rates. The passive filter

has the form shown below, where the vehicle position is filtered using a fictitious

state, φi.

φ̇i = −τiφi + kixi (3.17)

The position, xi, in the filter equation is equivalent to a function of the reference

trajectory and position errors.

xi = xr − e1 − e2 − . . .− ei −
i∑

j=1

dj (3.18)

When the n-vehicle formation has reached its desired formation, all of the spacing

errors, ei, are zero, and xi = xr −
∑i

j=1 dj. Assuming that xr has a constant acceler-

ation, we can substitute xi =
1
2
ẍrt

2 + ẋr(0)t −
∑i

j=1 dj, and a solution for φi(t) can

be found.

φi(t) = Ce
−τit +

ki

2τi
ẍrt

2 +

(
kiẋr(0)

τi
− ki

τ 2
i

ẍr

)
t+

(
−ki

∑i
j=1 dj

τi
− kiẋr(0)

τ 2
i

+
ki

τ 3
i

ẍr

)

= Ce−τit +
ki

τi

(
1

2
ẍrt

2 + ẋr(0)t−
i∑

j=1

dj

)
− ki

τ 2
i

(ẍrt+ ẋr(0)) +
ki

τ 3
i

ẍr

= Ce−τit +
ki

τi
xi − ki

τ 2
i

ẋr +
ki

τ 3
i

ẍr (3.19)

As t becomes large, Ce−τit becomes small; thus, this term can be neglected. The

reference velocity, ẋr, is equal to ẋi when the position errors have gone to zero, and
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because φi lags xi, the equation below is an estimate of ẋi.

˙̂xi ≈ ẋr = τixi − τ
2
i

ki
φi +

1

τi
ẍr (3.20)

As was the case in the Luenberger-observer design, the passivity filters can be

designed for the individual vehicles, and the overall system stability is guaranteed

given individual vehicle stability. The following equation shows the closed-loop state

and passivity-filter equations for the ith vehicle, where ẋi has been replaced with

equation (3.20).

ẋi

ẍi

φ̇i


 =




0 1 0

−(kpi
+ cpi

)− τi(kvi
+ cvi

) 0
τ2
i

ki
(kvi

+ cvi
)

ki 0 −τi






xi

ẋi

φi


+



0 0

kpi
kvi

0 0




 xi1

˙̂xi−1


+

+



0 0 0

cpi
cvi

1− (kvi+cvi)

τi

0 0 0






xr

ẋr

ẍr


+




0

−kpi
di − cpi

∑i
j=1 dj

0


 (3.21)

The eigenvalues of Equation (3.21) do not have a concise analytical form; however,

the characteristic equation is s3+τis
2+[(kpi

+ cpi
) + τi(kvi

+ cvi
)] s+(kpi

+ cpi
) τi = 0.

Routh-Hurwitz analysis indicates that for stability τi > 0, and ki has no bounds as

it does not appear in the characteristic equation.

C. Rate-Free Control

Passive filtering can also be used to implement rate-free control laws that do not

require rate information for implementation [36, 39]. In this case, the elimination of

rate information leads to a self-contained control law, which does not require state

information from other vehicles. The derivation begins by redefining the position
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error of the ith vehicle relative to the reference trajectory.

εi = xr − xi −
i∑

j=1

dj ; ε̇i = ẋr − ẋi; ε̈i = ẍr − ẍi = ẍr − ui (3.22)

In addition, the error equations are augmented with a first-order filter of the position

error, εi.

β̇i = −τiβi + kiεi (3.23)

Lyapunov stability theory [29] is used to determine an appropriate controller to drive

the system to its equilibrium state where error, εi, is zero.

V (εi, ε̇i, βi) =
γi

2
ε2i +

1

2
ε̇2i +

1

2
(−τiβi + kiεi)

2 (3.24)

It is easily verified that V = 0 at εi = ε̇i = −τiβi + kiεi = 0. The design parameter

γi was added to influence system performance. A time derivative of Equation (3.24)

introduces the control input, ui.

V̇ (εi, ε̇i, βi, β̇i) = γiεiε̇i + ε̇iε̈i + (−τiβi + kiεi)
(
−τiβ̇i + kiε̇i

)
= ε̇i

(
γiεi + ẍr − ui − kiτiβi + k

2
i εi
)− τi (−τiβi + kiεi)

2 (3.25)

Stability requires that V̇ ≤ 0, and a control is selected to achieve this result.

ui =
(
γi + k

2
i

)
εi − kiτiβi + ẍr

=
(
γi + k

2
i

)(
xr − xi −

i∑
j=1

dj

)
− kiτiβi + ẍr (3.26)

The control ui requires position, xi, reference information, xr, and filter-state in-

formation, βi, only. This controller development has eliminated the need for rate

information in the control input.

For this choice of ui, the first term in Equation (3.25) is equal to zero, which

leaves V̇ = −τi (−τiβi + kiεi)
2 ≤ 0. The condition V̇ ≤ 0 indicates local stability
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around the equilibrium states of εi, ε̇i, and βi; however, by taking higher derivatives

of V we are able to determine that εi, ε̇i, and βi, go to zero asymptotically (see

Appendix C). This proof of asymptotic stability is an alternative to checking the

closed-loop eigenvalues of the state and filter equations.

Whereas the control input does not require rate information, the rates ẋi still

must be estimated to compute the original controls v and ω in Equation (2.23).

The first-order filter of position used to determine ˙̂xi in the previous section can

be implemented here to estimate the rates. The closed-loop rate-free control law

augmented with the two first-order filters is shown below. Here, the gains on the

position-error filter shown in Equation (3.23) are denoted by subscript 1, and the

gains on the position filter in Equation (3.17) are denoted by subscript 2.


ẋi

ẍi

β̇i

φ̇i



=




0 1 0 0

−(γi + k
2
i1
) 0 −ki1τi1 0

−ki1 0 −τi1 0

ki2 0 0 −τi2







xi

ẋi

βi

φi



+

+




0 0 0

(γi + k
2
i1
) 0 1

ki1 0 0

0 0 0






xr

ẋr

ẍr


+




0

−(γi + k
2
i1
)
∑i

j=1 dj

−ki1

∑i
j=1 dj

0




(3.27)

Again, the eigenvalues do not have a concise, analytical form. Routh-Hurwitz analysis

of the characteristic equation:

s4 + (τi1 + τi2)s
3 + (τi1τi2 + γi + k

2
i1)s

2 +
[
(τi1 + τi2)γi + τi2k

2
i1)
]
s+ τi1τi2γi = 0

becomes quite complicated; however, design parameters may be chosen to satisfy

the necessary condition for stability where all of the coefficients in the characteristic
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equation must be positive.

D. Simulation Results

Simulation results are presented here to illustrate control-law performance. Firstly, a

non-dimensional example is presented using the full-state-measurement, rate-estimation,

and rate-free control laws presented in Sections A through C. Secondly, simulation

results are presented for a formation of UAVs using the full-state measurement control

law in order to demonstrate the applicability of the decentralized formation controller

to a realistic UAV application.

1. Non-Dimensional Simulation Results

The simulation results presented here are intended to demonstrate the performance

characteristics of the different formation control schemes; therefore, the user must

appropriately design the control gains and reference trajectory of the formation for

a specific vehicle application. All units will be in terms of distance units (DU) and

time units (TU) to eliminate any relation to a specific application.

In all simulations in this section, the reference trajectory of the formation from

the origin is xr =
1
2
ẍrt

2 + ẋr(0)t, where ẍr = 1 and ẋr(0) = 0.5. These values were

chosen such that the formation-lead vehicle travels one DU in one TU. The desired

separation between vehicles in the x and y directions is 0.1 DU.

a. Full-State-Measurement Control

A five-vehicle formation is simulated for the four gain cases described in Section A.

Figure 3 shows the (x, y) positions of the vehicles over one time unit (TU). Note

that the vehicles are traveling from left to right in the figure, and each vehicle has
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initial position and velocity errors. The eigenvalues of the characteristic equation are

chosen to be equal in all control-gain cases. Although it is difficult to detect in the

figure, there are some slight differences in the performance of each control law. These

differences are expected due to the different forms of the closed-loop error dynamics

for each gain case. Whereas identical eigenvalues provide the same decay rates for

each solution, each gain case has a unique closed-loop form with unique eigenvectors,

which leads to variations in the performance of each controller.
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Fig. 3.: Simulation results for the general formation control laws with different gain

choices.

Table I shows the convergence times for each control law and the minimum

separation between vehicle pairs in the formation, where the desired separation is√
2(0.1)2 = 0.1414 DU. The convergence time is defined as the time when the four



33

Table I.: Control-Law Convergence and Minimum-Separation Results.

Case # Gains Convergence Time (TU) Min Separation (DU)

1 kp, kv �= 0, cp, cv = 0 1.99 0.1165

2 kp, kv = 0, cp, cv �= 0 2.40 0.1247

3 kp, kv, cv �= 0, cp = 0 3.40 0.1097

4 kp, kv, cp, cv �= 0 2.08 0.1208

trailing vehicles are within 10% of their desired separation from their leads. For these

gain choices, Case 1 provides the fastest convergence and Case 3 is the slowest to

converge; however, the differences in the table are quite small, and changes to the

gains may not result in the same performance trends as shown here. Further gain

tuning could provide desired performance for any of these control choices. Whereas

active collision avoidance has not been investigated in the control-law design, gain

selection and initial vehicle conditions directly affect the aggressiveness of the forma-

tion convergence. The gains chosen in this example have been selected to provide

reasonable separation between the vehicles during convergence. However, in a case

of poor initial conditions, the gains could be chosen to make the lead vehicle quickly

converge to the reference trajectory, vehicles 2 and 4 less aggressive than the lead,

and vehicles 3 and 5 less aggressive than vehicles 2 and 4.

Additionally, the gains used here are selected to limit vehicle accelerations to

1.2 DU/TU2 (20% greater than the desired accleration) and angular turn rates to 90

deg/TU. These were arbitrarily chosen limits; however, the gains can be adjusted to

achieve any desired acceleration and turn-rate constraints.
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b. Rate-Estimation Control

Luenberger-Observer Estimation Method

Simulation results are used to evaluate the rate-estimation scheme for initial filter

errors in the vehicle rates. The estimation-gain matrices, Li, are identical for each

vehicle and are chosen such that the state estimators are at least ten times faster than

the closed-loop dynamics. Figure 4 shows one example of the formation convergence

(for Case 4) with initial-rate inputs to the estimation filter randomly perturbed using

a normal distribution with a variance of 1.00 DU/TU. The top plot in Figure 4 shows

(x, y) positions over 5 TU. Formation convergence is achieved in 2.55 TU with a

minimum separation of 0.1081 DU.

−2 0 2 4 6 8 10 12 14 16
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Fig. 4.: Simulation results for the Luenberger-observer estimation scheme (Case 4).

One hundred simulations were run for perturbed initial rate estimates with a

variance of 1.00 DU/TU. The simulations converged in an average of 2.45 TU, which

indicates that on average the formation converges more slowly for estimated rates
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than when the actual rates are used in the control law. In addition, some of the cases

violated the acceleration and turn-rate limits, which indicates that the control gains

would need to be less aggressive in the rate-estimate case.

Passive-Filtering Estimation Method

In the nonlinear-model implementation of the passive filter, the formation stability

is sensitive to the initial guesses for φi. The desired value of φi(0) can be calculated

from Equation (3.20) and then perturbed by a random error with some variance to

investigate the formation stability around the initial condition for φi. For a variance

of 0.10 DU/TU and ki = 5, the formation does converge to the desired formation;

however, there are large oscillations in the vehicle positions causing the vehicle paths

to cross. Improved performance is achieved by increasing ki to 50. An example of this

result is shown in Figure 5, where the formation converges to the desired formation in

1.60 TU with a minimum separation of 0.1396 DU. Over 100 simulations, the average

convergence time is 1.50 TU, which means that the passive-filtering technique provides

faster convergence for this set of gains than when true rates are known.

In the case that there are no errors on the initial filter states, the value of ki

does not influence the results. However, this gain directly affects the stability and

performance of the passive-filter system when there are initial errors in φi. This result

is obvious from Equation (3.20), where larger values of ki decrease the contribution

of φi in the calculation of ˙̂xi.

c. Rate-Free Control

The rate-free controller performance is demonstrated in Figure 6 for 5 TU. Here,

the gains τi1 and ki1 remain the same as in the passive-filter implementation, and

the gains τi2 , ki2, and γi are tuned to limit the acceleration and turn rates to the
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Fig. 5.: Simulation results for the passive-filtering estimation scheme (Case 4).

previously specified conditions. In this case, the initial conditions for βi are set to

zero, and the initial conditions for φi are perturbed from the desired values using

a random error. Due to the more sluggish behavior of the rate-free controller, the

variance on the errors in φi(0) is increased to 0.50 DU/TU from 0.10 DU/TU in the

previous section. For these conditions, the formation converged in 10.79 TU with a

minimum separation of 0.0862 DU.

Out of 100 simulations, all of the initial conditions yielded stable formations with

an average convergence time of 11.41 TU. Vehicle separation is more of a concern

with the rate-free controller due to the lack of state information from other vehicles;

therefore, gains must be carefully selected based upon the initial formation in order

to provide adequate separation.
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Fig. 6.: Simulation results for the rate-free controller (Case 4).

2. UAV Simulation Results

The UCAV6 aircraft model, which is roughly a 60% scale version of the AV-8B Harrier

Aircraft [40,41], is used to simulate a formation of five UAVs. A six degree-of-freedom

state-space aircraft model was obtained by linearizing a nonlinear simulation model

about a steady, level, trimmed flight condition (the trim angle of attack is α1 = 4.35

deg, the trim velocity is V1 = 128.7 m/s, the trim elevator deflection is δe1 = 7.5

deg, and the trim engine thrust is 55%). The vectors of aircraft states and inputs are

shown below.

x = [δX δY δZ u v w p q r φ θ ψ]T

u = [δe δT δa δr]
T
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The states, δX, δY , and δZ are perturbations in the aircraft position, u, v, and w

are perturbations in the body-fixed velocities, p, q, and r are perturbations in the

body-fixed angular velocities, and φ, θ, and ψ are Euler angles. The aircraft controls

are the elevator, aileron, rudder deflections from trim, δe, δa and δr, respectively, and

the thrust perturbation from trim, δT . The A and B matrices are also shown.

A =

[
012×3 Ā12×9

]
; B =

[
03×4 B̄6×4 03×4

]T

(3.28)

Ā =




0.99 0 0.0759 0 0 0 0 −32.06 0

0 1 0 0 0 0 −32.06 0 422.2

−0.07 0 0.99 0 0 0 0 −417.4 0

−0.03 0 0.16 0 −31.99 00 −32.02 0

0 −0.33 0 31.9 0 −418 32.02 0 0

−0.06 0 −1.34 0 409.5 0 0 −2.43 0

0 −0.02 0 −3.64 0 1.72 0 0 0

0 0 −0.02 0 −0.77 0 0 0 0

0 0.02 0 −0.21 0 −1.19 0 0 0

0 0 0 1 0 0.07 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1.003 0 0 0




(3.29)

B̄ =




0.0081 0.2559 0 0

0 0 −0.2945 0.4481

0.2772 0.2286 0 0

0 0 0.5171 0.0704

0.1164 0.0143 0 0

0 0 0.0239 −0.0895




(3.30)
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Velocity and heading-angle commands come from the integration of the v̇ and ω

control inputs, described in Equation (2.26), that are determined using the full-state-

measurement control law (Case 4). An optimal non-zero set point (NZSP) controller

is then used to control the aircraft states along desired trajectories in order to track

the commanded velocity and heading-angle commands from the formation controller

[40,41]. The velocity in the body-fixed y axis is regulated to zero in order to meet the

negligible sideslip assumption from the nonlinear vehicle model in Equations (2.18)-

(2.20). Details on the optimal NZSP controller are included in Appendix D.

The output matrix, H , is chosen to track the velocity projected on the x − y
plane, the heading angle, ψ, the altitude, z, and the velocity in the body-fixed y axis.

H =




0 0 0 cos(θ + α) 0 sin(θ + α) 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0




(3.31)

Because the A and H matrices do not have any nonzero entries for δx and δy, these

columns are removed, and similarly, the top two rows of the A and B matrices are

removed. The submatrices, Ā, B̄, and H̄, and the matrix D = 04×4 make up a

non-singular Quad-Partition matrix, from which the trim states and controls can be

determined for y∗ (see Appendix D). The optimal NZSP controller has the form

below, where x∗ and u∗ are the trim states and controls, and the gain K is found by

solving the LQR problem with Ā, B̄, and weighting matrices Q and R.

u = (u∗ +Kx∗)−Kx (3.32)
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The selected state and control weighting matrices for the LQR problem are shown.

Q = diag(10, 100, 10, 100, 1, 1, 10, 0.1, 0.1, 10× 104)

R = diag(100, 0.1, 10, 1)

The outer-loop control gains are: kp, cp = 0.001 and kv, cv = 0.04. This combination

of gains limits control-surface deflections to within appropriate bounds.

The first vehicle in the formation follows a constant-velocity reference trajectory

in the x-direction from (x, y) = (0, 0) with ẋr = V1t, and the desired separation

between vehicles is 100 meters in both the x and y directions. Formation results

are presented in Figure 7. The formation converges in 93 seconds with a minimum

vehicle separation of 137 meters. The distances between the vehicle pairs are shown in

Figure 8, where the vehicles converge to the desired formation from a more-widespread

initial configuration. Results indicate little overshoot of the desired separation, and

thus vehicle collisions are not a concern.

Other state histories are shown in Figures 9 through 11. Altitude perturbations

are not presented, but deviations were limited to ±0.2 m from the trim altitude. All

perturbed states went to zero as expected. Formation-control and NZSP gains were

selected to limit control surface deflections as shown in Figure 12. All control-surface

deflections are reasonable for UAV performance.
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Fig. 7.: Simulation results for the UAV formation.
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Fig. 10.: UAV states: body-fixed angular-velocity perturbations.
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E. Chapter Summary

This chapter focused on decentralized, cooperative control design for a multivehicle

formation problem where the vehicles were modeled using a nonlinear, differentially-

flat form. Exploiting the differential-flatness properties of the model led to a linear

representation of the vehicle model from which position and velocity errors were

defined using a leader-follower communication structure. A general control form for an

accelerating formation was derived, which contains terms to track both the reference

trajectory and the assigned lead-vehicle states. Control gains can be selected to

implement a desired tracking strategy and bound control inputs to desired limits.

In addition, two rate-estimation techniques were examined, Luenberger observer

and passive filtering, for the case when rate information was not known. Rate-

estimation provided a challenge in the transformation of the controls in the linear

representation to the controls in the nonlinear form. “Estimation dynamics” influ-

enced the system behavior and were related to the errors between the estimated and

actual states. In the rate-estimation case, stability was difficult to quantify. To deal

with this challenge, the rate-estimation schemes were designed using the linear rep-

resentation, and simulation results were used to examine stability results. In the

rate-estimation case, the passive filter is superior to the Luenberger observer in both

convergence performance and efficiency.

Lastly, a rate-free controller was developed, which does not include rate infor-

mation in the control form. Coupled with the passive-filter to estimate vehicle rates,

the formation convergence was more sluggish than when rates were included in the

control law. However, the sluggish behavior permits greater errors in the initial fil-

ter states, thus providing a more robust solution than the Luenberger-observer and

passive-filtering schemes when subjected to initial rate-estimation errors. The rate-
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free control law does not require information from other vehicles in the formation,

which can cause concern in vehicle separation; however, gains can be chosen to limit

control inputs in order to provide adequate separation throughout convergence.

Simulation results were presented to demonstrate formation convergence for a

non-dimensional example using the simple, nonlinear model. In addition, simulation

results were presented to demonstrate the applicability of the decentralized, formation

control laws to a higher-fidelity, six-degree-of-freedom UAV model.

The rate-estimation and rate-free controller developments in this chapter were

used to illustrate some of the challenges in assuming the linear vehicle representa-

tion for control-law design. In the remaining developments in this dissertation, it is

assumed that vehicle velocities are measured, and therefore, ẋ and ẏ are known.
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CHAPTER IV

STRING STABILITY: DEFINITIONS AND EXAMPLES

Two stability concepts arise in the design of decentralized, cooperative control laws

for vehicle spacing: 1.) internal stability and 2.) string stability. Internal stability,

as defined in Chapter III, means that spacing errors between vehicle pairs go to

zero in the steady-state and the multivehicle system reaches the desired formation.

String stability deals with how errors are propagated through the vehicle string due to

disturbances or the reference trajectory of the formation lead. A string-stable control

form means that spacing errors between adjacent vehicles do not grow or amplify

along the vehicle string. The form, or communication structure, of the cooperative

control law determines whether certain disturbances or reference trajectories will lead

to instabilities along a sequence or string of vehicles.

The concept of string stability has been extensively studied for automated high-

way systems where vehicle strings of infinite length are considered [14, 15, 17, 42–44].

Swaroop and Hedrick investigated constant-spacing control strategies, where the con-

trol objective is to maintain a constant distance between adjacent vehicles in a string

[14]. Some of these results are presented here to illustrate string-stability concepts

and the analysis approaches used in some of the literature.

In this chapter, the string-stability concept is further defined including the math-

ematical definition of string stability, and several examples from the literature are

presented to illustrate the analysis. The general form of the cooperative control law

developed in the previous chapter, Equation (3.6), is analyzed and the string stability

of that control form is discussed.



47

A. Mathematical Definitions of String Stability

The theory presented here is a summary of the string-stability results presented by

Swaroop and Hedrick [14]. Consider a string of identical vehicles that are intercon-

nected by a cooperative control law. The input to the ith vehicle is a function of the

spacing error between the ith and (i− 1)th vehicles, ei, as shown in Figure 13.

VrV1V2

...
Vi

u   = f {e  (x   , x  )}1 1 r 1u   = f {e   (x   , x  )}2 2 1 2u   =  f {e  (x     , x  )}i i i-1 i

Fig. 13.: Example vehicle string where control inputs are functions of spacing errors

between vehicles.

If the maximum gain of every system is α, then the error of the ith vehicle is bounded

by the following inequality.

||ei||∞ ≤ α||ei−1||∞ ≤ αi−1||e1||∞ (4.1)

If α ≥ 1 the spacing errors will be amplified along the vehicle string. For α < 1,

string stability is achieved, and weak string stability is achieved for α = 1.

The gain α is the maximum gain of the error propagation transfer function, Ĥ(s),

which relates the errors of the ith and jth vehicles with respect to their immediately

preceding vehicles. For example, assume that the error of the ith vehicle depends on

the spacing errors of the two preceding vehicles. The error ei can then be expressed

in the frequency domain as shown.

Ei(s) = Ĥ1(s)Ei−1(s) + Ĥ2(s)Ei−2(s); Ĥ1(s) =
Ei(s)

Ei−1(s)
, Ĥ2(s) =

Ei(s)

Ei−2(s)
(4.2)
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The ith error can then be bounded by the inequality.

||ei||∞ ≤ α1||ei−1||∞ + α2||ei−2||∞ (4.3)

The worst-case difference equation from Equation (4.3) is: z2 − α1z − α2 = 0, and

the spacing control law is string stable if the roots of the characteristic equations are

within the unit circle. This can be generalized for control laws that use information

from r preceding vehicles. The spacing error dynamics have the following form.

Ei(s) =
r∑

j=1

Ĥj(s)Ei−j(s) + M̂(s, ei(0), ei−1(0), ..., ei−r(0)) (4.4)

Here, Ĥj(s) is the transfer function between the ith and jth spacing errors, and M̂ is

related to the initial conditions. Following the development above, the maximum gain

of each transfer function is αj = ||L−1
(
Ĥj(s)

)
||1, and the characteristic polynomial,

Pr(z), is the worst-case difference equation.

Pr(z) = z
r −

r∑
j=1

αjz
r−j (4.5)

Swaroop and Hedrick define the spectral radius of Pr(z) as a performance metric to

both determine string stability and compare control-law spacing performance between

control forms.

ρ = max{|z| : Pr(z) = 0} (4.6)

The performance metric, ρ, represents the maximum rate of error attenuation along

the vehicle string. The control law is string stable for ρ < 1, which occurs when∑r
j=1 |αj | < 1; the control law is string stable in the weak sense for ρ = 1, which

occurs when
∑r

j=1 |αj| = 1; and, the control law is unstable for ρ > 1. The paper by

Swaroop and Hedrick includes the proofs of the above statements.
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B. Spacing Control Law Examples

Four spacing control law examples from the literature are presented in this section.

These examples are relevant to the cooperative control laws presented in the previ-

ous chapter. The spacing errors are defined between adjacent vehicles as was done

previously.

e1 = xr − x1 − d1; e2 = x1 − x2 − d2; ... ei = xi−1 − xi − di (4.7)

The double-integrator model is again assumed: ẍi = ui.

1. Reference-Trajectory Tracking Only

For this control scheme each vehicle tracks the reference trajectory only. Therefore,

each vehicle in the formation must know the position and velocity of the reference

trajectory and its desired distance from the reference. The control input to the ith

vehicle has the following form.

ui = cp

(
xr − xi −

i∑
j=1

dj

)
+ cv (ẋr − ẋi) + ẍr (4.8)

The second derivative of the error terms yields the difference in control effort between

two adjacent vehicles: ëi = ẍi−1 − ẍi = ui−1 − ui. Using this relationship, the error

dynamics can be shown to have the form: ëi+cvėi+cpei = 0. Here, the characteristic

polynomial is z = 0, and the performance metric ρ = 0. Whereas this is the best

achievable performance, the ith vehicle’s control law does not include information

about the position and velocity of its preceding vehicle, and thus this control scheme

is considered unsafe. This result is applicable to the control form in Equation (3.6):

Case 2.



50

2. Lead-Vehicle Tracking Only

The control law for the lead-vehicle tracking scheme takes into account the position

and velocity of the immediately preceding vehicle only.

ui = kpei + kvėi (4.9)

In the literature, this control scheme has been termed “autonomous” because it re-

quires state information that can be obtained from onboard sensors only. This control

form leads to the error dynamics below.

ëi + kvėi + kpei = kvėi−1 + kpei−1 (4.10)

The error dynamics can be written in the frequency domain.

E1(s) = Ĝ(s)Vr(s), Ĝ(s) =
−s

s2 + kvs+ kp
(4.11)

Ei(s) = Ĥ(s)Ei−1(s), Ĥ(s) =
kvs+ kp

s2 + kvs+ kp

, i ≥ 2 (4.12)

The term Vr(s) is the Laplace transform of the reference vehicle’s velocity. To deter-

mine the error propagation properties of this control scheme, the magnitude of Ĥ(s)

is found by substituting s = jω into the transfer function and then taking the square

root of the squares of the real and imaginary parts.

|Ĥ(jω)| =
[

k2
p + k

2
vω

2

(kp − ω2)2 + k2
vω

2

]1/2

(4.13)

For values of kp, kv > 0, there is a range of excitation frequencies where the magnitude

is greater than one (as shown in Figure 14 for kp = kv = 1). The excitation frequencies

are a result of a sinusoidal velocity profile from the reference vehicle. Therefore, for

sufficiently small input frequencies, this control form is not string stable, and spacing

errors would grow along the vehicle string. This control form is equivalent to Equation
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(3.6): Case 1.
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Fig. 14.: Magnitude of the error-propagation transfer function for the lead-vehicle

tracking control scheme.

3. Lead-Vehicle Tracking with Acceleration Information

The control law for this scheme has a similar form to the previous control law, but it

includes the acceleration information from the preceding vehicle.

ui = kpei + kvėi + kaẍi−1 (4.14)

The spacing error dynamics in the frequency domain now have the form shown below.

E1(s) = Ĝ(s)Vr(s), Ĝ(s) =
(ka − 1)s

s2 + kvs+ kp
(4.15)

Ei(s) = Ĥ(s)Ei−1(s), Ĥ(s) =
kas

2 + kvs+ kp

s2 + kvs+ kp
, i ≥ 2 (4.16)
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The magnitude plot for Ĥ(s) in Figure 15 shows that for ka > 1 (for kp = kv = 1), the

magnitude is greater than one for sufficiently high input frequencies, which results in

string instabilities for those frequencies. When ka = 1, the magnitude is equal to one

and weak string stability is achieved. For ka < 1, the magnitude is greater than one

for sufficiently low input frequencies resulting in string instabilities for this choice of

gain.

0 1 2 3 4 5 6 7 8 9 10
0.7

0.8

0.9

1

1.1

1.2

1.3

Frequency of Reference Velocity, ω

 |H
(jω

)|

 

 

k
a
 = 1.2

k
a
 = 1

k
a
 = 0.8

Fig. 15.: Magnitude of the error-propagation transfer function for the lead-vehicle

tracking with acceleration control scheme.

4. Reference-Trajectory and Lead-Vehicle Tracking Control (Form 1)

Hedrick et al. designed a sliding-mode control law that combines both reference-

trajectory and lead-vehicle information [42]. The sliding surface, Si, is selected such

that the spacing error dynamics on the surface are string stable and Si goes to zero
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with sliding-mode dynamics Ṡi + λSi = 0.

Si = −ėi − q1ei + q3 (ẋi − ẋr) + q4

(
xi − xr +

i∑
j=1

dj

)
(4.17)

The control law is determined by substituting Equation (4.17) into the sliding-mode

dynamics.

ui =
1

1 + q3
×[

ẍi−1 + q3ẍr + (q1 + λ)ėi − (q4 + λq3)(ẋi − ẋr) + q1λei − λq4
(
xi − xr +

i∑
j=1

dj

)]

(4.18)

Note that the control input is a function of the preceding vehicle’s position, velocity,

and acceleration and the reference-trajectory position and velocity. The spacing error

dynamics can be found by setting the sliding surface Si = Si−1 = 0.

Si + ėi + q1ei − q3 (ẋi − ẋr)− q4
(
xi − xr +

i∑
j=1

dj

)
=

= Si−1 + ėi−1 + q1ei−1 − q3 (ẋi−1 − ẋr)− q4
(
xi−1 − xr +

i−1∑
j=1

dj

)
(4.19)

Rearranging Equation (4.19) yields the following equation expressed in the time do-

main.

(1 + q3)ėi + (q1 + q4)ei = Si−1 − Si + ėi−1 + q1ei−1 (4.20)

Equation (4.20) can be expressed in the frequency-domain and rearranged to yield

the error-propagation transfer function, Ĥ(s), and the initial-condition term, M̂(s).

Ei(s) = Ĥ(s)Ei−1(s) + M̂ (s, ei(0), ei−1(0)) (4.21)

Ĥ(s) =
s+ q1

(1 + q3)s+ (q1 + q4)
; M̂(s) =

(Si−1 − Si) + [(1 + q3)ei(0)− ei−1(0)]

(1 + q3)s+ (q1 + q4)

(4.22)



54

The magnitude of the error-propagation transfer function is shown in Figure 16

for a choice of three different sets of gains, which shows that the magnitude is less

than one for all excitation frequencies. Therefore, this control scheme is string stable

for these gains. Swaroop and Hedrick state that this control scheme has an upper

bound on the error-propagation magnitude, and thus, is string stable for all choices

of gains.
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Fig. 16.: Magnitude of the error-propagation transfer function for the reference-

trajectory and lead-vehicle tracking control law (form 1).

5. Reference-Trajectory and Lead-Vehicle Tracking Control (Form 2)

The cooperative control law in Equation (3.6): Case 4 also combines reference-

trajectory and lead-vehicle tracking. The control law is restated below.

ui = kpei + kvėi + cp (e1 + e2 + ... + ei) + cv (ė1 + ė2 + ... + ėi) + ẍr (4.23)
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Spacing error dynamics are determined by substituting the control law in Equation

(4.23) into the equation for the second derivative of the error, ëi.

ëi = ẍi−1 − ẍi = ui−1 − ui

= [kpei−1 + kvėi−1 + cp (e1 + e2 + ...+ ei−1) + cv (ė1 + ė2 + ...+ ėi−1) + ẍr]−

− [kpei + kvėi + cp (e1 + e2 + ...+ ei) + cv (ė1 + ė2 + ...+ ėi) + ẍr]

= kp (ei−1 − ei) + kv (ėi−1 − ėi)− cpei − cvėi (4.24)

Recall that the terms with the k control gains are errors with respect to an assigned

lead vehicle, and the terms with the c control gains are errors with respect to the

reference trajectory. The error-propagation transfer function can be determined from

Equation (4.24).

Ĥ(s) =
Ei(s)

Ei−1(s)
=

kvs+ kp

s2 + (kv + cv)s+ (kp + cp)
(4.25)

The magnitude of Ĥ(s) is shown in Figure 17 for four sets of gains as denoted in

the legend. This figure shows that gains can be chosen such that the magnitude is less

than one for all frequencies and the control law is string stable. In the case that the

gains kp = kv = 0, the control law uses reference-vehicle (trajectory) tracking only,

and as shown previously, this control form is considered unsafe. When cp = cv = 0, the

control law uses lead-vehicle tracking only, and this control form is string unstable for

all kp, kv > 0. The combination of the reference-trajectory and lead-vehicle tracking

terms yields a string stable control law for certain choices of gains.
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Fig. 17.: Magnitude of the error-propagation transfer function for the reference-

trajectory and lead-vehicle tracking control law (form 2).

C. Chapter Summary

This chapter presented the concept of string stability with some mathematical prelim-

inaries. Examples from the literature were used to illustrate the analysis of coopera-

tive control forms to determine how spacing errors are propagated through a vehicle

string. The cooperative control form developed in the previous chapter was analyzed

using this method and was shown to be string stable when reference-trajectory and

lead-vehicle tracking are combined.

The concept of string stability will be revisited in Chapter VI. Frequency-response

analysis, motivated by the structural analogies presented in Chapter V, reveals the

string-stability characteristics of a given cooperative control form.
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CHAPTER V

STRUCTURAL ANALOGIES TO COOPERATIVE CONTROL LAWS

Cooperative control laws couple multivehicle systems through the state information

that is shared in order to achieve a common group objective. Cooperative multivehicle

systems are analogous to structural systems where terms in the equations of motion

can be grouped into mass, stiffness, and damping matrices. The stiffness and damping

matrices are determined by the assumed communication structure, which defines

how the vehicles in the formation communicate. The structural form allows many

of the tools developed for the analysis of structural systems to be applied to the

multivehicle-control application. This chapter presents the structural analogy and

some preliminaries that will be used in the development of the analysis tools presented

in Chapter VI.

In Section A, the structural form of the closed-loop equations of motion for

an n-vehicle formation is presented. The modal-coordinate transformation, used to

decouple the equations of motion into n second-order equations, is discussed in Section

B. The sensitivity of the system’s eigenvalues and eigenvectors to changes in the

stiffness matrix is presented in Section C. In Section D, the form of the damping

matrix and its relation to the modal-coordinate transformation is discussed.

A. Equations of Motion in the Structural Form

Cooperative control laws, written in physical coordinates, are analogous to physically

connecting the individual vehicles with springs and dampers. For example, consider

a two degree-of-freedom system with two masses connected by a spring and damper

as shown in Figure 18. The second-order equations of motion can be written in a



58

k

m1m2

x1
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Fig. 18.: Two-mass system.

matrix form: Mẍ + Cẋ+Kx = 0.
m1 0

0 m2




ẍ1

ẍ2


+


 c −c
−c c




ẋ1

ẋ2


+


 k −k
−k k




x1

x2


 =


0
0


 (5.1)

The M , C, and K matrices are referred to as the mass, damping, and stiffness ma-

trices, respectively, and x = [x1 x2]
T .

Using the general form of the cooperative control law in Equation 3.6, the closed-

loop, coupled equations of motion can be arranged in the structural form. For exam-

ple, assume a three-vehicle formation. The control inputs for the first three vehicles

are shown, and recall that ẍi = ui.

u1 = kp1(xr − x1 − d1) + kv1(ẋr − ẋ1) + cp1(xr − x1 − d1) + cv1(ẋr − ẋ1) + ẍr

u2 = kp2(x1 − x2 − d2) + kv2(ẋ1 − ẋ2)+

+ cp2 (xr − x2 − (d1 + d2)) + cv2(ẋr − ẋ2) + ẍr

u3 = kp3(x2 − x3 − d3) + kv3(ẋ2 − ẋ3)+

+ cp3 (xr − x3 − (d1 + d2 + d3)) + cv3(ẋr − ẋ3) + ẍr

The equations of motion have the formMẍ+Cẋ+Kx = Dur, where the mass matrix
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is the identity matrix, and the damping and stiffness matrices have the following

forms.

C =



kv1 + cv1 0 0

−kv2 kv2 + cv2 0

0 −kv3 kv3 + cv3


 (5.2)

K =



kp1 + cp1 0 0

−kp2 kp2 + cp2 0

0 −kp3 kp3 + cp3


 (5.3)

The term on the right-hand side of the structural form, Dur, is a forcing term that

includes the reference trajectory and constant desired distances between vehicles: d1,

d2, and d3. The vector ur = [xr(t), ẋr(t), ẍr(t), d1, d2, d3]
T .

D =



kp1 + cp1 kv1 + cv1 1 −(kp1 + cp1) 0 0

cp2 cv2 1 −cp2 −(kp2 + cp2) 0

cp3 cv3 1 −cp3 −cp3 −(kp3 + cp3)


 (5.4)

The chosen communication structure, which defines the information that is avail-

able to each vehicle in the system, determines the form of the damping and stiffness

matrices. In this case, each vehicle has the state information of its immediately pre-

ceding, or lead vehicle, as well as information about the reference trajectory including

its desired spacing relative to the reference trajectory. This particular communica-

tion structure constrains certain elements of the stiffness and damping matrices to

equal zero. Constraints on the elements of these matrices are termed communicability

constraints, which will be discussed in greater detail in the next chapter.

Note that this communication structure yields stiffness and damping matrices

that cannot be represented by a true physical system; i.e., the closed-loop equations

of motion cannot be represented by a mass-spring system (vehicle 2 is connected to
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vehicle 1, but vehicle 1 is not connected to vehicle 2). Here, the structural analogy

refers to the ability to write the closed-loop equations of motion in the linear structural

form, rather than an analogy to true physical systems.

B. Modal Coordinates

Second-order, coupled equations of motion in the general structural form can be

decoupled using a modal-coordinate transformation to yield n second-order, scalar

equations. The physical coordinates are transformed to the decoupled modal coordi-

nates using a matrix of eigenvectors or mode shapes. The modal-coordinate form can

be used to design controllers for a true structural system, where the control design

is made easier by the decoupled, scalar equations. In the multivehicle application,

the control laws couple the system to create a structurally-analogous form, and the

modal-coordinate transformation reveals information about the natural frequencies

and mode shapes of the system. In the next chapter, the modal-coordinate transfor-

mation is used to decouple the closed-loop equations of motion in order to analyze the

disturbance-rejection properties of different cooperative control forms derived from

their communication structures.

In this section, the modal-coordinate transformation for a general undamped

and unforced system of equations is presented. Some specific modifications for the

multivehicle control problem are discussed, and an example is shown to illustrate the

physical meaning of the modes.
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1. Modal-Coordinate Transformation for the General Case

An undamped, unforced system of equations is assumed, where the stiffness matrix

K can be asymmetric.

Mẍ+Kx = 0 (5.5)

Solutions to this undamped system are referred to as the free vibration response.

Substituting a solution of the form x = φest into Equation (5.5) yields the following

expression. (
Ms2 +K

)
φ = 0 (5.6)

If s2 = −λ, the above equation becomes an eigenvalue problem with unknowns λ and

φ.

Kφi = λiMφi; i = 1, 2, ..., n (5.7)

Here, φi is the eigenvector associated with the ith eigenvalue, λi.

The equations of motion can be decoupled using the transformation x = Φη,

where the matrix Φ = [φ1,φ2, ...,φn]
T is an n × n matrix of the eigenvectors found

by solving the right eigenvalue problem in Equation (5.7), and η is an n × 1 vector

of modal positions. The eigenvectors from the solution to the left eigenvalue problem

are also found.

KTψi = λiM
Tψi; i = 1, 2, ..., n (5.8)

The left and right eigenvectors are normalized by the biorthogonality conditions such

that the following statements are true [29].

φT
i Mφi = 1, i = 1, 2, ..., n

ψT
j Mφi = δij , i, j = 1, 2, ..., n (5.9)

ψT
j Kφi = λiδij , i, j = 1, 2, ..., n
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The n decoupled equations are found by substituting for x in Equation (5.5),

pre-multiplying the expression by ΨT = [ψ1,ψ2, ...,ψn]
T , and applying the conditions

in Equation (5.9).

η̈i + λiηi = 0; i = 1, 2, ..., n (5.10)

The eigenvalues are equal to the squares of the natural frequencies, thus Equation

(5.10) is more commonly written as shown.

η̈i + ω
2
i ηi = 0; i = 1, 2, ..., n (5.11)

In the case that the stiffness matrix, K, is symmetric, the left and right eigenvec-

tors are equal: Ψj = Φj . Thus, the biorthogonality conditions are modified to reflect

this special case.

φT
i Mφi = 1, i = 1, 2, ..., n

φT
j Mφi = δij , i, j = 1, 2, ..., n (5.12)

φT
j Kφi = λiδij , i, j = 1, 2, ..., n

The equations are then decoupled by substituting for x and pre-multiplying by ΦT .

The eigenvectors, φi, that comprise the matrix Φ are known as mode shapes.

Mode shapes describe the relative movement of the physical coordinates that oscillate

at the same frequency, or the natural frequencies of the system. The solution to the

coupled equations of motion, Equation (5.5), is the linear combination of the mode

shapes and the solutions to the decoupled equations of motion in modal coordinates

[45].

x(t) = η1(t)[φ1] + η2(t)[φ2] + ...+ ηn(t)[φn] (5.13)
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2. Modal-Coordinate Transformation for Multivehicle Control

In the previous section, an underlying assumption of the development is that the left

and right eigenvector matrices are full rank, and in true structural systems, this as-

sumption holds. However, in the multivehicle control application, the stiffness matrix

may not yield full-rank eigenvector matrices. To deal with this challenge, the stiff-

ness matrix is diagonalized using the right-eigenvector matrix, Φ, only; therefore, the

diagonal matrix of eigenvalues Λ = diag (ω2
1, ω

2
2, ..., ω

2
n) = Φ−1KΦ. If the stiffness ma-

trix is symmetric, by the finite-dimensional spectral theorem, there is an orthonormal

basis formed by the eigenvectors; thus, Φ is invertible [46]. In the case of an asym-

metric stiffness matrix, two scenarios are possible. If the n × n stiffness matrix has

n distinct eigenvalues, then the set of eigenvectors is linearly independent and Φ is

invertible. However, if the eigenvalues are not distinct, then the eigenvector matrix

may or may not be full rank [35]. To permit invertibility of Φ for the asymmetric

case with a rank-deficient eigenvector matrix, the control gains can be perturbed to

yield n distinct eigenvalues and equivalently a full-rank eigenvector matrix.

The mass matrix in the multivehicle control application is identity. Therefore,

the modal coordinate transformation can be determined using the right eigenvectors

only and no normalization is required.

Φ−1MΦη̈ + Φ−1KΦη = Iη̈ + Λη = 0 (5.14)

In the multivehicle control problem, the physical coordinates represent the po-

sitions of the vehicles. Therefore, the mode shapes indicate how the vehicles move

with respect to one another when the modes are excited. To illustrate this, the eigen-

vector matrix, or mode shapes, for the stiffness matrix in Equation (5.3) with gains

kp1 = cp1 = 1, kp2 = cp2 = 1.2, and kp3 = cp3 = 1.4 is shown below. The gains have
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been perturbed to yield an invertible Φ matrix.

Φ =



0.1632 0 0

0.4895 0.2747 0

0.8566 0.9615 1.0000


 (5.15)

The columns of Φ are associated with the modes, where the columns are ordered from

the lowest to highest natural frequencies. If the first mode is excited, vehicles 1, 2,

and 3 move in the same direction, with vehicles 2 and 3 moving with amplitudes that

are 3.00 and 5.25 times greater than the amplitude of vehicle 1, respectively. In the

second mode, vehicles 2 and 3 move in the same direction with different amplitudes,

and only vehicle 3 is excited in the third mode. Values with opposite signs in the ith

eigenvector indicate that vehicles move in opposing directions when the ith mode is

excited.

C. Eigenvalue and Eigenvector Sensitivities

Perturbing the control gains in the stiffness matrix perturbs the eigenvalues and

eigenvectors, which leads to different natural frequencies and mode shapes than the

unperturbed case. Eigenvalue and eigenvector sensitivities can indicate how gain

perturbations will change the behavior of a structural system. The sensitivities for the

general case are presented, followed by the assumptions for the multivehicle control

application. An example is presented for the stiffness matrix in Equation (5.3) to

show how perturbations to the control gains affect the natural frequencies and mode

shapes.
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1. Sensitivities for the General Case

Junkins and Kim derive partial derivatives of eigenvalues and eigenvectors with re-

spect to some perturbing parameter, ρ, for the general system Bẋ = Ax (with as-

sociated eigenvalue problem Aφ = λiBφi and biorthogonality conditions), where

A = A(ρ) and B = B(ρ) [29]. Those results are presented here without derivation.

∂λi

∂ρ
= ψT

i

(
∂A

∂ρ
− λi

∂B

∂ρ

)
φi, i = 1, ..., n (5.16)

∂φi

∂ρ
=

n∑
j=1

ajiφj ; aji =
1

λi−λj
ψT

j

(
∂A
∂ρ

− λi
∂B
∂ρ

)
φi, j �= i

= −1
2


φT

i
∂B
∂ρ
φi +

n∑
k=1
k �=i

akiφ
T
k (B +BT )φi


 , j = i

∂ψi

∂ρ
=

n∑
j=1

bjiψj; bji =
1

λi−λj
ψT

i

(
∂A
∂ρ

− λi
∂B
∂ρ

)
φj, j �= i

= −ψT
i

∂B
∂ρ
φi − aii, j = i

(5.17)

2. Sensitivities for Multivehicle Control

In the multivehicle case, B = I and A = K; therefore B is not a function of the

parameter, ρ. Equations (5.16) and (5.17) are thus simplified to the following expres-

sions.

∂λi

∂ρ
= ψT

i

∂K

∂ρ
φi, i = 1, ..., n (5.18)
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∂φi

∂ρ
=

n∑
j=1

ajiφj ; aji =
1

λi−λj
ψT

j
∂K
∂ρ
φi, j �= i

= −
n∑

k=1
k �=i

akiφ
T
k φi, j = i

∂ψi

∂ρ
=

n∑
j=1

bjiψj; bji =
1

λi−λj
ψT

i
∂K
∂ρ
φj, j �= i

= −aii, j = i

(5.19)

Equations (5.18) and (5.19) can be used to indicate which natural frequencies and

mode shapes are affected by perturbations to certain gains. The eigenvalue and

eigenvector sensitivities can be used as a design tool to select control gains.

To demonstrate the effects of control gain perturbations on natural frequencies

and mode shapes, consider the stiffness matrix shown in Equation (5.3). This com-

munication structure yields a stiffness matrix with a lower-diagonal form; therefore,

the eigenvalues are determined directly from the diagonal elements of K. For this

set of gains, the first vehicle is associated with the first mode or the smallest natural

frequency, the second vehicle is associated with the second mode, and similarly, the

third vehicle is associated with the third mode. Thus, perturbing the control gains

for any one of the vehicles has a direct effect on the natural frequency associated with

that vehicle. If the control gains for either the first or second vehicle are perturbed,

then the first and second modes are affected. For all control-gain perturbations, the

third mode remains unchanged because it only includes motion of one vehicle.

The most significant information that the eigenvalue and eigenvector sensitiv-

ities can provide is which natural frequencies and mode shapes are unaffected by

perturbations to the control gains. More complex stiffness matrices will not have the

decoupled nature that is inherent to the form of the stiffness matrix in Equation (5.3).

The coupled nature between gains in the stiffness matrix and the sensitivities of the
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natural frequencies and mode shapes will be illustrated in the next chapter.

D. Proportional Damping

To this point, the modal-coordinate transformation has only been discussed for the

undamped, unforced equations of motion. The modal coordinate transformation is

performed using the eigenvector matrix found from the stiffness matrix, K. Adding

damping to the equations of motion (Mẍ+Cẋ+Kx = 0) does not change the process

of decoupling or diagonalizing the stiffness matrix if the system has proportional

damping. The system is proportionally damped if the damping matrix, C, is a linear

combination of the mass and stiffness matrices, where the weighting terms are scalar

constants [45].

C = αM + βK (5.20)

The decoupled, second-order equations of motion now include the damping term.

η̈i + 2ζiωiη̇i + ω
2
i ηi = 0, i = 1, .., n (5.21)

Here, ζi is the damping ratio of the ith mode. This term can be found directly from

the constants α and β in Equation (5.20).

ζi =
α

2ωi

+
βωi

2
(5.22)

In designing cooperative control laws, the form of the damping matrix is such

that the error dynamics are stable and homogeneous. However, it must be verified

that non-zero values of α yield the proper form of the damping matrix to maintain

homogeneous error dynamics, which ensure non-zero steady-state spacing errors. For

example, assuming proportional damping with non-zero α and β and the stiffness
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matrix in Equation (5.3), the damping matrix has the form below.

C =



β(kp1 + cp1) + α 0 0

−βkp2 β(kp2 + cp2) + α 0

0 −βkp3 β(kp3 + cp3) + α


 (5.23)

Comparing Equation (5.2) and Equation (5.23), it can be seen that non-zero values

of α will still yield homogeneous error dynamics if the velocity gains are chosen as:

kvi
= βkpi

and cvi
= βcpi

+ α.

For a desired set of damping ratios, ζd = [ζ1, ζ2, ..., ζn]
T , one could use Equation

(5.22) and a minimum-norm solution to find the values of α and β that minimize the

error between the desired and resulting damping ratios [29].

X = AT
(
AAT

)−1
B; where X =


α
β


 , A =




1
2ω1

ω1

2

1
2ω2

ω2

2

...
...

1
2ωn

ωn

2



, B =




ζ1

ζ2
...

ζn




(5.24)

E. Chapter Summary

The analogy of cooperative multivehicle systems to structural systems was shown,

where the closed-loop equations of motion for the multivehicle systems can be written

using mass, damping, and stiffness matrices. The modal-coordinate transformation

was described, and this transformation decouples the equations of motions into n

second-order, scalar equations. For the multivehicle-control application, the form of

the stiffness matrix may not lead to a full-rank matrix of eigenvectors. The control

gains in the stiffness matrix can be perturbed in order to yield a full-rank eigenvector

matrix, which enables the system to be decoupled. Eigenvalue and eigenvector sensi-

tivities to perturbations in the stiffness matrix and proportional damping were also
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discussed.

The structural analogy presented in this chapter will be used in the next chapter

to investigate the effects of disturbances on cooperative multivehicle systems. To

this end, two analysis tools will be presented to evaluate disturbance rejection, and

these tools enable comparison between different control forms. More specifically, the

concept of communication structures, which determine the form of the stiffness and

damping matrices, will be further explored, and the analysis tools will be used to

evaluate the behavior and stability of different communication structures.
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CHAPTER VI

EVALUATING COMMUNICATION STRUCTURES USING

STRUCTURAL ANALYSIS AND DESIGN METHODOLOGIES

The previous chapter showed that cooperative control laws are analogous to structural

systems where the multivehicle systems are coupled through shared state information.

Error terms in the control laws mimic physical connections between vehicles, and the

equations of motion can be written in a structural form. It was shown that the form

of the stiffness and damping matrices is determined by the assumed communication

structure, which defines the information that is shared between vehicles. The system’s

natural frequencies and mode shapes are determined by the form of the stiffness

matrix. Thus, it is intuitive that multivehicle systems can respond very differently to

disturbances based upon the assumed communication structure. Whereas the work

presented in previous chapters assumed a leader-follower communication structure

and knowledge of a reference trajectory, other communication structures may be

more ideal based upon system constraints and disturbance-rejection behavior.

There are several structural analysis tools available in the literature to evaluate

the disturbance response of structural systems. The application of these structural-

analysis tools to the multivehicle control application is explored to both evaluate

and compare communication structures. In addition, these tools can be used to

determine appropriate control gains to achieve a desired response. Two analysis

tools are investigated: modal cost and frequency-response functions. Modal cost

compares the communication structures based upon system response to impulsive

disturbances, and frequency-response functions are used to evaluate system response

to periodic excitation. The traditional structural-analysis tools presented here do not

directly apply to the cooperative control of multivehicle systems, and thus, the tools
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have been interpreted and modified for the multivehicle control application. The

frequency-response analysis, in particular, reveals the string stability of the different

control forms.

The chapter is organized as follows. First, the disturbed vehicle model is pre-

sented in Section A to show how the disturbances affect the transformation to the

double-integrator design space that was first described in Chapter II. The structural-

analysis tools are then presented in Section B. Seven communication structures are

described in Section C, and in Section D, the analysis tools are used to compare the

seven communication structures. In Section E, the analysis and control design of a

ten-vehicle formation illustrates the use of the analysis tools in the design process.

Lastly, a nonlinear programming problem is presented in Section F to aid in the

design of control gains for a given communication structure.

A. Vehicle Model with Disturbances

The analysis of disturbance effects on system performance will be used to compare

communication structures that couple multivehicle systems. Disturbances in the orig-

inal nonlinear vehicle model are first related to the transformation that allows the

vehicle model to be represented by the double-integrator form that has motivated

the research to this point. If the disturbances are known, then the transformation

essentially cancels the effects of the disturbances. However, the disturbance-rejection

properties of the system are important in the case when the disturbances are unknown

and cannot be canceled.

The nonlinear vehicle model used throughout this research represents vehicles

with no sideslip, and the transformation to the double-integrator representation en-

forces the nonholonomic or kinematic constraint. Disturbances to the nonlinear
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model, of the form shown, can be considered disturbances to the kinematic constraint.

ẋ = v cos θ + dx

ẏ = v sin θ + dy (6.1)

θ̇ = ω

The disturbed vehicle model requires some definition of terms. The velocity v is the

ideal velocity, or the commanded velocity of the vehicle, which can be measured using

onboard sensors, and the angle θ is the true heading angle of the vehicle. The v cos θ

and v sin θ terms are the projections of the ideal velocities in the x and y directions

and are denoted as vx and vy, respectively. The sum of the projections of the ideal

velocities and the disturbance terms, ẋ and ẏ, are the true velocities in the x and y

directions, respectively. These relationships are illustrated in Figure 19.

x

y
θ

n

v

2

n1

v

ψ

d

β

Fig. 19.: Disturbed vehicle model.

The disturbance velocity has magnitude vd and angle ψ with respect to the horizontal

axis.

vd =
√
ẋ2 + ẏ2 =

√
(vx + dx)2 + (vy + dy)2 (6.2)
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ψ = tan−1

(
ẏ

ẋ

)
= tan−1

(
vy + dy

vx + dx

)
(6.3)

The sideslip angle is the difference between the angle of the disturbance velocity and

the true vehicle heading: β = ψ − θ.
The ideal velocity and the true heading angle can also be written as a function

of the true velocities and the disturbances.

v =
√
(ẋ− dx)2 + (ẏ − dy)2; θ = tan−1

(
ẏ − dy

ẋ− dx

)
(6.4)

Vehicle controls, v̇ and ω, are found by taking derivatives of the above expressions.

v̇ =
(ẋ− dx)(ẍ− ḋx) + (ẏ − dy)(ÿ − ḋy)

v
(6.5)

ω =
(ẋ− dx)(ÿ − ḋy)− (ẏ − dy)(ẍ− ḋx)

v2
(6.6)

If the disturbances, dx, ḋx, dy, and ḋy, are known, then the controls are chosen as

ẍ = u(x, ẋ) and ÿ = w(y, ẏ). In other words, if one can determine the true velocities

from knowledge of dx and dy, then the controls are functions of positions and true

velocities. The transformation to v̇ and ω becomes a function of disturbance rates.
v̇
ω


 =

1

v


 vx vy

−vy

v
vx

v




u− ḋx

w − ḋy


 (6.7)

This transformation essentially cancels the effects of the disturbances by controlling

the true accelerations of the vehicle and subtracting the disturbance rates.

If the disturbances are unknown, then the controls are chosen as v̇x = u(x, vx)

and v̇y = w(y, vy). Therefore, the controls are calculated using knowledge of the ideal

velocity and true heading angle only. In this case, the controls and transformation

are not functions of the disturbances, and the transformation looks the same as when
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no disturbances are present. 
v̇
ω


 =

1

v


 vx vy

−vy

v
vx

v




u
w


 (6.8)

The disturbed vehicle model in Equation (6.1) can be expressed as double in-

tegrators that are decoupled in the x and y directions. The disturbances act at the

kinematics level in the double-integrator form.

Known Disturbance: ẋ = vx + dx ẏ = vy + dy

ẍ = u(x, ẋ) ÿ = w(y, ẏ)

Unknown Disturbance: ẋ = vx + dx ẏ = vy + dy

v̇x = u(x, vx) v̇y = w(y, vy)

As in Chapter II, the double-integrator form serves as a design space, and control

inputs designed in this space are transformed to the vehicle controls using the appro-

priate transformation.

It is likely that in many cases, the disturbance is unknown; therefore, the disturbance-

rejection properties of the control laws must be investigated. Some communication

structures may demonstrate better disturbance rejection than others. Two approaches

to evaluate disturbance effects are described: modal cost and frequency-response func-

tions. These analysis tools, developed to analyze structural systems, serve as both a

means to compare different communication structures and as a design tool to evaluate

control gains.
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B. Cooperative-Control-Law Analysis Tools

1. Modal Cost

Modal cost fits within a broader topic: component cost analysis [29]. A system can

be divided into components that represent physical subsystems, such as actuators or

sensors, or mathematical subsystems like modal coordinates. The component cost

is the contribution of a specific component to an overall performance index or cost

function. A quadratic performance index is developed as the cost function, and the

performance index is decomposed into the contributions from each component of

interest [29]. Modal coordinates are in many ways ideal for component-cost analysis.

As will be shown in the development presented here, when modal coordinates are

used as the system states, the component cost is each mode’s contribution to the

system performance index.

In the past, modal-cost analysis has been used for model reduction or actuator

placement in structural systems. In the case of model reduction, the system is dis-

turbed and the modal cost reveals which modes contribute the least to the overall

system cost. Therefore, the modes with small contributions to the cost are eliminated,

and the system is modeled with fewer modes [47, 48]. Whereas the number of modal

coordinates is reduced, the number of physical coordinates does not change. In the

case of actuator placement, different configurations with actuators placed in varying

locations can be compared using the modal cost as an indicator of controllability.

For a given configuration of actuators, the system is disturbed, and the modal cost

indicates how well the actuator configuration is able to control the modes [49, 50].

Modal cost for the multivehicle system is used to evaluate modal disturbability,

which describes the excitation or contribution of each mode to the cost function

given an impulsive disturbance to each vehicle. The modal cost is used to compare
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communication structures for their disturbability, where communication structures

with lower disturbability measures are desired. In this section, the cost analysis is

presented for the structural system in physical coordinates written in its first-order

form. The component cost is also presented followed by the modal-cost analysis for

the structural system. The application to the multivehicle formation control problem

is discussed and a modal-cost measure is presented, which is used to compare the

disturbability of different communication structures.

a. Cost Analysis for Physical Coordinates

The second-order equations of motion for the multivehicle system can be written in

a first-order form. Note that in this analysis, the forcing terms in the closed-loop

equations of motion are set equal to zero. The disturbance-effects analysis for the

unforced system also holds for a translating formation that is tracking a reference

trajectory.

ż = Az +Bu; A =


 0 I

−M−1K −M−1C


 , B =


 I

0


 , z =


 x

vx


 (6.9)

The position and velocity vectors are of dimension n × 1; therefore, z ∈ R2n. Each

vehicle in the system is subjected to impulsive disturbances; thus, u is also an n× 1

vector. Note that the disturbances act at the kinematics level as described in the

previous section, which dictates this form of the control influence matrix, B.

A cost function is defined to represent system performance when subjected to

the disturbance inputs.

V =
n∑

i=1

∫ ∞

0

yi
d

T
(t)Qvy

i
d(t)dt; yi

d(t) = Cdx
i(t) (6.10)

Here, yi
d(t) models a desired output using the matrix Cd; the matrix Qv is a weighting
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matrix; and, xi(t) is the system response to a unit impulse to the ith vehicle. The

impulses are assumed to be applied at t = 0 with initial conditions equal to zero.

The cost function, V , is the system’s output “energy” over the n disturbance inputs.

Computation of the cost function is eased by the analytical solution to Equation (6.9)

for an impulsive input to the ith vehicle.

xi(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ = eAtbi (6.11)

The n × 1 vector bi is the ith column of the B matrix. Junkins and Kim show that

the cost function can be rewritten using a matrix identity and Equation (6.11) [29].

V = trace

[
QvCd

(
n∑

i=1

∫ ∞

0

eAtbib
T
i e

AT tdt

)
CT

d

]

= trace

[
QvCd

(∫ ∞

0

eAtBBT eA
T tdt

)
CT

d

]
(6.12)

The parenthetical term above is the controllability grammian,X, which is an indicator

of the controllability of the linear system in Equation (6.9). A system is controllable

if the controllability grammian is full rank [29, 35].

X ≡
∫ ∞

0

eAtBBT eA
T tdt (6.13)

The controllability grammian satisfies the Lyapunov equation.

XAT + AX = −BBT (6.14)

Therefore, the cost function can be determined using the n× n matrix, X.

V = trace
(
QvCdXC

T
d

)
(6.15)
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b. Component Cost

The cost function can be decomposed into the individual contributions of each state,

where the contributions of the ith state, xi, are related to the cost V [29].

Vxi
≡ 1

2

∂V

∂xi
xi; V =

n∑
i=1

Vxi
(6.16)

The component cost is also computed using the controllability grammian.

Vxi
=
[
XCT

d QvCd

]
ii

(6.17)

Proofs of these results are presented in Junkins and Kim [29].

c. Cost Analysis for Modal Coordinates

Computing the modal cost of a system has several advantages over evaluating the cost

using physical coordinates. Each component cost is the modal cost; therefore, the

modal cost indicates which modes are most excited when the system is subjected to a

disturbance. The computation of the system cost is similar to the development for the

physical-coordinate cost. The first-order system has the same form as Equation (6.9);

the A matrix is redefined using the diagonalized stiffness and damping matrices; the

B matrix is transformed to relate the individual vehicle inputs to each mode; and, z

is a vector of modal positions and velocities.

A =


 0 I

−K̃ −C̃


 ; B =


 Φ−1

0


 ; z =


 η

η̇


 (6.18)
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The cost function is the same as in Equation (6.10), where the input ui is an impulse

to the ith vehicle. The output yd(t) is related to the modal coordinates.

yd(t) = Cd


 x(t)

vx(t)


 =


 Cdx 0

0 Cdvx




 x(t)

vx(t)




= Cd


 Φx(t)

Φvx(t)


 =


 CdxΦ 0

0 CdvxΦ




 η(t)

η̇(t)


 (6.19)

The weighting matrix, Qv, is also partitioned into parts related to x and vx.

Qv =


 Qx 0

0 Qvx


 (6.20)

The modal cost for the ith mode is comprised of costs related to both the modal

position and the modal velocity.

Vi = Vηi + Vη̇i
(6.21)

Costs Vηi
and Vη̇i

are determined by appropriately substituting for Cd, Qv, and X in

Equation (6.17). The controllability grammian is still determined using the Lyapunov

equation, and the resulting matrix can be partitioned into four parts.

X =


 Xηη Xηη̇

Xη̇η Xη̇η̇


 (6.22)

The diagonal blocks of X are used to compute the modal cost.

Vηi =
[
XηηΦ

TCT
dxQxCdxΦ

]
ii
; Vη̇i =

[
Xη̇η̇Φ

TCT
dẋ
QẋCdẋΦ

]
ii

(6.23)

If the output matrix, Cd, and the weighting matrix, Qv, are chosen as identity, then

the cost function in Equation (6.10) evaluates the disturbability of each mode from



80

the equilibrium position.

d. Modal-Cost Measure

A modal-cost measure α is developed in order to compare communication structures

when each vehicle is subjected to an impulsive disturbance. Therefore, the measure

is defined to quantify the disturbability of the whole system. Here, the L2 norm is

used find the scalar quantity α.

α =

√(
V1

V

)2

+

(
V2

V

)2

+ ...+

(
Vn

V

)2

(6.24)

The communication structure with the smallest value of α is the least disturbable

system.

2. Frequency Response Functions

Frequency response functions (FRFs) describe the steady-state response of a system

to harmonic excitation for a given input frequency [45, 51]. For single degree-of-

freedom (DOF) systems, the FRF can be used to design controllers and select control

gains to stabilize the open-loop system, and the closed-loop FRF provides informa-

tion about low-frequency input tracking and high-frequency noise rejection. Here,

the multi-DOF FRFs are used to evaluate disturbance effects on the formation. The

developments in this section show that string stability of the formation can be deter-

mined using frequency-response information to find the steady-state errors between

adjacent vehicles. This approach allows communication structures to be evaluated

and compared for string stability in disturbance environments.

In this section, frequency-response functions for single- and multi-DOF systems

are reviewed. The steady-state solutions are developed for the multi-DOF systems,

and the analogy to string stability is presented. The frequency-response analysis for
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the structurally-analogous system has some relation to previous work in graph theory,

and this relationship is also discussed.

a. Single-Degree-of-Freedom Systems

The steady-state response of linear, damped, second-order systems to harmonic ex-

citation is also harmonic with the same frequency as the excitation with a different

amplitude and a phase shift. For example, the system below has a steady-state solu-

tion of the form xss = X cos(σt− α) [45].

mẍ+ cẋ+ kx = f cos(σt) (6.25)

The steady-state solution can be rewritten as xss = X [cos(σt) cos(α) + sin(σt) sin(α)].

Substituting xss into Equation (6.25) yields two equations, which are the sin(σt) and

cos(σt) terms.

(k2 −mσ2) sinα− cσ cosα = 0 (6.26)

(k2 −mσ2) cosα + cσ sinα =
f

X
(6.27)

The phase angle α is found from Equation (6.26).

α = tan−1

(
cσ

k2 −mσ2

)
(6.28)

The amplitude of the steady-state solution, X, is found by squaring and adding

Equations (6.26) and (6.27).

X =
f√

(k2 −mσ2)2 + (cσ)2
(6.29)

The FRF is composed of two parts: the ratio of the steady-state amplitude to the

static response, H(σ), and the phase of the response, α [45]. The static response of
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the system in Equation (6.25) is xstatic = f/k.

H(σ) =
X

xstatic
=

k√
(k2 −mσ2)2 + (cσ)2

(6.30)

Equation (6.25) can also be written in terms of the natural frequency and damp-

ing ratio.

ẍ+ 2ζωẋ+ ω2x = f cos(σt) (6.31)

Here, ω2 = k/m and 2ζω = c/m. Equations (6.28) and (6.30) are rewritten in terms

of the damping ratio, natural frequency, and the ratio of the excitation frequency to

the natural frequency, r = σ/ω.

H(r) =
1√

(1− r2)2 + (2ζr)2
; α = tan−1

(
2ζr

1− r2

)
(6.32)

Of greater interest in this case is the receptance function, which is the ratio of the

steady-state amplitude to the excitation amplitude.

X

f
=

1√
(ω2 − σ2)2 + (2ζωσ)2

(6.33)

Equation (6.33) determines the amplification of the disturbance by the system. Ide-

ally, one would choose system parameters such that the ratio X/f is less than one for

all excitation frequencies.

b. Multi-Degree-of-Freedom Systems

Receptance functions for multi-DOF systems relate steady-state amplitudes of the

jth output to the kth input. The multi-DOF receptance functions are determined

using modal coordinates and appropriate transformations to express ratios in terms

of physical coordinates. The structural system is expressed in the familiar first-order
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form with a disturbance acting at the kinematics level.

ż =


 0 I

−M−1K −M−1C


z +


 f cos(σt)

0


 ; z =


 x

vx


 (6.34)

Note that the control, which is represented by the lower partition of Equation (6.34),

is a function of the position and ideal velocity because the disturbance is assumed

unknown. Equation (6.34) is decoupled using a modal-coordinate transformation.

żη =


 0 I

−K̃ −C̃


zη +


 f̃ cos(σt)

0


 ; z =


 η1

η2


 (6.35)

The diagonal matrices K̃ = Φ−1KΦ and C̃ = Φ−1CΦ, and the transformed dis-

turbance input f̃ = Φ−1f . The ith mode can be described by a set of first-order

equations.

η̇i,1 = ηi,2 + f̃i cos(σt) (6.36)

η̇i,2 = −K̃iηi,1 − C̃iηi,2 (6.37)

To be rigorous in terminology, η̇i,1 is the true modal velocity, and ηi,2 is the ideal modal

velocity. A derivative is taken of Equation (6.36) and appropriate substitutions are

made in order to write the equations of motion for the ith mode in a second-order

form.

η̈i,1 = η̇i,2 − σf̃i sin(σt)

= −K̃iηi,1 − C̃iηi,2 − σf̃i sin(σt)

= −K̃iηi,1 − C̃i

(
η̇i,1 − f̃i cos(σt)

)
− σf̃i sin(σt) (6.38)
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Thus, the second-order equation that describes the ith modal dynamics subject to a

kinematic disturbance has two excitation terms on the right-hand side.

η̈i,1 + C̃iη̇i,1 + K̃iηi,1 = C̃if̃i cos(σt)− σf̃i sin(σt) (6.39)

The steady-state solution to the above expression is written as a sum of the steady-

state solutions for the cos(·) and sin(·) excitation terms.

ηi,ss = N
I
i cos(σt− αI

i ) +N
II
i sin(σt− αII

i ). (6.40)

The receptance functions and phases for each term in the solution are found using

the same approach described for single-DOF systems, where ri is the ratio of the

excitation frequency to the ith natural frequency.

N I
i

f̃i

=
C̃i

ω2
i

√
(1− r2

i )
2 + (2ζiri)2

; αI
i = tan−1

(
2ζiωiσ

ω2
i − σ2

)
(6.41)

N II
i

f̃i

=
σ

ω2
i

√
(1− r2

i )
2 + (2ζiri)2

; αII
i = tan−1

(−2ζiωiσ

σ2 − ω2
i

)
(6.42)

The steady-state amplitudes in modal coordinates are transformed to the steady-

state amplitudes in physical coordinates using the modal matrix.

X = Φ(N I +N II) (6.43)

The vectors of modal amplitudes are defined as N I = DIΦ−1f and N II = DIIΦ−1f ,

where DI and DII are defined below.

DI = diag

(
C̃1

ω2
1s1
,
C̃2

ω2
2s2
, ...,

C̃n

ω2
nsn

)
; DII = diag

(
σ

ω2
1s1
,
σ

ω2
2s2
, ...,

σ

ω2
nsn

)
(6.44)

The term si is the square root term in Equations (6.41) and (6.42).

si =
√
(1− r2

i )
2 + (2ζiri)2 (6.45)
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The receptance functions for the multi-DOF system in physical coordinates are

determined via appropriate substitutions.

Hjk ≡ Xj

fk
=
[
Φ(DI +DII)Φ−1

]
jk

(6.46)

Here, H is an n × n matrix, and the (j, k)th element of H is the ratio of the jth

output to the kth input. More specifically for the multivehicle-control application,

Hjk is the ratio of the steady-state amplitude of the jth vehicle to the amplitude of

the disturbance to the kth vehicle. The matrix H is symmetric if the eigenvector

matrix Φ is symmetric (if the stiffness matrix K is symmetric).

To illustrate the use of the receptance functions as an analysis tool, an example

receptance function is presented and interpreted here. Figure 20 shows the receptance

functions for the cooperative control of a three-vehicle system, where the H matrix

is not symmetric.
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Fig. 20.: Example receptance function for a three-vehicle system.
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The behavior ofH31 andH32 reveals notable behavior in the motion of the multivehicle

system. As previously defined, the functions H31 and H32 describe the motion of

vehicle 3 due to disturbances to vehicles 1 and 2, respectively. The peak magnitude

ofH31 is greater than the peak magnitude ofH32, which indicates that disturbances to

vehicle 1 have a greater effect on vehicle 3 than the disturbances to vehicle 2 have on

vehicle 3. String instabilities are essentially defined as the growth of errors through a

system of vehicles; hence, Figure 20 may indicate that errors are propagated through

the vehicle string for this cooperative control law. For this example, the cooperative

control laws are in fact string unstable.

The frequency-response information provides a way to analyze formation dynam-

ics in disturbance environments, and the interpretation of the example receptance

functions shows that the receptance functions may reveal string stabilities or instabil-

ities. However, the receptance functions alone may not reveal instabilities; therefore

to more fully analyze the string stability of communication structures, the steady-

state errors between vehicles must be determined. Whereas the receptance functions

show the magnitudes of the steady-state responses relative to disturbance inputs from

each vehicle, the steady-state amplitude of the jth vehicle is determined using the

steady-state modal amplitudes and the phase information.
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c. Steady-State Solution from Frequency-Response Functions

The steady-state response of the ith vehicle in physical coordinates can be expressed

using the superposition of the modal-coordinate responses.

xi,ss = x
I
i,ss + x

II
i,ss = Φij

[
N I

j cos(σt− αI
j ) +N

II
j sin(σt− αII

j )
]

(6.47)

The first term in Equation (6.47) can be expanded and rearranged as shown.

xI
i,ss = Φi1N

I
1 cos(σt− αI

1) + Φi2N
I
2 cos(σt− αI

2) + ... + ΦinN
I
n cos(σt− αI

n)

= Φi1N
I
1

[
cos(σt) cos(αI

1) + sin(σt) sin(αI
1)
]
+

+ Φi2N
I
2

[
cos(σt) cos(αI

2) + sin(σt) sin(αI
2)
]
+ ...

... + ΦinN
I
n

[
cos(σt) cos(αI

n) + sin(σt) sin(αI
n)
]

= sin(σt)
[
Φi1N

I
1 sin(α

I
1) + Φi2N

I
i sin(α

I
2) + ... + ΦinN

I
n sin(α

I
n)
]
+

+ cos(σt)
[
Φi1N

I
1 cos(α

I
1) + Φi2N

I
i cos(α

I
2) + ...+ ΦinN

I
n cos(α

I
n)
]

(6.48)

The response is written as xI
i,ss = Ai sin(σt) +Bi cos(σt).

Ai = Φi1N
I
1 sin(α

I
1) + Φi2N

I
i sin(α

I
2) + ...+ ΦinN

I
n sin(α

I
n) (6.49)

Bi = Φi1N
I
1 cos(α

I
1) + Φi2N

I
i cos(α

I
2) + ... + ΦinN

I
n cos(α

I
n) (6.50)

The second term in Equation (6.47) can be rearranged similarly.

xII
i,ss = sin(σt)

[
Φi1N

II
1 cos(αII

1 ) + Φi2N
II
2 cos(αII

2 ) + ... + ΦinN
II
n cos(αII

n )
]
+

+ cos(σt)
[
Φi1N

II
1 sin(αII

1 ) + Φi2N
II
2 sin(αII

2 ) + ... + ΦinN
II
n sin(αII

n )
]

(6.51)
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Here, xII
i,ss = Ci sin(σt)−Di cos(σt).

Ci = Φi1N
II
1 cos(αII

1 ) + Φi2N
II
2 cos(αII

2 ) + ... + ΦinN
II
n cos(αII

n ) (6.52)

Di = Φi1N
II
1 sin(αII

1 ) + Φi2N
II
2 sin(αII

2 ) + ...+ ΦinN
II
n sin(αII

n ) (6.53)

Therefore, the steady-state response of the ith vehicle is expressed as the sum of xI
i,ss

and xII
i,ss.

xi,ss = (Ai + Ci) sin(σt) + (Bi −Di) cos(σt). (6.54)

The amplitude of the steady-state solution is: Xi,ss =
√
(Ai + Ci)2 + (Bi −Di)2.

Vector expressions for A, B, C, and D can be found using the following expressions.

A = Φ diag(N I) sin(αI) (6.55)

B = Φ diag(N I) cos(αI) (6.56)

C = Φ diag(N II) cos(αII) (6.57)

D = Φ diag(N II) sin(αII) (6.58)

Whereas the receptance function, H , shows how vehicles are affected by the dis-

turbances to other vehicles, the steady-state solution can be used to find the maximum

steady-state amplitude of each vehicle. The steady-state errors between adjacent ve-

hicles can also be found using the steady-state solutions.

e(i,i+1),ss = (Ai +Ci −Ai+1 −Ci+1) sin(σt) + (Bi −Di −Bi+1 +Di+1) cos(σt) (6.59)

The amplitude of the steady-state errors is easily found.

E(i,i+1),ss =
√
(Ai + Ci −Ai+1 − Ci+1)2 + (Bi −Di − Bi+1 +Di+1)2. (6.60)

To illustrate the theory presented in this section, the steady-state vehicle am-

plitudes and the steady-state errors between vehicles are shown in Figure 21 for the
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receptance functions presented in Figure 20. Figure 21(a) shows that the steady-state

amplitudes of the vehicle motion grow along the string, and the steady-state errors

also grow as shown in Figure 21(b). Therefore, the behavior of the steady-state er-

rors reveals that the cooperative control laws for the three-vehicle systems are string

unstable in this example.
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Fig. 21.: Example steady-state amplitudes (a) and errors (b) for a three-vehicle sys-

tem.

In Section D, simulation results will be used to illustrate the evidence of string

instabilities in the frequency-response information. In addition, the influence of con-

trol gains on system response can be evaluated using the frequency-response analysis,

and the analysis tools can aid in the selection of control gains for stability and per-

formance.
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d. Relationship to Previous Work

As described in Chapter I, Fax and Murray investigated information flow in decen-

tralized, cooperative systems to evaluate formation stability for linear, homogeneous

systems [11]. Information flow between vehicles is described using a directed graph

from which the Laplacian of the graph is easily found. A dynamic compensator is

used for relative position control, and the closed-loop equations of motion include the

Laplacian. Formation stability is evaluated by decoupling the equations of motion

through a Schur transformation [29] of the Laplacian. The decoupled system is a

function of the eigenvalues of the Laplacian; therefore, the control law stabilizes the

formation if it stabilizes the decoupled system for each of the eigenvalues. Stability

is alternatively proved using the Nyquist-stability criterion. Here, the Laplacian is

analogous to the structure of the stiffness matrix, which has been shown in Chapter

V to represent the communication structure of the multivehicle system.

Extensions to the work by Fax and Murray investigated the effects of distur-

bances on formation stability. Jin and Murray investigated string stability for a

look-ahead formation, where control inputs are functions of preceding vehicles’ states

only, using a transfer function matrix to relate spacing errors in the formation [52].

That approach has some similarities to the frequency-response string-stability anal-

ysis described by Swaroop and Hedrick [15] and the multi-DOF receptance functions

and subsequent string-stability analysis presented here. Gattami and Murray ex-

tended the Nyquist-stability criterion to explore formation stability when the system

is subject to multiplicative uncertainties [12].

Yadlapalli, et al. investigated the effects of information flow on rigid formations,

where “rigid” links between vehicles are designed to maintain a rigid formation during

translational maneuvers [43]. In that reference, the researchers made the connection
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between the undirected Laplacian matrix from the information-flow graph and a stiff-

ness matrix comprised of springs with unit stiffnesses. The propagation of spacing er-

rors was studied to investigate constraints on the information flow to achieve bounded

spacing errors independent of the number of vehicles in the formation. Analysis of

the spacing errors employed a frequency-domain approach using the decoupled system

(similar to the approach used by Fax and Murray) in order to determine a bound on

the degree of the information flow that permits a scalable controller.

In the present work, the use of structural analogies in the stability analysis

of multivehicle systems does show some similarities to the aforementioned research

approaches. Most notably, the Laplacian matrix has been shown to be analogous to

the structure of the stiffness matrix, and this analogy was exploited by Yadlapalli,

et al. The Laplacian matrix used by Yadlapalli was derived from an undirected

graph indicating bidirectional communication, which can be physically represented

by masses connected by springs. In contrast, the Laplacian matrix used by Fax and

Murray was directed and therefore does not necessarily yield a physical representation;

similar to that work, the communication structures in this research are not constrained

to be physically representative. In this research, the structural analogy has been

further investigated to demonstrate the use of structural design methodologies to

achieve desired system behaviors and performance.

C. Communication Structures and Control-Law Design

In Chapter V and throughout this chapter, the communication structure and its

impact on the form of the stiffness matrix have been discussed. There are two factors

to consider when selecting the communication structure: (1) system constraints and

(2) design considerations. The system constraints may arise due to limitations on
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which vehicles can communicate based upon separation distances or processing speeds

of communication between vehicles. Design considerations may determine the selected

communication structure in order to mitigate disturbance effects on the formation.

As the previous sections described, the modal cost can be used to select a com-

munication structure based upon its disturbability, and the frequency-response char-

acteristics of the system can be used to analyze string stability and determine control

gains. Whereas there is no specific order for the application of these analysis and de-

sign tools, they can be used in combination and iteratively to meet application-specific

objectives.

1. Communication Structures

Figure 22 illustrates seven different communication structures for a three-vehicle for-

mation. In the figure, vehicle 1 is the platoon lead, which tracks a reference trajectory,

and vehicles 2 and 3 are trailing vehicles. Whereas the general cooperative control

law in Equation (3.6) assumes that each vehicle in the formation has knowledge of the

reference trajectory, the communication structures in Figure 22 assume that only the

first vehicle has knowledge of the reference trajectory. The arrow heads point to the

vehicle receiving state information from where the arrow originates. The two-headed

arrows indicate bidirectional communication, i.e., each vehicle has information about

the other vehicle. An arrow with only one head indicates a single connection. Double-

headed arrows can also be represented by springs or dampers; however, single-headed

arrows do not have an equivalent physical representation.

These communication-structure concepts can be extended to an n-vehicle for-

mation based upon the descriptions in the figure. A fully-connected communication

structure, for example, means that all vehicles in the formation have information

about all of the other vehicles. In communication structures 2 through 4, the sec-
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ond through nth vehicles have information about the formation lead, and the trailing

vehicles communicate as described in Figure 22.

2 13

1.  Fully Connected

2 13

2.  Singly Connected to Platoon Lead
     with Bidirectional Communication 
     between Trailing Vehicles

2 13

3.  Bidirectional Connection to 
     Platoon Lead

2 13

4.  Singly Connected to Platoon Lead

2 13

5.  Singly Connected Leader-Follower

2 13

6.  Bidirectional Leader-Follower

2 13

7.  Circular Connection

Fig. 22.: Seven possible communication structures for multivehicle formation control.

In some decentralized applications, vehicles will broadcast packets containing

current state information for use by other vehicles, and equivalently, vehicles will

receive and process packets from other vehicles in order to determine control inputs.

Whereas the modal-cost and frequency-response analysis tools can be used to compare

the disturbability and assess the string-stability characteristics of each communica-
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tion structure, two other quantities are defined that may be a contributing factor in

the selection of a communication structure. The first quantity is the total number

of received packets by the entire n-vehicle system at each time step, and the second

quantity is the maximum number of packets processed by one vehicle in the forma-

tion. The second quantity gives an indication of the onboard processing requirements

necessary for a particular communication structure. Table II show the two quantities

for each communication structure.

Table II.: Packet Processing for the Communication Structures.

Comm. # of Packets Max # of Packets Veh.(s) Processing

Structure (n-vehicles) Processed by 1 Veh. Max # of Packets

1

n∑
j=1

2(n− j) n− 1 all

2 2(n− 1) + (n− 2) 2, n = 3 2,...,n

3, n > 3

3 2(n− 1) n− 1 1

4 n− 1 1 2,...,n

5 n− 1 1 2,...,n

6 2(n− 1) 2 2,...,(n-1)

7 n 1 all

2. Control-Law Design

Following the design approach developed in Chapter III, where cooperative control

inputs are functions of spacing errors as determined by the communication structure,
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error terms are defined between all vehicles. The number of error terms in an n-

vehicle system is ne =

(
n−1∑
j=1

j

)
+ 1. For example, in a three-vehicle formation, there

are four error terms.

er1 = xr − x1 − dr1; ėr1 = ẋr − ẋ1; ër1 = ẍr − u1

e12 = x1 − x2 − d12; ė12 = ẋ1 − ẋ2; ë12 = u1 − u2

e13 = x1 − x3 − d13; ė13 = ẋ1 − ẋ3; ë13 = u1 − u3

e23 = x2 − x3 − d23; ė23 = ẋ2 − ẋ3; ë23 = u2 − u3

(6.61)

The notation of the error variables in Equation (6.61) is slightly different from the

notation introduced in Chapter III. Here, the two subscripts denote each vehicle in the

spacing-error definition because the error variables are no longer limited to adjacent

vehicle pairs. It should be noted that the errors and desired distances between vehicles

are constrained; e.g., e13 = e12 + e23, and equivalently, d13 = d12 + d23. The control

inputs are functions of the error terms as defined by the communication structure,

and the stiffness, damping, and forcing matrices can be determined accordingly.

Consider the control inputs for a three-vehicle formation using the fully-connected

communication structure (communication structure 1 in Figure 22).

u1 = −k12(x1 − x2)− c12(ẋ1 − ẋ2)− k13(x1 − x3)− c13(ẋ1 − ẋ3)+

+ kr(xr − x1) + cr(ẋr − ẋ1)

u2 = k12(x1 − x2) + c12(ẋ1 − ẋ2)− k23(x2 − x3)− c23(ẋ2 − ẋ3) (6.62)

u3 = k13(x1 − x3) + c13(ẋ1 − ẋ3) + k23(x2 − x3) + c23(ẋ2 − ẋ3)

It is assumed that the control gain kij (cij) on the spacing error eij (ėij) is the same

wherever it is used. This assumption reduces some of the design degrees of freedom,

but it is not a necessary constraint in the developments here. The stiffness matrix is
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found from the control inputs.

K =



kr + k12 + k13 −k12 −k13

−k12 k12 + k23 −k23

−k13 −k23 k13 + k23


 (6.63)

The damping matrix has the same form and is proportional to the stiffness matrix:

C = βK. By comparing Equations (6.62) and (6.63), it can be seen that the stiffness

matrix can be determined by inspection from the communication structures, and the

damping and forcing matrices can be found similarly. Appendix E lists the stiffness

and forcing matrices for the seven communication structures in Figure 22.

D. Design Problem: Use of Analysis Tools

Simulation examples are used to illustrate the use of the modal-cost and frequency-

response analysis and design tools.

1. Modal Cost to Compare Communication Structures

The seven communication structures are compared using the modal-cost measure in

Equation (6.24). The control gains in the stiffness matrices are assumed equal to

one; however, because communication structures 2, 4, 5, and 7 are asymmetric, the

invertibility of the Φ matrix must be explored. The gains in communication structures

2 and 7 do not need to be perturbed to allow invertibility of the Φ matrix, but the gains

in communication structures 4 and 5 must be perturbed. In communication structure

4, the stiffness matrix has a lower diagonal form with k1j gains, where j = 2, ..., n,

along the diagonal. These gains are perturbed by 0.01 such that k1j = 1+0.01(j−1),

and this yields n distinct eigenvalues and a full-rank eigenvector matrix. The stiffness

matrix for communication structure 5 is also a lower-diagonal matrix, and the diagonal
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gains are perturbed to yield n distinct eigenvalues. Here, the kj(j+1) gains, for j =

1, ..., n− 1, are perturbed by 0.25 to get kj(j+1) = 1 + 0.25j. The damping matrices

are assumed proportional to the stiffness matrices with β = 1. Table III shows the

modal-cost measures for each communication structure for formations of 3, 5, and 10

vehicles.

Table III.: Comparison of Communication Structures using Modal-Cost Measure α.

Communication Structure α (n = 3) α (n = 5) α (n = 10)

1 0.6379 0.5406 0.4516

2 0.6166 0.4956 0.3864

3 0.6232 0.5076 0.3997

4 8.6874 6.5425 4.2205

5 0.8440 7.9597 114.3824

6 0.6562 0.6132 0.6387

7 0.6340 0.5037 unstable

In each case, communication structure 2 is the least disturbable. The large values

for communication structures 4 and 5 are related to the perturbations in the gains.

Choosing different values for the gain perturbations will yield different values for

the modal-cost measure; however, the costs still remain greater than the costs for

the other communication structures. Communication structure 7 becomes unstable,

where the closed-loop A matrix has at least one pair of eigenvalues in the right-half

plane, for six or more vehicles in the formation.

Based upon these results, communication structures 1, 2, and 3 are similar in

terms of the magnitude of the modal-cost measure. From the modal-cost results
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alone, one would likely choose the second or third communication structure over the

first because fewer packets need to be processed by the system. Communication

structure 3 requires the formation lead vehicle to process n− 1 packets at each time

step; however, the second through nth vehicles only process one packet at each time.

Therefore, different processing requirements will allow lesser-equipped, or cheaper,

vehicles to be integrated with better-equipped vehicles.

2. Frequency-Response Analysis for String Stability

The modal-cost analysis can be used to compare communication structures for dis-

turbablity; however, this analysis does not give an indication of string stability. The

frequency-response analysis is used to analyze the string stability of each of the com-

munication structures.

a. Receptance Functions

Figures 23 through 29 show the receptance functions for the seven communication

structures in Figure 22 assuming a three-vehicle formation. The receptance functions

for communication structure 1, the fully-connected system, are symmetric due to the

symmetry of the stiffness matrix. Recall that the (j,k)th element of the receptance

function is the ratio of the jth vehicle’s output to the kth vehicle’s disturbance input.

Because the gains k13 and k23 are equal, the disturbance effects from vehicles 2 and

3 equally affect vehicle 1. The peak of H11 is smaller due to the additional gain from

the reference tracking. The receptance function only exhibits one resonant frequency

at the first mode, which has a damping ratio of 0.26; the other modes have damping

ratios closer to one.

The receptance functions for communication structures 2 and 3 display simi-

larities to the results for communication structure 1. Differences in the receptance
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Fig. 23.: Receptance function for communication structure 1.

functions are, of course, attributed to the differences in the stiffness matrices. Com-

munication structure 4 in Figure 26 shows different behavior in that some vehicles

are unaffected by disturbances to other vehicles, and those elements of H are zero for

all disturbance frequencies; e.g., vehicle 3 is unaffected by disturbances to vehicle 2,

and vice versa. The receptance functions for each of these communication structures

do not give an indication of string instabilities based upon the interpretation of the

receptance functions presented previously.
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Fig. 24.: Receptance function for communication structure 2.
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The receptance functions for communication structure 5 are shown in Figure

27, which is the same figure as the example in Figure 20. Recall that the string

instabilities become evident by examining the behavior of H31 and H32. This suggests

that disturbances to vehicle 1 have a greater effect than disturbances to vehicle 2 on

the motion of vehicle 3. In the analysis here, it is known that vehicle 3 is connected

to vehicle 2 through its control input, but it is not connected to vehicle 1.
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Fig. 27.: Receptance function for communication structure 5.
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Communication structure 6 displays similar behavior to communication struc-

tures 1, 2, and 3; however, the peak magnitudes are much greater. Thus, distur-

bances near the resonant frequency are amplified more for this communication struc-

ture. String instabilities are not evident in this figure, and further examination of the

steady-state errors indicates that this communication structure yields string-stable

cooperative control laws.
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Fig. 28.: Receptance function for communication structure 6.
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The receptance functions for communication structure 7 do not immediately

indicate string instabilities for this communication structure; however, the peak mag-

nitude of H32 is greater than H21, which may indicate that the errors amplify through

the vehicle string. However, a priori knowledge of the communication structure would

suggest that error growth would be evident if H13 is greater than H32. This is not

the case here, and this communication structure is in fact string stable.

0 1 2 3 4 5
  0.5

0

0.5

1

1.5

2

2.5

3

3.5

Input Frequency, σ

R
ec

ep
ta

nc
e 

F
un

ct
io

n

 

 

H
11

H
12

H
13

H
21

H
22

H
23

H
31

H
32

H
33

H   ,22 H   33

H   ,12 H   ,   23 H   31

H   ,13 H   21

Fig. 29.: Receptance function for communication structure 7.
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b. Steady-State Solution to Evaluate String Stability

Communication structures 1, 2, and 5 are further explored here to illustrate the

evidence of string stability or instability in the receptance functions. Ten-vehicle

formations are used to further show the string-stability characteristics for the selected

communication structures.

The receptance functions in Figure 23 for a three-vehicle formation indicate that

communication structure 1 leads to string-stable control laws. The receptance func-

tions for the tenth vehicle shown in Figure 30 show that the tenth vehicle is equally

affected by disturbances to vehicles 2 through 9. Figure 31(a) shows the steady-state

amplitudes of the vehicle positions for communication structure 1, and this figure

shows that the steady-state amplitudes of vehicles 2 through 10 are equal. Thus,

the steady-state errors between all adjacent vehicle pairs are zero with the exception

of the error between the first and second vehicles as shown in Figure 31(b). The

errors between vehicles pair do not grow along the vehicle string, which satisfies the

definition of string stability.
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Figures 32 and 33 show the receptance functions for the tenth vehicle and the

steady-state errors for communication structure 2, respectively. For this communi-

cation structure, the disturbances to other vehicles do not equally affect the tenth

vehicle as was the case for communication structure 1. Here, it is not clear whether

the receptance function indicates string instabilities; therefore, the steady-state errors

are investigated. Figure 33 shows that this communication structure is in fact string

stable. This communication structure does exhibit a wider frequency band where the

error between the first and second vehicles is affected. Thus, it can be seen how com-

munication structure 1 may be more advantageous for some disturbance frequencies.
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Fig. 32.: Receptance functions for the tenth vehicle (communication structure 2).
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Fig. 33.: Steady-state amplitudes of the vehicle positions (a) and steady-state errors

(b) for communication structure 2.

The receptance functions for communication structure 5 exhibit string instabil-

ities for the three-vehicle example in Figure 27. For this communication structure,

the receptance functions are plotted for all ten vehicles to show how the disturbance

effects grow along the string of vehicles (Figure 34). The string instabilities are ob-

vious from the receptance functions and a priori knowledge of the communication

structure. Figure 35 shows the steady-state vehicle amplitudes (a) and steady-state

errors between vehicles (b). The errors between trailing vehicle pairs increase for a

range of input frequencies, and hence, this particular communication structure leads

to string instabilities.
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Fig. 35.: Steady-state amplitudes of the vehicle positions (a) and steady-state errors

(b) for communication structure 5.
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The ten-vehicle formation is simulated for a reference trajectory along the x axis

with ẋr = 5 DU/TU. The desired spacing between vehicles is 1 DU in the x direction.

Disturbances are of the form dx,y = cos(σt), where σ = 1 is the first natural frequency,

or the resonant frequency, of the system. Figure 36 shows that the errors grow between

vehicle pairs along the vehicle string as predicted by the frequency-response results

in Figure 35(b). Figure 37 shows the calculated control inputs necessary to maintain

the formation. If these control inputs were bounded, some vehicles in the formation

may not be able to maintain their position. Therefore, this communication structure

could not be used for an infinite string of vehicles.
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Fig. 36.: Spacing errors between vehicles (communication structure 5).
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E. Design Problem: Gain Selection for Performance

The modal-cost and frequency-response-function tools can be used to compare com-

munication structures for disturbability and string stability, respectively. Once a

communication structure has been selected, the frequency-response analysis can be

used to determine the effects of gain changes on string stability and system response.

Some design considerations that may be taken into account are the resonant frequency,

the steady-state amplitudes from the receptance functions, and string stability.

There are several ways to affect system performance. The nominal control gains

in the stiffness matrix can be changed, which will change the natural frequencies

of the system. Individual gains in the stiffness matrix can be perturbed to change

one or more natural frequencies in a desired manner. The damping constant, β, can

be changed, which affects the steady-state amplitudes and steady-state errors of the

system. Changing the value of β can also lead to string stability for a previously

string-unstable control form. To this point, it has been assumed that the damping

matrix is proportional to the stiffness matrix with constant, β; however, damping

matrices of the form C = αM + βK do not alter the frequency-response theory

developed previously. As was described in the previous chapter, the constants α and

β can be chosen using a minimum-norm solution for a desired set of damping ratios;

however, non-zero values for α may lead to steady-state errors between vehicles by

introducing non-homogeneous terms to the error dynamics.

Simulation examples are used here to illustrate the use of the analysis tools in

the selection of control gains. In the previous section, communication structure 5 was

shown to be string unstable for the nominal gain of one. Changing the nominal gain

to two, which will be denoted as k = 2, decreases the steady-state amplitudes and

errors as shown in Figure 38. Figure 38(b) still indicates that the cooperative control
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laws are not string stable; however, a simulation of the ten-vehicle formation shows

that the required control efforts to maintain the formation are approximately halved

for k = 2 in comparison to the control efforts in Figure 37 for k = 1.
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Fig. 38.: Steady-state amplitudes of the vehicle positions (a) and steady-state errors

(b) for communication structure 5 (k = 2, β = 1).

Figure 39 shows the steady-state amplitudes and errors for a nominal gain of

k = 1 with a damping constant β = 2. Figure 39(b) indicates that this choice

of gains leads to a string-stable cooperative control law. Whereas the steady-state

errors do not grow along the vehicle string, the amplitudes of the vehicle positions

still increase along the string. This behavior can be contrasted to the steady-state

amplitudes in Figures 31 and 33 for communication structures 1 and 2, respectively.

In those cases, the steady-state amplitudes of vehicles 2 through 10 are equal and do

not grow along the vehicle string. Communication structures 3 and 4 exhibit similar

behavior, which indicates that a connection to the first vehicle can help to prevent

large amplitudes along the string. This should be not be confused with string stability
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Fig. 39.: Steady-state amplitudes of the vehicle positions (a) and steady-state errors

(b) for communication structure 5 (k = 1, β = 2).

however, which is defined as the propagation of errors through the string.

The growth in steady-state amplitudes corresponds to increased control inputs

along the string. Therefore, a control form may be string stable, but a growth in

required control inputs along the string indicates that the communication structure

cannot be implemented for a string with an infinite number of vehicles. Communica-

tion structure 5 with k = 1 and β = 2 can be considered a quasi-string-stable control

form.

The results presented here appear to contradict the string-stability results pre-

sented by Swaroop and Hedrick for a lead-vehicle-only control form. The results,

which were also presented in Chapter IV, indicate that a control law using position

and velocity errors from an immediately preceding vehicle is string unstable for all

position and velocity control gains greater than zero. However, in this case the per-

turbations in the gains to permit invertibility of the Φ matrix lead to a string-stable
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control form. The perturbations were implemented such that the gains increase along

the string; and therefore, the trailing vehicles are more aggressive. If the gains are

perturbed such that the vehicles are less aggressive along the string, then the string-

instabilities remain.

Individual gains can be perturbed to change a natural frequency in a desired way.

The eigenvalue sensitivities can aid in the selection of gains to perturb. For commu-

nication structure 5, which has a lower-diagonal form, the eigenvalues of the system

are equal to the gains along the diagonal. Therefore, the ith natural frequency can

be perturbed by perturbing the control gain ki−1,i. Other communication structures

do not have this same decoupled relationship between control gains and the system

eigenvalues.

Communication structure 6 is used to show how the eigenvalue sensitivities can

be used to change the system’s natural frequencies. Figure 40 shows the steady-state

amplitudes and errors. The first natural frequency is ω1 = 0.1495 rad/sec with a

damping ratio ζ = 0.0747. To change the first natural frequency, the eigenvalue sen-

sitivities are determined for perturbations to the control gains. The more sensitive

gains are then used to perturb the first natural frequency. In communication struc-

ture 5, perturbing one control gain only affects one natural frequency; however, the

relationship between control gains and natural frequencies is coupled for communica-

tion structure 6. The vectors shown below are the sensitivities of the eigenvalues for

perturbations to the kr and k12 control gains. These two vectors have the greatest

sensitivity to the first natural frequency.

∂λ

∂kr
= [0.0040, 0.0231, 0.0191, 0.0000, 0.0558, 0.2503, 0.4944, 0.5878, 0.4253, 0.1402]T

∂λ

∂k12
= [0.0042, 0.0359, 0.0881, 0.1429, 0.1810, 0.1894, 0.1651, 0.1164, 0.0604, 0.0165]T
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Fig. 40.: Steady-state amplitudes of the vehicle positions (a) and steady-state errors

(b) for communication structure 6.

Perturbations to these gains will not only alter the first natural frequency, but will

have an effect on the other frequencies as well due to the structure of the stiffness

matrix for this communication structure. By perturbing kr and k12 by 0.1, the first

natural frequency is now equal to 0.1520 rad/sec, which is a small change. This

approach seems to have limited utility except for fine tuning frequencies, which is

complicated by the coupled nature of the sensitivities.

Another design technique is to select damping ratios such that certain modes

are more highly damped while not significantly changing the damping ratios of other

modes. Figure 40 shows that the first mode is very lightly damped, and thus, the

steady-state amplitudes and errors at the resonant frequency are large. It may be

desirable to increase the damping of the lower-frequency modes, while maintaining

the damping ratios of the higher-frequency modes. The damping ratios for the case
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when k = β = 1 are shown below.

ζ = [0.0747, 0.2225, 0.3653, 0.5000, 0.6235, 0.7331, 0.8262, 0.9010, 0.9556, 0.9888]T

A vector of the desired damping ratios is used to find the proportional damping

constants, α and β.

ζd = [0.3500, 0.4000, 0.4500, 0.5000, 0.6235, 0.7331, 0.8262, 0.9010, 0.9556, 0.9888]T

Using the minimum-norm solution, α = 0.0909 and β = 0.9713. The resulting steady-

state amplitudes and errors are shown in Figure 41. As expected, the steady-state

amplitudes and errors are smaller; however, the steady-state errors at σ = 0 are not

zero. Using proportional damping with α �= 0 leads to steady-state errors between

vehicles even when disturbances are not present. This is caused by the non-zero

term on the right-hand side of the error dynamics equations, which leads to non-zero

equilibrium points for the errors.
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Fig. 41.: Steady-state amplitudes of the vehicle positions (a) and steady-state errors

(b) for communication structure 6 (k = 1, α = 0.0909, β = 0.9713).
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F. Gain Selection Using Nonlinear Programming

One last design approach is explored to select control gains for the different stiffness

matrices. A nonlinear-programming problem (NLP) is formulated to determine con-

trol gains in the stiffness matrix to yield a set of desired natural frequencies. The

optimization variables are the n× n components of the eigenvector matrix, Φ, and n
natural frequencies that together yield a stiffness matrix of the desired form. Each

communication structure has a stiffness matrix of a certain form, and communicability

constraints can be defined to ensure that stiffness matrices are representative of the

desired communication structure.

The objective function seeks to minimize the condition number of Φ, κ(Φ), and

the errors between the vector of natural frequencies from the resulting stiffness matrix,

ω, and the vector of desired natural frequencies, ωd.

J (Φ,ω) = α1κ(Φ) + α2 (ω − ωd)
T (ω − ωd) (6.64)

The constants α1 and α2 are weights. The condition number of a matrix is the ratio

of the maximum and minimum singular values of a matrix, where orthogonal matrices

have a condition of one, and rank-deficient matrices have an infinite condition number

[29]. The matrix Φ and vector of natural frequencies, ω, are subject to equality

constraints for a desired communication structure, such that K = Φ [diag(ω)] Φ−1

belongs to the subset of K∗, where K∗ has the form of the desired communication

structure. The NLP is stated below.

min
Φ∈Rn×n,ω∈Rn

J(Φ,ω)

Subject to: f (Φ,ω) = 0

g(Φ,ω) ≤ 0

Inequality constraints are used to force the sign of the control gains to be greater
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than zero. As described previously, the equality or communicability constraints are

used to find K of the form K∗.

The following communicability constraints would be imposed for a three-vehicle

system assuming a fully-connected communication structure (see Appendix E for the

form of the stiffness matrix). The K(i, j) refers to the element in the ith row and jth

column of the stiffness matrix.

g1 = −K(1, 2) ≤ 0

g2 = −K(1, 3) ≤ 0 (6.65)

g3 = −K(2, 3) ≤ 0

f1 = K(1, 2)−K(2, 1) = 0

f2 = K(1, 3)−K(3, 1) = 0 (6.66)

f3 = K(2, 3)−K(3, 2) = 0

f4 = K(2, 2)− [K(2, 1) +K(2, 3)] = 0

f5 = K(3, 3)− [K(3, 1) +K(3, 2)] = 0
(6.67)

The constraints in Equation (6.66) enforce the symmetry of the K matrix for com-

munication structure 1, and the constraints in Equation (6.67) constrain the diagonal

terms to be equal to the sum of the other terms in that row for rows 2 and 3.

The NLP is implemented using fmincon in MATLAB. Results for a five-vehicle

system assuming communication structure 1 are shown in Table IV, where the con-

stants in the cost function are α1 = 0.1 and α2 = 100. The table shows the resulting

natural frequencies (ωf), starting cost (J0), final cost (Jf), and the number of func-

tion evaluations for five different cases of desired natural frequencies. The initial guess

for Φ and ω is the eigenvector matrix and natural frequencies for the stiffness matrix
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with unity gains (k = 1).

ω0 = [0.4142, 2.2361, 2.2361, 2.2361, 2.3800]T

The desired natural frequencies for cases 1 and 2 are chosen by adding a random

number from a normal distribution to ω0. In case 3, ωd = ω0 + 0.5, and in cases 4

and 5, ωd is arbitrarily chosen. In each case, the minimum possible cost is Jf = 0.1.

Table IV.: NLP Solutions for Communication Structure 1 (n = 5).

Case ωd, ωf J0, Jf # func evals

1 [0.1979, 1.4033, 1.8410, 2.2987, 2.3799]T 90.2521 7707

[0.1979, 1.4033, 1.8409, 2.2987, 2.3800]T 0.1000

2 [1.2768, 1.3842, 1.9762, 2.3303, 3.1096]T 203.3875 5455

[0.7630, 1.3836, 1.9776, 2.3297, 2.2325]T 41.3014

3 [0.9142, 2.7361, 2.7361, 2.7361, 2.9142]T 125.1000 2590

[0.6810, 2.7058, 2.7217, 2.7217, 2.9895]T 6.2495

4 [0.5000, 1.8000, 2.2000, 2.4000, 2.6000]T 26.1206 9024

[0.5000, 1.8000, 2.1999, 2.4000, 2.6000]T 0.1000

5 [1.0000, 2.0000, 3.0000, 4.0000, 5.0000]T 1078.1214 5457

[1.0000, 2.0001, 3.0000, 4.0000, 5.0000]T 0.1000

Table IV shows that for some choices of ωd, a stiffness matrix can be found that

satisfies the communicability constraints and places the eigenvalues of the stiffness

matrix at the desired locations. The communicability constraints for communication

structure 1 enforce the symmetry of the stiffness matrix, which results in an orthog-

onal set of n eigenvectors by the finite-dimensional spectral theorem [46]. Therefore,
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κ(Φ) = 1 in all of the cases in Table IV.

Communication structure 5 does not yield a symmetric stiffness matrix, which

poses challenges in finding a set of linearly-independent eigenvectors. This results in

interesting NLP results. Table V shows the results for three cases where ωd = ω0,

i.e., the desired natural frequency is the same as the starting value.

ω0 = [1.0000, 1.1180, 1.2247, 1.3229, 1.4142]T

The constants in the cost function are varied to show the effects on the problem

solution. Table V shows how increasing α1 leads to smaller condition numbers for

Φ. Therefore, the NLP can be used to determine perturbed control gains to yield an

invertible eigenvector matrix. In each case, the number of function evaluations is less

than 4000.

Table V.: NLP Solutions for Communication Structure 5 (n = 5) with Varying α1

and α2.

Case α1,α2 ωf J0, Jf κ(Φ)

1 0.1 [0.8044, 0.9480, 1.1795, 1.4148, 1.5687]T 144.2127 131.1256

100 23.2643

2 1 [0.5999, 0.7794, 1.0974, 1.4469, 1.6896]T 1442.1270 44.2406

100 82.4646

3 10 [0.1560, 0.4329, 0.7406, 1.1369, 1.7145]T 14421.2695 15.5277

100 309.3246

The NLP solution enables comparison of the different communication structures

for the same set, or close to the same set, of natural frequencies. The NLP is used
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to determine the control gains in the stiffness matrices for communication structures

1-6 in order to yield the arbitrary set of desired natural frequencies:

ωd = [1.0000, 2.0000, 3.0000, 4.0000, 5.0000]T.

Because the natural frequencies of communication structure 7 are complex, communi-

cation structure 7 is not included in the comparison here. The modal-cost analysis is

repeated for a five-vehicle system and results are presented in Table VI (α1 = 0.1 and

α2 = 100). For some communication structures, the NLP is not able to determine

control gains to achieve the desired natural frequencies. However, this is a result of

the communicability constraints, which do not allow for arbitrary selection of natural

frequencies in all communication structures. The results here indicate that communi-

cation structure 1 has the smallest modal-cost measure, α; therefore, communication

structure 1 is the least disturbable control form. In contrast, communication structure

5 is the most disturbable.

Table VI.: Modal-Cost Analysis for Communication Structures with Common Natu-

ral Frequencies.

CS ωf Jf α

1 [1.0000, 2.0001, 3.0000, 4.0000, 5.0000]T 0.1000 0.4527

2 [0.9995, 2.0000, 3.0001, 4.0000, 5.0000]T 0.1282 0.4533

3 [0.6140, 1.7781, 2.7460, 2.7460, 5.8298]T 252.4719 0.4782

4 [1.0000, 1.9996, 2.9985, 4.0011, 5.0002]T 0.5934 0.4530

5 [0.9986, 1.9915, 2.9915, 4.0045, 5.0049]T 2.8882 0.5475

6 [0.7166, 1.9688, 3.0422, 4.0410, 4.9942]T 8.5759 0.4665
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Further research on the NLP problem is necessary; however, these examples are

used to show the complexities in selecting control gains to achieve desired system

behavior. The NLP problem can be used to select gains that will yield the desired,

or close to desired, natural frequencies for a selected communication structure. Addi-

tionally, the NLP problem can be used to perturb gains for communication structures

that require gain perturbations to yield a full-rank eigenvector matrix.

G. Chapter Summary

In this chapter, traditional structural-analysis tools were applied to the cooperative

multivehicle problem in order to evaluate the disturbance-rejection properties of the

different communication structures or control forms. The disturbed vehicle equa-

tions were investigated to show how disturbances affect the double-integrator vehicle

representation that has been used throughout this research. Modal cost was used

to evaluate the disturbability of the different control forms to impulsive disturbances

applied to each vehicle. A modal-cost measure was defined to quantify the disturbabil-

ity of each communication structure allowing different control forms to be compared.

Frequency-response functions were used to evaluate the effect of disturbances on the

multivehicle system. The steady-state response of the system follows from the fre-

quency response and was used to determine whether a given control form was string

stable. This mechanics-based approach to string-stability analysis is applicable to

general cooperative control forms where the closed-loop system can be written in a

structural form. One drawback to the analysis tools presented here is the requirement

that the matrix of eigenvectors from the stiffness matrix is invertible. Therefore, some

stiffness matrices may need to be perturbed in order to yield a full-rank eigenvector

matrix.
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Simulation results for seven different communication structures were shown to

illustrate the use of the modal-cost and frequency-response analysis tools. The ef-

fects of control-gain choices on system stability and performance were also shown

to demonstrate the use of the frequency-response analysis in the selection of control

gains. There are several design degrees of freedom that influence stability and perfor-

mance, and the use of an NLP to select control gains can aid in the design process.
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CHAPTER VII

TIME-DELAY EFFECTS ON MULTIVEHICLE SYSTEMS

This research has investigated the design of decentralized, cooperative control laws for

multivehicle systems, and these systems may be subject to time-delay effects due to

delays in measurement and communication. Whereas decentralized systems are more

robust to communication failures and structural reconfigurations [2], the impact of

inter-vehicle communication delays on system stability and performance must also be

considered.

Stability analysis of systems with delay is an important aspect to the design and

control of decentralized systems. In particular, complex systems are subject to mea-

surement, actuation, communication, and human-operator delays, and in many cases

it is necessary to take these delays into account when designing control laws. Olfati-

Saber and Murray investigated control laws with time-delayed feedback for dynamic

agents using graph theory [10], and Subbarao and Muralidhar have approached the

communication-delay problem for UAVs by designing a nonlinear MIMO state ob-

server for output delays [53]. Much of the literature on multivehicle control does

not directly address time-delay effects in feedback delays; for example, Dionne and

Rabath have included communication delays in simulations, but these delay effects

were not incorporated into the control design [54].

This research considers an approach to quantify stable time delays in the feedback

states of decentralized, cooperative control laws. The research objective is to evaluate

the maximum allowable delay for stability using delay differential equations (DDEs)

to model the n-DOF closed-loop systems with delayed feedback. The equations of

motion can be written in a first-order form, and the modal coordinate transforma-

tion is used to decouple the equations into 2n first-order, scalar equations. Here,
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well-known stability results for scalar first-order DDEs are applied to determine the

maximum delay of each scalar equation. This approach is a straightforward method

to determine the maximum delays without solving the DDEs.

The chapter is organized as follows. Background on DDEs is presented in Sec-

tion A. The stability analysis for a first-order, scalar DDE is presented in Section

B, and the results presented in that section further explain DDE stability concepts

introduced in the background. This theory enables the subsequent investigation of

delay properties for n-DOF linear systems. Delay-independent and delay-dependent

stability are investigated in Section C for the multivehicle-control application. Delay-

independent stability is discussed in Section C.1 to determine whether control gains

can be chosen to ensure stability for any value of the delay, and a method to determine

the maximum allowable delay for an n-DOF system of equations is presented in Sec-

tion C.2. Simulation results are presented in Section D for the seven communication

structures introduced in the previous chapter, followed by a discussion in Section E

about an underlying assumption in the theory to determine the maximum allowable

delay.

A. Delay Differential Equations

Delay differential equations model systems with delay, and the literature over the

past several decades has focused on analyzing the stability of this specific type of

differential equation. Driver describes a DDE as a “differential equation with a re-

tarded argument”, i.e., a DDE expresses some derivative x(n) at time t as a function

of (x,ẋ,...,x(n−1)) evaluated at time t and earlier instants [22].

There are two stability concepts in the analysis of DDEs: delay-independent

and delay-dependent stability. Whereas delay-independent stability holds for all pos-
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itive, finite delays, delay-dependent stability only holds for some values of the delays

and instabilities occur when the delays are outside of the stability bounds [23–25].

In the case of linear, time-invariant DDEs, delay-independent stability criteria can

be determined quite simply; however, determining bounds on delays becomes more

challenging due to the need to solve a transcendental equation, which has an infinite

number of solutions.

Frequency-domain methods are one approach described in the literature to an-

alyze stability of DDEs. In the case of linear, autonomous DDEs, the roots of the

transcendental characteristic function are difficult to determine, which led researchers

to explore other means of analyzing the stability. Analytical methods using Pontrya-

gin’s theorem (for a single delay or a commensurable number of delays) are used to

determine the number of zeros in the right-half plane, and the method of D subdivision

can be applied to find the regions where the characteristic function has roots in the

right-half plane as a function of the system parameters [23,55]. Mori, et al. examined

asymptotic stability of linear DDEs of the form ẋ(t) = Ax(t) + Bx(t − τ), and re-

sults in the form of linear matrix inequalities (LMIs) provide both delay-independent

and delay-dependent criteria [24, 25]. Niculescu investigated necessary and sufficient

conditions for delay-independent and delay-dependent stability using a matrix-pencil

technique [56].

Time-domain methods can also be used to show delay-independent or delay-

dependent stability using an extension of Lyapunov’s second method for time-delay

systems [22,23]. Driver describes the Lyapunov-Krasovskĭi method as seeking to find

a Lyapunov functional that includes information regarding the delay size, and then

Lyapunov’s second method can be carried through to determine stability. Dugard, et

al. show that asymptotic stability can be shown using a Lyapunov-Krasovskĭi func-

tional that leads to the delay Riccati equation [23]. Chopra and Spong have demon-
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strated delay-independent stability using the Lyapunov-Krasovskĭi for networked pas-

sive systems with delays on the transmitted system outputs [57, 58].

Additionally, some numerical methods have been developed recently to find sta-

bility regions in the time-delay parameter space. Kalmàr-Nagy presents a method

to estimate the delay-dependent stability chart using a polynomial approximation of

the transcendental characteristic equation [59]. Sipahi and Olgac have developed a

method to find stability regions for multiple time-delay systems using a root-clustering

technique, which finds the delay regions where the roots of the transcendental char-

acteristic equation cross the imaginary axis into the right-half plane [60–62]. The

work of Asl and Ulsoy [63, 64] and Yi and Ulsoy [65] and the references therein are

especially important to the work presented in this Chapter. Their focus is on a

Lambert-function technique that is used to approximate the solution of a system of

linear DDEs.

In all of the aforementioned methods, there are challenges in determining the

delay-dependent bounds for large-dimensional systems with delays, such as solving

LMIs, finding an appropriate Lyapunov-Krasovskĭi function, or requiring extensive,

problem-specific computation. The stability results for a scalar, first-order system

with delay are well known, and this simplified model is exploited in this research

to determine delay-dependent stability bounds for a multi-DOF, linear system of

equations subject to delays in the feedback control.

B. Stability Results for a Scalar, First-Order DDE

In this section, well known results for a scalar, first-order DDE are presented. Con-

sider the DDE given below.

ẋ(t) = ax(t) + bx(t− τ) (7.1)
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Here, τ is a constant delay. In the parameter space, S(0) is the set (a, b) where

Equation (7.1) is asymptotically stable for τ = 0 [23]. Thus, S(0) is easily determined.

S(0) = {(a, b) : a+ b < 0} (7.2)

Assume that a < 0, and using a Lyapunov-Krasovskĭi approach, the conditions

on b can be found such that (a, b) corresponds to the delay-independent set, S∞. A

Lyapunov functional is defined as shown below.

V (t) = x2(t) + |a|
∫ t

t−τ

x2(s)ds (7.3)

A time-derivative of V (t) reveals the condition for b.

V̇ (t) = 2x(t) [ax(t) + bx(t− τ)] + |a| [x2(t)− x2(t− τ)]
= −|a|x2(t)− |a|x2(t− τ) + 2bx(t)x(t− τ)

≤ (−|a|+ |b|) [x2(t) + x2(t− τ)] (7.4)

Therefore, delay-independent stability is achieved for a ≤ −|b|.

S∞ = {(a, b) : a+ b < 0, a ≤ −|b|} (7.5)

The delay-dependent set is complementary to S∞ within S(0) [23].

Sτ = {(a, b) : a+ b < 0, b < −|a|} (7.6)

To find the stability bound in the delay-dependent region for a delay τ , the

transcendental characteristic equation from Equation (7.1) is formed.

s− a− be−sτ = 0 (7.7)

By substituting s = jω and expanding using Euler’s identity, the real and imaginary
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parts of the characteristic equation can be written as shown.

−a− b cos(ωτ) = 0; ω + b sin(ωτ) = 0 (7.8)

Hale [66] and Smith [67] show that the stable region, where the roots of the transcen-

dental equation in Equation (7.7) have Re(s) < 0, is the open region bounded by the

curves b = −a and the solution to Equation (7.8) for 0 < ω < π/τ . Figure 42 shows

the delay-independent and delay-dependent stability regions for Equation (7.1) in the

(a(ω), b(ω)) space for the range 0 < ω < π/τ and with τ = 0.1 and τ = 1.0. The

asymptotically-stable regions are the cross-hatched areas, and the unstable regions in

S(0) are dotted.

a

bS(0) = (a + b) < 0

a <    |b|

b <    |a|

τ∗ = 0.1

a

b

τ∗ = 1.0

b <    |a|

S(0) = (a + b) < 0

a <    |b|

(i) (ii)

Fig. 42.: Delay-independent and -dependent stability regions for ẋ(t) = ax(t)+bx(t−
τ).

From Equation (7.8), the stability bound on τ can be determined for any param-

eter set (a, b) in the delay-dependent region.

τ ∗ =
cos−1

(−a
b

)
√
b2 − a2

(7.9)
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C. Delay Analysis for the Multivehicle System

This research investigates the effect of delays on cooperative multivehicle systems

when delays are introduced in the feedback control. Using the structural form to

represent the closed-loop equations of motion, the delay terms are shown to affect the

damping and stiffness terms that represent the cooperative control inputs.

Mẍ + Cẋ(t− τ) +Kx(t− τ) = 0 (7.10)

It is assumed that the delay τ is the same for all feedback control terms. The forcing

term is set to zero for the time-delay analysis, as this term contains information about

the reference trajectory and the constant desired distances between vehicle only. The

delay-independent and delay-dependent stability is investigated for the system in

Equation 7.10.

1. Delay-Independent Stability Analysis

Delay-independent stability was described in the previous section as the parame-

ter space where the system is asymptotically stable independent of the delay size.

Lehman and Verriest have investigated delay-independent stability for second-order

DDEs with constant coefficients [68]. The DDE is written in the first-order form,

where the state vector x ∈ R2, A and B are 2× 2 matrices, and the delay τ ≥ 0.

ẋ(t) = Ax(t) +Bx(t− τ) (7.11)

This system is asymptotically stable if the roots of the transcendental characteristic

equation, found by taking the determinant of the system in the frequency domain,

are shown to have real parts less than zero.

det
[
sI −A−Be−sτ

]
= 0 (7.12)
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The transcendental characteristic equation of the system in Equation (7.11) has a

general form.

f(s, τ) = s2esτ + c1se
sτ + c0e

sτ + d2s+ d1 + d0e
−sτ (7.13)

Lehman and Verriest show that the characteristic equation, f(s, τ), has solutions with

Re(s) < 0 if and only if three criteria are satisfied [68].

These criteria are applied to the multivehicle system to determine whether the

control gains can be designed to achieve delay-independent stability. In Chapter V,

the modal-coordinate transformation was introduced to decouple the equations of

motion into n second-order, scalar equations. Therefore, the closed-loop equations

of motion with feedback delays in Equation (7.10) can be expressed in the following

form.

η̈i(t) + c̃iη̇i(t− τ) + k̃iηi(t− τ) = 0, for i = 1,...,n (7.14)

Equation (7.14) can be equivalently expressed in the first-order form: η̇i = Aηi(t) +

Bηi(t− τ). 
η̇i,1(t)

η̇i,2(t)


 =


0 1

0 0




ηi,1(t)

ηi,2(t)


+


 0 0

−k̃i −c̃i




ηi,1(t− τ)
ηi,2(t− τ)


 (7.15)

The A matrix contains the kinematic term, and the B matrix contains the feedback

control gains. The transcendental characteristic equation for the system in Equation

(7.15) is f(s, τ) = s2esτ + c̃is + k̃i = 0. This system is asymptotically stable if and

only if the following two criteria are satisfied (the three criteria presented by Lehman

and Verriest have been simplified to match the form of the characteristic equation for

the multivehicle application):

(i) c̃i > 0 and k̃i > 0;
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(ii) the polynomial q(y) is not equal to zero for any positive real y.

q(y) = y4 − c̃2i y3 − k̃2
i y

2 �= 0

Routh-Hurwitz criterion is used to show that the polynomial q′(y) = y2− c̃2i y− k̃2
i has

at least one root with a positive real part, and the quadratic equation shows that all

roots of the polynomial are real. Therefore, the feedback control gains in Equation

(7.15) cannot be chosen to achieve delay-independent stability.

2. Delay-Dependent Stability Analysis

It was shown that the multivehicle system cannot be designed for delay-independent

stability. In this section, the delay-dependent stability is investigated, or more specif-

ically, a method to determine the maximum delay for the multivehicle system is

developed. The second-order equations of motion are written in a first-order form.

ż(t) =


 0 I

−M−1K −M−1C


z(t) = Aclz(t); z(t) =


x(t)
ẋ(t)


 (7.16)

Here, Acl is a 2n× 2n matrix, and z(t) is an 2n× 1 vector of positions and velocities.

Suppose that z(t) is subject to delay τ due to delays on the feedback states. It is

assumed that this delay also acts on the kinematics in order to simplify the first-order,

closed-loop form to the expression shown below.

ż(t) = Aclz(t− τ) (7.17)

If Acl is a diagonalizable matrix, a modal transformation of the following form

can be chosen [29].

z(t) = Φη(t); z(·) = Φη(·) (7.18)

Note that here Φ is an 2n × 2n matrix of the eigenvectors of Acl, and the modal
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coordinates are a 2n × 1 vector. Substituting Equation (7.18) into the closed-loop

form in Equation (7.17) and multiplying by Φ−1 yields the following 2n first-order

differential equations with delay.

η̇(t) = Adη(t− τ) (7.19)

The matrix Ad = Φ−1AclΦ is diagonal; therefore, the modal transformation decouples

the matrix DDE in the η coordinates.

η̇1(t) = λ1η1(t− τ1)

η̇2(t) = λ2η2(t− τ2)
...

η̇2n(t) = λ2nη2n(t− τ2n) (7.20)

The coefficients λi in the above equations are the eigenvalues of the closed-loop matrix,

Acl. Therefore, the coefficients can be real or complex. A stable closed-loop matrix

will have eigenvalues with negative real parts. As was the case in Chapter V, the Φ

matrix must be full-rank to ensure invertibility in order to diagonalize Acl.

For the case where the coefficients are real, the delay-independent and delay-

dependent stability of the closed-loop system can be analyzed using the results pre-

sented in Section B for each scalar first-order DDE in Equation (7.20). In the modal

form above, the coefficient a in Equation (7.1) is zero, which implies that the system

is delay-independently stable for b = λi = 0 only. From the delay-dependent results

for the optimal bound on the delay, the following relationship for each first-order

DDE is derived.

τ ∗i =
π

2|λi| (7.21)

In the case that the coefficients are complex, the transcendental characteristic
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equation in Equation (7.7) is rewritten with a = 0 and b complex.

s− (bR + jbI) e
−sτ = 0 (7.22)

Here, bR and bI are the real and imaginary parts of b, respectively. The optimal

bound on τ is derived by substituting s = jω into Equation (7.22) and expanding

using Euler’s identity.

τ ∗i =
tan−1

(
−bR

bI

)
√
b2R + b2I

(7.23)

This equation is a general expression for the DDE with a = 0 and b either real or

complex. If bI = 0, this expression is equivalent to that shown in Equation (7.21).

The optimal bounds for each DDE in Equation (7.20) are computed using the

general form in Equation (7.23), and the smallest τ ∗i is the maximum allowable delay

for the closed-loop system. At the maximum allowable delay, the system displays

marginally stable behavior; for delays less than the maximum delay, the DDEs are

asymptotically stable; and if the maximum delay is exceeded, the system will be

unstable. Thus, delay bounds can be determined for a general closed-loop control

form by solving an eigenvalue problem to diagonalize the closed-loop matrix. The

approach presented here reduces the problem of determining delay-dependent stability

bounds to an eigenvalue problem, which eliminates the rigor of other approaches

that require finding a problem-specific Lyapunov function, solving LMIs, or solving

computationally expensive root-finding problems.

D. Simulation Results

The maximum allowable delays were calculated for the seven communication struc-

tures shown in Figure 22. Table VII shows the delays for n = 3, 5, and 10 vehicles.

The nominal gains are equal to one (k = 1), and the damping constant β = 1. The
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same gain perturbations as described in Chapter VI were used here to yield a full-rank

Φ matrix. Recall that communication structure 7 is unstable for n > 6. Whereas the

maximum allowable delay decreases for communication structures 1, 2, 3, and 6 as

the number of vehicles in the formation increases, the maximum delay is constant for

communication structures 4 and 5.

Table VII.: Maximum Allowable Delays for Different Communication Structures

Communication Structure τ (n = 3) τ (n = 5) τ (n = 10)

1 0.5058 0.3455 0.1604

2 0.5083 0.5083 0.4520

3 0.5058 0.3455 0.1604

4 0.5236 0.5236 0.5236

5 0.5236 0.5236 0.5236

6 0.5042 0.5017 0.5005

7 0.3329 0.0782 unstable

Numerical results are simulated using the DDE Runge-Kutta solver, dde23, in

MATLAB with initial conditions held constant until the determined optimal bound,

τ .

xi(t) = xi(0), ẋi(t) = ẋi(0), −τ ≤ t ≤ 0 (7.24)

A ten-vehicle formation is simulated tracking a constant-velocity reference trajectory

in the x direction with ẋr = 5 DU/TU. There are no initial condition errors, but the

delays affect behavior as control inputs use only the initial conditions for t = [0, τ ].

Figure 43 shows the spacing errors in the x direction for the maximum allowable

delay for communication structures 1 and 5. These results indicate that the time de-
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lays in the feedback states have a similar effect on the formation as the disturbances.

Whereas the spacing errors quickly go to zero along the vehicle string for communi-

cation structure 1, the errors grow along the string when the control is determined

using communication structure 5.
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Fig. 43.: Spacing errors in the x direction for the maximum allowable delay for

communication structures 1 (a) and 5 (b).

The simulation results shown in Figure 43 include the assumed delay in the

kinematics, which is not representative of the physical system. Simulations of the

seven communication structures confirm that the theory presented correctly predicts

the maximum delay of the system in Equation (7.17). However, if zero delay is

assumed in the kinematic equations, the simulations indicate that assuming delays

in the kinematics in order to determine the maximum delay is not a conservative

assumption. For example, communication structures 1 and 5 are stable for less than

or equal to 85% and 72% of the maximum calculated delay, respectively.
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Figure 44 shows the spacing error results for communication structures 1 and

5 with no assumed delays in the kinematics. Here, the spacing-error trends are

consistent with the trends in Figure 43. In addition, note that the maximum spacing

error between vehicles 9 and 10 for communication structure 5 is roughly 250 DU,

which requires significant control inputs (maximum v̇ = 2.6× 103 DU/TU2).
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Fig. 44.: Spacing errors in the x direction at 85% and 72% of the maximum allowable

delay for communication structures 1 (a) and 5 (b), respectively.

Figure 45 shows the spacing errors and control inputs for communication structure 5

at 50% of the maximum allowable delay. If the maximum delay is halved, the maxi-

mum spacing error e9,10 is reduced to 1.25 DU, and the maximum v̇ = 10 DU/TU2.

This figure also shows that the behavior of the formation is similar to the behav-

ior when the formation is subjected to harmonic disturbances. The spacing errors

initially grow along the string with a noticeable lag before going to zero.

Table VIII shows the percentage of the maximum delay where the communi-
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Fig. 45.: Spacing errors (a) and control inputs (b) for communication structure 5 for

50% of the maximum delay.

cation structures are stable for different numbers of vehicles in the formation. The

accuracy of the maximum delay calculation increases with the number of vehicles for

communication structures 1 and 3, and decreases for communication structures 5 and

6. Whereas Table VII indicates that communication structure 5 is invariant with

respect the number of vehicles in the formation, the stability bound does decrease

when no delay in the kinematics is assumed.

The maximum allowable delay for communication structure 4 is invariant with

respect to the number of vehicles in the formation. Additionally, when no delays are

assumed in the kinematics, the maximum delay is greater than the calculated delay.

The percentage of maximum-delay for stability is also invariant with respect to the

number of vehicles. Figure 46 shows the spacing errors in the x direction for 130%

and 100% of the maximum delay. At 100% of the maximum calculated delay, the
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Table VIII.: Percentage of Maximum Delay for Stability (No Delays in Kinematics)

Communication Structure % (n = 3) % (n = 5) % (n = 10)

1 67 69 85

2 83 61 64

3 67 69 85

4 133 134 131

5 115 99 72

6 75 69 66

7 104 149 unstable

formation behaves similarly to the disturbed behavior, where errors between vehicles

quickly go to zero along the string. However, at 130% of the maximum delay, there

are small spacing errors excited between the trailing vehicles, and the errors grow

along the string. The maximum magnitude of the spacing errors between vehicles 3

through 10 never exceeds the maximum error between vehicles 1 and 2. This behavior

is unexpected, but it is not evident when the delay is decreased to the maximum

calculated delay.

From the simulation results presented here, it can be seen that there is a connec-

tion between disturbance behavior and the effects of delays on the system. String-

stable cooperative control forms exhibit similar behavior with delays as when dis-

turbances are introduced. Simulation results show that the spacing errors for com-

munication structure 5, which is a string-unstable control form for the gains k = 1

and β = 1, increase along the string before going to zero. Therefore, the frequency-

response analysis of different communication structures can be used to predict the
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Fig. 46.: Spacing errors for 130% (a) and 100% (b) of the maximum allowable delay

for communication structure 4.

behavior of the multivehicle systems to delays in the feedback states.

E. Discussion of Delay-Dependent Stability Analysis

The delay-dependent stability analysis for the system in Equation (7.17) assumed

delays in the kinematics in order to write the equations of motion in this first-order

form. A modal-coordinate transformation decouples the equations of motion, which

permits the stability results for a first-order, scalar DDE to be applied to the 2n

decoupled equations. Simulation results confirm that this approach correctly deter-

mines the stability bound for the delay when the kinematics have induced delays;

however, the assumption of delays in the kinematics is not physically based. Whereas

it was originally thought that including delays in the kinematics would yield a con-

servative optimal bound, this was not the case as shown by the simulation results.
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The developments here show the contribution that delays in the kinematics have on

the stability of a single-DOF system.

Consider a single-DOF system with no delays in the states.

ẋ1(t) = x2(t)

ẋ2(t) = −kx1(t)− cx2(t)
(7.25)

Stability of this system can be evaluated for the equation: ẍ1(t)+ cẋ1(t)+kx1(t) = 0,

and the system is stable for c, k > 0. If delays are included in the feedback states,

Equation (7.25) has the following form.

ẏ1(t) = y2(t)

ẏ2(t) = −ky1(t− τ)− cy2(t− τ)
(7.26)

The second-order equation describing the delayed-feedback system becomes ÿ1(t) +

cẏ1(t − τ) + ky1(t − τ) = 0. In this case, stability is not as easily determined for a

given delay. As was shown in Section C.1, this second-order form does not have a set

of delay-independent gains. In addition, the analysis shown for the first-order, scalar

DDE does not easily follow for this particular second-order form. Lastly, assume that

the system in Equation (7.26) has delay in the kinematics.

ż1(t) = z2(t− τ)
ż2(t) = −kz1(t− τ)− cz2(t− τ)

(7.27)

The trajectories for each of the three systems in Equations (7.25)-(7.27) are different

due to the presence of the delays. The second-order equation for the system in

Equation (7.27) is z̈1(t) = ż2(t − τ), where ż2(t − τ) is approximated by a Taylor

series.

ż2(t− τ) = ż2(t)− dż2(t)
dt

|τ=0τ +HOT (7.28)

Therefore, τ
...
z 1(t) + z̈1(t) + cż1(t− τ) + kz1(t− τ) = 0. Here, it can be seen that the
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approximated kinematic delay increases the order of the system [69].

The transcendental characteristic equations for the systems in Equations (7.26)

and (7.27) are shown respectively below.

s2 + cse−sτ + ke−sτ = 0 (7.29)

τs3 + s2 + cse−sτ + ke−sτ = 0 (7.30)

If no delays are assumed in the feedback, e−sτ = 0, and the effect of delay in the

kinematics alone can be investigated. Routh-Hurwitz analysis of Equation (7.29)

reveals the asymptotic stability conditions c, k > 0; however, analysis of Equation

(7.30) reveals that c, k > 0 and c/k > τ . This shows that there is an additional

stability condition imposed on the system when delays in the kinematics are assumed.

Whereas the theory presented to determine the maximum allowable time delay

does not provide the delay for the physical system in which there are no delays in the

kinematics, the approach still provides an estimate of the optimal bound. Simulation

results show that the delayed-kinematics assumption imposes another stability bound

near the calculated bound. However, the calculated optimal bound may be useful in

gain selection for stability. In addition, the approach to quantify stability bounds has

reduced the computational analysis to essentially solving an eigenvalue problem in

order to diagonalize, or decouple, the closed-loop equations of motion. This approach

is contrasted with the analytical rigor of finding a Lyapunov-Krasovskĭi function for

each control law or the computational challenges in implementing some of the previ-

ously discussed work in Section A.
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F. Chapter Summary

In this chapter, the effect of delays on the stability of cooperative multivehicle systems

was investigated. Feedback delays in the cooperative control laws can be caused

by delays in measurement or communication, and these delays impact stability and

performance. The structural form of the cooperative control laws was exploited here

to evaluate the delay-independent stability for the decoupled, modal-coordinate form.

It was shown that there is no choice of control gains that will ensure stability for all

values of the delay. To find the delay-dependent stability bound, a straightforward

method was presented to determine the maximum allowable time delay for an n-

DOF system using well-known results from the literature on DDEs. This approach

assumes delays on the kinematics in order to write the equations of motion in a desired

first-order form; however, simulation results show that this is not a conservative

assumption. The approach does still provide an estimate of the bound. Simulation

results showed that the feedback delays induce similar behavior to the behavior that

occurs when the multivehicle system is disturbed.
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CHAPTER VIII

NON-INERTIAL AND TIME-BASED SPACING METHODS

The theoretical developments presented in the preceding chapters have all dealt with

the design and stability analysis of cooperative control laws based on inertial refer-

ence frames. These control laws have been designed to drive spacing errors in the x

and y directions between individual vehicles to zero using a desired communication

structure. In the preceding theoretical development, it was assumed that the desired

distances between vehicles in the x and y directions are constant. In contrast, the de-

velopment of rigid-body-like formation control laws would assume constant distances

between vehicles in some non-inertial frame aligned with the orientation of the desired

rigid formation. This rigid-body nature can be achieved using a control law designed

in the inertial frame by determining the desired distances between vehicles as a func-

tion of time. Therefore, it must be known how the distances between vehicles change

in an inertial frame in order to maintain the desired formation in a non-inertial frame.

For some design applications, it may be difficult to determine the desired distances

between vehicles as a function of time, which motivates the development of spacing

control laws in non-inertial reference frames or using different spacing parameters,

such as time. In this chapter, three different spacing control forms are investigated

that do not assume constant distances in an inertial reference frame.

The development of cooperative control laws for two applications, in particular,

is investigated: 1.) spacing along an arbitrary path, and 2.) time-based spacing to an

endpoint. These applications are motivated by ongoing research in next-generation

air traffic systems. Aircraft are often routed along a common path and air-traffic

controllers are responsible for maintaining separations between neighboring aircraft.

In the future, aircraft may be equipped to autonomously space along a known flight



147

path relative to another aircraft. Time-based spacing is a concept being investigated

for the separation of aircraft in terminal areas [70]. In the control-law developed here,

vehicles determine the time-to-go to a desired endpoint, and this parameter is used to

maintain a constant time difference between vehicles at the endpoint. There are sev-

eral advantages to time-based spacing over distance-based spacing. The time-based

spacing approach works well for spacing vehicles along accelerating or decelerating

trajectories, where desired distances between vehicles may not be constant. In addi-

tion, vehicles on dissimilar trajectories can be spaced at the same endpoint. Another

application of time-based spacing is cooperative timing or time-on-target, where ve-

hicles arrive at a desired location in a coordinated manner for imaging or surveillance

purposes [71].

The general control approach applied here is to find the desired position along a

trajectory relative to the immediately preceding vehicle. The desired position has an

associated velocity and acceleration at that point on the trajectory, and each vehicle

tracks a desired position, velocity, and acceleration that is determined relative to

its lead vehicle. Therefore, to implement this approach, each vehicle must know its

reference trajectory.

The chapter is organized as follows. Vehicle spacing with non-constant distances

in the inertial frame is presented in Section A. These developments serve to motivate

the spacing control forms presented in Sections B and C. In Section B, a control

law for spacing vehicles along an arbitrary path is derived. The arbitrary path is

parameterized by the arclength parameter, and spacing errors are defined using the

arclength and perpendicular distance to the path. The time-based spacing control

law is developed in Section C, and simulation results illustrate the implementation

of this spacing approach for vehicles on dissimilar trajectories. Internal stability of

these control forms is presented in Section D. String stability is also discussed, and
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qualitative results are presented based upon simulation results.

A. Spacing with Non-Constant Distances

Consider the general control form presented Equation (3.6). If the first vehicle tracks

a circular reference trajectory, constant distances in the x and y directions will yield

overlapping trajectories as shown in Figure 47. Here, the desired distance between

vehicles is 1 DU in the x and y directions, and the initial positions of the vehicles are

denoted by the asterisks. The spacing errors go to zero in the x and y directions as

expected.
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Fig. 47.: Vehicle positions for a circular reference trajectory and constant distances

in an inertial frame.

If a rigid-body-like formation is desired wherein the trajectories do not cross for

a circular reference trajectory, the control laws can still be designed in the inertial
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frame. However, the desired distances between vehicles are not constant, and the

first and second derivatives of the distances must be included in the control laws. For

example, given a C2 reference trajectory {xr(t), yr(t)}, a rigid-body orientation can

be defined as the orientation of the reference trajectory.

ψ = tan−1

(
ẏr

ẋr

)
(8.1)

Constant distances between vehicles can be defined in a virtual body-fixed reference

frame, where the b̂1 direction is aligned with the heading of the reference trajectory:

d = lb̂1 + mb̂2. These distances and their derivatives can be coordinatized in the

inertial frame.

d = (l cosψ −m sinψ) n̂1 + (l sinψ +m cosψ) n̂2

ḋ =
(
lψ̇ sinψ −mψ̇ cosψ

)
n̂1 +

(
lψ̇ cosψ −mψ̇ sinψ

)
n̂2 (8.2)

d̈ =
(
−lψ̈ sinψ − lψ̇2 cosψ −mψ̈ cosψ +mψ̇2 sinψ

)
n̂1+

+
(
lψ̈ cosψ − lψ̇2 sinψ −mψ̈ sinψ −mψ̇2 cosψ

)
n̂2

To yield homogeneous error dynamics, the control input to the ith vehicle also

includes the second derivatives of the desired distances for the first through ith vehi-

cles. Therefore, the control inputs are the sum of the nominal control inputs shown

in Equation (3.6), ū, and the second derivatives of the distances.

u1 = ū1 − d̈1

u2 = ū2 −
(
d̈1 + d̈2

)
...

ui = ūi −
(
d̈1 + d̈2 + ...+ d̈i

)
(8.3)

To implement a spacing-control law with non-zero d̈ terms, each vehicle must have
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knowledge of the reference trajectory and the desired spacing between all of the

preceding vehicles in the formation. This statement can be generalized to all of the

communication structures investigated previously.

Figure 48 shows the rigid-body-like motion that results when the desired dis-

tances between vehicles are constant in a non-inertial frame. The spacing errors

again go to zero, and the vehicles converge to the desired formation from the initial

errors in the formation.
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Fig. 48.: Vehicle positions for a circular reference trajectory and changing distances

to achieve rigid-body-like motion.

B. Spacing Along an Arbitrary Path

The results presented in the previous section show that vehicles can be spaced along

a reference trajectory to achieve constant distances in a non-inertial reference frame.
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The implementation of that approach requires that distances between vehicles be

written as a function of time, and in addition, the distances between all preceding

vehicles in the formation must be known in order to drive spacing errors to zero. In

this section, the control laws to space vehicles along an arbitrary path are investigated.

Here, the path is parameterized in terms of arclength, or distance along the path,

and the arclength parameter is the spacing variable that motivates the control-law

design. This approach still requires that all vehicles have knowledge of the reference

trajectory; however, the control law design does not require that distances between

vehicles be determined as functions of time. Additionally, the theory presented here

does not require that vehicles know the d̈ terms for all preceding vehicles.

1. Definition of the Path Reference Frame

Curves in n-dimensional space can be described using geometric properties, such

as arclength and curvature. Given a C1, or smooth, curve in n-dimensions and

parameterized in time, the arclength and curvature can be determined. The arclength

of a curve is an intrinsic parameter, which depends only on how the curve bends and

not on how quickly the curve is traced in time [72].

Given a vector of inertial positions, r(t), and velocities, ṙ(t), the length of the

curve can be determined by integrating the speed along the path for a given time

interval.

L (r(t0, tf)) =

∫ tf

t0

||ṙ(t)|| dt (8.4)

Similarly, the arclength is an intermediate point on the path, s(t). This integral can

be used to parameterize the path as a function of arclength rather than time.

s(t) =

∫ t

t0

||ṙ(τ)|| dτ (8.5)
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To parameterize the curve as a function of arclength, Equation (8.5) must be an

invertible function. Equation (8.5) will yield a theoretically invertible expression if

the speed along the curve is never equal to zero. Given ṙ(t) �= 0, the speed along

the curve is always positive, and the arclength s(t) is strictly increasing. Thus, time

is written as a function of arclength, and the path is described using the arclength

parameter. Challenges arise in determining time as a function of arclength when

Equation (8.5) does not yield a closed-form solution.

These concepts can be illustrated using a 2-dimensional path. A path-fixed

coordinate frame follows the path as shown in Figure 49, where the b̂1 vector is tangent

to the path, or aligned with the velocity vector, and the b̂2 vector is perpendicular to

the path in the plane. Each reference frame is attached the curve at a given arclength,

where 0 < sA < sB < sC .
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b2

b1

b2

b1

b2

n1

n2

sA

sB

sC

r(s)

A

A

B

B

C

C

Fig. 49.: Path-fixed reference frames at different arclength positions.

The velocity and acceleration of a vehicle along the path is coordinatized in the
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path frame.

ṙ(t) = vb̂1 (8.6)

r̈(t) = v̇b̂1 + vψ̇b̂2 (8.7)

Here, ψ̇ is the angular turn rate of the path-fixed frame relative to the inertial axis,

and ψ is the angle of the path-fixed frame with respect to the horizontal inertial

axis. Acceleration components in the b̂1 and b̂2 directions indicate that a multivehicle

system could be spaced along the path and perpendicular to the path, which motivates

the definition of along-path and perpendicular-to-path spacing errors.

2. Spacing-Error Definitions

Given a trajectory parameterized by arclength, {xr(s), yr(s)}, vehicles can be spaced

along and perpendicular to the trajectory. Figure 50 illustrates the spacing of a vehicle

string along a reference path. Each vehicle’s (x, y) position is projected onto the

reference trajectory to determine the along-path arclength, si, and the perpendicular

distance, pi, from the trajectory.

The along-path errors are written as a function of arclength between two adjacent

vehicles.

es1 = sr − s1 − ds
1

esi = si−1 − si − ds
i ; i = 2, ..., n (8.8)

Here, ds
i is a constant arclength relative the preceding vehicle. The perpendicular-

to-path errors are similarly defined, where dp
i is a constant perpendicular distance
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Fig. 50.: Projection of vehicle positions onto the reference trajectory.

relative to the preceding vehicle.

ep1 = pr − p1 − dp
1

epi = pi−1 − pi − dp
i ; i = 2, ..., n (8.9)

The desired arclength and perpendicular distance for the ith vehicle relative to its

lead vehicle are denoted as s∗i and p
∗
i , respectively.

s∗i = si−1 − ds
i ; p∗i = pi−1 − dp

i (8.10)

These values are found from Equations (8.8) and (8.9) when the spacing errors are

equal to zero.
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3. Spacing Control Law

The along-path position at the desired arclength can be determined from the refer-

ence trajectory that is parameterized by arclength: {xr (s
∗
i ) , yr (s

∗
i )}. The velocity

and acceleration at the along-path position are also determined from the reference tra-

jectory. From the velocity at the along-path position, the orientation of the reference

frame at the desired arclength, ψi, is determined.

ψi = tan−1

(
ẏr (s

∗
i )

ẋr (s
∗
i )

)
(8.11)

The desired perpendicular distance, p∗i , is used to generate a reference position, ve-

locity, and acceleration in the x and y directions.

xi,ref = xr (s
∗
i )− p∗i sinψi yi,ref = yr (s

∗
i ) + p

∗
i cosψi

ẋi,ref = ẋr (s
∗
i )− ψ̇ip

∗
i cosψi ẏi,ref = ẏr (s

∗
i )− ψ̇ip

∗
i sinψi

ẍi,ref = ẍr (s
∗
i )− ψ̈ip

∗
i cosψi + ψ̇

2
i p

∗
i sinψi ÿi,ref = ÿr (s

∗
i )− ψ̈ip

∗
i sinψi − ψ̇2

i p
∗
i cosψi

(8.12)

Each vehicle tracks the reference position, velocity, and acceleration that are

functions of the desired arclength and perpendicular distance.

ui = ki (xi,ref − xi) + ci (ẋi,ref − ẋi) + ẍi,ref

wi = ki (yi,ref − yi) + ci (ẏi,ref − ẏi) + ÿi,ref

(8.13)

Note that the control laws above do not require spacing information from any of the

other vehicles in the formation, which is a significant advantage over designing control

laws in an inertial frame. However, each vehicle must have knowledge of a common

reference trajectory to implement this spacing scheme.
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4. Simulation Results

Simulation results are shown for spacing along a constant-velocity circular path. The

circular reference trajectory has radius, R, and angular rate, Ω.

xr(t) = R cos(Ωt) yr(t) = R sin(Ωt)

ẋr(t) = −RΩ sin(Ωt) ẏr(t) = RΩcos(Ωt)

ẍr(t) = −RΩ2 cos(Ωt) ÿr(t) = −RΩ2 sin(Ωt)

(8.14)

Equation (8.5) is used to find the arclength as a function of time, and for the constant-

velocity circular path, this relationship can be inverted: t = s/(RΩ). Therefore, the

reference trajectory can be reparameterized as a function of arclength.

xr(s) = R cos (s/R) yr(s) = R sin (s/R)

ẋr(s) = −RΩ sin (s/R) ẏr(s) = RΩcos (s/R)

ẍr(s) = −RΩ2 cos (s/R) ÿr(s) = −RΩ2 sin (s/R)

(8.15)

The arclength and perpendicular position of each vehicle with respect to the

reference trajectory are found by projecting the position of each vehicle onto the

reference trajectory using nonlinear least squares [73]. The measurement vector is

the position of the ith vehicle: ỹ = [xi, yi]
T , and the nonlinear function is f (ŝ) =

[R cos(ŝ/R), R sin(ŝ/R)]T . The iterative nonlinear least squares algorithm finds the

arclength along the reference trajectory that is perpendicular to the vehicle position.

Figure 51 shows the vehicle positions in the x− y plane. The simulation results

are shown for a five-vehicle formation, where the desired spacing between adjacent

vehicles is 1 DU along the path and 1 DU perpendicular to the path. In Figure 52,

the along-path and perpendicular-to-path spacing errors are shown to converge to

zero.
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Fig. 51.: Vehicle positions resulting from the control law using arclength as a spacing

parameter.
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C. Time-Based Spacing

In time-based spacing concepts, spacing control laws can be implemented to maintain

constant-time spacing between vehicles regardless of how distances change between

adjacent vehicles. Swaroop et al. investigated a constant-time headway spacing con-

trol law, where the desired distance between vehicles is related to the velocity of the

immediately preceding vehicle [15].

The time-based spacing control law investigated here spaces vehicles along a

trajectory in order to achieve a constant-time spacing at a desired endpoint. The

spacing control law uses a time-to-go parameter, which is the calculated time that it

will take for a vehicle at its current position to reach the endpoint. The time-to-go

spacing error is defined analogously to the spacing errors in previous developments.

A time-based spacing scheme relative to a final position allows vehicles to be

spaced along dissimilar trajectories. This concept is illustrated in Figure 53, where

the trajectories for each vehicle are shown in red, and the time-to-go parameter is

denoted by τ .

1. Time-to-go Spacing Errors and Spacing Control Law

The time-to-go error is defined as the error between the time-to-go parameters for

two adjacent vehicles, where the desired time-based spacing at the endpoint between

two vehicles is ∆τi.

ε1 = τr − τ1 +∆τ1

εi = τi−1 − τi +∆τi; i = 2, ..., n (8.16)
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Fig. 53.: Vehicles on different trajectories using time-based spacing at a desired end-

point.

The desired time-to-go for the ith vehicle is defined similar to the definition of the

desired arclength and perpendicular distance in Equation (8.10).

τ ∗i = τi−1 +∆τi (8.17)

The desired time-to-go is used to determine the desired position, velocity, and ac-

celeration of the ith vehicle along its own reference trajectory, {xi
r(τ

∗
i ), y

i
r(τ

∗
i )}. An

underlying assumption of this development is that the reference trajectory for each

vehicle can be parameterized as a function of time-to-go.

The spacing errors of the ith vehicle are defined relative to the desired position,

velocity, and acceleration, which are functions of τ ∗i .

ei = x
i
r (τ

∗
i )− xi; ėi = ẋ

i
r (τ

∗
i )− ẋi; ëi = ẍ

i
r (τ

∗
i )− ui (8.18)
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The control input to the ith vehicle is a function of the spacing errors.

ui = ciėi + kiei + ẍ
i
r (τ

∗
i ) (8.19)

2. Simulation Results

The time-based spacing concept was simulated for reference trajectories with constant

acceleration, which allows the time-to-go to be found analytically. The reference

trajectory in the x direction has the following assumed form with initial conditions

x(t0) and ẋ(t0).

xr(t) =
1

2
ax (t− t0)2 + ẋ(t0) (t− t0) + x(t0) (8.20)

The reference trajectory can also be written as a function of the final time, tf .

xr(tf ) = xf =
1

2
ax (tf − t)2 + ẋ(t) (tf − t) + x(t) (8.21)

Here, xf is the desired end position, and ẋ(t) and x(t) are the velocity and position

of the vehicle at the current time t. The velocity, ẋ(t), can be written in terms of the

desired velocity at the endpoint, ẋf .

ẋ(t) = ẋf − ax (tf − t) (8.22)

Substituting Equation (8.22) into Equation (8.21) yields a second-order polynomial

that is a function of the time-to-go, τx ≡ tf − t, from which the time-to-go is easily

found.

τx =
ẋf ±

√
ẋ2

f − 2ax (xf − x(t))
ax

(8.23)

Here, the time-to-go is denoted by τx to indicate that this is the time to reach the

endpoint in the x direction. The development is identical in the y direction. Due

to the decoupled nature of the control and trajectory design, the time-to-go of each
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vehicle is computed in both the x and y directions. In this particular implementation,

the time-to-go can be different in the x and y directions, and these separate values

are used to determine the decoupled control inputs in the x and y directions. The

two values will be equal when the vehicle is on its reference trajectory as shown in

Figure 54.

n1

n2

(x  , y )f f

τ (x )    x 1 τ (y )y 1

τ (x  )    x 2 τ (y  )y 2

Fig. 54.: The time-to-go determined separately in the x and y directions.

Simulation results show that the time-based spacing control law is able to achieve

a constant-time spacing at the desired endpoint. Figure 55 shows the vehicle positions

in the x−y plane. Different trajectories are planned to space the vehicles 0.5 TU apart

at the endpoint (xf , yf) = (20, 20). The planned starting points of the trajectories

are shown by the black circles, and the initial conditions of the vehicles are randomly

perturbed. The first vehicle tracks a reference time-to-go, τr, to cross the final position

at 10 TU. The time-to-go errors, ε, in the x and y directions are shown in Figure 56.

The errors in the time-to-go converge to zero indicating that the desired spacing is

achieved at the endpoint.
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Fig. 55.: Vehicle positions en route to the desired endpoint: (xf , yf) = (20, 20).
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D. Stability Analysis

For the two spacing-control schemes presented in the previous sections, state informa-

tion from the immediately preceding vehicle is used to determine a reference position,

velocity, and acceleration for the ith vehicle along its own path. The reference po-

sition, velocity, and acceleration are implicit, nonlinear functions of the immediately

preceding vehicle’s states. Proving the internal stability of the multivehicle system

for this control design differs from the theoretical results presented in earlier chapters;

the system cannot be written in a matrix form from which the eigenvalues are used

to determine internal stability.

The internal stability of the vehicle formation is demonstrated in a cascade form,

where spacing errors are shown to go to zero sequentially along the string. Spacing

errors for either spacing along an arbitrary path or time-based spacing have the same

general form.

e1 = χr − χ1 − d1; e2 = χ1 − χ2 − d2; ... en = χn−1 − χn − dn (8.24)

Here, χ represents a spacing parameter such as the arclength, s, perpendicular posi-

tion, p, or the time-to-go, τ . From each ei term, the parameter χi can be written as

a function of χi−1 and the spacing error. The ideal spacing parameter, χ∗i , is found

when the spacing error is set equal to zero. By making the appropriate substitutions,

it shown that the ideal spacing parameter for the nth vehicle, χ∗n, is a function of the
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spacing errors of all preceding vehicles.

χ1 = χr − d1 − e1; χ∗1 = χr − d1

χ2 = χ1 − d2 − e2; χ∗2 = χ1 − d2 = χr − e1 − (d1 + d2)

...
...

χn = χn−1 − dn − en; χ∗n = χr −
n−1∑
j=1

ej −
n∑

j=1

dj

(8.25)

When the spacing error of the first vehicle goes to zero, the ideal spacing parameter of

the second vehicle is no longer a function of e1 and the second vehicle will converge to

its desired spacing. Therefore, the nth vehicle converges to its desired spacing when

the spacing errors of the n− 1 preceding vehicles are zero.

The string stability of these control forms is harder to evaluate because the

reference trajectory being tracked is an implicit, nonlinear function of the preceding

vehicle’s states. Swaroop et al. investigated string stability for a time-based spacing

control law [15]. In that paper, the error propagation transfer function for a constant-

time headway spacing control law was shown to be string stable. Simulation results

demonstrated the string-stable nature of the control law, where the spacing errors

between vehicles decreased along the string when the first vehicle was subjected to

a step-change in velocity. A similar frequency-domain analysis is not apparent for

the control laws investigated in this chapter due to the nonlinear reference trajectory

determined by the preceding vehicle.

To investigate the string stability of the control schemes presented here, simu-

lations were run with the velocity of the first vehicle perturbed from the reference

velocity. The other vehicles in the formation were started with perfect initial condi-

tions and relative spacing. Figure 57 shows the spacing errors for the path-spacing

control law with a circular reference trajectory. The perpendicular spacing errors
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increase along the string, which indicates that this control form is string unstable.

This result is expected as it assumes a singly-connected leader-follower communica-

tion structure (communication structure 5), which was shown to be string unstable

in Chapter VI.
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Fig. 57.: Along-path and perpendicular-to-path spacing errors when the velocity of

the first vehicle is perturbed.

Figure 58 shows the spacing errors for the time-based spacing control law. Again,

the velocity of the first vehicle is perturbed from its reference velocity. The time-to-

go spacing errors decrease along the string indicating string stability. Although the

control form evaluated here is different from the constant-time-headway control law

developed by Swaroop et al., the time-based spacing control law appears to be string

stable as well.
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Fig. 58.: Time-to-go spacing errors when the velocity of the first vehicle is perturbed.

E. Chapter Summary

Motivated by spacing control laws in an inertial reference frame with non-constant

distances, two cooperative spacing control forms were investigated. For spacing along

an arbitrary path, spacing errors were defined using arclength and perpendicular dis-

tance parameters. A major advantage of this control form is the reduced information

required in implementation versus the implementation of control laws designed in an

inertial reference frame. In the time-based spacing scheme, spacing errors were de-

fined between the time-to-go parameters relative to a desired endpoint for adjacent

vehicles. Both control schemes employed the same control form where the ith vehicle

tracks a reference position, velocity, and acceleration along a trajectory determined

by the states of the (i−1)th vehicle. The reference trajectory is an implicit, nonlinear
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function of the (i− 1)th vehicle’s states.

Internal stability of the formation was shown using a cascade framework; how-

ever, string stability is more difficult to analyze for this control form. Whereas qual-

itative analysis from simulation results indicates that the control law for spacing

along an arbitrary trajectory is not string stable because spacing errors grow along

the string, simulation results for the time-based spacing indicate that this control

law is string stable. Further analysis of these control forms should be investigated in

future work.
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CHAPTER IX

SUMMARY

This dissertation has investigated the design and stability analysis of decentralized,

cooperative control laws for multivehicle systems. The main impacts of this work

include:

• the development of a unifying framework for designing decentralized, coopera-

tive control laws for multivehicle systems, where vehicle models can be repre-

sented as decoupled, double integrators;

• the analogy of decentralized, cooperative control laws to structural systems,

which motivates a mechanics-based approach to analyze the disturbance rejec-

tion of different communication structures;

• the development of an approach to find the maximum allowable time delays in

a cooperative multivehicle system; and

• an investigation of spacing control laws designed using non-inertial spacing pa-

rameters.

The research throughout this dissertation was based upon a nonlinear, kinematic

vehicle model that represents planar motion for a wide-variety of vehicle types. The

vehicle model was derived and the differential-flatness properties of the model were

presented in Chapter II. The differentially-flat vehicle model was shown to have an

exact linear representation, which allowed control laws to be designed using double-

integrator models decoupled in the x and y directions.

The development of decentralized, cooperative control laws was presented in

Chapter III, and this development provided a unifying approach to design control
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laws using an assumed communication structure. Control inputs were chosen to yield

internal stability of the formation, such that spacing errors between vehicles in the

formation go to zero. A general control form was presented, where each vehicle

tracks both its immediately preceding vehicle and a reference trajectory. Simulation

results showed that vehicle formations converged to the desired formation from errant

initial conditions. Additionally, some of the challenges associated with the linear

representation of the nonlinear vehicle model were presented in Chapter III.

Two stability notions were investigated in this research: internal stability and

string stability. The definition and concept of string stability were presented in Chap-

ter IV. The chapter also included some mathematical preliminaries and results from

the literature to show how string stability is determined. The cooperative control

form developed in Chapter III was shown to be string stable when lead-vehicle and

reference-trajectory tracking were combined.

The theory presented in Chapter V showed that closed-loop equations of motion

for the cooperative multivehicle systems are analogous to structural systems. The

structurally-analogous equations of motion were written with stiffness and damping

matrices, where the form of these matrices was determined by the communication

structure. This structural analogy is extended to communication structures that do

not have a physical representation, and this special case is discussed. Mathematical

preliminaries for the structural form were also presented including modal-coordinate

transformations, eigenvalue and eigenvector sensitivities, and proportional damping.

The theory in Chapter VI built upon the structural analogy presented in Chapter

V. Two structural-analysis tools were presented in the context of the multivehicle

application: modal cost and frequency-response functions. These analysis tools were

used to evaluate the disturbance response of the multivehicle systems. The modal-

cost tool was used to evaluate the disturbability of different communication structures.
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The frequency-response functions were used to evaluate the response of the multive-

hicle systems to harmonic excitation, and the steady-state errors between vehicles

were described using the frequency response. The behavior of the steady-state errors

was shown to reveal the string stability of the different control forms; therefore, the

frequency-response analysis is a straightforward method to investigate string stability

for a general communication structure. One drawback to the structural-analysis tools

is the diagonalizability of the stiffness matrix to decouple the system. Simulation re-

sults were used to compare different communication structures, and results indicate

that a connection to the first vehicle in the formation leads to string-stable control

laws with bounded control inputs. Additionally, the frequency-response analysis tool

was used to design control gains for desired system performance.

In Chapter VII, the effects of state feedback delays on multivehicle system sta-

bility were investigated. The delayed system was modeled using delay differential

equations (DDEs). Background was presented on DDEs, and two stability concepts

were discussed: delay-independent and delay-dependent stability. Analysis of the

delayed closed-loop equations of motions showed that the control gains cannot be

designed for stability independent of the delay size. A method to determine the max-

imum allowable delay for the system was presented, which exploited the structural

form of the closed-loop equations of motion for the multivehicle system. Simulation

results indicated some challenges in the determination of the stability bounds. Results

also showed that the behavior of the system with delays is similar to the behavior

induced by disturbances to the system.

In the previous chapters, control laws had been designed and stability was an-

alyzed in an inertial reference frame. However, this control design has flaws in the

case that desired distances between vehicles are not constant. Control-law design for

spacing in a non-inertial reference frame was investigated in Chapter VIII. Spacing
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control laws were developed to space vehicles along an arbitrary path. The resulting

control law revealed some advantages over spacing control laws in the inertial frame

for non-constant distances between vehicles. A time-based spacing concept was also

investigated to achieve constant-time spacing between vehicles at a desired endpoint.

The internal stability of these control laws was presented, and a qualitative string-

stability analysis was discussed. The control law for spacing along an arbitrary path

was qualitatively shown to be string unstable; however, analysis of the time-based

spacing control law indicated that that control form is string stable.



172

REFERENCES

[1] S. Butenko, R. Murphey, and P. Pardalos, Eds., Recent Developments in Coop-

erative Control and Optimization. Boston, Massachusetts: Kluwer Academic

Publishers, 2004.

[2] D. D. Siljak, Decentralized Control of Complex Systems. New York: Academic,

1991, chapter 9.

[3] J. T. Feddema, C. Lewis, and D. A. Schoenwald, “Decentralized control of

cooperative robotic vehicles: Theory and application,” IEEE Transactions on

Robotics and Automation, vol. 18, no. 5, pp. 852–864, 2002.

[4] R. D. Robinett III and J. E. Hurtado, “Stability and control of collective sys-

tems,” Journal of Intelligent Robotic Systems, vol. 39, no. 1, pp. 43–55, 2004.

[5] J. E. Hurtado, R. D. Robinett III, C. R. Dohrmann, and S. Y. Goldsmith, “De-

centralized control for a swarm of vehicles performing source localization,” Jour-

nal of Intelligent and Robotic Systems, vol. 41, pp. 1–18, 2004.
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[59] T. Kalmàr-Nagy, “A new look at the stability analysis of delay differential equa-

tions,” in Proceedings of the ASME International Design Engineering Technical

Conferences and the Computers and Information in Engineering Conferences,

Long Beach, CA, 2005.

[60] R. Sipahi and N. Olgac, “Degenerate cases in using the direct method,” ASME

Journal of Dynamic Systems, Measurement, and Control, vol. 125, pp. 194–201,

2003.

[61] ——, “A novel stability study on multiple time-delay stability (mtds) using the

root clustering paradigm,” in Proceedings of the 2004 American Control Confer-

ence, Boston, MA, 2004.

[62] ——, “Complete stability robustness of third-order lti multiple time-delay sys-

tems,” Automatica, vol. 41, pp. 1413–1422, 2005.

[63] F. M. Asl and A. G. Ulsoy, “Analytical solution of a system of homogeneous delay

differential equations via the lambert function,” in Proceedings of the American

Control Conference, Chicago, IL, 2004, pp. 2496–2500.

[64] ——, “Analysis of a system of linear delay differential equations,” American

Society of Mechanical Engineers Journal of Dynamic Systems, Measurement,

and Control, vol. 125, pp. 215–223, 2003.

[65] S. Yi and A. G. Ulsoy, “Solution of a system of linear delay differential equa-

tions using the matrix lambert function,” in Proceedings of the American Control

Conference, Minneapolis, MN, 2006.



180

[66] J. Hale, Theory of Function Differential Equations. New York: Springer-Verlag,

1977, chapter 5, Appendix: Stability of Characteristic Equations.

[67] H. Smith, “Mat 598 applied delay differential equations,” in

Lecture Notes: Arizona State University, 2004, pp. 45–50,

http://math.la.ase.edu/%7Ehalsmith/FDE.pdf.

[68] B. Lehman and E. Verriest, “Stability of second order differential delay equa-

tions with constant coefficients,” in Proceedings of the IEEE American Controls

Conference, Vol. 2, 1992, pp. 1959–1960.

[69] R. Bellman, Perturbation Techniques in Mathematics, Engineering & Physics,

New York, 1972.

[70] T. S. Abbott, “Speed control law for precision terminal area in-trail self spac-

ing,” NASA Langley Research Center, Hampton, VA, Tech. Rep., July 2002,

NASA/TM-2002-211742.

[71] D. R. Nelson, T. W. McLain, and R. W. Beard, “Experiments in cooperative

timing for miniature air vehicles,” AIAA Journal of Aerospace Computing, In-

formation, and Communication, vol. 4, pp. 956–967, 2007.

[72] S. J. Colley, Vector Calculus. Upper Saddle River, NJ: Prentice-Hall, Inc., 2002.

[73] J. L. Crassidis and J. L. Junkins, Optimal Estimation of Dynamic Systems. Boca

Raton, FL: Chapman & Hall/CRC Applied Mathematics and Nonlinear Science

Series, 2004.

[74] P. Martin, R. M. Murray, and P. Rouchon, “Flat systems,” in Proceedings of the

4th European Control Conference, 1997, pp. 211–264.



181

[75] E. Hoffman, D. Ivanescu, C. Shaw, and K. Zeghal, “Analysis of constant time

delay airborne spacing concepts between aircraft of mixed types in varying wind

conditions,” in Proceedings of the 5th USA/Europe Air Traffic Management R&D

Seminar, Budapest, Hungary, 2003.

[76] J. Roskam, Airplane Flight Dynamics and Automatic Flight Controls. Lawrence,

KS: Design, Analysis, and Research Corporation, 2001.

[77] J. E. Hurtado, Kinematic and Kinetic Principles. Hurtado - Lulu.com, 2007.

[78] R. Mukherjee and D. Chen, “Asymptotic stability theorem for autonomous sys-

tems,” Journal of Guidance, Control, and Dynamics, vol. 16, no. 5, pp. 961–963,

1993.

[79] A. E. Bryson and Y.-C. Ho, Applied Optimal Control: Optimization, Estimation,

and Control. New York: Taylor & Francis, 1975.

[80] F. L. Lewis and V. L. Syrmos, Optimal Control. New York: John Wiley & Sons,

Inc., 1995.

[81] R. F. Stengel, Optimal Control and Estimation. Mineola, NY: Dover Publica-

tions, Inc., 1994.



182

APPENDIX A

DIFFERENTIAL FLATNESS

Differentially-flat systems have properties that can be exploited to aid in the control

of nonlinear systems. Flat systems are particularly suited for trajectory generation

and tracking, and thus the trajectory-planning problem is eased for nonlinear systems

that are differentially flat. Exploiting the differential-flatness properties for trajectory

generation can be contrasted with more traditional linearization approaches, where

the linearization may only be valid for a small operating region. In this appendix,

differential-flatness is defined and some examples of flat systems are presented.

A. Definition of Differential Flatness

Given a system with states x ∈ Rn and inputs u ∈ Rm, the system is flat if there are

flat outputs y ∈ Rm (the number of flat outputs is equal to the number of inputs)

such that x and u can be written as functions of the flat outputs and their higher

derivatives [74].

y = h
(
x,u, u̇, ....,u(r)

) ⇒ x = f
(
y, ẏ, ...,y(q)

)
u = g

(
y, ẏ, ...,y(q)

) (A.1)

The states and controls, and thus, the behavior of the system, can be expressed

algebraically using the flat outputs and their higher derivatives. This property allows

trajectories to be planned in the output space, and the appropriate control inputs

can be determined using the mapping [30].

Differential flatness is a geometric property of the system and is independent

of the coordinate choice. Martin et al. describe the equivalence of systems, where

“two systems are ‘equivalent’ if there is an invertible transformation exchanging their
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trajectories” [74]. An endogenous transformation gives a one-to-one transformation

between the trajectories of the two systems. Flat systems that describe the dynamics

ẋ = f (x,u) are equivalent to the trivial system that describes a system made up

of a chain of integrators. In other words, there is an endogeneous transformation

between the trajectories of ẋ = f (x,u) and the trajectories of the trivial system. For

example, consider the chain of integrators.

ẋ1 = x2

ẋ2 = x3

...

ẋn−1 = xn

ẋn = u

This system is differentially flat with flat output y = x1, where the states x2, ..., xn

can be written as functions of x1 and higher derivatives of x1.

B. Examples of Flat Systems

Currently there is no approach to determine whether a given system is differentially

flat. Similarly to Lyapunov-stability analysis, failure to find flat outputs does not

mean that the system is not differentially flat. The ruled-manifold criterion provides

a necessary conditions for flatness as described by Martin et al. [74]. There are

several general systems that are known to be flat including systems linearizable by

static feedback, single-input systems, affine systems of co-dimension 1 (the number

of controls is one less than the number of states), and affine systems with 2 inputs

and 4 states.

All controllable linear systems are differentially flat. Any controllable linear
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system can be written in the controllable canonical form from which the flat output

can be chosen as the first state. For single-input, single-output systems, the flat

output is unique. In multi-input, multi-output systems, the controllable canonical

form is not unique, and therefore, the flat outputs are not unique.
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APPENDIX B

THREE-DIMENSIONAL VEHICLE MODEL

A. Equations of Motion

Commonly used aircraft equations of motion are based upon a three-dimensional

point-mass model [75]. The equations of motion are written as six first-order differ-

ential equations, where the states are the inertial position of the aircraft, x, y, and z,

the commanded velocity, V , the heading angle, ψ, and the flight path angle, γ.

Figure 59 shows the forces on the aircraft and the velocity vector from three

different views. The view in (a) is in the vertical plane and shows a side view of the

aircraft. The second view in (b) is also in the vertical plane and shows the front of

the aircraft, and the third view in (c) shows the aircraft in the horizontal plane.

γ

α
T

V

γ

D

mg

γ

α

γ
φ

L

V

φ

γ

mg

T

φ

φ

γ

T

γ + α

ψ

y

x

V

ψ

L(a) (b) (c)

Fig. 59.: Aircraft views of the side (a) and front (b) of the aircraft in the vertical

plane and the top of the aircraft (c) in the horizontal plane.

The equations of motion are expressed in the stability axis system, where the

b̂1 axis is aligned with the velocity vector [76]. More specifically, the stability axis is
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found through two successive simple rotations through the heading angle ψ and the

flight-path angle γ as shown in Figure 60. The b̂1 and b̂2 axes create a “horizontal”

plane, and the b̂1 and b̂3 axes create a “vertical” plane. The thrust vector, T , is

rotated from the b̂1 axis by the angle of attack α in the “vertical” plane and by the

roll angle, φ, in the “horizontal” plane. The lift vector, L, is rotated from the b̂3 axis

by φ. The aerodynamic drag, D, acts opposite to the direction of velocity, and the

weight of the aircraft acts downward.

ψ

γγ

n
ψ

γγ

1

n2

n3

b1

b2

b3

Fig. 60.: Stability-axis reference frame rotated from the inertial frame through the

angles γ and φ.

The three kinematic equations are shown below, where the velocity vector is

written in the inertial coordinates.

ẋ = V cos γ cosψ (B.1)

ẏ = V cos γ sinψ (B.2)

ż = V sin γ (B.3)

The other three first-order equations are found from Newton’s second law, ṗ = F ,
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where p is the translational momentum vector.

p = mV b̂1 (B.4)

The time rate of change of the translational momentum vector, ṗ, is found using the

transport theorem [77].

ṗ = mV̇ b̂1 + ψ̇p̂×mV b̂1 − γ̇ŝ×mV b̂1

= mV̇ b̂1 +mV ψ̇b̂2 +mV γ̇b̂3 (B.5)

Therefore, from equation (B.5), the following equations are derived.

mV̇ = F · b̂1 = T cosα−D −mg sin γ (B.6)

mV ψ̇ = F · b̂2 = T cosα sinφ+ L sinφ (B.7)

mV γ̇ = F · b̂3 = T sinα + L cosφ−mg cos γ (B.8)

Aircraft motion can be simulated in three dimensions using the six first-order

differential equations in Equations (B.1)-(B.3) and (B.6)-(B.8), where the states are

x, y, z, V , ψ, and γ and the control inputs are T , α, and φ.

B. Differential-Flatness Relationships

The aircraft equations of motion are differentially flat with flat outputs x, y, and z.

The states V , ψ and γ can be written as functions of the first derivatives of the flat

outputs.

V =
√
ẋ2 + ẏ2 + ż2; γ = sin−1

(
ż√

ẋ2 + ẏ2 + ż2

)
; ψ = tan−1

(
ẏ

ẋ

)
(B.9)
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The control inputs, T , α, and φ can be written as functions of V , ψ, γ, and their first

derivatives.

T =

√(
mV̇ +D +mg sin γ

)2

+ (mV γ̇ − L cosφ+mg cos γ)2 (B.10)

α = cos−1

(
mV̇ +D +mg sin γ

T

)
(B.11)

φ = sin−1

(
mV γ̇

mV̇ +D +mg sin γ + L

)
(B.12)

The derivatives of V , ψ, and γ are functions of the first and second derivatives of the

flat outputs.

V̇ =
ẋẍ+ ẏÿ + żz̈

V
; ψ̇ =

ẋÿ − ẏẍ
ẋ2 + ẏ2

γ̇ =
V z̈ − żV̇

V 2

√
1− ( ż

V

)2
(B.13)

The second derivatives of the flat outputs are the highest derivatives in the

control inputs, and new control inputs can be defined as (ẍ, ÿ, z̈) = (ux, uy, uz). As

was shown in the planar case, the equations of motion can be decoupled in x, y, and z

directions. A linear transformation relates the controls in the double-integrator form

to V̇ , ψ̇, and γ̇, and the aircraft controls are found using Equations (B.10)-(B.12).

V̇

ψ̇

γ̇


 =




ẋ
V

ẏ
V

ż
V

− ẏ
C1

− ẋ
C1

0

− ẋż
C2

− ẏż
C2

V (V −ż2)
C2






ux

uy

uz


 ; C1 = ẋ

2 + ẏ2; C2 = V
3

√
1−

(
ż

V

)2
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APPENDIX C

PROOF OF ASYMPTOTIC STABILITY FOR RATE-FREE CONTROL

Mukherjee, Chen, and Junkins have explored asymptotic stability for autonomous

systems using higher derivatives of the Lyapunov function [29, 78]. The theorem

presented in the references states that a sufficient condition for asymptotic stability

when V > 0 and V̇ ≤ 0 for all states in the region Ω is that the derivatives of V

are equal to zero on Z up to some even order, where Z is the set of points where V̇

is equal to zero, and the first non-zero derivative of V is of odd order and negative

definite for all points on Z. The objective is to prove that V̇ is negative definite and

V̇ = 0 for all of the equilibrium points.

The linear equations of motion for the rate-free system are restated below (the

vehicle index, i, has been dropped for notational simplicity).

β̇ = −τβ + kε; ε̈ = ẍr − u (C.1)

An equilibrium solution of Equation (C.1) is given by ε = 0, ε̇ = 0, and β = 0. For

the Lyapunov function V = γ
2
ε2 + 1

2
ε̇2 + 1

2
(−τβ + kε)2 with u = (γ + k2)ε− τkβ + ẍr,

the time derivative of V was found to be negative semi-definite.

V̇ = −τ(−τβ + kε)2 ≤ 0 (C.2)

The set Z is defined where V̇ = 0.

Z = {ε ∈ �, ε̇ ∈ �, (−τβ + kε) = 0} (C.3)

The second derivative of V is zero when evaluated on Z, whereas the third derivative
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is a quadratic function of ε̇.

V (3)|Z = −2τ(−τβ + kε)(−τ β̈ + kε̈)|Z − 2τ(τ β̇ + kε̇)2|Z
= 0− 2τ [τ(−τβ + kε) + kε̇]2|Z
= −2τk2ε̇2 ≤ 0 (C.4)

Here it can be seen that V (3) < 0 for all ε̇ �= 0, but this expression still does not reveal

anything about ε. A new set is defined, Znew = {ε ∈ �, ε̇ = 0, (−τβ + kε) = 0}, such
that the third derivative is equal to zero, and higher derivatives of V are taken. The

fourth derivative of V is equal to zero when evaluated on Znew, whereas the fifth

derivative is a quadratic function of ε.

V |(5)
Znew

= −4τk2
[
ε̈2 + ε̇ε(3)

]|Znew

= −4τk2(ẍr − u)2|Znew

= −4τk2[ẍr − (γ + k2)ε+ τkβ − ẍr]
2|Znew

= −4τk2[−(γ + k2)ε+ k(kε)]2|Znew

= −4τk2(−γε)2 < 0, ∀ ε �= 0 (C.5)

From Equation (C.5), which is an odd, non-zero derivative of V , we can conclude

that V̇ = 0 only at the equilibrium points: ε, ε̇, and β = 0. Therefore, V̇ is negative

definite, which implies that ε, ε̇, and β asymptotically approach their equilibrium

points.
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APPENDIX D

OPTIMAL NON-ZERO-SET-POINT CONTROLLER

The well-known Linear Quadratic Regulator (LQR) is used to determine the optimal

full-state feedback gain, K, that minimizes the quadratic cost function in order to

drive system states to zero [79, 80].

J =
1

2

∫ ∞

t0

(
xTQx+ uTRu

)
dt;

Given: ẋ = Ax+Bu; x(0) = x0 (D.1)

The control law is u(t) = −Kx(t), where K = −R−1BTS is the solution to the

differential Riccati equation.

Ṡ(t) = −S(t)A− ATS(t)−Q+ S(t)BR−1BTS(t), S(∞) = S∞ (D.2)

To drive the system to a new non-zero steady state, the problem objective can

be restated as driving the outputs y to some value y∗ as t → ∞ [81]. The output

equation is assumed to have the form: y = Hx + Du. If y∗ is constant, the trim

states and inputs are x = x∗ and u = u∗, respectively. Because x∗ and u∗ are trim

states, the following relationships hold.

ẋ∗ = Ax∗ +Bu∗ ≡ 0 (D.3)

y∗ = Hx∗ +Du∗ (D.4)

The trim states and controls can be determined by solving the matrix equation.
 A B

H D




x∗

u∗


 =


 0

y∗


 (D.5)
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Here, A ∈ Rn×n, B ∈ Rn×m, H ∈ Rp×n, and D ∈ Rp×m, where n is the number

of states, m is the number of control inputs, and p is the number of outputs. The

matrix containing A, B, H , and D, is the Quad-Partition Matrix, which must be

square (p = m) and non-singular to determine unique trim states and controls that

satisfy y = y∗.

A control is determined to drive the system states to the trim states using LQR.

Firstly, the errors with respect to the trim states and controls are defined.

x̃ = x− x∗ (D.6)

ũ = u− u∗ (D.7)

The system equations for x̃ follow.

˙̃x = ẋ− ẋ∗ = Ax+Bu− (Ax∗ +Bu∗) = Ax̃+Bũ (D.8)

Now, ũ is determined to minimize the cost function, J , given the system dynamics.

J =
1

2

∫ ∞

t0

(
x̃TQx̃+ ũTRũ

)
dt;

Given: ˙̃x = Ax̃+Bũ; x̃(0) = x0 − x∗ (D.9)

The solution to the LQR problem in Equation (D.9) has the form: ũ = −Kx̃, and

the transformation to the original state and control variables has the following form.

u = u∗ −K(x− x∗)

= (u∗ +Kx∗)−Kx (D.10)

The parenthetical term in Equation (D.10) is the term related to the non-zero set

point, and the remaining term comes from the traditional LQR solution.
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APPENDIX E

STIFFNESS AND FORCING MATRICES

FOR COMMUNICATION STRUCTURES

The stiffness and forcing matrices are listed for the seven defined communication

structures in Figure 22. TheD matrix acts on the vector ur = [xr(t) ẋr(t) dr1 d12 d13 d23]
T .

Here, we assume that the formation has a constant velocity.

1. Fully Connected:

K =



kr + k12 + k13 −k12 −k13

−k12 k12 + k23 −k23

−k13 −k23 k13 + k23


 ; D =



kr cr −kr k12 k13 0

0 0 0 −k12 0 k23

0 0 0 0 −k13 −k23




2. Singly Connected to Platoon Lead with Bidirectional Communication between

Trailing Vehicles:

K =



kr + k12 −k12 0

−k12 k12 + k23 −k23

−k13 −k23 k13 + k23


 ; D =



kr cr −kr k12 0 0

0 0 0 −k12 0 k23

0 0 0 0 −k13 −k23




3. Bidirectional Connection to Platoon Lead

K =



kr + k12 + k13 −k12 −k13

−k12 k12 0

−k13 0 k13


 ; D =



kr cr −kr k12 k13 0

0 0 0 −k12 0 0

0 0 0 0 −k13 0



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4. Singly Connected to Platoon Lead

K =



kr 0 0

−k12 k12 0

−k13 0 k13


 ; D =



kr cr −kr 0 0 0

0 0 0 −k12 0 0

0 0 0 0 −k13 0




5. Singly-Connected Leader-Follower

K =



kr 0 0

−k12 k12 0

0 −k23 k23


 ; D =



kr cr −kr 0 0 0

0 0 0 −k12 0 0

0 0 0 0 0 −k23




6. Bidirectional Leader-Follower

K =



kr + k12 −k12 0

−k12 k12 + k23 −k23

0 −k23 k23


 ; D =



kr cr −kr k12 0 0

0 0 0 −k12 0 k23

0 0 0 0 0 −k23




7. Circular Connection

K =



kr + k13 0 −k13

−k12 k12 0

0 −k23 k23


 ; D =



kr cr −kr 0 k13 0

0 0 0 −k12 0 0

0 0 0 0 0 −k23



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