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ABSTRACT 

 

System Identification: Time Varying and Nonlinear Methods. (May 2009) 

Manoranjan Majji, B.E. , Birla Institute of Technology and Science; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. John L. Junkins 

 

 Novel methods of system identification are developed in this dissertation. First 

set of methods are designed to realize time varying linear dynamical system models from 

input-output experimental data. The preliminary results obtained in a recent paper by the 

author are extended to establish a new algorithm called the Time Varying Eigensystem 

Realization Algorithm (TVERA). The central aim of this algorithm is to obtain a linear, 

time varying, discrete time model sequence of the dynamic system directly from the 

input-output data. Important results relating to concepts concerning coordinate systems 

for linear time varying systems are developed (discrete time theory) and an intuitive 

understanding of equivalent realizations is provided. A procedure to develop first few 

time step models is detailed, providing a unified solution to the time varying 

identification problem.  

The practical problem of identifying the time varying generalized Markov 

parameters required for TVERA is presented as the next result. In the process, we 

generalize the classical time invariant input output AutoRegressive model with an 

eXogenous input (ARX) models to the time varying case and realize an asymptotically 
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stable observer as a byproduct of the calculations. It is further found that the choice of 

the generalized time varying ARX model (GTV-ARX) can be set to realize a time 

varying dead beat observer. 

Methods to use the developed algorithm(s) in this research are then considered 

for application to the identification of system models that are bilinear in nature. The fact 

that bilinear plant models become linear for constant inputs is used in the development 

of an algorithm that generalizes the classical developments of Juang.  

An intercept problem is considered as a candidate for application of the time 

varying identification scheme, where departure motion dynamics model sequence is 

calculated about a nominal trajectory with suboptimal performance owing to the 

presence of unstructured perturbations. Control application is subsequently 

demonstrated.   

The dynamics of a particle in a rotating tube is considered next for identification 

using the time varying eigensystem realization algorithm. Continuous time bilinear 

system identification method is demonstrated using the particle example and the 

identification of an automobile brake model. 
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NOMENCLATURE 

 

ERA Eigensystem Realization Algorithm 

OKID Observer/Kalman Filter Identification 

ARX Autoregressive Model with Exogenous Input 

ARMA(X) Autoregressive Moving Average Model (with Exogenous Input) 

GTVARX Generalized Time Varying Autoregressive Model with Exogenous 

Input 

TVERA Time Varying Eigensystem Realization Algorithm 

TOKID Time Varying Observer/Kalman Filter Identification  

,a x  Bold face small case letters denote vectors of a specified state 

dimension 

, ,A X Φ   Normal face letters are used to denote matrices of compatible 

dimensions, including scalars. Distinction between matrices and 

scalars is made in accordance with the context 

( )†  Dagger is particularly reserved for the Moore-Penrose pseudo 

inverse of a rectangular matrix  
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CHAPTER I 

INTRODUCTION: MODERN SYSTEM IDENTIFICATION  

Mathematical modeling has emerged as a pivotal tool in modern engineering* 

theory and practice. The explosive increase in the computational power has been the 

central reason behind this in-progress modeling revolution. The Apollo program stands 

as an important testimony of one of the greatest model-based engineering miracles in 

history and represents a landmark demonstration of advanced technology in general and 

in dynamical system modeling and applications in particular. However, the Apollo 

program was actually the beginning rather than the culmination of modern methods of 

modeling (including system identification). Primarily, mathematical models of 

dynamical systems are of analytical and computational in nature and represent the 

physics of the components of the systems being modeled. The utility of the system 

models developed for analysis is either to carry out measurement-based study of some 

intrinsic properties of the dynamical system  (called estimation theory) or to examine the 

interaction of the system under investigation with external influence functions (e.g., 

external generalized force profiles, magnetic field interactions, etc., known as control 

theory). 

The fidelity of the model used for estimation or control purposes is directly 

proportional to the level of accuracy achieved in the solutions (for observation/control 

applications), and model fidelity can be adjusted (simple models usually suffice) to meet 

                                                 
*
This dissertation follows the style of the Journal of Guidance Control and Dynamics. 
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the needs of particular applications. Therefore one typically makes an appropriate 

judgment on the level of accuracy needed depending on the available computational or 

analytical resources and modeling capabilities. 

System Identification is the branch of mathematical system theory, which deals 

with the process of constructing differential equation and/or difference equation 

model(s) of a dynamical system, whose input forces and the sensor outputs are available 

for measurement. Thus, System Identification is an “inverse problem” where the model 

is derived from measurements. This is clearly related to the large literature on 

mathematical modeling, wherein the model is derived from first principles and with 

assumptions on the system’s physical geometry, mass properties, constitutive laws, 

environmental forces and so on. The process of system identification is depicted in 

Figure 1. The models thus realized directly from input-output experimental data, are 

frequently found directly useful for control and estimation purposes. Owing to the 

emergence of model based control and estimation strategies in modern system theory, 

coupled with the eternal presence of model error (no matter how one obtains the model), 

system identification has occupied a center stage in the recent developments of dynamics 

and control. 
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Figure 1. System Identification Process 

 

The methods and ideas central to realize linear time invariant models from input 

output data are now very well understood and documented widely [1-3] owing to 

extensive research in this area for the past few decades. An important member of this 

class of system identification methods is the Eigensystem Realization Algorithm[1]. Key 

ideas of this popular algorithm are summarized in Figure 2.  
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Figure 2. Key Ideas of ERA 

 

The significant effort of researchers in aerospace engineering in implementing 

precise control and estimation strategies for flexible spacecraft structures, helped refine 

the methods of system identification for mechanical system models and make important 

connections with classical methods of modal analysis[1, 4]. Although several efforts to 

extend the now classical techniques (time invariant theory) to realize time varying 

discrete time state space models have been reported in the past[5-7], scope of the 

available methods for time varying system identification remains limited[8]. This is 
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mostly due to the lack of a consistent theoretical foundations and computational 

algorithms. 

 It was found in this research project, that a consistent computational algorithm 

could not be formulated because of some gaps in implementing the incomplete 

theoretical ideas formulated by the researchers in the past. The investigations carried out, 

leading to this dissertation were aimed at ameliorating the practical difficulties and 

formulating a consistent algorithm.  

The outline of the dissertation is as follows. Chapter II presents the details on a 

novel algorithm and computational procedure for identification of time varying discrete 

time plant model sequence sets from measured input/output data. This is followed in 

Chapter III by the extension of the classical OKID algorithm to calculate the generalized 

Markov parameters for the time varying discrete time plant model sequence sets that are 

needed in the algorithms developed in the second chapter. Some new results for 

identification of nonlinear systems with bilinearity in the plant model dynamics are 

presented in chapter IV. Chapter V applies the methods developed in chapters II and III 

to problems in guidance and dynamics. Control designs and simulations are carried out 

using the models realized by using the time varying identification algorithms. 

Conclusions are presented in the chapter VI along with the new research direction 

opportunities created as a consequence of the results presented in this dissertation. Three 

appendices are included to present relevant results supporting the main contents of the 

chapters outlined above. The first appendix presents an innovations process derivation of 

the classical Kalman filter equations to aid in the qualitative relationship discussions 
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involved in the time varying extension of the OKID relations. In appendix B, the author 

details at length the definition and properties of time invariant and time varying deadbeat 

observers. Numerical example realizes such an observer as a by-product of the OKID 

procedure, using a generalized time varying ARX (GTV-ARX) model in this appendix. 

Third appendix summarizes some tools required for the bilinear system identification 

algorithm of chapter IV.   
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CHAPTER II 

TIME VARYING EIGENSYSTEM REALIZATION ALGORITHM 

Introduction  

The Eigensystem Realization Algorithm (ERA)[1, 9, 10] has occupied the center 

stage in the current system identification theory and practice, owing to its ease, 

efficiency and robustness of implementation in several spheres of engineering. 

Connections of ERA with modal and principal component analyses made the algorithm 

an invaluable tool for the analysis of mechanical systems. As a consequence, the 

associated algorithms have contributed to several successful applications in design, 

control and model order reduction of mechanical systems. ERA is the member of a class 

of algorithms derived from system realization theory based on the now classical Ho-

Kalman method[3]. Since both  left and right singular vector matrices of the singular 

value decomposition are utilized, ERA is in fact a  modest generalization of the subspace 

methods and as a consequence yields state space realizations that are not only minimal 

but also balanced[1]. The key utility of ERA has been in the development of discrete 

time invariant models from input output experimental data. Owing to the one-to-one 

mapping of linear time invariant dynamical system models between the continuous and 

discrete time domains, the ERA identified discrete time model is tantamount to the 

identification of a continuous time model (with the standard assumptions on the 

sampling theorem). Furthermore, the physical parameters of a mechanical system 

(natural frequencies, normal modes and damping) can be derived from the identified 
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plant models by using ERA. A variety of system identification methods for such time 

invariant systems are available, the fundamental unifying features of which are now well 

understood [2, 11, 12] and can be shown to be related (and/or equivalent) to the 

corresponding features of ERA.  

Several efforts were undertaken in the past to develop a holistic approach for the 

identification of time varying systems. Specifically, it has been desired for some time to 

generalize ERA to the case of time varying systems. Earliest efforts in the development 

of methods for time varying systems involved recursive and fast implementations of the 

time invariant methods by exploring structural properties of the input/output realizations. 

The classic paper by Chu et. al, exploring the displacement structure in the Hankel 

matrices is representative of the efforts of this nature. Subsequently, significant results 

were obtained by Shokoohi and Silverman [6] and Dewilde and Van der Veen[5], that 

generalized several concepts in the classical linear time invariant system theory 

consistently. Verhaegen and coworkers ([7, 13] ) subsequently introduced the idea of 

repeated experiments (termed ensemble I/O data), rendering practical methods to realize 

the conceptual identification strategies presented earlier. These methods are referred to 

as ensemble state space model identification problems in the literature. This class of 

generalized subspace based methods was applied to complex problems such as the 

modeling the dynamics of human joints, with much success.  Liu [8] developed a 

methodology for developing time varying models from free response data (for systems 

with an asymptotically stable origin) and made initial contributions to the development 

of time varying modal parameters and their identification[14].  
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Although the effects of time varying coordinate systems are shown to exist by 

these classical developments, it is not clear if the identified plant models (more generally 

identified model sequence sets) are useful in state propagation. This is because no 

guarantees are given as to whether the system matrices identified are in fact, all realized 

in the same coordinate system. This limits the utility of the classical solutions since 

model sequences identified by different procedures cannot be merged as the sequences 

would loose compatibility at the time instance at which the algorithm is switched.  

In other words, most classical results developed realized models that are 

topologically equivalent (defined mathematically in subsequent sections) from an input 

output stand point. However this does not imply that they are in coordinate systems 

consistent in time, for state propagation purposes. It is straightforward to see that the 

initial state given in a certain coordinate system cannot be propagated to the next time 

step unless the state transition and control influence matrices are expressed in the same 

(or compatible) coordinate system as the initial state of interest. Any misalignment 

would cause the state propagation to be physically meaningless and the identified plant 

model(s) are rendered useless.  

We cannot emphasize more on the importance of the coordinate transformations 

and their role in time varying systems. As a practical example of this important feature 

underpinning the developments of the current chapter, let us consider the following 

situation. It is not too difficult to consider a version of the method proposed by Liu[8] to 

obtain the first few time step models. This could in-principle be merged with the plant 

model sequence realized by using the classical developments of Shookohi and 
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Silverman[6] (or equivalently Verhaegen and Yu [7]). The fact that the plant model 

sequences identified appropriately in such a manner, would be incompatible at the 

junction (discrete time instant) of merger, making both the procedures incomplete. 

Looking at the facts more transparently, following Liu[8] alone, we would not have the 

control influence matrix sequence (and the formulations there-in are restricted to plants 

with an asymptotically stable origin) and alternatively following Shookohi (and others 

[6]), we would never be able to identify the first few time step (and last few time step) 

models since negative time indexing is not possible in general.  However, following the 

developments of this chapter, one could indeed realize the complete model sequence 

without invoking the negative time step experimental data or assuming asymptotic 

stability of the origin. Furthermore, unlike the preliminary developments of coordinate 

transformations by Liu[8], the solutions presented here-in are compatible (give back the 

generalized Markov parameters indicating the arbitrariness of the transformations) and 

in general valid for the practical case of the number of outputs being less than the state 

dimension. 

In contrast, the methods developed in this chapter arise from a perspective of 

generalizing the classical Ho-Kalman approach to the case of time varying systems, 

while utilizing the notation and preliminary developments of past researchers[6-8] on 

this problem. It is shown that the generalization thus made enables us to identify time 

varying plant models that are in arbitrary coordinate systems at each time step. 

Furthermore, the coordinate systems at successive time steps are compatible with one 

another. This makes the model sequences realized, useful in state propagation. The 
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computational methods of generalized Markov parameters using the input output map 

are subsequently discussed for the two cases of the presence and absence of zero input 

response data in the output sequences. This is followed by a discussion on a 

computational procedure to determine the time varying coordinate transformations with 

respect to a fixed time step, kt (most times initial condition time step) using free response 

experimental data. Numerical examples demonstrating the theoretical developments 

conclude the chapter. 

 

Linear Discrete Time Varying System Realization Theory 

We review the notation and definitions in linear time varying systems following 

the developments presented in the classic paper by Shokoohi and Silverman[6]. Linear 

discrete time varying systems are governed by a set of difference equations governing 

the evolution of the state in time being given by 

 1k k k k kA B+ = +x x u  (2.1) 

together with a corresponding initial state vector 0x . The state variable 
n

k ∈x ℝ is most 

often related to the output by the measurement equation, 

 k k k k kC D= +y x u  (2.2) 

with the outputs and inputs being ,
m r

k k∈ ∈y uℝ ℝ . Together with, ,
n n

kA
×∈ℝ  

,
n r

kB
×∈ℝ  

m n

kC
×∈ℝ and 

m r

kD
×∈ℝ being in compatible dimensions. In the following 

developments, it is assumed that the true state dimension n  is constant throughout the 

time period of interest. It will be transparent in the course of our developments that this 
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assumption could be relaxed but we retain it to facilitate some coordinate transformation 

results for the special class of mechanical systems; important in applications. The 

solution of the difference equation relating the initial state and the control inputs to the 

state at a general time instant is given by 

 ( ) ( )
0

1

0 0, , 1
k

k j j

j k

k k k j B
−

=

= Φ + Φ +∑x x u  (2.3) 

where the state transition matrix is defined in terms of its components by 

 ( )
0

1 2 0

0 0

0

... ,   

, ,    

undefined, 

k k k
A A A k k

k k I k k

k k

− − ∀ >


Φ = =
 ∀ <

 (2.4) 

Using the definition of the compound state transition matrix, the input output 

relationship is given by,  

 ( ) ( )
0

1

0 0, , 1
k

k k k j j k k

j k

C k k C k j B D
−

=

= Φ + Φ + +∑y x u u  (2.5) 

This enables us to define the input output relationship in terms of the two index 

coefficients as, 

 ( )
0

1

0 0 ,,
k

k k k j j k k

j k

C k k h D
−

=

= Φ + +∑y x u u  (2.6) 

where the generalized Markov parameters are defined to be given by, 

 

( )
, 1

, 1 ,   1

,              1

     0,                    1

k i

k i k k

C k i B i k

h C B i k

i k

−

 Φ + ∀ < −


= = −
 ∀ > −

 (2.7) 
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In stark contrast to the time invariant (shift invariant) systems, the generalized 

Markov parameters determine the impulse response characteristics of the true plant in a 

much more general fashion. Note that the number of independent degrees of freedom to 

describe the input-output relationship increases tremendously for the case of time 

varying systems, as the response of the system ( ,k ih ) not only depends upon the time 

difference from the applied input ( iu ) but also on the time instant at which the said input 

is applied ( , ii t ).  

Similar to the time invariant case, the time varying discrete time systems, when 

expressed as the input – output map, are invariant to coordinate (similarity) 

transformations. In fact, the generalized Markov parameters we defined above are 

invariant to a more general set of transformations called the Lyapunov 

transformations[5-7, 15]. Using these Lyapunov transformations, several equivalent state 

space realizations can be obtained. We briefly introduce the Lyapunov transformations 

in this section. We will use several notions being introduced here, in the subsequent 

sections (and chapters); particularly, while constructing projection maps to transform all 

the time varying coordinate systems in to a reference coordinate system.   

Following the notions set up by Shokoohi and Silverman[6], the system 

representation { }, , ,k k k kA B C D is said to be topologically equivalent (Gohberg et. al., 

[16] call this equivalence, Kinematic Similarity) to the representation { }, , ,k k k kA B C D if 
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there exists a sequence of invertible, square matrices (not necessarily related to each 

other, Lyapunov transformations),{ }kT such that, k kD D= and,  

 
1

1k k k kA T A T
−
+=  (2.8) 

 
1

1k k kB T B
−
+=  (2.9)  

 k k kC C T=  (2.10) 

It is easy to see that the state transition matrices have relationship similar to (2.8) and 

that all topologically equivalent representations give the same numerical value for the 

generalized Markov parameters owing to their definition in (2.7). Controllability and 

Observability grammians are given by the infinite matrices,  

 

1

1

:

...

k

k k

k

k p k p k

C

C A

O

C A A

+

+ + −

 
 
 
 =
 
 
 
 

⋮

⋮

 (2.11) 

and  

 1 ...k k k kR B A B − =    (2.12) 

Although the grammians are infinite matrices, usually for a system which is both 

Controllable and Observable (minimal), the principal full rank components of the 

corresponding grammians have most information related to the plant parameters 

corresponding to the current time step. This fact enables us to construct the time varying 

realizations without resorting to population of infinite matrices, a central idea of this 

chapter and a key algorithmic contribution of this dissertation. The Controllability and 
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Observability grammians transform with topologically equivalent system descriptions of 

the time varying systems. The relationships between topologically equivalent 

representations are given by  

 

1 1

1 1

:

... ...

k k

k k k k

k k k k

k p k p k k p k p k

C C

C A C A

O T O T

C A A C A A

+ +

+ + − + + −

   
   
   
   = = =
   
   
   
   

⋮ ⋮

⋮ ⋮

 (2.13) 

 and  

 
1 1

1 1 1 1... ...k k k k k k k k k kR B A B T B A B T R− −
− + − +   = = =     (2.14) 

 Similar relations hold for block shifted controllability and observability grammians, 

which can be easily derived as,  

 

1

2 1

1

1

2 1

1

:

...

     

...

    

k k

k k k

k

k p k p k

k k

k k k

k

k p k p k

k k

C A

C A A

O

C A A

C A

C A A

T

C A A

O T

+

+ +
↑

+ + −

+

+ +

+ + −

↑

 
 
 
 =
 
 
 
 

 
 
 
 =
 
 
 
 

=

⋮

⋮

⋮

⋮

 (2.15) 

and  
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1 1 2

1

1 1 1 2

1

1

...

     ...

     

k k k k k k

k k k k k k

k k

R A B A A B

T A B A A B

T R

←
− − −

−
+ − − −

−
+

 =  

 =  

=

 (2.16) 

The generalized Hankel matrix for time varying systems is defined for every time step 

k to be the infinite dimensional matrix,  

 

, 1 , 2

1, 1 1, 2

1 1 1 2

1

1

    

    

    

k k k k

k k k k k

k

k k k k k

k k

k k

h h

H h h

C

C A B A B

O R

O R

− −

+ − + −

+ − − −

−

−

 
 

=  
  

 
   =    
  

=

=

⋯

⋯

⋮ ⋮ ⋱

⋯

⋮

 (2.17) 

In general, assuming the system is uniformly observable and controllable, rank of the 

generalized Hankel matrix is representative of the state dimension at the given time 

instant. In the subsequent developments of the dissertation, it is assumed that the state 

dimension does not change with the time index. It is not difficult to see that this 

assumption can be relaxed. However, we retain the assumption owing to our focus on 

mechanical systems, where the connection between physical degrees of freedom and the 

number of state variables allows us to hold the dimensionality of the state space fixed 

throughout the time interval of interest. We now elaborate on the time varying 

coordinate systems for discrete time state equations and some identities governing their 

structure and properties.   
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Time Varying Coordinate Systems and Transformations 

As was noted from the previous sections, the state propagation for linear time 

varying systems takes place between time varying coordinate systems. This is very 

similar to the concept of body fixed rotating reference frames employed to describe rigid 

body rotation in attitude dynamics[16, 17]. Using the notation developed thus far; 

consider the state propagation equations in two topologically equivalent realizations of 

the discrete time varying system. The states being propagated in the equivalent 

realizations are related by the time varying transformations k k kT=z x . When the 

corresponding state evolution equations are written as,  

 
1k k k k k

k k k k k

A B

C D

+ = +

= +

x x u

y x u
 (2.18) 

and  

 
1k k k k k

k k k k k

F G

H D

+ = +

= +

z z u

y z u
 (2.19) 

Relationships between the topologically equivalent realizations presented above are 

considerably different from time invariant systems. We rewrite the relations between the 

topologically equivalent realizations as,  

 

1

1

1

1

k k k k

k k k

k k k

F T A T

G T B

C H T

−
+

−
+

=

=

=

 (2.20) 

The most important distinction is that the system matrices (transition matrices 

,k kF A ) do not have the same eigenvalues. Since the system evolution takes place in two 
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different coordinate systems, 1,k kT T+ , it does not map the state at the next time step back 

in to the same state space. This leads the basis vectors for the initial time step and the 

final time step to be different. Therefore, the situation is quite similar to body fixed, 

rotating coordinate systems in rigid body dynamics, with the exception that the frames 

(basis vectors can be thought of as frames) are unknown, arbitrarily assigned by the 

singular value decomposition (we will see very shortly) and not necessarily orthogonal.   

A clear picture of this situation appears in the state transition matrices of 

continuous time varying systems. To clarify this point we digress at this stage to 

consider the linear time varying homogeneous system given by the continuous time 

linear differential equation,  

 ( ) ( ) ( )t t t= Λξ ξɺ  (2.21) 

with initial conditions, ( )0 0t =ξ ξ and ( ) : nt + →ξ ℝ ℝ , ( ) : n nt +Λ × →ℝ ℝ ℝ . Then for 

every initial state ( )0i tξ , ( 1, 2,...,i n= ) spanning the state space at initial time, there 

exists a solution at final time ( )0t t≠ , denoted by ( )i tξ . Collecting these solutions in to 

a matrix ( ) ( ) ( ) ( )1 2: nt t t t Ψ =  ξ ξ ξ⋯ , we arrive at the fundamental matrix[15, 

18]. Since it constitutes the linearly independent (arbitrary) solutions of the state 

differential equation, the fundamental matrix satisfies the matrix differential equation,  

 ( ) ( ) ( )t t tΨ = Λ Ψɺ  (2.22) 
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with initial conditions, ( ) ( ) ( ) ( )0 0 1 0 2 0 0: nt t t t Ψ = Ψ =  ξ ξ ξ⋯ .  Note that this is 

not necessarily the n n× identity matrix, thereby defining the non-orthogonal, skew 

coordinate frame at the initial (in general at time step kt ) time step.  

It can be shown that this fundamental matrix is related to the state transition 

matrix ( )0,t tΦ  as,  

 ( ) ( ) ( )1

0 0,t t t t−Φ =Ψ Ψ  (2.23) 

where the classical state transition matrix [4, 19] is governed by the matrix differential 

equation, 

 ( ) ( ) ( )0 0, ,t t t t t
t

∂
Φ = Λ Φ

∂
 (2.24) 

with initial conditions, ( )0, nt t IΦ = as the unit (identity) matrix. If the identified discrete 

time state transition matrices kA were all constrained to be the state transition matrices, 

the coordinate systems of solutions would indeed be compatible. However, this rarely 

happens and the realized (identified) ˆkA are in fact the more general fundamental 

matrices (defined in equation (2.22)) with arbitrary sets of initial conditions, due to the 

arbitrary decompositions of the singular value decomposition, detailed in the next 

section.  

Realizing that the solution structure at any time t is given by ( ) ( )0 0,t t t= Φx x .  

We point out a stark contrast to time invariant system ( ( ) ct AΛ = ), where the state 

transition matrix is given by ( ) ( )0 0, exp ct t A t t Φ = −  ; noting further that the solution 
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in the time invariant case remains in the same space owing to the power series expansion 

definition of the matrix exponential. More specifically, this is the space spanned 

by ( )2

0, , ,...c cI A A x . Such a definition/parallelism cannot be made for time varying 

systems and hence the state transition matrix, as given by equation (2.23) maps the state 

in one coordinate system at initial time step 0t  to a possibly (usually) different 

coordinate system at any subsequent time t . Therefore, it emerges conclusively that the 

true and identified system matrices in our current discussions are special instances of the 

fundamental matrices outlined in equation (2.22) with an arbitrary set of basis functions 

at the corresponding initial time step.  

 This simple observation is evidently new and of fundamental importance in establishing 

a complete system identification algorithm for time varying systems. The ideas 

presented in the section are graphically illustrated in Figure 3, where a 3 dimensional 

state space is assumed for clarity in demonstration. 
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Figure 3. Illustration of Time Varying Coordinate Systems and Transformations 

We note in passing that the topologically equivalent realizations, ( ,k kF A related 

as in (2.20)) in general, are not similar, owing to the fact that 1k kT T+ ≠ . An analyst 

armed with this piece of information (that the state evolution of discrete time varying 

systems in general takes place between time varying coordinate systems (different 

spaces)), is often dangerous. She/ he may conclude that no physics - based information 

can be derived from such a method, since there appears to be no such information. It 

turns out that such a speculation is erroneous and one can indeed extract time varying 

quantities that are representative of the true time varying system behavior from these 

topologically equivalent (kinematically similar) transformations. These parameters are 

the eigenvalues of the time varying system matrices (true and identified), all transformed 

in to a common reference (more generally, projected onto) coordinate system. This is the 
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central result of this chapter. We now detail the procedure to construct such 

transformations on the topologically equivalent discrete time varying realizations    

(2.18),(2.19). Applying the general relationship, (2.39) between observability grammians 

in different coordinate systems to the realizations, (2.18),(2.19), we have that,  

 kT

k k kO O T=  (2.25) 

At any other time step, the same relationship holds, given by k pT

k p k p k pO O T+

+ + += , 1p∀ ≥ . 

This enables us to define the quantity,  

 ( )
†

1 †k pk
TT

k k p k k k p k p
O O T O O T+ −

+ + +=  (2.26) 

1p∀ ≥  where, the identity ( ) ( )
† †

1 †kT

k k k k k
O O T T O−= =  was used.  Considering the first 

time step kt , the relation between the kinematically similar system matrices is given by,  

 
1

1k k k kF T A T
−
+=  (2.27) 

Now, we proceed to use the correction ( 1p = ) to the left of (2.27) and obtain a corrected 

system matrix kF , as  

 

( ) ( ) ( )1

†
1 † 1

1 1 1 1

1 †

1

1

:

                                    

                                    

k kT T

k k k k k k k k k k k

k k k k k

k k k

F O O F T O O T T A T

T O O A T

T A T

+ − −
+ + + +

−
+

−

= =

=

=

 (2.28) 

where 
†

1:k k k kA O O A+= is the correction to the time varying system matrix in the different 

coordinate system. Note that, at a general time step ( , 1k pt p+ ≥ ) both the left hand side 

( 1k pT + + ) and right hand side ( k pT + ) coordinates need to be transformed in to the reference 
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coordinate system ( kT in this case,) such that the corrected system matrices become 

similar. So, at any general time step, we have that,  

 
1

1k p k p k p k pF T A T−
+ + + + +=  (2.29) 

In such situations, we should operate on both sides to correct and obtain a transformation 

to the reference coordinate system ( kT in this case). This is accomplished by employing 

corrections on both sides given by,  

 

( ) ( ) ( )
( )( )
( )

1

1
† †

1

1
1 † 1 1 †

1 1 1

1
1 † †

1

1

      

      

      

k p k pk k
T TT T

k p k k p k p k k p

k k k p k p k p k p k p k k k p k p

k k k p k p k k p k

k k p k

F O O F O O

T O O T T A T T O O T

T O O A O O T

T A T

+ + +

−

+ + + + +

−− − −
+ + + + + + + + + +

−−
+ + + +

−
+

 =  
 

=

=

=

 (2.30) 

  

We point out that the transformations developed above can also be based on the 

controllability grammian and are easy to derive, following the developments above. Note 

that in such a situation however, the reference coordinate system to which the system is 

reset (say some kQ ) is in general independent and different from the ones obtained by 

using the observability grammians (denoted here by kT ). So the least squares solution to 

realize a transformation, in general produces a projection on the controllable or 

observable subspace at the reference time instant. When the analyst has access to 

sufficient number of sensor outputs however (i.e., m n≥ ), the solution becomes unique 

and the projections are made exactly on to the reference coordinates of the state space at 

the time instant of interest, similar to the solution by Liu[8], for this simpler situation.  
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For the system identification problem, as was derived in the previous section, the 

true and identified system parameters are kinematically similar realizations. The 

identified system matrices and the simulated “true” system should also be corrected for 

these physical variations to perform a comparison. This is because this true observability 

(controllability) correction aligns the true system in to the corresponding observability 

(controllability) subspace at the reference time instance. It was found that the system 

matrices appropriately corrected share common eigenvalues. Example demonstrations 

illustrate this fact. The physical nature of these eigenvalues and their role in the 

evolution of the true system and possible applications are issues that require further 

investigations. 

 

Time Varying Eigensystem Realization Algorithm 

We first present the algorithm to calculate the time varying plant parameter 

models assuming the availability of the generalized Markov parameters. The important 

problem of computing the generalized Markov parameters is addressed in the next 

section. A more practical algorithm for obtaining them is discussed in the next chapter 

which closely follows the developments of Majji and Junkins[20].  

Calculation of Time Varying Discrete Time Models 

 Consider the generalized Hankel matrix populated using the generalized Markov 

parameters. 
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( )

, 1 , 2

1, 1 1, 2

, 1 , 2 ,

1, 1 1, 2 1,

, 1 , 2 ,

,

    

   

k k k k

k k k k k

k k k k k k p

k k k k k k p

k q k k q k k q k p

p q

k

h h

H h h

h h h

h h h

h h h

H

− −

+ − + −

− − −

+ − + − + −

+ − + − + −

 
 

=  
  

 
 
 ≈
 
 
  

=

⋯

⋯

⋮ ⋮ ⋱

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (2.31) 

with the parameters ,p q chosen such that the generalized Hankel matrix retains the rank 

n , the true state dimension. Insight into what numbers must be chosen is often obtained 

by computing the rank of each element of the Hankel matrix sequence (at every time 

step). Differing ranks are possible for this generalized time varying Hankel matrix 

( ),p q
kH  at every time step kt , for the variable state dimension problem. For problems in 

which the state dimension does not change, rank consistency is indicative of the validity 

of our assumption of a constant state dimension. Extraneous observable disturbance 

input states are quite often isolated from the rank sequence plots of the generalized 

Hankel matrix sequence. Furthermore, rank consistency checking helps the analyst to 

retain appropriate numbers of row and column blocks in the Hankel matrix at a given 

time step for computations.  

 Following the identity (Eq. (2.17)) presented in the previous section where we 

discuss the generalized Hankel matrices and using its singular value decomposition[21, 

22], we can write,  

 
( ) ( ) ( )

1 1
, 2 2

1
k kp q q T p T T

k k k k k k kH O R U V−

  
= = Σ Σ  

  
 (2.32) 
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such that expressions can be written for the corresponding controllability and 

observability grammians at a given time step. Notice that this decomposition is non-

unique. The fact that the realizations derived from these grammians can be in any of the 

infinite different coordinate systems (the coordinate systems also change with the order 

of controllability/observability grammian ( ),p q  chosen to be computed) is symbolized 

by using the superscript ( )( )/
. kp q T

 on the grammian calculated by this particular 

decomposition (at time instant kt ). Using the generalized Markov parameters, now 

consider block up-shifted Hankel matrix defined as,  

 
( )

1, 1 1, 2 1,

, 2, 1 2, 2 2,

1, 1 1, 2 1,

:

k k k k k k p

p q k k k k k k p

k

k q k k q k k q k p

h h h

h h h
H

h h h

+ − + − + −

↑ + − + − + −

+ + − + + − + + −

 
 
 =
 
 
  

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (2.33) 

and the left-shifted Hankel matrix defined as,  

 
( )

, 2 , 3 , 1

, 1, 2 1, 3 1, 1

, 2 , 3 , 1

:

k k k k k k p

p q k k k k k k p

k

k q k k q k k q k p

h h h

h h h
H

h h h

− − − −

← + − + − + − −

+ − + − + − −

 
 
 =
 
 
  

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (2.34) 

 Considering the singular value decomposition and the definitions of the up-

shifted Hankel matrix, we have that,  

 
( ) ( ) ( )

1 1
, 2 2

1

p q q p T

k k k k k k kH O R U V
↑ ↑↑ ↑ ↑ ↑

−

  
= = Σ Σ  

  
ɶ ɶ  (2.35) 

Owing to the uniqueness of the singular value decomposition for a given matrix, the 

controllability grammian in equation (2.35) is different from the controllability 
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grammian calculated from the unshifted Hankel matrix of equation (2.32). These 

grammians are similar, however, since the plant matrices 1 1,k kA B− −
ɶ ɶ of the grammian 

1kR −
ɶ are similar to the plant matrices, 1 1,k kA B− − constituting 1kR − . Using a technique 

analogous to Juang [23] we calculate the similarity transformation to set kO
↑ɶ in the same 

coordinate system as kT

kO
↑
. Recall the transformation definitions from equations (2.13), 

(2.15), (2.14) and (2.16) that the similar grammians are related as,  

 
( ) kq T

k k kO O Q
↑↑ =ɶ ɶ  (2.36) 

and  

 
( )1

1 1
kp T

k k kR Q R−
− −= ɶɶ  (2.37) 

Therefore the transformation matrix is calculated using the equation (2.37) as,  

 
( ) † 1

1 1
kp T

k k kR R Q−
− − = ɶɶ  (2.38) 

where the operator ( )†. denotes the pseudo inverse operation[21, 22]. Thus the block 

shifted observability grammian can be computed at every time step using the equations 

derived above. Similar calculations can be performed to yield the consistent expression 

for kT

kR
←
.  

Now, let the controllability and observability grammians in the true (usually 

unknown) coordinate systems at each time step kt  be denoted by the unadorned (no 

superscripts) symbols, 1,k kO R − . Then, observability (controllability) grammian 
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computed from the populated Hankel matrix is related to the “true” observability 

(controllability) grammian (of the unknown, true plant model) by,  

 
( ) ( )( )1

1 1    k kq T p T

k k k k k kO O T R T R−
− −= =  (2.39) 

where again, kT is any invertible square matrix of the state dimension. Note that in 

problems of varying state dimension this matrix becomes rectangular and hence the 

coordinate transformations (projections) have to be appropriately defined. Again, we do 

not wish to include that case in our discussions since in most mechanical system 

identification problems the dimensionality information can be determined apriori. This 

gives rise to the estimates for the system matrix as,  

 
( )

1
kq T

k k k k k kO O T O A T
↑ ↑

+= =  (2.40) 

where the identity 1k k kO O A
↑

+= (easily verifiable from the definitions in the previous 

section) was used. However, to produce a consistent estimate, we do not have the true 

1kO + from the decomposition of the Hankel matrix at the next time step, namely, 

( ) ( ) ( )1 1,

1 1
k kp q q T p T

k k kH O R+ +

+ += . But we know from the previous developments that 

( ) 1 1

1 1 1
kq T

k k kO O T+ −
+ + += . Substituting this expression in favor of kO in equation (2.40), we get,  

 
( ) ( ) 1 1

1 1
k kq T q T

k k k k kO O T A T+↑ −
+ +=  (2.41) 

This allows us to set  

 
( ) ( )1†1

1 1
ˆ k kq T q T

k k k k k kA T A T O O+ ↑−
+ += =  (2.42) 

as an estimate for the identified time varying discrete system transition matrix. Notice 

that ˆkA is related to the unknown true system matrix but NOT the true system matrix. A 
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similar estimate can be derived from the controllability grammian expressions. 

Considering the left shifted Hankel matrix and appropriately resetting its coordinate 

system, we have,  

 
( ) ( ) ( ),

1 1
k kp q q T p T

k k kH O R
← ←

+ +=  (2.43) 

Using similar manipulations,  

 

( )

( )

1 1

1

1

1 1

1

1

       

       

k

k

p T

k k k

k k k

p T

k k k k

R T R

T A R

T A T R

+ ← − ←
+

−
+ −

−
+

=

=

=

 (2.44) 

we can obtain a similar estimate for the identified system matrix as,  

 
( ) ( )1 †

1
ˆ k kp T p T

k k kA R R+ ←
−=  (2.45) 

Since the first r columns of 
( ) 1kp T

kR
+ form an estimate for the identified control influence 

matrix, ˆkB , its relation to the unknown true matrix kB is given by,  

 
( ) ( )11

1
ˆ :,1:kp T

k k k kB T B R r+−
+= =  (2.46) 

similarly, the estimate for the identified kC is obtained by extracting the first m rows of 

the calculated observability grammian  

 
( ) ( )ˆ 1: ,:kq T

k k k kC O m C T= =  (2.47) 

where the notation ( ) ( )1: ,:  or  (:,1: )M a M b denotes the first a rows (or b columns) of 

M matrix.  
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Having derived the relationships between the identified and the true system model 

parameters, we now proceed to the impact of the identified plant parameters in the state 

propagation problem.  

State Propagation Using Identified Time Varying Plant Parameters 

 Let us consider any general time step kt and the state vector in the coordinate 

system of the identified plant parameters be given by ˆ kx . Assume that the state vector at 

this time step is known to be given in the identified plant parameter coordinate system 

(i.e., 
1ˆ

k k kT
−=x x is known, while ,k kTx is unknown). This assumption will be relaxed 

shortly. Using the identified plant parameters at the corresponding time step, we have,  

 
1

ˆ ˆˆ ˆ

ˆ ˆ

k k k k k

k k k k k

A B

C D

+ = +

= +

x x u

y x u
 (2.48) 

Clearly, kD , being invariant with respect to coordinate transformations, while the true 

propagation equations (had we known , , ,k k k kA B Cx ) are written as,  

 
1k k k k k

k k k k k

A B

C D

+ = +

= +

x x u

y x u
 (2.49) 

Using the derived relationships between the true and identified system matrices 

(equations (2.42),(2.46) and (2.47)), we can write the equation (2.48) as  

 
( )1

1 1
ˆ ˆ

ˆ

k k k k k k k

k k k k k k

T A T B

C T D

−
+ += +

= +

x x u

y x u
 (2.50) 

Similarly propagating to one more step, gives us   
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( )
( )( )

( )

1

2 2 1 1 1 1 1

1 1

2 1 1 1 1 1

1

2 1 1 1 1

ˆ ˆ

ˆ      

ˆ      

k k k k k k k

k k k k k k k k k k k

k k k k k k k k k k

T A T B

T A T T A T B B

T A A T A B B

−
+ + + + + + +

− −
+ + + + + +

−
+ + + + +

= +

= + +

= + +

x x u

x u u

x u u

 (2.51) 

Thus the state equation in general becomes (after p  time steps),  

 ( )1

1 0 0 0 1 0 0 0 1 2 2 1 1
ˆ ˆ... ... ...k p k p k p k p k p k p k p k p k pT A A T A A B A B B−

+ + + − + − + − + − + − + − + −= + + + +x x u u u

 (2.52) 

Now considering a state propagation error defined as ˆ:k k k kT= −e x x  , we have the error 

dynamics after 1p + time steps being given by the evolution equation,  

 ( )1 1 0 0 0 0 1 0 0
ˆ... ...p p p p pA A A T A A A+ − −= − =e x x e  (2.53) 

Using Lyapunov’s stability theory[24] for discrete time systems we have that the effect 

of this initial coordinate system misalignment, 0e  will decay asymptotically to zero for 

time varying systems with a stable origin (cases of asymptotic and exponential stability 

of the origin). However, in general, one needs to at least determine the initial conditions 

in the initial system coordinates (namely 0x̂ ). If one has the initial conditions in the right 

coordinate system, the identified plant parameters can be used for state propagation in 

the deterministic case.  

 

Estimation of Initial Conditions from Identified Plant Model Parameters  

Let us now look at a method of calculating initial conditions after having identified the 

plant parameter matrix sequences. The question as to whether it is possible to obtain the 

plant parameters when the output data is inclusive of the initial condition response 
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deserves some explanation at this point. This “chicken and egg problem” can be 

addressed in several ways. One possible solution is to write the initial condition response 

together with the forced response and try to solve a matrix equation relating the initial 

condition and input data to the sensed (noise free) outputs. This leads to a matrix 

equation the solution of which, using the free response data matrix is not difficult to 

obtain. We avoid the associated discussion to stay focused on the central developments 

of the current algorithm. Alternatively, one can use an observer based (ARX model) 

calculation as detailed in the next chapter developed along the lines of our recent 

paper[20]. In certain other special case situations where physical nature of the problem is 

known to the analyst, one can perform repeated experiments by physically setting the 

initial conditions to zero (position and velocity). In this section we concern ourselves 

with the problem of determination of initial conditions (in fact the state at a general time 

step kt )  after the identified plant model sequence is available.  

 Writing the input output mapping from a general k th time step, for p more time 

steps, one obtains a set of equations that can be written in a matrix form as,  

 

( )

1 1 1 11

1 1 11

ˆ

ˆ ˆˆ ˆ
ˆ:

ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ... ......

ˆ                k

kkk k

k k k k kk k

k

k p k pk p k p k k p k p k k pk p k p k

q T

k

DC

C B DC A

C A B C A B DC A A

O

+ + + ++

+ ++ + − + + − + ++ + −

      
      
      = = +      
      
           

=

y u

y u
Y x

y u

x

⋮ ⋮ ⋮ ⋱ ⋮⋮

⋯

ˆ                

k

k k

+ ∆

= Π + ∆

U

x U

  (2.54) 
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which can be solved using the least squares solution,   

 ( ) ( )
1

ˆ LS T T

k k k k

−
= Π Π Π −∆x Y U  (2.55) 

provided p is chosen sufficiently large so as to ensure the full rank of the observability 

grammian (= dimensionality of the state space). We note, for higher dimensioned 

systems, the least squares inverse of equation (2.55) should be computed instead using 

either the QR algorithm or the SVD method[21, 22].  

 

Models for the First /Last Few Time Steps 

 As pointed out in the introductory section of this chapter, in the problems where 

time varying model identification is of interest, it is often unclear how to isolate the 

system models for the first few time steps, since the generalized Hankel matrix sequence 

at these time steps, has a rank of only less than or equal to the true order of the system 

( ), kk rank H n∀ < . The first generalized Hankel matrix in question can be written as,  

 
( )

1,0 1 0

0, 2,0 2 1 0

1

,0 1 0...

q

q q q

h C B

h C A B
H

h C A B−

   
   
   = =
   
   
      

⋮ ⋮
 (2.56) 

 Note that it is difficult to compute the generalized Markov parameters such as 0 1C B− (for 

the populating the grammian 
( )1
1

kTR ) since in practical experiments, inputs cannot be 

applied at negative time index so as to “feel” its response at the current time (i.e., 

,j j Z +
− ∈u  are not available for measurement/computations from the experiment). 
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Recall that the methodology detailed in previous sections can be employed only once a 

full rank Hankel matrix can be populated (that is to say in subsequent time steps only).  

 We now present a method for computing the first few time step models using an 

additional set of experimental data, the free response experiments. The output data of the 

free response experiments (also known as the zero input response) are given by,  

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

,,1 ,2

,,1 ,2
11 1 1

,,1 ,2

1 1 1

1 1

2 2
, , , ,                                            

f

f
f f
k k

f

f Nf f

k k k

f Nf f
q T Tk k k
k k

f Nf f

k q k q k q

T

k f k f k f k f

O X

U V

−+ + +

+ − + − + −

 
 
 
  =
 
 
 
 

  
= Σ Σ  
  

y y y

y y y

y y y

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (2.57) 

0,1,..., 1k p∀ = − , forming the corresponding observability grammian in the respective 

coordinate system as the initial conditions (we denote as 
f

kT ). Deleting the first block of 

data, we arrive at the block shifted output matrix that can be written as,  

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) 1 1

,,1 ,2

1 1 1

,,1 ,2
12 2 2
1 1

,,1 ,2

1 1

2 2
1, 1, 1, 1,                                          

f

f
f f
k k

f

f Nf f

k k k

f Nf f
q T Tk k k
k k

f Nf f

k q k q k q

T

k f k f k f k f

O X

U V

+ +

+ + +

−+ + +
+ +

+ + +

+ + + +

 
 
 
  =
 
 
 
 

  
= Σ Σ  
  

y y y

y y y

y y y

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (2.58) 
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We note that the state variable ensemble at the time step 1kt + (denoted by 
1

1

f
kT

kX
+
+ , with the 

corresponding index number 1k + ) is related to the state ensemble at time step 

kt (written as 
f
kT

kX )by,  

 ( )1  1

1 1

f f
k kT Tf f

k k k k kX T A T X+ −
+ +=  (2.59) 

Using this relationship, we can derive estimates for the state transition matrix for time 

steps 0,1,..., 1k p= − given by,  

 ( ) ( )1

11

1 1
ˆ :

f f
k kT Tf f

k k k k k kA T A T X X+

−−

+ += =  (2.60) 

The calculation of the corresponding ˆkC is accomplished by setting,  

 
( ) ( )1ˆ 1: ,:

f
kq T

k kC O m
−=  (2.61) 

The partial ( rank n< ) Hankel matrices, similar to the one in equation (2.56) are written 

for the first few time steps ( 0,1,..., 1k p= − ) as,  

 
( )

1, 1

0, 2, 2 1

1

, 1...

k k k k

q k k k k k

k

k q k k q k q k

h C B

h C A B
H

h C A B

+ +

+ + +
+

+ + + −

   
   
   = =
   
   
      

⋮ ⋮
 (2.62)  

These are used in the determination of the control influence matrix as shown in the 

following calculation. From the equation (2.62) above,  

 
( ) 1

1

0, 2 1

1 1

1...

f
k

k k

q Tk k k

k k k

k q k q k

C B

C A B
H O B

C A B

+

+

+ +
+ +

+ + −

 
 
 = =
 
 
  

⋮
 (2.63) 
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leading to,  

 ( ) ( ) ( )1

†1 0,

1 1 1
ˆ

f
k qTf

k k k k kB T B O H+
−

+ + += =  (2.64) 

 However, the plant parameter estimates determined from the equations (2.60),(2.61) and 

(2.64) are of little use in practice without the coordinate transformation theory developed 

in a previous section. As pointed out before, the first few models developed in this 

manner are in totally different coordinate systems, derived from the free response 

singular value decomposition. Hence, one cannot use the models, thus developed in state 

propagation since they have a jump discontinuity at the time step k p=  in their 

coordinate systems. Using the developments of the previous section, we correct the 

models by transforming (projecting) them consistently in to a reference coordinate 

system. The transformed models are therefore given by,  

 ( )( ) ( )1

11
1 1

1 1 1 1
ˆ :

ref f f
k k kT T Tf f

k k k k k k k k k kA P T A T P P X X P+

−− − −
+ + + +

 = =  
 

 (2.65) 

 ( )( ) ( ) ( )1

†1 0,

1 1 1 1 1
ˆ :

ref f
k k

qT Tf

k k k k k k kB P T B P O H+
−

+ + + + +
 = =  
 

 (2.66) 

and  

 ( ) ( )( )1 1ˆ : 1: ,:
ref f
k k
T Tf

k k k k k kC C T P O m P− −= ==  (2.67) 

where the transformation (projection onto the reference subspace 
r

ref

k
T , at a reference 

time step rk ) is defined as,  

 

†ref
f

k kr

r

T
T

k kk
P O O

 =  
 

 (2.68) 
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 Using the transformed system models in to a reference coordinate system, and 

considering the subsequent models in compatible coordinate systems, one therefore 

obtains a complete sequence of discrete time varying models from time step 

0,..., fk k= as long as desired by the analyst, depending on the availability of multiple 

experimental data. The first few models for the case of the numerical examples, 

discussed in a subsequent section were obtained in this manner and the state propagation 

results were computed employing the transformations developed here-in. The last few 

time step models have a dual nature in that the system observability grammian cannot be 

formed fully owing to the rank deficiency of the Hankel matrix. This defect can 

analogously be corrected using the developments of this section. 

Thus, using a framework similar to Liu [8], we arrive at a different set of more 

general results for the first few time step models. We note in passing that there exist 

some structural relationships (among the generalized Markov parameters and the Hankel 

matrices) that lead to suggest that one can avoid repeated free response experiments. 

However, we could not find any useful manipulations to report at this stage and are 

forced to use these extra conditions to recover the first few time step models.  

 

Estimation of Markov Parameters from Input Output Data Using Least Squares  

As we have seen so far, the generalized Markov Parameters play an important 

role in the determination of the time varying plant parameters in the Time Varying 

Eigensystem Realization algorithm. We now address the question: How these Markov 

Parameters are computed from input output data? For simplicity, we consider only the 
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ideal case where the output data from multiple experiments is devoid of initial condition 

response. In this case, we assume that all the experiments are performed from zero initial 

conditions (ideal situation). In the presence of unknown initial conditions in the output 

data, the determination of Markov parameters is more complicated since one requires 

more information to separate out the components of the output data caused due to the 

unknown initial conditions.  

The output of the system at the time step kt  (sufficiently later than the initial time 

0t ) is related to the control inputs up to that time instant as (using equation (2.6) with 

0 =x 0 ),  

 

0

0 0

0 0 0

1

,

, 1 1,

1 1 1 2 2 1 1

    ...

    ... ...

k

k k j j k k

j k

k k k k kk k k

k k k k k k k k k k k k k k

h D

h h D

D C B C A B C A A B

−

=

− −

− − − − − − +

= +

= + + +

= + + + +

∑y u u

u u u

u u u u

 (2.69) 

Stacking the generalized Markov parameters in the block matrix notation, we have that,  

 
0 0

0

1

1 1 1
...

k

k

k k k k k k k k

k

D C B C A A B
−

− − +

 
 
  =   
 
  

u

u
y

u

⋯
⋮

 (2.70) 

For input output data from multiple experiments (experiment number denoted by the 

superscript ( )( )
.

j
) we consequently have the matrix equation,  
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( ) ( ) ( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

0 0

0 0 0

1 2

1 2

1 2

1 1 1

1 1 1

1 2

  ...

  ...
                       ...   

  ...

N

k k k

N

k k k

N

k k k

k k k k k k k

N

k k k

D C B C A A B
− − −

− − +

 
 

 
 
  =   
 
 
 

y y y

u u u

u u u

u u u

⋯

⋯
⋮ ⋮ ⋮

 (2.71) 

where the number of experiments, N is chosen such that for each output time step of 

interest, a least square solution for all the Markov parameters (until the initial time step 

0k ) is possible.  

 The design of such increasing number of experiments is necessary to obtain a 

unique solution for the generalized Markov parameters from the input output map. This 

increase in computations is one of the few reasons behind the lack of popularity among 

time varying identification methods. In the next chapter, based on the theoretical 

developments of the recent papers in preparation,[20] we present techniques to remedy 

this increase and demonstrate the fact that the introduction of an observer in to the 

identification process enables a dramatic reduction of the number of required 

experiments, while retaining the level of accuracy in the calculated generalized Markov 

parameters due to the existence of certain recursive relationships existing in the time 

varying observer realized. These results generate sufficient optimism for the practical 

analyst to consider the time varying identification methods as an alternative in analysis 

and design of models for control and estimation (and/or guidance and navigation).  
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Numerical Examples 

We demonstrate the results of this chapter on two representative examples. The 

first example has a stable origin but with true system matrix having time varying 

elements that have an oscillatory nature. The second example is also an oscillator 

example with stiffness matrix varying with time and no damping. This represents the 

class of problems which do not have a stable origin. We do not present examples where 

the solution diverges exponentially to infinity, because the generalized Markov 

parameters for such problems also go to infinity and hence the input output description 

may become too highly ill-conditioned to allow stable computations and comparisons.  

 

Example 1: System with a Stable Origin 

Consider the time varying system with true matrices, being given by,  

 

0.3 0.9 0.1 0.7

0.6 0.3 0.8 0.01

0.5 0.15 0.6 0.9

1 0
1 0 1 1 0

1 1 ,   ,   0.1
1 1 0 0 1

0 1

k k

k k k

k

k k k

A

B C D

τ τ
τ τ

τ

′ −
 ′= − 
 − 

 
    = − = =     −     

 (2.72) 

where the time varying elements are defined as ( ) ( )sin 10 ,   : cos 10k k k kt tτ τ ′= = . The 

first validation is performed by inspection of the rank of the Hankel matrix sequences. 

As the Figure 4 clearly shows, the rank of the system remains 3 for all time, indicating 

the order of the system, as discussed previously in this chapter. Using the least squares 

solution as shown in the previous section, the system Markov parameters are determined 
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from repeated experiments. The identification procedure is carried out and two test 

control inputs are applied to the true and identified system with zero initial conditions 

given by ( ) ( )1 0.5sin 12k ku t t= and ( ) ( )2 cos 7k ku t t= . 

Figure 4. (Ex. 1) Hankel Matrix Sequence Singular Values 

The response for these test control inputs obtained from the identified plant model 

sequence and the true model sequence is compared in Figure 5. Figure 6 plots the output 

error incurred between the outputs of the true and identified systems to the test control 

input sequences. 
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Figure 5. (Ex. 1) Output Comparison: Response to Test Functions 

 

Figure 6. (Ex. 1) Output Error Comparison: Response to Test Functions 
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Example 2: Oscillatory System (Zero Damping) 

Alternatively, we consider the system with an oscillatory nature. In this case the 

plant system matrix was calculated as  

 

exp

1 0

1 1 1 0 1 0.2
,   ,   

0 1 1 1 0 0.5

1 0

1 0
0.1

0 1

k c

k k

k

A A t

B C

D

 = ∗∆ 

 
 −   = =    − − 
 
− 

 
=  

 

 (2.73) 

where the matrix is given by  

 
2 2 2 2

2 2

0

0
c

t

I
A

K

× ×

×

 
=  

− 
 (2.74) 

with 
4 3 1

1 7 3

k

t

k

K
τ

τ

 +
=  ′+ 

and ,k kτ τ ′ are as defined in the Example 1.  

The free response of this system from true initial conditions [ ]0 1 1 1 1T =x  is plotted 

in Figure 7. This clearly shows qualitatively that there is no damping inherent in the 

system and that time varying stiffness term is present. The singular values of the Hankel 

matrix sequence, plotted in the Figure 8 reveal that the true order of the system is 4. 
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Figure 7. (Ex.2) Oscillatory Output for Non-zero Initial Conditions (Unstable 

Origin)  

 

Figure 8. Hankel Matrix Sequence of Singular Values (Ex.2) 
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  The generalized Markov parameters are determined by solving the least squares 

problem obtained by considering the input output relationship as described in the 

previous section. The norm of the error incurred in these calculations is plotted in Figure 

9. The deterioration of the accuracy towards the end of the simulation is due to the 

increase in the size of the least squares problem towards the end of the simulation and 

the deterioration of the absolute error tolerance of the solution of the linear system (for 

the same level of relative error maintained in the numerical solution). After identification 

using the Markov parameters, the same test functions as the previous example were 

employed to the true and identified system model sequence and the responses obtained 

are compared in Figure 10. The error between the true and the identified response to test 

functions is plotted in Figure 11. 

 

Figure 9. Error in Calculation of Markov Parameters From Zero State Response 
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Figure 10. (Ex. 2) Output Comparison (True vs. Identified - Forced Response) 

 

Figure 11. (Ex. 2) Output Comparison (True vs. Identified - Forced Response) 
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The initial condition determination strategy presented previously in this chapter, 

was employed on the output data to calculate the initial conditions of the state in the 

identified initial coordinate system. Choosing 9p =  for best accuracy in the normal 

equations, we obtained an estimate of the initial conditions (in the unknown 0T  

coordinate system to be) 

 [ ]0
ˆ -0.8833 1.5612 2.0021 0.2452

T
= − − −x  (2.75) 

Using the estimated initial conditions (in their coordinate systems), the state was 

propagated and the free response was compared as shown in the Figure 7. The output 

error between the true initial condition response and the determined initial condition 

response is plotted in Figure 12. 

 

Eigenvalues of the System Matrix 

It was found, supporting the discussions of the theoretical developments of this chapter, 

that the true and identified system matrices are not similar. This is demonstrated by 

plotting the coefficients of the characteristic polynomial for true system and identified 

system in the time varying coordinate systems in Figure 13. Owing to the possible 

existence of complex eigenvalues for a real matrix, we should plot the real and complex 

components (or the magnitude and phase) of the eigenvalues computed at each time step. 
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Figure 12. (Ex. 2) Output Error Comparison (True vs. Identified - Initial 

Condition Determination in Identified Coordinate System) 

 

Using the fundamental theorem of algebra (which guarantees the existence of n  

solutions to polynomial equations of a fixed order n ), this is completely equivalent to 

plotting the coefficients of the corresponding time varying characteristic polynomials.  

Figure 13 clearly demonstrates that the eigenvalues of the identified and the true system 

matrices are indeed different and therefore it appears like no conclusions about the true 

physics of the problem can be made by such a comparison. This, at first blush agrees 

with conventional wisdom that no physical significance can be attributed to the 

(instantaneous) eigenvalues of a time varying system, especially from an input output 

stand point. Linear systems texts have given examples that show that one can have a 
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system matrix of zero in continuous time domain (identity matrix in discrete time 

domain). 

 

Figure 13. Coefficients of the Characteristic Equation : True and Identified (in 

Time Varying Coordinate Systems) 

Applying the transformations, defined in this chapter, the true and identified 

eigenvalues (magnitude) as seen in the coordinate system 0 0

f
T T=

 
 (in the observable 

sub space at time 0t , 
0

0

f
T

O ) are plotted as Figure 14. The corresponding time varying 

coefficients of the characteristic polynomial are shown to agree in Figure 15. 
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Figure 14. Coefficients of the Characteristic Equation : True and Identified (in 

Reference Coodinate System) 

 

Figure 15. Eigenvalue Magnitudes of the Time Varying System Matrix: True 

and Identified (in Reference Coodinate System) 
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Conclusion 

This chapter presents extensions of the celebrated Eigensystem Realization 

Algorithm for the identification of linear time invariant systems to realize linear models 

that are time varying in the discrete time domain. The time varying extensions are 

derived using established notions of generalized Markov parameters and the generalized 

Hankel matrix sequences, thereby extending the classical Ho-Kalman algorithm to 

include the realization of the time varying discrete time model sequences from input 

output data. It is shown that the models thus realized are in general obtained in different 

(arbitrary) coordinate systems, inherent to the general theory of time varying linear 

systems of differential (and difference) equations.  It is found subsequently, that the 

kinematically similar (topologically equivalent) realizations are indeed similar when 

observed from a single reference (albeit unknown) coordinate system. This novel result 

is introduced (and used) as a tool to compare different realizations obtained by several 

algorithms. A method to transform (more precisely project) the system models thus 

realized into a (generally unknown) common reference coordinate system is presented 

by construction of time varying projection operators. It is shown that the transformation 

matrices constructed project the realized system models into a space spanning the 

corresponding controllable or observable subspace at the reference time step. A method 

to isolate the time varying models for the first few (and last few) time steps using free 

response data from the unknown initial conditions is presented, thereby completing the 

sequence of models realized by the algorithm to every time step the experimental data is 

available. A least squares solution is presented to for the determination of generalized 
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Markov parameters using experimental data from repeated experiments. Numerical 

examples are presented to demonstrate the algorithmic methodologies and support the 

theoretical results of the chapter. 
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CHAPTER III 

OBSERVER/KALMAN FILTER TIME VARYING SYSTEM IDENTIFICATION 

Introduction  

From the developments of the previous chapter, it is clear that the generalized 

Markov parameters play a central role in the identification of the linear discrete time 

varying plant model sequences using the time varying eigensystem realization algorithm 

(TVERA). Also, towards the end of the chapter, it is pointed out that a computationally 

viable alternative strategy needs to be incorporated to overcome the practical limitation 

of the increasing number of repeated experiments required for the determination of the 

large number of generalized Markov parameters used by the TVERA computations. This 

is because, in practice, one cannot obtain a solution to the equations relating the very 

high dimensioned input output map to obtain the generalized Markov parameters.  

The presence of nonzero initial conditions prevents us from solving the 

generalized Markov parameters from the linear system of equations in a piece meal 

fashion. That is to say that solving several sets of equations similar in form to equation 

(2.54) at fixed time instances, say, 
ck
t is not practical or even possible since ˆ

ck
x is 

nonzero, in general. Furthermore, in systems where stability of the origin cannot be 

ascertained, the number of potentially significant generalized Markov parameters grows 

rapidly. This is because in case of the problems with an unstable origin, the output at 

every time step in the time varying case depends on the linear combinations of the 

(normalized) unit response functions of all the inputs applied until that instant (causal 
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inputs). Therefore the number of unknowns increase by *m r for each time step in the 

model sequence and consequently, the analyst is required to perform more experiments 

if a refined discrete time model is sought. This computational challenge has been among 

the main reasons for the lack of ready-adoption of the time varying subspace based 

identification methods.  

In this chapter, we introduce an asymptotically stable, time varying observer to 

remedy this problem of unbounded growth in the number of experiments. The algorithm 

developed as a consequence is called the time varying observer/Kalman filter system 

identification (TVOKID). In addition, the tools systematically developed in this chapter 

give an estimate on the least number of experiments one needs to perform for 

identification and/or recovery of all the Markov parameters of interest until that time 

instant. Furthermore, since the frequency response functions for time varying systems 

are not well known, the method outlined seems to be the one of the first practical ways 

to obtain the generalized Markov parameters bringing most of the generalized Markov 

parameter based discrete time varying identification methods to the table of the 

practicing engineer. Theoretical accomplishments of the chapter are equally important. 

Novel models relating input output data are developed and are found to be elegant 

extensions of the ARX models well known in the analysis of time invariant models. This 

generalization of the classical ARX model to the time varying case admits analogous 

recursive relations with the system Markov parameters as was developed in the time 

invariant case. The analogy goes even further and enables us to define a dead beat 

condition for time varying systems. The generalization of this deadbeat definition is 
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rather unique and general for the time varying systems as it was shown that not all the 

time varying eigenvalues need to be zero for the closed loop to be called dead beat. 

Further, it is demonstrated that the time varying observer sequence (dead beat or 

otherwise) realized from the generalized ARX (GTV-ARX) model is realized in a 

compatible coordinate system with the identified plant model sequence. Relations with 

the time varying Kalman observer are made comparing features of the parameters of the 

Kalman observer with the time varying observer realized from the generalized OKID 

procedure presented in the chapter.   

 

Basic Formulation  

We start by revisiting the relations between the input output sets of vectors via 

the system Markov parameters as developed in the theory concerning the time varying 

eigensystem realization algorithm (TVERA) developed in the previous chapter. The 

fundamental difference equations governing the evolution of a linear system in discrete 

time are given by (repeated here for convenience of presentation),  

 1k k k k kA B+ = +x x u  (3.1) 

Together with the measurement equations,  

 k k k k kC D= +y x u  (3.2) 

with the state, output and input dimensions , ,
n m r

k k k∈ ∈ ∈x y uℝ ℝ ℝ  and the system 

matrices to be of compatible dimensions k∀ ∈ℤ , an index set. The solution for the state 

evolution (the linear time varying discrete time difference equation solution) is given by,  
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 ( ) ( )
0

1

0 0, , 1
k

k j j

j k

k k k j B
−

=

= Φ + Φ +∑x x u  (3.3) 

0 1k k∀ ≥ + , where the state transition matrix, ( ).,.Φ is defined as,  

 ( )
0

1 2 0

0 0

0

... ,   

, ,                      

undefined,       

k k k
A A A k k

k k I k k

k k

− − ∀ >


Φ = =
 ∀ <

 (3.4) 

Using the definition of the compound state transition matrix, the input output 

relationship is given by,  

 ( ) ( )
1

0

0

,0 , 1
k

k k k j j k k

j

C k C k j B D
−

=

= Φ + Φ + +∑y x u u  (3.5) 

This enables us to define the input output relationship in terms of the two index 

coefficients as, 

 ( )
1

0 ,

0

,0
k

k k k j j k k

j

C k h D
−

=

= Φ + +∑y x u u  (3.6) 

where the generalized Markov parameters are defined to be given by, 

 

( )
, 1

, 1 ,   1

,              1

     0,                    1

k i

k i k k

C k i B i k

h C B i k

i k

−

 Φ + ∀ < −


= = −
 ∀ > −

 (3.7) 

From now on, we use the expanded form of the state transition matrix ( ).,.Φ to improve 

the clarity of the presentation. Thus the output at any general time step kt is related to the 

initial conditions and all the inputs as,  
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0 0 0 0 0

0

1

1 1 11 1
... ...

k

k

k k k k k k k kk k k k k

k

C A A A D C B C A A B
−

− − −+ +

 
 
  = +   
 
  

u

u
y x

u

⋯
⋮

 (3.8) 

where 0k can denote any general time step prior to k (in particular let us assume it to 

denote the initial time such that 0 0k = ). As was pointed out in the introduction and the 

previous chapter, such a relationship between the input and output leads to a problem 

that increases by *m r parameters for every time step considered and the number of 

unique experiments required in order to obtain a unique solution for the generalized 

Markov parameters also increases correspondingly.  Thus it becomes difficult to 

compute the increasing number of unknown parameters for reasons of numerical 

stability (larger system of unknowns and equations) and practicality of carrying out ever 

larger number of experiments. In the special case of systems whose open loop is 

asymptotically stable, this is not a problem. However, frequently, one seeks to use 

identification in problems which do not have a stable origin for control and estimation 

purposes. Hence in such problems we need to explore alternative methods in which plant 

parameter models can be realized from input output data. A viable alternative is 

developed in the following section.  

The central assumption involved in the developments of this chapter is that(in 

order to obtain the system and Observer Markov parameters for all time steps involved), 

one should start the experiments from zero initial conditions or from the same initial 

conditions each time the experiment is performed. Although the more general case of the 
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presence of initial condition response included in the output data is soluble, the 

calculations involved in determining the first few Markov parameters become involved 

and formulations are considerably more tedious, warranting a separate discussion. Most 

importantly since the connections between time varying ARX model and the state space 

model parameters and a discussion on the associated observer are complex enough, we 

proceed with the presentation of the algorithm under the assumption that each 

experiment is performed with zero initial conditions. 

 

Input Output Representations: Observer Markov Parameters 

The situation we face for the time varying systems is quite analogous to the 

problem of estimation of the modes for a lightly damped flexible spacecraft structure in 

the time invariant case (ref. Chapter VI in the book by Juang[1]). In the identification 

problem involving a lightly damped structure, one has to track a large number of Markov 

parameters to obtain reasonable accuracy for the modal parameters in question. An 

effective method for “compressing” experimental input output data, called 

Observer/Kalman Filter Markov Parameter Identification (OKID) Theory was developed 

by Juang et. al.,[1, 10, 25] for such problems. In this section, we generalize these 

classical observer based schemes for determination of generalized Markov parameters. 

The concept of frequency response functions that enables the determination of system 

Markov parameters for time invariant system identification does not have a clear 

analogous theory in case of the time varying models. Therefore, the method described 

here-in constitutes one of the first efforts to efficiently compute the generalized Markov 
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parameters from experimental data. Importantly, for the first time, we are also able to 

isolate a minimum number of repeated experiments to help the practicing engineer to 

plan the experiments required for identification, apriori. 

Following the observations of the previous researchers, consider the use of an 

“output – feedback” style gain (time varying) sequence in the difference equation model 

Eq. (3.1) governing the linear plant, given by,  

 

( ) ( )

( )

1

      

      

      

k k k k k k k k k

k k k k k k k k k k

k

k k k k k k

k

k k k k

A B G G

A G C B G D G

A B G D G

A B

+ = + + −

= + + + −

 
 = + + −   

 

= +

x x u y y

x u y

u
x

y

x υ

⋮

 (3.9) 

with no change in the measurement equations at the time step kt ,  

 k k k k kC D= +y x u  (3.10) 

The outputs at the consecutive time steps, starting from the initial time step 

( )0 0denoted by 0t k =  are therefore written as,  

 

0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1

1 1,

2 2 1 2 2 2 1 1 2 1

2 1 2 2

  

       

       

k k k k k

k k k k k k k k k

k k k k k k k k

k k k k k k k k k k k k k k

k k k k k k

C D

C A D C B

C A D h

C A A D C B C A B

C A A D h

+ + + + +

+ +

+ + + + + + + + + +

+ + + +

= +

= + +

= + +

= + + +

= + +

y x u

y x u υ

x u υ

y x u υ υ

x u
0 0 0 0 0 02, 1 1 2,

...

k k k k k k
h

+ + + +
+υ υ

 (3.11) 

with the definition of generalized observer Markov parameters, 
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1 2 1

, 1

... ,   1

,              1

     0,                    1

k k k i i

k i k k

C A A A B k i

h C B k i

k i

− − +

−

 ∀ > +


= = +
 ∀ < +

 (3.12) 

arriving at the general relationship,  

 

0

0 0

1

1 ,

1

...
k k

k k k k k k k j k jk k
j

C A A D h
− −

− − −
=

= + + ∑y x u υ  (3.13) 

We point out that the generalized observer Markov parameters have two block 

components similar to the linear time invariant case shown in the partitions to be,  

 ( )
( ) ( )

, 1 1

1 1 1 1

1 2

, ,

...

        ... ...

        

k k j k k k j k j

k k k j k j k j k j k k k j k j

k k j k k j

h C A A B

C A A B G C C A A G

h h

− − − + −

− − + − − − − − + −

− −

=

 = + − 

 = − 

 (3.14) 

where, as will be derived in the subsequent developments of this chapter, the partitions 

( ) ( )1 2

, ,,k k j k k jh h− − are used in the calculations of system Markov parameters and the time 

varying observer gain sequence. The closed loop thus constructed, is now forced to have 

an asymptotically stable origin. The goal of an observer constructed in such a fashion is 

to enforce certain desirable (stabilizing) characteristics in to the closed loop (e.g., dead 

beat – like stabilization, etc.).  

The first step involved in achieving this goal of closed loop asymptotic stability 

is to choose the number of time steps kp (variable each time in general) sufficiently large 

so that the output of the plant (at 
kk p

t
+
) strictly depends on only the 1kp + previous 
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augmented control inputs { }1 1
,

k

k

p

k j k pj+ − +=
υ u  and independent of the state at every time 

step kt . Therefore by writing,  

 

11 , 1
1

1, 1
1

...

      

k

k k k k k k

k

k k k

p

k k k jk p k p k p k p k p k p k j
j

p

k jk p k p k p k j
j

C A A D h

D h

+ −+ + + − + + + + −
=

+ −+ + + + −
=

= + +

≈ +

∑

∑

y x u υ

u υ

 (3.15) 

we have set 
1
...

k k
k kk p k p

C A A
+ + −

=x 0  (with exact equality assignable i.e., 

1... 0k p k p k kC A A+ + − =x , in the absence of measurement noise 0,1,..., fk k∀ = ). This leads 

to the construction of a generalized time varying autoregressive model with exogenous 

input (a familiar acronym, GTV-ARX is coined to represent this model) at every time 

step. Note that the order ( )kp  of the GTV-ARX model can also change with time (the 

term “generalized” is used to describe this variability in the order of the realized model). 

This variation and complexity provides a larger number of observer gains at the disposal 

of the analyst under the time varying OKID framework. In using this input output 

relationship (Eq.(3.15)) instead of the exact relationship given in Eq.(3.8), we introduce 

damping into the closed loop. For simplicity and ease in implementation (and 

understanding), we consider the generally variable order to remain fixed and minimum 

(dead beat) at each time step. That is to say, minkp p p= =  where minp  is the smallest 

positive integer such that minp mn≥ . This restriction, (albeit unnecessary) forces a time 

varying dead beat  observer and includes elements of linear time invariance (shift 

invariance) in the (closed loop) behavior of observer Markov parameters, providing ease 
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in calculations by requiring only the minimum number of repeated experiments to be 

performed. It turns out that the dead beat conditions are different in the case of time 

varying systems, due to the transition matrix product conditions (Eq. (3.15) and Eq. 

(3.16)) that are set to zero. This situation is in contrast with (and is a modest 

generalization of the situation in) the time invariant systems where higher powers of the 

system matrix give sufficient conditions to place all the closed loop system poles at the 

origin (dead-beat). The nature and properties of the time varying dead beat condition are 

briefly summarized in the Appendix C, along with an example problem, owing to the 

fact that considerations of the time varying dead beat condition appear sparse, if not 

completely heretofore unknown in modern literature.   

If the repeated experiments (as derived and presented in[26, 27]) are performed 

so as to compute a least squares solution to the input output behavior conjectured in Eq. 

(3.15), we have identified the system (together with the observer-in-the-loop) that 

achieves zero kx  state response after 1p + time steps. In other words, k py +  does not 

depend on the state kx  due to the least squares solution of the linear system of equations 

in (3.15). Stating the same in a vector – matrix form, for any time step kt (denoted by k  

and k p∀ > ) we have that,  

 

1

, 1 , 2 , 2

k

k

k k k k k k k k p k

k p

D h h h

−

− − − −

−

 
 
 
  =    
 
 
 

u

υ

y υ

υ

⋯

⋮

 (3.16) 
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 This represents a set of m equations in ( )( )*m r p r m× + +  unknowns. Notice that, in 

contrast to the developments using the generalized system Markov parameters, (to relate 

the input output data sets; refer to discussions around Eq. (3.8), the previous chapter, the 

companion papers [20, 26, 27] and the references there-in for more information) the 

number of unknowns remains constant in this case. This makes the computation of 

observer Markov parameters possible in practice since the number of repeated 

experiments required to compute these parameters is now ideally constant (derived 

below) and does not change with the discrete time step kt . In fact, it is observed that the 

minimum number if experiments necessary to determine the observer Markov 

parameters uniquely is ( )( )min

exp *N r p r m= + + , and from the developments of the 

subsequent sections (including chapter II and relevant papers), we can say that min

expN  is 

also the minimum number of repeated experiments one should perform in order to 

realize the time varying system models desired from the TVERA. 

 

( ) ( ) ( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1 2

1 2

1 2

1 1 1

1 2
, 1 , 2 , 2 2 2

1 2

 

  

  

N

k k k k

N

k k k

N

k k k

N
k k k k k k k p k k k

N

k p k p k p

k k

D h h h

− − −

− − − − − −

− − −

 =  

 
 
 
  =    
 
 
  

=

Y y y y

u u u

υ υ υ

υ υ υ

υ υ υ

M V

…

⋯ ⋯

⋮ ⋮ ⋮

 (3.17) 

k p∀ > .  
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Therefore the least squares solution for the generalized observer Markov parameters is 

given for each time step as,  

 
†ˆ

k k k=M Y V  (3.18) 

where ( )†. denotes the least squares pseudo inverse of a matrix [21, 22].  The calculation 

of the system Markov parameters and observer gain Markov parameters is detailed in the 

next section.  

 

Computation of Generalized System Markov Parameters and Observer Gain 

Sequence 

We first outline a process for the determination of system Markov parameter 

sequence from the observer Markov parameter sequence calculated in the previous 

section. A recursive relationship is then given to obtain the system Markov parameters 

with the index difference of greater than p time steps. Similar procedures are set up for 

observer gain Markov parameter sequences. 

 

Computation of System Markov Parameters from Observer Markov Parameters 

Considering the definition of the generalized observer Markov parameters, we 

write,  

 ( )
( ) ( )

, 1 1

1 1 1 1

1 2

, 1 , 1

       

       

k k k k

k k k k k

k k k k

h C B

C B G D G

h h

− −

− − − −

− −

=

 = + − 

 = − 

 (3.19) 
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where the superscript ( )( )1,2
.  notation is used to distinguish between the Markov 

parameter sequences useful to compute the system parameters and the observer gains 

respectively. Consider the following manipulation written as,  

 

( ) ( )1 2

, 1 , 1 1 1

, 1                          

k k k k k k k

k k

h h D C B

h

− − − −

−

− =

=
 (3.20) 

Considering a similar expression for Markov parameters with two time steps between 

them, we have that,  

 

( ) ( )

( )

( )

1 2

, 2 , 2 2 1 2 1 2 2

1 2 2 1 2 2

1 2

1 1 1 2

                          

                          

                          

               

k k k k k k k k k k k k

k k k k k k k k

k k k

k k k k k

h h D C A B C A G D

C A B G C A G D

C A B

C A G C B

− − − − − − − −

− − − − − −

− −

− − − −

− = −

= + −

=

= +

( )

( )

1

1 2 , 1 1 2

1

, 2 , 1 1, 2

           

                          

k k k k k k k

k k k k k k

C A B h C B

h h h

− − − − −

− − − −

= +

= +

 (3.21) 

This manipulation leads to an elegant expression for the system Markov 

parameter , 2k kh − to be calculated from observer Markov parameters at the time step kt and 

the system Markov parameters at previous time steps. This important recursive 

relationship was found to hold in general and enables the calculation of the system 

Markov parameters (unadorned ,i jh ) from the observer Markov parameters ,i jh .    

To prove this holds in general, consider the induction step with observer Markov 

parameters (with p time step separation) given by,  
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( ) ( ) ( )

( )

1 2

, , 1 2 1 1 2 1

1 2 1

1 2 2 1 1 1

... ...

                           ...

                           ...

k k p k k p k p k k k k p k p k p k p k k k k p k p k p

k k k k p k p

k k k k p k p k p k p k

h h D C A A A B G D C A A A G D

C A A A B

C A A A A G C B

− − − − − − + − − − − − − + − −

− − − + −

− − − + − + − + − + −

− = + −

=

= +

( )

1 2 2 1 1 2 2 1 1

2

1 2 2 1 , 1 1,

                           ... ...

                           ...

p

k k k k p k p k p k k k k p k p k p k p

k k k k p k p k p k k p k p k p

C A A A A B C A A A G C B

C A A A A B h h

− − − + − + − − − − + − + − + −

− − − + − + − − + − + −

= +

= +

 

  (3.22) 

Upon careful examination, we find that the term 1 2 2 1...k k k k p k p k pC A A A A B− − − + − + − can be 

written as,  

 

( )1 2 2 1 1 3 2 2 2 1

1 2 1 1 2 2 1

1 2 1 ,
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                   ... ...

                   ...
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( ) ( )

2
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                   ...
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h

C A A B h h h h h h

h h h h h h
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− − + − − − − − − − − + − + −

− − − − − − −

=

= + + + +

= + + + + ( )2
2 2,k p k p k ph− + − + −

 

  (3.23) 

This manipulation enables us to write,   

 

( ) ( ) ( ) ( ) ( )

( )

1 2 2 2 2

, , , , 1 1, , 2 2, , 1 1,

1
2

, , 1 1,

1

...k k p k k p k p k k p k k k k p k k k k p k k p k p k p

p

k k p k k k k p

j

h h D h h h h h h h

h h h

− − − − − − − − − − − + − + −

−

− − − −
=

− = + + + +

= +∑
 (3.24) 

Writing the derived relationships between the system and observer Markov parameters, 

we have the following set of equations,  
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( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

, 1 , 1 , 1 1

2 1 2

, 2 , 1 1, 2 , 2 , 2 2

2 2 1 2

, , 1 1, , 1 1, , ,
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...

k k k k k k k

k k k k k k k k k k k

k k p k k k k p k k p k p k p k k p k k p k p

h h h D

h h h h h D

h h h h h h h D

− − − −

− − − − − − −

− − − − − + − + − − − −

= −

+ = −

+ + + = −

 (3.25) 

Defining 
( ) ( )1 2

, , ,:i j i j i j jr h h D= − , we obtain the system of linear equations relating the system 

and observer Markov parameters as,  

 

( ) ( ) ( )

( ) ( )

2 2 2

, 1 , 2 , 1 , 1 , 2 ,

2 2
1, 2 1,1, 2 1, 2

1,

 

00

0 00 0    0     
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I h h h h h h

h hI h h

hI
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− + −

   
   
   
   
   
     

⋯ ⋯

⋯⋯

⋮ ⋮ ⋱ ⋮⋮ ⋮ ⋱ ⋮

⋯⋯

, 1 , 2 ,

1, 2 1,

1,

0
                                    

0 0

k k k k k k p

k k k k p

k p k p

r r r

r r

r

− − −

− − − −

− + −

 
 
 =
 
 
  

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 

  (3.26) 

We note the striking similarity of this equation to the relation between observer Markov 

parameters and the system Markov parameters in the classical OKID algorithm for time 

invariant systems (compare coefficient matrix of Eq. (3.26) with equation (6.8) of 

Juang[1]).  

Considering the expressions for , 1 1: ...k k p k k k p k ph C A A B− − − + −=  and choosing 

p sufficiently large, we see, (owing to the asymptotic stability of the closed loop - 

including the observer), that , 0k k ph − ≈ . This fact enables us to establish recursive 

relationships for the calculation of the system Markov parameters , ,  k k ih i p− ∀ > . 
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Generalizing the equation (3.24), (to introduce the variability of the order of the GTV-

ARX model)  we see that,  

 
( ) ( ) ( )

1
1 2 2

, , , , ,

1

i

k k i k k i k k i k i k k j k j k i

j

h h h D h h
−

− − − − − − −
=

= − −∑  (3.27) 

ki p∀ > . Then based on the approximation made in equation (3.16) for the calculation of 

the generalized observer Markov parameters, all the terms with time step separation 

greater than p vanish identically, and we obtain the relationship,  

 
( )2

, , ,

1

p

k k i k k j k j k i

j

h h h− − − −
=

= −∑  (3.28) 

We remind ourselves in passing that this recursive relation in the general case of 

variability in the GTV-ARX model order depending on the time step, the corresponding 

recursions to evaluate time varying system Markov parameters should reflect such a 

variability, that is to say, for each ki p>  

 
( )2

, , ,

1

kp

k k i k k j k j k i

j

h h h− − − −
=

= −∑  (3.29) 

For maintaining the simplicity of the presentations here-in, we will not make further 

references to the variable order option in the subsequent developments of the 

chapter/dissertation. Insight in to the flexibility is provided by appealing to the relations 

of the identified observer with a linear time varying Kalman filter in the next section of 

this chapter. 
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Computation of Observer Gain Markov Parameters from the Observer Markov 

Parameters 

Consider the generalized observer gain Markov parameters defined as,  

 

1 2 1

, 1

... ,   1

,              1

     0,                    1

k k k i i

o

k i k k

C A A A G k i

h C G k i

k i

− − +

−

 ∀ > +


= = +
 ∀ < +

 (3.30) 

We now derive the relationship between these parameters and the time varying ARX 

model coefficients, 
( )2
,k jh . These parameters will be used in the calculation of the observer 

gain sequence from the input output data in the next subsection, an elegant 

generalization of the time invariant relations obtained in [1, 10] similar to equation 

(3.26).  

From their corresponding definitions, we note that  

 
( )2
, 1 1 , 1

o

k k k k k kh C G h− − −= =  (3.31) 

Similarly,  

 

( )

( ) ( )

2

, 2 1 2

2

1 1 1 2 , 2 , 1 1, 2       

k k k k k

o o

k k k k k k k k k k k

h C A G

C A G C G h h h

− − −

− − − − − − − −

=

= + = +
 (3.32) 

  We find that in general an induction step similar to equation (3.22) holds and is given 

by,  



 

 

70

 

( )

( )

2

, 1 2 1

1 2 2 1 1 1

1 2 2 1 1 2 2 1 1

1 2 2 1 ,

...

        ...

        ... ...

        ...

k k p k k k k p k p

k k k k p k p k p k p k p
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 (3.33) 

where we used the identity derived in the equation (3.23) (replace k pB − in favor of k pG − ). 

This enables us to write the general relationship,  

 
( ) ( )

1
2 2

, , , ,

1

j
o o

k k j k k j k k i k i k j

i

h h h h
−

− − − − −
=

= +∑  (3.34) 

j
+∀ ∈ℤ analogous to relation (3.27) in case of the system Markov parameters. Also, 

similar to (3.28) we have the appropriate recursive relationship for the observer gain 

Markov parameters separated by more than p time steps for each k  given as,  

 
( )2

, , ,

1

p
o o

k k j k k i k i k j

i

h h h− − − −
=

= −∑  (3.35) 

kj p∀ > . Therefore to calculate the observer gain Markov parameters we have a similar 

upper block – triangular system of linear equations which can be written as,  
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⋯

 

  (3.36) 

to be solved at each time step k . Having outlined a method to compute the observer gain 

Markov parameters, let us now proceed to look at the procedure to extract the observer 

gain sequence from them.  

 

Calculation of the Realized Time Varying Observer Gain Sequence 

 From the definition of the observer gain Markov parameters, (recall equation 

(3.30)) we can stack the first few parameters in a tall matrix and observe that,  
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Such that a least squares solution for the gain matrix at each time step is given by,  

 
( )†
1

m

k k kG O P+=  (3.38) 

However from the discussions about coordinate transformations in the previous chapter, 

we find that it is indeed impossible to determine the observability grammian in the true 

coordinate system[26], as suggested by Eq. (3.38) above. The computed (rather 

decomposed from the generalized Hankel matrix) observability grammian is, in general 

in a time varying and unknown coordinate system denoted by, 
( ) 1

1
km T

kO
+

+ at the time step 

1kt + . We will now show that the gain computed from this time varying observability 

grammian (computed) will be consistent with the time varying coordinates of the plant 

model computed by the Time Varying Eigensystem Realization Algorithm (TVERA) 

presented in the previous chapter. Therefore upon using the computed observability 

grammian (in its own time varying coordinate system) and proceeding with the gain 

calculation as indicated by the Eq. (3.38) above, we arrive at a consistent computed gain 

matrix. That is to say that,  
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( )

( )
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1

1 1

1

1 1 1

1

1 1

1
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+
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−
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−
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+

=

=

=

=

 (3.39) 

Such that, 

 
( )( )1

†
1

1 1 1
ˆ km T

k k k k kG T G O P+−
+ + += =  (3.40) 
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therefore, with no explicit intervention by the analyst, the realized gains are 

automatically in the right coordinate system for producing the appropriate time varying 

OKID closed loop. For consistency, it is often convenient, if one obtains the first few 

time step models as included in the developments of the previous chapter. This 

automatically gives the observability grammians for the first few time steps to calculate 

the corresponding observer gain matrix values. To see that the gain sequence computed 

by the algorithm is indeed in consistent coordinate systems, recall the identified system, 

control influence and the measurement sensitivity matrices in the time varying 

coordinate systems, to be derived as (refer to the previous chapter and related paper[26]) 

:  

 

1

1

1

1

ˆ

ˆ

ˆ

k k k k

k k k

k k k

A T A T

B T B

C C T

−
+

−
+

=

=

=

 (3.41) 

The time varying OKID closed loop system matrix, with the realized gain matrix 

sequence is seen to be consistently given as,  

 ( )1

1
ˆ ˆ ˆ
k k k k k k k kA G C T A G C T−

++ = +  (3.42) 

in a kinematically similar fashion to the true time varying OKID closed loop. The nature 

of the computed stabilizing (time varying dead – beat) gain sequence are best viewed 

from a reference coordinate system as opposed to the time varying coordinate systems 

computed by the algorithm. The projection based transformations can be used for this 

purpose and are discussed in the previous chapter. 
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Relationship Between the Identified Observer and a Kalman Filter 

We now qualitatively discuss several features of the observer realized from the 

algorithm presented in the previous section. Constructing the closed loop of the observer 

dynamics, it can be found to be asymptotically stable as purported at the design stage. 

Following the developments of the time invariant OKID algorithm[10], we use the well 

understood time varying Kalman filter theory to make some intuitive observations. 

These observations help us to further our understanding of important issues concerning 

how the newly developed GTV-ARX model is a potential generalization/extension of the 

ARX model well known in the time invariant case. Insight is also obtained as to what 

happens in the presence of measurement noise. An immediate intuitive leap one can 

make is that in the practical situation where there is process and measurement noise in 

the data, the GTV-ARX model becomes a moving average model that can be termed as 

the GTV-ARMAX (Generalized time varying autoregressive moving average with 

exogenous input) model (generalized is used to indicate variable order at each time step). 

A detailed quantitative examination of this situation is beyond the scope of the current 

investigation and the author limits his discussions to possible speculations on the 

qualitative relations.  

The well known Kalman filter equations for a truth model given in equation 

(A.1) of the appendix B are given by,  

 

1

1

ˆ ˆ

or

ˆ ˆ

k k k k k

k k k k k k k k k k

A B

A I K C B A K

− +
+

− −
+

= +

 = − + + 

x x u

x x u y

 (3.43) 
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together with the propagated output equation,  

 ˆ ˆ
k k k k kC D
− −= +y x u  (3.44) 

where the gain kK is optimal (expression in equation(A.16)). As documented in the 

standard estimation theory text books, optimality translates to any one of the equivalent 

necessary conditions of minimum variance, maximum likelihood, orthogonality or 

Bayesian schemes well known for linear estimation problems. A brief review of the 

expressions for the optimal gain sequence is derived in the appendix which also provides 

an insight into the useful notion of orthogonality of the discrete innovations process, in 

addition to deriving an expression for the optimal gain matrix sequence (ref. equation 

(A.16) for an expression for the optimal gain). From an input-output standpoint the 

innovations approach provides the most insight for analysis and is used in this section. 

Using the definition of the innovations process ˆ:k k k

−= −ε y y , the measurement equation 

of the estimator in (3.44) can be written in favor of the system outputs as given by,  

 ˆ
k k k k k kC D

−= + +y x u ε  (3.45) 

Rearranging the state propagation and update equation of (3.43), we arrive at a form 

given by,  

 
1

ˆ ˆ

ˆ      

k k k k k k k k k k

k k k k

A I K C B A K

A B

− −
+

−

 = − + + 

= +

x x u y

x vɶ ɶ
 (3.46) 

with the definitions,  
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k k k k
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B B A K

 = − 

 =  

 
=  
 

u
v

y

ɶ

ɶ  (3.47) 

Notice the structural similarity in the layout of the rearranged equations to the time 

varying OKID equations in the previous sections. This rearrangement helps in making 

comparisons and observations as to what are the conditions in which we actually manage 

to obtain the Kalman filter gain sequence. 

Starting from the initial condition, the input-output relation of the Kalman filter 

equations can be written as,  
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 (3.48) 

suggesting the general relationship,  

 

1
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+ −

−
+ + + − + + + + − + − +
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= + + +∑y x u υ εɶɶ ɶ  (3.49) 

with the Kalman filter Markov parameters ,k ihɶ  being defined by, 

 

1 2 1
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Comparing the equations (3.13) and (3.49) we conclude that their input-output 

representations are identical for a suitable choice of p  (i.e., k p∀ > ), if 

k k kG A K= − together with the additional condition that 0,k k p= ∀ >ε . Therefore under 

these conditions our algorithm is expected to produce a gain sequence that is optimal. In 

the presence of noise in the output data, the additional requirement is to satisfy the 

orthogonality (innovations property) of the residual sequence, as derived in the 

appendix.  

 However, we proceeded to enforce the p (in general kp ) term dependence in 

equation (3.15) using the additional freedom obtained due to the variability of the time 

varying observer gains. This enabled us to minimize the number of repeated experiments 

and the number of computations while also arriving at the fastest observer gain sequence 

owing to the definitions of time varying dead beat observer notions set up in this 

dissertation (Appendix C). Notice that the Kalman filter equations are in general not 

truncated to the first ( )kp p terms. An immediate question arises as to whether we can 

ever obtain the “optimal” gain sequence using the truncated representation for gain 

calculation.  

 To answer this question qualitatively, we consider the input output behavior of 

the true Kalman filter in (3.49). Observe that Kalman gains can indeed be constructed so 

as to obtain matching truncated representations as the GTV-ARX (more precisely GTV 

– ARMAX) model as in equation (3.15) via the appropriate choice of the tuning 

parameters 0 , kP Q . In the GTV-ARMAX parlance using a lower order for kp (at any 
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given time step) means the incorporation of a forgetting factor which in the Kalman 

filter framework is tantamount to using larger values for the process noise parameter 

kQ (at the same time instant). Therefore, the generalized time varying ARX and ARMA 

models used for the observer gain sequence and the system Markov parameter sequence 

in the algorithmic developments of this chapter are intimately tied in to the tuning 

parameters of the Kalman filter and represent the fundamental balance existing in 

statistical learning theory between ignorance of the model for the dynamical system and 

incorporation of new information from measurements. Further research is required to 

develop a more quantitative relation between the observer identified using the 

developments of the paper and the time varying Kalman filter gain sequence.  

 

Numerical Example 

We now detail the problem of computing the generalized system Markov 

parameters from the computed observer Markov parameters as outlined in the previous 

section. Consider the same system presented as one of the example problems in the 

previous chapter. It has an oscillatory nature and does not have a stable origin. The truth 

model of the plant system matrix (recall example 2 from chapter II, repeated here for 

convenience) as  



 

 

79

 

exp
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,   ,   
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0.1
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 = ∗∆ 

 
 −   = =    − − 
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− 

 
=  

 

 (3.51) 

where the matrix is given by  

 
2 2 2 2

2 2

0

0
c

t

I
A

K

× ×

×

 
=  

− 
 (3.52) 

with 
4 3 1

1 7 3

k

t

k

K
τ

τ

 + −
=  ′− + 

and ,k kτ τ ′ are defined as ( ) ( )sin 10 ,   : cos 10k k k kt tτ τ ′= = . 

The time varying OKID algorithm, as described in the previous sections of this chapter 

is applied to this example to calculate the system Markov parameters and the observer 

gain Markov parameters from the simulated repeated experimental data. The system 

Markov parameters thus computed are used by the TVERA algorithm of the previous 

chapter to realize system model sequence for all the time steps for which experimental 

data is available. We demonstrate the computations of the algorithm using the time 

varying dead-beat observer where the smallest order for the GTV-ARX model is chosen 

throughout the time history of the identification process. Appendix C details the 

definition of time varying dead beat observer, for the convenience of the readers along 

with a representative closed loop sequence result using the example problem presented 

in this section. Relating to the discussions of the previous section, intuitively, the dead 

beat observer realized by the computations mean that the process noise is set very high 
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as the forgetting factor of the GTV-ARX model is implied to be largest possible for 

unique identification of the coefficients. The time history of the open loop and the closed 

loop eigenvalues as viewed from the coordinate system of the initial condition response 

decomposition is plotted in the Figure 16.  

 

Figure 16. Case 1: Plant Open Loop vs. OKID Closed Loop Pole Locations ( 

Minimum No of Repeated Experiments) 

The accuracy of the Markov parameters computed using OKID algorithm 

presented in the current chapter is compared with the accuracy of the Markov parameters 

computed using the least squares solution presented in the previous chapter. The 

agreement is remarkable, as plotted in Figure 17 (especially considering the fact that 

only ( )( )min

exp *N r p r m= + + = 10 experiments were performed). Performing larger 
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number of experiments in general leads to similar level of accuracy as shown in Figure 

18. However in this case the fastest observer is not realized.  

 

Figure 17. Case 1: Error in System Markov Parameter Calculations (Minimum 

No of Repeated Experiments = 10) 
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Figure 18. Case 2: Error in Markov Parameters Computations (Non-Minimum 

Number of Repeated Experiments) 

The error incurred in the calculation of the system Markov parameter is directly 

reflected in the output error between the computed and true system response to test 

functions. It was found to be of the same order of magnitude (and never greater) in 

several representative situations incorporating various test case truth models. The 

corresponding output error plots for Markov parameters with error profiles plotted in 

Figure 17 and Figure 18 are shown in Figure 19 and Figure 20 respectively.  
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Figure 19. Case 1: Error in Outputs (Minimum No of Repeated Experiments) 

 

Figure 20. Case 2: Error in Outputs for Test Functions (True vs. Identified Plant 

Model) 
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Because the considered system is unstable (oscillatory) in nature, the initial 

condition response was used to check the nature of decay of the loop system in the 

presence of the identified observer. The open loop response of the system (with no 

observer in the loop) and the closed loop response including the realized observer is 

plotted in Figure 21. Note the oscillatory nature of the open loop outputs (demonstrating 

the instability of the origin of the system under consideration) while the closed loop 

system response decays in precisely two time steps to zero response. This decay to zero 

was exponential and too steep to plot for the (time varying) dead beat case. However 

when the order was chosen to be slightly higher (near dead beat observer is realized in 

this case and therefore it takes more than two steps for the response to decay to zero), a 

log scale plot of the magnitudes of output channels shows the steepness of decay of the 

initial condition response for the open loop and closed loop (with OKID realized 

observer in the loop) system. This is shown as a demonstration for the achievement of 

near-exponential time varying feedback stabilization of the origin of the closed loop 

system. The gain history of the realized time varying observer gains as seen in the initial 

condition coordinate system is plotted as Figure 22. 



 

 

85

 

Figure 21. Case 1: Open Loop vs. OKID Closed Loop Response to Initial 

Conditions  

 

Figure 22. Closed Loop vs. Open Loop Response for a Test Situation Showing 

Exponential Decay (p=4) 
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The history of the time varying gains realized in the calculations outlined in this chapter 

is plotted in the Figure 23. As shown in the theoretical developments of this chapter the 

gains thus realized were found to be in the time varying coordinate systems. Here we 

plot the gains after transformation into the reference coordinates. 

 

Figure 23. Case 1: Gain History (Minimum No. of Repeated Experiments) 

Conclusion 

This chapter provides an algorithm for efficient computation of system Markov 

parameters for use in time varying system identification algorithms. An observer is 

inserted in the input – output relations and this leads to effective utilization of the data in 

computation of the system Markov parameters. As a byproduct one gets an observer gain 

sequence in the same coordinate system as the system models realized by the time 
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varying system identification algorithm. The efficiency of the method in bringing down 

the number of experiments and computations involved is improved further by truncation 

of the number of significant terms in the input output description of the closed loop 

observer, providing a time varying dead beat observer gain sequence. In addition to the 

flexibility achieved in using a time varying ARX model, it is shown that one could 

indeed use models with variable order. Relationship with a Kalman filter is detailed from 

an input-output stand point. It is shown that the flexibility of variable order moving 

average model realized in the time varying OKID computations is related to the 

forgetting factor introduced by the process noise tuning parameter of the Kalman filter. 

The working of the algorithm is demonstrated using a simple example problem. 
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CHAPTER IV 

CONTINUOUS-TIME BILINEAR SYSTEM IDENTIFICATION  

Introduction 

As we observed in the introduction chapter, advances in sensor and actuator 

technology of the 21
st
 century has lead to the confluence of many model based state 

estimation and control strategies for high performance of dynamical systems. Methods 

for realizing linear time invariant models of dynamical systems have matured and over 

the past two decades, some advances have been made to realize linear time varying 

system models and bring the broad field of linear system identification to a mature state 

of development. However, much work remains to be done in case of the realization of 

nonlinear models. The simplest nonlinear system model is of a bilinear plant model with 

a state control input coupling term in addition to a linear term. 

 

Basic Formulation 

Following the notations of Juang[23], consider the state vector being denoted by 

( ) nt ∈x ℝ ; together with the control input being denoted by ( ) rt ∈u ℝ . The model 

governing the state evolution for the class of bilinear systems we consider in this 

dissertation to be given by the ordinary differential equations,  

 
1

r

c c ci i

i

A B N u
=

= + +∑x x u xɺ  (4.1) 
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where the system matrix 
n n

cA
×∈ℝ , control influence matrix 

n r

cB
×∈ℝ  and the 

th
i  state-

control coupling matrix 
n n

ciN
×∈ℝ are assumed to be constant functions of time (time-

invariant). We assume the measurement equations are given by the linear measurement 

model,  

 ( ) ( ) ( )t C t D t= +y x u  (4.2) 

where 
1m×∈y ℝ is the output matrix relating the instantaneous state and control input 

values to the output, together with the time invariant direct transmission matrix 

m r
D

×∈ℝ and the measurement sensitivity matrix 
m n

C
×∈ℝ . The algorithm presented 

here-in relies on the central observation made by Juang [23] that the bilinear system of 

equations becomes a linear time invariant system upon the application of constant 

forcing functions. We now present the solution of the bilinear system of equations and 

show that while the general input output behavior is indeed nonlinear, we can generate 

an analytical solution for a set of specified inputs.  

 

 Bilinear System of Equations: Solution, Input - Output Relations 

Considering constant control inputs between any two successive time steps, i.e., 

( ) 1, [ , )k

k kt t t t += ∀ ∈u u  similar to zero order hold approximation for discretization of a 

continuous time plant model, we have that the bilinear system becomes a linear time 

invariant system given by  
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1

1

 

r
k k

c c ci i

i

r
k k

c ci i c

i

A B N u

A N u B

=

=

= + +

 
= + + 
 

∑

∑

x x u x

x u

ɺ

 (4.3) 

with initial conditions being given by ( )k kt =x x . Solution for the state vector, ( )tx is 

therefore given by,  

 
( )

( ) ( )

( ) ( )

1 1

1 1

      

r r
k k

kc ci i k c ci i k

i i

k

tA N u t t A N u t
k

k c

t

k k k

k

t e e d B

A B

τ

τ
+ +

= =

   
 + − + −       

 ∑ ∑
 = +
 
 

= +

∫x x u

u x u u

 (4.4) 

1[ , )k kt t t +∀ ∈ .  

In the more general case, ( )tu is not a constant but a known function of time and 

differential equations similar to (4.3) result with an additional complexity that the system 

matrix is time varying. These equations can be written as,  

 ( ) ( )
1

r
k k

c ci i c

i

A N u t B t
=

 
= + + 
 

∑x x uɺ  (4.5) 

The solution in this case is given by[4, 15], 

 ( ) ( ) ( ) ( ), ,  

k

t

k

k k c

t

t t t t B dτ τ τ= Φ + Φ∫x x u  (4.6) 

where the state transition matrix ( ), kt tΦ is the solution of the matrix differential 

equation,  
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( ) ( ) ( )

( )( ) ( )
1

, ,

            , ,

r
k

k c ci i k

i

c k

t t A N u t t t

F t t t t

=

 
Φ = + Φ 

 

= Φ

∑

u

ɺ

 (4.7) 

with initial conditions, ( ),k kt t IΦ = . An alternative solution to the state transition matrix 

differential equation, (for solution of the linear time varying dynamical systems) is given 

by the Peano-Baker series representation[23]. Writing the solution of the redefined state 

transition matrix ( ), kt tΦ in terms of the Peano-Baker series, we have,  

 

( ) ( ) ( ) ( )

( ) ( ) ( )

1

11

1 1 1 2 2 1

1 2 2 1

, ...

                                       + ... ... ...

k k k

n

k k k

t t

k c c c

t t t

t

c c c n n

t t t

t t I F d F F d d

F F F d d d

τ

ττ

τ τ τ τ τ τ

τ τ τ τ τ τ
−

Φ = + + +

+

∫ ∫ ∫

∫ ∫ ∫

 (4.8) 

where the implicit dependence of the system matrix ( )( ),cF t tu , on the input signal has 

been suppressed for brevity. Substituting the series expansion solution for the state 

transition matrix in to the expression governing the outputs of the dynamical system, in 

equation (4.6) we have,  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

11

1 1

1 2 2 1

, ...

              ... ... ...  ...

k k

n

k

t t

k k k

k k c c c

t t

t t

k

c c c n n c

t

t C t t D t CB t CF B d d

C F F F d d d B d

τ

τ

ττ

τ τ τ

τ τ τ τ

τ τ τ τ τ τ τ τ
−

= Φ + + + +

 
+ + + 

  

∫ ∫ ∫

∫ ∫ ∫ ∫

y x u u u

u

 (4.9) 

with the assumed definition that ( ) ( )( ) ( )
1

,
r

k k

c c c ci i

i

F t F t t A N u t
=

 
= = + 

 
∑u .  
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Therefore clearly for the bilinear problem, the input output behavior is not linear. 

This series representation of the nonlinear map between the inputs and outputs is known 

as the Volterra Series [28, 29] representation. It is further noted that, depending on the 

approximation of interest (eg., zero-order-hold) one can obtain an equivalent discrete 

time series representation by evaluation of the integrals of the continuous time series of 

equation (4.9). Having derived the generally nonlinear input-output relationship, we now 

investigate the zero state response of the nonlinear system subject to piecewise constant 

inputs (i.e., similar to zero-order hold approximation). 

Some Response Characteristics 

From the solution of the bilinear state equations developed in the previous 

subsection, several important relations between the inputs and the response 

characteristics can be derived. The response characteristics detailed in the following are 

similar to the relations developed by Juang[23] and are useful in the development of our 

identification solution. The steps are carried out starting with equation (4.4), since the 

zero order hold assumption on inputs renders the system to assume a discrete time 

varying structure amenable for response characterization. Writing the outputs at discrete 

time instances (i.e., ( ): , 0,1,...k kt k= ∀ =y y ) we have the following sequence of 

expressions for the output,  
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( ) ( )
( ) ( ) ( ) ( ) ( )

( )
( )

( )
( )

( ) ( )

0

0 0

0 0 0 1

1 0

1 0 1 0 0 1 1 2

2 0

2
1 1

0 1 1

10,..., 1 ,..., 1

...

L Lk
j j k k k

k i i

ij k j i k

C D

CA CB D

CA A CA B CB D

C A C A B CB D
−

− −
− −

== − = −

= +

= + +

= + + +

 
= + + +  

 
∑∏ ∏

y x u

y u x u u u

y u u x u u u u u u

y u x u u u u u u

 

   (4.10) 

with the notation of matrix left product (distinguished by the superscript 
( )L

∏ to account 

for the non-commutativity of matrix multiplication) defined as 
( )

1 1

1,...,

: ...

L

j m m

j m

S S S S−
=

=∏ . 

We point out, at this stage, the similarity in the input output representation of the bilinear 

system with that of a linear discrete time varying system [5, 7](ignoring the implicit 

dependencies of the system matrices on input sequences). However, the number of 

unknown parameters ( , , , ,c ci cA N B C D ) is limited. This fact is used in the identification 

algorithm to provide a least squares solution for the unknown parameters using known, 

judicious nonlinear transformations. This recasting procedure for nonlinear problems in 

to a linear least squares structure is not unlike the much simpler suggestions outlined in 

Chapter I (section 1.5, pp. 34 - 36) of Crassidis and Junkins[4]. 

Furthermore, as pointed out in Juang[23], we note that for all the time instances 

when inputs are both zero, one obtains the linear part of the bilinear system, that is to 

say,  
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( ) ( )

( ) ( )

1

1

1

0

0

0

0

c k k

k

c k

k

A t tk

t
A tk

c

t

A e A

B e d B B
τ
τ

+

+
+

−

−

= = =

 
= = = 

  
∫

u

u

 (4.11) 

k∀ such that 0
k =u . Using these identities, we can give an expression for the zero input 

response from an initial state 0x  of the bilinear system as,  

 

0

01

2

0 0 02

0

L

k

k

C

CA

CA O

CA

   
   
   
   = =
   
   
     

y

y

x xy

y

⋮⋮

 (4.12) 

where the matrix 0A denotes the linear component of the system matrix for the bilinear 

system (defined in equation (4.11)). The observability grammian LO is subscripted to 

emphasize this fact that it is (the observability grammian) associated with the linear part 

of the bilinear model.  

Analytical expressions for the zero state response on the other hand are not much 

different from the general nonlinear response given by the input output relation (4.10), 

with 0 0=x . However, when a sequence of applied inputs is followed by free decay 

( 0,
k

k p= ∀ >u  for some 0p > ) the ensuing response has a certain structure that turns 

out to be quite useful for identification purposes as will be shown in the next section. Let 

us now examine the structure of the zero state response with different types of forcing 

followed by free decay.  

First consider the case when  
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[ ] [ ] [ ]1 1 10 0

Type 1:   ,   0,                1, 2,...
k

k= = ∀ =u v u  (4.13) 

In this situation the output sequence (left superscript 
[ ] ( )0.j

notation has been employed, 

i.e., [ ]j
ky to indicate the particular type of experiment i.e., type j, involved) can be 

written as,  

 

[ ] [ ]

[ ] [ ]( ) [ ]
[ ] [ ]( ) [ ]

[ ] [ ]( ) [ ]

1 1 0

0

1 1 10 0 0

1

1 1 10 0 0

2 0

1 1 10 1 0 0

0

...

k

k

D

CB

CA B

CA B−

=

=

=

=

y v

y v v

y v v

y v v

 (4.14) 

Let us now consider the response structure of type 2, i.e., the applied inputs take the 

mathematical form given by, 

 [ ] [ ] [ ] [ ] [ ]2 2 2 2 20 0 1 1
Type 2 :   ,      , 0,    2,3,...

k
k= = = =u v u v u  (4.15) 

In the case of such inputs, the response of the system has the following structure,  

 

[ ] [ ]

[ ] [ ]( ) [ ] [ ]

[ ] [ ]( ) [ ]( ) [ ] [ ]( ) [ ]

[ ] [ ]( ) [ ]( ) [ ] [ ]( ) [ ]

[ ] [ ]( ) [ ]( ) [ ] [ ]( ) [ ]

2 2 0

0

2 2 2 20 0 1

1

2 2 2 2 2 21 0 0 1 1

2

2 2 2 2 2 21 0 0 1 1

3 0 0

2 2 2 2 2 22 1 0 0 2 1 1

0 0

...

k k

k

D

CB D

CA B CB

CA A B CA B

CA A B CA B− −

=

= +

= +

= +

= +

y v

y v v v

y v v v v v

y v v v v v

y v v v v v

 (4.16) 

Similar expressions can be derived in general for the response of the bilinear 

system to control inputs for fixed number of times steps followed by free decay. 

However, in the identification problem, it will be shown that the response characteristics 
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for the two types of inputs described above are sufficient for the identification of the 

time invariant parameters of the bilinear problem. 

 

 

 

System Identification Methodology 

Having outlined the important details concerning the response characteristics of 

bilinear system models, we now proceed to describe the system identification method. 

The methodology presented here-in relies on the central assumption that repeated 

experiments can be performed on the system and each experiment can be started from 

zero initial conditions. The requirement of repeated experiments is not new and plays a 

central role in the identification of time varying systems (sometimes called the ensemble 

data methods of system identification)[5, 7]. Simply put, owing to the coupling of the 

parameters to be identified from input – output (I/O) data, the number of parameters 

happens to be larger than the number of equations they satisfy instantaneously. In the 

continuous time bilinear system identification this growth in number of parameters is 

manifested in equation (4.10) making it difficult to obtain unique solutions for the 

unknown parameters. It is of consequence to note that one of the salient features of the 

original algorithm by Juang was to perform multiple experiments involving pulse 

sequences. This chapter relaxes the constraints in the pulse inputs applied to the system 

those results and hence hinges on the same assumptions. In fact, it was shown by Sontag 

et. al.,[30] that multiple responses are indeed necessary, as they rigorously answer the 
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question of identifiability of a continuous time bilinear system. Repeated experiments 

are often possible when the aim of system identification is to achieve reduced order 

modeling from high fidelity multi-physics simulations. There may be other situations 

when repeated experiments may not be performed. The applicability of the current 

method therefore varies on a case by case basis involving the resourcefulness of the 

analyst. The second requirement of the absence of initial condition response in the 

output data is being made for clarity of presentation. In the presence of initial condition 

response, the problem of identification becomes more involved and the procedure 

presented here-in cannot be applied with simple modifications (in a general situation). 

We postpone the discussion of an identification solution that considers the initial 

condition response, as a topic of current research to be reported separately. 

 

Repeated Experiments for Identification 

In order to supply the data matrices required in the identification process, we 

perform multiple experiments consisting of input sequences of the special nature (Types 

1 and 2 in equations (4.13) and (4.15)). Two types are involved, as was defined in the 

previous section. The first type of multiple experiments involve arbitrary inputs (zero 

order hold type constant inputs) for the first time step ( 0t ) followed by free decay (input 

sequences of type 1, i.e., equation(4.13)). Given the response vectors from experiments a 

sequence of subsets of the response sequences can be collected in compact matrix 

equations given by,  
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[ ] [ ] ( ) [ ] ( ) [ ] ( )

[ ] ( ) [ ] ( ) [ ] ( )

[ ]

1
1

1

1

1 1 1 11 2

0 0 0 0

0,1 1 10, 1 0, 2

1

0

       

       

NN

N

N

D

D

 =   

 =   

=

Y y y y

v v v

V

⋯

⋯  (4.17) 

and  

 

[ ]

[ ] ( ) [ ] ( ) [ ] ( )

[ ] ( ) [ ] ( ) [ ] ( )

[ ] ( ) [ ] ( ) [ ] ( )

[ ] ( )( ) [ ] ( ) [ ] ( )( ) [ ] ( ) [ ] ( ) [ ] ( )

[ ] ( ) [ ] ( ) [ ]

1

1

1

1

1 1

1 1 11 2

1 1 1

1 1 11 2
1 2 2 2

1,...,

1 1 11 2

0, 0,1 1 1 1 1 10, 1 0, 1 0, 2 0, 20

1

0

0,1 1 10, 1 0, 20

1

0

       

       

N

N

N

k

N

k k k

N N

k

N

k

C

CA
B B B

CA

C

CA

CA

−

−

 
 
 
 =
 
 
  

 
 

   =       
 
 

 
 
 =
 
 
 

y y y

y y y
Y

y y y

v v v v v v

b b b

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

⋯
⋮

⋯
⋮

( )

[ ]

1

1
1 0,

       
N

L BO R

 
  

=
 

  (4.18) 

where the linear observability grammian LO and the bilinear, input dependent 

controllability grammian 
[ ] ( )1
1 0,

0
N

BR  have been defined by the decomposition of the 

response sequence collection. Number in the left superscript of 
[ ] 1
1 0,N

BR , [ ]1 (enclosed in 

the square brackets) indicates the type of inputs applied while 0 and iN in the right 
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superscript indicate the time step involved (in the inputs applied forming the bilinear 

controllability grammian [ ] ( )1 0, j
v ) and the number of repeated experiments.  

Similarly, the responses generated from the inputs of second type, represented by 

the equation (4.16) can be collected in the matrix equations written as,  

 

[ ] [ ] ( ) [ ] ( ) [ ] ( )

[ ] ( ) [ ] ( ) [ ] ( )

[ ]

22

2

2

2 2 2 21 2

0 0 0 0

0,2 2 20, 1 0, 2

2

0

       

       

NN

N

N

D

D

 =   

 =   

=

Y y y y

v v v

V

⋯

⋯  (4.19) 

 

[ ]

[ ] ( ) [ ] ( ) [ ] ( )

[ ] ( ) [ ] ( ) [ ] ( )

[ ] ( ) [ ] ( ) [ ] ( )

[ ] ( )( ) [ ] ( ) [ ] ( )( ) [ ] ( ) [ ] ( ) [ ] ( )

[ ] ( ) [ ]

2

2

2

2

2 2

2 2 21 2

2 2 2

2 2 21 2
2

3 3 3
2,...,

2 2 21 2

1, 0,2 2 2 2 2 21, 1 0, 1 1, 2 0, 2

2 21, 1

       

                                                           

N

N

N

k

N

k k k

N N

L

L

O A A A

O

 
 
 
 =
 
 
  

  =     

+

y y y

y y y
Y

y y y

v b v b v b

b

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

⋯

( ) [ ] ( )21,21, 2 N 
  

b b⋯

 

  (4.20) 

together with the equation involving the output vectors at the second time step given by  

 

[ ] [ ] ( ) [ ] ( ) [ ] ( )

[ ] ( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ] ( )

[ ] [ ]

22

2 2

2 2

2 2 2 21 2

1 1 1 1

0, 1,2 2 2 2 2 20, 1 0, 2 1, 1 1, 2

2 20,

1

       

       

NN

N N

N N

B

C D

C R D

 =   

   = +      

= +

Y y y y

b b b v v v

V

⋯

⋯ ⋯  

  (4.21) 

Depending on the choice of inputs involved in the experiments, any subset of 

equations (4.17) through (4.21) is employed by the identification method. It should be 
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observed that the input set [ ] ( )2 0, j
v involved in determination of response of the second 

set of experiments, i.e. 
[ ] [ ] [ ]2 2 2
2 2 2

0 1 2,...,/ /
N N N

kY Y Y ,  are in general different from the inputs 

employed in the first set of experiments performed to compute the response sequences, 

[ ] [ ]1 1
1 1

0 1,...,/
N N

kY Y . The use of 1 2/N N has been employed to emphasize the fact that the 

number of experiments of each type needed for identification can in general be different. 

The nature of the applied input sequence along with the corresponding response is 

shown in Figure 24, which also serves the purpose of clarifying the notation employed in 

the developments of this chapter. 

 

Figure 24. Types of Inputs for Continuous Time Bilinear System Identification 

It will be clear in the subsequent developments of this chapter that more 

experiments from the first type are required in general. The situation where we use the 
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same set of inputs for the second type of experiments (retaining the control forces to 

same values for two successive time periods), is similar to the case when unit impulse is 

applied for two successive time steps. We therefore note that the present algorithm 

allows a modest generalization in the allowable inputs in the sense that at the second 

time period, arbitrary inputs can be applied while performing the second type of 

experiments and one can still obtain the continuous time bilinear system parameters.  

We now use the above assembled input output sets to compute the bilinear 

system parameters. 

 

STEP 1: Identification of the Direct Transmission Matrix 

The first step involves identification of the direct transmission matrixD . 

Equations (4.19) or (4.17) could be used for this simple computation. The formal 

estimate of the direct transmission matrix is given by  

 

[ ] [ ]( )
[ ] [ ]( )

2 2

1 1

†
2 2

0 0

†
1 1

0 0

ˆ

   

N N

N N

D =

=

Y V

Y V

 (4.22) 

where ( )†. denotes the Moore-Penrose pseudo generalized inverse of a matrix[21, 22].  

 

STEP 2: Determination of C and 0A  

To calculate the measurement sensitivity matrix C and the linear part of the 

bilinear system matrix 0A  we start by considering the response sets corresponding to the 
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experiments of the first type (equation (4.18)). Singular value decomposition of the 

output sets given by,  

 

[ ]

[ ]

1

1

1

1,..., 1 1 1

1 1

2 2
1 1 1 1

1 0,

        

ˆ ˆ        

N T

k

T

N

L B

U V

U V

O R

= Σ

  
= Σ Σ  
  

=

Y

 (4.23) 

Clearly this decomposition is not unique and the corresponding observability and 

controllability grammians will also reflect this arbitrariness in their corresponding 

coordinate systems. For example, [ ] ( ) [ ]( )1 1
1 1 0,1

1,...,
ˆ ˆN N

k L BO Q Q R−=Y , for any nonsingular 

matrix Q  would be an equivalent and valid set of decompositions. This step is identical 

to the Hankel matrix formulation and decomposition step in the developments of 

Juang[23]. Note that the order of the system need not be known and can be given by the 

number of nonzero singular values of the output collection
[ ] 1
1

1,...,

N

kY  in the decomposition 

of equation (4.23). Due to this non-uniqueness in the decompositions, one can in general 

realize only similar systems of bilinear models and without more conditions we are not 

able to obtain the state space realization in the physical coordinates. Therefore the 

estimated linear controllability grammian is related to the true unknown linear 

observability grammian by the relation (as shown in Juang[23])  

 ˆ
L LO O T=  (4.24) 

Following the subsequent developments of the chapter, we will see that no 

transformations are required in the present algorithm and we automatically obtain 

realizations in the same coordinate system.  
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Using these developments, an estimate for the measurement sensitivity matrix can be set 

as,  

 ( )ˆ ˆ 1: ,:LC O m=  (4.25) 

where the notation ( )1: ,:X m has been used to indicate the first m  rows of a matrix. To 

compute the corresponding estimate for the linear part of the system matrix, 0Â , we 

formulate yet another collection of output sequences (from multiple experiments) similar 

to the equation (4.18) but starting from the third time step, given by,  

[ ]

[ ] ( ) [ ] ( ) [ ] ( )

[ ] ( ) [ ] ( ) [ ] ( )

[ ] ( ) [ ] ( ) [ ] ( )

[ ] ( )( ) [ ] ( ) [ ] ( )( ) [ ] ( ) [ ] ( ) [ ] ( )

[ ]

1

1

1

1

1 1

1 1 11 2

2 2 2

1 1 11 2
1

3 3 3
2,..., 1

1 1 11 2

1 1 1

0, 0,1 1 1 1 1 10, 1 0, 1 0, 2 0, 20

0

1

0

1 0,0

0

1

0

       

       

N

N

N

k

N

k k k

N N

k

k

C

CA
A B B B

CA

C

CA
A

CA

+

+ + +

−

−

 
 
 
 =
 
 
  

 
 

   =       
 
 

 
 
 =
 
 
 

y y y

y y y
Y

y y y

v v v v v v

b

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

⋯
⋮

⋮

( ) [ ] ( ) [ ] ( )

[ ]

1

1

0,1 11 0, 2

1 0,

0       

N

N

L BO A R

 
  

=

b b⋯

 

  (4.26) 

Using the above relation (equation (4.26)) in conjunction with the estimates calculated 

by the decomposition presented in equation (4.23), we arrive at the estimate for the 

linear part of the system matrix given as,  
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 ( ) [ ]( ) [ ]( )1 1

††
1 1 0,

0 2,..., 1
ˆ ˆ N N

L k B
A O R+= Y  (4.27) 

where the estimates 
[ ] 1
1 0,ˆ ˆ,

N

L BO R are obtained from the decomposition step developed in 

the equation (4.23).  

An estimate for the continuous time system matrix is then obtained by taking the 

matrix logarithm of 0Â , similar to the developments of Juang[23], given by,  

 ( )01ˆ ˆlogcA A
t

=
∆

 (4.28) 

where t∆ corresponds to the step size in which the responses are assumed to be 

measured while populating the matrices (4.17) through (4.21). We point out that this 

conversion from discrete time system matrix to continuous time system matrix is 

ambiguous and non-unique. Sontag et. al.,[30] clarify the ambiguity of the nature of this 

matrix logarithm in their recent paper. From an engineering and computational stand 

point, standard subroutines existing in state of the art numerical software, (eg., 

MATLAB uses the Schur algorithm in[21]) detect the degenerate cases and help the 

users when the solution may not be unique. A representative situation is the case of 

system matrices having repeated eigenvalues when the logarithm function may not 

evaluate accurately owing to the limitation of the subroutines. We do not discuss the 

computational aspects associated with this matrix logarithm further here, and proceed 

with subsequent details of the algorithm assuming that the logarithm function in question 

can be evaluated with sufficient accuracy. Furthermore, if non physical realizations of 

systems are identified (e.g., complex descriptions for a real system), the analyst is amply 



 

 

105

warned by a modern numerical implementation indicative of some 

identifiability/observability issue.    

Having determined the estimates for Cmatrix and the linear component of the 

system matrix cA , we now proceed to the computation of estimates for the bilinear 

system matrices ciN .  

 

STEP 3: Identification of the Bilinear System Matrices 

To identify the bilinear system matrices, consider the response sets generated by 

using the inputs of type 2, as provided by the equation (4.20), repeated here for 

convenience.  

 

[ ] [ ] ( )( ) [ ] ( ) [ ] ( )( ) [ ] ( ) [ ] ( ) [ ] ( )

[ ] ( ) [ ] ( ) [ ] ( )

2 2
2

2

1, 0,2 2 2 2 2 2 21, 1 0, 1 1, 2 0, 2

2,...,

1,2 2 21, 1 1, 2
                                                           

N NN

k L

N

L

O A A A

O

  =     

 +   

Y v b v b v b

b b b

⋯

⋯

 

  (4.29) 

Before we proceed further, we need to elaborate more on the second term in the right 

hand side of the equation (4.29) above, given as,  

 
[ ] ( ) [ ] ( ) [ ] ( )21,2 2 21, 1 1, 2

2

N

LP O  =   
b b b⋯  (4.30) 

Recall from our notation beginning equation (4.18) that each column vector, [ ] ( )2 1, j
b is 

defined as,  

 [ ] ( ) [ ] ( )( ) [ ] ( )2 2 21, 1, 1,j j j
B=b v v  (4.31) 
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which is no different from [ ] ( ) [ ] ( )( ) [ ] ( )2 2 20, 0, 0,j j j
B=b v v for problems with equal first two 

time step lengths  (i.e., 1 0 2 1t t t t t− = − = ∆ ). This is because the coefficient matrix 

[ ] [ ] ( )( )1 / 2 0/1, j
B v  is defined by the discretization (equation (4.4)) as,  

 [ ] [ ] ( )( )
[ ] [ ] ( ) ( )1 / 2

1 1

11 / 2 ,

r
k j

k c ci i k

i

k

t A N v t
k j

c

t

B e d B
τ

τ
+ +

=

 
+ − 

  

 ∑
 =
 
 
∫v  (4.32) 

0,1k∀ = , is time invariant (not an explicit function of time). Therefore the second term 

of equation (4.29) defined as 2P in equation (4.30), can now be recognized as the 

response of inputs from experiments of the first type (same family as that of equations 

(4.17) and (4.18)). Therefore one may perform an additional set of experiments of the 

first type or may decide to apply the same set of inputs in the repeated experiments of 

the second type, in the second time step, namely for the input ensemble 

[ ] [ ] ( )2 12
1:  of total  experiments2 1

1 0

N NN  = 
 

V V . The analyst may choose to plan the experiments of 

the (first and second type) depending on his/her convenience with the only constraint 

that a response of the first type be available for each input (at both time steps) of the 

second type. We will see shortly that the minimum number of experiments of the second 

type that is required for unique parameter identification is 1r +  ( r being the number of 

inputs to the plant – typically not an unreasonably large number of combinations).  

Therefore, once the set of inputs for the second time step is fixed, (
[ ] 2
2

1

N
V matrix 

is held constant and therefore 2P can be determined) we vary the possible inputs for the 
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first time step in the experiments of the second type (namely 
[ ] 2
2

0

N
V ) . This ensures that  

the following set of equations are obtained for known pulse values,  

[ ] ( ) [ ]( )22 21,

1Columns
j N∈v V  (equivalently 

[ ] ( ) ( )2 1,

2Columns
j

P∈b ).  

 

[ ] [ ] ( )( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ] ( )

[ ] ( )( ) [ ] [ ] ( )

22

2

0,2 2 2 2 2 21, 0, 1 0, 2 1,

2,...,

2 2 21, 1,0,

Nj jN

k L L

j jN

L B L

O A O

O A R O

 = +  

= +

Y v b b b b

v b

⋯

 (4.33) 

We are consequently led to a least squares estimate for the system matrix associated with 

each second time step input value ( [ ] ( )2 1, j
v ) given by  

 
[ ] ( )( ) [ ] [ ] ( )( ) [ ]( )2 1

†
2 2 2 21, 1, 0,†

2,...,
ˆ ˆ ˆ ˆj jN N

L k L B
A O O R= −v Y b  (4.34) 

21,...,j N∀ = . We recall that the state transition matrix for a given non zero control input 

[ ] ( )2 1, j
v  to be (from equation (4.4))  

 
[ ] ( )( )

[ ] ( )1,2

1

ˆ ˆ

2 1,ˆ

r
j

c ci i

i

A N v t
j

A e =

 
 + ∆ 
 

∑
=v  (4.35) 

Therefore, taking the matrix logarithm of the estimate for each j and subtracting the 

already identified continuous time linear system matrix ˆcA , we have the following 

relationship between the inputs, unknown bilinear system matrices and the  identified 

input dependent transition matrices of the type (4.35),   

 [ ] ( )( ) [ ] ( )2 21, 1,

1

1 ˆ ˆ ˆlog
r

j j

c ci i

i

A A N v
t =

  − =
 ∆ ∑v  (4.36) 

In a compact matrix notation, the same set of equations can be written as,  
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[ ] ( )

[ ] ( )

[ ] ( )

[ ] ( )

[ ] ( )

[ ] ( )

[ ] ( )

[ ] ( )

[ ] ( )

[ ]( )

2

2

2

2

1,22 21, 1 1, 2
11 1

2 2 1,1, 1 1, 2 2
2 2 2

1 2

2 21, 1 1, 2
1,2

2

1 2 1

  

  ˆ ˆ ˆ

  

ˆ ˆ ˆ    

N

N

c c cr

N
r r

r

N

c c cr

vv v

v v v
LA N N N

v v v

N N N

 
 
 

   =    
 
  

 = ⊗ 

II I

I I I

I I I

V I

⋯

⋯
⋯

⋱⋮ ⋮ ⋮

⋯

⋯

 (4.37) 

where 
n n×∈I ℝ identity matrix, the matrix product 

mn nr
A B

×⊗ ∈ℝ , ,
m n n r

A B
× ×∀ ∈ ∈ℝ ℝ  

being defined in equation (4.43) and the matrix 	LA is defined as, 

 

	

[ ] ( )( ) [ ] ( )( ) [ ] ( )21,2 2 21, 1 1, 2

:

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ log log log
N

c c c

LA

A A A A A A
t t t

=

      − − −        ∆ ∆ ∆   
v v v⋯

 (4.38) 

The least squares estimate for the estimates of the bilinear system matrices can therefore 

be given by the relation,  

 	 [ ]( )2

†
2

1 2 1
ˆ ˆ ˆ N

c c cr
N N N LA  = ⊗  V I⋯  (4.39) 

Observe that the estimates obtained from equation (4.39) are automatically in the same 

coordinate system as the already identified measurement sensitivity matrix Ĉ and the 

linear component of the system matrix ˆcA . This is mostly because the formulation 

allows for the use of the same ˆLO at every step along the way. In addition, one can use 

power series expansions of the steps involving the matrix exponential and the matrix 

logarithm to find that the similarity transformations are preserved. This is in turn a 
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consequence of the fact that the functions involved are analytic (refer to [21] for details 

on analytic functions of a matrix and their transformations).  

 Having computed the system and measurement sensitivity matrices of the 

bilinear system, we are ready to perform calculations to obtain the control influence 

matrix cB (continuous time domain). 

STEP 4: Calculation of cB  

The calculation of cB presumes that the analyst has computed estimates for the 

bilinear system matrices ,c ciA N using the steps outlined thus far in this chapter. Consider 

the definition of [ ] ( )1 0, j
b as reiterated in the equations (4.31) and (4.32). For 

11,...,j N= the response functions (although nonlinear in ( )0, j
v ) can be written as,  

 

[ ] ( ) [ ] ( ) [ ] ( )

[ ] ( )( ) [ ] ( ) [ ] ( )( ) [ ] ( ) [ ] ( ) [ ] ( )

[ ] ( ) ( )
[ ] ( )

[ ] ( ) ( )
[ ] ( )

1

1 1

0, 1 0, 21 1
2 22 2

1 1

1 1

0,1 1 10, 1 0, 2

0, 0,1 1 1 1 1 10, 1 0, 1 0, 2 0, 2

1 10, 1 0, 2

                       

r r

c ci i c ci i

i i

N

N N

t tA N v t A N v t

c c

t t

B B B

e d B e d B
τ τ

τ τ= =

   
+ − + −   

      

 
  

  =     

   ∑ ∑
   
   
   

=

∫ ∫

b b b

v v v v v v

v v

⋯

⋯

[ ] ( ) ( )
[ ] ( )

0,
11

2 2
11

1

0,1
                                      ...

r N

c ci i

i

t A N v t
N

c

t

e d B
τ

τ=

 
 + −
  

 
 
 
 
 

  ∑  
  
   
∫ v

 

  (4.40) 

Note that the unknown parameters, cB in the above equation (4.40) still appear linearly, 

in spite of the coefficients being nonlinear functions of the vector test inputs [ ] ( )1 0, j
v . 

Therefore a linear least squares solution is possible, and developed in the following. We 
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note in passing that, the coefficients involving the matrix exponential convolution 

operations are most easily evaluated using the “Van-Loan” integrals[31, 32]. A brief 

discussion on the evaluation of the integrals relevant to the linear system in equation 

(4.40) is included in the appendix for convenient reference. Therefore, setting 

[ ] ( ) ( )
[ ] ( )( )

0,1
2 2

1

1

1 0,
:

r
j

c ci i

i

t A N v t
j

t

e d K
τ

τ=

 
+ − 

  

 ∑
  =
 
 
∫ v , equation (4.40) for the unknown parameters 

cB becomes,  

 

[ ] ( ) [ ] ( ) [ ] ( )

[ ] ( )( ) [ ] ( ) [ ] ( )( ) [ ] ( ) [ ] ( ) [ ] ( )

1

1 1

0,1 1 10, 1 0, 2

0, 0,1 1 1 1 1 10, 1 0, 1 0, 2 0, 2

N

N N

c c cK B K B K B

 
  

  =     

b b b

v v v v v v

⋯

⋯

 

  (4.41) 

To extract the requisite linear system of equations, we use an identity involving 

Kronecker products[4], given by,  

 ( ) ( ) ( )TVec RSZ Z R Vec S= ⊗  (4.42) 

where , ,R S Z are matrices of dimensions such that their product can be formed and the 

( )Vec Z operator is used to stack the columns of Z into a high-dimensioned column 

vector. The matrix product 
mn nr

A B
×⊗ ∈ℝ , ,

m n n r
A B

× ×∀ ∈ ∈ℝ ℝ is defined as,  

 

1,1 1,

,1 ,

n

m m n

a B a B

A B

a B a B

 
 

⊗ =  
  

⋯

⋮ ⋱ ⋮

⋯

 (4.43) 
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with ,i ja as the ( ), thi j element of the matrix A .  Therefore the equivalent linear system 

for unknown cB is given by,  

 

[ ] ( )

[ ] ( )

[ ] ( )

[ ] ( ) [ ] ( )( )( )
[ ] ( ) [ ] ( )( )( )

[ ] ( ) [ ] ( )1
1 1

1 10, 1 0, 1

1 0, 1

1 10, 2 0, 21 0, 2

0,1 0, 0,1 1

T

T

c c

N
N NT

K

K
B B

K

 ⊗
  
  

⊗  
= =  
  
       ⊗      

v v
b

v vb
H

b v v

⋮ ⋮
 (4.44) 

Therefore the least squares estimate for the continuous time control influence matrix 

cB is given by,  

 

[ ] ( )

[ ] ( )

[ ] ( )1

1 0, 1

1 0, 2

†

0,1

ˆ
c

N

B

 
 
 

=  
 
 
 

b

b
H

b

⋮
 (4.45) 

We now proceed to demonstrate the steps outlined in the algorithm presented using 

numerical examples. These numerical examples also provide a basis for optimism with 

regard to the practical utility of these developments.  

 

Numerical Examples 

The examples considered in the demonstration have distinct eigenvalues such 

that the standard subroutines evaluating the matrix logarithm calculate the matrix 

function in equation (4.28) without any ambiguity. This is an important step in the 

identification process and hence dictates the accuracy of the estimates of the continuous 

time bilinear system parameters.  
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Example 1 

We first demonstrate the working of the algorithms on the bilinear system 

presented in the paper by Bruni et. al.[33], and also in Juang[23]. The truth model is 

given by the equation,  

 
1 1 2 2c c c cA N u N u B

C

= + + +

=

x x x x u

y x

ɺ
 (4.46) 

where,  

 

[ ]

1 2

1 0 0 0 1 1
; ;

1 2 1 1 0 0

1 0
; 0 1

0 1

c c c

c

A N N

B C

−     
= = =     −     

 
= = 
 

 (4.47) 

Using the procedure outlined in the paper, the identified plant parameters are given by,  

 

[ ]

1

2

-1.8663 -3.5311  1.1116   -2.9484
ˆ ˆ; ;

-0.0328 -1.1337  0.0421   -0.1116

 0.1000   -0.2652
ˆ

-0.3393    0.9000

-0.3323   -3.6946 ˆˆ ;  -0.2677   -0.0789
 1.1278   -0.1399

c c

c

c

A N

N

B C

   
= =   
   

 
=  
 

 
= = 
 

 (4.48) 
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As is the case for linear systems, the realized system matrices are not unique , because 

the state space description is not unique. However, the input/output mapping should be 

unique and the linear part of the identified system matrix should have the same 

eigenvalues as the true system matrix. The errors in the system matrix eigenvalues 

(between true and identified) are,  

 

( ) ( )

( ) ( )

( ) ( )

13

13

1 1

13

2 2

-0.6972
ˆ 10

 0.4796

-0.0809
ˆ 10

 0.1232

-0.0178
ˆ 10

-0.1443

c c

c c

c c

A A

N N

N N

λ λ

λ λ

λ λ

−

−

−

 
− = × 

 

 
− = × 

 

 
− = × 

 

 (4.49) 

The identified system was subject to some test inputs and the response from the true 

system to the same test inputs was performed. The test inputs applied to the plants are  

 
( )
( )

( )
( )

1

2

sin 7

cos 10

tu t

tu t

   
=   
  

 (4.50) 

Output profiles obtained from the true and identified systems are compared in Figure 25. 

The error in the response to the test functions is plotted in Figure 26. 
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Figure 25. Example 1 (Bruni): Output Comparison (True System vs. Identified 

System) 

 

Figure 26. Example 1 (Bruni): Output Error (True System vs. Identified System) 
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It is evident that the linear system eigenvalues in equation (4.49) and the nonlinear 

system response in Figure 25 and Figure 26 were very accurately captured in this 

example.  

 Example 2 

Now we apply the procedure detailed in this chapter to an example where the 

linear part of the bilinear system matrix is unstable. 

 1 2

0 1 0

1 0 0 ;

0 0 3

1    -1     0 0     0     1

0     2     1 ; 1     0     1

1     3     4 4     2     1

 1     0
 1     0     1

 0     2 ;
-1     1     2

 1     1

c

c c

c

A

N N

B C

 
 = − 
  

   
   = =   
      

 
 = = 

  


 
 

 (4.51) 

Using the same procedure we obtain the following estimates for the bilinear plant 

parameters, as,  

 1 2

 0.0933    0.0553   -0.7048

ˆ -0.7767   -0.3856   -3.1942 ;

 0.0202    0.3606    0.5923

 5.8579   -0.1208    5.3429  

ˆ ˆ 1.9337    1.5666    4.2598 ;

 -0.8757   -0.0147   -0.4245

c

c c

A

N N

 
 =  
  

 
 = = 
  

2.8457   -2.1441    4.7919

-0.5418   -0.2191    1.6626

-0.0622    0.1447   -1.6267

 -0.8320   -1.7599
 -1.0274    0.8101    0.2433ˆˆ   1.4318   -0.8593 ;
 -1.9486   

-0.0603   -0.4598

cB C

 
 
 
  

 
 = = 
  

-0.4507   -0.3987

 
 
 

 (4.52) 
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Errors incurred in the system eigenvalues, between the true and the identified system are 

given as,  

 

( ) ( )

( ) ( )

( ) ( )

14

13

1 1

13

2 2

  -0.2887          

ˆ    0.0167 - 0.5884i 10

   0.0167 + 0.5884i

 0.5640

ˆ -0.1887 10

-0.3020

 0.9770

ˆ -0.2554 10

-0.0444

c c

c c

c c

A A

N N

N N

λ λ

λ λ

λ λ

−

−

−

 
 − = × 
  

 
 − = × 
  

 
 − = × 
  

 (4.53) 

Response of the identified system and the true system to test functions for the example 2 

are compared in the Figure 27. Error between the true and identified system response 

functions is plotted in Figure 28. As is evident, the eigenvalues of the linear part of the 

identified system and the full nonlinear response were again captured with high 

precision in example 2.  
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Figure 27. Example 2: Output Comparison (True System vs. Identified System) 

 

Figure 28. Example 2: Output Error (True System vs. Identified System) 
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These numerical examples and several others not reported here support the validity of 

the formulations and provide a basis for optimism with regard to practical importance of 

these developments.  

 

Conclusions 

This chapter introduces fundamental developments that permit the identification 

of bilinear dynamical systems. These results are believed to be of fundamental 

significance and represent an important extension of the now classical Ho-Kalman 

identification methodology (of which the Eigensystem Realization Algorithm is an 

integral component) that is foundational to linear system identification theory and 

practice. The structure of the resulting algorithms is attractive for computational and rely 

only on the collection of a systematic sequence of experimental input/output response 

measurements.   
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CHAPTER V 

APPLICATION TO PROBLEMS IN GUIDANCE, CONTROL AND DYNAMICS  

Introduction 

 We now apply the techniques developed in previous chapters to practical 

problems in guidance, control and dynamics. First application considers the guidance of 

a point mass operating in the presence of significant model error. Perturbation models 

are identified using the time varying eigensystem realization algorithm (TVERA) 

presented in the chapter II of this dissertation. Perturbation guidance scheme is presented 

based on the identified linear departure motion dynamics in the presence of unknown 

model errors.  

Next application involves the dynamics of a point mass in a rotating tube which 

constitutes a time varying linear system due to the presence of centrifugal force. Time 

varying model sequence for the system description is obtained along with the 

corresponding measurement model. The transformation theory developed for linear time 

varying system identification is clearly explained with this physical example.  

Subsequent developments recast the model governing the same system in to a 

continuous time bilinear system model, with appropriate redefinitions of the variables 

involved. Results of the continuous time bilinear system identification algorithm 

developed in the chapter IV of this dissertation are discussed using this example. 

Dynamics involving an automobile brake mechanism is discussed subsequently as a 
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bilinear control system application problem. Identification results for this problem are 

also detailed in this chapter.   

We now detail the guidance and control example application. This example is 

rather pedagogical for demonstrative purposes. However, it embodies a typical situation 

experienced by an analyst in a guidance-type problem set up. It will not be difficult to 

see that the developments undertaken in this example can be generalized to obtain 

reduced order perturbation models from a high fidelity multi-physics simulation about a 

nominal operating point.  

 

Guidance and Control Application Problem 

Aerospace engineering control and estimation problems are most often nonlinear 

in nature. It is central in the actuation and sensing applications, that simplified and 

accurate models of the dynamics of the aircraft or spacecraft are made available for 

analysis and control system design. Engineers are also aware of the fact that the accuracy 

of the models derived or developed is directly reflected in the performance of the control 

or sensing system being designed. Owing to the increasingly stringent performance 

requirements on engineers for flight control and sensing systems, the methods of 

modeling and control cannot be decoupled in modern aerospace engineering research.  

One of the subjects of aerospace engineering where this interaction and coupling 

between modeling and control has profound ramifications is the body of work that goes 

under the name of guidance, navigation and control. Bryson[34], Battin[19] and others 

contributed extensively to the problems of guidance, navigation and control and have 
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enabled several complex aircraft, spacecraft orbital and attitude maneuvers documented 

widely in the historical literature by several researchers[22, 32, 35-38]. The importance 

of this key handshake in guidance, navigation and control problems has been 

paraphrased elegantly by Professor Junkins as an important lesson learnt by our 

community from the Apollo era: “… - theoretical research in dynamics and control 

methodology and advanced flight implementations not only can comfortably coexist, 

they belong to the same set” (the von Karman lecture ref. [38]).   

An important artifact and tool developed owing to the historical work in 

guidance and control is the use of perturbation models about a reference trajectory for 

guidance, navigation, control and analysis. While this local linearization of nonlinear 

equations of motion of aerospace vehicles about nominal trajectories has become 

indispensable for controller design and analysis, the central assumption that the “truth” is 

modeled by the known structure of the nonlinear equations is still restrictive and hence 

allows the scope for the ever presence of model errors. Inspired from classical 

developments of aerodynamics, where the theoretical modeling developments often go 

hand in hand with experimentation, we now propose a methodology to use experimental 

data to realize the first order, time varying discrete time model of the departure motions 

of a system from a nominal trajectory.  

 

Problem Statement 

A point mass free to move in a planar space with two control inputs is the simple 

dynamical system chosen for the current demonstration. The mass is being acted upon 
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by two force inputs which can be changed at will by the operator. The application under 

consideration in the present example requires the calculation of force components 

required to transfer this point mass from the origin to a position as close as possible to a 

given target location ( ),T Tx y  in a given amount of time. We do not really care about the 

components of the velocity at the terminal time. In guidance literature, this type of 

problem is often called the intercept problem[34]. In appropriate non dimensional units, 

the equations of motion of the point mass are given by, 

 

1 3

2 4

3 1

4 2

x x

x x

x u

x u

=

=

=

=

ɺ

ɺ

ɺ

ɺ

 (5.1) 

The solution of prescribing the forces (control inputs) to take the point mass sufficiently 

close to the target location is straightforward. In fact, one can easily obtain this solution 

in a feedback form formulating the necessary conditions of optimal control theory (or 

alternatively using Bellman’s principle of optimality)[34].    

 

Nominal Solution Generation 

Let us assume that the nominal solution to the intercept problem has been 

designed by the analyst in a feedback form. For clarity of presentation, table 1 presents 

the continuous time version of the feedback solution to problems with linear system 

dynamics (with usual assumptions on the notation of the problem and dropping the 

functional dependencies that are assumed to be understood according to context). It is 

well known that a feedback solution is preferred over the open loop version owing to the 
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robustness of the feedback solution to plant model uncertainties, plant parametric 

uncertainties (small in some norm) and its “time-to-go” nature (independence to initial 

conditions)[34]. 

Table 1 Summary of Optimal State Feedback Control for the 

Intercept Application Problem 

Dynamical 

System 
( ) ( ) ( ) ( ) ( )t A t t B t t= +x x uɺ  

Performance 

Index 

(tracking 

problem) 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0

0

1 1
min

2 2

1
                                                 

2

f

f

t
T

T

f f f
t

t

t

T

t

J t Q t R d

Q d

τ τ τ τ

τ τ τ τ

= + +

 +  

∫

∫

u
ε ε u u

ε ε

 

where 

( ) ( ) ( )
( ) ( )
:

:f f ft t

τ τ τ= −

= −

ε x r

ε x r
 

Optimal 

Control 
( ) ( ) ( )( )* 1 TR B S t t t−= − +u x v  

Feedback 

Gain 

Differential 

Equation 

1T T
S A S SA SBR B S Q

−= − − + −ɺ  

with final condition  

( )f fS t Q=  

Differential 

Equation for 

the Feed-

Forward 

term 

( ) ( ) ( ) ( ) ( )1T Tt A S t BR B t Q t t− = − − + v v r  

with final condition 

( )f f ft Q= −v r  

 

Feedback solution for the intercept problem is therefore obtained from the above table 

by setting, ( )t =r 0 , 0 0
T

T

f T Tx y =  r and choosing a positive semi-definite 
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fQ such that the velocity components of the soft constraint in the performance index do 

not appear. For example,  

 
2 2

2 2 2 2

f

f

P
Q ×

× ×

 
=  
 

O

O O
 (5.2) 

for some 2 20,f fP P ×> ∈ℝ can be chosen.  

Considering the example problem in the current discussion, using the usual definition of 

the state vector to be given as ( ) ( ) ( ) ( ) ( )1 2 3 4:
T

t x t x t x t x t =  x , the system matrix 

and the control influence matrix are written as the constant matrices,  

 

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0

0 0

1 0

0 1

A

B

 
 
 =
 
 
 

 
 
 =
 
 
 

 (5.3) 

The nominal solution thus obtained for a certain choice of plant parameters,  

 ( )

( )

10sec

600, 600

0 0 0 0 4 1 0 0

0 0 0 0 1 4 0 0
;      

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0

0 1

f

T T

f

t T

x y

Q t Q

R t

= =

= =

   
   
   = =
   
   
   

 
=  
 

 (5.4) 

is the unperturbed solution plotted in Figure 29. 
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Figure 29. Nominal Trajectory: Reference and Perturbed (x-y Phase Subspace) 

Using the state feedback control law (with gains calculated from the differential 

equations outlined in the table 1),  

 ( ) ( ) ( ) ( )* 1 1T Tt R B S t t R B t− −= − −u x v  (5.5) 

The closed loop dynamics of the optimal state trajectory can be written as,  

 
( ) ( ) ( ) ( )

( ) ( ) ( )

* 1 * 1

* 1       

T T

T

CL

t A BR B S t t BR B t

A t t BR B t

− −

−

 = − − 

= −

x x v

x v

ɺ
 (5.6) 

where ( )* tx notation is used to denote the optimal trajectory (which by definition means 

there are no unaccounted perturbations in the closed loop trajectory calculations). With 

the simulation parameters being considered (in equation (5.4) ) the positions achieved by 

the unperturbed feedback solution are given as ( ) ( )* *, 599.5897,  599.7858T Tx y = . 
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We note, in passing, that we could have conveniently redirected the reader to any one of 

the classical texts on optimal state feedback solution to the tracking problem presented in 

Table 1. The information presented is to reiterate the fact that the gains obtained from 

such a finite time problem are in general time varying in nature. Closing the loop with 

gains calculated in such a fashion makes the closed loop time varying (but still strictly 

linear plant model) and hence the time varying identification methods developed in this 

dissertation are of relevance to identify the plant closed loop dynamics while in 

operation. We will see in the next section that possible perturbations introduce 

nonlinearities in the form of unmodeled dynamics and the performance is no longer 

satisfactory and the intercept problem incurs a terminal error which may no longer be 

within acceptable limits.  

 

Closed Loop Operation: Nominal Solution Operating in the Presence of Unstructured 

Perturbations (Drag) 

As pointed out earlier, the closed loop system for the intercept problem, although 

designed for operation under the strict conditions that no model uncertainties exist is, in 

general, forgiving in practice.  Let us consider a class of perturbations common in 

aerospace engineering – the drag perturbations acting on the point mass model. 

Equations governing the drag model are assumed to be given by  

 

1 3

2 4

3 1 3

4 2 4

x x

x x

x u V x

x u V x

µ

µ

=

=

= −

= −

ɺ

ɺ

ɺ

ɺ

 (5.7) 
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 where 2 2

3 4V x x= + denotes the velocity magnitude of the point mass and 

1

2

dC a

m

ρ
µ

 
=  

 
 is the non-dimensional parameter representing the magnitude of the drag 

force. The usual notations of ρ being the density of the medium, a denoting the area of 

the body exposed to the free stream, m  being the mass of the body and dC being the 

drag coefficient whose value depends on the surface properties of the (bluff) body and 

the profile shape, have been employed. For small coefficients of drag, in spite of the 

perturbations, the linear state feedback was able to reach closer to the target.  

To exaggerate the effects of the perturbation and subsequently highlight the 

importance of the identification method, a (perhaps unusually) large value of the non-

dimensional drag parameter was chosen (
3

2 10µ −= × ). The performance of the linear 

state feedback solution was found to be unsatisfactory for this drag parameter value, 

rendering the final achieved position coordinates to be ( ) ( ), 578.8761,  581.1549p p

T Tx y = , 

while in the absence of perturbations, the position coordinates achieved were 

( ) ( )* *, 599.5897,  599.7858T Tx y = . The deviations from the optimal (conditioned on the 

unperturbed plant model) path are shown in the Figure 29 (magnified view of the last 

few time steps is plotted in Figure 30). 
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Figure 30. Nominal Trajectory: with and without Perturbations (Zoomed View 

of x-y Phase Subspace) 

 

The position state profiles of the unperturbed and perturbed solutions are plotted in 

Figure 31, while Figure 32 details the velocity state unperturbed and perturbed nominal 

solutions. 
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Figure 31. Nominal Trajectory: with and without Drag Perturbations (Position 

Coordinates) 

Figure 32. Nominal Trajectory: with and without Drag Perturbations (Velocity 

Coordinates, x3, x4) 
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The optimal control profiles applied for these simulations are plotted in Figure 33. 

Clearly, in the presence of perturbations, the operation of the closed loop system is far 

from optimal and this fact is reflected in the trajectory profiles.  

 

Figure 33. Nominal Solution: Optimal Control Input Profiles (State Feedback 

Solution) 

Application of the Time Varying Eigensystem Realization Algorithm to Identify a Time 

Varying Linearization Model about the Nominal Solution (perturbed).  

 Although in the above example, we have explicit knowledge of the structure and 

model of the perturbations causing the departure motion from the desired trajectory, in 

practice there is no means of determining a structure let alone a construing a model for 

the causative perturbations. It can be said that in general, the perturbation models can 
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never be determined uniquely. Hence such perturbations are most often known as 

unstructured perturbations. Often, these unstructured perturbations are analytic functions 

of the state variables of the plant model (e.g. aerodynamic forces). Therefore, in the 

context of the present example, these perturbations can be formally quantified as,  

 
( )( ) ( ) ( )

( ) ( )

1

   

p p p T

p p

CL

A BG t BR B t

A t

−= − + −

= +

x x g x v

x g x

ɺ

 (5.8) 

with ( )G t  definition as ( ) ( )1 TG t R B S t−= . In the context of the present example, the 

trajectory ( )p tx is to be understood as the state variable history obtained by using the 

state feedback program (Table 1) of the previous section in the realistic system 

experiencing drag perturbations.  

Let us further assume that we can perform experiments about this constructed 

nominal. That is to say that we could apply control inputs different from the calculated 

state feedback control law, denoted by ( )tu  defined as,  

 
( ) ( )

( ) ( ) ( )( )

*

1       T

k

t t

R B S t t t

δ

δ−

= +

= − + +

u u u

x v u
 (5.9) 

1[ , )k kt t t +∀ ∈ , similar to a zero order hold approximation[1]. Denoting the trajectory 

obtained in this fashion by ( )tx , the equations of the plant dynamics in this case can be 

written as,  

 
( )( ) ( ) ( )

( ) ( )

1

   

T

k

CL k

A BG t BR B t B

A t B

δ

δ

−= − + − +

= + +

x x g x v u

x g x u

ɺ
 (5.10) 
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 Defining the departure motion state as, ( ) ( ) ( ): pt t tδ = −x x x  and expanding the 

disturbance function ( )g x in a Taylor series about the nominal trajectory ( )p tx , we 

have,  

 ( ) ( ) ( ) ...
p

p p pδ
=

∂ + = + − + ∂ x x

g
g x x g x x x

x
 (5.11) 

Using equations (5.8) and (5.10) together with (5.11), we can write the equations 

governing the departure motion dynamics, as,  

 

( )

( )     

p

p

CL k

CL k

A t B HOT

A t B

δ δ δ

δ δ

=

=

 ∂ = + + +   ∂  

 ∂ ≈ + +   ∂  

x x

x x

g
x x u

x

g
x u

x

ɺ

 (5.12) 

with initial conditions ( ) ( ) ( )0 0 0

pt t tδ = −x x x  (that can possibly assume a non-zero 

value). The high order terms are neglected in the equation (5.12) thereby giving us a first 

order model of the departure motion dynamics. This was done to satisfy the theoretical 

requirement of the identification algorithm for the true plant dynamics to be linear and 

time varying.  

 At this stage, it is quite interesting to emphasize that the method detailed here 

does not depend on the explicit knowledge of the uncertainty of this nonlinear 

term ( )" "g x . Therefore directly from experimental input output data or from the 

repeated high fidelity multiphysics model simulations (with considered input output 

data, as we will outline in the subsequent developments of this section), we realize the 

first order perturbation dynamics model. It is quite fascinating to this author that such a 
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situation is possible. While Bryson (and his co-workers ) brought neighboring optimal 

control solution methods and perturbation guidance schemes to the attention of the 

practical engineers, this dissertation attempts, for the very first time to develop the 

models assumed to be derivable from physics realizable from empirical data. Only time 

can judge the applicability and utility of the developments here-in.  

Therefore the equivalent first order perturbation dynamics model to be identified 

in the discrete time domain takes the usual form,  

 
1k k k k k

k k k k k

A B

C D

δ δ δ

δ δ δ
+ = +

= +

x x u

y x u
 (5.13) 

with the assumed definitions that ( ) ( ): p

k k kt tδ = −x x x  and the time varying direct 

transmission terms kD , have been included for generality.  

 For simplicity, it will be convenient to assume a number of outputs (sensors) to 

be equal to the number of states of the system for the subsequent developments of this 

section. This is certainly not a restrictive assumption, since the estimated state of the 

dynamic system can be used (assuming that the state estimator has converged 

effectively) or a technique outlined in the previous chapter can be employed to overcome 

this restriction. The utility of this assumption is in obtaining the last few time step 

models. As pointed out in chapter II, we will need to carry out extra set of experiments 

for the last few time steps as the generalized Hankel matrix populated in such cases will 

not in general have full row rank. This is because; depending on the particular 

experimental situation (or a simulation scenario) the generalized Markov parameters 
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1,
, 1, 2,...

f
f fk j

h j k k
+

∀ = − − may not be available for populating the Hankel matrix 

( ),
f

p q

k
H (with the assumed definition that fk is the final time step). This will render the 

rank of the last step generalized Hankel matrix to be 
( )( ),

f

p q

k
rank H m n= < . In other 

words, only the first row block will be only available for use by the TVERA 

decompositions. This is mathematically an adjoint situation of the first few time step 

model determination problem discussed earlier. As pointed out in the beginning of this 

paragraph, the method based on the free response experimental data outlined in the 

chapter II could be employed to effectively determined the last few time step models, we 

do not intend to let such details interfere with the main goals of this chapter which is to 

demonstrate that the methods presented in the dissertation are of importance in practical 

problems. 

 

Input Output Experimental Data Generation  

The key component of obtaining the identified first order perturbation model 

about the constructed nominal trajectory is the generation of input output experimental 

data. One of the prime ingredients of this data generation is the determination of the 

magnitude of the control input deviation sequence kδu . If the input magnitude is too 

large, the nonlinearity of the problem may reflect in the outputs and the first order 

deviation model may not be valid anymore. If the input magnitude is too small, then the 

excitation may not be rich enough to identify all the degrees of freedom of the first order 

deviation model. For the present example, an input deviation magnitude of 
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22 10kδ −≈ ×u was chosen by making each element of the input sequence a normal 

random vector of statistics (mean and covariance), 
2

0 1 0
,2 10

0 0 1
k Nδ −    

×    
    

u ∼  . The 

Dormand-Prince solver (ode45 subroutine of MATLAB with a relative and absolute 

tolerance of 
8

10
−
) was used to integrate the nonlinear equations of motion to obtain the 

response of the system with new control input sequence overlaid on to the conventional 

state feedback controller. For the stiff differential equations, typically this translates to 

an accuracy of the same order of magnitude of tolerance which usually implies a loss of 

a digit (or two) of precision in the solutions. A sample of 100 different sets of input 

output data sets were obtained by choosing the “true” measurement model parameters to 

be given by,  
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0 1 0 0
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 
 
 =
 
 
 

 
 
 =
 
 
 

 (5.14) 

 

Determination of the Generalized Markov Parameters (Minimum Number of 

Experiments)   

Time varying OKID algorithm detailed in the presentations of chapter III was 

applied on the input output data (operating in the time-varying dead beat observer mode) 
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to realize the generalized system Markov parameters required for populating the 

generalized Hankel matrix sequence.  

 

Generalized Hankel Matrix Singular Value Sequence   

An indication as to whether the first order perturbation model is realized (or not) 

is given by a plot of the singular values of the generalized Hankel matrix sequence. For 

the present example, the realized generalized singular values of the Hankel matrix can be 

plotted as shown in Figure 34. It is clear from the Figure 34 that the order of time 

varying system model realized is the same as the order of the analytic first order 

perturbation dynamics model (similar to equation (5.12), 4n = in case of the present 

example). The plot of the generalized Hankel matrix sequence also conveys some other 

information (from experience with other example situations). If there are nonlinearities 

detected in the outputs, the Hankel matrix singular value time history reveals changes in 

order showing the participation of higher order “fake” time varying modes only at 

certain time instances. It will be clear in such a plot that the linear model identification is 

not being proper. Appropriate steps of reducing the perturbation input excitation energy 

can then be taken to obtain much more refined linear perturbation dynamical models. 

These plots also detect the presence of disturbance inputs to the nominal system. This is 

manifested by a persistent presence of more degrees of freedom (number of nonzero 

singular values of the Hankel matrix sequence) than the physical coordinates. Therefore 

a wealth of additional information can be derived from the methods being developed in 

this dissertation.    
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Figure 34. Identification Results: Singular Values of the Hankel Matrix 

Sequence 

 

Validation of Identified Models   

The Time Varying Eigensystem Realization algorithm is then applied to the 

generalized Hankel matrix sequence to obtain a linear time varying discrete time model 

sequence for the first order departure motion dynamics. The model sequence thus 

obtained was applied a sequence of known test function inputs (zero order hold 

approximation) and the response elicited from the identified model is compared with the 

response obtained from the numerical integration of the nonlinear equations representing 

the perturbed truth model. In case of the current example the test forces applied to the 

identified and the true model are given as,  
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 ( )
( )
( )

sin 7
0.1

cos 5

k

k
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t
t

t
δ

 
 =
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 

u  (5.15) 

 

 

Figure 35. Identification Results: Position Response Comparison for Test Signal 

Inputs (Identified vs. True Nonlinear System) 

Response of the truth model (sampled at the relevant time instances) and the identified 

model sequence outputs are compared in Figure 35(position coordinates) and Figure 36 

(velocity coordinates). 
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Figure 36. Identification Results: Velocity Response Comparison for Test Signal 

Inputs (Identified vs. True Nonlinear System) 

 

Figure 37. Identification Results: Error in Response Test Signal Inputs 

(Identified vs. True Nonlinear System) 
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The error (outputs/response deviations) incurred by the identification process is plotted 

in Figure 37. 

Having been able to identify the first order dynamics of the departure motions 

about the given nominal solution of the present problem, we proceed to use this model 

sequence for control purposes. We make a note at this point that the coordinate 

transformation results presented in the chapter II have been used to transform the models 

in the same coordinate system for control purposes. Furthermore, since in the particular 

example, we assume that 4 independent sensor measurements are available throughout 

the time interval of interest, some interesting observations can be made in this case. 

Upon transforming the models in to the same coordinate system, the identified ˆkC matrix 

sequence was found to be time invariant (and therefore constant in time), given by,  

 

0.0318 0.0190 0.0246 0.0798

0.0191 0.0318 0.0798 0.0246ˆ
0.3166 0.1893 0.0025 0.0080

0.1895 0.3161 0.0080 0.0025

kC

− 
 − − − =
 − − −
 
− − − 

 (5.16) 

 1, 2,...101k∀ = . This result of recovering the time invariant measurement sensitivity 

matrix upon transformation in to the same coordinate system is in principle, the proof of 

concept demonstration of the time varying coordinate systems and transformations 

developed in the chapter II. It should also be pointed out that the constant estimate of the 

measurement sensitivity matrix ˆkC , is required in the state feedback controller design to 

transform the time varying model sequence in the same physical coordinate system as 
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the nominal motion (all the while knowing that the true measurement sensitivity matrix 

kC is the identity matrix in this problem).  

 

Perturbation Guidance Using Identified Linear Time Varying Model Sequence   

The model sequence thus identified using the Time Varying Eigensystem 

Realization Algorithm (TVERA) can be used to restore the performance requirements 

(state trajectory) assumed by the nominal solution in the absence of model errors and 

perturbations. In order to be able to track the optimal, unperturbed trajectory using 

perturbation guidance, we first set up a time varying reference trajectory to be tracked. 

Defining the discrete time reference trajectory, as,  

 ( ) ( )*: p

k k kt tδ = −r x x  (5.17) 

would enable the definition of a tracking error state to be defined as, k k kδ δ= −ε x r  

( ) ( )*

k kt t= −x x . With the definitions of appropriate reference trajectory and a 

corresponding tracking error, the feedback control law based on the perturbation model 

to track the reference in finite time involves the solution of an optimal control problem 

similar to the tracking problem outlined in table 1, but in discrete time domain. The 

necessary formulae are summarized in the following table, presented in the notation 

developed in this chapter for convenience of the reader.  
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Table 2 Summary of Optimal State Feedback Control for the 

Perturbation Guidance Scheme Using the TVERA Identified 

Departure Motion Dynamics Model 

Dynamical 

System 
1k k k k kA Bδ δ δ+ = +x x u  

Performance 

Index (Discrete 

tracking 

problem) 

1

0

1 1
min

2 2k

N
T d T d T

N N N k k k k k k

k

J Q Q R
δ

δ δ
−

=

 = + + ∆ ∑
u

ε ε ε ε u u  

Optimal Control ( )* 1

1 1 1

T

k k k k k kR B Sδ δ−
+ + += −∆ ∆ +∆u x v  

Feedback Gain 

Difference 

Equation 

( ) 11 1

1

T T d

k k k k k k k kS A S B R B A Q
−− −

+∆ = ∆ + ∆ +  

with final condition  
d

N NS Q∆ =  

Difference 

Equation for the 

Feed-Forward 

term calculation 

( ) 11 1 1

1 1 1

T T d

k k k k k k k k k kA S B R B S Q δ
−− − −

+ + +∆ = ∆ + ∆ ∆ ∆ −v v r  

with final condition 
d

N N NQ δ∆ = −v r  

 

 

 With the choice of the parameters (for perturbation guidance in finite time),
3

410
d

NQ I= , 

2

410
d

kQ I= and 2kR I∆ = , where NI denotes theN N× identity matrix, the corrections 

incorporated from the discrete time guidance scheme following table 2. However, since 

the simulation runs in continuous time, the pre-calculated gains were used in a gain – 

scheduling type fashion, with the fixed gain multiplying the time varying departure 

motion dynamics, while the feed forward term was used in the usual zero order hold 
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assumption. In other words, the implemented controller correction in real time 

integration was given as,  

 ( ) ( )( )applied 1

1 1

T

k k k k kt R B S tδ δ−
+ += −∆ ∆ +∆u x v  (5.18) 

1[ , )k kt t t +∀ ∈ , and 1,..., 1k N= − , which is a reasonable approximation to the optimal 

solution, provided sufficiently large sampling rate is provided to achieve acceptable 

performance. In the implementations provided in this chapter, a sampling rate of 10 Hz 

was chosen. The target position achieved by incorporating the perturbation discrete time 

guidance scheme as developed in this section is found to be 

( ) ( ), 598.6349,  598.7890T Tx y =  (which is closer to the optimal solution 

( ) ( )* *, 599.5897,  599.7858T Tx y = , while the absence of corrections lead to a final 

position of the point mass in the presence of perturbations to be 

( ) ( ), 578.8761,  581.1549p p

T Tx y = ). 

A comparison of the three solutions is plotted in the x-y space in Figure 38. 

Zoomed view of the solutions focusing on the last few time step states are plotted in 

Figure 39. The comparison of position trajectories is presented in Figure 40, while the 

velocity trajectories are compared in Figure 41. The errors incurred from the optimal 

trajectory in the presence of perturbations and after incorporation of the identified model 

based compensation scheme are plotted in Figure 42. The extra control effort required in 

compensation is shown by the control profiles of Figure 43. Clearly a large amount of 

control expenditure is incurred in suppressing the unstructured uncertainty; however, the 

required reference is tracked with appreciable accuracy. 
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Figure 38. Guidance with Identified Model: Comparison with Other Trajectories 

(x1-x2 Space View 1) 

 

Figure 39. Guidance with Identified Model: Comparison with Other Trajectories 

(x1-x2 Space Zoomed View) 
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Figure 40. Demonstration of TVERA Identified Perturbation Guidance: 

Comparison of Position State Variables 

 

Figure 41. Demonstration of TVERA Identified Perturbation Guidance: 

Comparison of Velocity State Variables 
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Figure 42. Demonstration of TVERA Identified Perturbation Guidance: State 

Deviations from the Optimal Trajectory 

 

Figure 43. Demonstration of TVERA Identified Perturbation Guidance: 

Perturbation Guidance Discrete Corrections (Discrete Control) 
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Application of the Time Varying Identification Technique to a Problem in 

Dynamics † 

 Consider the dynamics of a point mass in a rotating tube as shown in the 

schematic of Figure 44.  

 

Figure 44. Schematic Depicting the Point Mass in a Rotating Tube 

 Dynamics of such a point mass is governed by a second order differential equation 

given by  

 ( )2 2k
r r u t l

m
δ θ δ θ = − + + 

 
ɺ ɺɺɺ  (5.19) 

where the new variable ( ) ( ):r t r t lδ = − , has been introduced, together with the 

definition of l as the free length of the spring (when no force is applied on it, i.e., 

                                                 
†
 The author wishes to acknowledge Dr. John E. Hurtado for suggesting this problem. 
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Hooke’s Law applies as sF k rδ= − ). The function ( )u t is the radial control force 

applied on the point mass and the parameters ,k m are the spring stiffness and the mass 

of the point mass of interest. The time variation in this linear system is brought about by 

the profile of the angular velocity of the rotating tube, ( )tθɺ . Choosing the origin of the 

coordinate system at the position 0 ˆ
rl=r e (with no loss of generality) along the 

ˆ
re direction, we have the second order differential equations to be given by,   

 ( ) ( )2 k
r t r u t

m
δ θ δ = − + 

 
ɺɺɺ  (5.20) 

where the redefinition of the origin renders the system linear time varying without any 

extra forcing functions.  

In the first order state space form ( ( ) ( ) ( ) ( )1 2: , :x t r t x t r tδ δ= = ɺ ), the equations 

can be written as,  

 ( )
( )

( ) ( ) ( ) ( )

1 1

2

2 2

0 1
0

10

      

x x
u tk

tx x
m

A t t B t u t

θ

       = +      −      
= +x

ɺ

ɺɺ  (5.21) 

together with the measurement equations,  

 
( )
( )

( )
( )

( )1 1

2 2

1 0 1
0.1

0 1 1

y t x t
u t

y t x t

      
= +      
      

 (5.22) 

To make comparisons with the identified models, analytical discrete time models were 

also generated by computing the state transition matrix (equivalent kA ) and the 
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convolution integrals (equivalent kB , with a zero order hold assumption on the inputs).  

Since the system matrices are time varying, matrix differential equations given by  

 
( ) ( ) ( )
( ) ( ) ( )
, ,

, ,

k k

k k

t t A t t t

t t A t t t I

Φ = Φ

Ψ = Ψ +

ɺ

ɺ
 (5.23) 

1,k kt t t + ∀ ∈ with initial conditions ( ) ( )1 0 0 0
, , ,

0 1 0 0
k k k kt t t t

   
Φ = Ψ =   

   
 such that,  

 
( )
( )

1

1

: ,

: ,

k k k

k k k

A t t

B t t B

+

+

= Φ

= Ψ
 (5.24) 

 would represent the equivalent discrete time varying system (truth model). Integration 

of the matrix differential equations was carried out with a tolerance of 
13

1 10
−×   

(Dormand-Prince solver – subroutine ‘ode45’ of MATLAB).  For the current 

investigation the time variation profile of the ( ) 1
3sin

2
t tθ  =  

 
ɺ  with the mass and 

stiffness of the system chosen to be 1, 10m k= = . The time interval of interest was held 

to be 50 seconds, with the discretization sampling frequency of interest set to be 1Hz . 

Time Varying System Identification methods developed in this dissertation were 

employed using the input-output test data from the models above and model sequences 

were obtained. Identification process starts with the determination of generalized 

Markov parameters, similar to the procedure indicated in chapters II and III. Errors 

incurred in the determination of these Markov parameters are shown in Figure 45.  
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Figure 45. Errors of the Identified Generalized Markov Parameters (Using Least 

Squares Solution and the Time Varying OKID Procedure) 

  

Figure 46. Singular Values of Hankel Matrix (Point Mass in a Rotating Tube) 
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 The singular values of the generalized Hankel matrix sequence are plotted as Figure 46. 

Applying a test input force ( ) ( )1
sin 12 
2

u t t= , to the true and identified system matrix 

sequences, the error incurred in the response is shown in Figure 47 while the response 

profiles are compared in Figure 48. Response profiles appear jagged to show their 

sampled nature.  

 

Figure 47. Error in the Identified System Response  
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Figure 48. Comparison of System Response (True vs. Identified) to Test Control 

Input Function  

Discussion on the Identified Time Varying Coordinates 

This simple physical example helps us explain the time varying coordinate 

systems and the transformation process. To bring further clarity in to the discussion, we 

use the same number of sensors as the true dimensionality of the state space ( 2m =  for 

this problem). Also, the generalized Hankel matrix is populated with only one redundant 

time step such that the Observability grammians are non-redundant and hence lead to 

exact inverse (as opposed to pseudo-inverse) in the transformations. We will first explain 

the transformations for this simplified situation and then proceed to a short discussion on 

what happens in the general situation.    
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 For the current problem, the coordinate system calculations are simplified owing 

to the measurement sensitivity matrix being identity as given by equation (5.22). Recall 

from chapter II that this implies  

 ˆ
k k k kC C T T= =  (5.25) 

for this problem. Therefore, if a non identity matrix is realized by the identification 

procedure, the time varying coordinates are transparently obtained by the problem set up 

in this simplified setting. Considering four representative time steps, we plot the 

coordinate systems in Figure 49.  

 

Figure 49. Time Varying Coordinate Systems: Graphical Demonstration of the 

Transformation Process (Special Case - Number of Sensors Matching the State 

Dimension) 
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Note that in Figure 49 above, the blue arrows indicate the reference directions in the 

state space representing the columns of the true kC matrix at the corresponding time step. 

Red arrows plot the columns of the identified ˆ kT

kC matrix. They represent the time 

varying coordinates that are realized by the identification algorithm. The black arrows 

represent the columns of the identified 0ˆT
kC matrix after transformed in to the reference 

coordinate system. A clear demonstration of the transformation process is obtained by 

observing that at each time step, the transformed coordinates align with the reference 

coordinate system (at time 0t or any other reference time step of interest). 

For the more general situation of m n< , owing to the arbitrariness of the “free” 

basis vectors ( n m−  of them exist at each time step), this elegant projection on to the 

same subspace is not defined uniquely and hence the basis is completed arbitrarily (at 

every time step) to produce the necessary inversion (pseudo-inversion to make a precise 

statement). The arbitrary completion of basis leads to a time varying correction. It also 

depends upon the number of time steps considered for constructing the Observability 

grammian through the least squares pseudo inverse constructed in the process of 

transformation. Considering different time steps would in general lead to a different 

transformation matrix. We now proceed to show that the same example problem can be 

represented as a bilinear system and demonstrate the continuous time bilinear system 

identification algorithm developed in this dissertation.  
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Application of the Continuous Time Bilinear System Identification Technique to a 

Problem in Dynamics 

Now consider an alternative situation where the model governing the dynamics 

of the particle in a rotating tube shown in Figure 44 is unforced ( ) 0u t =  with the origin 

defined such that 0l ≠  in the system of equations (5.19). For clarity of presentation, 

these equations are repeated here as,  

 
2 2k

r r r l
m

δ δ δ θ θ = − + + 
 

ɺ ɺɺɺ  (5.26) 

Defining the state variables to be ( ) ( ) ( ) ( )1 2: , :x t r t x t r tδ δ= = ɺ  and the angular velocity 

squared as the control input, ( ) ( )2u t tθ= ɺ , we have the following system of equations 

(in the bilinear form) 

 ( ) ( )1 1 1

2 2 2

0 1
0 0 0

1 00

x x x
u t u tk

lx x x
m

          = + +         −          

ɺ

ɺ
 (5.27) 

along with the measurement equation,  

 ( ) ( ) ( )1 0.1y t x t u t= +  (5.28) 

Note that as opposed to the situation for which the methods of chapter IV were 

developed, the problem in the current application is limited in scope due to the fact that 

the input magnitude is constrained to be positive ( ( ) 0u t > ). Although it was not found 

to be a limiting factor in the identification problem posed for problems with single 

degree of freedom, the excitation was found to be insufficient for problems of higher 
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degrees of freedom (more masses attached in the tube). Therefore, in such situations the 

performance of the identification algorithms was found to be relatively poor.   

The identified system matrices (plant parameters) computed using the procedure 

developed in chapter IV are found to be,   

 

[ ]

1

2.4332 0.014195
ˆ

1121.6 2.4332

0.023373 0.00078133
ˆ

0.69916 0.023373

1.3086 ˆˆ ;   0.0179 0.0006
39.1459

c

c

c

A

N

B C

− 
=  − 

 
=  − − 
− 

= = − − 
 

 (5.29) 

The errors in system matrix eigenvalues (representative of the identification 

errors are found to be)  

 

( ) ( )

( ) ( )

10

5

1 1

0.2407 - 0.1394i
ˆ 10

0.2407 + 0.1394i

-0.0000 + 0.2557i
ˆ 10

-0.0000 - 0.2557i

c c

c c

A A

N N

λ λ

λ λ

−

−

 
− = × 

 

 
− = × 

 

 (5.30) 
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Figure 50. Response Comparison: True and Identified Models (Point Mass in a 

Rotating Tube - Bilinear) 

Note the decrease in the accuracy of identification process. This is owing to the 

limitation of the admissible forcing functions to positive values. Consequently excitation 

is not rich enough to extract the unknowns in the problem. Using a test function input 

profile ( ) ( )sin 7u t t= , the response obtained from the identified and true systems are 

compared in the Figure 50. Errors incurred in the response to this test function are 

plotted in Figure 51. 
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Figure 51. Error in Response between True and Identified Models (Point Mass 

in a Rotating Tube - Bilinear) 

Application of the Continuous Time Bilinear System Identification Technique to an 

Automobile Brake Problem 

 Following the developments of Mohler[39], we consider the problem of 

modeling the deceleration dynamics of an automobile under the action of a braking 

system. A schematic of the braking mechanism is illustrated in Figure 52 
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Figure 52. Schematic of an Automobile Braking Mechanism 

A mechanical drum brake shown in the schematic operates by the frictional force it 

produces upon contact with the axle attached to a rotating wheel. Frictional force 

produced in the process is typically modeled (neglecting Coulomb friction) as,  

 ( ) ( )1b bf c u t x t= ɺ  (5.31) 

where ( )1u t is the braking force applied to the drum, bc the coefficient of friction, ( )x tɺ is 

the translational velocity of the axle (and the vehicle). Denoting the mass of the 

automobile by m  and designating ( )2u t to represent the engine force acting on the 

vehicle, a simple model for the dynamics of the braking motion can be obtained as,  
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 ( ) ( ) ( )
( )

11 1 1 1

1 2

22 2 2 2

0 1 0 0
0 0 0 0

0 0 0 100
f b

u tx x x xd
u t u tc c

u tdt x x x x
mm

                  = + + +               −−                  

 

  (5.32) 

where fc denotes any further damping present in the dynamics of the problem while the 

state variables 1 2,x x represent the position and velocity variables of the vehicle 

dynamics.  It was assumed that both position and velocity of the vehicle were assumed 

for measurement and the output equation is given by  

 
( )
( )

( )
( )

1 1 1

2 2 2

1 0 1 0
0.1

0 1 0 1

y t x t u

y t x t u

        
= +        
        

 (5.33) 

Choosing representative values of the damping coefficients to be 2 , 5f bc m c m= = , we 

get the following identification results. Identified plant model parameters are calculated 

as,  

 
12

1 2

14

15

1.6589 0.0092ˆ
61.6885 0.3411

4.9587 0.0274 0.2421 0.1295
ˆ ˆ;  10

7.4734 0.0413 0.8528 0.4205

0.0068 0.00450.3 10 3.7211 ˆˆ ;   
0.2665 0.0010.14 10 5.6082

c

c c

c

A

N N

B C

−

−

−

− − 
=  − − 

− − − −   
= = ×   − − − −   

− × −
= =  − −× −  5

 
 
 

 (5.34) 

Identification errors as represented by the errors between true and identified system 

matrix eigenvalues are given by 
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( ) ( )

( ) ( )

( ) ( )

11

12

1 1

12

2 2

 0.1584
ˆ 10

-0.1563

-0.4778
ˆ 10

 0.5950

0.6753
ˆ 10

-0.0127

c c

c c

c c

A A

N N

N N

λ λ

λ λ

λ λ

−

−

−

 
− = × 

 

 
− = × 

 

 
− = × 

 

 (5.35) 

Using test input profiles ( ) ( ) ( ) ( )1 2sin 7 , cos 5u t t u t t= = , the response obtained by the 

identified system parameters and the true system parameters are compared in Figure 53.  

 

Figure 53. Comparison of Response to Test Function Inputs (Automobile Brake 

Problem) 

Errors incurred in response channels are plotted in Figure 54. 
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Figure 54. Error in Response to Test Function Inputs (Automobile Brake 

Problem) 

The simple examples of this chapter clearly show the broad applicability of the methods 

developed in this dissertation. Promising results obtained indicate progress towards the 

next generation of algorithms for identification of plant models for dynamic systems.  

 

Conclusion 

A simple two dimensional intercept problem is used to demonstrate the 

capabilities and potential applications of the time varying eigensystem realization 

(TVERA) algorithm developed in this dissertation. Considering the embedded state 
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feedback gains the closed loop of the plant becomes time varying and incurs errors in 

operation due to unstructured uncertainties in the form of modeling errors (Drag 

perturbations are considered).  

 Subsequent application is a model governing the dynamics of a point mass 

rotating in a tube forming a naturally time varying system. Time varying system 

identification methods (TVERA, TOKID) are applied to this problem and reliable model 

sequences are obtained for a given angular velocity profile. The time varying coordinate 

systems and the nature of associated transformations are discussed clearly in the context 

of this physical example.  

 The same problem with simple redefinition of variables is shown to be bilinear in 

nature and the continuous time bilinear system identification methods are applied for the 

identification of the model parameters in this domain. An automobile brake problem is 

then detailed as a demonstration application of the continuous time bilinear system 

identification algorithms developed in this dissertation.  
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CHAPTER VI 

CONCLUSIONS AND FUTURE DIRECTIONS 

“The outcome of any serious research can only be to make ‘n’ questions grow where 

only one grew before.” 

- Paraphrased from a quote by Thorstein Veblen by Prof. John Junkins 

 

In this spirit, it can be surmised that the efforts undertaken for the investigations 

comprising of this dissertations are very serious. For most part, the techniques developed 

in this dissertation raise more questions and bring more interesting problems into focus 

that call for more investigation. However, that being said, it is felt that the results 

developed are of sufficient gravity and maturity that near term implementations will 

result.  

We outline the accomplishments made and the challenges and opportunities 

presented by this dissertation topic-wise below.   

  

Time Varying Eigensystem Realization Algorithm 

The first chapter details an identification algorithm called the Time Varying 

Eigensystem Realization Algorithm (TVERA) is proposed to realize discrete time 

varying plant models from input output experimental data. It is shown that this singular 

value decomposition based method is a generalization of the celebrated Eigensystem 

Realization Algorithm developed by Juang et. al.[1], to realize time invariant models 
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from pulse response sequences. Using the results from discrete time identification 

theory, the generalized Markov parameter and the generalized Hankel matrix sequences 

are computed via a least squares problem associated with the input-output map. The 

computational procedure under investigation outlines a methodology to extract a state 

space plant model sequence from the generalized Hankel matrix sequence in several 

different time varying coordinate systems. The concept of free response experiments is 

recommended to identify the subspace of the unforced system response, providing a 

consistent methodology to realize system models for the first few time steps. The 

algorithm developed leads to a tool set (presented in this dissertation) that enables seam-

less integration of model sequences which might have been obtained from different 

algorithms. For the special case of systems with fixed state space dimension, the free 

response subspace is used to construct a uniform coordinate system for the realized 

models at different time steps. Numerical simulation results on general systems are 

presented to investigate the effectiveness of the algorithms developed.    

Although the developments of this chapter bring much of the literature in time 

varying system realization theory to a much more mature state of evolution, the new 

tools developed also open new opportunities of investigation. The physical nature of 

time varying eigenvalues begs for some immediate investigation. It must definitely mean 

something important for the invariance of eigenvalues to result when viewed from a 

certain family of consistent coordinate systems (a controllable/observable subspace). 

The change of eigenvalues and the concept of time varying modes has attracted some 

recent attention[14]. Also, the assumption of zero initial condition needs to be relaxed at 
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some point. While the time varying OKID procedure partially redresses this issue, the 

first few time steps of the time varying dead beat observer realized needs a specific 

solution, which we have not presented in this dissertation. The constrained projection 

scheme to develop the transformation matrices subject to known constraints is also not 

presented here. A closed form solution for such transformations has been obtained by the 

author. These discussions were avoided to make the presentation details of the central 

ideas clear. These results become important only once the core of the algorithms are 

communicated. The author and his collaborators plan to make these results accessible 

within a year from the publication of the main algorithms (TVERA/TOKID). 

While the requirement of repeated experiments can be overcome by using special 

types of input sequence sets, measured for a large time interval, this approach may not 

be possible for systems that are not necessarily periodic or quasi periodic. Extensive 

work still needs to be done to classify and separate systems based on whether they can 

be identified from a single set of experimental data (design of experiments). Theoretical 

identifiability and realizability needs to be distinguished in this context and approaches 

that lead to practical algorithms need to be developed. The author feels that significant 

amount of work still needs to be done in this regard. Future research efforts for this topic 

would focus on such extensions and generalizations (relaxation of assumptions) while 

bearing sufficient emphasis on practical applications of the theoretical ideas.   
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Observer Markov Parameter Theory for Time Varying Eigensystem Realization 

Algorithm 

In the second chapter, an algorithm for computation of the Markov parameters of 

an observer or Kalman filter from input output experimental data is discussed.  The 

relationships between the observer Markov parameters and the system Markov 

parameters are derived for the time varying case and are found to be generalizations of 

the developments for the OKID algorithm for the time invariant systems developed by 

researchers in the past. The time varying sequence of system Markov parameters and the 

time varying observer (or Kalman filter) gain Markov parameter sequence are projected 

to be obtainable using time varying generalizations of the recursive relations developed 

in the time invariant case from the generalized time varying observer Markov 

parameters. The system Markov parameters thus derived are to be used by the time 

varying Eigensystem realization algorithm developed in the first chapter, to obtain a time 

varying discrete time state space model for controller design purposes. Connections with 

the Kalman observer in the stochastic environment and an asymptotically stable realized 

observer are qualitatively discussed to develop insights for the analyst. A minimum 

number of repeated experiments for accurate recovery of the system Markov parameters 

is derived from these developments, which is vital for the practicing engineer to design 

multiple experiments before analysis and model computations. Numerical examples 

demonstrate the utility of the approach presented. 

Topics developed in relation to the time varying OKID procedure have in fact 

opened up new avenues of research for the future. The concept of time varying moving 
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average models (GTV-ARMAX), an obvious stochastic extension to the GTV-ARX 

models developed in this dissertation are of imminent interest for development of time 

varying filters. A first look was made at the relationship of the GTV-ARX observer and 

the Kalman filter and the analogy is near-perfect. This qualitative analogy looks at the 

fading memory element of the Kalman filter process noise with the number of terms in 

the time varying moving average model. However, quantitative relationships between 

the realized observers and the time varying versions of the discrete time Kalman filter 

need to be studied in greater detail to address the following issues: 

1. In case of the time invariant theory, explicit relations between the autoregressive 

moving average models and the associated observers exist. This allows the 

analyst to gain useful information on the spectral content of the filter that gets 

discarded from the original signal in order to minimize the state estimation error 

covariance (some discussions are presented in section 4.5 of Anderson and 

Moore[40]). Since frequency domain methods cease to exist for time varying 

systems, these connections are difficult to make. A significant amount of work 

needs to be done in order to understand the underpinnings of these connections. 

2. On the other hand, in case of the time invariant systems, one often is able to 

arrive at an estimate of the error statistics of the process noise. While this is 

central to adaptive filtering[41], similar ideas are used in the improvement of 

identification results in a method known as “Residual whitening” (based on a 

version of the OKID algorithm) quite successfully[42]. Similar to the previous 
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statement, the connections for this inverse problem are not straightforward to 

make.  

3. Considerable research needs to be done in order to investigate the role of an 

optimal observer in the identification process. Although the time varying 

deadbeat observer realized by the GTV-ARX model is the fastest possible 

observer, one cannot obtain the same speed from an optimality perspective where 

we are interested in minimizing the error covariance. This seemingly dual 

problem is an interesting issue for further investigations.    

Further analysis and research is required in the area of time varying dead beat 

observers discussed in this dissertation. Specifically, upon close inspection, the central 

ideas of the computational procedure developed here-in and the classical procedures 

developed to compute the time varying dead beat observers[43, 44] have some strong 

similarities. A direct demonstration of their identical nature (if the steps involved are 

indeed the same) or a relationship between the algorithms (direct correspondence 

between the steps involved in the calculations) would aid in unifying the theory 

presented here-in with existing literature.   

 

Continuous Time Bilinear System Identification  

Identification of continuous time bilinear system plant models, from input output 

data associated with multiple experiments is the topic of discussion in chapter III. 

Making use of recent advances in bilinear system identification, the results of the chapter 

take advantage of the experimental data from multiple experiments and set up a 
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procedure to obtain bilinear system models. It is shown that the special pulse inputs 

employed by earlier research can be avoided and accurate identification of the 

continuous time plant model is possible by performing multiple experiments 

incorporating a class of piece wise constant control input sequences introduced in this 

dissertation. Avoiding the practical difficult step of pulse input generation and 

application, makes the algorithm proposed in this chapter more attractive in practice for 

the identification of bilinear systems. Furthermore, using the developments designed in 

this chapter, one obtains the plant models in the same coordinate system automatically. 

Numerical examples demonstrate a basis for optimism for the methodology developed to 

solve many members this class of problems. 

Bilinear system identification theory has several significant prospective research 

opportunities for exploration. The first effort is to extend the Markov parameter 

determination procedure (input dependent) to develop an OKID type algorithm, giving 

rise to a natural nonlinear autoregressive model with exogenous input (NARX), where 

the feedback is quadratic in the residual error. Connections to the existing nonlinear 

estimation theory [45] are important problems for investigation. High order perturbation 

models in the form of state transition tensors (Volterra Kernels), were recently found to 

be attractive for applications in nonlinear estimation and trajectory optimization[45]. 

According to Rugh, the state transition tensors are actually time varying bilinear systems 

derivable from the equations of motion of a nonlinear system using a technique called 

the Carleman linearization about a reference trajectory[29]. Thus extensions of the 

bilinear time invariant system identification methods presented here-in to realize time 
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varying bilinear models appears to be a promising avenue for further research, owing to 

the increasing interest in theory and applications of Volterra kernel based nonlinear 

identification methods.    

 

Applications to Problems in Guidance, Control and Dynamics 

The theory of time varying system identification is applied (in chapter V) to 

realize the first order departure motion dynamics model sequence about a reference 

trajectory for an intercept problem operating in the presence of unstructured uncertainty 

of drag perturbations. The model sequence set thus realized is used to design a controller 

to stay close to the optimal trajectory in the absence of the unmodeled dynamics, with 

satisfactory performance and tracking. 

The author notes that this is just one simple representative of a plethora of 

possible applications and dynamical systems. In principle, the current demonstration is 

directly applicable to obtain first order perturbation models for several complex 

nonlinear systems operating in a reference trajectory. Reduced order modeling (from 

high fidelity multiphysics model simulations) is yet another application, where the 

information from complex simulations can be effectively “compressed” in to a time 

varying perturbation linear model, based on which control decisions can be made. Since 

this is the first (and only, to date) example solved, it is difficult to extrapolate the impact 

of this approach until more example problems with higher dimensionality are addressed. 

Thus the perturbation guidance problem is recommended for further study.  
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As shown in the simple dynamics problem, several interesting problems exist 

where the dynamics is inherently time varying. Such physical problems need to be 

studied more to understand the true nature of the time varying eigenvalues and their 

significance and possible utility in the analysis and design of dynamical systems.  

The physical applications discussed, demonstrating the effectiveness of 

continuous time bilinear system identification algorithm show optimism on their broad 

applicability. However, the method outlined here does not apply for two situations. One 

of the problems involves the case when the true 0cB = (this happens in a practical 

application of the models of a nuclear power plant / reactor [39]) and the other when 

0cA =  (although this case technically falls out of the scope of the present study since the 

system is not observable). Simple modifications to the existing technique are found by 

the author to circumvent the associated problems. The first problem is circumvented by 

using initial condition response (free decay experiments) while the second problem is 

detected and circumvented using the rank test of the output sequence and by-passing 

some steps in the current algorithm. They will be reported in a separate communication 

made available to the research community within the next year.  

Thus the methods developed in the current dissertation are representative of a 

wide variety of applications quite useful for analytical and practical engineers. 

Numerical examples offer optimism to the author that at least many of the algorithms 

and their near-term technical descendants will stand the test of time.     
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APPENDIX A 

LINEAR ESTIMATORS OF THE KALMAN TYPE: A REVIEW OF THE 

STRUCTURE AND PROPERTIES 

We review the structure and properties of the state estimators for linear discrete time 

varying dynamical systems (Kalman Filter Theory[4, 46]) using the innovations 

approach propounded by Kailath[47] and Mehra[41]. The most commonly used truth 

model for the linear time varying filtering problem is given by  

 1k k k k k k kA B+ = + +Γx x u ω  (A.1) 

together with the measurement equations given by,  

 k k k k k kC D= + +y x u v  (A.2) 

The process noise sequence is assumed to be a Gaussian random sequence with zero 

mean ( ) ,iE i= ∀ω 0  and a variance sequence ( ) , ,T

i j i ijE Q i jδ= ∀ω ω  having an 

uncorrelated profile in time (with itself, as shown by the variance expression) and no 

correlation with the measurement noise sequence ( ) 0, ,T

i jE i j= ∀ω v . Similarly, the 

measurement noise sequence is assumed to be a zero mean Gaussian random vector with 

covariance sequence given by ( )Ti j i ijE R δ=v v , where the Kronecker delta is denoted 

as 0ijδ = , i j∀ ≠ and 1ijδ = i j∀ =  along with the usual notation ( ).E for the expectation 

operator of random vectors. A typical estimator of the Kalman type (optimal) assumes 

the structure (following the notations of [10]),  
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ˆ ˆ ˆ

ˆ   :

k k k k k

k k k

K

K

+ −

−

 = + − 

= +

x x y y

x ε
 (A.3) 

where the term ˆ:k k k= −ε y y represents the so called innovations process. In classical 

estimation theory, this innovations process is defined to represent the new information 

brought in to the estimator dynamics through the measurements made at each time 

instant. The state transition equations and the corresponding propagated measurements 

(most often used to compute the innovations process) of the estimator are given by,  

 

1

1
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− +
+

− −
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= +

 = − + + 

x x u

x x u y

 (A.4) 

and  

 ˆ ˆ
k k k k kC D
− −= +y x u  (A.5) 

Defining the state estimation error to be given by, ˆ:k k k

−= −e x x (for analysis purpose), the 

innovations process is related to the state estimation error as,  

 k k k kC= +ε e v  (A.6) 

while the propagation of the estimation error dynamics (estimator in the loop, similar to 

the time varying OKID developments of the paper) is governed by,  

 
1

     :

k k k k k k k k k k

k k k k k k k

A I K C A K

A A K

+  = − − +Γ 

= − + Γ

e e v ω

e v ωɶ
 (A.7) 

Defining the uncertainty associated by the state estimation process, quantified by the 

covariance to be : T

k k kP E  =  e e , covariance propagation equations are given by,  
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 1

T T T T

k k k k k k k k k k k kP A P A A K R K A Q+ = + + Γ Γɶ ɶ  (A.8) 

Instead of the usual, minimum variance approach in developing the Kalman recursions 

for the discrete time varying linear estimator, let us use the orthogonality of the 

innovations process, a necessary condition for optimality and to obtain the Kalman filter 

recursions. This property is usually called the innovations property is the conceptual 

basis for projection methods[47] in a Hilbert space setting. As a consequence of this 

property we have the following condition.  

 If the gain in the observer gain is optimal, then the resulting recursions should 

render the innovations process orthogonal (uncorrelated) with respect to all other terms 

of the sequence. That is to say that for any time step it and a time step 

( )denoted as ,i kt i k− − 0k > steps behind the thi step, we have that  

 0T

i i kE −  = ε ε  (A.9) 

Using the definitions for the innovations process and the state estimation error, we use 

the relationship between them to arrive at the following expression for the necessary 

condition that,  

 0T T T T

i i k i i i k i k i i i kE C E C C E− − − −     = + =     ε ε e e e v  (A.10) 

where the two terms 0T T

i i k i i kE E− −   = =   v e v v  drop out because of the lack of 

correlation, in lieu of the standard assumptions of the Kalman filter theory. For the case 

of 0k = , it is easy to see that equation (A.10) becomes,  

 

              

T T T T

i i i i i i i i

T

i i i i

E C E C E

C P C R

     = +     

= +

ε ε e e v v
 (A.11) 
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Applying the evolution equation for the estimation error dynamics for k time steps 

backward in time from it , we have that, 

 

1 2 1 1 1 1 2 2 2 1 1 1

1 1 1 2 2 1 1

... ... ...

                         ... ...

i i i i k i k i k i i k i k i k i k i i i i i i i

i i k i k i k i i i i i

A A A A A A A K A A K A K

A A A

− − − + − − − − + − − − − − − − − − −

− − + − − − − − − −

 = − + + + 

 + Γ + + Γ +Γ 

e e v v v

ω ω ω

ɶ ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ
 

  (A.12) 

We obtain expressions for ,T T

i i k i i kE E− −      e e e v by operating equation (A.12) on both 

sides with ,
T T

i k i k− −e v on both sides and taking the expectation operator. 
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( )1 1

1 1
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               ...
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i i k i i k i k i k i k i k
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 (A.14) 

Substituting equations (A.14) and (A.13) in to the expression for the inner product 

(A.10), we arrive at the expressions for Kalman gain sequence as a function of the 

statistics of the state estimation error dynamics for all time instances up to ( )1 1it i− −  as,  
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 (A.15) 

 which is necessary to hold for all Kalman type estimators with the familiar update 

structure, 0k∀ >   
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 ( ) 1T T

i k i k i k i k i k i k i kK P C R C P C
−

− − − − − − −= +  (A.16) 

because of the innovations property involved. Qualitative relationship between the 

identified observer realized from the time varying OKID calculations (GTV-ARX 

model) and the classical Kalman filter is explained in the main body of the paper using 

the innovations property of the optimal filter developed above. A minor detail pointed 

out at this stage is that the optimality in the sense of Kalman, viewed from the 

perspective of orthogonality conditions in this appendix does not interfere with the dead-

beat conditions discussed elsewhere. Clearly appropriate choice of weights and tuning 

parameters of the Kalman filter can be chosen to approach the dead beat condition. The 

quantitative connections however need to be explored more rigorously at the present 

time, along with the large sample behavior in the stochastic setting.  
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APPENDIX B 

A REVIEW OF THE VAN-LOAN METHOD FOR COMPUTING INTEGRALS 

INVOLVING A MATRIX EXPONENTIAL  

We briefly review the application of “Van-Loan” integral formula (detailed  and 

more general developments can be studied in[31]) to the evaluation of the integral 

involving matrix exponential for evaluating the input dependent coefficients in the 

matrix equation (4.40) for the determination of a least squares estimate of cB . The 

integral in question is similar to the form given by (using the notations of [31] and 

employing the necessary change of variables and obvious redefinitions),  

 ( )
( )

1

ˆ ˆ

1

0

r

c ci i

i

t A N u t

G t e d
τ

τ=

 
∆ + ∆ − 

  
∑

∆ = ∫  (B.1) 

Consider an augmented block matrix 
2 2n n×Ω∈ℝ  given by,  

 1

ˆ ˆ

0 0

r

c ci i n

i

n n n n

A N u
=

× ×

  
+  Ω =   

  

∑ I
 (B.2) 

where 
n n

n

×∈I ℝ identity matrix and 0
n n

n n

×
× ∈ℝ matrix of zeros. Then the associated 

matrix differential equation,  

 ( ) ( ) X t X t= Ωɺ  (B.3) 

with initial conditions, ( )0 nX t = I has a block solution of the form given by,  

 ( ) ( ) ( )
( )

1 1  

20

t

n n

F t G t
X t e

F t

Ω

×

 
= = 
 

 (B.4) 
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By substituting the solution (B.4) in to the matrix differential equation (B.3) and 

comparing block by block gives us three matrix differential equations that can be written 

as,  

 ( ) ( )1 1

1

ˆ ˆ
r

c ci i

i

F t A N u F t
=

 
= + 
 

∑ɺ  (B.5) 

with initial conditions ( )1 0 nF t = I , and  

 ( ) ( )1 1

1

ˆ ˆ
r

c ci i n

i

G t A N u G t
=

 
= + + 
 

∑ Iɺ  (B.6) 

with initial conditions ( )1 0 0nG t = , where the (rather obvious) solution for the 

differential equation  ( )2 0nF t =ɺ , ( ) ( )2 2 0 nF t F t= = I has been used. A cursory  

inspection reveals that (B.1) is indeed the solution of the differential equation (B.6) and 

is accurately evaluated as the upper - right ( )1 2n n× × block of the matrix exponential 

solution ( )X t  (i.e., ( ) ( )1: , 1: 2X t n n n+  block) in equation (B.4). This procedure 

enables us to accurately compute the coefficients involved in equations (4.40) in the 

identification of the continuous time ˆcB .  
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APPENDIX C 

THE TIME VARYING DEAD BEAT CONDITION  

It was found in chapter III that the generalization of the ARX model in the time 

varying case gives rise to an observer that could be set to a dead beat condition that has 

different properties and structure when compared to its linear time invariant counterpart. 

The topic of extension of the dead beat observer design to time varying systems has not 

been pursued aggressively in the literature and only scattered results exist in this context. 

Paper by Minamide et. al.[43], develops a similar definition of the time varying dead 

beat condition and present an algorithm to systematically assign the observer gain 

sequence to achieve the generalized condition thus derived. In contrast, through the 

definition of the time varying ARX model we arrive at this definition quite naturally and 

we further develop plant models and corresponding dead beat observer models directly 

from input output data, which is an elegant development of this dissertation.  

 First we recall the definition of a dead beat observer in case of the linear time 

invariant system and present a simple example to illustrate the central ideas. Following 

the conventions of Juang[1] and Kailath[15], if a linear discrete time dynamical system 

is characterized by the evolution equations given by,  

 1k k kA B+ = +x x u  (C.1) 

along with the measurement equations (with an additional condition that ( ),C A  is an 

observable pair),   

 k k kC D= +y x u  (C.2) 
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where the usual assumptions on the dimensionality of the state space are made, 
n

k ∈x ℝ , 

m

k ∈y ℝ , 
r

k ∈u ℝ and , ,C A B  are matrices of compatible dimensions. Then the gain 

matrix G is said to produce a dead beat observer, if and only if the following condition is 

satisfied (the so-called dead beat condition):  

 ( ) [ ]0p

n n
A GC

×
+ =  (C.3) 

where p is the smallest integer such that *m p n≥  and [ ]0
n n×
is an n n× matrix of zeros.  

Example:  

Let us consider the following simple linear time invariant example to fix the 

ideas.  

 

[ ]

1 0

1 2

0 1

A

C

 
=  
 

=

 (C.4) 

Now the necessary and sufficient conditions for a dead beat observer design give rise to 

a gain matrix 1

2

g
G

g

 
=  
 

 such that,  

 

( )
( )
( )

1 1 22

2

2 1 2

1 3

3 2

0 0
                

0 0

g g g
A GC

g g g

 + +
 + =
 + + + 

 
=  
 

 (C.5) 

giving rise to the gain matrix 
1

3
G

− 
=  − 

 (it is easy to see that 2p = for this problem). 

The closed loop can be verified to be given by,  
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 ( )
1 1

1 1
A GC

− 
+ =  − 

 (C.6) 

which can be verified to be a singular, defective (repeated roots at the origin) and 

nilpotent matrix. Therefore the deadbeat observer is the fastest observer that could 

possibly be achieved since in the time invariant case, it designs the observer feedback 

such that the closed loop poles are placed at the origin. However, it is quite interesting to 

note that the necessary conditions, albeit redundant nonlinear functions in fact have a 

solution that exists (one typically does not have to resort to least squares solutions) since 

some of the conditions are dependent on each other (not necessarily linear dependence). 

This nonlinear structure of the necessary conditions to realize a dead beat observer 

makes the problem interesting and several techniques are available to compute solutions 

in the time invariant case, for both cases when plant models are available (Minamide 

solution [43]) and when only experimental data is available (OKID solution). 

 Now considering the time varying system and following the notation of chapter 

III, the time varying dead beat definition is made. Recall (from equation (3.15)) that in 

constructing the generalized time varying ARX (GTV-ARX) model of chapter III, we 

have already used this definition.  

 A linear time varying discrete time observer is said to be dead beat, if, there 

exists a gain sequence kG such that  

 ( )( ) ( ) [ ]1 1 1 2 1 1 ... 0k p k p k p k p k p k p k k k n n
A G C A G C A G C+ − + − + − + − + − + − ×

+ + + =  (C.7) 

for every k , where p  is the smallest integer such that the condition *p m n≥ is 

satisfied.   
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Example 

 To fix the ideas, we demonstrate the observer realized on the same problem used 

in the chapter III and follow the example by a short discussion on the nature and 

properties of the time varying dead beat condition in case of the observer design. The 

parameters involved in the example problem are given by the equation,    

as  

 

exp

1 0

1 1 1 0 1 0.2
,   ,   

0 1 1 1 0 0.5

1 0

1 0
0.1

0 1

k c

k k

k

A A t

B C

D

 = ∗∆ 

 
 −   = =    − − 
 
− 

 
=  

 

 (C.8) 

where the matrix is given by  

 
2 2 2 2

2 2

0

0
c

t

I
A

K

× ×

×

 
=  

− 
 (C.9) 

with 
4 3 1

1 7 3

k

t

k

K
τ

τ

 + −
=  ′− + 

and ,k kτ τ ′ are defined as ( ) ( )sin 10 ,   : cos 10k k k kt tτ τ ′= = . 

Clearly since 2, 4m n= =  for the example, the choice of 2p = is made. Considering the 

time step 36k = , for demonstration purposes, the closed loop (with the observer gain 

equation in the output feedback style is given by)   
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( )

36 36 36

36 36 36 15

13

-2.0405 0.3357 0.0016  0.5965

-1.7735 -0.7681 -3.2887 -0.0289

1.7902 -0.0270 0.8290 -0.3852

-6.9208 1.4773 1.0572 2.1980

0.31545

-0.097074

1.1878 10

1.2252 10

A G C

A G Cλ −

−

 
 
 + =
 
 
 

 
 
 + =
 ×
 

×  

 (C.10) 

while the closed loop for the previous time step is calculated as,   

 

( ) ( )
( )

35 35 35

1435 35 35

 -1.7924 0.4678 0.1630 0.5778

-0.7301 0.4380 -2.8865 -0.1330

 1.1874 -0.1662 0.5671 -0.2986

-5.7243  1.8475 2.1805 2.0524

0.43716

-0.048167

-2.1173 +7.4549i 10

-2.1173 -7.4549i 10

A G C

A G Cλ −

−

 
 − + =
 
 
 

+ =
×

× 14

 
 
 
 
 
  

 (C.11) 

and the closed loop for the consecutive time step is found to be given by,  

 

( )

37 37 37

37 37 37

-2.4701    0.1432   -0.2323    0.6315

-2.3403   -0.8353   -3.3551    0.0362

 2.0767    0.0773    0.8335   -0.4165

 -8.8651    0.6963   -0.2452    2.3719

-0.14861

0.048661

A G C

A G Cλ

 
 
 + =
 
 
 

+ =
12

15

4.0371 10

-5.5501 10

−

−

 
 
 
 ×
 

×  

 (C.12) 



 

 

190

 While clearly each of the closed loop member sequence, 35,36,37A has only two zero 

eigenvalues (individually non-deadbeat in the time invariant sense, since all closed loop 

poles are NOT placed at the origin), let us now consider the product matrices,  

 ( )( ) 12

37 37 37 36 36 36

 -0.0959    0.0070   -0.0326    0.0238

   -0.1192    0.0035   -0.0187    0.0235
10

   -0.0564    0.0003   -0.0307    0.0123

    0.1137    0.0075    0.0551   -0.0187

A G C A G C −

 
 
 + + = ×
 
 
 

 

  (C.13) 

and   

 ( ) ( ) 13

36 36 36 35 35 35

   -0.0844   -0.1443    0.0888   -0.0711

    0.4660   -0.2783    0.4528   -0.2652
10

   -0.2265    0.1987   -0.2076    0.1610

   -0.6217   -0.4086    0.1243   -0.1332

A G C A G C −

 
 
 + + = ×
 
 
 

 

  (C.14) 

The examples clearly indicate that the composite transition matrices taken p (= 2 for this 

example) at a time can form a null matrix, while still retaining nonzero eigenvalues 

individually. This is the generalization that occurs in the definition of dead-beat 

condition in case of the time varying systems. Similar to the case of time invariant 

systems, we still see that the observer which is dead beat happens to be the fastest 

observer even in the case of the time varying systems.  

We reiterate the fact that in case of the computations and algorithms of this 

dissertation, the dead-beat observer can be realized naturally along with the plant model 

sequence being identified. It is not difficult to construct the generalized ARX (GTV-

ARX) model and derive the observer gain sequence using the time varying OKID 
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procedure for the case when plant parameters are known.  It is of consequence to 

observe that the procedure due to time varying OKID is developed directly in the 

reduced dimensional input–output space while the schemes developed to compute the 

gain sequences in the paper by Minamide et al. [43], which is quite similar to the method 

outlined by Hostetter[44] are based on projections of the state space on to the outputs. 
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