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ABSTRACT 

 

Circuits Attenuating Seizures Under Well-Fed and Food-Deprived Conditions in  

C. elegans Male Sex Muscles. (May 2009) 

Brigitte LeBoeuf, B.S., University of Dallas 

Chair of Advisory Committee: Dr. L. Rene Garcia 

 

The circuits that allow organisms to control behavioral timing need to be tightly 

regulated to ensure execution of appropriate environmental responses.  Disrupting such 

regulation results in individuals unable to perform tasks necessary for survival and 

propagation.  Identifying the molecular components regulating behaviors will enable 

compensation where behavioral impediments to survival exist.  To identify circuits of 

behavioral regulation, I studied male mating behavior in the nematode Caenorhabditis 

elegans.  Specifically, I focused on the step wherein the male inserts his copulatory 

spicules into the hermaphrodite vulva, as vulva penetration is required for successful 

sperm transfer.  This step must be tightly regulated; if the spicules protract too soon or 

not at all, vulva penetration and thus successful mating will not occur. 

 In this dissertation, I elucidate the circuits regulating sex-muscle excitability 

under standard conditions and describe how these pathways are augmented to further 

reduce excitability under food deprivation conditions.  I employ a variety of assays to 

identify and analyze these circuits, including genetic manipulation, biochemical 

techniques, and behavioral assays.  Under standard conditions the calcium/calmodulin-
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dependent protein kinase II (CaMKII) encoded by unc-43 is required to inhibit C. 

elegans male sex-muscle seizures; under conditions where food is scarce, I propose that 

CaMKII is further up-regulated to activate the EAG K+ channel EGL-2 through a direct 

interaction.  The CaMKII/EGL-2 interaction functions to attenuate calcium influx from 

L-type voltage-sensitive calcium channels (L-VGCCs), while CaMKII also down-

regulates calcium influx from ryanodine receptors.  Additionally, another K+ channel, 

the voltage- and calcium-sensitive big current channel SLO-1, attenuates sex-muscle 

excitability by inhibiting L-VGCCs under food deprivation conditions.  In conclusion, 

CaMKII and EGL-2’s paralog, UNC-103/ERG-like K+ channel, are required when food 

is plentiful to prevent premature sex-muscle contractions, while food deprivation reduces 

cell excitability and thereby inhibits inappropriate seizures through CaMKII, EGL-2, and 

SLO-1. 
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CHAPTER I 

INTRODUCTION 

 

Understanding how behaviors are regulated at the molecular level 

 

All animals must regulate the timing and order of responses within a complex 

behavior to accomplish specific tasks or react to environmental changes.  When 

responses are incorrectly regulated, the ability to respond to specific situations is lost.  

For instance, a person suffering from schizophrenia perceives stimuli similar to a healthy 

person, but the disease causes them to display spontaneous emotional outbursts that 

interfere with their ability to respond appropriately to the stimuli.  Drugs used to 

suppress the symptoms of schizophrenia occasionally allow afflicted individuals to react 

correctly, but these drugs do not treat the cause of the disease, and they also produce 

many other deleterious side effects [1].  By determining how behaviors are regulated, 

better ways to modify inappropriate behavior can be developed.  To accomplish this, the 

genetic and molecular components that control specific behaviors need to be identified, 

and how these components work together under the appropriate conditions needs to be 

understood.    

I am interested in studying how behavioral regulation is accomplished at the 

molecular level.  This involves identifying the genes responsible for regulating a set of 

responses as well as where gene expression is necessary and what other molecules the  

_______________ 
This dissertation follows the style and format of PLoS Genetics.
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gene product interacts with.  Although studying behavior in vertebrates is feasible, 

humans and laboratory model animals such as mice and zebrafish contain complex 

neuronal systems composed of billions of cells, thus rendering thorough analysis a 

daunting task.  The more complex an organism, the more difficult it is to determine what 

occurs at the level of cells and molecules.  To learn how a multicellular organism 

coordinates behavioral responses at the molecular level I chose to study the nematode 

Caenorhabditis elegans. 

 

Advantages provided by Caenorhabditis elegans for studying behavioral regulation 

 

 The advantages offered by C. elegans in discovering the intricate apparatus that 

controls behavior include intrinsic attributes of the animal and a multitude of tools 

available to exploit the organism’s instructional potential.  C. elegans is a 1 mm long 

hermaphroditic round worm commonly found in vegetation.  It is an appealing 

laboratory animal since large quantities of the worm are easy to cultivate and isolates 

can be stored in glycerol at -80°C or in liquid nitrogen to remove the necessity for 

perpetual propagation of lines.  In addition, C. elegans is a powerful genetic system 

becaise the entire genome has been sequenced and is highly annotated, it has a short 

generation cycle in which it matures from an egg to adult in three days, hermaphrodites 

lay a large number of progeny, and many mutations result in easy-to-follow 

morphological and behavioral phenotypes.  Originally exploited by Sydney Brenner for 
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studying how the nervous system develops and functions, the entire lineage of each of 

the somatic cells in an adult hermaphrodite is known [2-4].  In addition, wiring projects 

have identified much of the connectivity that exists between the 302 neurons in the 

hermaphrodite and 381 neurons in the male, as well as their innervation of other cell 

types [5,6](http://www.wormatlas.org).  Since the worm is transparent under the 

microscope, individual cells can be identified and removed, facilitating the discovery of 

their roles in behavior. Additionally, due to the relative ease of creating transgenic lines, 

genes can be manipulated to determine the nature of their function in particular cells.  

These attributes of C. elegans make it a powerful and appealing organism in which to 

study what occurs in cells at the molecular level and how that affects the overall function 

of the animal. 

 The advantages of C. elegans as a model organism to advance the realm of 

scientific knowledge has recently been acknowledged by the Nobel Prize committee, as 

three Nobel Prizes have been awarded for research conducted on C. elegans in the past 

six years: Sydney Brenner, Robert Horvitz, and John Sulston received the 2002 Nobel 

Prize in Medicine for the establishment of C. elegans as an organism for molecular and 

cellular studies, specifically the identification of proteins involved in programmed cell 

death [3,4,7]; Andrew Fire and Craig Mello received the 2006 Nobel Prize in Medicine 

for the discovery of RNA interference (RNAi), a post-transcriptional regulation of 

messenger RNA [8]; and Martin Chalfie received the 2008 Nobel Prize in Chemistry for 

developing the green fluorescent protein (GFP) from the jellyfish Aequorea victoria as a 

biological marker [9]. 
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 Many scientists have taken advantage of C. elegans to address biological 

questions, including those involving neuromolecular studies of behavior. These studies 

have included all the basic tasks an organism needs to accomplish for survival: 

locomotion, sensing the environment, feeding, defecation, and reproduction.  Studying 

how these behaviors are regulated has revealed general principles of neuronal signaling 

pathways as well as how specificity is obtained in regulating behavior. 

 

Excitable cells control behavior 

 

Behavioral output is achieved through signaling events that occur in excitable 

cells, specifically neurons and muscles.  Channels and pumps maintain the charge 

separation that distinguishes excitable cells.  More negatively charge ions are on the 

inside of a cell while more positively charge ions are on the outside of a cell.  Neuronal 

signaling occurs when channels open to allow positively charged ions to flood the cell, 

neutralizing the negative charge inside the cell and depolarizing the membrane.  The 

sudden reversal of membrane polarization in a neuronal cell is referred to as the action 

potential.  This electrical signal can be propagated along the length of the neuron, and be 

passed to other neurons through both electrical and chemical signals as well as muscle 

cells using chemical signals.   

Muscle contraction is initiated by motor neurons that release a chemical signal, 

called a neurotransmitter, onto muscle cells.  Neurotransmitters open channels that 

depolarize the membrane.  In turn, the membrane depolarization opens calcium 
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channels. The calcium then causes muscle contraction by allowing myosin and actin to 

interact, shortening the muscle fibers.  In a relaxed muscle, myosin and actin are 

prevented from interacting by tropomyosin, a protein that blocks the myosin binding 

sites in actin.  Calcium then binds the tropomyosin regulatory complex troponin, which 

moves tropomyosin off the actin/myosin interaction site, allowing binding to take place 

and the muscle fiber to shorten [10,11]. 

Maintenance of membrane polarization and a return to membrane resting 

potential after an excitation event is control by K+ channels.  K+ channels open in 

response to membrane depolarization and allow positively charge ions to flow out of the 

cell, shutting off voltage-dependent Ca2+ channels.  Pumps then return Na+ and Ca2+ ions 

to the outside of the cell while K+ ions are returned to the inside of the cell.  The removal 

of Ca2+ allows the muscle cell to relax.  Disrupting the function of these channels and 

pumps results in the inability of organisms to properly regulate behavior.  The excitable 

cells can be too excitable and respond under inappropriate conditions or not excitable 

enough and stay dormant when they should respond to a stimulatory signal.  The study 

of molecular regulation in C. elegans has helped identify specific roles for channels in 

coordinating behavior [12]. 

 

Locomotion 

 

 C. elegans moves as a result of body bends created by relaxation of body wall 

muscles on one side and contraction of body wall muscles on the other.  These bends 
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result in a sinusoidal wave that propels the animals forward or backward [13]. The wave 

is produced by cholinergic neurons that stimulate muscle contraction on one side of the 

animal and inhibitory GABAnergic neurons that induce muscle relaxation on the other 

side [14].  Mutations affecting C. elegans locomotion are easily identified by sight and 

were the first type of behavior mutants generated by Sydney Brenner [4].  Brenner 

classified worms displaying movement defects as “uncoordinated” or “Unc,” and these 

defects ranged from complete paralysis to jerky movements.  Analysis of the genes 

defined by the Unc phenotypes has facilitated the discovery of their roles in processes 

from development to behavior, including the initial discovery of genes involved in 

neuronal signaling pathways [15].  Genes encoding UNC-13, UNC-18, and UNC-64 

were identified to be important for synapse-located neurotransmitter release [16,17].  

Since these proteins are conserved in all metazoans (in vertebrates, UNC-13 and UNC-

18 have the same name but are distinguished by adding “M” in front, and UNC-64 

encodes syntaxin), studying these genes in C. elegans facilitated the analysis of how 

general synaptic transmission is controlled [18].  However, mutations that affect 

locomotion often affect other behaviors, including feeding, defecation, chemosensation, 

and mating, indicating that such genes have a broad impact on behavior.  While studying 

locomotion gives insight into general principles of neuronal regulation, studying other 

behaviors allows for determination of how specific regulation is obtained. 
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Chemosensation 

 

 An organism needs to be able to respond to environmental stimuli, to either move 

towards positive signals that indicate food or mates, or away from noxious stimuli that 

indicate harmful situations.  The neurons, receptors, intracellular signal transduction 

pathways, and regulatory mechanisms have been identified in C. elegans that allow them 

to respond to many chemical stimuli [19].  In C. elegans, a subset of sensory neurons 

mediates attraction while another subset mediates repulsion [20].  The chemosensory 

neurons ASH extend processes to the front of the worm that are exposed to the 

environment and are involved in the avoidance response to a large range of noxious 

stimuli [21].  This pair of neurons releases glutamate onto the AVA and AVD command 

interneurons responsible for activating motor neurons that initiate backward movement 

[6,22].  Environmental stimuli are transduced into the cell through G-protein coupled 

receptors located in the ASH neurons; these receptors include sra-6 and srb-6 and they 

could be attached to the G-proteins defined by odr-3 and gpa-3, which are involved in 

sensing noxious stimuli [23].  Heterotrimeric G-proteins are ubiquitous second 

messengers that upon activation split into two subunits, Gα and Gβγ, that regulate a 

variety of processes.  ASH function can be modulated by the Gαi-like protein gpa-11, 

which increases ASH response when food is plentiful [24].  How the ASH neurons work 

in responding to noxious chemicals is one example of how studying chemosensation in 

C. elegans has identified the molecular basis of how specificity is obtained in regulating 

behaviors. 
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Feeding 

 

 The study of feeding behavior, controlled by a muscular pump called the 

pharynx, allows for understanding of how behavioral modifications can be integrated 

throughout the animal at both a cellular and molecular level.  The pharynx is responsible 

for ingesting and grinding up bacteria by an intrinsic contraction rhythm before passing 

the food on to the intestines.  Twenty neurons innervate the pharynx, but successful 

feeding is dependent upon only one neuron, M4, to move food from front to back in the 

pharynx [25,26].  Roles for the other nineteen neurons have been discovered by looking 

at how pumping efficiency is modulated.  One such neuron, the NSM, has no effect on 

pumping under standard conditions; when the neuron is removed via laser ablation the 

pharynx works normally [26,27].  However, a role for the NSM in how the worm 

coordinates feeding with male sexual behavior has been discovered [28].  When mating, 

a male’s pharynx stops pumping; disrupting the NSM allows the males to feed and mate 

at the same time [28,29].  The NSM neuron appears to play an additional role in 

signaling to the male genitalia, as removing the neuron increases sex muscle excitability 

[28].  Loss of function in a ERG-like K+ channel (unc-103) responsible for reducing cell 

excitability is hypothesized to caused hypersensitivity of the NSM neuron, as removing 

the unc-103 gene results in pumping while mating [28].  Thus, this neuron is involved in 

the integration of the feeding state of the animal with mating. 
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Defecation 

 

 C. elegans defecation is a rhythmic behavior that occurs every 45 seconds, with a 

series of coordinated abdominal muscle contractions that first compress the gut contents 

and then expel them [30,31].  Perturbation of the defecation cycle through mutations 

allows for studying how rhythms are maintained in C. elegans.  Mutating the inositol 

triphosphate receptor (IP3 receptor) itr-1 can result in complete disruption of the 

defecation cycle [32].  IP3 receptors allow bursts of calcium from the endoplasmic 

reticulum into the cytoplasm of the intestinal cells, resulting in a calcium wave that 

travels from posterior to anterior every 45 seconds [32-34].  Functional ITR-1 receptors, 

along with other proteins involved in regulating the defecation cycle, only need to be 

present in intestinal cells, and not neurons, to control defecation, suggesting a role for 

non-neuronal somatic cells in regulating behaviors [32,35].  While the intestinal calcium 

wave regulates the first part of defecation, compression of the gut contents mediated by a 

signal from two GABAnergic neurons, AVL and DVB, controls expulsion of the gut 

contents from the cloaca [31,36].  Coordination of compression and expulsion occurs via 

a signal secreted from the intestines, using proteins similar to those involved in 

neurotransmitter release [37].  Exploration of the regulators of defecation has identified 

molecules involved in controlling a rhythmic behavior.  In addition, it has provided 

insight into intercellular signaling utilized by non-neuronal cells. 
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Egg-laying 

 

 Similar to feeding and defecation, egg-laying is a rhythmic behavior dependent 

upon the function of a small number of cells.  Egg-laying is not necessary for 

propagation, as eggs retained in the hermaphrodite hatch and the progeny eat their way 

out of the adult.  The HSN neuron innervates the muscles that contract to open the vulva 

and allow eggs to leave [3,6].  Egg-laying is stimulated by the neurotransmitter 

serotonin, but its role is not straightforward [38].  Thus, analyzing the effects of 

serotonin on egg-laying has allowed researchers to analyze how one molecule can both 

positively and negatively regulate a behavior.  Serotonin receptors are present on both 

the vulva muscles and the HSN neuron itself, allowing the neurotransmitter to act in an 

autocrine manner.  While serotonin activates the vulva muscles through Gαq, a member 

of the heterotrimeric G-protein family, it inhibits the HSN neuron through the activation 

of a different G-protein, Gαo [39,40].  So far, five different serotonin receptors have 

been identified in the egg-laying circuit: SER-1, SER-7, and SER-5 in the muscle and 

SER-4 and MOD-1 in the neuron [41-44].  The muscle-located serotonin receptors 

activate G-proteins that induce muscle contraction, while in the neuron SER-4 activates 

the inhibitory G-protein Gαo and MOD-1 encodes a unique Cl- ion channel [41,45].  

Lack of SER-4 or MOD-1 leads to over-stimulation of the vulva muscles and results in 

hermaphrodites laying eggs at an earlier stage than normal, while loss of SER-1, SER-7, 

and SER-5 or their associated G-proteins inhibits egg-laying [41-45].  The study of 

serotonin’s role in the egg-laying system has revealed how neurotransmitters can control 
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behavior in a context-specific manner, as serotonin can activate and inhibit the muscle 

contractions leading to egg-laying.  

 

Male mating behavior 

 

 While C. elegans is predominantly a hermaphroditic species, males can appear in 

populations through nondisjunction of the X chromosome, leading to a sex that has its 

own specific behavior: mating.  Hermaphrodites, containing both sperm and eggs, 

display no mating behaviors; wild-type hermaphrodites will even move away from 

interested males [46].  Males, on the other hand, cannot pass on their genetic code 

without mating, and therefore have developed specific structures and a complex 

behavior that allows them to inseminate mates.  Males’ tails consist of a fan-like 

structure that includes both a sensory apparatus and a copulatory complex consisting of 

neurons, muscles, and spicules (Figure 1) [5].  The male utilizes his spicules to penetrate 

the hermaphrodite vulva, and the muscles controlling the spicules, the protractors and 

retractors, are attached to its base.  A nonessential anal depressor muscle is also 

electrically coupled to the protractors (http://www.wormatlas.org).  Neurons involved 

include the SPC motorneuron, post cloaca sensilla, and hook sensilla [5].  The behavior 

these neurons coordinate can be broken down into stereotyped steps: contact, searching, 

vulva location, prodding, spicule insertion, and sperm transfer (Figure 2). 
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Figure 1. Diagram of the male tail. Spicule is in gray, neurons and their processes are 
in green, and muscles are in red and orange.  The protractors and retractors attach at the 
base of the spicules, and the SPC neuron synapses to the protractors.  The hook neurons 
(HOA and HOB) send processes to the front of the cloaca opening while the post cloaca 
sensilla (PCA, PCB, PCC) send processes to the area immediately behind the cloaca 
opening.  The post cloaca sensilla share connectivity with one another as well as the SPC 
and protractor muscles. 
 
 
 
 
 Contact is initiated when the male locates a hermaphrodite [29].  He positions his 

tail along the hermaphrodite cuticle (Figure 2A) and initiates a backward movement, 

pressing the sensory structures in the male tail on the cuticle as he scans for the vulva 

(Figure 2B).  If the vulva is not located on one side of the hermaphrodite, the male 

initiates a turn and scans the other side, stopping when he locates the vulva and 

positioning his spicules over the vulva slit (Figure 2C).  To penetrate the tightly closed 

vulva, the male initiates a rapid, rhythmic prodding of the spicules (Figure 2D) [47].  

Prodding is controlled by the protractor muscles attached to the base of the spicules and 
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initiated by the sensory hook neurons (HOA and HOB) and post cloaca sensilla (p.c.s.: 

PCA, PCB, PCC) (Figure 2D) [5,47].  The rapid muscle contractions are controlled by 

calcium released from ryanodine receptors (RyRs) located in the membrane of the 

endoplasmic reticulum [47].  Once the vulva slit has been penetrated, the protractor 

muscles tonically contract, causing the spicules to fully insert into the vulva (Figure 2E).  

Tonic contraction of the protractor muscles is initiated by the release of the 

neurotransmitter acetylcholine (ACh) from the SPC motor neuron (Figure 2E) [5].  

Tonic spicule muscle contraction is dependent on L-type voltage-gated calcium channels 

(L-VGCCs) [47].  After the spicules are inserted into the vulva, sperm transfer occurs 

(Figure 2F) [14].  Upon completion of sperm transfer, the male retracts his spicules 

using the retractor muscles, attached at the base of the spicules, and moves away [5].  

These individual steps can be dissected using genetic and molecular tools to determine 

how behaviors are controlled at the level of cells and molecules. 
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Figure 2. Steps of C. elegans male mating behavior. The spicule is in gray, the 
muscles in red and orange, and the neurons and their processes are in green. (A) The 
male initiates contact and positions his tail on the hermaphrodite cuticle. (B) The male 
presses his tail along the cuticle, scanning for the vulva. (C) The male stops moving and 
positions his spicules over the vulva slit. (D) Muscles and neurons involved in spicule 
prodding. (E) The protractor muscles contract, causing the spicules to fully insert into 
the vulva.  Spicule protraction is controlled by the SPC motor neuron. (F) Full spicule 
insertion allows sperm transfer to occur. 
 
 
 
Spicule insertion step of male mating behavior 

 

 In my exploration of how behaviors are controlled at the molecular level, I 

focused on the spicule insertion step of male mating behavior.  C. elegans offers 

advantages for studying males: since male mutations can be propagated in 

hermaphrodites, there is no need for balanced strains when mutations result in males 

unable to mate.  Additionally, mutations exist that increase the proportion of males in a 
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population; the mutation him-5(e1490) is used throughout this study and increases the 

percentage of males in a population from <0.01% to 33% [48].  Since the timing of 

spicule protraction has to be tightly regulated to occur only when the vulva slit has been 

penetrated, the spicule insertion step allows for the study of how sensing external cues is 

integrated with preprogrammed motor responses.  To study the mechanisms involved in 

inhibiting spicule protraction, Dr. L. Rene Garcia isolated mutations that permanently 

protract their spicules in the absence of mating cues (Figure 3) [12].  Males displaying 

this mutant phenotype can be easily identified under a microscope, facilitating the 

analysis of mutants.  Since the behavior has to be tightly regulated, it is possible to 

obtain mutations that cause spicule protraction but do not interfere with additional 

behaviors.  I will focus on the genes defined by two alleles resulting in the mutant 

phenotype in this study: sy557, which causes 82% of homozygous males to protract their 

spicules, and sy574, which induces protraction in 56% of males (Table 1) [12,49]. 

 
 
 
 

 
Figure 3. Permanent spicule protraction in the absence of mating cues. The spicules 
are in gray and the muscles are in red and orange. (A) Wild-type spicule position. (B) 
Mutant spicule position. 
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ERG-like K+ channel/unc-103 regulates spicule insertion 

 

 Dr. L. Rene Garcia located the sy557 molecular lesion to the gene unc-103, 

which encodes the C. elegans ortholog of the ether-a-go-go related gene (ERG) K+ 

channel.  unc-103(sy557) induces spicule protraction in 82% of males, while 

hermaphrodites display no gross abnormalities (Table 1).  A deletion allele, n1213, 

hereafter referred to as unc-103(0), induces spicule protraction in 42% of males (Table 

1).  In addition to causing abnormal protraction, these mutations in unc-103 result in 

premature protraction during prodding, making it more difficult for the males to insert 

their spicules into the vulva [12]. 

 ERG K+ channels function to repolarize a cell membrane after a depolarization 

event has taken place [50].  Human ERG K+ channels (hERG) are expressed in the heart 

and mutations in hERG lead to cardiac arrhythmias that result in sudden death [51,52].  

hERG not only helps with repolarization of the membrane but also prevents premature 

depolarization events from occurring, and in this way inhibits cardiac arrhythmias.  

Overcoming the potentially lethal results of interfering with hERG function would be of 

great benefit to organisms. 

 Since 58% of males lacking the ERG-like K+ channel unc-103 do not display 

spontaneous spicule protraction, a compensatory mechanism is likely active in some 

males to inhibit these muscle seizures.  To identify the compensatory mechanisms, I 

focused on the mutant allele sy574, identified in the same screen as sy557, that induces 

spicule protraction in 56% of males (Table 1) [49].  By identifying the location of the 
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sy574 lesion and determining its role in regulating the timing of spicule protraction, I 

hope to elucidate how molecules function together to coordinate behaviors. 

 
 
 
Table 1. Mutations causing male spicule protraction 
Genotypea % Protracted (n) p valueb 
Wild-type 12 (106)   
unc-103(sy557) 82 (55) <0.0001 
unc-103(0) 42 (91) <0.0001 
sy574 56 (300) <0.0001 
aStrains contain him-5(e1490)     
bFisher's Exact Test to Wild-type     

 
 
 
Dissertation objectives 

 

 The objective of this dissertation is to elucidate how behaviors are controlled at 

the molecular level by identifying the genes involved in regulating the timing of spicule 

protraction in C. elegans males. 

 Chapter II provides detailed materials and methods used in experiments to obtain 

the dissertation objective.  In Chapter III, I locate the sy574 lesion to the gene 

CaMKII/unc-43 and identify body-wall and sex muscles as the area of function for unc-

43 in controlling spicule protraction.  In Chapter IV, I explore the relationship between 

unc-43 and EAG K+ channel/egl-2 in reducing seizures under food deprivation 

conditions.  I discovered that UNC-43 can directly bind EGL-2 and this binding is 

dependent upon serine 567 on the EGL-2 c-terminus.  In Chapter V, I describe the 

partially redundant mechanisms that reduce the effects of calcium influx from two 
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calcium channels, L-type voltage-gated Ca2+ channels (L-VGCCs) and ryanodine 

receptors (RyRs), under both well-fed and food deprivation conditions.  EGL-2 and 

UNC-43 attenuate the effects of L-VGCC activity under food deprivation conditions 

while UNC-43 plays a further role in reducing the activity of RyRs.  I also identified the 

importance of the BK K+ channel/SLO-1 in down-regulating male sex-muscle 

excitability under both food-satiated and food deprivation conditions.  These circuits are 

in place to respond to different environmental conditions to ensure mating behavior is 

performed at the appropriate time. 



 19 

 
CHAPTER II 

EXPERIMENTAL PROCEDURES 

 

Strains 

 

All strains contain him-5(e1490) [48] and were maintained as described in [4].  

The following strains were used. LGI: lev-11(rg1) [28]; LGIII: unc-103(n1213) [53]; 

unc-103(sy557) [12]; pha-1(e2123) [54] unc-64(e246) [4]; LGIV: unc-43(sy574) [49]; 

unc-43(e408) and unc-43(e266) [4]; unc-43(n1186), unc-43(n1179), and unc-43(n498) 

[53]; unc-43(sa200) [31]; egl-19(n582) [55]; LGV: unc-68(r1158) [56], egl-2(n693) 

[57], egl-2(n904) [58], egl-2(rg4) [49], and slo-1(js379) [59]. 

 

Identification of sy574 

 

sy574 was isolated as described in [12].  sy574 animals were out-crossed five 

times.  Single nucleotide polymorphism mapping was used to locate the sy574 lesion to a 

570-kb region on Chromosome IV between cosmids R102 and K08F4 [60].  Candidate 

genes in the map region were PCR amplified from wild-type genomic DNA and injected 

into sy574 hermaphrodites.  sy574 injected strains also contained the pha-1(e2123) 

mutation, which is a temperature sensitive allele that prohibits pharyngeal development 

at 20°C, resulting in death.  A wild-type copy of pha-1 on plasmid pBX1 was injected 

along with the PCR amplified wild-type genomic DNA.  The genes that were amplified 
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are: gpa-7, R09H10.6, F13B12.3, C43F9.6, tax-6, and cal-4.  The primer pairs used to 

amplify the genes are as follows: FCAL4 and CAL4R for cal-4, R09H106R and 

FR09H106 for R09H10.6, FC43F96 and C43F96R for C43F9.6, Nwgpa7f and Gpa7nwr 

for gpa-7, ff13b123 and F13B123R for F13B12.3, and Ftax6 and tax6r for tax-6.  None 

of these genes rescued sy574-induced spicule protraction.  In addition, complementation 

tests were done between sy574 and alleles of unc-43, a gene too large to PCR amplify 

from the genomic DNA.  4 out of 5 unc-43 alleles tested failed to complement sy574, 

indicating that the sy574 lesion is in unc-43.  The unc-43 gene in sy574 animals was 

sequenced and two missense changes were found: sy574A changes the sequence 

CACGGATTT to CACGAATTT, and sy574B changes GCCGCGTGT to 

GCCGTGTGT.  unc-43 was also sequenced in the PS1385 strain used for mutagenesis 

and no mutations were found. 

 

Identification of the molecular lesion in unc-43(e408) 

 

unc-43(e408) was identified as previously described in [4], but the molecular 

lesion has not been reported.  I sequenced the unc-43 gene from unc-43(e408) animals 

and found one missense change: TTGTCGCCA to TTGTTGCCA. 

 

 

 

 



 21 

Generation of the egl-2 deletion allele rg4 

 

Trimethylpsoralen mutagenesis was applied to egl-2(n693gf) him-5 animals to 

generate the rg4 deletion in egl-2.  egl-2(n693gf) causes hermaphrodites to retain eggs; 

to select for animals lacking egl-2, worms that displayed normal egg-laying behavior 

were kept.  The progeny generated by these worms were then screened by PCR analysis 

with primers to internal egl-2 exons, looking for worms that do not have egl-2.  egl-

2(rg4) contains exons 1-7 but does not include the pore region or the egl-2(n693gf) 

lesion [58].  The egl-2(rg4) deletion ends before the start of the next gene, pme-5 [49].  

The egl-2(rg4) deletion is 4023 base pairs long and the sequences flanking the deletion 

are: aagtgaactccattcacgatc and ttttgaaaaaaaattttcaaa (http://www.wormbase.org).  egl-

2(rg4) animals were out-crossed four times. 

 

Identification of the molecular lesion in egl-2(n904) 

 

egl-2(n904) was identified as previously described by [58], but the molecular 

lesion was not reported.  We sequenced egl-2 from egl-2(n904) worms and found the 

missense change GCATCTGAC is changed to GCATTTGACG. 
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Assay for abnormal spicule protraction 

 

~20-30 virgin L4 males were isolated on NGM plates containing the E. coli 

strain OP50.  The males were allowed to develop to adults overnight and were scored as 

positive for spicule protraction if at least one spicule partially extended from the cloaca. 

 

Mating behavior assay 

 

10 one-day-old adult unc-64(e246) hermaphrodites were placed on a 9 mm circle 

of one-day-old OP50.  One male was added to the plate and once contact was initiated 

with a hermaphrodite mating was observed for 10 min or until the male transferred 

sperm.  The steps of male mating including hermaphrodite contact, turning, vulva 

location, spicule insertion, and sperm transfer were recorded using the Microsoft Excel 

program reported in [61]. 

 

Male potency assay 

 

L4 males were selected and allowed to mature overnight on plates with or 

without OP50.  Paralyzed L4 unc-64(e246) hermaphrodites were isolated from males 

and grown for two days on plates containing OP50.  Two-day-old hermaphrodites were 

placed one per plate on 10 mm NGM plates containing an OP50 lawn that was allowed 

to grow overnight.  One male per plate was then placed with the hermaphrodites for 20 
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minutes at 20°C.  After 20 minutes, the males were removed.  The plates were scored 

two days later; a male was considered to have successfully mated a least one moving 

progeny was present on the plate. 

 

Pharmacology 

 

5-10 one-day-old virgin males raised overnight on plates with or without OP50 

were placed in Pyrex, round-bottom, three-well titer plates in 500 µl of various 

concentrations of levamisole (LEV) (MP Biomedicals, http://www.mpbio.com) or 

arecoline (ARE) (Indofine Chemical Company, http://www.indofinechemical.com).  The 

males were left in the drug concentration for 5 min and males that protracted at least one 

spicule for 10 sec were scored as positively reacting to the drug.  The concentrations of 

LEV and ARE were prepared in sterilized ddH20 from stock solutions of 1 mM and 1 M, 

respectively.  Graph Pad Prism 5 software (Graph Pad Software, Inc., 

http://www.graphpad.com) was used to determine curve fits and the EC50 and EC90. 

 

Cell ablations 

 

The protocol to laser ablate cells was followed as presented in [62].  Mid-L4 

males were placed on 5% noble agar pads containing 4 mM NaN3 to paralyze the 

worms.  Cells were identified based on location and ablated using a Spectra-Physics 

(http://www.spectra-physics.com) VSL-337ND-S Nitrogen Laser attached to an 
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Olympus (http://www.olympusamerica.com) BX51 microscope.  Non-ablated control 

males were also placed on the agarose pads containing 4 mM sodium azide.  After 

ablation, males were placed on NGM plates containing OP50 overnight to recover. 

 

Food deprivation assay 

 

L4 males were transferred to NGM plates without OP50 and allowed to crawl 

away from the bacteria used to transfer them.  The males were then picked by a mouth 

pipette containing M9 to a fresh plate lacking OP50.  To keep the males from leaving, an 

8 M glycerol ring was added along the outside of the plate.  Males were scored the next 

day for the spicule protraction phenotype. 

 

Plasmid construction 

 

 A list of primers and their sequences used in this study are provided in the 

Appendix (Table A-1), as is a list of plasmids (Table A-2). 

Plasmids containing unc-103 genomic DNA were created as described in [63]. 

Plasmids containing the unc-43 cDNA were constructed as follows.  Primers 

U43cDNAstart and U43cDNA3UTR were added to 3’ RACE products made from 

mixed-stage populations of him-5(e1490) worms using BD SMART RACE cDNA 

amplification kit (BD Biosciences, http://www.bdbiosciences.com) to obtain unc-43 

cDNA.  Plasmid pBL12b was created by cloning unc-43 isoform g 
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(http://www.wormbase.org) into pBR322 [64] between restriction sites MscI and EagI.  

All plasmids containing DNA sequences generated by PCR were sequenced to ensure no 

mutations were induced.  A point mutation was found in pBL12b that changes an amino 

acid and was corrected by single site mutagenesis using primers fpbl12a and pbl12ar to 

create plasmid pBL13.  A yellow fluorescent protein (YFP) PCR fragment was amplified 

using primers FYFPEAG and YFPRKPN from the plasmid pSX95.77YFP (plasmid 

courtesy of N. Moghal, Huntsman Cancer Institute, University of Utah, Salt Lake City, 

UT), cut with EagI and KpnI, and ligated into the same sites in pBL13 to create plasmid 

pBL14.  The Gateway Reading Frame Cassette A (Invitrogen, 

http://www.invitrogen.com/) was inserted into the EagI site of pBL14 to create the 

destination vector pBL33.  The Gateway recombination technology developed by 

Invitrogen allows for more efficient cloning by utilizing bacteriophage lambda 

recombination properties.  Single site mutagenesis with primers Fpbl33ssm and 

Pbl33ssmr was used to remove YFP from pBL33 to create plasmid pBL33-YFP.  Single 

site mutagenesis with primers Fpbl333utr and Rpbl33stop was used to remove the UNC-

43 self-association domain from pBL33 to create plasmid pBL33-self asso. 

Promoters were placed in front of the Gateway destination vectors pBL33-YFP 

and pBL33-self asso to drive tissue-specific expression.  First, the promoters were PCR 

amplified from genomic DNA using primers containing Gateway ATTB sites.  The PCR 

fragments were then placed in the Gateway entry vector pDG15 [63] using a BP 

recombination reaction.  The aex-3 promoter was amplified using primers attb1aex-3p 

and attb2aex-3p to create the plasmid pDG15aex-3 [65].  The lev-11 promoter that 
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expresses in C. elegans body wall muscles was amplified using primers attb1lev11prof 

and attb2lev11pror to create plasmid pLR22 [66].  The tnt-4 promoter was amplified 

using primers attb1tntproup and attb2tnt4prodown to create plasmid pLR25 [28].  The 

acr-8 promoter was amplified using primers acr-8ATTB1 and acr-8ATTB2 to create 

plasmid pLR92.  The unc-103E promoter was amplified to create plasmid pLR21 was 

previously described in [63].  An LR reaction was then performed between the 

promoter-containing plasmids and the destination vectors pBL33-YFP and pBL33-self 

asso to create plasmids capable of driving UNC-43 expression in various tissues.  

pDG15aex-3, pLR21, pLR22, pLR25, and pLR92 were recombined with pBL33-YFP to 

generate pBL70, pBL71, pBL69, pBL72 and pBL80, respectively.  pLR22 and pLR21 

were recombined with pBL33-self asso to generate pBL68 and pBL75, respectively. 

The expression pattern of acr-8 has not been reported previously.  Plasmid 

pLR92 contains the acr-8 promoter and this plasmid was recombined using an LR 

reaction with the YFP-containing Gateway destination vector pGW322YFP [63] to 

create plasmid pLR99. 

To create the UNC-43 cDNA driven by a heat shock promoter, pPD49.78 was 

cut with EcoRV (plasmid pPD49.78 courtesy of A. Fire, Stanford University School of 

Medicine, Stanford, CA).  The Gateway Reading Frame Cassette C.1 was cloned into 

this site, creating pTG14.  unc-43 cDNA was amplified from pBL33 using the primers 

unc43att2bcsf and unc43att2bc3r.  The PCR fragment was then recombined with 

pDONR in a BP reaction to create pBL54.  pBL54 was recombined with pTG14 in an 

LR reaction to generate pBL58. 
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We used the gtl-1 promoter driving cyan fluorescent protein (CFP) in worm 

intestines as a marker to identify transgenic animals [67].  gtl-1 was PCR amplified from 

genomic DNA using the primers att1gtl1p and gtl1patt2 and this PCR fragment was 

recombined with pDG15 in a BP reaction, creating Gateway entry vector pBL63.  

pBL63 was then recombined with the Gateway destination vector pGW77C using an LR 

reaction to create plasmid pBL66.  pGW77C was created by cloning the Gateway 

Reading frame Cassette C.1 into a blunted XbaI site in the CFP-containing plasmid 

pSX95.77CFP (plasmid courtesy of N. Moghal). 

Plasmids containing the egl-2 cDNA were constructed as previously described in 

[49].  pTG44 contains wild-type egl-2 cDNA expressed using the unc-103E promoter 

[63].  To generate egl-2 cDNA with mutations, single site mutagenesis of pTG44 was 

performed using the following primer pairs: fegl2n698gf and Regl2698gf to create 

plasmid pBL111, containing the egl-2(n693gf) mutation; Fegl2n904 and Egl2n904r to 

create plasmid pBL109, containing the egl-2(n904) mutation; Fegl2rsvs and Egl2rsvsr to 

create plasmid pBL110, containing a mutation (S888W) in the potential CaMKII binding 

site RSVS; fEgl2end and egl2rsvsr to create plasmid pBL108, deleting aa 891-949 of 

EGL-2; and Fdelpasegl2 and Delpasegl2R to create plasmid pBL122, deleting aa 9-185 

of EGL-2. 

The plasmids used to express UNC-43 and the EGL-2 c-terminus in yeast cells 

for the yeast two-hybrid assay were created as follows.  unc-43i was placed in the yeast 

expression vector pGBKT7 (Clontech Laboratories, Inc., http://www.clontech.com), 

tagged with a c-Myc epitope tag.  pGBKT7 was cut with EcoRI and unc-43 amplified 
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from pBL33 using primers func43iecor1 and unc43iecor1r was ligated to pGBKT7, 

creating plasmid pBL81.  Single site mutagenesis was performed on pBL81 using the 

primers FUnc43inact and Unc43inactr, creating plasmid pBL85 that has the UNC-43 

kinase domain inactivated by an D135N mutation.  The UNC-43 inhibitory domain was 

removed from pBL85 by single site mutagenesis using primers Unc43irev and 

ForPGBKT7 to create pBL88. 

The EAG K+ channel c-terminal domain was placed in the plasmid pGADT7 

(Clontech), tagged with an HA epitope tag.  egl-2 was amplified from pTG44 using 

primers fegl2cterm and egl2cterm2r, cut with SacI and EcoRI and ligated to pGADT7 

cut with the same enzymes to create plasmid pBL93.  

The EGL-2 K+ channel c-terminal domain was attached to maltose binding 

protein (MBP) by ligating PCR products into pMal-C2 (New England Biolabs, 

http://www.neb.com/nebecomm/default.asp?).  egl-2 was PCR amplified from pBL93 

using primers fegl2cterm and egl2hind3r.  After PCR amplification, the PCR product 

was cut with EcoRI and HindIII and ligated into pMal-C2 cut with the same enzymes, 

creating plasmid pBL99.  Single site mutagenesis on pBL99 using primers Fegl2n904 

and Egl2n904r created plasmid pBL114, which contains the egl-2(n904) point mutation. 

The unc-43 isoform lacking the self-association domain, unc-43i 

(http://www.wormbase.org), was attached to glutathione-s-transferase (GST) by ligating 

a PCR product into pGEX-3T.  pGEX-3T was cut with SmaI and Gateway (Invitrogen) 

reading frame cassette RfC.1 was ligated to the plasmid, creating the destination vector 

pBL117.  The entry clone pBL54 was created by amplifying unc-43 cDNA from pBL33 
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using primers unc43att2bcsf and unc43att2bc3r and performing a BP reaction to place 

the PCR product in pDONR (Invitrogen).  A LR reaction was then preformed using 

entry clone pBL54 and destination vector pBL117, creating plasmid pBL120, which 

contained the full-length unc-43 isoform unc-43g attached to GST.  To remove the unc-

43 self-association domain, single site mutagenesis was performed on pBL120 using 

primers Fpbl333utr and Rpbl33stop, creating plasmid pBL123. 

 

Determining the expression pattern of unc-43 

 

The unc-43 promoter proved too large to clone into a plasmid.  In order to 

determine the expression pattern of the gene, an 11-kb upstream region was amplified 

from wild-type genomic DNA using primers func43pro and u43prcfp.  In addition, CFP 

was amplified from plasmid pGW77C using the primers cfpfu43p and u54rev.  The PCR 

products from these two reactions were combined and a full-length unc-43 

promoter:CFP construct was obtained by amplification using primers func43pro and 

u54rev.  The resulting unc-43 promoter:CFP PCR product was injected along with the 

pBX1 plasmid containing pha-1(+) into pha-1(e2123) hermaphrodites following 

standard procedures [68].  Pictures of the expression pattern were taken with an 

Olympus FV1000 confocal microscope. 

A second 5’ UTR exists 9 kb upstream of the initial unc-43 5’ UTR.  To 

determine where expression is driven from this UTR, a 2.5-kb fragment upstream of the 

second 5’ UTR was PCR amplified using primers U43att2bcsf and U43att2bc3r.  This 
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short unc-43 promoter was placed in pDG15 [63], resulting in plasmid pBL49.  pBL49 

was injected along with pBX1 into pha-1(e2123) hermaphrodites and progeny that 

survived were analyzed to determine the expression pattern of the short unc-43 

promoter. 

 

Transgenics 

 

 Worms carrying transgenic lines were created as described in [68].  Worms 

expressing unc-103 genomic DNA were created as described in [63]. 

To obtain worms with unc-43 expressed on transgenic arrays, plasmids 

containing unc-43 were injected into unc-43(sy574);him-5(e1490) or unc-103(0);unc-

43(e408);him-5(e1490) hermaphrodites.  All injection mixtures contained 20 ng/µl of 

pBL66.  pBL66 contains the gtl-1 promoter driving CFP in the intestines, allowing for 

the selection of transgenic lines.  In addition, all injection mixtures contained pUC18 to 

obtain mixtures with the DNA concentration of 200 ng/µl.  The unc-43 plasmids were 

injected in the following concentrations: 50 ng/µl of pBL69, pBL72 and pBL70, 26 

ng/µl of pBL58, and 10 ng/µl of pBL71.  After injection, F1 hermaphrodites expressing 

CFP in their intestines were selected, and lines that transmitted the transgene were 

analyzed.  At least three separate lines were analyzed for each injection. 

Males expressing unc-43 on a transgene were scored for spontaneous spicule 

protraction in the following manner: 6 L4 hermaphrodites for each transgenic line were 

placed on individual NGM plates containing E. coli OP50.  F1 L4 males were selected, 
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allowed to mature overnight, and scored for spicule protraction.  Late-stage L4 males 

containing UNC-43 driven by the heat-shock promoter were heat-shocked at 33°C for 

0.5 hr, allowed to recover on NGM plates containing OP50 overnight and scored for 

spontaneous spicule protraction the next day. 

To obtain worms with egl-2 transgenic arrays, plasmids containing egl-2 were 

injected into unc-103(n1213);egl-2(rg4);him-5(e1490) or egl-2(rg4);slo-1(js379);him-

5(e1490) hermaphrodites.  All injection mixtures contained 50 ng/µl of pBL66 and 

pUC18 was used to complete the mixtures to 200 ng/µl of DNA.  Concentrations for the 

individual plasmids were as follows: 10 ng/µl of pBL122; 50 ng/µl of pBL109, pBL110, 

and pBL111; and 25 ng/µl of pBL108. 

To determine the expression pattern of acr-8, pLR99 was inject into pha-

1(e2123);him-5(e1490) hermaphrodites along with the pBX1 plasmid that contains wild-

type pha-1.  pha-1(e2123) is a temperature-sensitive allele that causes larval arrest at 

20°C; therefore, only animals carrying the pha-1(+) gene on a transgenic array will 

survive [69].  Transgenic males containing pLR99 showed YFP expression in body wall 

muscles and a few unidentified neurons in the head, but no sex muscle expression. 

 

Yeast two-hybrid assay 

 

The yeast two-hybrid assay was performed as described in Matchmaker GAL4 

Two-Hybrid System 3 & Libraries User Manual (PT3247-1, Clontech Laboratories, Inc., 

http://www.clontech.com).  Briefly, the bait and prey plasmids were co-transfected into 
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Y187 yeast cells and plated on –Leu/-Trp minimal media plates to select for the presence 

of the plasmid.  Detection of protein interaction was performed using the Galacton-Star 

reaction kit to test for the presence of β-galactosidase as described in the Yeast Protocols 

Handbook (PT3024-1, Clontech Laboratories, Inc.).  Chemiluminesence produced by the 

β-galactosidase cleavage of the Galacton-Star reagent was read by the TopCount 

Microplate Scintillation Counter (Packard). 

To detect the presence of the myc-tagged UNC-43 and ha-tagged EGL-2 proteins 

in yeast cells, the yeast containing the proteins was grown on –Leu/-Trp minimal media 

plates at 30°C for three days.  The yeast cells were then scraped off the plate with 2 mL 

PBS buffer (phosphate buffered saline).  The yeast cells were spun down and 

resuspended in 500 µl 1X laemmli buffer, after which they were boiled for 5 min to 

release the proteins.  The boiled yeast cells were then loaded and run on an SDS-PAGE 

gel, transferred to a PVDF membrane, and probed for the presence of UNC-43 or EGL-

2.  

 

Protein purification 

 

 The EGL-2 c-terminus attached to MBP and UNC-43i attached to GST were 

purified in the following manner.  All protein expression plasmids were transfected into 

E. coli BL21 cells.  Cells were grown in Rich Media (10 g tryptone, 5 g yeast extract, 5 g 

NaCl, 2 g glucose, complete to 1 L) plus ampicillin at 37°C until they reached an OD600 

of 0.5.  Protein expression was induced by adding 500µl 1000X IPTG and the cells were 
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grown overnight at 25°C.  The cells were harvested the next morning by spinning them 

down for 5 min at 5,000 rpm.  Cells were re-suspended in 45 ml Column Buffer (20 ml 

1.0 M Tris-HCl pH7.4, 11.7 g NaCl, 2.0 ml 0.5 M EDTA, complete to 1 L) and 

sonicated.  Cells were spun down at 12,000 rpm for 10 min twice to obtain crude cell 

extract.  We incubated crude cell extract with amylose or glutathione resin for 30 min 

with rotation at 4°C.  We spun down the resin at 500 rpm for 2 min and removed the 

crude cell extract.  Resin containing bound protein was washed 3X with 20 ml Column 

Buffer for 5 min rotating at 4°C, following by collecting resin at 500 rpm for 2 min.  

Protein-bound resin was transferred to two microcentrifuge tubes and 300 µl of Elution 

Buffer (Column Buffer plus either 10 mM maltose or 100 mM glutathione) was added to 

each tube.  We incubated the mixture at 4°C rotating for 30 min, then spun down the 

resin and collected the elution, repeated 3X.  EGL-2-MBP and UNC-43i-GST were also 

generated upon request from GenScript (http://www.genscript.com). 

 

Protein interaction 

 

 I tested for direct in vitro interaction between EGL-2 and UNC-43i by 

determining if EGL-2-MBP could be co-purified with UNC-43i-GST and vice versa.  

The reaction was performed in 1X CaMKII Reaction Buffer (obtained by diluting 10X 

CaMKII Reaction Buffer, New England Biolabs, http://www.neb.com).  10X more 

UNC-43i was used than EGL-2.  1 mg of UNC-43i-GST was used per reaction, as was 

144 µg EGL-2-MBP.  Total reaction volume was 100 µl.  To activated UNC-43i, the 
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following was added: 2 mM CaCl2, 1.2 µM Calmodulin, and 200 µM ATP.  The reaction 

mixture was incubated at 20°C overnight.  To purify either UNC-43i-GST or EGL-2-

MBP, 50 µl of the reaction was added to either 50 µl of glutathione resin (Sigma-

Aldrich, http://www.sigmaaldrich.com) or 50 µl of amylose resin (New England 

Biolabs).  The mixture was incubated at 4°C for 1 hr with rotation, after which the resin 

with the attached protein was collected by centrifugation.  All centrifugation of the resin 

was performed at 500 rpm for 2 min at 4°C.  The supernatant was removed and the resin 

was washed with 150 µl column buffer, incubated at 4°C with rotation for 5 min, and 

collected via centrifugation.  This was repeated 2X.  The flow-through was collected and 

concentrated to a final volume of 50 µl using Vivaspin 500 columns (Sartorius Stedim 

Biotech, http://www.sartorius-stedim.com).  After the final wash, 50 µl of 100 mM 

glutathione (Sigma-Aldrich) or 50 µl of 10 mM maltose (Sigma-Aldrich) was added to 

the resin.  The mixture was incubated at 4°C for 1 hr with rotation.  The resin was 

collected and the supernatant removed.  5 µl of 10X Laemmli buffer was added to the 

supernatant and concentrated flow-through and the sample was boiled for 1 min.  The 

sample was then run on a SDS-PAGE gel according to standard protocols [70] and 

transferred to PVDF membrane using a mini Trans-Blot electrophoretic transfer cell 

(Bio-Rad, http://www.bio-rad.com), allowing for the presence of the protein to be 

probed using standard Western blot protocols. 
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Western blot 

 

Western blots were performed according to standard procedures.  Anti-GST, 

1:1000 (Abgent, http://www.abgent.com) and anti-MBP, 1:2000 (New England Biolabs), 

were used to detect the presence of UNC-43i-GST and EGL-2-MBP, respectively.  Anti-

HA, 1:1000 (Roche Applied Science, https://www.roche-applied-science.com/), Anti-

myc, 1:1000 (Invitrogen), and Anti-KAP60 (courtesy of Dr. Kathy Ryan, Texas A&M 

University, College Station, TX) were used to detect the presence of EGL-2, UNC-43, 

and KAP60 in yeast cells, respectively.  After removing excess primary antibodies, 

secondary antibodies Anti-Mouse and Anti-Rabbit IgG peroxidase conjugated (Thermo 

Scientific, http://www.thermo.com) were added at 1:5000.  The Immun-star HRP 

chemiluminescent kit was used according to manufacturer instructions to visual the 

proteins (Bio-Rad).  Film was developed using the Futura 2000K automatic x-ray film 

processor (Fisher Industries, Inc., Geneva, IL). 
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CHAPTER III 

CAMKII/UNC-43 DOWN-REGULATES SEX MUSCLE EXCITABILITY IN A 

PATHWAY SEPARATE FROM ERG-LIKE K+ CHANNEL/UNC-103* 

 

 

The sy574 allele is in a gene that defines a pathway separate from ERG-like K+ 

channel unc-103 

 

To discover how behaviors are coordinated at the molecular level, I studied the 

regulation of C. elegans male mating behavior.  More specifically, I aimed to identify 

the regulatory molecules involved in preventing the inappropriate protraction of the 

male’s sex organs, the spicules.  In order for males to transfer sperm, the spicules need to 

stay inside the male tail until the hermaphrodite vulva has been breached.  To identify 

molecules involved in regulating the timing of spicule protraction, mutations that cause 

males to display permanent protraction of their spicules were isolated.  Males displaying 

this phenotype are unable to mate.  The hermaphrodites of mutant lines kept for analysis 

appeared grossly normal while 40-80% of the males protracted their spicules [12].  The 

rate of spicule protraction was determined as follows.  First, males were segregated from 

hermaphrodites at the L4 larval stage, before the copulatory structures have formed and  

_______________ 
*Portions of this chapter are reprinted from LeBoeuf B, Gruninger TR, Garcia LR 
(2007) Food deprivation attenuates seizures through CaMKII and EAG K+ channels. 
PLoS Genet 3: 1622-1632. 
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the stage immediately before they become adults.  The males were kept on their standard 

food of E. coli OP50 overnight and scored as virgin adults the next day.  A male scored 

as positive for protraction had at least part of one spicule protruding from the cloaca (See 

Chapter I, Figure 3).  By identifying the molecular lesions that are responsible for in the 

mutant phenotype, I hope to discover how spicule protraction, and thereby behaviors 

more generally, are controlled at the molecular level. 

The first mutation that results in spicule protraction identified was sy557.  This 

mutation disrupts the function of the ether-a-go-go related gene (ERG) potassium 

channel, unc-103 [12].  Uncoordinated (unc) animals display either slow movement or 

are paralyzed [4].  While sy557 and other loss-of-function alleles of unc-103 display 

wild-type movement, the unc-103 gene was originally defined by a gain-of-function 

mutation that causes paralysis and egg-retention [71].  ERG-like K+ channels function in 

the vertebrate heart to assist in cell repolarization after a depolarization event has 

occurred [72-74].  Mutations in the human ERG K+ channels can lead to heart 

arrhythmias and sudden death [51,52].  The C. elegans ERG-like K+ channel unc-103 

functions to regulate the timing of sex-muscle contraction; disrupt its function, and 

males protract their spicules in the absence of mating cues. 

A null mutation in unc-103 (allele n1213, hereafter referred to as unc-103(0)) 

that deletes ~29 kilobases of the gene, including all transmembrane domains, results in 

42% of males that protract their spicules (Table 2) [12,63].  The fact that 58% of males 

lacking unc-103 still maintain their spicules inside their tails indicates the presence of 

one or more parallel pathways that can regulate the timing of sex-muscle contraction.  
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To identify molecules that compensate for the loss of unc-103 function, I looked at 

another allele identified in the same mutant screen as unc-103(sy557), sy574.  Like unc-

103(sy557), sy574 hermaphrodites do not display any gross abnormalities and males 

appear physically normal, but a portion display spicule protraction (56% of males; Table 

2).  I made a double mutant between unc-103(0) and sy574 and found that disrupting 

function of these two genes results in nearly 100% of males protracting their spicules 

(Table 2) [49].  This indicates that the sy574 lesion is in a gene with function separate 

from unc-103. 

 

 

 

 

 

 

 

 

 

Interestingly, a double mutant between sy574 and unc-103(sy557) results in 86% 

of males displaying the spicule protraction phenotype, significantly less than unc-

103(0);sy574 males (Table 2).  The unc-103(sy557) lesion creates two amino acid 

changes: H165N in the linker region between transmembrane domains 2 and 3 and 

W244R in transmembrane domain 5 [12].  82% of unc-103(sy557) males display spicule 

Table 2. Abnormal spicule protraction induced by mutant CaMKII/unc-43 and 
ERG-like K+ channel/unc-103 alleles 
Genotypea % Protracted p Valueb 
Wild-type 12 (106)   
ERG-like K+ channel/unc-103(0) 42 (91) <0.005 to wt 
CaMKII/unc-43(sy574) 56 (300) <0.005 to wt 
unc-103(0); unc-43(sy574) 97 (92) <0.005 to wt 
unc-103(sy557) 82 (55) <0.005 to wt  
unc-103(sy557); unc-43(sy574) 86 (65) <0.005 to wt  
aStrains contain him-5(e1490)   
bFisher’s Exact Test   
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protraction, compared to 42% for unc-103(0) males (Table 2).  Thus, the sy557 allele 

could result in an UNC-103 channel that interferes with parallel pathways present in 

unc-103(0) animals.  Such parallel pathways prevent muscle seizures in 68% of males.  

In unc-103(sy557);sy574 animals, both alleles could confer partial loss-of-function to 

their proteins, resulting in some males capable of suppressing premature spicule 

protraction.  Further elaboration of unc-103(sy557)’s function is described in Appendix 

C. 

 

The sy574 lesion is in the CaMKII gene unc-43 

 

To identify the location of the sy574 lesion, I mapped the mutation to a 570-kb 

region on chromosome IV between cosmids R102 and K08F4 using single nucleotide 

polymorphism (SNP) mapping [60].  SNP mapping takes advantage of single nucleotide 

changes that exist between the C. elegans strain isolated by Sydney Brenner in England, 

N2, and a strain isolated in Hawaii, CB4856.  sy574 was crossed with CB4856 to 

generate lines that contain a mixture of N2 and CB4856 DNA.  By determining a region 

where all the worms displaying sy574-induced spicule protraction are carrying N2 SNPs, 

I narrowed down the location of the sy574 mutation.  After determining that sy574 was 

between cosmids R102 and K08F4, I identified candidate genes in the region.  I then 

amplified these genes from wild-type genomic DNA by PCR and injected them into 

sy574 hermaphrodites.  I analyzed males carrying the wild-type genes on transgenic 

arrays to see if the genes could rescue sy574-induced spicule protraction.  I found that 
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none of the genes reduced sy574-induced spicule protraction (Table 3).  One gene, unc-

43, covered a map area too large to amplify, so I analyzed the ability of unc-43 alleles to 

rescue sy574-induced spicule protraction.  I found that 4 out 5 unc-43 alleles tested did 

not complement sy574, indicating that the sy574 molecular lesion is in unc-43 (Table 4) 

[49]. 

 
 
 
Table 3. Rescue of sy574 using wild-type genes 
Wild-type genes injected % Protracted n p valuea 
None 63 33   
gpa-7 + R09H10.6 74 31 0.4254 
F13B12.3 + C43F9.6 79 28 0.2645 
tax-6 + cal-4 97 32 0.0012 
aFisher's Exact Test    

 

 

Table 4. Complementation tests between sy574 and unc-43 alleles 
Genotypea % Protracted (n) p valueb 
Wild-type 12 (106)   
unc-43(sy574) 56 (300)   
unc-43(sy574)/+ 6 (79) <0.005 to unc-43(sy574) 
unc-43(n1186) 100 (58)   
unc-43(n1186)/+ 6 (97) <0.005 to unc-43(n1186) 
unc-43(sy574)/unc-43(n1186) 60 (52)   
unc-43(n1179) 65 (34)   
unc-43(sy574)/unc-43(n1179) 54 (67)   
unc-43(sa200) 46 (31)   
unc-43(sy574)/unc-43(sa200) 33 (63)   
unc-43(e266) 98 (46)   
unc-43(sy574)/unc-43(e266) 42 (60)   
unc-43(e408) 11 (45) <0.005 to unc-43(sy574) 
unc-43(sy574)/unc-43(e408) 17 (72) <0.005 to unc-43(sy574) 
aStrains contain him-5(e1490)  
bFisher’s Exact Test  
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The unc-43 alleles tested all display spicule protraction defects on their own, 

except the complementing allele, unc-43(e408) (Table 4).  In addition, these alleles, 

including the nonsense unc-43(n1186) allele that introduces an early stop codon, display 

other defects associated with disruption of unc-43 function such as impaired movement 

and egg-laying behavior (Table 5).  While disrupting the function of unc-43 causes 

spontaneous spicule protraction, the males might still be able to mate before protraction 

occurs.  To test the ability of males carrying unc-43 mutations to mate, one virgin L4 

male was placed with a paralyzed unc-64(e246) hermaphrodite.  A male was scored as 

positive for mating if there was at least one moving progeny on the plate [4,75].  All 

unc-43 alleles tested, except sy574, displayed reduced mating potency (Table 5).  Since 

unc-43(sy574) males display abnormal spicule protraction but no other defects, it is 

likely that sy574 is a weak loss-of-function allele.  In addition, the spicule circuit appears 

to be more sensitive to perturbations in unc-43 function. 
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Table 5. unc-43 allele phenotypes         

Allelea Mutation 
% Protracted 

(n) Potency (n) Unc 
Spicule 

Insertion 
Wild-type none 12 (106) 86 (63) - yes 

sy574 
catalytic and 
association domains 56 (300)b 74 (61) - yes 

sa200 unknown 46 (31)b 45 (41)b - yes 
e408 catalytic domain 11 (45) 4 (68)b + no 
e266 catalytic domain 98 (46)b 0 (38)b + ND 
n1179 catalytic domain 65 (34)b 17 (36)b + ND 
n1186 early nonsense 100 (58)b 0 (57)b + ND 
aStrains contain him-5(e1490)         
bp value <0.005 compared to wt         

 

 

unc-43 encodes the only C. elegans copy of calcium/calmodulin-dependent 

protein kinase II (CaMKII), a serine/threonine kinase that phosphorylates a wide variety 

of substrates and is present in nearly all cell types [76].  CaMKII is primarily studied in 

vertebrate learning and memory and has unique structural properties [77,78].  CaMKII 

has three subunits: a kinase domain, an autoinhibitory domain, and a self-association 

domain (Figure 4A) [79].  The autoinhibitory domain keeps the kinase domain inactive 

in the absence of calcium and calmodulin.  When calcium floods the cell and binds 

calmodulin, calmodulin then binds the autoinhibitory domain and the kinase domain is 

free to phosphorylate its substrates (Figure 4B-D). The self-association domain allows 

CaMKII to form 8 to 12 member complexes composed of two stacked rings (Figure 4E) 

[80,81].  Additionally, the autoinhibitory domain can be phosphorylated by other 

CaMKII molecules.  When CaMKII is phosphorylated it is active in the absence of 
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calcium and calmodulin (Figure 4F).  Members of these CaMKII complexes can then 

phosphorylate other members of the complex, helping to maintain enzyme activity in the 

absence of calcium.  Thus, while a brief, infrequent calcium influx will activate CaMKII 

for a short amount of time, longer or frequent calcium signals will lead to constitutively 

active complexes of the enzyme.  This is believed to be the basis for CaMKII function in 

learning and memory in brain cells [82,83].  The more an activity stimulates calcium 

influx, the more active CaMKII becomes.  Active CaMKII then phosphorylates a range 

of substrates including transcription factors that lead to the molecular changes in neurons 

that help constitute the molecular basis for memory [84].  In this and most other 

instances where CaMKII has been studied, the enzyme activates molecules.  In C. 

elegans male mating behavior, CaMKII is required to inhibit sex-muscle contraction 

until the appropriate mating cues are received. 

To determine the nature of the molecular lesions in unc-43(sy574) animals, unc-

43 was sequenced from sy574 genomic DNA.  Two point mutations were found in unc-

43: one changes glycine 170 to glutamate in the substrate recognition site of the catalytic 

region and the other changes alanine 465 to valine in the self-association domain (Figure 

5) [85,86].  The sy574 lesions could be affecting kinase function by interfering with the 

ability of unc-43 to bind its substrates, the inability of unc-43 to form complexes, or 

both.  Additionally, I sequenced unc-43(e408) genomic DNA since the e408 molecular 

lesion had not been previously identified. In addition, e408 is the only allele that does 

not cause protraction and is able to complement unc-43(sy574) while disrupting the 

ability of males to sire progeny.  unc-43(e408) contains one point mutation in the  
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Figure 4. CaMKII structure and function. (A) Linear layout of domains from N- to C-
terminals.  The kinase domain is in purple, the autoinhibitory domain is in green, and the 
self-association domain is in yellow. (B) In the absence of calcium, the autoinhibitory 
domain (in green) sits in the kinase region, preventing the enzyme from phosphorylating 
substrates. (C) In the presence of calcium, calcium/calmodulin binds to the 
autoinhibitory domain and prevents it from interfering with the catalytic region of the 
kinase domain. (D) Activated CaMKII can then phosphorylate its substrates. (E) The 
self-association domain allows the kinase to form complexes of two stacked rings 
composed of six members each.  The self-association domain is on the inside of the 
rings, while the kinase domain faces outward. (F) CaMKII can phosphorylate its own 
autoinhibitory domain, allowing the kinase to be active in the absence of calcium.  This 
autophosphorylation can occur between members of the same 12-member complex. 
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substrate recognition domain of the catalytic region and changes a serine to leucine at 

amino acid 179 (Figure 5).  This amino acid change is near the substrate recognition site 

of the catalytic region, suggesting the e408 lesion interferes with the interaction between 

the kinase and its substrates. 

 

 

 

 

Figure 5. CaMKII/UNC-43 amino acid sequence with mutations. Wild-type amino 
acid sequence of UNC-43 isoform g (http://www.wormbase.org).  The underlined region 
indicates the catalytic domain, no underline indicates the autoinhibitory domain, and the 
dashed underline indicates the self-association domain.  The amino acids that are 
affected by the point mutations in unc-43(sy574) and unc-43(e408) are indicated by 
boxes.  The amino acid change is listed next to the allele name [49]. 
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CaMKII/UNC-43 is expressed in excitable cells in the male 

 

Next I asked where CaMKII/unc-43 is expressed in the male.  Prior work using a 

rat anti-CaMKII antibody describes unc-43 expression in hermaphrodite neurons, 

muscles, and intestines [76].  To determine where unc-43 is expressed in the male, I 

amplified the full-length unc-43 promoter by PCR.  Because the 11-kb promoter proved 

too large to clone, I attached cyan fluorescent protein (CFP) to the promoter using PCR 

soeing (sequence overlap extension).  I found that unc-43 is expressed in excitable cells 

throughout the male (Figure 6A).  In particular, unc-43 is expressed in neurons and 

muscles in the male tail.  The male’s copulatory structures, located in the tail, consist of 

two spicules, each attached at their base by two retractor and protractor muscles [5].  In 

addition, the reorganized anal depressor muscle is also attached to the dorsal spicule 

protractors as a nonessential accessory muscle.  The protractors are innervated by the 

SPC motor neuron which releases the acetylcholine (ACh) signal that causes muscle 

contraction [5,47].  Also innervating the system are the hook and post cloacal sensilla 

(p.c.s.) neurons that control spicule muscle function based on signals received from the 

environment [5,29].  unc-43 is expressed in the SPC neuron as well as the p.c.s. neurons 

and the protractor and retractor muscles (Figure 6B).  Therefore, unc-43 could regulate 

spicule protraction in these cells. 

In addition to the initial 5’ UTR, the unc-43 promoter region contains another 5’ UTR 9-

kb upstream of the start codon.  To determine where the promoter upstream of the 

second 5’ UTR drives expression, I cloned the 2.5-kb promoter region into a YFP-
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containing vector and injected the 2.5-kb unc-43 promoter:YFP into pha-1(lf) 

hermaphrodites along with wild-type pha-1 to obtain transgenic worms.  I then analyzed 

the 2.5-kb promoter expression pattern and found that unc-43 is strongly expressed in 

the intestines of both sexes (Figure 6C-D).  Additionally, unc-43 is expressed from at 

least one unidentified neuron in the head that sends a process along the ventral side of 

the male (Figure 6D).  In conclusion, unc-43 is expressed in intestine, muscle, and 

neuronal cells in the male, similar to the expression pattern previously reported in the 

hermaphrodite [76].  

 

CaMKII/UNC-43 and ERG-like K+ channel/UNC-103 suppress spicule protraction 

in muscles 

 

 Previous work done by Dr. L. Rene Garcia identified the expression pattern of 

unc-103.  The unc-103 gene contains six separate first exons and promoter regions 

(designated A-F).   These promoters drive expression in most excitable cells in both the 

male and the hermaphrodite.  One promoter in particular, Punc-103E, expresses in the male 

sex muscles including the protractors and diagonal muscles used to position the male tail 

on the hermaphrodite as well as a few neurons in the head [63].  Thus, both unc-103 and 

unc-43 are expressed cells that control spicule protraction [49]. 
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Figure 6. CaMKII/unc-43 expression pattern. In all figures, anterior is to the right, 
dorsal is to the top.  Scale bar = 10 µM. (A) Full-length unc-43 promoter:CFP 
expression in a L4 (larval stage immediately preceding adulthood) male. (B) Full-length 
unc-43 promoter:CFP expression in L4 male tail.  Arrows indicate the neurons involved 
in mating. (C) 2.5-kb unc-43 promoter:YFP expression in L4 hermaphrodite.  The vulva 
is indicated. (D) 2.5-kb unc-43 promoter:YFP expression in a L4 male [49].   

A

B

C

SPC
PCA

PCB

PCC

SPV

Vulva

D



 49 

 To determine where unc-103 and unc-43 regulate protraction, wild-type genomic 

unc-103 DNA and unc-43 cDNA were expressed in various tissues.  Dr. Garcia 

expressed unc-103 in neurons using the Paex-3 promoter, in all muscles using the Plev-11 

promoter, and in sex muscles using the Punc-103E promoter [63,65,66].  He found that unc-

103 expression in neurons was unable to rescue unc-103(0)-induced spicule protraction 

(Table 6).  In contrast, unc-103 expression in all muscles via the Plev-11 promoter reduced 

spicule protraction in unc-103(0) males from 39% to 3% (Table 6).  To determine what 

subset of muscles unc-103 functions in, unc-103 was expressed in the sex muscles using 

the Punc-103E promoter.  Dr. Garcia determined that sex muscle-specific rescue of unc-

103(0) is sufficient to reduce sex-muscle excitability, as only 2% of unc-103(0) males 

expressing Punc-103E:unc-103(+) protract their spicules (Table 6) [49]. 

 Previous work determined that, in hermaphrodites, the unc-103E isoform 

expressed via the Punc-103E promoter is required to rescue an unc-103(0)-induced egg-

laying defect [63].  Since the ability of unc-103 genomic DNA to rescue an unc-103(0)-

induced phenotype in the hermaphrodite is isoform specific, I asked if that was also the 

case in the male sex muscles.  I expressed the unc-103 isoform F in the sex muscles 

using the Punc-103E promoter and found that this construct reduced unc-103(0)-induced 

spicule protraction from 39% to 2%, similar to Punc-103E:unc-103E(+) (Table 6) [49].  In 

conclusion, unc-103 works in the sex muscles to regulate the timing of spicule 

protraction and this regulation is not isoform specific. 

 To determine where unc-43 function is required to control spicule protraction, I 

expressed unc-43 cDNA isoform g in different tissues.  So far, seventeen different 
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isoforms of unc-43 have been identified (http://www.wormbase.org) (Figure 7B).  Most 

of these isoforms contain all three functional regions of CaMKII, and a lot of the 

variability between isoforms exists in the linker region (Figure 7A-B).  However, some 

isoforms contain only the kinase or self-association domains, and there are two versions 

of the catalytic domain that differ in nine amino acids (Figure 7B-C).  The unc-43 cDNA 

isoform g was chosen because it contains all three CaMKII domains and has been used 

in other laboratories to rescue unc-43 function [87,88] (Figure 7B).  To determine if the 

unc-43g cDNA construct was able to rescue unc-43(sy574)-induced spicule protraction, I 

expressed it in all tissues using the heat shock promoter Phsp-16 [89,90].  Heat-shocked 

males expressing Phsp-16:unc-43g showed a significant reduction in unc-43(sy574)-

induced spicule protraction from control males (Table 6).  However, the instance of 

protraction in unc-43(sy574) is not reduced to wild-type levels, suggesting that unc-43 

expression via the heat-shock promoter is either not turned on early enough or it is not 

expressed at a high enough level to fully reduce the instance of protraction.  Having 
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Table 6. Tissue-specific rescue of mutant CaMKII/unc-43 and ERG-like 
K+channel/unc-103 –induced spicule protraction 
  Tissue 
genotypea expression 

% 
Protracted 

(n) 

p 
valueb 

CaMKII/unc-43(sy574) not heat-shocked 56 (34)   
  heat-shocked 41 (34)   
unc-43(sy574);rgEx163 
[Phsp-16::unc-43(+)] 

not heat-shocked 48 (23)   

  heat-shocked 24 (23) p=0.03 
unc-43(sy574);rgEx164 
[Paex-3::unc-43(+)] 

pan neuronal 45 (60)   

unc-43(sy574);rgEx158 
[Ptnt-4::unc-43(+)]c 

pharynx 57 (46)   

unc-43(sy574);rgEx161 
[Plev-11::unc-43(+)] 

pan muscle 11 (98) p<0.005 

unc-43(sy574);rgEx120 
[Plev-11::unc-43-self-asso. 
domain(+)]c  

pan muscle 15 (61) p<0.005 

unc-43(sy574);rgEx159 
[Punc-103E::unc-43(+)] 

spicule protractor muscles + 
few head neurons 

59 (51)   

unc-43(sy574);rgEx174 
[Pacr-8::unc-43(+)] 
  

body-wall muscles + few 
head and ventral cord 

neurons 

38 (37) p=0.06 
  

unc-103(0)c   39 (67)   
unc-103(0);rgEx74 
[Paex-3::unc-103F(+)]c 

pan neuronal 29 (53)   

unc-103(0);rgEx78 
[Punc-103F::unc-103F(+)]c 

unc-103 specific neuronal 
expression 

45 (40)   

unc-103(0);rgEx76 
[Plev-11::unc-103F(+)]c 

pan muscle 3 (30)  p<0.005 

unc-103(0);rgEx79 
[Punc-103E::unc-103F (+)]c 
  

spicule protractor muscles 
+ few head neurons 

2 (44) 
  

p<0.005 
  

unc-103(0);rgEx81[Punc-

103E::unc-103E (+)]c 
spicule protractor muscles + 

few head neurons 
2 (46) p<0.005 

aStrains contain him-
5(e1490)       
bFisher’s Exact Test     
cStrain contains pha-1(ts)       
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determined that the unc-43g construct was functional, I proceeded with tissue-specific 

rescue of the unc-43(sy574) phenotype.  The Paex-3 promoter was used to drive 

expression in all neuronal cells; the Ptnt-4 promoter was used to drive expression in the 

pharynx, a muscular structure in the head of the worm used to grind food [28]; the Plev-11 

promoter was used to drive expression in all muscle cells; the Pacr-8 promoter was used to 

drive expression in body-wall muscles; and the Punc-103E promoter was used to drive 

expression in the sex muscles.  I found that unc-43g expression in the neurons or 

pharynx was insufficient to reduce unc-43(sy574)-induced protraction (Table 6); in 

contrast, expression from the pan-muscle promoter Plev-11 reduced spicule protraction 

from 56% to 11%, indicating that unc-43 functions in muscles to regulate the timing of 

sex-muscle contraction (Table 6).  However, expressing unc-43g in specific subsets of 

muscles using the body-wall muscle promoter Pacr-8 and the sex muscle promoter Punc-

103E was insufficient to rescue unc-43(sy574)-induced protraction (Table 6) [49].  Thus, 

unlike unc-103 that only functions in the sex muscles, unc-43 is required in the body-

wall and sex muscles to inhibit premature spicule protraction. 
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Figure 7. CaMKII/unc-43 isoforms. (A) Exons in unc-43 and what functional domains 
they define.  Blue line under exons indicates they encode the kinase domain.  Red line 
indicates the variable linker region.  Green line indicates the self-association domain. (B) 
List of isoforms, their sizes, and the exons they contain.  The exons are numbered 
according to the order they appear on the genomic DNA sequence.  A “_” before or after 
an exon number indicates a truncated version of the exon is included in the isoform.  
“_11” lacks the first 18 base pairs, “_13” lacks the first 46 base pairs, “_16” lacks the 
first 6 base pairs, “16_” does not have last 84 base pairs, and “17_” does not have the 
last 96 base pairs. (C) Amino acid sequences encoded by exons 4 and 5.  The amino acid 
differences between the two exons are indicated by black boxes. 
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 The unc-43(sy574) allele contains two point mutations, one in the kinase domain 

(sy574A) and one in the self-association domain (sy574B) (Figure 5).  To determine 

which mutation causes the spicule protraction phenotype, I expressed an unc-43 

construct lacking the self-association domain in the muscles.  In addition to the full-

length isoform unc-43g, C. elegans also contains an isoform lacking the CaMKII self-

association domain, unc-43i (Figure 7B).  I found that unc-43i expressed in muscles via 

the Plev-11 promoter reduces unc-43(sy574)-induced protraction from 56% to 15% (Table 

6) [49].  In conclusion, the sy574A mutation, that changes glycine 170 to glutamate in 

the substrate recognition site of the catalytic domain, causes unc-43(sy574)-induced 

spicule protraction. 

 

Chapter summary 

 

 In Chapter III, I demonstrated that a mutation in the C. elegans CaMKII gene, 

unc-43, causes permanent spicule protraction.  unc-43 is required to inhibit sex-muscle 

contraction until the male receives the appropriate mating cutes in a pathway separate 

from the ERG-like K+ channel encoded by unc-103.  Interestingly, unc-43, required in 

body-wall and sex muscles, has a broader area of function to control spicule protraction 

than unc-103, which is only required in the male’s sex muscles.  When unc-43 is 

expressed in all muscle cells via the Plev-11 promoter, unc-43(sy574)-induced spicule 

protraction is reduced.   However, when it is expressed in either just the body-wall 

muscles via the Pacr-8 promoter or just the sex muscles via the Punc-103E promoter, unc-
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43(sy574)-induced protraction is unaffected.  Thus, unc-43 could be required in both the 

body-wall and sex muscles to control spicule protraction.  Alternatively, because Punc-

103E does not drive expression in the retractor muscles that are attached at the base of the 

spicules and help maintain their position inside the body, unc-43 could be required in 

both the retractor and protractor muscles, unlike unc-103 that is only required in the 

protractor muscles.  In conclusion, the CaMKII gene unc-43 inhibits sex-muscle 

excitability to prevent premature mating behaviors from occurring. 
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CHAPTER IV 

 

CAMKII/UNC-43 DIRECTLY INTERACTS WITH EAG K+ CHANNEL/EGL-2 

TO REGULATE SEX-MUSCLE EXCITABILITY* 

 

 

An EAG K+ channel/egl-2(gf) mutation suppresses unc-43(sy574)-induced seizures 

 

 I wanted to identify direct molecular targets of UNC-43 in the C. elegans male 

sex muscles.  CaMKII/UNC-43 is an enzyme that phosphorylates many different 

substrates to regulate a wide variety of biological processes, from learning and memory 

to heart muscle function [77,78,91,92].  By identifying direct down-stream targets of 

UNC-43 I can elucidate in greater detail how behaviors are controlled at the molecular 

level. 

 To address which molecules could be targets of CaMKII/UNC-43 in muscles to 

regulate the timing of spicule protraction, I tested if unc-43 interacts with the ether-a-go-

go (EAG) K+ channel egl-2 [58].  I considered EAG K+ channels because they were 

shown to be a direct target of CaMKII in the Drosophila nervous system, as CaMKII 

phosphorylization up-regulates channel activity [93,94].  First, the location of egl-2 was  

_______________ 
*Portions of this chapter are reprinted from LeBoeuf B, Gruninger TR, Garcia LR 
(2007) Food deprivation attenuates seizures through CaMKII and EAG K+ channels. 
PLoS Genet 3: 1622-1632. 
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determined to see if it is expressed in the same cells in the male as unc-43.  A previous 

study identified egl-2 expression in sensory neurons and sex muscles in the 

hermaphrodite [58].  egl-2 is also expressed in sensory neurons in the male, as well as 

the sex muscles but not the neurons associated with spicule protraction (Figure 8) [49].  

Therefore, egl-2 could be a direct target of unc-43 in the male sex muscles. 

 

 

 
Figure 8. EAG K+ channel/egl-2 expression pattern. In all figures, anterior is to the 
right, dorsal is to the top. Scale bar = 10 µM. (A) egl-2 promoter:YFP expression in an 
adult male tail. (B) egl-2 promoter:YFP expression in an adult male head [49]. 
 
 
 
 Next I asked if there is an interaction between EAG K+ channel/egl-2 and 

CaMKII/unc-43.  I created a double mutant between an egl-2 gain-of-function allele, 

n693, and unc-43(sy574) to determine if egl-2 exhibited an effect on unc-43(sy574)-

induced spicule protraction.  I found that egl-2(n693gf), an allele that causes 

A

B
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hermaphrodites to retain eggs but has no effect on spicule protraction in the males, is 

able to suppress unc-43(sy574)-induced spicule protraction.  Since increasing the 

function of egl-2 is able to compensate for the loss of function in unc-43, unc-43 could 

activate egl-2 to reduce spicule protraction in wild-type males (Table 7) [57].  Similarly, 

egl-2(n693gf) is able to partially suppress protraction caused by the nonsense allele unc-

43(n1186) (Table 7).  In contrast, egl-2(n693gf) has no effect on unc-103(0)-induced 

protraction, indicating that the egl-2(gf) allele does not have a general effect on sex 

muscle excitability (Table 7) [49].  However, over-expressing egl-2(gf) in the sex 

muscles using the Punc-103E promoter results in suppression of the unc-103(0) phenotype 

(Table 8).  This suggests that while egl-2 is not normally active under standard 

conditions in the sex muscles, over-expression of an active form of the K+ channel can 

reduce cell excitability.  In conclusion, egl-2 could be down stream of unc-43 but does 

not function in the separate unc-103-mediated pathway controlling spicule protraction. 
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Table 7. Spicule protraction in EAG K+ channel/egl-2 mutants  
Genotypea % Protracted (n) p Valueb 
Wild-type 12 (106)   
CaMKII/unc-43(sy574) 38 (65) <0.005 to wt 
ERG-like K+ channel/unc-103(0) 43 (42) <0.005 to wt 
EAG K+ channel/egl-2(n693gf) 0 (30)   
unc-43(sy574); egl-2(n693gf) 4 (57) <0.005 to sy574 
unc-43(n1186) 100 (58) <0.005 to wt 
unc-43(n1186); egl-2(n693gf) 76 (50) <0.005 to n1186 
unc-103(0); egl-2(n693gf) 43 (94)   
egl-2(0) 11 (55)   
unc-43(sy574); egl-2(0) 15 (95) <0.005 to sy574 
egl-2(n693gf n904) 0 (30)   
unc-103(0); egl-2(n693gf n904) 14 (194) <0.0001 to unc-103(0) 
unc-43(sy574); egl-2(n693gf n904) 14 (49) <0.006 to sy574 
aStrains contain him-5(e1490)   
bFisher’s Exact Test   

 
 
 

EAG K+ channel/EGL-2 functions in the sex muscles to reduce seizures under food 

deprivation conditions  

 

 To determine the role of egl-2 in spicule protraction, Dr. L. Rene Garcia 

generated a null mutation, rg4, that deletes a large portion of the egl-2 gene (hereafter 

referred to as egl-2(0)).  He found that removing the egl-2 gene has no obvious effect on 

hermaphrodites or males, and does not cause spicule protraction (Table 7).  Therefore, 

egl-2 plays no identified role in regulating sex-muscle excitability under standard 

conditions. 
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 To determine what role egl-2 plays in the sex muscles, we looked at egl-2’s 

function under conditions of food deprivation.  Previous work done by Todd Gruninger 

in the Garcia laboratory revealed that food deprivation is capable of reducing unc-

103(0)-induced protraction from 36% to 9% (Table 8) [28].  He then asked if food-

deprivation suppression of the unc-103(0) phenotype requires functional egl-2. unc-

103(0); egl-2(0) double mutant males were analyzed for their ability to protract their 

spicules on plates containing no food.  Whereas food deprivation reduces unc-103(0)-

induced spicule protraction by 27%, it is unable to reduce protraction in unc-103(0); egl-

2(0) males (Table 8).  Therefore, egl-2 is required under food deprivation conditions to 

reduce sex-muscle excitability. 

 I next asked where EAG K+ channel/egl-2 functions to down-regulate muscle 

excitability under food deprivation conditions.  I expressed wild-type egl-2 cDNA in the 

sex muscles of unc-103(0); egl-2(0) males using the Punc-103E promoter [63].  I found that 

egl-2 expressed in the sex muscles of double mutant males results in food deprivation-

dependent suppression of unc-103(0)-induced spicule protraction (Table 8).  Thus, egl-2 

functions in male sex muscles to reduce excitability when food is scarce. 
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Table 8. CaMKII/unc-43 and EAG K+ channel/egl-2 are required for food deprivation 
effects on spicule protraction 
  Food No Food 

Genotypea % Protracted (n) 
% Protracted 

(n) 
Wild-type 12 (42) 0 (33) 
unc-103(0) 43 (42) 14 (36)b 
unc-103(0); egl-2(0) 58 (64) 40 (35) 
unc-103(0); egl-2(0); rgEx173 [Punc-103E::egl-2(+)] 49 (41) 9 (32)b 
unc-43(sy574) 40 (234) 54 (173)b 
unc-103(0); unc-43(sy574) 88 (74) 62 (71)b 
unc-103(0); unc-43(e408) 61 (31) 50 (22) 
unc-103(0); egl-2(0); rgEx255 [Punc-103E::egl-2(-
end)] 31 (36) 6 (36)b 
unc-103(0); egl-2(0); rgEx258 [Punc-103E::egl-
2(S567F)] 9 (140)c  3 (34)  
unc-103(0); egl-2(0); rgEx271 [Punc-103E::egl-2(gf)] 6 (33)c 6 (33)  
unc-103(0); egl-2(0); rgEx257 [Punc-103E::egl-
2(S888F)] 45 (31) 9 (34)b 
unc-103(0); egl-2(0); rgEx268 [Punc-103E::egl-2(-
PAS)] 36 (36) 8 (49)b 
aStrains contain him-5(e1490)   
bp value < 0.05, Fisher's Exact Test compared to same genotype on 
food  
cp value < 0.05, Fisher's Exact Test compared to unc-103(0); egl-2(0); rgEx173 on food 

 
 
 

 

Food deprivation-dependent reduction of sex muscle seizures requires 

CaMKII/UNC-43 

 

 Since both CaMKII/UNC-43 and EAG K+ channel/egl-2 are activated under 

food-deprivation conditions and reduce sex muscle excitability, I asked if UNC-43 could 
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be involved in the activation of EGL-2 when food is limited.  First, I determined if unc-

43 is required to down-regulate sex-muscle excitability under food deprivation 

conditions.  To address this question, I generated double mutant combinations of unc-

103(0) and two different unc-43 alleles, sy574 and e408.  Both alleles were analyzed 

because they affect spicule protraction differently on food.  Approximately half of unc-

43(sy574) males display spontaneous protraction while unc-43(e408) males do not 

protract their spicules when in the presence of food (see Chapter III).  In addition, unc-

43(e408) is able to complement unc-43(sy574)-induced spicule protraction, indicating 

the two mutations disrupt different aspects of CaMKII function.  Both alleles cause an 

amino acid change near the substrate recognition domain of the catalytic region, 

suggesting the e408 and sy574 mutations disrupt CaMKII’s ability to recognize, and 

thereby phosphorylate, its substrates [49].  In both cases, combining the unc-43 and unc-

103(0) mutant alleles increases the instance of spicule protraction on food (Table 8).  

This is not surprising since genetic and pharmacologic data suggest the unc-43(e408) 

allele reduces male sex muscle function by up-regulating the UNC-103 and EGL-2 K+ 

channels (see Chapter V).  EGL-2 activation does not suppress unc-103(0)-induced 

spicule protraction (Table 7), therefore unc-43(e408) does not have a K+ channel to 

activate when unc-103 is removed, resulting in an increased instance of spicule 

protraction in unc-103(0); unc-43(e408) males.  However, food deprivation is unable to 

reduce spicule protraction in unc-103(0); unc-43(e408) mutant males (Table 8).  The 

inability of food deprivation to inhibit seizures in unc-103(0); unc-43(e408) males 

suggests unc-43 inhibits sex muscle excitability when food is scarce.  In contrast, food 
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deprivation reduces the instance of protraction seen in unc-103(0); unc-43(sy574) males 

(Table 8).  This indicates that the UNC-43(sy574) kinase is likely able to inhibit the unc-

103(0) phenotype, but not its own phenotype under food deprivation conditions.  

Interesting, food deprivation increases the instance of protraction in unc-43(sy574) 

single-mutant males (Table 8).  This suggests that unc-43 plays an increased role in 

reducing sex-muscle excitability when food is scarce.  In conclusion, both the sy574 and 

e408 mutations can disrupt UNC-43’s ability to transduce food deprivation signals 

(Figure 9). 

 
 
 

 
Figure 9. Genetic interactions between CaMKII, EAG, and ERG-like K+ channels 
in well-fed and food deprivation conditions. CaMKII acting upstream of K+ channels 
and other regulators of muscle contraction is represented by arrows, whereas bars 
indicate that the K+ channels and other effectors suppress spontaneous muscle seizures.  
An “X” next to an unc-43 allele name denotes which specific genetic pathway is 
compromised by the mutant allele.  The dashed arrow and bar lines indicate that the 
interaction between unc-43 and egl-2 is only seen in the unc-43(e408) mutant 
background [49]. 
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Mutating potential CaMKII phosphorylation site S567 on EAG K+ channel/EGL-2 

up-regulates the channel under well-fed conditions 

 

 My work has demonstrated that CaMKII/unc-43 and EAG K+ channel/egl-2 

function in the sex muscles to reduce spicule protraction under food deprivation 

conditions.  To determine if there is a direct interaction between unc-43 and egl-2, I 

mutated potential CaMKII binding sites present in the egl-2 c-terminus.  CaMKII 

phosphorylates the consensus sequence of RXXS/T, and egl-2 contains several potential 

sites (Figure 10) [58,95].  In addition, the PAS domain of egl-2 was deleted. PAS 

domains are involved in sensing external stimuli and circadian rhythm function but have 

no known role in EAG K+ channels [96-98].  While the PAS domain contains no 

potential CaMKII binding sites, it could provide a docking site for proteins that CaMKII 

does phosphorylate, thus affecting EGL-2 function.   

 A cDNA encoding the mutated egl-2 was expressed in the sex muscles of unc-

103(0); egl-2(0) males using the Punc-103E promoter [63], and transgenic males were 

scored for the ability of food deprivation to inhibit unc-103(0)-induced spicule 

protraction.  I found that mutating egl-2 at sites S888 or S567, removing the final four 

potential CaMKII sites in the egl-2 c-terminus, and removing the PAS domain all 

resulted in food-deprivation suppression of spicule protraction (Table 8).  Thus, 

interfering with these sites does not inhibit the activation of EGL-2 in the absence of 

food. 
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Figure 10. EAG K+ channel/egl-2 amino acid sequence with mutations indicated. 
The PAS domain is highlight in gray.  Dashed underline indicates transmembrane 
domains 1 and 6.  Solid underline indicates potential CaMKII phosphorylation site.  
Black highlight indicates amino acids deleted in EGL-2(-del) mutant.  Amino acids 
affected by mutations are boxed.  Amino acid change as well as egl-2 allele name is 
indicated above the amino acid affected. 
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 However, under standard, well-fed conditions, mutating serine 567 to 

phenylalanine results in the suppression of unc-103(0)-induced protraction, as spicule 

protraction is reduced from 58% to 9% (Table 8).  Interestingly, an allele of egl-2 exists 

that is also able to inhibit spicule protraction on food.  Unlike egl-2(0) and egl-

2(n693gf), egl-2(n904) reduces unc-103(0)-induced spicule protraction from 43% to 

14% under well-fed conditions (Table 7).  While the egl-2(n904) allele had previously 

been identified as a suppressor of the egg-laying defective phenotype caused by egl-

2(n693gf), the molecular lesion had not been identified [58].  Dr. Daisy Gualberto 

sequenced egl-2 from n904 worms and found serine 567 was changed to phenylalanine 

(Figure 10).  Thus, males carrying the S567F mutation on the n904 allele have a similar 

phenotype to expressing EGL-2 containing the S567F mutation in male sex muscles.  

egl-2(n904) and Punc-103E:egl-2(S567F) both inhibit protraction induced by unc-103(0).  

Thus, the S567F mutation results in active EGL-2 under standard, well-fed conditions, 

while wild-type EGL-2 is only active in the male sex muscles under food deprivation 

conditions (Figure 11). 

 Further support for the S567F mutation activating egl-2 comes from the ability of 

egl-2(n904) to inhibit unc-43(sy574)-induced spicule protraction.  The unc-43(sy574) 

allele contains a point mutation in the substrate recognition site of the kinase domain that 

could interfere with substrate binding and induces spicule protraction at a rate of 56% 

(Table 7) [49,85,86].  When the unc-43(sy574) allele is combined with the egl-2(n904) 

allele, male spicule protraction is reduced to 14% (Table 7).  This supports the idea that 

EGL-2(n904) is active under well-fed conditions.   



 67 

 
Figure 11. CaMKII activates EGL-2 under conditions of food deprivation to 
increase channel function. Diagram of the right half of the male tail. (A) When food is 
plentiful, CaMKII/UNC-43 inhibits sex muscle contraction and premature spicule 
protraction while EAG K+ channel/EGL-2 remains inactive. (B) When food is scarce, 
CaMKII phosphorylates EGL-2 at S567, up-regulating channel function to reduce sex 
muscle excitability. (C) Replacing serine 567 with phenylalanine results in up-regulated 
EGL-2 when food is plentiful.  In addition to EGL-2 inhibiting premature spicule 
protraction, more CaMKII is present in the cytoplasm to reduce muscle seizures. 
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It has been shown in Drosophila that CaMKII not only phosphorylates EAG K+ 

channels, but also stays bound to the channel, indicating that EAG K+ channels can act 

as a “sink” for CaMKII.  Thus, in males containing the egl-2(n904) mutation, not only 

could egl-2 be active, but more CaMKII might be present in the cytoplasm since the 

n904 allele could disrupt CaMKII binding.  CaMKII could therefore be available in 

higher concentrations to phosphorylate other substrates, reducing sex-muscle excitability 

(Figure 11C).  In support of this idea, combining unc-43(sy574) with a null allele of egl-

2 (egl-2(0)) results in reduced spicule protraction (Table 7).  In unc-43(sy574); egl-2(0) 

males, more unc-43 could be present in the cytoplasm, compensating for impaired 

function induced by the sy574 mutation. 

 Whether CaMKII/UNC-43 binds and phosphorylates EAG K+ channel/EGL-2 at 

S567 to increase channel activity in C. elegans remains a question.  Both EGL-2 and 

CaMKII/UNC-43 are required to reduce unc-103(0)-induced spicule protraction under 

food deprivation conditions, suggesting they are both active.  Additionally, removing 

egl-2 from a gain-of-function unc-43 background increases the response of unc-43(gf) 

males to the acetylcholine agonist arecoline.  When one-day-old virgin adult unc-43(gf) 

males are exposed to various concentrations of arecoline, 90% of them respond at 119 

mM of the drug, compared to 579 µM required for 90% of wild-type males to respond 

[49].  The concentration increases to 9.7 mM for unc-43(gf); egl-2(0) males, indicating 

that UNC-43 is activating EGL-2 to reduce response to ARE.  Thus, the above-

mentioned lines of evidence indicate that UNC-43 is interacting with EGL-2 to increase 

channel activity (Figure 11B).  However, mutating EGL-2 at the potential CaMKII 
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phosphorylation site S567 results in a channel able to suppress abnormal spicule 

protraction under well-fed conditions (Figure 11C).  This indicates the S567F mutation 

increases the activity of EGL-2 under conditions when the wild-type K+ channel 

normally has little activity.  The S567F mutation presumably disrupts the ability of 

CaMKII to phosphorylate the channel.  However, phenylalanine contains a bulky side 

chain that could mimic the effects of phosphorylation, resulting in an active EGL-2 

channel.  Thus, the S567F mutation could activate EGL-2 in the presence of food 

because it is mimicking the phosphorylization by CaMKII that activates the channel 

under food deprivation conditions (Figure 11). 

 

CaMKII/UNC-43 directly interacts with EAG K+ channel/EGL-2 in a Yeast Two-
Hybrid assay and in vitro 
 
 
 
 To determine if the C. elegans proteins CaMKII/UNC-43 and EAG K+ 

channel/EGL-2 interact, I used a Yeast Two-Hybrid assay.  An inactivated kinase form 

of UNC-43 and the EGL-2 c-terminal domain were attached to the GAL-4 binding and 

activation domains, respectively, and co-expressed in yeast cells.  UNC-43 amino acid 

resides 1-270 were attached to the GAL-4 DNA binding domain (Figure 12A).  The 

kinase was inactivated with an Asp 135 Asn mutation to prevent it from killing yeast 

cells [99].  The EGL-2 c-terminus consisting of amino acid residues 488-957, including 

the S567 potential CaMKII phosphorylation site, was attached to the GAL-4 activation 

domain (Figure 12A).  Yeast cells containing both constructs were analyzed for their 

ability to produce β-galactosidase, the product of the lacZ gene.  If UNC-43 directly 
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interacts with EGL-2, the binding and activation domains of GAL-4 will be brought 

close together, enabling transcription of lacZ and the production of β-galactosidase.  I 

found there was a strong interaction between EGL-2 and UNC-43 in the Yeast Two-

Hybrid assay, indicating there is a direct interaction between the two proteins (Figure 

12B). 

 Since in vivo mutation of EGL-2 S567 interferes with normal channel function, I 

asked if mutating EGL-2 at S567 disrupts the interaction between EGL-2 and UNC-43.  

I placed a point mutation in the EGL-2-GAL-4 activation domain construct that changes 

S567 to phenylalanine and expressed EGL-2(S567F) in yeast cells along with UNC-43.  

I found almost no evidence of β-galactosidase production, indicating that the S567F 

mutation disrupts UNC-43’s ability to bind EGL-2 (Figure 12B).  To ensure that the 

reason I was seeing no β-galactosidase production was due to lack of protein interaction 

and not lack of protein expression in yeast cells, I probed for the presence of both EGL-

2(S567F) and UNC-43.  I found that both proteins were expressed (Figure 12C-D).  In 

conclusion, the results of the Yeast Two-Hybrid assay indicate that UNC-43 is directly 

binding EGL-2 and S567, located in the EGL-2 c-terminus, is required for this 

interaction. 
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Figure 12. Direct interaction between CaMKII/UNC-43 and EAG K+ channel/EGL-2. (A) 
Diagram of UNC-43 and EGL-2 attached to the binding and activation domains of GAL-4.  The 
amino acid residues used are indicated below the protein.  (B) Protein interaction in a yeast two-
hybrid assay. x axis is the c-terminus, y axis is the amount of real light units (RLU) given off per 
unit of cell culture.  p value determined by Fisher’s Exact Test. (C) Western blot testing for the 
presence of EGL-2-HA in yeast cells. (D) Western blot testing for the presence of UNC-43-myc 
in yeast cells. (E) Western blot testing for the presence of UNC-43-GST bound to EGL-2. (F) 
Western blot testing for the presence of EGL-2-MBP bound to UNC-43. 
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To confirm the direct interaction between UNC-43 and EGL-2, I looked at in 

vitro binding between the two proteins.  I attached the UNC-43 kinase and regulatory 

domains to glutathione S-transferase (GST) and placed this construct in solution with the 

EGL-2 c-terminus, plus calcium and calmodulin, and asked if activated UNC-43 bound 

EGL-2.  Using both amylose and glutathione resin, I separated UNC-43/EGL-2 

complexes from unassociated UNC-43 (in the case of amylose resin) or EGL-2 (in the 

case of glutathione resin).  I then used an antibody against maltose binding protein, to 

which EGL-2 was fused, to detect the presence of EGL-2 with eluted UNC-43, and an 

antibody against GST, to which UNC-43 is fused, to detect the presence of UNC-43.  I 

found that EGL-2 is present in an elute of UNC-43; however, when EGL-2 S567 is 

mutated to F, EGL-2(S567F) is no longer present in an elute of UNC-43 (Figure 12F).  

UNC-43 is also present in an elute of EGL-2, and this interaction is abolished when the 

EGL-2 S567F mutation is present (Figure 12E).  This confirms that C. elegans UNC-43 

and EGL-2 interact, and this interaction is dependent upon EGL-2 S567. 

 

Chapter summary 

 

 In this chapter I demonstrated that C. elegans CaMKII/UNC-43 and EAG K+ 

channel/EGL-2 directly interact and I provide evidence for the functional significance of 

this interaction.  UNC-43 and EGL-2 are both expressed in male sex muscles and both 

are required to reduce muscle excitability under food deprivation conditions.  UNC-43 

interaction with EGL-2 is dependent upon S567, located in the K+ channel c-terminal 
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domain.  Mutating serine 567 to phenylalanine appears to mimic phosphorylation, as the 

channel is then active under well-fed conditions and able to suppress muscle seizures.  In 

wild-type males, EGL-2 displays little activity when food satiated, while when food is 

withheld EGL-2 could be directly activated by UNC-43 to inhibit seizures in the male 

sex muscles. 
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CHAPTER V 

PATHWAYS ACTIVATED BY DIVERGENT FEEDING STATES TO 

REGULATE SPICULE PROTRACTION* 

 

 

CaMKII/UNC-43 inhibits contraction by reducing sex muscle response to 

neurotransmitters 

 

 Further support for the role of CaMKII/unc-43 in reducing muscle excitability 

comes from the ability of a loss-of-function allele in syntaxin/unc-64 to inhibit unc-

43(sy574)-induced protraction.  Syntaxin is involved in docking neurotransmitter-filled 

vesicles with the cell membrane at the neuronal pre-synaptic terminal; reducing the 

function of syntaxin results in reduced neurotransmitter release [100,101].  I placed an 

unc-64(lf) allele with unc-43(sy574) and found that spicule protraction dropped from 

56% to 17% in double-mutant males (Table 9).  Since the site-of-action of unc-43 in 

inhibiting spicule protraction is in the muscles, this indicates that unc-43 is required in 

the muscles to reduce the response to neurotransmitter release. 

 

 

 
 
_______________ 
*Portions of this chapter are reprinted from LeBoeuf B, Gruninger TR, Garcia LR 
(2007) Food deprivation attenuates seizures through CaMKII and EAG K+ channels. 
PLoS Genet 3: 1622-1632. 
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Table 9. Abnormal spicule protraction reduced by mutations in Ca2+ channels 

Genotypea 
% Protracted 

(n) p Valueb 
Wild-type 12 (106)   
syntaxin/unc-64(lf) 0 (41)   
CaMKII/unc-43(sy574) 56 (300) <0.005 to wt 
unc-64(lf); unc-43(sy574) 17 (81) <0.0001 to unc-43(sy574) 
L-VGCC/egl-19(lf) 2 (41)   
egl-19(lf); unc-43(sy574) 0 (48) <0.005 to unc-43(sy574) 
ERG/unc-103(sy557) 66 (454)   
unc-103(sy557); egl-19(lf) 5 (60) <0.005 to unc-103(sy557) 
RyR/unc-68(0) 15 (26)   
unc-43(sy574); unc-68(0) 46 (37)   
ERG-like K+ channel/unc-103(0) 42 (91) <0.005 to wt 
unc-103(0); unc-68(0) 8 (48) <0.0001 to unc-103(0) 
aStrains contain him-5(e1490)   
bFisher’s Exact Test   

 

 

 

CaMKII/UNC-43 reduces the effects of calcium influx from L-type voltage-gated 

Ca2+ channels under standard conditions 

 

Previous work has established how the males’ spicule muscles are activated 

during mating [47].  Protractor muscles attached at the base of the spicules are 

responsible for the prodding and insertion behaviors.  The post cloaca sensilla PCB and 

PCC neurons sense the presence of the vulva and activate the protractor muscles by 

releasing the neurotransmitter acetylcholine (ACh).  After the protractor muscles receive 

the activation signal, calcium is released from the sarcoplasmic reticulum via the 

Ryanodine receptor (RyR), UNC-68, resulting in the rapid prodding behavior required 
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for the spicules to breach the hermaphrodite vulva.  Once the vulva is breached, the SPC 

motor neuron releases ACh, initiating calcium influx from the L-type voltage-gated Ca2+ 

channel (L-VGCC), EGL-19, that causes tonic contraction of the protractor muscles, 

resulting in spicule insertion into the vulva [47]. 

  Since CaMKII/UNC-43 inhibits sex muscle contraction in the presence and 

absence of food, I asked if UNC-43 plays a role in reducing the effects of RyR/UNC-68 

and L-VGCC/EGL-19 function.  I placed an egl-19 loss-of-function allele with unc-

43(sy574) and found that egl-19(lf) abolishes unc-43(sy574)-induced spicule protraction 

under standard conditions (Table 9) [49].  Thus, when the worm is well-fed, unc-43 is 

inhibiting calcium influx from egl-19.  Similarly, egl-19(lf) is able to inhibit unc-103(lf)-

induced spicule protraction (Table 9) [12].  Thus, unc-43 and unc-103 act redundantly to 

suppress the effects of calcium influx from egl-19 in the absence of appropriate mating 

cues, preventing premature spicule protraction. 

 

CaMKII/UNC-43 reduces the effects of calcium influx from Ryanodine receptors 

under conditions where food is scarce  

 

 I next made a double mutant between CaMKII/unc-43(sy574) and a null allele of 

RyR/unc-68.  Unlike a loss-of-function in L-VGCC/egl-19, unc-68(0) is unable to 

suppress spicule protraction caused by the unc-43(sy574) allele (Table 9) [49].  Thus, 

unc-43 does not reduce the effects of premature calcium influx from unc-68 under 

standard conditions.  In contrast, unc-68(0) inhibits spicule protraction caused by ERG-
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like K+ channel/unc-103(0) (Table 9) [49], confirming that unc-43 and unc-103 are 

involved in separate pathways inhibiting sex-muscle seizures. 

 To test if CaMKII/unc-43 plays a role in reducing the effects of RyR/unc-68 

calcium influx under food-deprivation conditions, I scored the spicule protraction of 

unc-43(sy574); unc-68(0) males raised on plates lacking the E. coli strain OP50.  Food 

deprivation drops the instance of protraction seen in unc-43(sy574); unc-68(0) males 

from 49% to 12% (Table 10).  This indicates that unc-43 plays a role in reducing the 

amount of calcium released from unc-68 in food-deprived males. 

 

 

Table 10. Effects of RyR/unc-68 mutants on spicule protraction under food 
deprivation conditions 
  Food No Food 
Genotypea % Protracted (n) % Protracted (n) 
Wild-type 5 (38) 0 (26) 
CaMKII/unc-43(sy574) 44 (66) 50 (44) 
unc-43(sy574); unc-68(0) 46 (37) 12 (51)b 
aStrains contain him-5(e1490)   
bp value < 0.05, Fisher’s Exact 
Test   

 

 

 

 To further test the role of CaMKII/unc-43 in reducing the effects of calcium 

release from RyR/unc-68 under conditions of food deprivation, I tested the response of 

unc-43(sy574) males to the acetylcholine agonist levamisole (LEV).  LEV preferentially 

activates calcium release from UNC-68 [47].  Therefore, if unc-43 reduces UNC-68 
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function when food is scarce, food-deprived unc-43(sy574) males should show an 

increased response to LEV since unc-43’s ability to reduce the amount of calcium 

released from unc-68 is impaired.  Food-deprived one-day-old virgin unc-43(sy574) 

males that did not display spontaneous spicule protraction were placed in various 

concentrations of LEV, observed for spicule protraction, and compared to similarly 

treated wild-type males.  Food-deprived unc-43(sy574) males showed a significant 

increase in their response to 1 µM LEV (Figure 13B), supporting the idea that unc-43 

reduces the effects of unc-68-induced calcium influx under conditions of food 

deprivation.   

Interestingly, unc-43(sy574) also displays hypersensitivity to LEV when males 

are food satiated (Figure 13A).  This suggests that UNC-43 may play a role in reducing 

calcium influx from UNC-68, despite the fact that a null mutation in unc-68 does not 

reduce unc-43(sy574)-induced protraction.  Unidentified isoforms of unc-68 could exist 

that are still present in unc-68(0) males.  Alternatively, the unc-43(sy574) allele could 

cause a general increase in sex-muscle excitability, resulting in males that are more 

sensitive to ACh agonists.  The hypersensitivity displayed by unc-43(sy574) males to 

LEV suggests a role for unc-43 in regulating unc-68. 
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Figure 13. Levamisole pharmacology of well-fed and food-deprived males.  x-axis is 
the drug concentration and the y-axis indicates the percent of males that protract their 
spicules. ** p value <0.005, *** p value < 0.0005, Fisher’s Exact Test. (A) Well-fed 
male response to LEV. n > 30 for each bar. (B) Food-deprived male response to LEV. n 
= 30 for each bar, except 1 µM n = 60 for both genotypes. 
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ERG-like K+ channel/UNC-103 and EAG K+ channel/EGL-2 work downstream of 

CaMKII/UNC-43 to reduce sex muscle excitability 

 

 Under standard conditions, CaMKII/UNC-43 inhibits premature sex-muscle 

contraction by reducing the effects of calcium influx from L-VGCC/EGL-19.  This 

calcium influx is preferentially activated by the ACh agonist arecoline (ARE) [47].  To 

dissect UNC-43’s role in reducing calcium influx from EGL-19, I looked at the response 

of mutant unc-43 alleles to ARE.  One-day-old virgin males that maintained normal 

spicule position were placed in various concentrations of ARE and observed for 

protraction.  90% of unc-43(sy574) males displayed protraction at a concentration of 268 

µM (EC90), similar to the wild-type EC90 of 579 µM (Figure 14A,D).  Since wild-type 

and unc-43(sy574) males have similar dose-response curves to ARE, this confirms that 

the unc-43(sy574) allele has no known phenotypes outside of spicule protraction, unlike 

other unc-43 alleles.  Two other unc-43 alleles tested, the dominant gain-of-function 

allele unc-43(n498gf) and the loss-of-function allele unc-43(e408), displayed greater 

than 10-fold reduction in response to ARE (Figure 14A,D).  This indicates that unc-

43(n498gf) and unc-43(e408) are over-active in suppressing sex-muscle excitability.  In 

addition, unc-43(408), while nominally a loss-of-function allele, displays gain-of-

function attributes in the spicule protraction circuit; unc-43(e408) is the only allele that 

does not cause spicule protraction and the allele complements unc-43(sy574) (See 

Chapter III) [49].  This unique allele changes a serine to leucine at amino acid 179 in the 
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catalytic region and might be affecting unc-43’s ability to bind and phosphorylate 

substrates. 

 

 
Figure 14. Arecoline pharmacology of CaMKII/unc-43 mutants. (A-C) Graphs 
display male muscle sensitivity to ARE.  The concentrations of ARE are listed on the x-
axis and the percentage of males that protract their spicules in response to ARE is 
indicated on the y-axis.  For each data point, n = 30 males.  (D) EC90: Concentrations at 
which 90% of males protract their spicules in response to ARE [49]. 
 

 

 I next asked which proteins mediate ARE resistance induced by unc-43(n498gf) 

and unc-43(e408).  I looked at the interaction between unc-43 and two K+ channels, the 

ERG-like K+ channel/unc-103 and the EAG K+ channel/egl-2.  unc-103 was established 

as being downstream of unc-43 in the defecation circuit, but so far my experimental 

results place unc-103 and unc-43 in separate pathways that suppress seizures in the 

spicule protraction circuit [49,76].  I have already established that egl-2 is activated by 

unc-43 under conditions of food deprivation; addressing the role of egl-2 in unc-
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43(n498gf) and unc-43(e408)-induced ARE resistance will allow me to determine if the 

K+ channel can be activated by these abnormally functioning kinases under well-fed 

conditions.  I placed the null mutations of both K+ channels in unc-43(n498gf) and unc-

43(e408) backgrounds and determined the double mutant’s sensitivity to ARE.  I found 

that removing either unc-103 or egl-2 from the unc-43(e408) background completely 

restores males’ sensitivity to ARE while removing unc-103 or egl-2 from the unc-

43(n498gf) background partially restores males’ ARE sensitivity (Figure 14B-C).  Thus, 

unc-103 and egl-2 are being activated by unc-43 to reduce sex muscle excitability in the 

spicule protraction circuit.  In addition, unc-43(e408) is a weaker gain-of-function allele 

in the spicule protraction circuit than unc-43(n498gf). 

 While removing either unc-103 or egl-2 is sufficient to restore unc-43(e408) 

male’s spicule muscles sensitivity to ARE to wild-type levels, the same is not true for 

unc-43(n498gf) males.  I asked if removing both unc-103 and egl-2 from an unc-

43(n498) background is sufficient to restore males’ response to ARE.  I made an unc-

103(0); unc-43(n498gf); egl-2(0) triple mutant and found that while this increase sex 

muscle response greater than deleting either K+ channel alone, it did not restore 

sensitivity to wild-type levels (Figure 14C-D).  Thus, unc-43(n498gf) is activating an 

unidentified protein(s) to suppress male sex-muscle response to ARE in addition to unc-

103 and egl-2. 
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EAG K+ channel/EGL-2 is activated by food deprivation to inhibit L-type voltage-

gated Ca2+ channels 

 

 To confirm EAG K+ channel/EGL-2’s role in reducing sex-muscle excitability 

by reducing the effects of calcium influx from L-VGCC/EGL-19, I looked at the 

response of egl-2(gf) mutant males to the EGL-19-activating ACh agonist ARE.  Mutant 

males were placed in various concentrations of the drug and scored for spicule 

protraction.  I found that egl-2(gf) showed reduced sex-muscle sensitivity to ARE at 

lower concentrations of the drug, but retained its sensitivity to higher concentrations 

(Figure 15B).  In contrast, egl-2(gf) sensitivity was unchanged in response to another 

ACh agonist, levamisole, that activates calcium influx via RyR/UNC-68 (Figure 15A).  

This confirms that EGL-2 is involved in reducing the effects of L-VGCCs and not RyRs. 

 While EGL-2 inhibits L-VGCCs under food deprivation conditions, the EAG K+ 

channel does not appear to play any role in reducing sex-muscle excitability on food, as 

neither egl-2(0) nor egl-2(gf) males display mating defects.  To test this idea, I asked if 

food-deprived egl-2(gf) males retain their resistance to the ACh agonist ARE after a 

period of re-feeding.  Previous work established that male sex-muscle excitability is 

reduced when food is withheld, and this reduced excitability includes a decreased 

sensitivity to ARE [28,75].  egl-2(gf) males appear mostly normal on food; this could be 

due to the fact that egl-2 is not active on food.  Up-regulating EGL-2 activity in the male 

sex muscles off of food to inhibit sex-muscle excitability should up-regulate the 

previously dormant egl-2(gf).  Since it is a gain-of-function, it should remain active even  
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Figure 15. EAG K+ channel/egl-2(gf) sensitivity to ACh agonists.  (A-B) Drug 
concentration is on the x-axis, and the percent of males that protracted their spicules in 
response to LEV is on the y-axis.  n = 30 for all points tested.  (A) egl-2(gf) sensitivity to 
LEV.  (B) egl-2(gf) sensitivity to ARE.  (C) Response to 1 mM ARE.  Feeding status is 
indicated on the x-axis. The instance of spicule protraction in response to 1 mM ARE is 
indicated on the y-axis.  For all graphs, * p<0.05, ** p<0.005, *** p<0.0005, and all 
strains contain him-5(e1490). 
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when the male is returned to food. To this hypothesis, I food-deprived wild-type and egl-

2(gf) males and re-fed them for a period of 15 min or 1 hr, and then tested sex-muscle 

response by looking for spicule protraction when the males were placed in 1 mM ARE.  

1 mM ARE was used because egl-2(gf) males respond normally to this concentration of 

ARE when food satiated (Figure 15B).  I found that wild-type males regain ARE 

sensitivity after 1 hr re-feeding, while egl-2(gf) males maintain their resistance to the 

drug (Figure 15C).  Thus, egl-2 is being activated by food deprivation and in wild-type 

males this activation is reversed upon the return to a food source. 

 

CaMKII/UNC-43 requires BK K+ channel/ SLO-1 to regulate sex-muscle 

excitability 

 

 To identify other targets of CaMKII/unc-43 in an unc-43(n498gf) background, 

thereby helping to identify relevant unc-43 effectors in the male sex muscle circuit, I 

looked at the role of the BK K+ channel/slo-1 in regulating spicule protraction.  slo-1 is 

expressed in neurons and muscles and was previously identified in a screen for 

suppressors of unc-64/syntaxin-mediated resistance to volatile general anesthetics, as 

was unc-43 [59,102].  In addition, slo-1 has been shown to be downstream of unc-43 at 

the C. elegans presynaptic nerve terminal, as unc-43 is involved in activating slo-1 to 

inhibit neurotransmitter release [103]; a similar mechanism could function in the sex 

muscles.  First, I looked at the ability of a slo-1(lf) nonsense allele to cause premature 

spicule protraction and found that slo-1(lf) causes 29% of males to protract their spicules 
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(n = 53, p value < 0.0001, Fisher’s Exact Test compared to wild type).  Therefore, slo-1 

inhibits inappropriate male sex muscle contraction under standard conditions. 

 To determine if slo-1 functions downstream of unc-43 to regulate spicule 

protraction, I made a double mutant between unc-43(n498gf) and slo-1(lf).  I then tested 

the ability of ARE to induce sex muscle contraction in these males.  I found that the slo-

1(lf) mutation was able to increase unc-43(n498gf)’s response to ARE (Figure 16), 

indicating that unc-43 relies on slo-1 to suppress muscle excitability in the spicule 

protraction circuit. 

 

 

 
Figure 16. Arecoline pharmacology of BK K+ channel/slo-1 mutant.  ARE 
concentration on the x-axis, percentage of males that protracted their spicules in response 
to ARE on the y-axis. n = 30 for each data point. 
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Under food deprivation conditions, BK K+ channel/SLO-1 defines a pathway 

separate from CaMKII/UNC-43 and EAG K+ channel/EGL-2 

 

 Since unc-43 is required to suppress spicule protraction not only under standard 

conditions, but also when food is scarce, I asked if slo-1 plays a role in down-regulating 

sex-muscle excitability under food deprivation conditions.  After starving virgin males 

overnight as they matured into adults, I found that food deprivation did not affect the 

instance of spicule protraction (Table 11).  Thus, slo-1 does play a role in reducing sex-

muscle excitability when males are food-deprived. 

 Next I looked to see how BK K+ channel/slo-1 interacts with ERG-like K+ 

channel/unc-103, since both K+ channels are required on food to regulate sex muscle 

excitability.  I made an unc-103(0); slo-1(lf) double mutant, and scored males for spicule 

protraction.  I found that double mutant males do not display a significantly higher 

instance of spicule protraction from unc-103(0) single mutants (Table 11, p value = 

00.43, double to unc-103(0), Fisher’s Exact Test).  Thus, both slo-1 and unc-103 K+ 

channels are necessary to reduce sex-muscle excitability on food.  I then looked at the 

ability of food-deprivation to suppress unc-103(0); slo-1(lf)-induced protraction and 

found that spicule protraction is unaffected (Table 11).  Thus, like unc-43 and egl-2, slo-

1 inhibits sex-muscle excitability when males are food-deprived.  Interestingly, it 

appears that unc-103 could be partially redundant to slo-1, as adding a slo-1 mutation to 

the unc-103(0); slo-1(lf) does not increase the instance of protraction. 
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 Since BK K+ channels/SLO-1 is working in a similar manner to CaMKII and 

EAG K+ channels, I asked if they were all part of the same pathway to down-regulate 

muscle excitability.  I created a double mutant between slo-1(lf) and egl-2(0) and found 

that the instance of spicule protraction on food was similar to slo-1(lf) males (Table 11, p 

value = 0.0816, Fisher’s Exact Test).  This confirms that egl-2 plays little role in 

reducing excitability under standard conditions.  slo-1(lf) egl-2(0) males display a higher 

instance of spicule protraction when food is removed than slo-1(lf) males alone (Table 

11, p value = 0.0312, Fisher’s Exact Test).  This suggests that egl-2 and slo-1 work 

separately to down-regulate muscle excitability when food is scarce. 

 

 

 
Table 11. Effects of BK K+ channel/slo-1 mutants on spicule protraction under well-
fed and food deprivation conditions 
  Food No Food 
Genotypea % Protracted (n) % Protracted (n) 
Wild-type 12 (42) 0 (33) 
slo-1(lf) 29 (53) 25 (59) 
unc-103(0) 43 (42) 14 (36)b 
unc-103(0); slo-1(lf) 51 (64) 47 (55) 
slo-1(lf) egl-2(0) 39 (33) 48 (40) 
slo-1(lf) egl-2(gf) 91 (138) 53 (32)b 
slo-1(lf) egl-2(0); rgEx253 [Punc-

103E::egl-2(gf)] 66 (32) 7 (30)b 
unc-43(sy574) 38 (65) 53 (55) 
unc-43(sy574); slo1(lf) 96 (56) 73 (34)b 
aStrains contain him-5(e1490)   
bp value < 0.05, Fisher’s Exact Test   
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 To confirm that egl-2 and slo-1 work separately when males are food-deprived to 

inhibit spicule protraction, I created a double mutant between egl-2(n693gf) and slo-

1(lf).  egl-2(n693gf) does not induce spicule protraction on its own and is able to inhibit 

unc-43(sy574)-induced protraction, indicating it down-regulates sex muscle excitability 

(Table 11, See Chapter III) [49].  Surprisingly, slo-1(lf); egl-2(n693gf) males display a 

91% instance of spicule protraction, significantly higher than slo-1(lf) on its own (Table 

11, p value < 0.0001, Fisher’s Exact Test).  slo-1 is broadly expressed in neurons and 

muscles; mutations in the K+ channel result in an increased pumping rate in the pharynx, 

the organ C. elegans uses to ingest and grind up food [59,104].  On the other hand, egl-

2(n693gf) decreases the rate of defecation [57].  Combined, these two alleles could cause 

severe constipation that leads to forced expulsion of the gut contents, damaging the sex 

muscles and resulting in spicule protraction.  To test this hypothesis, I deprived slo-1(lf); 

egl-2(n693gf) males of food and scored spicule protraction.  Food deprivation reduced 

protraction from 91% to 53%, indicating that forced expulsion caused by constipation 

could be responsible for some, but not all, of the spicule protraction seen in slo-1(lf); 

egl-2(n693gf) males. 

 I asked what could cause the high instance of spicule protraction in egl-

2(n693gf); slo-1(lf) males.  There are two possibilities: in some manner, EGL-2 is reliant 

on functional SLO-1 in the sex muscles, or the two alleles cause a synthetic effect 

upstream of the sex muscles that results in spicule protraction.  To test these two 

hypotheses, the egl-2(n693gf) mutation was expressed only in the sex muscles using the 

Punc-103E promoter driving egl-2 cDNA containing the n693gf mutation [57,63].  That 
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way, any synthetic effect occurring upstream of the sex muscles between egl-2(n693gf) 

and slo-1 can be avoided.  I expressed Punc-103E:EGL-2(n693gf) in the sex muscles of slo-

1(lf) egl-2(0) males and found that 66% of males display spicule protraction on food, a 

number that is reduced to 7% when the males are removed from food (Table 11).  The 

high instance of spicule protraction seen on food is not higher than slo-1(lf) by itself.  In 

addition, since egl-2(n693gf) is able to reduce spicule protraction caused by slo-1(lf) off 

food, egl-2 and slo-1 likely work in separate pathways to down-regulate sex-muscle 

excitability off of food. 

 I next asked if any interaction exists between slo-1 and unc-43.  In my 

experiments, the two K+ channels egl-2 and slo-1 appear to work separately, and 

CaMKII/unc-43 interacts with egl-2, so unc-43 could interact with egl-2 and not slo-1.  

On the other hand, slo-1 has been shown to be downstream of unc-43 at the presynaptic 

terminal, and unc-43 could interact with more than one substrate to regulate spicule 

protraction [103].  To test for an interaction between slo-1 and unc-43, I made a unc-

43(sy574); slo-1(lf) double mutant and scored the males for spicule protraction.  If the 

two proteins interact to regulate protraction, than the instance of protraction induced by 

the double mutant should not be higher than unc-43(sy574)-induced protraction.  

However, if the two proteins are working separately to regulate protraction, than the 

instance of protraction induced by the double mutant will be higher than either mutation 

alone.  I found that unc-43(sy574); slo-1(lf) induces protraction in 96% of males, 

indicating that the two proteins function separately to inhibit sex muscle excitability 

(Table 11).  Spicule protraction induced by unc-43(sy574) is not reduced by food 
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deprivation and slo-1(lf)-induced protraction is only partially reduced by food 

deprivation.  I withheld food from the unc-43(sy574); slo-1(lf) double mutant and found 

that spicule protraction drops from 96% to 73% (Table 11).  This is similar to the drop in 

spicule protraction seen with unc-103(0); unc-43(sy574) mutants (See Chapter IV) [49].  

The drop in spicule protraction from food to no food can be explained in two ways: (1) 

slo-1(lf)-induced protraction is partially suppress by food deprivation, indicating that 

pathways are still present to account for the phenotypic reduction, and (2) even if those 

pathways involved unc-43, they could still be functioning in an unc-43(sy574) 

background because sy574 is a mild loss-of-function unc-43 allele. 

 

Chapter summary 

 

 In this chapter, I identified circuits that reduce the effects of the Ca2+ channels 

that cause male sex-muscle contraction and spicule protraction.  There are two Ca2+ 

channels that control sex-muscle contraction, the L-type voltage-gated Ca2+ channel (L-

VGCC)/EGL-19 and the ryanodine receptor (RyR)/UNC-68, and their effects are 

regulated differently depending on the feeding state of the animal.  When food is 

plentiful, the effects of EGL-19 Ca2+ influx is kept in check by CaMKII/UNC-43, in a 

pathway separate from the ERG-like K+ channel/UNC-103.  UNC-103 attenuates the 

effects of UNC-68 activity, but UNC-43 does not.  In contrast, when the males are 

deprived of food, UNC-43 can reduce the effects of UNC-68 activity.  UNC-43 plays an 

additional role off food by activating EGL-2 to down-regulate EGL-19 and inhibit sex-
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muscle excitability.  Parallel to UNC-43/EGL-2, the BK K+ channel/SLO-1 reduces 

Ca2+ influx from EGL-19 when males are both well-fed and food-deprived.  In 

conclusion, C. elegans utilizes distinct circuits to reduce muscle sensitivity in the 

absence of appropriate mating cues and a food source.  There are partially redundant 

mechanisms in place to regulate muscle excitability, suggesting the possibility that one 

mechanism can be up-regulated to compensate when another is nonfunctional. 
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CHAPTER VI 

SUMMARY OF EXPERIMENTS AND DISCUSSION 

 

 

Summary of experiments  

 

 To identify behavioral regulation at the molecular level I analyzed how the 

spicule protraction step of male C. elegans mating behavior is controlled.  I found that 

different circuits are in place to regulate muscle contraction in response to varying 

environmental cues, namely the feeding state of the male.  Specifically, the kinase 

CaMKII is active to inhibit sex muscle contraction until appropriate mating cues are 

received, and this activity is up-regulated in response to food-deprivation to further 

down-regulate sex muscle excitability.  Sex muscle contraction is caused by calcium 

release from two different channels, L-type voltage-gated Ca2+ channels (L-VGCCs) and 

ryanodine receptors (RyRs), and the functions of these channels are down regulated via 

different mechanisms.  CaMKII works in the muscles and directly interacts with ether-a-

go-go (EAG) K+ channels to inhibit spicule protraction induced by calcium influx from 

L-type Ca2+ channels.  Ryanodine receptor inhibition does not involve EAG K+ channels 

and involves CaMKII only in the absence of food.  Additionally, a BK K+ channel 

functions in parallel to CaMKII and EAG to inhibit sex muscle contraction in the 

presence and absence of food.  These pathways work in parallel to ERG-like K+ channel 

inhibition of sex muscle contraction.  This study has identified multiple Ca2+-dependent 
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circuits that coordinate a behavioral response to different feeding states.  Such circuits 

provide a model for behavioral regulation in other organisms. 

 

CaMKII/UNC-43 works in muscles to inhibit sex muscle contraction 

 

 I identified a mutation, sy574, that induces premature protraction of the male 

copulatory spicules.  The sy574 lesion is in the C. elegans homologue of 

calcium/calmodulin-dependent protein kinase II (CaMKII), unc-43.  The regulation of 

spicule protraction is highly sensitive to disruption as unc-43(sy574) induces no other 

abnormal phenotypes while more severe loss-of-function mutations in unc-43 lead to 

many defects.  There are two mutations present in the unc-43(sy574) allele, one in the 

substrate recognition site of the enzyme’s kinase domain and the other in the self-

association domain.  However, only the former appears to play a role in unc-43’s 

regulation of sex-muscle excitability as a truncated form of unc-43, unc-43i, lacking the 

self-association domain is able to rescue unc-43(sy574)-induced spicule protraction.  

Given the fact that unc-43(sy574) appears to only disrupt spicule protraction regulation, 

and the fact that an early stop codon mutation results in severe pleiotropic defects, it is 

likely that unc-43(sy574) disrupts CaMKII’s ability to phosphorylate substrates specific 

to spicule protraction.  unc-43 is broadly expressed in many tissues and is required in 

both body-wall and sex muscles to reduce muscle excitability in the spicule protraction 

circuit.  This function parallels that of the ERG-like K+ channel unc-103, that is only 

required in sex muscles to inhibit seizures (Figure 17A). 
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Figure 17. Molecular regulation of spicule protraction behavior in wild-type males. 
(A)-(B) Diagram of male tail.  (A) When the male is food satiated, CaMKII/UNC-43 is 
active in both the body-wall and sex muscles to down-regulate excitability, while ERG-
like K+ channel/UNC-103 is required only in the sex muscles.  EAG K+ channel/EGL-2 
is inactive.  (B) When males are food-deprived, CaMKII activates EAG by 
phosphorylating S567 to down-regulate excitability. (C)-(D) Diagram of protractor 
muscle. (C) Under well-fed conditions, CaMKII reduces the effects of calcium influx 
from L-VGCCs and ERG-like K+ channels attenuates the effects of calcium influx from 
both L-VGCCs and RyRs.  CaMKII also plays a role up-regulating ERG-like K+ 
channels. (D) When males are food-deprived, insulin-like peptides activate the insulin-
like receptor (ILR) DAF-2.  This leads to calcium release from IP3 receptors (IP3R) that 
activates CaMKII and BK K+ channel (BK Ch)/SLO-1.  BK channels reduce the effects 
of calcium influx from L-VGCCs.  CaMKII reduces the effects of L-VGCCs through 
EAG K+ channels, and also plays a role in inhibiting the effects of RyRs.  
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While it is easy to deduce the role of CaMKII/UNC-43 in male sex muscles to 

inhibit spicule protraction, it is unclear what role UNC-43 is playing in body-wall 

muscles to regulate the timing of spicule protraction.  In the sex muscles, UNC-43 can 

directly act to inhibit sex-muscle excitability, most likely by both activating proteins that 

reduce excitability as well as inhibiting proteins that increase excitability.  UNC-43 

could play a similar role in the body-wall muscles, indicating that they are influencing 

the activity of the sex muscles.  The body-wall muscles are electrically coupled to the 

sex muscles through the accessory anal depressor muscle that plays no known role in 

male mating behavior.  This signal could in turn be dependent on changing 

environmental signals that lead to modulation of muscle excitability. 

 

CaMKII/UNC-43 directly interacts with EAG K+ channel/EGL-2 to regulate sex 

muscle excitability 

 

 I identified EAG K+ channel/EGL-2 as a direct down stream target of 

CaMKII/UNC-43 in the spicule protraction circuit.  On food, EGL-2, unlike UNC-43, 

does not appear to play a role in regulating sex muscle activity under standard conditions 

(Figure 17A).  A null mutation in egl-2 that results in a large deletion does not result in 

spontaneous spicule protraction.  However, EGL-2 activity is important in the sex 

muscles to down-regulate muscle excitability in the absence of food (Figure 17B).  EGL-

2 expression in the sex muscles is sufficient to restore the ability of food deprivation to 

inhibit unc-103(0)-induced spicule protraction in an unc-103(0); egl-2(0) background.  
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Mutating a potential CaMKII site, serine 567, in the c-terminal domain of EGL-2 results 

in the ability of the mutated channel to inhibit unc-103(0)-induced spicule protraction on 

food.  Mutating the serine 567 to phenylalanine could mimic CaMKII phosphorylation 

and thereby up-regulate channel function. 

 EGL-2 was determined to be a direct effector of UNC-43 using a yeast two-

hybrid assay and in vitro protein interaction experiments.  Expressing the c-terminus of 

EGL-2 and the UNC-43 kinase domain in yeast cells resulted in the formation of β-

galactosidase, indicating the two proteins interact.  In addition, when the potential 

CaMKII phosphorylation site S567 is mutated, β-galactosidase formation and thus 

protein interaction is abolished.  In conclusion, UNC-43 directly binds EGL-2 and this 

interaction is dependent upon serine 567 (Figure 17B). 

 

Several circuits exist to inhibit sex muscle excitability under varying environmental 

conditions 

 

 The spicule protraction circuit needs to be tightly regulated to induce protraction 

when the hermaphrodite vulva has been breached.  Premature protraction results in the 

males’ inability to mate.  The muscle contraction leading to protraction is caused by 

calcium influx controlled by L-VGCC and RyRs [47].  To limit the amount of calcium 

entry into the cytoplasm, K+ channels such as the ERG-like/UNC-103, EAG/EGL-2, 

and BK/SLO-1 are present, and CaMKII/UNC-43 also plays a role.  UNC-103 reduces 

the effects of calcium influx from both sources, while UNC-43 is primarily involved in 
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reducing the effects of L-VGCCs under standard conditions; the downstream effectors 

targeted by UNC-43 in this situation have yet to be identified (Figure 17C) [12].  While 

analysis of double mutant unc-103(0); unc-43(sy574) males indicates the two genes 

function in separate pathways in the spicule protraction circuit, an UNC-103-dependent 

component of UNC-43-mediated protraction suppression exists.  On one hand, nearly all 

unc-103(0); unc-43(sy574) males display spontaneous protraction, indicating they 

function in separate pathways to regulate the spicule circuit.  On the other hand, UNC-

103 is required for UNC-43-mediated response to ACh agonists, and a nonsense 

mutation in unc-43 results in nearly all males displaying inappropriate protraction.  This 

suggests a role for UNC-43 in UNC-103-mediated suppression of sex-muscle 

excitability. 

Additional mechanisms are in place to further suppress spicule protraction under 

food deprivation (Figure 17B,D).  Both UNC-43 and EGL-2 decrease sex-muscle 

excitability by reducing the effects of calcium influx from L-VGCCs, as lack of these 

functional proteins results in the inability of food deprivation to suppress unc-103(0)-

induced spicule protraction.  Interestingly, removing males from a food source increases 

the instance of protraction in a mutant allele of unc-43, sy574.  This suggests an 

excitatory signal is activated by food deprivation and UNC-43 functions as a negative 

regulator of this signal.  The excitatory signal activated by food deprivation could come 

from sarcoplasmic reticulum-located ryanodine receptors (RyRs)/UNC-68.  Since UNC-

43 reduces calcium influx into the cell from UNC-68 under food deprivation conditions, 

calcium released by UNC-68 could increase UNC-43 activity, ultimately resulting in 
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reduced sex-muscle excitability.  The mechanism by which UNC-43 down-regulates 

UNC-68 is unknown, but UNC-68 could be a direct target of UNC-43, where 

phosphorylation of UNC-68 by the kinase inhibits channel function.  UNC-68 possesses 

a potential CaMKII phosphorylation site at S3059, which is in the same region on the 

RyR as the human CaMKII site S2814 [105,106].  Whether CaMKII phosphorylates 

RyRs to reduce or increase channel function in mammalian systems is controversial 

[107-110], though if UNC-43 phosphorylates UNC-68 in the spicule protraction 

muscles, it is doing so to reduce channel function. 

My research focused on the molecular circuits inside the male sex muscles that 

result in reduced excitability both on and off food.  However, how these circuits are 

activated remains a question.  Since two of the proteins involved, CaMKII/UNC-43 and 

BK K+ channel/SLO-1, are activated by calcium, I hypothesize that a calcium signal is 

initiated.  Part of the upstream pathway resulting in release of a calcium signal was 

identified by a fellow graduate student, Todd Gruninger [75].  He found that loss of the 

food signal leads to activation of the AWC olfactory neurons; these neurons have 

exposed processes at the tip of the head to sense the environment.  AWC could then 

activate downstream neurons that release insulin-like peptides, as the insulin-like 

receptor DAF-2 is involved in the males’ sex muscle response to the food-deprivation 

signal.  DAF-2 is proposed to activate phospholipase-γ (PLC-γ), which in turn causes 

calcium to be released from inositol 1,4,5-trisphosphate receptors (IP3Rs) (Figure 17D).  

In mammalian systems, PLC-γ increases the intracellular calcium that activates CaMKII 

and is activated by insulin-like growth factor [111-113].  It is the calcium released from 
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intracellular stores via IP3Rs that is hypothesized to down regulate muscle excitability 

through UNC-43/EGL-2 and SLO-1 (Figure 16D) [75].   

Downstream synaptic connections of AWC include the interneurons AIY and 

AIB that are involved in mediating response to food [114,115].  AIY and AIB act as an 

opposing neuron pair, as AIY inhibits a systematic response to food deprivation and AIB 

actives a systematic response [114].  Therefore, the activation of AWC caused by a 

removal of the food signal could result in activation of AIB and inhibition of AIY that 

leads to decreased muscle excitability. 

 

Mechanisms of behavior response to environment stimuli identified in C. elegans 

provide insight into behavioral regulation in other organisms 

 

 A period of food deprivation results in many changes in an organism, including 

an increase in life span, resistance to stress, and reducing the instance of epileptic 

seizures [116-121].  These changes have been recorded in organisms from C. elegans to 

mice, and the molecular circuits underlying these changes are just beginning to be 

explored [122,123].  Because food deprivation has systemic effects on an organism, 

identifying the underlying mechanisms by which food deprivation produces those effects 

becomes essential for targeting treatment while avoiding undesirable side effects.  My 

work has identified existing parallel mechanisms that are activated by a period of food 

deprivation whose end result can reduce cell excitability and, by extension, seizures.  

Though this work was done in C. elegans, it provides focus for researchers in less 
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genetically tractable organisms.  In the area of food deprivation’s reduction of seizure 

susceptibility, much work remains to be done on the mechanisms involved in dietary 

restriction’s effect on seizures [124,125].  Research in C. elegans can identify molecules 

and circuits that potentially regulate similar behavioral responses in other organisms. 

 My work identifies CaMKII as a mechanism for changing behavioral output in 

response to food deprivation [49].  Few studies have explored the activity of CaMKII 

during food deprivation, as most research centers on its role in learning and memory and 

the underlying neuronal changes referred to as long term potentiation (LTP) [77,78,126].  

However, since CaMKII was identified as an important kinase in neurons, its potential 

role in detrimental conditions that affect neuronal function, such as epilepsy and aging, 

has been examined [127,128].  Reduced CaMKII function is implicated in seizure 

disorders, as well as impaired LTP during aging [127,128].  This raises the possibility 

that CaMKII provides a mechanistic link between the positive effects of food 

deprivation that reduce the instance of seizures and effects of aging.  My work supports 

the existence of this possibility, as I show a direct link between CaMKII and reducing 

cell excitability in response to food deprivation.  While many more studies need to be 

done in vertebrates to discover the mechanisms relating food deprivation to seizures, my 

research provides directionality of study for exploring the mechanistic link between 

CaMKII, food deprivation, seizures, LTP, and aging. 

 There are many difficulties inherent in piecing apart the many functions of a 

protein involved in a variety of cellular functions in addition to behavior.  Broadly 

disrupting the function of CaMKII in C. elegans using an allele that creates an early 
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nonsense mutation results in systemic defects in behavior [76].  In addition, impaired 

CaMKII function has been shown in other organisms to disrupt everything at a cellular 

level from gene transcription to protein activity [84,129].  Since CaMKII can have 

multiple functions in the same cell, this makes exploring its role in regulating specific 

behaviors difficult even in C. elegans.  Forward genetic screens allow for the 

identification of multiple alleles of a gene that have different effects on protein function, 

facilitating exploration of the protein’s role in different molecular processes.  I utilized 

two CaMKII alleles identified separately, one by Dr. L. Rene Garcia at Cal Tech in the 

late 1990s and another by Sydney Brenner in the 1960s, to demonstrate the role of 

CaMKII in regulating male mating behavior under well-fed and food deprivation 

conditions [4,12].  Without the availability of these unique alleles, I would not have 

identified such a thorough circuit that CaMKII uses to regulate behavior.  Such forward 

genetics screens are difficult to perform in more complex organisms.  However, once 

proteins and their potential functions have been identified, techniques exist that allow for 

targeted disruption of protein function.  Thus, research into behavioral regulation and 

environmental response performed on C. elegans provides insights for how behaviors 

are controlled and sensory cues integrated in more complex organisms. 

 

Future directions 

 

 In this work, I identified how individual proteins, namely CaMKII and voltage-

gated K+ channels, function in specific circuits and can be modified to produce changes 
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in behavioral regulation.  However, these are not the only molecules involved in 

controlling male mating behavior, as aspects of the circuits down-regulating cell 

excitability under both well-fed and food deprivation conditions have yet to be 

identified.  While the EAG K+ channel EGL-2 appears to be an effector of 

CaMKII/UNC-43 when food is scarce, the question of what CaMKII phosphorylates to 

reduce sex muscle excitability when males are satiated remains a question.  Additionally, 

CaMKII is a calcium-activated kinase and the calcium sources activating the kinase have 

yet to be definitively established.  Finally, I propose an additional method to identify 

other proteins regulating male mating behavior. 

 

Identifying the direct effector(s) of CaMKII/UNC-43 in the spicule protraction 

circuit 

 

 One of the biggest missing links of CaMKII/UNC-43 regulation of spicule 

protraction is the identity of direct UNC-43 effectors under standard conditions in the 

body-wall and sex muscles that inhibit premature protraction.  A mutagenesis screen was 

performed on worms carrying a gain-of-function unc-43 allele in an attempt to address 

this question.  The unc-43(gf) allele does not induce spicule protraction but impairs 

movement in both sexes and egg-laying in hermaphrodites [53].  Previous work looked 

for down-stream effectors of unc-43 that control movement, as unc-43(gf) worms were 

mutagenized to look for improved locomotion.  These screens identified members of G-

protein signaling networks [130].  In my screen, mutagenized animals also carried the 
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unc-103(0) allele, to sensitize the spicule protraction circuit, since unc-103 is activated 

by unc-43(gf) to inhibit sex-muscle excitability [49].  Mutations were isolated that 

induced spicule protraction but did not affect the unc-43(gf) movement and egg-laying 

phenotypes to avoid identifying the same down-stream molecules as the previously 

performed unc-43(gf) mutant screen.  These mutations were analyzed to identify 

effectors that are only involved in spicule protraction. unc-103(0); unc-43(gf) worms are 

very ill, and I found that it was difficult to obtain many mutagenized lines.  Few of the 

surviving lines displayed spicule protraction and the one line analyzed was a revertant in 

the unc-43 gene that affected splicing. 

 To identify downstream effectors of unc-43 in regulating spicule protraction and 

to avoid the problems presented by working with unc-103(0); unc-43(gf) strains, an unc-

103(0) strain with unc-43(gf) expressed only in the sex muscles via the Punc-103E promoter 

can be used for mutagenesis instead.  Without the systemic effects of the unc-43(gf) 

allele, and since unc-103(0) displays no systemic effects, the survival of mutagenized 

lines should increase.  Mutations that induce spicule protraction in an unc-103(0); sex 

muscle unc-43(gf) background can then be isolated and the molecular nature of the 

lesion identified.  In C. elegans, mapping mutations is carried out utilizing single 

nucleotide polymorphisms (SNPs) that exist between the standard lab strain, N2, and a 

Hawaii isolate, CB4856 [60].  The existence of these SNPs allows for rapid, though 

labor-intensive, mapping of genetic loci.  This procedure has recently been refined to 

make rapid identification of the genetic loci of mutations easier, allowing for a larger 

number of mutations to be identified in a shorter period of time [131].  Thus, if the 
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mutagenesis screen on unc-103(0); unc-43(gf) animals is successful, the molecular 

location of the lesions causing spicule protraction can be identified quickly, greatly 

extending our knowledge of proteins involved in regulating spicule protraction.   

The biggest caveat for using an unc-103(0); sex muscle unc-43(gf) line is that 

unc-43 is also required in the body-wall muscles to inhibit sex muscle contraction.  

Expressing unc-43(gf) in the sex muscles alone might not enable the identification of a 

direct target that is required in the body-wall muscles as well. 

 Another way to do the mutagenesis screen is to use unc-43(gf); egl-2(0) 

hermaphrodites.  Like unc-103, egl-2 is down-stream of unc-43 regulation of sex muscle 

contraction, and removing egl-2 would increase the likelihood of another mutation 

inducing spicule protraction in an unc-43(gf) background [49].  Mutagenized unc-43(gf); 

egl-2(0) lines might have a higher survival rate than unc-43(gf); unc-103(0) lines, since 

egl-2 is not as widely expressed as unc-103 and does not appear to affect as many 

systems [58,63].  For example, unc-103(gf) hermaphrodites display both egg-laying and 

movement defects, while egl-2(gf) hermaphrodites only display egg-laying defects 

[57,132].  Therefore, removing unc-103 might be more detrimental than removing egl-2.  

If mutagenized unc-43(gf); egl-2(0) lines are just as sick as mutagenized unc-43(gf); 

unc-103(0) lines, unc-43(gf) can be limited to sex-muscle expression in egl-2(0) worms.  

However, I favor mutagenesis of unc-103(0); sex muscle unc-43(gf) hermaphrodites 

because removing unc-103 sensitizes the sex muscles to a degree that egl-2 does not, 

since unc-103 plays a more active role under standard conditions inhibiting spicule 

protraction than egl-2. 
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 The possibility exists that CaMKII/unc-43(sy574) males display spontaneous 

spicule protraction due to reduced ability of UNC-43 to phosphorylate itself.  CaMKII 

can be phosphorylated by other CaMKII enzymes, most likely by those that are in the 

same 8 or 12 member complex formed by association of the self-association domains 

[80,81].  Self-phosphorylation allows the kinase to remain active when the initial 

activating Ca2+ signal has been removed, and it also allows the kinase to increase its 

response to repeated influxes of Ca2+ [133].  Thus, while unc-43(sy574) might still be 

able to phosphorylate most substrates, its impaired ability to phosphorylate itself would 

hinder its response to repeated Ca2+ signals.  This would allow the Ca2+ signal unc-43 is 

responsible for reducing the effects of to build up in the cell unopposed, leading to a 

higher level of Ca2+ able to cause the permanent sex-muscle contraction that leads to 

spicule protraction.  However, while this might be the case in unc-43(sy574) mutants, 

UNC-43 still must have direct molecular targets that down-regulate muscle excitability.  

Therefore, the mutagenesis screen to identify down-stream targets is still a worthwhile 

endeavor.  However, the idea that unc-43(sy574) reduces self-phosphorylization raises 

the possibility that the downstream effectors of unc-43 might not be specific to the 

circuit regulating spicule protraction; the system might simply be more sensitive to the 

level of CaMKII phosphorylation. 
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Identifying the Ca2+ sources that activate CaMKII/UNC-43 under well-fed and food 

deprivation conditions 

 

 CaMKII/UNC-43 is activated by Ca2+ bound to calmodulin, raising the question 

of the origins of the Ca2+ source.  In his paper entitled “Sensory perception of food and 

insulin-like signals influence seizure susceptibility,” Todd Gruninger suggests a Ca2+ 

signal initiated by the insulin-like receptor daf-2 and working through phospholipase C-γ 

(PLC-γ) activates UNC-43 and EAG K+ channel/EGL-2 to inhibit sex muscle 

excitability under food deprivation conditions [75].  PLC-γ is downstream of insulin 

receptor activation in mammalian systems and activates CaMKII in neuronal cells [111-

113].  In addition, loss of PLC-γ function inhibits the ability of food deprivation to 

inhibit unc-103(0)-induced spicule protraction [75].  PLC-γ cleaves PIP2 to create the 

second messenger InsP3 that activates calcium-releasing IP3 receptors (IP3Rs) located on 

the endoplasmic reticulum.  It is this Ca2+ that is then hypothesized to activate UNC-43. 

 To test this idea, DAF-2 function can be reduced in spicule protraction mutants 

via RNA interference (RNAi).  RNAi works by reducing the amount of messenger RNA 

of the target gene [8].  Worms can be fed E. coli containing double-stranded RNA of the 

gene to be knocked down.  This allows for time-specific reduction of the gene.  To 

reduce the amount of DAF-2 present in the cell, a mutation in the RNAi pathway has to 

be present in the mutant background, to allow more complete penetration of the daf-2 

RNAi.  Reducing daf-2 function in unc-103(0); unc-43(sy574) and slo-1(lf) males will 

allow me to test if they maintain well-fed levels of spicule protraction under food 
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deprivation conditions.  If so, this would indicate that signaling from the DAF-2 insulin-

like receptor is necessary to activate mechanisms present in these worms to down-

regulate muscle excitability under food deprivation conditions. 

 The calcium source activating CaMKII under well-fed conditions has yet to be 

identified.  One source of calcium could be produced by signaling through the 

muscarinic acetylcholine receptor GAR-3-Gαq pathway.  GAR-3 has been shown to 

sensitize the sex-muscle circuit’s response to the vulva, as males lacking the GAR-3 

receptor have difficulty maintaining proper positioning of their tails over the 

hermaphrodite vulva.  Wild-type GAR-3 responds to the neurotransmitter acetylcholine, 

and the receptor can be activated by the agonist oxotremerine M (Oxo M).  Oxo M 

induces mating-like behavior in males while having no affect on hermaphrodites; this 

phenotype is abolished when the GAR-3 receptor is removed.  The low level of ACh 

signaling that activates GAR-3 is hypothesized to be present in the circuit controlling 

mating in wild-type males and could cause an undesired increase in calcium if not 

controlled properly [61].  CaMKII, as a calcium-sensitive molecule responsible for 

decreasing sex-muscle excitability, could be a means by which GAR-3 signaling is kept 

in check.  To test this hypothesis, signaling from the GAR-3 pathway can be interrupted 

to reduce spicule protraction caused by disrupting the CaMKII gene unc-43.  Double 

mutants consisting of loss-of-function gar-3 and unc-43 alleles can be generated and 

scored for the instance of spontaneous spicule protraction.  Additionally, the timing of 

spicule protraction can also be determined in unc-43(lf); gar-3(lf) males, by scoring 

protraction every hour after a male becomes an adult, to see if unc-43(lf)-induced 
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protraction is delayed.  To further analyze the role of unc-43 in regulating excitability 

generated by GAR-3, the affects of the GAR-3 specific agonist Oxo M on unc-43 loss-

of-function males can be determined.  Disrupting unc-43 function could sensitize the 

muscles to Oxo M.  While signaling from GAR-3 that sensitizes the spicule circuit for 

mating is one possible source of the calcium activating CaMKII under standard 

conditions, many other signaling inputs are present as well.  Therefore, inhibiting GAR-

3 signaling could have a negligible over effect on spicule protraction caused by impaired 

CaMKII function. 

 

Identifying components that can improve mating performance 

 

 By disrupting protein function through mutagenesis, researchers hope to then 

identify what the wild-type protein does by examining behavioral deficiencies in 

mutants.  In this way, ERG-like K+ channel/unc-103 and CaMKII/unc-43 were 

identified as proteins that regulate the timing of sex muscle contraction [12,49].  

However, mutant screens looking for deficiencies in behavior can also identify non-

specific muscle and neuronal proteins necessary for muscle contraction and signal 

transduction.  To avoid this problem and identify more components regulating male 

mating behavior, I propose to identify mutants that are more successful at siring progeny 

than the standard N2 strain. 

 The ability to obtain such mutants is illustrated by the difference in mating ability 

between two C. elegans strains, N2 and CB4856.  When N2 males are given twenty 
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minutes to mate to paralyzed hermaphrodites, 49% (n = 240) are able to sire progeny.  In 

contrast, 74% of CB4856 males are able to sire progeny (n = 270, p value < 0.0001 

compared to N2, Fisher’s Exact Test, see Appendix F), indicating that the CB4856 strain 

mates with a much greater efficiency than N2.  The difference in strain mating has been 

reported elsewhere, as over a period of 6 days CB4856 males have more mates and 

produce more offspring than N2 males [134].  This indicates that the differing ability to 

sire progeny is not a particular phenotype of the N2 and CB4856 lines I have used. 

 Since there naturally exists a possible allele difference between N2 and CB4856, 

I can first map and characterize this mutation.  Many single nucleotide polymorphisms 

exist between the two strains, making mapping easier [60].  In addition, recent 

techniques have been developed to reduce the amount of work and time necessary for 

SNP mapping [131].  Mating can be watched and analyzed to see if there is a particular 

step that CB4856 males are better at, as can muscle response to various acetylcholine 

agonists.  Previous work has indicated that CB4856 males mate more frequently than N2 

males, though there is no difference in the amount of time until the male first contacts 

the hermaphrodite, time until spicule insertion, or number of successful spicule 

insertions [134].  I have data that supports the idea that CB4856 males mate more 

frequently than N2 males, though my data further indicates that CB4856 are more 

persistent in mating than N2 (see Appendix F).  Acetylcholine is the predominant 

neurotransmitter used in the sex muscle circuit, causing contraction of the spicule 

muscles during mating [47].  Acetylcholine has also been proposed to increase the 

sensitivity of the spicule circuit prior to mating, indicating that subtle variations in 
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signaling can affect mating behavior [61].  In this manner, the molecular nature and 

specific behavioral consequences of improved mating can be identified. 

 In additional to utilizing SNP mapping to identify the location of the molecular 

difference resulting in improved mating, previously identified allelic differences 

between N2 and CB4856 can be analyzed for their role in mating behavior.  There exist 

two changes with known consequences in C. elegans.  One is in the plg-1 gene, which 

encodes a glycoprotein that is the major structural component of the copulatory plug.  

The males of some strains of C. elegans are able to place copulatory plugs over the 

hermaphrodite vulva to prevent other males from mating.  CB4856 males are able to 

create plugs, while N2 males are not.  N2 males have a retrotransposon inserted into an 

exon of plg-1, rendering the gene inactive [135].  However, this does not appear to have 

any functional consequences for the mating behavior itself, and therefore it is unlikely 

the mating differences that exist between CB4856 and N2 are a result of plg-1 [135].  

The other allelic difference between the two strains is in the npr-1 gene.  npr-1 encodes a 

G-protein-coupled neuropeptide receptor similar to the mammalian neuropeptide Y 

receptor that is involved in modulating a number of behaviors [136].  The allelic 

difference between the two strains, a valine at amino acid 215 in N2 and a phenylalanine 

at the same position in CB4856, has behavioral consequences.  The 215V N2 allele is 

dominant to the 215F allele, as the 215V receptor has increased activity that promotes 

“social feeding,” which indicates groups of worms feeding together at the edge of a 

bacterial lawn [136].  This increased social behavior is driven by the desire to be in areas 

of lower oxygen concentration and results in reduced resistance to pathogens due to 
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remaining on the pathogen in a group, as opposed to the more solitary N2 animals [137-

139].  Since variation in npr-1 has already been shown to have subtle effects on 

behavior, it is a candidate for the differences between CB4856 and N2 male mating 

success.  Since CB4856 have lower functioning npr-1 receptors and increased ability to 

sire progeny, it would be interesting to determine how reducing the neuropeptide Y-like 

receptor increases mating behavior.  Loss of npr-1 function results in increased social 

behavior, which could in turn promote more frequent mating.  While in the mating assay 

I employ only one male is mated to one hermaphrodite for a period of 20 minutes, 

negating any immediate group component, the males are raised together on plates 

containing E. coli prior to the mating experiment.  When any group of males is isolated 

from potential mates, be it N2 or CB4856, they turn to attempting to mate with one 

another, repeatedly scanning along male cuticles searching for the vulva.  They will even 

attempt to mate with themselves.  During this time, CB4856 males could spend more 

time in contact with one another (and themselves) than N2 males, increasing the activity 

of the male mating circuit and making these animals more likely to mate.  Previous work 

as identified a Gαq-mediated network that up-regulates vulva response in the spicule 

circuit [61].  npr-1 or another unidentified protein could play a role in mediating the 

activity of this network, modulating the male’s drive to mate.  In conclusion, studying 

male mating differences between naturally occurring isolates of C. elegans and 

identifying their underlying causes can give insights into behavioral regulation.  
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Conclusion 

 

 Studying the regulation of the spicule protraction step of C. elegans male mating 

behavior has elucidated important mechanisms by which behavioral control is achieved.  

In particular, responses to the environment can be coordinated through up-regulation of 

specific pathways.  Identifying the molecular nature of these mechanisms allows them to 

be targeted for manipulation to compensate for the loss of other components in the 

circuit.  In addition, given the controversies surrounding some of these proteins studied 

in mammalian systems, C. elegans offers an avenue for insight into their function as well 

as a breadth and depth of investigation that is not always possible in other organisms.  

Future studies of coordinated environmental responses will expand the knowledge of 

how specificity is achieved in behavioral regulation. 
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APPENDIX A 
 

 SUPPLEMENTARY TABLES 
 
 
 
 
Table A-1: Primers 
Primer name Primer sequence 
U43cDNAstart CGCGCGGCCGCGCGCGCGGGTACCATGATGAACGCAAGC

ACCAAGTTT 
U43cDNA3UTR TTTATTTTAAGATTTTTTTGTTGCATTTGTCATCATATC 
fpbl12a CCAAAATCATCAACACAAAGAAGCTATCC 
pbl12ar CAGCAAACTCGAGGCCCGTGGT 
FYFPEAG CGCGCGCGGCCGATGAGTAAAGGAGAAGAACTTTTCACT

GGAG 
YFPRKPN CGCGCGGGTACCTTTGTATAGTTCATCCATGCCATGTGTA

ATC 
Fpbl33ssm ATGATGAACGCAAGCACCAAGTTTAGTGAC 
Pbl33ssmr CGGCCATCACCACTTTGTACAAGAAAGCTG 
Fpbl333utr AAGAACCTTCTTTATGCCTATTTTTCTCTTCGTTTCC 
Rpbl33stop CGTGTTTCAGCTATCCACCACCTTTTTCCG 
attb1aex-3p GGGGACAAGTTTGTACAAAAAAGCAGGCTGGGAACACGC

TAATTACTCGTGTGTGCTAC 
attb2aex-3p GGGGACCACTTTGTACAAGAAAGCTGGGTTGGTGCAAGC

CTGGACAAATTTTGAAAAAG 
attb1lev11prof GGGGACAAGTTTGTACAAAAAAGCAGGCTCACAGCGATG

ATGTGTCATGGCTTCC 
attb2lev11pror GGGGACCACTTTGTACAAGAAAGCTGGGTTTTTGGTAGTT

TGTTGTTGTGTTGAAACACACGGAGTATCGAC 
attb1tntproup GGGGACAAGTTTGTACAAAAAAGCAGGCTCCAAAATTAG

CTCAATTGATCAAATAACTG 
attb2tnt4prodown GGGGACCACTTTGTACAAGAAAGCTGGGTGTTGATTGGTG

AATTGGTTGTAAAAAAAACCCCT 
acr-8ATTB1 GGGGACAAGTTTGTACAAAAAAGCAGGCTATTGGACGAG

GTGGTCCCATTCCCACTAAGT 
acr-8ATTB2 GGGGACCACTTTGTACAAGAAAGCTGGGTGGTATTGTCGG

TTTCATCGCGTGGTGAGGAG 
unc43att2bcsf GGGGACAAGTTTGTACAAAAAAGCAGGCTATGATGAACG

CAAGCACCAAGTTT 
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Table A-1 Continued 
Primer name Primer sequence 
unc43att2bc3r GGGGACCACTTTGTACAAGAAAGCTGGGTTTTATTTTAAG

ATTTTTTTGTTGCATTTGTC 
att1gtl1p GGGGACAAGTTTGTACAAAAAAGCAGGCTTGGCAAAATA

CTTTGGCGCCACAGATGC 
gtl1patt2 GGGGACCACTTTGTACAAGAAAGCTGGGTTCAATTAAAAC

TTTTTGCTCTGAACTTTGG 
fegl2n698gf CTCCGCACTTTTGTATGTTGCAATTTTTGGAC 
Regl2698gf ATGATCATCATGCAGACTCCGAATATCTTCTC 
Fegl2n904 GTTGTTTTCGTCTTGCATTTGACGGGTGT 
Egl2n904r TGTGCTCATTGAAAACCTTTCGATTCAAGTGAAC 
Fegl2rsvs AGGAGCTGGTGGAGTGAFCAAC 
Egl2rsvsr TGCGACAGGCGCCGCGTCAAGT 
fEgl2end CGTCCTCCGGCAAGAACACGGATATGA 
Fdelpasegl2 CAGGTTATCAAGGTTATGAACCTTGGTGG 
Delpasegl2R AAGTCCACGTTTCCCAACCGGCAT 
func43iecor1 GCGCGAATTCATGATGAACGCAAGCACCAAGTTTAGT 
unc43iecor1r GCGCGAATTCTCACTCGTTACCTTTTTCCGAATCGTTG 
sy574ar TTCACTATCGTTCACTTCGATTGCAAGACC 
fsy574a GCATGGCACGAATTTGCTGGAACTCC 
Ff13b123 GACCTGATCTCAACTTCACAGTCGT 
F13B123R GCCCGCCTTGTGTCCAG 
FR09H106 CCAGATTCACGCAAGACAATGG 
R09H106R CAGTCGATTTCCGGCGCGCTTACAATC 
Fc43f96 ATGATGCGGTGCTGCATTGT 
C43f96r CAAACTTCTCGACAGACGGTGAGTT 
FUnc43inact CGGTATTGTTCACAGAAACTTGAAGCCAG 
Unc43inactr TTAGAGTGGCAATAAGCAATCGATTCGAG 
Unc43irev AATCCATGGGACTTTCAAGGCCTGATC 
ForPGBKT7 GAATTCCCGGGGATCCGTCGAC 
fegl2cterm CGCGGAATTCCAACAAATGACATCCAGTACTGTGAGATAT

CA 
egl2cterm2r CGCGCGATCGTCATATCCGTGTTCTTGTCGGAGGAC 
Ftax6 CTCTGGCAATTTCCAAGCTTGCA 
tax6r ACCGATTGATTTTTGTTGCTTTTCCCTTGC 
Nwgpa7f GAAGAGTGGTGCTGCGTAGTCA 
Gpa7nwr GGATTTCTGTGGAATGATGTACCCG 
Fcal4 GTAACTAGAAGACGATCTACGTCTTGG 



 131 

Table A-1 Continued 
Primer name Primer sequence 
GADT7ssmutr GAATTCACTGGCCTCCATGGCCAT 
Cal4r AGTAGTTTCCGCTCCAGCACAT 
FGADT7 GGATCCATCGAGCTCGAGCTGC 
egl2hind3r CGCGAAGCTTTCATATCCGTGTTCTTGTCGGAGGAC 
Fegl2n904 GTTGTTTTCGTCTTGCATTTGACGGGTGT 
Egl2n904r TGTGCTCATTGAAAACCTTTCGATTCAAGTGAAC 
func43pro GTGTGTATGTCTGTGAATTGGCTCTCA 
u43prcfp TTGGCCAATCCCGGGGATCCGGCTAATTGCTGAAGATAGT

GCTGATCTACAGTT 
cfpfu43p ACTATCTTCAGCAATTAGCCGGATCCCCGGGATTGGCCAA

AG 
u54rev GGGCCCGTACGGCCGACTAGTAGG 
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Table A-2: Plasmids 
Plasmid Relevant Contents 
pBL12b UNC-43g cDNA with point mutation 
pBL13 point mutation in pBL12b corrected 
pBL14 YFP:UNC-43g 
pBL33 Gateway RFC A:YFP:UNC-43g 
pBL33-YFP Gateway RFC A:UNC-43g 
pBL33-self 
asso Gateway RFC A:YFP:UNC-43i 
pDG15aex-3 Gateway entry clone containing aex-3 promoter 
pLR22 Gateway entry clone containing lev-11 body-wall muscle promoter 
pLR25 Gateway entry clone containing tnt-4 promoter 
pLR92 Gateway entry clone containing acr-8 promoter 
pLR21 Gateway entry clone containing unc-103E promoter 
pBL70 Paex-3:UNC-43g 
pBL71 Punc-103E:UNC-43g 
pBL69 Plev-11:UNC-43g 
pBL72 Ptnt-4:UNC-43g 
pBL80 Pacr-8:UNC-43g 
pBL68 Plev-11:YFP:UNC-43i 
pBL75 Punc-103E:YFP:UNC-43i 
pLR99 Pacr-8:YFP 
pTG14 Phsp-16:Gateway RFC C.1 
pBL54 Gateway entry clone containing UNC-43g 
pBL58 Phsp-16:UNC-43g 
pBL63 Gateway entry clone containing gtl-1 promoter 
pGW77C Gateway RFC C.1:CFP 
pBL66 Pgtl-1:CFP 
pTG44 Punc-103E:EGL-2(+) 
pBL111 Punc-103E:EGL-2(n693gf) 
pBL109 Punc-103E:EGL-2(n904) 
pBL110 Punc-103E:EGL-2(RSVS) 
pBL108 Punc-103E:EGL-2(lacking aa 891-949) 
pBL122 Punc-103E:EGL-2(lacking aa 9-185) 
pBL81 
 

UNC-43 kinase + inhibitory domains placed 
in yeast expression vector pGBKT7, c-Myc epitope tag 

pBL85 pBL81 with inactive kinase domain by D135N mutation 
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Table A-2 Continued 
Plasmid Relevant contents 
pBL88 UNC-43 kinase domain with D135N mutation 
pBL93 egl-2 c-terminus in yeast expression vector pGADT7 
pBL99 egl-2(+) c-terminus in E. coli expression vector pMal-C2 
pBL114 egl-2(n904) c-terminus in E. coli expression vector pMal-C2 
pBL120 UNC-43g:GST in E. coli expression vector pGEX-3T 
pBL123 UNC-43i:GST in E. coli expression vector pGEX-3T 

 
 



 134 

APPENDIX B 

CaMKII INHIBITS SPC NEURON AND ANAL DEPRESSOR MUSCLE 

SIGNALING 

 

Removing the SPC motor neuron and anal depressor muscle from unc-43 mutants 

reduces spicule protraction 

 

The study of C. elegans allows researchers to remove individual cells or groups 

of cells to determine their function.  This has facilitated identification of the circuit 

controlling spicule protraction [29,47].  In the male sex circuit, spicule protraction is 

controlled by the SPC motor neuron that uses the neurotransmitter acetylcholine to 

signal the protractor muscles to contract.  Attached to the protractor muscles is the anal 

depressor muscle whose function has not yet been elucidated.  However, in cell ablation 

studies where a laser was used to perform microsurgery on individual males and remove 

a cell or groups of cells, the anal depressor was identified as being involved in signaling 

the protractor muscles to contract [12].  When the function of the ERG-like K+ channel 

unc-103 is disrupted with the sy557 allele, both the SPC motor neuron and anal 

depressor muscle have to be ablated to reduce spicule protraction.  Therefore, there is 

signaling originating in both these cells that increases sex muscle excitability unc-103 is 

responsible for controlling.  I wanted to see if signaling from the SPC motor neuron and 

anal depressor could induce excitability that CaMKII/unc-43 was required to reduce.  I 

ablated the SPC neuron and anal depressor separately and together in unc-43(sy574) and 
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unc-43(n1186) males.  I used both alleles since unc-43(sy574) is a partial loss-of-

function and unc-43(n1186) contains an early stop codon, reducing unc-43 function to a 

much greater extent [49,63].  I found that ablating either the SPC neuron or the anal 

depressor in unc-43(sy574) males reduced spicule protraction while ablating them in 

combination had an even great effect (Figure B-1).  In contrast, both the SPC neuron and 

anal depressor had to be removed from unc-43(n1186) males to reduce protraction 

(Figure B-1).  Therefore, unc-43 is required to inhibit excitation signals from both cells.   

 

 

 
Figure B-1. Ablating the SPC motor neuron and anal depressor muscle. Affect of 
ablating cells in the spicule protraction circuit on unc-43 mutants.  x axis is the 
percentage of protraction constitutive (prc) males, y axis is the genotype of the ablated 
males.  The n for each value is indicated next to the left of each bar. 
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APPENDIX C 

HOW UNC-103(SY557) POINT MUTATIONS INFLUENCE SPICULE 

PROTRACTION 

 

unc-103(sy557B) expressed in sex muscles and neurons induces premature spicule 

protraction 

 

The unc-103(sy557) allele of the ERG-like K+ channel results in a significantly 

higher instance of spicule protraction than deleting the unc-103 gene, raising the 

question of how the two point mutations present in unc-103(sy557) affect channel 

function [12].  The fact that unc-103(sy557) induces a higher rate of spicule protraction 

than unc-103(0) indicates that the point mutations result in a channel able to interfere 

with non-unc-103-mediated spicule protraction regulation.  Members of the ERG K+ 

channel family contain six transmembrane domains, the last two of which form the pore 

region.  sy557A changes a histidine to asparagine and is located in the linker region 

between transmembrane domains two and three (Figure C-1).  sy557B changes a 

tryptophan to an arginine in transmembrane domain five and could directly affect the 

open probability of the channel (Figure C-2).  To determine the effect of the mutations 

on channel function, a plasmid containing unc-103 genomic DNA was mutated.  The 

mutated unc-103 genomic DNA was then expressed in sex neurons using the Punc-103F 

promoter and in sex muscles using the Punc-103E promoter [63].  I previously showed that 

expressing wild-type unc-103 genomic DNA in the sex muscles was sufficient to rescue 
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unc-103(0)-induced spicule protraction (See Chapter III) [49].  However, adding either 

sy557 mutation interferes with the ability of sex-muscle unc-103 to rescue spicule 

protraction (Table C-1).  This indicates that both mutations affect channel function in a 

manner that makes it difficult to inhibit spicule protraction.  On the other hand, adding 

unc-103 containing either sy557 point mutation has no effect on spicule protraction, 

similar to adding wild-type unc-103 genomic DNA to neurons (Table C-1) [49].  While 

adding unc-103 genomic DNA containing either sy557 point mutation does not inhibit 

precocious spicule protraction, it does not increase the instance of protraction to levels 

seen in unc-103(sy557) males, either.  This indicates that expressing unc-103 containing 

either mutation in the sex muscles is insufficient to induce high levels of protraction.  

There are two possibilities: either both point mutations expressed on unc-103 in the sex 

muscles are necessary to interfere with non-unc-103-mediated spicule protraction 

regulation, or one point mutation expressed in more than one area is necessary.  To test 

these possibilities, I expressed unc-103 carrying both sy557A and sy557B in the sex 

muscles of unc-103(0) and wild-type males and also sy557B in both the sex muscles and 

neurons of unc-103(0) males.  Since the unc-103(sy557) allele is dominant, I asked if 

expressing unc-103 carrying both mutations in the sex muscles or neurons induces 

protraction in wild-type males.  I found that sex muscle or neuronal unc-103(sy557A+B) 

is unable to induce protraction, indicating that unc-103(sy557) needs to be in more than 

one tissue type to inhibit spicule protraction (Table C-1).  Similarly, I found that sex-

muscle unc-103(sy557A+B) had no affect on unc-103(0)-induced spicule protraction 

(Table C-1).  In contrast, unc-103(sy557B) expressed in both sex muscles and neurons 
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increases spicule protraction to 62%, significantly higher than unc-103(0)-induced 

spicule protraction and similar to unc-103(sy557)-induced protraction (Table C-1).  

Thus, the unc-103(sy557B) point mutation is causing abnormal spicule protraction by 

interfering with cell excitability in both muscle and neurons.  While the unc-

103(sy557A) mutation does interfere with channel function, as sex-muscle unc-

103(sy557A) is unable to rescue unc-103(0)-induced protraction, the unc-103(sy557B) 

mutation results in the dominant-negative aspects of UNC-103(sy557) channel function.  

However, what aspect of cell excitability UNC-103(sy557) is interfering with in both sex 

muscles and neurons has yet to be determined. 

 

 

 
Figure C-1. Location of sy557 mutations in the ERG-like K+ channel UNC-103. 
Diagram of UNC-103 structure.  Black rectangles indicate transmembrane domains.  The 
voltage-sensing transmembrane domain is indicated by the “+” symbol.  Lines between 
rectangles indicate linker regions.  The location of the sy557 mutations is indicated in 
red. The potential cyclic nucleotide binding site is indicated by a black oval.  N = N-
terminal domain, C = C-terminal domain. 
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Table C-1. Effect of sy557 mutations on spicule protraction 
Relevant Genotypea,b % Protraction (n) p valuec 
unc-103(sy557) 75 (40)   
unc-103(0) 26 (53)   
unc-103(0); sex muscle sy557A 22 (45)   
unc-103(0); sex neuron sy557A 25 (40)   
unc-103(0); sex muscle sy557B 9 (33) 0.0567 to unc-103(0) 
unc-103(0); sex neuron sy557B 23 (40)   
unc-103(0); sex muscle + sex 
neuron sy557B 62 (52) 0.0004 to unc-103(0) 
Wild-type sex muscle sy557A+B 0 (51)   
unc-103(0); sex muscle 
sy557A+B 11 (35) 0.1097 to unc-103(0) 
Wild-type sex neuron sy557A+B 0 (37)   
slo-1(lf) egl-2(0) control for sex 
muscle sy557Bd 33 (55)   
slo-1(lf) egl-2(0); sex muscle 
sy557B 72 (89) <0.0001 to control 
slo-1(lf) egl-2(0) control for sex 
neuron sy557B 39 (31)   
slo-1(lf) egl-2(0); sex neuron 
sy557B 32 (47) 0.6288 to control 
slo-1(lf) egl-2(0) control for sex 
muscle + sex neuron sy557B 36 (83)   
slo-1(lf) egl-2(0); sex muscle + 
sex neuron sy557B 81 (32) <0.0001 to control 
unc-103(0); slo-1(lf) egl-2(0) 79 (42)  
aAll strains contain him-5(1490)   
bAll strains except unc-103(sy557) contain pha-1(e2123) 
cFisher's Exact Test   
dslo-1(lf) egl-2(0) controls are siblings of males expressing the transgene 
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unc-103(sy557B) expressed in sex muscles induces protraction in slo-1(lf) egl-2(0) 

males 

 

In addition to the effects of unc-103(sy557) on wild-type and unc-103(0) males, I 

also looked at unc-103(sy557B) interference with slo-1 and egl-2 K+ channels.  All three 

K+ channels are involved in reducing male sex-muscle excitability, and removing the 

function of all three results in a 79% rate of spicule protraction (n = 42) (Table C-1).  

While egl-2 appears to only be active under food deprivation conditions, both slo-1 and 

unc-103 are necessary to inhibit premature contractions when food is present (see 

Chapters III and V) [12,49].  However, they appear to work together in some manner, as 

an unc-103(0); slo-1(lf) double mutant does not show an additive affect of the two single 

mutants (see Chapter V).  To further explore a possible interaction between the two K+ 

channels, I expressed unc-103(sy557B) in the sex muscles and neurons of slo-1(lf) egl-

2(0) males.  I found that expressing unc-103(sy557B) in the sex neurons has no affect on 

spicule protraction, but expressing unc-103(sy557B) in the sex muscles or in both the sex 

muscles and neurons increases the rate of protraction from to 72% and 81%, respectively 

(Table C-1).  This indicates that sex-muscle unc-103(sy557B) interferes with 

mechanisms able to compensate for the loss of slo-1 function.  In addition, the triple 

mutant unc-103(0); slo-1(lf) egl-2(0) displays a similar rate of spicule protraction, 

indicating that sex-muscle expression of unc-103(sy557B) is acting in a dominant-

negative fashion to disrupt unc-103 channel function.  In unc-103(0) males, unc-

103(sy557B) has to be expressed in sex muscles and neurons to induce unc-103(sy557) 
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levels of spicule protraction.  In contrast, unc-103(sy557B) only needs to be expressed in 

the sex muscles of slo-1(lf) egl-2(0) males to greatly increase spicule protraction, and 

expressing it additionally in the sex neurons does not increase the instance of the mutant 

phenotype further.  Therefore, slo-1 and/or egl-2 can act as a buffer for unc-

103(sy557B)-induced protraction in the sex muscles, and needs properly functioning 

neurons to do so.  I favor a model in which slo-1 is acting in the sex muscles to 

compensate for disrupted unc-103 function due to the fact that slo-1 is active under well-

fed conditions and egl-2 is not. 
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APPENDIX D 

PCA AND PCB NEURONS REGULATE MALE POSITIONING AT THE 

VULVA 

 

PCA and PCB neurons  

 I examined the role of the post cloaca sensilla (p.c.s.) PCA and PCB neurons in 

regulating male mating behavior.  The PCA and PCB consist of left/right pairs, their 

neuronal bodies are located in the male tail, and they send processes just posterior to the 

cloaca opening [5].  They are connected to the spicule protractor muscles and the PCB 

connects to the anal depressor muscle via gap junctions; the protractors induce spicule 

protraction while the anal depressor has no know function (Figure D-1) (Male Wiring 

Project, http://worms.aecom.yu.edu/pages/male_wiring_project.htm) [29].  In addition, 

they synapse the hook sensillum that send processes just anterior to the cloaca opening 

and PCB synapses the SPC motor neurons that control spicule insertion (Figure D-1) 

[29].  Both the p.c.s. neurons and hook sensillum are involved in the vulva location step 

of male mating behavior, as removing these neurons from males interferes with their 

ability to maintain position at the vulva and locate the vulva, respectively [29].  It has 

also been reported that the hook sensillum and p.c.s. neurons induce the spicule prodding 

behavior necessary for the spicules to penetrate the tightly closed vulva [47].  Katharine 

Liu reported that while ablating any two of the three pairs of p.c.s. neurons (PCC is the 

third neuron pair) interfered with a male’s ability to maintain position at the vulva, 

ablating the neurons individually resulted in no observed defect [29].  However, she did 
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not closely monitor how the males behaved at the vulva and it is unlikely that in an 

animal with so few neurons three pairs would have identical overlapping functions.  I 

looked at the effect of individually removing the PCA and PCB neurons on the male’s 

ability to maintain their position at the vulva. 

 

 

 

Figure D-1. Connectivity between neurons and muscles in the male tail.  Diagram of 
male tail.  Neurons are indicated by green, muscles by red, and the spicule is gray.  
Connectivity between neurons and muscles is indicated in green.  Connectivity between 
neurons is indicated in blue. 
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was analyzed in three ways: average time spent at the vulva per stop, percentage of time 

spent at the vulva, and the number of times a male left the vulva.  The first two tests 

looked at how long a male is spending at the vulva.  To mate successfully, a male needs 

to stay at the vulva until spicule insertion is obtained, so sperm can be transferred.  The 

less amount of time a male spends at the vulva, the less likely he is going to be 

successful in siring progeny.  The third step looked at the number of times a male left the 

vulva while in contact with a hermaphrodite.  In two tests, average time per vulva stop 

and percentage of time spent at the vulva compared to total time spent in contact with 

the hermaphrodite, both PCA and PCB ablated males underperformed their wild-type 

counterparts (Figure D-2A-B).  Thus, both neuron pairs contribute to a male’s ability to 

maintain position at the vulva, and removing even one impairs mating ability.  In 

contrast, in the vulva leaving assay, males lacking PCB but not PCA leave the vulva 

more the wild-type, indicating that their interest in maintaining their position at the vulva 

is reduced (Figure D-2C).  Thus, while both neurons are required to maintain vulva 

position, PCB plays an additional role in keeping the males at the vulva. 
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Figure D-2. Ablated male ability to maintain position at vulva.  (A) Average time per 
stop at the vulva.  The spots represent the average time one male spent at the vulva per 
stop.  x axis indicates the cell ablated, the y axis is in seconds.  (B) Percentage of time in 
contact with a hermaphrodite that is spent at the vulva.  The spots represent one male 
each.  x axis indicates the cell ablated, the y axis indicates the percentage of time spent at 
the vulva.  (C) Vulva leaving assay.  The spots represent the number of times an 
individual male left the vulva.  x axis indicates the cell ablated, the y axis indicates the 
number of times a male left the vulva.  For all graphs, Control n = 16, PCA n = 17, PCB 
n = 12.  The p value was calculated using the Mann-Whitney test. 

Control PCB PCA
0

20

40

60

80

100

Cell ablated

%
o

f
ti
m

e
s
p

e
n

t
a
t

v
u

lv
a

p value = 0.08

p value < 0.0001

p value = 0.0011A B

Control PCB PCA
0

25

50

75

100

125

150

175

Cell ablated

A
v

e
ra

g
e

ti
m

e
a
t

v
u

lv
a

(s
e
c
)

p value = 0.2

p value = 0.0159

p value = 0.0148

C

Control PCA PCB
0

10

20

30

40

Cell ablated

#
o

f
ti

m
e

s
m

a
le

le
ft

v
u

lv
a p value = 0.03

p value = 0.02

p value = 0.9



 146 

APPENDIX E 

INTERACTIONS BETWEEN MUSCLE REGULATORY PROTEINS AND 

CaMKII/UNC-43 

 

A tropomyosin mutation that inhibits unc-103(lf)-induced spicule protraction does 

not affect unc-43(sy574)-induced spicule protraction under standard conditions 

 

Previously, I identified CaMKII/unc-43 and ERG-like K+ channel/unc-103 

function in the muscle as necessary to suppress premature spicule protraction (see 

Chapter III) [49].  In addition, unc-43 works parallel to unc-103 in suppressing 

premature sex muscle contraction.  To determine the role of unc-43 in the muscle in 

comparison to unc-103, I looked at the interaction of the unc-43 mutant sy574 with a 

loss-of-function in tropomyosin/lev-11.  Tropomyosin is a muscle regulatory protein that 

runs along the length of the actin fiber and prevents actin-myosin interaction, thereby 

inhibiting muscle contraction [10,140,141].  A loss-of-function mutation in lev-11, rg1, 

was identified in a screen looking for suppressors of unc-103(sy557)-induced spicule 

protraction [28].  Since lev-11(rg1) suppresses unc-103(sy557)-induced spicule 

protraction, I hypothesized that it would not affect protraction in unc-43(sy574) males.  I 

made a lev-11(rg1); unc-43(sy574) double mutant and found that lev-11(rg1) as no 

effect on unc-43(sy574)-induced spicule protraction (Table E-1).  Thus, unc-43 and unc-

103 are functioning in separate pathways to suppress sex muscle excitability, and those 

pathways are separate in the way they regulate muscle regulatory proteins.   
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Table E-1. Tropomyosin/lev-11 mutant interaction with unc-43(sy574) 
Genotypea % Protracted (n) p Valueb 
Wild-type 12 (106)   
tropomyosin/lev-11(rg1) 0 (26)   
ERG/unc-103(sy557) 82 (43) <0.0001 to wt 
lev-11(rg1); unc-103(sy557) 17 (126) <0.0001 to unc-103(sy557) 
CaMKII/unc-43(sy574) 48 (79)   
lev-11(rg1); unc-43(sy574) 56 (54)   
aStrains contain him-5(e1490)  
bFisher’s Exact Test   

 

 

A mutation in tropomyosin affects unc-43(sy574) differently under varying 

temperatures 

Temperature differences can affect protein folding and, as a consequence, mutant 

phenotypes.  For example, animals carrying the temperature sensitive allele pha-

1(e2123ts) appear normal at 15°C, but are unable to survive at 20°C, because the pha-

1(e2123ts) protein created at this temperature is unable to perform its role in pharyngeal 

development [54].  The tropomyosin/lev-11(rg1) allele also appears to display 

temperature-sensitive effects.  This allele causes a point mutation near a troponin T 

(TNT) binding site in tropomyosin; as TNT is a regulatory protein, mutating this site 

presumably interferes with tropomyosin regulation [11,28,66].  At 20°C, lev-11(rg1) is 

able to suppress unc-103(0)- but not unc-43(sy574)-induced spicule protraction.  I 

looked at the ability of lev-11(rg1) to inhibit the unc-43(sy574) phenotype at 15°C and 
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25°C.  Interestingly, lev-11(rg1) inhibits unc-43(sy574)-induced protraction at 25°C and 

exacerbates the unc-43(sy574) phenotype at 15°C, while changing temperatures has the 

opposite effect on the unc-43(sy574) allele alone (Table E-2, Figure E-1).  This suggests 

that the lev-11(rg1) allele is able to interfere with unc-43 control of muscle excitability 

under different conditions.  Under standard conditions, the regulatory protein binding 

site mutated in the lev-11(rg1) allele plays no role in unc-43-mediated regulation of 

muscle contraction.  However, under stressful conditions such as high or low 

temperatures, this regulatory site becomes important in the unc-43 pathway that 

mediates muscle excitability.  lev-11(rg1) is able to suppress both unc-43(sy574)- and 

unc-103(sy557)-induced spicule protraction phenotype at 25°C (Table E-2).  Therefore, 

while this regulatory site in tropomyosin is only important for unc-103-mediated sex 

muscle excitability at 20°C, it plays a role for both unc-103 and unc-43 at different 

temperatures. 

 

 

Table E-2. Temperature Affects Penetrance of lev-11(rg1); unc-43(sy574) 
Phenotype 
  Temperature (C)  
Genotypea 15 (n) 20 (n) 25 (n) 
Wild-type 3% (36) 0% (40) 8% (48) 
unc-43(sy574) 43% (51) 48% (79) 60% (55) 
lev-11(rg1); unc-43(sy574) 73% (48) 56% (54) 16% (95) 
lev-11(rg1); unc-103(sy557) N.D.b 18% (76) 15% (27) 
aStrains contain him-5(e1490)    
bNot Done    
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Figure E-1. Temperature effects on lev-11(rg1); unc-43(sy574). Graph indicates the 
percentage of males that protracted their spicules at a given temperature.  x axis is the 
temperature (C), y axis is the percentage of males protracting their spicules.  ** p value 
< 0.005, Fisher’s Exact Test. *** p value < 0.0005, Fisher’s Exact Test. n values are the 
same as in Table E-2. 
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Tropomyosin is regulated by the three-subunit troponin complex.  Troponin T 
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11(rg1) allele does not affect unc-43(sy574)-induced spicule protraction at 20°C, 

tropomyosin and its associated troponin complexes are ubiquitous muscle regulatory 

proteins that are likely downstream of unc-43’s regulation of spicule protraction.  C. 
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separately from unc-43, it is likely that they have different TNT proteins as downstream 

targets.  I performed RNA interference (RNAi) experiments to knockdown the function 

of the different TNT genes in unc-43(sy574) males.  unc-43(sy574) males were selected 

as L4s and allowed to develop overnight in liquid containing RNAi targeted to the 

different TNT genes.  I found that reducing the amount of tnt-1 and tnt-3 affect unc-

43(sy574)-induced spicule protraction (Table E-3) [28].  Thus, in contrast to unc-103, 

unc-43 affects muscle regulation through tnt-1 and tnt-3. 

 

 

Table E-3. Affect of TNT RNAi on unc-43(sy574) 
Phenotype 
RNAi % Protraction n p valuea 
none 59% 27   
tnt-1 20% 20 0.0089 
tnt-2 37% 30 0.1144 
tnt-3 17% 36 0.0011 
tnt-4 39% 18 0.2307 
aFisher's Exact Test   
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APPENDIX F 

MATING VARIABILITY BETWEEN C. ELEGANS STRAINS 

 

 N2, the C. elegans strain I used for my studies, does not display an especially 

impressive ability to sire progeny.  When virgin one-day-old males are given 20 min 

with a paralyzed hermaphrodite, 50% are able to sire at least one offspring (n = 30).  

While watching mating behavior, I and others have noticed that some males immediately 

perform the mating steps while others never seem interested in the hermaphrodite.  In an 

attempt to analyze if there is inherent variability in N2 mating, I looked at the ability of 

individual males to mate repeatedly over a period of two days.  Individual males were 

isolated as L4s and allowed to develop into adults overnight.  In the morning, each virgin 

one-day-old male was mated with a two-day-old paralyzed unc-64(lf) hermaphrodite for 

20 min, given 40 min to rest, and mated again with a different paralyzed hermaphrodite.  

This was repeated until each male had mated 5 times on the first day, and 5 times on the 

second day, for a total of 30 males.  The males were given a 40 min rest period based on 

data that says males undergo a quiescent period of approximately 20 min after each 

successful mating before they are interested in mating again (Pinky Mehta and L. Rene 

Garcia, unpublished observation).  6 of the males either displayed permanent spicule 

protraction after a few mating attempts or committed suicide by crawling up the side of 

the plates and desiccating; these males were removed from the final numbers.  I found 

there exists a great deal of variability from male to male in the N2 population (Figure F-

1).  Out of ten tries, males mated anywhere from 0 to 9 times, with the most males 
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mating 5 times.  The virgin adult males chosen for this study all appeared 

morphologically and behaviorally normal, and the bacteria lawn on which mating 

occurred was uniform in size, so these factors are not contributing to the variability.  

Unseen morphological differences could account for the variability, as could differences 

at the cellular and molecular level. 

 

 

 
Figure F-1. Mating success. Number of males able to sire at least one progeny a certain 
number of times. x-axis is the number of times a male sired progeny, and the y-axis is the 
number of males that sired at least one progeny. n = 27 for CB4856, n = 24 for N2. 
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had with N2, where 30 CB4856 males were given 10 chances to sire progeny over a 

period of 2 days.  3 males committed suicide and were removed from the final analysis.  

I found that a greater percentage of matings occurred overall as compared to N2 (75% to 

49%, Figure F-2), and variability was decreased, as most CB4856 males mated 6 to 10 

times, with only 2 males mating less than 6 times (Figure F-1).  In addition, for most 

individual attempts, CB4856 showed improved mating ability (Figure F-3).  One 

difference between the N2 and CB4856 strains is that the N2 strain carried a mutation, 

him-5(e1490), to increase the instance of males in the population, and CB4856 did not.  

However, I do not believe the him-5(1490) accounts for the decreased mating 

performance seen in N2 males.  First off, him-5 affects chromosomal nondisjunction, not 

behavior.  Secondly, another lab that reported mating differences in N2 and CB4856 

strains did not use the him-5(1490) mutation, and instead used wild-type N2 males [134].  

The mating differences between the N2 and CB4856 strains provides an opportunity to 

analyze the molecular and cellular controls of mating. 

 



 154 

 
Figure F-2. Male potency. Percentage of males capable of siring at least one progeny 
for CB4856 or N2 males. x-axis is the genotype, and the y-axis is the percentage of 
males that sired at least one progeny. n = 270 for CB4856, n = 240 for N2. p value < 
0.0001, Fisher’s Exact Test. 
 
 
 
 

 
Figure F-3. Male potency per attempt. Percentage of males capable of siring at least 
one progeny per individual mating attempt. x-axis is the attempt, and the y-axis is the 
percentage of males that sired at least one progeny. n = 27 for CB4856, n = 24 for N2. 
Attempts 2, 3, 8, and 10 have p values < 0.05, Fisher’s Exact Test. 
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