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ABSTRACT 

 

An Investigation of the Complex Motions Inherent to Machining  

Systems via a Discontinuous Systems Theory Approach. (May 2009) 

Brandon Christopher Gegg, B.S., Southern Illinois University at Edwardsville;  

M.S. Southern Illinois University at Edwardsville 

Chair of Advisory Committee: Dr. Steve C. Suh 

 

The manufacturing process has been a heavily studied area over the past century.  The 

study completed herein has established a foundation for the future of manufacturing 

research.  The next step of this industry is to become proficient at the micro and nano 

scale levels of manufacturing.  In order to accomplish this goal, the modeling of 

machining system needs to be completely understood throughout the entire process.  In 

effort to attack this problem, this study will focus on the boundaries present in 

machining systems; and will define and interpret the associated phenomena.   

This particular focus is selected since nearly all manufacturing related studies 

concentrate on continuous processes; which by definition considers only one particular 

operation.  There is a need to understand the phenomena corresponding to interactions of 

multiple processes of manufacturing systems.  As a means to this end, the nonlinear 

phenomena associated in the continuous domains of machining systems will be modeled 

as linear to ensure the boundary interactions are clearly observed.  Interference of 

additional nonlinearities is not the focus of this research.  In this dissertation, the 

mechanical model for a widely accepted machine-tool system is presented.   
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The state and continuous domains are defined with respect to the boundaries in 

this system (contact and frictional force acting at the point of tool and work-piece 

contact).  The switching sets defining plane boundaries for the continuous systems of 

this machine-tool will be defined and studied herein.  The forces and force products, at 

the point of switching from one continuous system to another, govern the pass-ability of 

the machine-tool through the respective boundary.  The forces and force product 

components at the switching points are derived according to discontinuous systems 

theory Luo [1].   Mapping definitions and notations are developed through the switching 

sets for each of the boundaries.   

A mapping structure and notation for periodic interrupted cutting, non-cutting 

and chip seizure motions are defined.   The interruption of the chip flow for a machining 

system will be investigated through a range of system parameters.  The prediction of 

interrupted periodic cutting, non-cutting and chip seizure motion will be completed via 

closed form solutions for this machine-tool.  The state of this system is defined to utilize 

the theory of Luo [1].  This is necessary to properly handle the frictional force boundary 

at the chip/tool interface, the onset of cutting boundary and the contact boundary 

between the tool and work-pieces.   

The predictions by this method will be verified via numerical simulation and 

comparison to existing research.  A goal of this research is to illustrate the effects of the 

dynamical systems interacting at the frictional force (chip/tool) boundary and the chip 

onset of growth and vanishing boundary.  The parameter space for this machine-tool 

model is studied through numerical and analytical predictions, which provide limits on 

the existence of interrupted periodic cutting, non-cutting and chip seizure motions.    
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NOMENCLATURE 

 

State and Coordinate Definitions: 

Xe  global vector definition X; 

Ye  global vector definition Y; 

x  state vector in the Xe -direction; 

y  state vector in the Ye -direction; 

r  vector definition of the displacement states ( , )x y ; 

d dtr    vector definition of the velocity states ( , )x y  ; 
2 2d dtr   vector definition of the acceleration states ( , )x y  ; 

s  state vector for s.d.o.f.; 
x  state vector in the Xe -direction; 

y  state vector in the Ye -direction; 

x  state vector in the x -direction; 
y  state vector in the y -direction; 
t  time variable; 
t  normalized time variable with respect to the eccentric excitation frequency ; 

st    time variable for s.d.o.f.; 

s    displacement measure for s.d.o.f.; 
s    velocity measure for s.d.o.f.; 
s    acceleration measure for s.d.o.f.; 
x  displacement measure in the Xe -direction from the equilibrium ( , )eq eqX Y ; 

y  displacement measure in the Ye -direction from the equilibrium ( , )eq eqX Y ; 

x  velocity measure in the Xe -direction; 

y  velocity measure in the Ye -direction; 

x  acceleration measure in the Xe -direction; 

y  acceleration measure in the Ye -direction; 

x  normalized displacement measure in the Xe -direction; 

y  normalized displacement measure state in the Ye -direction; 

x  normalized velocity measure state in the Xe -direction; 

y  normalized velocity measure state in the Ye -direction; 

x  normalized acceleration measure state in the Xe -direction; 

y  normalized acceleration measure state in the Ye -direction; 

( , )x y   displacement normal and parallel to the tool-rake surface, respectively; 
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( , )x y    velocity normal and parallel to the tool-rake surface, respectively; 

( , )x y    acceleration normal and parallel to the tool-rake surface, respectively; 

0y  initial y -direction measure at the point of switching on the friction boundary; 

tx  second hand notation for the displacement measure x ; 

ty  second hand notation for the displacement measure y ; 

tx  second hand notation for the displacement measure x ; 

ty  second hand notation for the displacement measure y ; 

  coordinate transformation from the ( , )x y   system to the ( , )x y  system; 

 ,M x y    cutting process Xe -direction vector component; 

 ,N x y    cutting process Ye -direction vector component. 

 
Dynamic and Geometry Parameters: 

chm  mass of the chip; 

em  equivalent mass of eccentricity; 

eqm  equivalent mass of a tool-piece and support structure; 

sm    mass of single degree of freedom oscillator (s.d.o.f.); 

 0Q    forcing amplitude of s.d.o.f.; 

sA    normalized total force amplitude for s.d.o.f.; 

eA  eccentric excitation force amplitude; 

FA  normalized eccentric excitation force amplitude; 

0A  eccentricity excitation amplitude for chip adhesion (seizure) motion in the x -

direction; 

0B  external force rate time-amplitude for chip adhesion (seizure) motion in the x -

direction; 
( )pF t  eccentric excitation periodical force; 

  eccentric excitation frequency; 

s    excitation frequency of s.d.o.f.; 

sk    stiffness coefficient for s.d.o.f.; 

sc    normalized stiffness coefficient for s.d.o.f.; 

jc  jth domain normalized stiffness coefficient for s.d.o.f.; 

xk  equivalent linear stiffness coefficient in the x-direction of the tool-piece; 

yk  equivalent linear stiffness coefficient in the y-direction of the tool-piece; 

1k  equivalent linear stiffness coefficient in the y -direction of the work-piece; 

2k  equivalent linear stiffness coefficient in the x -direction of the chip; 

ijK  normalized stiffness component in the ij-plane; 
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 i
jkK  re-normalized stiffness component in the jk-plane in the ith domain; 

  natural frequency for chip adhesion (seizure) motion in the x -direction; 

d  damped natural frequency for chip adhesion (seizure) motion in the x -direction; 

sr    damping coefficient for s.d.o.f.; 

d   damping coefficient for chip adhesion (seizure) motion in the x -direction; 

sd   normalized damping coefficient for s.d.o.f.; 

jd  jth domain normalized damping coef. for s.d.o.f.; 

xd  equivalent linear viscous damping coef. in the x-direction of the tool-piece; 

yd  equivalent linear viscous damping coef. in the y-direction of the tool-piece; 

1d  equivalent linear viscous damping coef. in the y -direction of the work-piece; 

2d  equivalent linear viscous damping coef. in the x -direction of the chip; 

ijD  normalized damping comp. in the ij-plane; 
 i
jkD  re-normalized damping comp. in the jk-plane in the ith domain; 

d  normalized damping coef. for chip adhesion (seizure) motion in the x -direction; 

ks  friction coefficient for s.d.o.f.; 

v   belt velocity for s.d.o.f.; 
z  relative velocity of the chip and tool-piece rake equilibrium measure; 
V  chip velocity ( )V  ; 
V  normalized chip velocity; 
   tool-piece rake angle measure from a vertical reference line; 
  tool-piece flank angle measure from a horizontal reference line; 
g    gravitational acceleration; 

OA  comp. measure from point O to A; 

OB  comp. measure from point O to B; 

1X  comp. measure from point O to A; 

1Y  comp. measure from point O to B; 

1  distance boundary 1 offset; 

2  distance boundary 2 offset; 

  angle of applied eccentric/excitation force; 

1D  boundary 1 measure for contact with work-piece; 

2D  boundary 2 measure for cutting onset; 
*

1x  work-piece contact point in the Xe -direction; 
*
1y  work-piece contact point in the Ye -direction; 
*
2x  cutting process contact point in the Xe -direction; 
*
2y  cutting process contact point in the Ye -direction; 
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cL  chip contact length; 

re  coefficient of restitution for tool and work-piece impact. 

Force Parameters: 

jb  frictional force acting on sm ; 

 fsF s   frictional force for s.d.o.f.; 

fsF  normalized frictional force acting on sm ; 

NsF    normal force for s.d.o.f.; 

sF    normalized total force acting on sm ; 

jk

T
n  transposed normal direction vector for the boundary jk  for s.d.o.f.; 

j  jth domain reference for the s.d.o.f.; 

 ,j sF ts   jth domain frictional boundary force or normalized total force for s.d.o.f. ; 
   j
j tF   force vector field of the jth domain parameters in the jth domain for s.d.o.f.; 

 jF t   normal comp. of jth domain vector field with respect to the friction boundary; 

 1 ,F x y   tool-piece and work-piece contact force vector; 

 2 ,F x y   cutting process force vector; 

 1 ,nF x y   tool-piece and work-piece contact force amplitude; 

 2 ,nF x y   cutting process force amplitude; 

1xF  tool-piece and work-piece contact force, x component; 

2xF  cutting process force, x component; 

1yF  tool-piece and work-piece contact force, y component; 

2 yF  cutting process force, y component; 

xA  normalized eccentric excitation amplitude in the Xe -direction;  
( )i
xA  re-normalized ith domain eccentric excitation amplitude in the Xe -direction; 

yA  normalized eccentric excitation amplitude in the Ye -direction; 
( )i
yA  re-normalized ith domain eccentric excitation amplitude in the Ye -direction; 

xC  normalized equilibrium forces in the Xe -direction; 
( )i
xC  re-normalized ith domain equilibrium forces in the Xe -direction; 

yC  normalized equilibrium forces in the Ye -direction; 
( )i
yC  re-normalized ith domain equilibrium forces in the Ye -direction; 

0C  external equilibrium force constant for chip adhesion motion in the x -direction. 

 
Boundary References and Notations: 

0C  reference for continuity of the zero derivative; 
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1C  reference for continuity of the first derivative; 

1D  boundary 1 measure vector field 1 1( , )D D ; 

2D  boundary 2 measure vector field 2 2( , )D D ; 

3D  boundary 3 measure vector field 3 3( , )D D ; 

4D  boundary 4 measure vector field 4 4( , )D D ; 

1D  boundary 1 measure force vector field    
11 1( , , )i

DD F tD ; 

2D  boundary 2 measure force vector field    
22 2( , , )i

DD F tD ; 

3D  boundary 3 measure force vector field    
33 3( , , )i

DD F tD ; 

4D  boundary 4 measure force vector field    
44 4( , , )i

DD F tD ; 

 1 ,x y   domain 1 ref., tool-piece vib. and no contact with the work-piece; 

 2 , , ,x y x y     domain 2 ref., tool-piece vib. and no cutting contact with the work-piece; 

 3 , , ,x y x y     domain 3 ref., tool-piece vib. and cutting contact with the work-piece 

( )y V ; 

 4 , , ,x y x y     domain 4 ref., tool-piece vib. and cutting contact with the work-piece 

( )y V ; 
   
1 1,
i

DF tD   total ith domain force comp. acting on eqm  in the y -direction, w.r.t. 1D ; 
   

2 2 ,i
DF tD   total ith domain force comp. acting on eqm  in the x -direction, w.r.t. 2D ; 
   
3 3,i

DF tD   total ith domain force comp. acting on eqm  in the y -direction, w.r.t. 3D ; 
   2 , , ,yF tx y     total domain 2 force comp. acting on eqm  in the y -direction, w.r.t. 3D ; 
   4 , , ,yF tx y     total domain 4 force comp. acting on eqm  in the y -direction, w.r.t. 3D ; 
   

4 4 ,i
DF tD   total ith domain force comp. acting on eqm  in the y -direction, w.r.t. 4D ; 

 12 , , ,x y x y     boundary 1 defined by  1 , 0D x y  ; 

 24 , , ,x y x y     boundary 2 or 3 defined by  2 , 0D x y   or  3 , 0D x y   , resp.; 

 32 , , ,x y x y     boundary 2 or 4 defined by  2 , 0D x y   or  4 , 0D x y   , resp.; 

 34 , , ,x y x y     boundary 3 defined by  3 , 0D x y  ; 

j

i
D  switching set/plane near boundary jD  in domain i ; 
i
y   switching set/plane near boundary 3D  in domain i ; 

( )jk iP  mapping beg. on boundary jD  ending on bound. kD  and traversing domain i ; 

ijP  periodic motion traversing domain j  then i  with period-one motion. 

 
Closed Form Solution Parameters: 

iC  homogeneous coefficients for a two-degree-of-freedom linear oscillator; 
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ijr  mode shape for a two-degree-of-freedom linear oscillator; 
( )j
i  ith eigenvalue in the jth domain for a two-degree-of-freedom linear oscillator; 

PxA  particular solution amplitude in the x-direction (cosine term);  

PyA  particular solution amplitude in the y-direction (cosine term);  

PxB  particular solution amplitude in the x-direction (sine term);  

PyB  particular solution amplitude in the y-direction (sine term);  

PxC  particular solution amplitude in the x-direction (constant term);  

PyC  particular solution amplitude in the y-direction (constant term);  

i  real valued component of ith eigenvalue;  

i  imaginary valued component of ith eigenvalue;  

iC  homogeneous coefficient for chip adhesion motion in the x -direction; 

5A  particular solution amplitude in the x -direction (cosine term); for chip adhesion 

(seizure); 

5B  particular solution amplitude in the x -direction (sine term); for chip adhesion 

(seizure); 

5C  particular solution amplitude in the x -direction (time rate term); for chip 

adhesion (seizure); 

5D  particular solution amplitude in the x -direction (constant term); for chip 

adhesion (seizure). 
 
Acronyms: 
U.D. Underlying Dynamics - natural characteristics associated with a physical system; 
S.S.C Semi-stable characteristics  - periodic motion with undesirable traits; 
S.C. Stable characteristics – periodic motion with desirable traits; 
U.C. Unstable characteristics – no discernable quantitative periodic traits; 
Qual.D.  Qualitative definition – non-numeric description; 
Quan.D.  Quantitative definition – numeric description; 
H.S.O. High speed operation – special material design for conditions outside of 

traditional operating speeds;  
H.Q.M.S.  High quality machined surface – surface roughness value remaining less than 

traditional expectations; 
I.R.P. Increased rate of production – any increase due to advances in machine design; 
M.O.C.  Minimize operating costs – any reduction as a result of advances in machine 

design; 
I.C. Interrupted cutting – any motions attributed to reduction of rate or halt of cutting; 
C.M. Common mapping – any motion traditionally observed in the machining systems. 
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CHAPTER I 

INTRODUCTION: THE MACHINING PROBLEM 

 

 

The manufacturing process has been scrutinized in nearly all aspects in the past several 

decades.  Among these studies are those which focus on various approaches to the 

manufacturing process, such as mechanics of materials, energy and dynamics techniques.   

Among the earliest studies of manufacturing systems was Merchant in 1945 [2,3].  

Merchant developed theory predicting the shear angle solution from the principle of 

minimum work.  From a materials point of view, Oxley [4] studied the mechanics of 

metal cutting by examining the shear plane solutions with ideal slip-line theory Childs 

[5].   

The stick-slip motion has been termed in machining studies as early as 1969 

Rubenstien and Storie [6].  The stick-slip phenomenon is predominantly observed in 

dynamical systems and contact material flow problems.  In 1979, plasticity theory was 

applied to metal cutting in theory Shouchry [7].  A rounded tool edge was studied for the 

stagnation depths of material flow in Basuray [8].  The stagnation point (or neutral angle, 

defining the source of work-piece material flow) was derived by equating the power of 

the ploughing tool and cutting forces.   

 

____________ 
This dissertation follows the style of the Transactions of the ASME Journal of 
Manufacturing Science and Engineering.
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The boundary conditions for a comparison between seizure and sliding motions 

of a chip based on the seized area to real contact area ratio was studied by Wright et. al. 

[9].  The study shows the sticking region of the chip on the tool rake surface is 

characterized by a constant shear stress at the chip/tool interface.  The fundamental 

classification of chip structures in past research and a current model was developed to 

predict and discuss the stability of a certain type of chip formation.  The stability of a 

chip structure is mainly contributed to the seizure of the work-piece chip material to the 

tool-piece rake surface Astakhov et. al. [10].  Two structures contributed to this 

phenomenon are the continuous and fragmentary hump-backed chip.   

Son et al. [11] extended Basuray et al.’s [8] work of a rounded edge tool to 

determine the minimum cutting depth.   Experimental results showed the surface quality 

was best when cutting was conducted near the minimum cutting depth (continuous chip 

formation was observed).   Liu and Melkote [12] derived surface roughness due to stress 

fields, feed rates, and tool edge radius.  Son et al. [13] considered vibration cutting 

applied to determine the response with respect to minimum cutting thickness.  Recent 

studies including the stick-slip phenomena, which specifically point out the stick-slip in 

the cutting process, are typically modeled by Finite Element methods, validated via 

approximate methods and high speed photography by Simoneau et al [14], Woon et al 

[15], Wahi and Chaterjee [16], and Vela-Martinez et. al. [17].   

The breakdown of the manufacturing process has been traditionally completed by 

considering continuous processes.  However, recently researchers have begun to 

recognize the importance in comprehensive modeling of the process.  For instance, 
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following the dynamics approach to modeling a machine-tool will lead to a web of 

interacting continuous systems.  Through this complex network the prediction of realistic 

phenomena; such as frictional chatter, regenerative chatter, cutting to ploughing 

transition transient effects etcetera, is possible.  To model vibration of the machine tool 

problem, many mechanical models have been developed.   

Popular models are those given by a one-degree of freedom oscillator (e.g., Moon 

and Kalmar-Nagy [18]) and two-degree of freedom oscillator (e.g., [19]-[28]).  In many 

cases, the single degree of freedom model is not adequate to describe such vibration of 

the machine tool in cutting process Wiercigroch and Budak [29].  Thus, the two-degree 

of freedom oscillators were developed with the practical combinations of the 

nonlinearities through mode coupling and the loss of contact with the work-piece, etc.  

Moon and Kalmar-Nagy [18].  Analytical investigations of machine tools in cutting 

process were studied through the two-degree of freedom oscillator (e.g., [19]-[22]).  The 

chaotic dynamics of the machine tool system were also investigated (e.g., [23]-[25]).  

Moon and Kalmar-Nagy [18] reviewed various models of complex dynamics in 

machine tool systems.  Wiercigroch and Budak [29] reviewed fundamental cutting forces 

and discussed sources of nonlinearities in metal cutting similar to those discussed by 

Moon and Kalmar-Nagy [18].  Fang and Jawahir [30] surveyed restricted contact 

machining operations including: delay models, nonlinear stiffness, hysteretic cutting 

forces, visco-elastics and nonlinear cutting forces.  Through these studies, a clear 

description of the nature of nonlinearities in the machine tool systems has not been 
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provided.  Luo and Gegg [31] applied a general theory of discontinuous systems on 

connectable domains to a forced dry friction oscillator.   

The stick and non-stick motions and grazing phenomenon with respect to a 

friction (velocity) boundary were presented through the vector fields of the oscillator.  

The necessary and sufficient conditions defining the pass-ability of the motion from one 

continuous system to another are derived and validated.  In this dissertation, such an idea 

will be extended and the model for dynamics of a machine-tool in the cutting, non 

cutting and chip seizure processes will be developed.  Wu and Liu presented an 

analytical model of cutting dynamics to explain chatter vibration, friction and mode 

coupling effects [19,20]. The two-degree of freedom system included friction, on the 

rake face of the machine-tool, simulated by a traveling belt.   

Wiercigroch [32] studied the stick-slip phenomenon, associated with a traveling 

belt analogy, for a machine-tool.  Among research, the intermittent loss of cutting 

Chandiramani and Pothala [28] and chip stick-slip motion Gegg et al. [33] have been 

initially studied.  Wiercigroch [25] modeled cutting forces for a two degree of freedom 

machine tool model through multiple discontinuities; which considered loss of contact 

with the chip [25].   Wiercigroch and Cheng [24] developed an orthogonal cutting model 

with stochastic dynamics; where various phenomena such as grazing and stick motion 

were observed.  Wiercigroch and de Kraker [34] reviewed the traditional approaches to 

non-smooth systems; with applications ranging from one and two degree of freedom 

systems to multiple degrees of freedom in orthogonal machine-tool systems.   
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(a)  

(b)  

(c)  

Fig. 1 Physical Setup: (a) tool and work-piece sample configuration, (b) tool-piece 

with rake and flank surface bolded, (c) 2-D tool-piece surface definition. 
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Warminski et al. [35] studied a nonlinear cutting force model with multiple 

discontinuities, based on Grabec’s model [23,27].  The system was analyzed through a 

perturbation scheme.  The various types of machine-tool orientations in the 

manufacturing environment consist of: the fixed work-piece with a rotating and/or 

traversing tool-piece; and the fixed tool-piece with a rotating and/or traversing work-

piece.  One such configuration is shown in Fig. 1(a).  Limits on the machining systems 

include, but are not limited to: operation over a broad range of conditions; quality of the 

work-piece finish; rate of production; and maintenance intervals.   

Understanding the underlying dynamics of machining systems is necessary for 

these limits to be altered.  For example, the ever-present drive towards higher operating 

speeds, in manufacturing, requires an advanced understanding and analysis.   In order to 

study these dynamics we must first consider the specific type of problem setup.  A basic 

representation of the machine-tool network can be described by three general situations.  

One exists when there is no contact of the tool-piece and work-piece.   

The second exists where the tool contacts the work-piece and no cutting occurs.  

The last situation exists when there is motion of the tool in contact with the work-piece 

and cutting occurs.  At the contact point, forces sufficient to produce cutting of material, 

friction on the tool rake face of the tool is present, see Fig. 1(b,c).  The friction forces 

generated on the surface are velocity dependent and discontinuous. This type of 

boundary is susceptible to stick-slip motions.   

A multitude of discontinuities, such as, the cutting and thrust forces, elastic 

deformation and stagnation effects are a natural occurrence in machining systems.  The 
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discontinuities considered to be the most basic to machine-tool systems are: 

displacement boundaries (loss of contact with the work-piece); force boundaries (onset of 

cutting); and velocity boundaries (chip/tool rake and work-piece/tool flank stick-slip).  

Study of these boundaries is paramount to the defining the underlying physics and 

interpretation of the bifurcations observed in machine-tool systems.  A limited amount of 

research has been completed on such machine-tool systems.  The loss of cutting and 

contact represent special cases of discontinuities.   

Some of the earliest studies of discontinuous systems were those by Hartog 

(1931) [36]; the author investigated the forced vibration with Coulomb and viscous 

damping in theory and experiment.  Among the first to approach discontinuous systems 

in general, was Filippov [37,38].  Additional theoretical work was completed by Aubin 

[39,40].  In 2005, Luo developed a general theory for the local singularity of non-smooth 

dynamical systems on connectable domains; which is employed herein [1].  In effort to 

simply present the application of discontinuous systems theory, a friction model will be 

presented.   

Consider a periodically forced oscillator consisting of a mass sm , a spring of 

stiffness sk  and a damper of viscous damping coefficient sr , as shown in Fig. 2.  Also, 

this oscillator rests on a horizontal belt surface. The belt travels with a constant speed v . 

The absolute coordinate system  s t  is for the mass.  Consider a periodical force 

0 cos s sQ t  exerting on the mass, where 0Q  and s  are the excitation strength and 

frequency, respectively.   
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Fig. 2 The schematic for a mechanical model of a linear oscillator with dry-

friction. 

 

Fig. 3 The friction force for a mechanical model of a linear oscillator with dry-

friction. 

 
 
 

Since the mass contacts the moving belt with friction, the mass can move along, 

or rest on, the belt surface.  Further, a kinetic friction force shown in Fig. 3 is described 

as 
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                                  (1.1)       

where s ds dt  , ks  and NsF  are the friction coefficient and the normal force to the 

contact surface, respectively. For the model in Fig. 2, the normal force is Ns sF m g , 

where g  is the gravitational acceleration.  For the mass moving with the same speed as 

the belt surface, the normalized non-friction forces acting on the mass in the s-direction 

is defined as 

cos 2 ,   for s s s sF A t dv cs s v                                        (1.2) 

where 0 ,  2  and s s s s s s s sA Q m d r m c k m   .  This force cannot overcome the friction 

force for stick motions, i.e., s fsF F  and fs fs sF F m .  

Therefore, the mass has zero relative motion, with respect, to the belt; and no 

acceleration exists, i.e., 

0,       for .s s v                                                  (1.3)   

If s fsF F , the non-friction force will overcome the static friction force on the mass and 

the non-stick motion will appear.  The sF  only exists during the stick motion; hence, the 

expression s fsF F  holds only during the stick motion.  For the non-stick motion, the 

mass has non-zero relative motion, the total force acting on the mass is 

 cos sgn 2 ,   for ;s s s f s sF A t F s v d s c s s v                                   (1.4) 

sgn(.)  is the sign function. The equation of the non-stick motion for this oscillator with 

friction is  
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 2 cos sgn ,  for .s s s s s fss d s c s A t F s v s v                                      (1.5)    

Since Eq.(1.5) is discontinuous, the theory of Luo [1] is employed as a systematic 

and alternative approach for investigation of friction induced vibration.  The 

investigation presented herein focuses on the discontinuity as the basis for solutions.  

According to the general theory presented in Luo [1] and summarized in the appendix, 

the forces are  

   , cos 2 ,    ( 1,2 ).j s s s s j j jF t A t b d s c s j     s                        (1.6) 

Note that  sgn ,  and i ks i s i sb g s v d d c c     for the model in Fig. 2.  The stick and 

non-stick motion is also known as the non-passable and passable motion, respectively.   

Since the dynamic systems have been defined, the conditions for the passage of 

the motion through the friction boundary of Eq.(1.1) are presented through the vector 

fields.  From Eq.(A12)  in the appendix, the stick motion (mathematically a special case 

of the sliding motion) through the real flow is guaranteed in general form by   

        0.
jk jk

j kT T
j m k mt t   

       n F n F                                   (1.7) 

Note that mt  represents the time for the motion on the velocity boundary, and 0m mt t    

indicates responses in the two domains rather than on the boundary. The stick criterion 

presented thus far represents the real flow of the motion at the boundary.  Implying, if the 

criterion of Eq.(1.7) is satisfied the stick motion (non-passable motion) is predicted.   

When the stick motion exists along the boundary the imaginary flow exists in a 

similar manner as Eq.(1.7).  The imaginary flow is the vector field defined by the 

computation of the forces in Eq.(1.6)  with the parameters of both domains.  In actuality 

the motion is moving along the boundary, and not in the domain governed by Eq.(1.5).  
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Rather the motion is actually governed by Eq.(1.3), while on the boundary.  From 

Eq.(A9) and Eq.(A10)  in the appendix, the non-stick motion (or called passable motion 

through the boundary in Luo [1,41] through the real or imaginary flows is guaranteed by 

 

       
       

0,

0.

jk jk

jk jk

j kT T
j m k m

j kT T
j m j m

t t

t t

   

   

        


         

n F n F

n F n F

 

 
                             (1.8) 

From Eq.(A11) of the appendix the normal vector of the frictional boundary is 

 
12 21

0,1 .
T

  n n                                                (1.9) 

Therefore, we have 

         
         

, ,

, .

jk kj

jk kj

j jT T
j j j

k kT T
j j k

t t F t

t t F t

 

 

  


  

n F n F s

n F n F s

 

 
                              (1.10) 

From Eq.(1.7) and Eq.(1.10),  the conditions for stick and non-stick motions in the 

simplest form, respectively, are: 

       1 2 1 20 and 0.m m m mF t F t F t F t                              (1.11) 

From the theory for non-smooth dynamical systems in Luo and Gegg [41-45], the 

conditions for onset and vanishing of the stick motions are  

   1 2 0.m mF t F t                                               (1.12) 

Eq.(1.12) is verified physically by the frictional forces matching the static friction force; 

thus creating a zero total force on the mass.   

The stick motion or motion along the friction boundary is defined, for model of 

Fig. 2, as the mass moving at a constant velocity.   Direct integration of Eq.(1.3) with 

initial conditions ( , , )i is v t  yield 
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Fig. 4 Vector fields for stick motion in a linear oscillator with dry-friction. 

 
 

    .s si is v t t s                                             (1.13) 

Substitution of Eq.(1.3) and Eq.(1.13) into Eq.(1.6) gives the forces in the very small  - 

neighborhood of the stick motion ( 0  ) in the two domains k  (  1,2k ), i.e., 

    02 cos .k m k k m i i m kF t d v c v t t s A t b                             (1.14)                    

A sketch of the stick motion is illustrated in Fig. 4.  The condition for the stick motion is 

presented through the vector fields    1
1 tF  and    2

2 tF .  

The disappearance condition for stick (or sliding) motion along the velocity 

boundary is illustrated with  2 0mF t    (stick vanishing point, S.V.P.).  The vector field 

maintains a zero slope in the phase plane at the point of vanishing.  The sketch of Fig. 4 

is illustrated in the phase plane simulation of Fig. 5(a).  Through the actual simulation of 

the motion throughout the phase plane, the forces both real and imaginary are shown  

 

v  

1  

 , ,i is v t  

s

s  

2  

 1
1F  

 2
2F  
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(a)  

(b)   

Fig. 5 Simulation for stick motion in a linear oscillator with dry-friction: (a) phase plane, 

(b) force plane; 1 2 1 2 1 2 030, 1, 0, 30, 1.158, 90, 1.sc c d d b b A V            
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during stick motion in Fig. 5(b).  The thin and thick lines in Fig. 5(b) denote the total 

force acting on the mass with respect to the domain 1 2and   , respectively.  The forces 

are computed with Eq.(1.14).  The dark shaded region denotes the existence of stick 

motion where the imaginary flow is illustrated.   

 

 

Objectives 

The ambitions of this research are: to establish definitions of the underlying dynamics of 

interrupted cutting motions in a machining-system and to establish modeling guidelines 

for a machine-tool system as a means to the end of operating a machine-tool system over 

a broad range of parameters exhibiting semi-stable / stable characteristics.  Research 

within this focus leads to a qualitative and quantitative definitions of how the semi-stable 

interrupted cutting periodic motions lead to unstable motions and vice versa. 

 

 

Research Pathway  

This research will analyze a machine-tool system inspired by the work of Wu and Liu 

[19,20] and Grabec [23,27].  Wu and Liu analyzed a two degree of freedom model of the 

tool-piece with applied external forces acting on the rake and flank tool-piece faces.  The 

force model contained several discontinuities defined by the three previously mentioned 

situations: no contact of the tool and work-pieces; contact of the tool and work-pieces 

with no cutting; and contact of the tool and work-pieces with cutting.  The system of 

discontinuous forces has been investigated by authors such as Berger [26], Wiercigroch 
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and Cheng [25] and Warminski et al. [35].   

 In each of these cases the discontinuities were acknowledged but they were not 

sufficiently investigated.   

In this study:  

1. The methodology for discontinuous systems of Luo [1] will be applied to 

investigate the machine-tool system;  

2. The mappings of motion in the vicinity of the system constraints will be defined 

and discussed;  

3. The criteria for the interrupted cutting periodic motions will be developed 

through the state and mapping forms; 

4. The methodology for prediction of interrupted cutting periodic motions in a 

machining system will be developed;  

5. The periodic interrupted cutting motions in such a model will be numerically 

predicted and discussed via closed form solutions; 

6. Simulations of the interrupted cutting periodic motions in the machine-tool 

system will be completed; 

7. The near interruption of cutting phenomena in the machine-tool system will be 

illustrated and discussed; 

8. The chip and tool-piece seizure in the machine-tool system will also be illustrated 

and discussed; 

9. The analytical prediction of periodic interrupted cutting motions will be 

completed via closed form solutions for two common mappings; 

10. The simulations to verify the analytical predictions of such mappings will be 
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completed. 

The justification of this research lies in the fact the above methodology clearly defines 

the interrupted cutting motions in this machine-tool system.  The distinct criteria of 

passable and non-passable motions will be formed through these definitions. This 

describes bifurcations caused by interactions of neighboring continuous dynamical 

systems.  

 

 

Contributions and Impact  

This research provides a clear and concise approach to an existing problem, in the 

manufacturing environment, from an alternative view.  The main contributions to 

machining systems are: 

 The network of continuous systems are well defined and mapped for a clear 

definition of how such a system is traversed; 

 The underlying dynamics of a machining system are well defined, hence the 

bifurcation causing phenomena is defined; 

 The quantitative definitions of passage and non-passage of motion for the 

frictional and contact boundaries in a machine-tool system are derived for the 

first time in literature; 

 The dominant routes to unstable motions in this machining system are well 

defined; 

 The detailed parameter investigation provides guidelines for future research of 

such boundaries. 
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Concentrating this study on the apparent discontinuities allows the nature of the complex 

motions in this machine-tool system to be well defined.  The application of non-smooth 

systems theory to such a complicated model is the first research to well define the nature 

of interrupted cutting with respect to the boundaries considered herein.  The impact on 

the area of discontinuous systems is in the understanding of interrupted cutting due to the 

grazing phenomena / chip seizure in a network of multiply connected continuous 

systems.  The application of modern discontinuous systems theory to this machine-tool 

and the interpretation herein is unique among literature.  The next chapter will develop 

the mechanics of the motion for the machine-tool model considered herein. 
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CHAPTER II 

MECHANICAL MODEL: DEVELOPMENT 

 

 

The cutting process in manufacturing can be fundamentally modeled by a two-degree of 

freedom tool-piece model with external force effects due to contact and cutting of a 

work-piece Moon and Kalmar-Nagy [18].  For example, the turning process is a common 

machining practice consisting of “a single point tool that removes unwanted material to 

produce a surface of revolution,” Shaw [45] see Fig. 6.  Cutting actions similar to 

lathing, known as orthogonal cutting, are sawing, planing, and broaching Shaw [45].  

Orthogonal cutting is the flow of removed material across the tool surface at a 

perpendicular angle to the cutting edge.  The evolution of the mechanical model 

describing orthogonal cutting begins where the tool and work-pieces are noted by masses 

m and eqm ; respectively, see Fig. 7(a).   

The tool-piece is governed by viscous damping and linear stiffness forces of 

coefficients , , and , ; x y x yd d k k respectively.  As noted in Fig. 7(a), the large arrows mark 

two paths or phases a machine-tool could experience.  Phase one is the contact of the tool 

and work-piece without cutting occurring, see Fig. 7(b).  The contact forces transmitted 

by the work-piece are resolved into the normal direction with respect to the contact 

surface.  The equivalent response of the work-piece is modeled by viscous damping and 

linear stiffness forces of coefficients 1 1and ; d k respectively (Fig. 7(c)).   
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(a)  

(b)  

Fig. 6  Tool piece and work piece configuration at point of cutting. 

 
 
 

In this case the contact surface is the bottom face (or flank surface), see Fig. 7.  

The non-cutting phase can be resolved to the model of Fig. 7(e); where the forces acting 

on the tool-piece rake face do not exist.  The tool rake surface, cutting edge and flank 

surface are shown in Fig. 7 (a).  Phase two is the case where the tool contacts the work-

piece and the cutting conditions are satisfied.  A chip will form on the top-left face (or 

rake surface) of the tool-piece, see Fig. 7(b).   

Since the typical mass of a chip chm  is quite small the chip simply transmits 

forces and has no significant acceleration independent of the tool or work-pieces (as far  
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Fig. 7 Cutting tool mechanical model: (a) tool and work-pieces in contact (no 

cutting), (b) tool-piece, work-piece and chip in contact (cutting), (c) tool-piece 

and work-piece equivalent forces, (d) tool-piece, work-piece and chip dynamic 

system, (e) equivalent machine-tool analogy, (f) tool-piece, equivalent work-piece 

and chip dynamics with frictional surface. 
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as this study is concerned), see Fig. 7(b) Dassanayake [46].  The forces transmitted by a 

chip to the tool-piece are governed by the shearing action of the cutting process (cutting 

depth, width and shearing angle) and the motion of the work-piece.  The cutting 

processis modeled by viscous damping and linear stiffness forces of coefficients 

2 2 and ; d k respectively (see Fig. 7(d)).  The exertion of the chip on the rake surface 

creates a normal force and frictional force.  Since the frictional force is typically 

dependent on the relative velocity of the chip and rake surfaces, the chip can be modeled 

by a traveling belt with a dynamical normal force, see Fig. 7(f) Wiercigroch [25] and 

Warminiski et. al. [35].    

The forces transmitted to the tool-piece by the chip and work-pieces are resolved 

into their vector forms in Fig. 7(e).  The model of Fig. 8(b) will be referenced throughout 

this study as the machine-tool.     

 

 

Machine-Tool Analogy 

The tool and supports in free vibration are modeled by a two degree of freedom 

oscillator, of mass m, controlled by dampers (i.e., xd  and yd ) and two springs (i.e., xk  

and yk ) in the  ,X Ye e  directions.  The deflection of the tool piece is measured from the 

equilibrium point, by  ,x y  (see Fig. 8(c)).  An external force is applied to the flank of 

the tool in the form of a normal force (contact of the tool and work-pieces, but no 

cutting) with a damper of 1d  and a spring of 1k .  The onset of cutting exerts an additional 

external force, in the form of a normal and frictional force, with a damper of 2d  and a 
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(a)  

  (b)  

 (c)  

Fig. 8 Cutting tool mechanical model: (a) surface description, (b) external forces, 

(c) geometry and equilibrium. 
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spring of 2k .  The periodical force ( ) cospF t A t   at an angle of   off the vertical 

direction, and A  and   are excitation amplitude and frequency, respectively. Such a 

mechanical model is shown in Fig. 8(c).  The flank surface has an angle of    from the 

horizontal surface.  

The rake surface has an angle of   from the vertical surface, and the distance 

between the origin and point A (i.e., OA ) is 1X .  The distances from the flank and rake 

surfaces to the equilibrium of the un-stretched springs are 1  and 2 , respectively.  For 

the flank and rake surfaces, two distances are defined as   

1 1 1( )sin ( )coseq eqD X x Y Y y        ,                                    (2.1) 

2 1 2( )sin ( )cos .eq eqD Y y X X x                                           (2.2)                          

For 1 0D   and 2 0D  , the machine tool is free running (no external forces from the 

work-piece in any form). The equations of motion for the tool-piece are 

   
 

0 0 sin1 0 1 1
cos ,

0 0 cos0 1
x x

F
y y

d k xx x
A t

d k ym my y




          
              

           

 
 

      

 (2.3)           

where F eA A m ; which is considered the first region, Fig. 9(a). 

If 1 0D  , the special case may occur which reduces Eq.(2.1) to 

1 1( )sin ( )coseq eqX x Y Y y       .                                 (2.4)                            

The force at the contact point with mass m on the flank surface is  

   1

1 1
1

sin
, , ,

cos
x

n
y

F
F

F




   
    

  
F x y x y                                    (2.5)                            

where ( , )Tx xx  and ( , )Ty yy  with 
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 (a)  

(b)  

(c)  
Fig. 9  Force definitions for this machine-tool system; a) region 1 to region 2 

force condition, b) region 2 to region 4 force condition and c) loading and 

unloading paths. 
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     * *
1 1 1 1 11 1

, sin cos sin cos ;nF d x d y k kx x y y       x y          (2.6)      

which is considered the second region, see Fig. 9(a,b).  The forces of Eq.(2.6) express a 

continuous stiffness force at the point of switching.  Where the forces are 0C  continuous, 

but 1C  discontinuous, which means the slope of the forces is discontinuous at the 

switching point.  At this point, Eq.(2.4) is satisfied and the contact of the work-piece is 

defined to exert an impact force through the conservation of momentum, in the direction 

of normal contact, by the coefficient of restitution re .   

For 1 0D   and 2 0D  , the special case may occur which reduces Eq.(2.2) to 

1 2( )sin ( )cos .eq eqY y X X x                                    (2.7)                            

In this case, the machine tool will not cut the work-piece, but just slide across the 

surface, noted in Fig. 7(a,c).  The equations of motion for this case are 

 11 12 11 12

21 22 21 22

1 0
cos .

0 1
x x

y y

A CxD D K Kx x
t

A CyD D K Ky y

                                 
                

 
         (2.8)         

For 1 2 0D D  , two external forces  ,iF x y  ( 1,2i  ) will act on the tool-piece, see 

Fig. 7(b,d,f). The force  1 ,F x y  is given in Eq.(2.5).  The supporting normal force and 

friction force on the left inclined surface (rake surface) acting on mass m provides the 

total force  2 ,F x y  as 

   
 
 

2

2 2
2

,
, ,

,

x

n
y

M x yF
F

F N x y

        
    

F x y x y
 

  ,                           (2.9)                            

where 

     * *
2 2 2 2 22 2

, sin cos sin cos ,nF d x d y k kx x y y       x y  
     

 (2.10)   
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and         

   
   

, cos sgn sin ,

, sin sgn cos ,

sin cos .

M x y z

N x y z

z x y V

  

  

 

       


   

  

  

 
                               (2.11)                            

The forces of Eq.(2.9) express a continuous stiffness force at the point of 

switching; see Fig. 9(b).  The forces are 0C  continuous, but 1C  discontinuous, which 

means the slope of the forces is discontinuous at the switching point.  Due to the nature 

of friction, if 0z  , the region of motion is considered as the third region, but if 0z  , 

the region of motion is called the fourth region, see Fig. 9(c).  In different regions, the 

governing equations are different as noted with regions one and two.  Computationally 

motivated, the non-dimensional time ,t t  gives  

    ,, ,
T T

x y x y r                                                  (2.12)                            

       
,, ,

T Td dx dy dx dyt t t t
dt dt dt dt dt

        
   

r
                            (2.13)                            

       2 2 2 2 2
2

2 2 2 2 2
., ,

T T
d d x d y d x d yt t t t
dt dt dt dt dt

        
   

r
                       (2.14)                         

Therefore, the equations of motion with the forces  1 ,F x y  and  2 ,F x y  for 

non-stick motion (pure cutting, no chip seizure) are,  

 
( ) ( )( ) ( ) ( ) ( )

11 12 11 12
( ) ( )( ) ( ) ( ) ( )

21 22 21 22

1 0
cos ;

0 1

i ii i i i
x x

i ii i i i
y y

A Cx x xD D K K
t

A Cy y yD D K K

                                 
                 

 
 

    (2.15)      

for i = 1,2,3,4, where i denotes the parameters for each region.  During the cutting 

process, if the chip material adheres to the tool-piece, the relative velocity on the cutting 
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surface (rake surface) should be zero, i.e. a velocity boundary is defined which denotes 

the change in direction of the frictional force exerted by the chip material on the tool rake 

surface, 

sin cos ;x y V                                                     (2.16)     

3 sin cosD z x y V      ;                                          (2.17)                           

where V V    (V  is the chip velocity in the y -coordinate system, tool rake surface 

direction) and is considered the zero region.  In order to investigate this phenomenon, a 

new coordinate system ( , )x y   is introduced. The transformation for the two coordinates 

( , )x y  and ( , )x y  is 

cos sin
.

sin cos

x x x

y y y

 
 

       
               

 
 

                                   (2.18)                            

The corresponding velocity can be given by 

1, .
x x x x

y yy y
                   

         

    
   

                                           (2.19)                            

From Eq.(2.18) and Eq.(2.19); Eq.(2.15) becomes 

 

( ) ( ) ( ) ( )
1 111 12 11 12

( ) ( ) ( ) ( )
21 22 21 22

( ) ( )
1 1

( ) ( )
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i i i i

i i
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i i
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xD D K Kx x

yD D K Ky y

A C
t
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 

 

         
            

         
            
      

   
   

        

  (2.20)  

For stick motion (chip material adheres to the tool-piece, 0z  ) in the y -direction, the 

following equations hold 

 0 0 , ,  0.y y V t t y V y                                                 (2.21) 

The governing equation for stick motion in the x -direction is  
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 (a)  

(b)  

(c)  

Fig. 10 Chip and tool-piece a) effective cutting force contact (region four) and b) 

route to loss of effective cutting force contact (region three), c) loss of effective 

cutting force contact (region two). 
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 2
0 0 02 cos .x dx x A t B t C                                            (2.22) 

The undefined parameters of Eq.(2.20) and Eq.(2.22) are shown in the Appendix.  There 

are four boundaries to consider with this problem: three displacement boundaries and one 

velocity boundary.  Two of the displacement boundaries are due to contact with the 

external dynamical systems defined by  1 ,F x y  and  2 ,F x y  (tool and work-piece 

contact and onset of cutting).    

 The remaining displacement boundary is non-stick motion (cutting) of the system 

where 1 2 0D D   and 0.z    If the effective contact between the chip and tool-rake 

face is maintained the forces of the shearing action and work-piece motion will be 

transmitted through the tool-rake surface, see Fig. 10(a).  A special case exists where the 

route to loss of effective chip-tool-rake surface contact occurs; see Fig. 10(b).  The 

effective cutting force contact may vanish inducing a transition to region two, see Fig. 

10(c). This effective force contact is noted by cL ; hence a displacement boundary is 

defined, 

0cL y y                                                            (2.23) 

and 

 4 0 .cD L y y                                                       (2.24) 

The force conditions at the point of switching from region to region are shown in Fig. 9.   

The stiffness force  (  for 1,2,3)
D

kF    , when 3   the friction coefficient 

distribution is shown, as the motion switches from region one to region two and region 

two to region four are shown in  Fig. 9(a,b); respectively. The kinematic friction 
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coefficient distribution switching from region two to region four jumps past region three 

on a loading path, see Fig. 9(c).  The unloading path begins in region four
 
moves through 

region three and ends at region two.  The next chapter will introduce the state, domains 

and boundaries such that the discontinuous systems theory can be applied. 
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CHAPTER III 

STATE, DOMAINS AND BOUNDARY DEFINITIONS 

 

 

In order to apply the discontinuous systems theory, the state with respect to each 

boundary needs to be defined.  The machining system presented through the mechanical 

model of Fig. 8(b) is defined to contain four boundaries.  The first boundary is the 

contact of the tool and work-pieces.  The phase planes are partitioned to identify the 

discontinuities in the machine-tool system, see Fig. 11 and Fig. 12.   

 

 

Definitions with Respect to Boundary 1 

Boundary one is the contact measure between the tool and work-pieces.  If 1D  is positive 

the tool and work-pieces are not in contact.  The contact exists initially when 1 0D  , and 

continues for 1 0D  .  The state and vector fields for boundary 1 are defined as, 

 1 1 1,
T

D DD   and     11 1 1 1, , ,
T

i
DD F tD F D                            (3.1)                           

where 

     
   

1

2 ( ) ( )
1 1

2 ( ) ( )

, sin cos

,, , sin , , cos

i i i
D

i i
x y

F t D x y

F t F t

 

 

   

    

D

x y x y

  
                         (3.2)    

where i = 1,2,4; Fig. 11(a) and Fig. 12(a).  The domains with respect to Eq.(3.1) are 

defined as, 
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(a)  

(b)  

Fig. 11 Partitions in phase space for the displacement and velocity discontinuities 

of this machine-tool system; a)  phase plane, b)  phase plane. 

 

        1 1, , , 0, ,x y x y D x y                                             (3.3)

        2 1, , , , , ,0 ,x y x y x y D x y                                          (3.4) 

        3 1, , , , , , , ,0 ,x y x y x y x y D x y                                         (3.5) 
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Contact no 
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 (a)   

 

(b)   

Fig. 12 Partitions in ( ) and ( ) space for the displacement and velocity 

discontinuities of this machine-tool system; boundaries a) , b) . 
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        4 1, , , , , , , ,0 .x y x y x y x y D x y                                         (3.6) 

The reference domains directly correspond to the regions.  Domains 2, 3 and 4 have 

additional constraints which will be presented in the following sections.   

 

 

Definitions with Respect to Boundary 2 

Boundary 2 is the cutting condition; in this case this measure is a displacement 

constraint, where cutting will not occur if 2 0D  .  The cutting will initiate if 2 0D   and 

continue such that 2 0D  .  The state and vector fields for boundary 2 are defined as, 

 2 2 2,
T

D DD   and     22 2 2 2, , ,
T

i
DD F tD F D                             (3.7) 

where 

     
   

2

2 ( ) ( )
2 2

2 ( ) ( )

, sin cos

,, , sin , , cos

i i i
D

i i
x y

F t D x y

F t F t

 

 

   

    

D

x y x y

  
                                (3.8) 

with i = 1,4; see Fig. 11(b) and Fig. 12(b).  The domains with respect to Eq.(3.7) are 

defined as, 

   2 2 2 2, 0, ,D D D                                                   (3.9) 

   3 2 2 2, ,0 ,D D D                                                (3.10) 

   4 2 2 2, ,0 .D D D                                                (3.11) 

Domains 2, 3 and 4 have additional constraints which will be presented in the following 

sections.   
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Definitions with Respect to Boundary 3 

Boundary 3 is the frictional discontinuity.  For specific values of y  there are different 

frictional forces.  This is due to the direction of the friction force.  If y V  then the 

friction force acts in the negative y -direction.  Also, if y V  then the friction force acts 

in the positive y -direction.  The state and vector fields for boundary 3 are defined as, 

            3 3,  and  , , , , , , ,  ( 0,3, 4 ),
TT

y yy y t y F t      D y D y F x y x y 
              (3.12)

 

where 

           
   

3 4

( ) ( ) ( ) ( )

( ) ( )

, , , , , , sin cos

, , sin , , cos ;

i ii i i i
y D D

i i
x y

F t F t F t y t x y

F t F t

 

 

    

 

x y x y x y

x y x y


        

             (3.13) 

and        ,  ,  ,  ,, ,,
TTTT

y yx x y yx x   x y x y       
with i = 3,4; see Fig. 13(a,c) and 

Fig. 14(b).  The domains with respect to Eq.(3.7) and Eq.(3.12) are defined as, 

       2 2 2 2, , and , , ;D D D y y y V                                         (3.14) 

       3 2 2 2, ,0  and , , ;D D D y y y V                                        (3.15) 

       4 2 2 2, ,0  and , , ;D D D y y y V                                        (3.16) 

where 

 
   
0 0( )sin ( ) cos ,

sin cos .

y x x y y

y x y

 

 

    


  


  

                                        (3.17) 

Domains 2 and 3 have additional constraints which will be presented in the following 

section.   
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 (a)  

(b)  

(c)  

Fig. 13 Partitions in phase space for the displacement and velocity discontinuities 

of this machine-tool system; a)  phase plane, b)  phase plane, c)  

boundary in the  phase plane. 
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(a)  

 

(b)  

 

Fig. 14 Partitions in ( ) and ( ) space for the displacement and velocity 

discontinuities of this machine-tool system; boundaries (a) ,  and (b) . 
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Definitions with Respect to Boundary 4 

Boundary 4 is the chip contact measure, where this determines whether the tool will 

continue to maintain effective force contact with the chip while y V .  Consider the 

initial point where y V  is defined by 0y .  If the tool-piece continues to maintain 

y V  to a point where the difference measure between y  and 0y  is equal to cL , the 

effective force contact is lost and cutting terminates.  The state and vector fields for 

boundary 4 are defined as, 

            
4 44 4 4 4 4,  and  , , , , , ,  ( 2,3 ),

TT

D DD D t D F t    D D F x y x y              (3.18) 

where 

           
   

4 3

( ) ( ) ( ) ( )

( ) ( )

, , , , , , sin cos

, , sin , , cos ;

i ii i i i
D y D

i i
x y

F t F t F t y t x y

F t F t

 

 

    

 

x y x y x y

x y x y


        

           (3.19) 

with i = 2; see Fig. 13(b).   The domains with respect to Eq.(3.12) and Eq.(3.18) are 

defined as, 

       2 4 4 4, ,0  and , , ;D D D y y y V                                (3.20) 

       3 4 4 4, 0,  and , , ;cD D D L y y y V                                (3.21) 

where  

 4 0 4,  .cD L y y D z y V                                               (3.22) 

A comprehensive definition of the domains and boundaries is presented in the following 

section. 
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Summary of Domain Definitions and Boundaries 

The four domains considered in this study are noted to overlap in several areas and a 

formal comprehensive definition is necessary.  Domain one is the vibration of the tool-

piece without contacting the work-piece, 

        1 1, , , , , 0, ;x y x y x y D x y                             (3.23) 

or 

    1
1 1, , ( ) tan , .

coseq eqx y x y y X x Y Y



 
        

 
            (3.24) 

Domain two is the contact of the tool and work-piece without cutting,      

 

     
     

     
     

     

1

2

2 2

4

, , , , ,0 ,

, , , , 0,

, , , , , , , ,

or and , , , , ,0

if , , , , , ;

x y x y D x y

x y x y D x y

x y x y x y x y D x y

x y x y D x y

x y x y w x y V

  

  

              

  

 

 

   

 

    

                 (3.25) 

or 

 

 

 

 

 

1
1

2
1

2

0 0

, , ( ) tan , 
cos

, ( ) tan , ,
cos

, , ,

, , ( ) tan ,
cos

and , , tan .
cos

eq eq

eq eq

c

x y y X x Y Y

x y x Y y X X

x y x y
L

x y y y x x

V
x y y x













  
       
 

             
         

       

 

   

               (3.26) 

Domain three exists purely during route to chip vanishing ( y V ), 
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 

     
     
     
     

1

2

3

4

, , , , ,0 ,  

, , , , ,0 ,
, , ,

, , , , 0, , 

, , , , , ;

c

x y x y D x y

x y x y D x y
x y x y

x y x y D x y L

x y x y y x y V

  
 
      

 
 

   

 

 
 

 

    

                        (3.27)   

or 

 

 

   

 

 

1
1

12
1

3

0 0 0 0

, , ( ) tan ,
cos

, , tan ,
sin

, , ,

, ( ) tan , ( ) tan ,
cos

and , , tan ;
cos

eq eq

eq eq

c

x y y X x Y Y
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x y x y
L

x y y y x x y x x

V
x y y x




 


 







  
       
  

              
           

        

 

   

      (3.28) 

and domain four is defined by normal cutting ( y V ),                                           

 
     
     
     

1

4 2

, , , , ,0 ,

, , , , , , , ,0 ,

, , , , , ;

x y x y D x y

x y x y x y x y D x y

x y x y y x y V

  
      
 

   

 

   
    

                            (3.29)  

or 
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 

 

 

1
1

2
4 1
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, , , , , ( ) tan ,
cos

and , tan , .
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eq eq

eq eq
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V
x y y x
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







  
       
  

            
  

      
   

 

   

            (3.30)       

The boundary created by the domains one and two, see Fig. 11(a) and Fig. 12(a), noted in 
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Eq.(3.23) and Eq.(3.25) is 

          12 12 21 1, , , , , , , , , 0 ,x y x y x y x y x y x y D x y              (3.31)     

which is boundary one (tool and work-piece contact / impact boundary).   

The boundaries created by the domains two and four, see Fig. 11(b), Fig. 12(b) 

and Fig. 13(c), noted in Eq.(3.25) and Eq.(3.29) is                                               

 
         
       

24 42 2

24

24 2

, , , , , , 0 if , ,
, , ,

, , , , , 0 if , 0,

x y x y x y x y D x y y x y V
x y x y

x y x y x y y x y V D x y

 



        
     

    
 

      
(3.32)       

which is boundary two (onset of cutting boundary) and boundary three (chip/tool friction 

boundary).  The boundaries created by the domains two and three, see Fig. 11(b), Fig. 

12(b), Fig. 13(b) and Fig. 14(a), noted in Eq.(3.25) and Eq.(3.27) is                                      

   
   
   

4 2

32 32

2

, 0 if , 0,
, , , , , ,

, 0 if , ,

D x y D x y
x y x y x y x y

D x y y x y V


     
 

      
            (3.33)                            

which is the boundary four (chip vanishing boundary) and boundary two (cutting 

disappearance boundary).  The boundaries created by the domains three and four, see 

Fig. 13(a) and Fig. 14(b), noted in Eq.(3.27) and Eq.(3.29) is                                      

         34 34 43 2, , , , , , 0 if , 0.x y x y x y x y y x y V D x y               
    

 (3.34)   

The discontinuous systems theory will be applied to this machine-tool through the state 

and domain definitions in the next chapter. 
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CHAPTER IV 

INTERPRETATION OF VECTOR FIELDS 

 

 

In general, the trajectory in the phase plane of any system is described by two types of 

motion: passable and non-passable [1,31,33,41-44,47].  For the trajectory to become 

passable the certain conditions with respect to the boundary and state must be met, but 

generally occur for all displacement boundaries.  In this study there are three 

displacement constraints noted by boundaries 1, 2 and 4.  The following section develops 

the criteria defining passable motion.   

 

 

Passable Motion 

From Luo [1,47], the passable motion is guaranteed for  ,n s et t t  by 

        , , 0,
ij i ij i

i jT T
D i n D i nt t   

       n F D n F D                                  (4.1) 

 ;for  and , 1,2,3,4i j i j 
 
where the normal vector for the boundaries of Eq.(2.4), 

Eq.(2.7), Eq.(2.16) and Eq.(2.23) or Eq.(3.31) through Eq.(3.34) are  

  
 12 12

12 1 1
1 1

12
,

, 1,0 ,
m m

T T

D D D D

   
  

   n  
                                   (4.2)                            
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  
 

  
 

24 24

2 2
2 2

24
24 24

24
,

24 2
,

, 1,0  if ,

, 0,1  if 0;

m m

m m

T T

D D D D

T T

y y y y

y V

D

 

 





 
 


 
 

        
    
  

n
 

   


                           (4.3) 

  
 

  
 

32 32

4 4
4 4

32
32 32

2 2
2 2

32 2
,

32
,

, 1,0 if 0,

, 1,0 if ;

m m

m m

T T

D D D D

T T

D D D D

D

y V

 

 





 
 


 
 

        
    
  

n
 

 


                              (4.4) 

  
 34 34

34 34
,

, 0,1 ,
m m

T T

y y y y

   
  

   n    
                                  (4.5) 

respectively.  The components of Eq.(4.1), Eq.(4.2) through Eq.(4.5) give, 

   
12 1 1 1, ,  for 1,2;jT

D nt D j   n F D                                              (4.6) 

   
         

24 2

24 3

2 2

( )
3 2

,  if ,
for 2, 4;

, , , ,  if 0,  

jT
D n

j jT j
D n y

t D y V
j

t F t y t D

 

 

     
    

n F D

n F D x y

 
  

                    (4.7) 

   
   

32 4

32 2

4 4

2 2 2

,  if ,
for 2,3;

,  if 0,

jT
D n

jT
D n

t D y V y V
j

t D D

 

 

       
   

n F D

n F D

   


                           (4.8) 

         
34 3

( )
3, , , , ,   for 0,3,4;j jT j

D n yt F t y t j    n F D x y
                            (4.9) 

respectively.  Substituting Eq.(4.6) into Eq.(4.1) gives,    

   
1 1 120 on ,  for ;  , 1,2,jiD D i j i j                                       (4.10)    

implying passable motion, for the tool and work-piece contact boundary, from domain 

one to domain two and vice versa.  Substituting Eq.(4.7) into Eq.(4.1) gives, 
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           2 2 20 if  and  , , , , , , 0 if 0,   on ,i jji
y y ijD D y V F t F t D    x y x y 

             (4.11)   

for ;  , 2,4i j i j  .  This implies passable motion, for the chip vanishing boundary and 

the chip/tool friction boundary, from domain two to domain four and vice versa.  There 

are two conditions in Eq.(4.11) since there are two entry and exit planes to domain two 

and domain four with respect to boundaries 2 and 3 (see Fig. 11(b) and Fig. 13(c)).  

Substituting Eq.(4.8) into Eq.(4.1) gives, 

       3 32 2
4 4 2 2 2 320 if  and  0 if 0,  on .D D y V D D D       

                    (4.12) 

This implies passable motion, for the chip vanishing boundary and the chip/tool 

friction boundary, from domain three to domain two only.  There are two conditions in 

Eq.(4.12) regarding boundaries 4 and 2 (see Fig. 13(c)).  Substituting Eq.(4.9) into 

Eq.(4.1) gives, 

       , , , , 0  on ,i j
y y ijF t F t  x y x y    

                                   
   (4.13)   

for ;  , 3,4i j i j  .  This implies passable motion, for the chip/tool friction boundary, 

from domain three to domain four and vice versa.  See Fig. 15 and Fig. 16 to observe 

opposing and agreeing vectors fields.   The vector fields are noted by the short arrows 

and the actual motions are noted by long arrows.      

 

 

Non-passable Motion 

The non-passable motion and vanishing of the non-passable motion is guaranteed for 
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(a)  

 

(b)  

 

Fig. 15 Vector fields for a) passable and b) non-passable motion. 

 

3  
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 4Fy  
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 4Fy  
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(a)  

 

(b)  

Fig. 16 Vector fields for a) passable and non-passable with appearance and 

vanishing points, and b) specific example of non-passable motion and vanishing 

point. 

 

 

3  

y  

 3Fy
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 4Fy  
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 4Fy  
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 1,m i it t t   by   

       , , 0;
ij i ij i

i jT T
D i m D i mt t   

       n F D n F D                             (4.14)                       

 ;for  and , 1,2,3,4i j i j 
 

respectively.  The only boundaries which have the 

possibility of a sink boundary (opposing vector fields) are the velocity boundaries.  

Substituting Eq.(4.8) into Eq.(4.14) gives, 

       2 4
2 24, , , , , , 0 if 0,   on .y yF t F t D  x y x y                            (4.15)   

Provided Eq.(4.15) is satisfied the boundary is indeed non-passable, but regarding the 

machine-tool model and force conditions at the onset of cutting.  When the tool returns to 

cutting in the positive y –direction the friction boundary is crossed at which point the 

contact conditions are reset to ensure a continuous stiffness force.   

Since the system’s equilibrium point is recalculated to accommodate the 

continuous stiffness force across the frictional boundary, the boundary is permanently 

passable.  The boundary dynamics are negated due to local exceptions.  Substituting 

Eq.(4.9) into Eq.(4.14) gives, 

       3 4
34, , , , , , 0,   on ;y yF t F t  x y x y    

                           
    (4.16)  

see Fig. 15(b) to observe the opposing vector fields.  There are two possible ways to 

interpret the inequality of Eq.(4.16).  The forces producing such an effect are 
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                                   , , 0 and , , 0   on ,i j
y y ijF t F t  x y x y    

                     
    (4.17)  

for ;  , 3,4i j i j   (see Fig. 16(a,b)).  The forces distribution in the y  phase plane of 

Fig. 16(a,b) illustrate Eq.(4.17) and the onset and vanishing of the chip seizure motion.   

The onset and vanishing of chip seizure motion noted in Eq.(4.17) is specifically 

defined as    

                               , , 0   on ,i
y ijF t  x y  

                                      
    (4.18)  

for , 3,4 and .i j i j    Such a definition implies a possible grazing of boundary three 

(chip/tool friction boundary).  This phenomenon has been extensively studied by Luo 

and Gegg [31] and the general theory derived can be directly applied for this machine-

tool, but is not developed herein.   
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CHAPTER V 

SWITCHING PLANES, MAPPINGS AND MAPPING STRUCTURE 

 

 

Since the motion of the machine-tool can be tracked through four domains and can 

intersect four boundaries, simply referring to the domain traveled is not sufficient to 

describe the entire motion.  A new notation is introduced to define the initial boundary 

and the final boundary in combination with the notation describing the domain traveled.   

     for 1,2,3,4;  1,2,3,4;  ;and 0,1,2,3,4kijP i j k                      (5.1) 

where i is the initial boundary, j is the final boundary and k is the domain traversed, see 

Fig. 17 and Fig. 18.  The mappings describe the following cases: vibration of the tool 

with no contact of the work-piece (i = 1); the tool in contact with the work-piece but no 

cutting ( 2)i  ; the tool in contact with the work-piece with cutting where 0z   (i = 3); 

the tool in contact with the work-piece with cutting where 0z   (i = 4); and contact with 

the tool in special case where the chip/tool rake face seizure occurs, 0z   (i = 0).  The 

action of one mapping given a set of initial conditions yields a set of final conditions for 

this machine-tool system.   

The mappings can be combined to describe the trajectory of periodic orbit in the 

phase plane.  For example, consider the mappings    1 211 11
 and P P  in series; which can be 

simplified using the notation    21 2 111 11
 P P P  , where the boundary definitions are 

discarded and only the domains traveled remain in the notation (This notation is useful 

for referencing periodic motion).  Through this notation, varying a system parameter  
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(a)  

 

(b)  

 

Fig. 17 Mappings according to a) ,  b) , phase planes. 
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 2 1 2 1 1, ,i i iD D t  
  

2D  

2D  

 222
P   322
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(a)  

 

(b)  

 

Fig. 18 Mappings according to a) , and b) , phase planes. 
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gives a description of how the orbits change.  The following section will develop the 

switching sets with regard to boundary one (tool and work-piece contact / impact 

boundary). 

 

 

Switching Planes and Mapping Notations for Transient Motions 

Study of Boundary 1 

The motion of the machine tool can be tracked through the phase plane by the mappings, 

see Fig. 17 and Fig. 18.  Defining the initial and final conditions of these mappings are 

switching planes.  The switching planes for the tool and work-piece contact / impact 

boundary, Eq.(2.1) (boundary one), are 

         
1 1

1 2
1 1, , , , 0 ,  , , , , 0 ,D Dx y x y D x y x y x y D x y                    (5.2)                            

    
1

3
1 2, , , , 0  if 0,D x y x y D x y D    

                 
          (5.3)   

    
1

4
1 2, , , , 0  if 0,D x y x y D x y D                                (5.4) 

and                           

    
1

0
1 2, , , , 0  if 0 and .D x y x y D x y D y V                            (5.5)                            

Note that  
0

0 lim 0





   and  

0
0 lim 0





  .  Motion ending at switching plane one, 

domain zero side, 
1

0
D  is expressed as, 
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3 1

0 0
(31)0: .D D P                                                 (5.6) 

The mapping of Eq.(5.6) describes some initial condition on the chip/tool friction 

boundary plane (switching set) mapping through domain zero (chip seizure) to boundary 

one (tool and work-piece contact boundary).  Since the domain traversed is the zero 

domain the motion must start on the boundary three; hence 
3

0
D .  Motion beginning and 

ending at switching plane one, domain one side, 
1

1
D  is expressed as, 

1 1

1 1
(11)1: ,D D P                                                   (5.7) 

see Fig. 17(a).  The mapping of Eq.(5.7) represents motion beginning on boundary one 

(tool and work-piece contact boundary) traversing domain one 1(Ω )  (tool-piece free 

running) and ending on boundary one (tool and work-piece contact / impacting 

boundary).  The motion beginning and ending at switching plane one, domain two side, 

1

2
D  is expressed as, 

1 1

2 2
(11)2: ,D D P                                                    (5.8) 

see Fig. 17(a).   

The mapping of Eq.(5.8) describes motion through domain two (tool and work-

piece contact but not cutting) and beginning and ending at boundary one.  Motion 

beginning and ending at switching plane one, domain three side, 
1

3
D  is expressed as, 

1 1

3 3
(11)3: .D D P                                                    (5.9) 
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The mapping of Eq.(5.9) describes motion through domain three (tool and work-piece 

contact, and cutting with ( , ) ( , )y x y V    ) beginning and ending on boundary one.  

Motion beginning and ending at switching plane one, domain four side, 
1

4
D  is expressed 

as, 

1 1

4 4
(11)4: .D D P                                                    (5.10) 

The mapping of Eq.(5.10) describes motion through domain four (tool and work-piece 

contact, and cutting with ( , ) ( , )y x y V    ) beginning and ending on boundary one.  The 

next section will develop the switching sets with regard to boundary two (the onset of 

cutting boundary). 

Study of Boundary 2 

The switching planes for the onset of cutting boundary, Eq.(2.2) (boundary two), are 

    
2

1
2 1, , , , 0  if 0,D x y x y D x y D    

                  
        (5.11) 

    
2

2
2, , , , 0 ,D x y x y D x y    

                         
        (5.12) 

    
2

3
2, , , , 0  if ,D x y x y D x y y V     

                          
(5.13) 

    
2

4
2, , , , 0   if ,D x y x y D x y y V     

                         
(5.14) 

and 

    
2

0
2, , , , 0   if .D x y x y D x y y V     

                          
(5.15) 
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The motion ending at switching plane two, domain zero side, 
2

0
D  is expressed as 

3 2

0 0
(32)0: .D D P                                               (5.16) 

The mapping of Eq.(5.16) describes motion beginning on boundary three (chip/tool 

friction boundary) traversing domain zero (chip/tool seizure) and ending on boundary 

two (onset/vanishing of cutting boundary).  The motion beginning and ending at 

switching plane two, domain one side, 
2

1
D  is expressed as 

2 2

1 1
(22)1: .D D P                                                 (5.17) 

The mapping of Eq.(5.17) describes motion beginning and ending on boundary two 

while traversing domain one 1(Ω )  (tool free running).   

Although the switching planes of Eq.(5.7) and Eq.(5.17) are different the domain 

traveled is domain one 1(Ω ) .  The motion beginning and ending at switching plane two, 

domain two side, 
2

2
D  is expressed as 

2 2

2 2
(22)2: ,D D P                                                (5.18) 

see Fig. 17(b).  The mapping of Eq.(5.18) describes motion beginning and ending on 

boundary two while traversing domain two 2(Ω )  (tool and work-piece contact with no 

cutting).  Although the switching planes of Eq.(5.8) and Eq.(5.18) are different the 

domain traveled is domain two 2(Ω ) .  The motion beginning and ending at switching 

plane two, domain three side, 
2

3
D  is expressed as 
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2 2

3 3
(22)3: ,D D P                                                (5.19)  

see Fig. 17(b).   

The mapping of Eq.(5.19) describes motion beginning and ending on boundary 

two while traversing domain three 3(Ω )  (tool and work-piece contact, and cutting with 

( , ) ( , )y x y V    ).  Although the switching planes of Eq.(5.9) and Eq.(5.19) are different 

the domain traveled is domain three 3(Ω ) .  The motion beginning and ending at 

switching plane two, domain four side, 
2

4
D  is expressed as 

2 2

4 4
(22)4: .D D P                                               (5.20) 

The mapping of Eq.(5.18) describes motion beginning and ending on boundary two 

while traversing domain four 4(Ω )  (tool and work-piece contact, and cutting with 

( , ) ( , )y x y V    ).  Although the switching planes of Eq.(5.10) and Eq.(5.20) are different 

the domain traveled is domain four 4(Ω ) .  The next section will develop the switching 

sets with regard to boundary three (chip/tool friction boundary). 

Study of Boundary 3 

The switching planes for chip/tool friction boundary, Eq.(2.16) (boundary three), are 

    1
1 2, , , ,  if 0 and 0,y x y x y y x y V D D    

                         (5.21) 

    2
2, , , ,  if 0,y x y x y y x y V D   

                                (5.22) 
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    3
1 2, , , ,  if 0,y x y x y y x y V D D    

    
                      

 (5.23) 

    4
1 2, , , ,  if 0,y x y x y y x y V D D    

    
                      

 (5.24) 

and 

    0
1 2, , , ,  if 0.y x y x y y x y V D D    

                                  (5.25) 

The motion beginning and ending at switching plane three, domain zero side, 0
y   is 

expressed as 

0 0
(33)0: ;y y P                                                     (5.26) 

see Fig. 18(a).  The mapping of Eq.(5.26) describes motion beginning and ending on 

boundary three while traversing domain zero (chip/tool seizure).  Although the switching 

planes of Eq.(5.16) and Eq.(5.26) are different the domain traveled is domain zero.  The 

motion beginning and ending at switching plane three, domain one side, 1
y   is expressed 

as 

1 1
(33)1: .y y P                                                     (5.27) 

The mapping of Eq.(5.17) describes motion beginning and ending on boundary 

two while traversing domain one (tool free running).  Although the switching planes of 

Eq. (5.17) and Eq.(5.27) are different the domain traveled is domain one 1(Ω ) .  The 
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motion beginning and ending at switching plane three, domain two side, 2
y   is expressed 

as 

2 2
(33)2: .y y P                                                     (5.28) 

The mapping of Eq.(5.28) describes motion beginning and ending on boundary three 

while traversing domain two 2(Ω )  (tool and work-piece contact with no cutting).  

Although the switching planes of Eq.(5.18) and Eq.(5.28) are different the domain 

traveled is domain two 2(Ω ) .   

The motion beginning and ending at 3
y   is expressed as 

3 3
(33)3: ;y y P                                                     (5.29) 

see Fig. 18(a).  The mapping of Eq.(5.29) describes motion beginning and ending on 

boundary three while traversing domain three 3(Ω )  (tool and work-piece contact, and 

cutting with ( , ) ( , )y x y V    ).  Although the switching planes of Eq.(5.19) and 

Eq.(5.29) are different the domain traveled is domain three 3(Ω ) .  The motion beginning 

and ending at switching plane three, domain four side, 4
y   is expressed as 

4 4
(33)4: ;y y P                                                     (5.30) 

see Fig. 18(a).  The mapping of Eq.(5.30) describes motion beginning and ending on 

boundary two while traversing domain four 4(Ω )  (tool and work-piece contact, and 

cutting with ( , ) ( , )y x y V    ).   
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Although the switching planes of Eq.(5.20) and Eq.(5.30) are different the 

domain traveled is domain four 4(Ω ) .  The next section will develop the switching sets 

with regard to boundary four (chip vanishing boundary). 

Study of Boundary 4 

The switching planes for the chip vanishing boundary, Eq.(2.23) (boundary four), are 

    
4

2
4 1 2, , , , 0  if 0,D x y x y D x y D D     

                      
(5.31) 

    
4

3
4 1 2, , , , 0  if 0.D x y x y D x y D D     

                      
(5.32) 

The motion beginning at switching plane three, domain three side, 
3

3
D  

and ending at 

switching plane four, domain three side, 
4

3
D  is expressed as 

3 4

3 3
(34)3: ;D D P                                                 (5.33) 

see Fig. 18(b).  The mapping of Eq.(5.33) describes motion beginning on boundary three 

and ending on boundary four while traversing domain three 3(Ω )  (tool and work-piece 

contact, and cutting with ( , ) ( , )y x y V    ).  Although the switching planes of Eq.(5.29) 

and Eq.(5.33) are different the domain traveled is domain three 3(Ω ) .  The motion 

beginning at 
4

2
D  

and ending at 2

kD  is expressed as 

4

2 2
(4 )2: ;

kD D kP                                                 (5.34) 

1, 2,3,k 
 
see Fig. 18(b).   
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The mapping of Eq.(5.34) describes motion beginning on boundary four and 

ending on the kth boundary while traversing domain four 4(Ω )  (tool and work-piece 

contact, and cutting with ( , ) ( , )y x y V    ).  Although the switching planes of Eq.(5.30) 

and Eq.(5.34) are different the domain traveled is domain four 4(Ω ) .  Motion in domains 

zero, one and two cannot interact with boundary four since this boundary monitors chip 

vanishing. 

Study of Possible Combinations of the 4 Boundaries 

The physical combinations of initial and final boundaries are summarized in Table 1.  

The possible combinations for motion include four possible initial boundaries and three 

possible final boundaries with five possible domains to be traveled.  Certain 

configurations of these boundaries and domains are not physically possible; the potential 

motions are shown in Table 1.  Consider the jth and kth initial and final boundary of a 

mapping where the zero domain (chip/tool seizure) is traversed,   

0 0
( )0: .

j kD D jkP                                                    (5.35) 

The possible combinations of j and k include: 1, 2,3 and 1, 2,3j k  .  

Consider the jth and kth initial and final boundary of a mapping where domain 

one (tool free running) is traversed,   

1 1
( )1: .

j kD D jkP                                                    (5.36) 
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Table 1 Possible Switching Set Combinations and Mappings. 

Initial 
Boundary 

Final Boundary
Domain 

Traversed 
Switching Sets: 

Mapping j,k 

j k 0   

j k 1   

j k 2   

j k 3  

j k 4   

1 j k  

2 j k   

3 j k  1,2,3;  0,3,4;j k   

4 j k   

Note: 
 

1. If  
2. if  
3. and 4;  3.j k    

 
The possible combinations of j and k include: 1 and 1j k  .  Consider the jth and kth 

initial and final boundary of a mapping where domain two (tool and work-piece contact 

but no cutting) is traversed, 

2 2
( )2: .

j kD D jkP                                                    (5.37) 

The possible combinations of j and k include: 1, 2, 4 and 1, 2,3j k  .  Consider the jth 

and kth initial and final boundary of a mapping where domain three (tool and work-piece 

contact, with cutting and ( , ) ( , )y x y V    ) is traversed,  

3 3
( )3: .

j kD D jkP                                                    (5.38) 

0 0
( )0: .

j kD D jkP  1, 2,3;  1, 2,3;j k 
1 1

( )1: .
j kD D jkP  1;  1;j k 

2 2
( )2: .

j kD D jkP  1, 2, 4;  1, 2,3;j k 
3 3

( )3: .
j kD D jkP  1, 2,3;  1, 2,3, 4;j k 

4 4
( )4: .

j kD D jkP  1, 2,3;  1, 2,3;j k 

1
1 (1 ): .

j

k k
D D j kP  1, 2,3;  0,1, 2, 4;j k 

2
2 (2 ): .

j

k k
D D j kP  1, 2,3;  0, 2, 4;j k 

3
3 (3 ): .

j

k k
D D j kP 

4 (4 ): .
j

k k
D D j kP  1, 2,3;  2;j k 

   3 , ,yD x y D x y    
3  1;j k  
1,2,3  0,1, 2, 4;j k  
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The possible combinations of j and k include: 1, 2,3 and 1,2,3, 4j k  .   

Consider the jth and kth initial and final boundary of a mapping where domain 

four (tool and work-piece contact, with cutting and ( , ) ( , )y x y V    ) is traversed, 

4 4
( )4: .

j kD D jkP                                                    (5.39) 

The possible combinations of j and k include: 1, 2,3 and 1, 2,3j k  .  Exceptions to 

this list exist at the intersection of two or more boundaries, which are not developed 

herein.  The following section will discuss combinations of the switching planes with 

respect to initial boundaries. 

Combinations with an Initial Boundary of 1 

Consider the physical types of motion which exists for an initial boundary one (tool and 

work-piece contact / impact boundary).  The switching planes previously developed are 

used to define such possible mappings,  

1 (1 ):  for 1,2,3 and 0,1,2,3;
j

k k
D D j kP j k                     (5.40)  

where the final boundary is j and the domain traversed is k. One exception for the jth 

term is the case where 3j   then 1k  .    

Combinations with an Initial Boundary of 2 

Consider the physical types of motion which exist with boundary two (tool and work-

piece contact and no cutting) and j as the initial and final boundaries, respectively.  The 

switching planes and mappings corresponding to this motion are 
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2 (2 ):  for 1,2,3 and 0,2,4;
j

k k
D D j kP j k                         (5.41) 

where the final boundary is j and the domain traversed is k. One exception for the jth 

term is the case where 3j   then 2k  .    

Combinations with an Initial Boundary of 3 

Consider the physical types of motion which exist with boundary three (tool and work-

piece contact, and cutting with ( , ) ( , )y x y V    ) and k as the initial and final 

boundaries, respectively.  The switching planes and mappings corresponding to this 

motion are 

3 (3 ):  for 1,2,3,4 and 0,3,4;
j

k k
D D j kP j k                         (5.42) 

where the initial boundary is one, the final boundary is j and the domain traversed is k. 

One exception for the jth term is the case where 4j   then 0,4k  .    

Combinations with an Initial Boundary of 4 

Consider the physical types of motion which exist with boundary four (tool and work-

piece contact, and cutting with ( , ) ( , )y x y V    ) and k as the initial and final boundaries, 

respectively.  The switching planes and mappings corresponding to this motion are 

3 (4 ):  for 1,2,3 and 2;
j

k k
D D j kP j k                                 (5.43) 

where the initial boundary is one, the final boundary is j and the domain traversed is k. 

The summary of these combinations is shown in Table 1.  The next section will employ 

the switching planes and mapping to summarize and develop a notation for periodic 
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motions.  Such a notation will be very useful in characterizing the orbit in the phase 

plane and interactions with the dynamics of the five possible domains.   

 

 

Mappings for Periodic Motions 

The switching sets developed in the previous sections set up the development of periodic 

motion.  Such periodic motion can vary in initial conditions and domains traversed.  The 

following sections will use the switching planes to introduce the ordering of mappings 

for the periodic motions interacting with the corresponding boundaries. 

Study of Boundary 1 

Consider the interaction of the motion with boundary one, the tool and work-piece 

contact / impact boundary, where the switching sets of Eq.(5.2).  This example considers 

one period of motion.  The ordering of switching planes to form periodic motion are 

(11)1

1 1

1 1

1 1
(11) 2

1 1

(11)1 (11)2
2 2

     .

P

D D

D D

D D
P

P P

  

   
  

                                  (5.44) 

This implies the mapping (11)2P  acts on the final conditions of mapping (11)1P ; such an 

actions maps to the initial conditions of mapping (11)1P .  The mapping notation can be 

combined when periodic motion is discussed with the shorthand notation of the action 

symbol ( )  and the removal of the boundary notations.   

For example the periodic motion of Eq.(5.44) is expressed as 

21 (11)2 (11)1.P P P 
              

                                     (5.45) 
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This periodic motion corresponds to the tool free running (domain one) which is directly 

followed by the tool-piece and work-piece contact without cutting (domain two).  This 

motion repeats with a period 2T 
  equal to the eccentricity frequency ( ).  Consider 

the ordering of switching sets to form periodic motion of length period three 3T, 

(11)1 (11) 2 (11)11 1

1 1 1 1 1 1

1 1

1 1 1 1 1 1
(11) 2 1 (11)1 1 (11) 2

1 1 2 2 1 1

2 2 1 1 2 2

P P PD D

D D D D D D

D D

D D D D D D
P D P D P

          

 
          

            (5.46) 

this can be simplified with mapping notation, 

212121 (11)2 (11)1 (11)2 (11)1 (11)2 (11)1.P P P P P P P                               (5.47) 

The notation is still too bulky and can be reduced by a generic form of factoring the 

notation; Eq.(5.47) becomes, 

 3 21212121
.P P                                                  (5.48) 

In general the n-period periodic motion of the 21P  is 

  21...2121
;nP P                                                  (5.49) 

where n is the period of motion.  Additional mappings may occur in the periodic motion 

interacting with boundary one.  Such an interaction could include a short cutting action, 

implying domain four ( y V ) inclusion; 

41 (11)4 (11)1,P P P                                             (5.50) 

domain zero (chip/tool seizure, y V ) and domain four ( y V ), 

041 (31)0 (13)4 (11)1,P P P P                                              (5.51) 

or domain three ( y V ) and domain four ( y V ), 
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341 (31)3 (13)4 (11)1.P P P P                                              (5.52) 

Study of Boundary 2 

Consider the interaction of the motion with boundary two, the work-piece and tool-piece 

contact / impact boundary, where the switching sets of Eq.(5.12) and Eq.(5.14).  This 

example considers one period of motion.  The ordering of switching sets to form periodic 

motion are 

( 22) 2

2 2

2 2

2 2
( 22) 4

2 2

(22)2 (22)4
4 4

     .

P

D D

D D

D D
P

P P

  

   
  

                              (5.53) 

The periodic motion of Eq.(5.53) is expressed as 

42 (22)4 (22)2.P P P 
              

                                     (5.54) 

This periodic motion corresponds to the tool-piece and work-piece in contact with no 

cutting directly followed by the tool-piece and work-piece in contact with cutting.   

This motion repeats with a period 2T 
  equal to the eccentricity frequency 

( ).  Additional mappings may occur in the periodic motion interacting with boundary 

two.  Such an interaction could include a chip vanishing, implying domain three ( y V ) 

inclusion; 

342 (32)3 (23)4 (22)2 ,P P P P                                              (5.55) 

or a domain zero (chip/tool seizure, y V ), 

042 (32)0 (23)4 (22)2.P P P P                                              (5.56) 



67 
 

Study of Boundary 3 

Consider the interaction of the motion with boundary three, the chip / tool-piece rake 

surface friction boundary, where the switching sets of Eq.(5.23) and Eq.(5.24).  This 

example considers one period of motion.  The ordering of switching sets to form periodic 

motion is 

(33) 4

3 3

3 3

3 3
(33) 4

4 4

(33)3 (33)4
3 3

     .

P

D D

D D

D D
P

P P

  

   
  

                              (5.57) 

The periodic motion of Eq.(5.57) is expressed as 

34 (33)3 (33)4.P P P 
              

                                  (5.58) 

This periodic motion corresponds to the tool-piece and work-piece in contact with 

cutting (domain four, y V ) directly followed by the reduction in chip length (domain 

three, y V ).   

This motion repeats with a period 2T 
  equal to the eccentricity frequency 

( ).  Additional mappings may occur in the periodic motion interacting with boundary 

three.  Such an interaction could include domain zero (chip/tool seizure, )y V , 

04 (33)0 (33)4 ,P P P                                                (5.59) 

and a chip vanishing motion, implying domain three ( y V ), 

034 (33)0 (33)3 (33)4.P P P P                                              (5.60) 
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Study of Boundary 4 

Consider the interaction of the motion with boundary four, the chip vanishing boundary, 

where the switching sets of Eq.(5.31) and Eq.(5.32).  This example considers one period 

of motion.  The ordering of switching sets to form periodic motion is 

( 43) 2 (33) 43

4 3 3 3

4 4

4 3
(34)3

2 2 4 4

(43)2 (33)4 (34)3
3 3

     .

P PD

D D D D

D D

D D
P

P P P

      

  
  

 

   

   (5.61) 

The periodic motion of Eq.(5.61) is also expressed as 

342 (34)3 (33)4 (43)2.P P P P  
              

                           (5.62) 

This periodic motion corresponds to the tool-piece and work-piece in contact without 

cutting (domain two) directly followed by cutting (domain four y V ) which then 

crosses the frictional boundary where the chip reduces in length to zero (domain three 

y V  to boundary four).   

This motion repeats with a period 2T 
  equal to the eccentricity frequency 

( ) .  Additional mappings may occur in the periodic motion interacting with boundary 

four.  Such an interaction could include a chip seizure action implying domain zero 

inclusion; 

3042 (34)3 (33)0 (33)4 (43)2 ,P P P P P                                          (5.63) 

or loss of contact (domain one, tool free running), 

1234 (11)1 (41)2 (34)3 (13)4.P P P P P                                          (5.64) 

Additional possibilities exist for interaction with the four boundaries, but are not 

developed herein.  The next chapter will develop the connections of each mapping 
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through the definitions of the initial and final states, and the corresponding governing 

equations. 
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CHAPTER VI 

SOLUTION STRUCTURE AND PREDICTION ROUTINE 

 

 

Periodic Interrupted Cutting Motion of 34P  

The composition of the mappings is shown in Fig. 19 to form periodic motion.  This has 

been previously investigated for a single degree of freedom oscillator with dry friction 

by Luo and Gegg [42-44] and Gegg [47].  Consider one of the simplest mappings  

3 4.P P P                                                         (6.1) 

Individual to each mapping are the initial and final conditions, where such a definition 

must be made.  From Eq.(6.1), the above relation,  

   
   

4 1 1 1 1

3 1 1 1 1 2 2 2 2

: , , , , , , , , ,

: , , , , , , , , ,

k k k k k k k k

k k i i k k i i

P x x y V t x x y V t

P x x y V t x x y V t

 
   

 
       

 


 

      

      
                 (6.2) 

without chip seizure (domain zero, y V )  motion, V V V V       exists.   

For the periodic motion 2i iP Y Y   where  , , ,
T

k k k k kx x y tY      during n-periods of 

excitation, we have 

2 2

2 2

, ,

,  2 .
k k k k

k k k k

x x x x

y y t t n
 

 

  


     

    
 

                                    (6.3) 

Using the notation in Gegg et al. [33], a generalized mapping for Eq.(6.1) is 
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(a)  

(b)  

Fig. 19 Non-stick periodic motion in the absolute phase plane, (a) period one 

motion , (b) period four motion . 

 

 

     3 4 3 434

pairs

.m

m

P P P P P P


    
                                  (6.4) 

The periodic motion for the foregoing mapping requires 

2 .k m kP Y Y                                                      (6.5) 

 

3P  

 , ,i it y V   1 1, ,i it y V   

y  

y  

V  

4P  

 

3P  

 , ,i it y V  

y  

y  

V  

4P  

34P
 434

P
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The periodicity conditions of periodic motion for the foregoing mapping are 

2 2, ,k m k k m kx x x x                                                     (6.6) 

2 2,  2 .k m k k m ky y t t n                                              (6.7) 

Such periodicity relations will be used to develop the solution structure for prediction of 

the motion.   

The governing equations and an appropriate solving method (i.e. Newton-

Raphson Method) are employed to arrive at the solution set.  The governing equations of 

each mapping.  P  (  3,4  ) can be expressed by 

   
   
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i
i i i i i i

i
i i i i i i

f t t

f t t

  
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i
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  

  

 


 
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   
                                         (6.9) 

There are many methods for solving nonlinear equations for a set of unknown variables; 

some methods are more suited for solving slowly with poor initial conditions and other 

can be very fast with good initial conditions [48-50].  However, most algorithms are 

sensitive to the relaxation parameter (gain used when updating the solution set).  The 

predictions completed herein were not to simply predict with a generic solving method, 

but a combination of the Newton-Raphson method and a variation of this relaxation 

parameter.   
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 Typically, the relaxation parameter was kept constant but in the cases where the 

Jacobian matrices become nearly singular the solver may fail to converge.  To allow a 

more stable search of the solution the relaxation parameter would be ranged from 0.7 to 

0.01.  Notably, the solutions near such a singularity are not physically possible or the 

current motion vanishes.  As a result of the solution set being a completely mathematical 

problem at this point the possibility remains that the solver may shift to physically 

impossible motions.  This occurs since the solution structure only considers the 

switching points at the respective boundary and assumes the motion remains in the 

defined domain.   

 Hence; the motion must be verified physically at every convergence of the 

solving algorithm.  Although the motion is physically verified the potential for alternate 

real solutions exist.  This occurs since the system will achieve more than one possible 

steady state motion; which is ultimately caused by the defined initial conditions.  The 

next section with develop the solution structure for periodic motion with chip seizure.   

 

 

Periodic Interrupted Cutting Motion of 034P  

Consider the mapping structure for periodic orbit with chip seizure (domain zero, 

)y V  motion is 

034 0 3 4.P P P P                                                    (6.10) 

The mapping 0P  describes the starting and ending of the stick motion.   The 
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disappearance of stick motion requires  ( )
1 1 1, , 0 and ,i

y k k kF t y V    x y
    Eq.(4.18). The 

general mapping structure for periodic orbit with stick motion is 

              2 1 0 1012 11

0 3 4 0 3 4

terms

m m mj j j jj j

m

P P P P P P P



     


                        (6.11) 

where    2 1 0, , 0,1l l lj j j   and  1,2, ,l m  .  0 1nP      1 1k k
n n nP P P      ( 0,3,4n  ).   

For domain three and four motion, there are three possible stable motions in the two 

domains i  (  3,4i ).  The governing equations of mapping iP   (  3,4i ) are 

obtained from exact solutions presented in the appendix and Gegg et. al. [33].   The 

governing equations of mapping.  P  (  0,3,4  ) can be expressed by 

   
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                                         (6.13) 

The governing equations and an appropriate solving method (i.e. Newton-Raphson 

Method) are employed to arrive at the solution set.  The next section will develop the 

solution structure for periodic motion with chip reduction (domain three, )y V .  

 

 

Periodic Interrupted Cutting Motion of 234P  

The composition of the mappings is shown in Fig. 20(a) to form periodic motion.  



75 
 

Consider the mapping  

2 3 4.P P P P                                                      (6.14) 

The motion expressed in Eq.(6.14) is an example of the cutting motion interrupted by the 

frictional boundary and loss of chip contact.  From the above relation, we have 

   
   
   

4 1 1 1 1

3 1 1 1 1 2 2 1 2 2

2 2 2 1 2 2 3 3 3 3

: , , , , , , , , ,

: , , , , , , , , ,

: , , , , , , , , .

i i i i i i i i

i i i i i i i c i i

i i i c i i i i i i

P x x y V t x x y V t

P x x y V t x x y L y t

P x x y L y t x x y V t

 
   


        


        


  


  

      

        

        

                   (6.15) 

without chip adhesion (stick), V V V     exists.  

For the periodic motion 3i iP Y Y   where  , , , ,
T

k k k k k kx x y y tY        during N-

periods of excitation, we have 

3 3

3 3

3

, ,

,  ,

2 .

k k k k

k k k k

k k

x x x x

y y y y

t t N

 

 



 


  
  

    
                                                           (6.16) 

Using the notation in Gegg et al. (2008), a generalized mapping is 

             2 1 0 1012 11

2 3 4 2 3 4

terms

m m mj j j jj j

m

P P P P P P P



     


                              (6.17) 

see Fig. 20(b).  The periodic motion for the foregoing mapping requires 

3 .k m kP Y Y                                                      (6.18) 
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(a)  

 

(b)  

 

Fig. 20 Non-stick periodic motion in the absolute phase plane, (a) period one 

motion , (b) period four motion . 
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The periodicity of periodic motion for the foregoing mapping is 

3 3, ,k m k k m kx x x x                                                     (6.19) 

3 3 3,  ,  2 .k m k k m k k m ky y y y t t N                                          (6.20) 

Similarly, the solution for  , ,
T

i i i iy y ty    can be determined.  Consider the mapping 

structure for periodic orbit with stick motion is 

234 2 3 4.P P P P P                                                   (6.21) 

The general mapping structure for periodic orbit with stick motion is 

                  3 2 1 0 13 1012 11

2 3 4 0 2 3 4 0

terms

m m m mj j j j j jj j

m

P P P P P P P P P



       


           (6.22) 

where    2 1 0, , 0,1l l lj j j   and  1,2, ,l m  .   0 1nP      1 1k k
n n nP P P      ( 0,2,3,4).n    

For non-stick motion, there are three possible stable motions in the two domains i  

(  2,3,4i ).  The governing equations of mapping P  (  0,2,3,4  ) are obtained 

from exact solutions presented in the appendix.   The governing equations of mapping.  

P  (  0,2,3,4  ) can be expressed by 
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where i = 0,2,3,4.   

Such periodicity relations will be used to develop the structure for prediction of 

the motion by definition of the governing equations and an appropriate solving method.  

The next chapter will establish the significance of concentrating this study on the 

switching points and interruptions of cutting motions.   
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CHAPTER VII 

NUMERICAL PREDICTIONS 

 

 

The numerical predictions of the periodic chip seizure (domain zero, y V ) and cutting 

motions for this machine-tool system, subject to a eccentricity force, is presented over a 

range of external and internal parameters.  The dynamical system parameters are  

310 ,  740 ,  630 ,eq Ns Ns
x ymm mm

e

m
d d

m
  

 

1 2 1 2 mm560 ,  10 ,  100 ,  0 ,kN kN kN Ns
x y mm mm mmk k k k d d     

 

and the external force and geometry parameters are 

3
1 2 10 ,  20 ,  0.7mm

sm V         

4 4rad,  0.1rad,  rad,       

  2 3 3 3
1 1,  10 ,  10 , 5 10 .e c eq eqA em L m X Y m X Y m              

The initial contact conditions are,  

* * * *
1 1 2 20.3941( ),  -4.4638( ),  0.3710( ), -3.2244( ).x mm y mm x mm y mm       

The motions for the following parameter ranges are summarized are noted in Table 2.  

The term bifurcation will be used throughout the description of the following results.   

The definition of bifurcation according to Devaney [51,52] is “a division in two, 

a splitting apart, or a change”.  The definition of bifurcation used here is any change in 
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the mapping structure; hence a change in the state along the respective boundary.  The 

two definitions noted are similar but as the numerical results will show the term 

‘bifurcation’ not only defines a splitting of the motion, or a change, rather a combining 

of solution paths or a disappearance/appearance of a new solution branch.    

 

 

Numerical Prediction of Periodic Cutting and Chip Adhesion 

Study of Eccentricity Excitation Amplitude ( e ) 

The numerical predictions of the periodic chip seizure (domain zero, y V ) and cutting 

motions are presented over the range of eccentricity amplitude  0.0803,0.4  ( )e mm , 

see Fig. 21 and Fig. 22.   The eccentricity frequency for this parameter range is held 

constant at 200 ( )rad

s
  .  The switching phase  mod ,2it  , switching displacement 

( ty ) versus eccentricity amplitude ( )e  are illustrated in Fig. 21(a,b), respectively.  The 

most useful information is found in Fig. 22(a,b), where the switching forces 

   3 4(  and )y yF F   and switching force products    3 4( )y yF F   versus eccentricity amplitude 

( )e  are shown. The periodic motions observed through a range of eccentricity amplitude 

( )e  are 
(0(34) )

:m nP
 
0.0803,

 
0.0870 ( ),mm

 
20(34)

:P
 
0.0870,

 
0.1398 ( ),  mm 3(034) 34

:P
 

0.1398,
 

0.1406 ( ),mm
 

2(034)
 :P

 
0.1406,

 
0.1586 ( ),mm

 034 :P
 0.1586,

 0.1822 ( ),mm
 

34 :P
 0.1822,

 0.4000 ( )mm .   
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Table 2 Summary of Numerical Predictions. 

Parameter 
Boundary # 
Interaction

Pure Cutting 
Interrupted  

Cutting Fig. 

 3 0.0803( )e mm  
1[0.0803,0.4]( )mm 21, 22 

 3   23-26 

 3   27, 28 

 3 None  29-32 

 3 None  33-36 

1. 

 
; 

2. 

 
; 

3. 

; 

4. 

; 

5. 

  

  

  

 

  

  
 

 

@ 200 ( )rad

s
e  

@ 0.1 ( )e mm  191.6 ( )rad

s
   2

191.6,1  ( )rad

s
k

@  200 ( )rad

s
V   30.1 ( )mm

sV   3
0,30.1  ( )mm

s

@ 200 ( )rad

s
    4

0,3

2 @  200 ( )rad

s
k    5

0,567.6  ( )kN

 (0(34) )
: 0.0803,0.0870 ( ),m nP mm  20(34)

: 0.0870,0.1398 ( ),  P mm

 3(034) 34
: 0.1398,0.1406 ( ),P mm  2(034)

: 0.1406,0.1586 ( ),P mm

 34 : 0.1586,0.4000 ( )P mm

  3

(0(34) )
: 0.1912,0.1916 *10 ( ),m n

rad

s
P  2

3

(034)
: 0.1916,0.1940 *10 ( ),  rad

s
P

  3

(0(34) )
: 0.1941,0.1969 *10 ( ),m n

rad

s
P  2

3

0(34)
: 0.1970,0.2028 *10 ( ),rad

s
P

  3

(0(34) )
: 0.2028,0.2256 *10 ( ),m n

rad

s
P   3

34 : 0.2256,1 *10 ( )rad

s
P

 2 2(0(34) )
: 16.66,17.08 ( ),mm

s
P  20(34)

: 17.08, 24.26 ( ),  mm

s
P  2(034)

: 24.26, 29.14 ( ),mm

s
P

 034 : 29.14,32.28 ( ),mm

s
P  (0(34) )

: 32.28,32.82 ( )m n

mm

s
P

 34 : 0.0000,0.2100 ,P  30(34)
: 0.2100,0.3140 ,  P  (0(34) )

: 0.3140,0.4380 ,m nP

 20(34)
 : 0.4380,0.8840 ,P  (0(34) )

: 0.8840,0.3000m nP

 34 : 0,29.40 ( ),P kN  30(34)
: 29.40, 46.80  ( ),  P kN  (0(34) )

: 46.80,74.00  ( ),m nP kN

 20(34)
 : 74.00,120.60  ( ),P kN  2(034)

: 120.60,133.20  ( ),P kN  034 : 133.20,227.60  ( ),P kN

 (0(34) )
: 227.60, 243.80  ( ),m nP kN  04 : 243.80,386.20  ( ),P kN

 2(04)
: 386.20, 405.00  ( ),P kN  (04)

: 405.00, 415.40  ( ),mP kN

 5(04)
: 415.40, 430.00  ( ),P kN  6(04)

: 430.00, 431.20  ( ),P kN

 (0(34) )
: 431.20, 486.60  ( ),m nP kN  2(340) 4

: 486.60,523.80  ( ),P kN

 2(4034043)
: 523.80,533.40  ( ),P kN  20(40) 34

: 533.40,562.00  ( ),P kN

 (0(34) )
: 562.00,567.60  ( ).m nP kN
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As can be observed, the periodic motion becomes simplified as the eccentricity 

amplitude increases.  The stick-slip combination can be forced to purely slip (non-stick) 

motion by appropriate excitation amplitude Gegg et. al. [53].  For e  0.0803 ( )mm  no 

motion intersects the discontinuity (or pure cutting occurs, no interruptions).  The lower 

extreme of the eccentricity amplitude ( )e  range exhibits complex motions pseudo-

periodic/chaotic motion.  The switching phase is observed to have a dense area of 

switching points which originate from the onset of chip adhesion.   

This qualitative observation of onset or route to unstable motion has also been 

observed in theory and experiment by Astakhov et. al. [10].  In such a study, the stability 

of a chip structure is attributed to the seizure of the work-piece chip to the tool-piece rake 

surface Astakhov et. al.[10].  Two chip structures contributed to this phenomenon are the 

continuous and fragmentary hump-backed chip.  Such chip adhesion (stick or seizure) is 

validated to occur at 0.1822 ( )e mm where added complexity in motion structure 

appears as the eccentricity amplitude e decreases, see Fig. 22(a,b).  The forces and force 

product distributions verify the onset of chip seizure (domain zero, y V ) at this point; 

where    3 4 0y yF F   .  The addition of the chip seizure dynamics induces complex 

motions which are inherently detrimental to the surface finish of the work-piece and wear 

of the tool-piece.   

Study of Eccentricity Excitation Frequency ( ) 

The numerical predictions of the periodic chip seizure (domain zero, y V ) and cutting 

motions are presented over the range of excitation frequencies 3191.6,10      ( )rad

s
,  


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 (a)  

 (b)  

Fig. 21 Numerical prediction of (a) switching phase , (b) switching 

displacement ( ) over a range of eccentricity amplitude ;  

and   

mod( , 2 )it 

ty y  ( )e 1( )cL mm

200( ).rad

s
 
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(a)  

(b)  

Fig. 22 Numerical prediction of (a) switching forces  and (b) switching 

force product  for chip seizure and cutting periodic motions over a 

range of eccentricity amplitude ;  and   

(3) (4)( , )
t ty yF F

(3) (4)( )
t ty yF F

( )e 1( )cL mm 200( ).rad

s
 
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see Fig. 23 and Fig. 24.   The eccentricity amplitude ( )e  is directly related to the 

eccentricity frequency ( ) ; hence,    2.eA em  
  

The switching phase 

 mod ,2it  , switching displacement ( ty ) versus excitation frequency ( )  are 

illustrated in Fig. 23(a,b), respectively.  The most useful information is found in Fig. 

24(a,b), where the switching forces    3 4(  and )y yF F   and switching force products 

   3 4( )y yF F   versus excitation frequency ( )  are shown.  One of the simplest periodic 

motions is observed through a range of excitation frequency   3
34 : 0.2256,1 *10 ( )rad

s
P  for 

mapping structure 34 3 4P P P  .   

Outside of these intervals the periodic motions are of period 1,2,3, etcetera and the 

interruption of cutting, chip seizure, defined by Eq.(4.17) is satisfied on the interval 

20(34)
:P  0.1970,  0.2028 3*10 ( ),rad

s
 

(0(34) )
:m nP  0.1941,  0.1969 3*10 ( ),rad

s
 2(034)

P  

: 0.1916,  0.1940  3*10 ( )rad

s
.  For  191.6 ( )rad

s  no motions intersect the discontinuity 

(or pure cutting occurs, no interruptions).  The lower extreme of the eccentricity 

frequency ( )  range exhibits complex motions which are presented in a detail view in 

Fig. 25 and Fig. 26.  The switching phase is observed to have a quite dense area of 

switching points which originate from the more simplified motion.  Since the eccentricity 

frequency ( )  continues to change, the interruptions of the motions become more 

frequent.   
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(a)  

 (b)  

Fig. 23 Numerical prediction of (a) switching phase , (b) switching 

displacement ( ) over a range of eccentricity frequency ;  and  

 

mod( , 2 )it 

ty y  ( ) 1( )cL mm

0.1( ).e mm
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(a)  

(b)  

Fig. 24 Numerical prediction of (a) switching forces  and (b) switching force 

product  for chip seizure and cutting periodic motions over a range of 

eccentricity frequency ;  and   

(3) (4)( , )
t ty yF F

(3) (4)( )
t ty yF F

( ) 1( )cL mm 0.1( ).e mm
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(a)  

 (b)  

Fig. 25 Numerical prediction (detail view) of (a) switching phase , (b) 

switching displacement ( ) over a range of eccentricity frequency ; 

 and   

mod( , 2 )it 

ty y  ( )

1( )cL mm 0.1( ).e mm
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(a)  

(b)  

Fig. 26 Numerical prediction (detail view) of (a) switching forces  and 

(b) switching force product  for chip seizure and cutting periodic 

motions over a range of eccentricity frequency ;  and   

(3) (4)( , )
t ty yF F

(3) (4)( )
t ty yF F

( ) 1( )cL mm 0.1( ).e mm
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Hence, the motions are complicated due to the interaction with chip seizure.  This 

qualitative observation has also been observed in theory and experiment by Astakhov et. 

al. [10].  Such chip seizure (domain zero, y V ) is validated to occur 

at 225.6 ( )rad

s
  where added complexity in the motion structure appears, see Fig. 

26(a,b).  The forces and force product distributions show the onset of chip seizure 

(domain zero, y V ) at this point.  The addition of the chip seizure dynamics induces 

very complex motion which is inherently detrimental to the surface finish of the work-

piece and wear of the tool-piece.  The transients associated with the entry of the tool into 

the cutting process are critical in the amount of tool wear, Chandrasekaran and Thoors 

[54].  The bifurcations observed in Fig. 23 through Fig. 26 produce transient effects 

which lead to such wear.   

Study of Chip Velocity ( V ) 

The numerical predictions of the periodic chip seizure (domain zero, y V ) and cutting 

motions are presented over the range of chip velocity V 
 
 0,32.82

 
( )mm

s
, see Fig. 27 

and Fig. 28.   The eccentricity amplitude ( )e  is set to 0.1 (mm) for remaining numerical 

predictions; hence,    2 10.eA m  
  

The switching phase  mod ,2it  , switching 

displacement ( ty ) versus chip velocity ( )V  are illustrated in Fig. 27(a,b), respectively. 

The most useful information is found in Fig. 28(a,b), where the switching forces 

   3 4(  and )y yF F   and switching force products    3 4( )y yF F   versus chip velocity ( )V  are 

shown.  The distribution of motions over the range of chip velocity ( )V  for each  
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(a)  

 (b)  

Fig. 27 Numerical prediction (detail view) of (a) switching phase , (b) 

switching displacement ( ) over a range of chip velocity ( ); 

 and   

mod( , 2 )it 

ty y  V

1( )cL mm 200( ).rad

s
 
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(a)  

(b)  

Fig. 28 Numerical prediction (detail view) of (a) switching forces  and 

(b) switching force product  for chip seizure and cutting periodic 

motions over a range of chip velocity ( );  and   

(3) (4)( , )
t ty yF F

(3) (4)( )
t ty yF F

V 1( )cL mm 200( ).rad

s
 



93 
 

mapping;  2 2(0(34) )
:P
 
16.66,

 
17.08
 
( ),mm

s  
20(34)

:P
 
17.08,

 
24.26
 
( ),mm

s  
2(034)

:P
 
24.26,

 

29.14
 
( ),mm

s  034 :P
 
29.14,

 
32.28
 
( ),mm

s  (0(34) )
:m nP
 
32.28,

 
32.82
 
( )mm

s
.   

There are no interruptions of the motion for V    32.82   ( )mm

s
; hence the 

motions are not studied.  Observe the chip seizure bifurcation at 24.26 ( ),mm

s
V   and 

the grazing (tangential or saddle-node) bifurcations at 17.08,  29.14 ( ).mm

s
V    The 

frequency of loss of contact/cutting is directly related to the cutting velocity in a 

machine-tool Chandiramani and Pothala [28].   The interruption frequency of the 

periodic motion is directly related to the eccentricity frequency ( )   and chip velocity 

( )V  in this study and is verified herein.  The tool life of cutting motions varies 

inversely with both the interruption frequency and cutting velocity Chou and Evans [55].   

The range of velocities considered herein show the complexity of the motions 

which not only increase the cutting velocity and interruption frequency, but create 

material build up on the tool rake surface (further increasing wear during major shear of 

this material). 

Study of Friction Coefficient (  ) 

The numerical predictions of the periodic chip seizure and cutting motions are presented 

over the range of chip / tool friction coefficient  0,3.0 , see Fig. 29 and Fig. 30.  The 

friction coefficient range associated with interrupted machining range from 0.33 to 2 

Chandrasekaran and Thoors [54].  The switching phase  mod ,2it  , switching 
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displacement ( ty ) versus chip stiffness  2k  are illustrated in Fig. 29(a,b), respectively.  

The most useful information is found in Fig. 30(a,b), where the switching forces 

   3 4(  and )y yF F   and switching force products    3 4( )y yF F   versus chip/tool friction 

coefficient    are shown.  The periodic motion is summarized by the mapping specific 

to the ranges noted as 34 :P
 
0.0000,

 
0.2100 , 30(34)

:P
 
0.2100,

 
0.3140 ,

 (0(34) )
:m nP
 

0.3140,
 

0.4380 ,
 

20(34)
 :P

 0.4380,
 0.8840 ,

 (0(34) )
:m nP
 
0.8840,

 
0.3000 .  For 

  3.0  the motion is not studied.   

The lower extreme of the chip stiffness range exhibits semi-stable interrupted 

cutting (no chip seizure) periodic motions transitioning to chip seizure periodic motions 

which are presented in a detail view in Fig. 31 and Fig. 32.  The switching phase is 

observed to have a dense area of switching point which originates from the more 

simplified motions.  Hence, the motions are complicated due to the introduction of chip 

seizure.  There are two chip seizure bifurcations well defined at 0.210,  0.884   and 

the grazing bifurcation at 0.314  .  Hence, the lower boundary for the semi-stable 

periodic motion is defined at 0.210   for this machine-tool system.   

The friction coefficient on the chip/tool rake surface governs the stick-slip boundary for a 

machine-tool Maity and Das [56].  A phenomenon termed chatter is well known in 

manufacturing process and is in part a result of dry friction due to the velocity dependent 

nature Vela-Martinez [17]. 
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(a)  

 (b)  

Fig. 29 Numerical prediction of (a) switching phase , (b) switching 

displacement ( ) over a range of chip / tool friction coefficient ; 

 and   

mod( , 2 )it 

ty y  ( )

1( )cL mm 200( ).rad

s
 
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(a)  

(b)  

Fig. 30 Numerical prediction of (a) switching forces  and (b) switching 

force product  for chip seizure and cutting periodic motions over a 

range of chip / tool friction coefficient ;  and   

(3) (4)( , )
t ty yF F

(3) (4)( )
t ty yF F

( ) 1( )cL mm 200( ).rad

s
 
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(a)  

 (b)  

Fig. 31 Numerical prediction (detail view) of (a) switching phase , (b) 

switching displacement ( ) over a range of chip / tool friction coefficient 

;  and   

mod( , 2 )it 

ty y 

( ) 1( )cL mm 200( ).rad

s
 
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(a)  

(b)  

Fig. 32 Numerical prediction (detail view) of (a) switching forces  and 

(b) switching force product  for stick and non-stick periodic motions 

over a range of chip / tool friction coefficient ;  and   

(3) (4)( , )
t ty yF F

(3) (4)( )
t ty yF F

( ) 1( )cL mm 200( ).rad

s
 
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Study of Chip Stiffness Coefficient ( 2k ) 

The numerical predictions of the periodic chip seizure and cutting motions are presented 

over the range of chip stiffness 3
2 191.6,10  ( )kN

mm
k     , see Fig. 33 and Fig. 34.  The 

switching phase  mod ,2it  , switching displacement ( ty ) versus chip stiffness  2k  

are illustrated in Fig. 33(a,b), respectively.  The most useful information is found in Fig. 

34(a,b), where the switching forces    3 4(  and )y yF F   and switching force products 

   3 4( )y yF F   versus chip stiffness  2k  are shown.  The periodic motion is summarized 

by the mapping specific to the ranges noted as 34 :P
 
0,

 
29.40
 
( ),kN

mm  
30(34)

:P
 
29.40,

 

46.80
 

( ),kN

mm (0(34) )
:m nP
 
46.80,

 
74.00
 

( ),kN

mm 20(34)
:P
 
74.00,

 
120.60
 

( ),kN

mm  
2(034)

:P
 

120.60,
 

133.20
 

( ),kN

mm  034 :P
 133.20,

 227.60
 

( ),kN

mm  (0(34) )
:m nP
 227.60,

 243.80
 

( ),kN

mm  04 :P
 243.80,

 386.20
 

( ),kN

mm  2(04)
:P
 386.20,

 405.00
 

( ),kN

mm  (04)
:mP
 405.00,

 

415.40
 
( ),kN

mm  5(04)
:P
 415.40,

 430.00
 
( ),kN

mm  
6(04)

:P
 430.00,

 431.20
 
( ),kN

mm  (0(34) )
:m nP
 

431.20,
 486.60

 
( ),kN

mm  
2(340) 4

:P
 486.60,

 523.80
 
( ),kN

mm  2(4034043)
:P
 523.80,

 533.40
 

( ),kN

mm  
20(40) 34

:P
 533.40,

 562.00
 

( ),kN

mm  (0(34) )
:m nP
 562.00,

 567.60
 

( ).kN

mm
  For 

e  567.60 ( )kN

mm  the motion is not studied.   

The lower extreme of the chip stiffness range exhibits complex motions which 

are presented in a detail view in Fig. 35 and Fig. 36.  The motion is quite simple until a 

chip seizure bifurcation occurs at 2 29.40,  120.60 ( )kN

mm
k   and induces complicated 

motions.  Hence, the motions are complicated due to the interaction with chip seizure.   
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 (a)  

 (b)  

Fig. 33 Numerical prediction of (a) switching phase , (b) switching 

displacement ( ) over a range of chip stiffness coefficient ;  and  

 

mod( , 2 )it 

ty y  2( )k 1( )cL mm

200( ).rad

s
 
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(a)  

(b)  

Fig. 34 Numerical prediction of (a) switching forces  and (b) switching force 

product  for stick and non-stick periodic motions over a range of chip 

stiffness coefficient ;  and   

(3) (4)( , )
t ty yF F

(3) (4)( )
t ty yF F

2( )k 1( )cL mm 200( ).rad

s
 
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(a)  

 (b)  

Fig. 35 Numerical prediction (detail view) of (a) switching phase , (b) 

switching displacement ( ) over a range of chip stiffness coefficient ; 

 and   

mod( , 2 )it 

ty y  2( )k

1( )cL mm 200( ).rad

s
 



103 
 

(a)  

(b)  

Fig. 36 Numerical prediction (detail view) of (a) switching forces  and (b) 

switching force product  for stick and non-stick periodic motions over a 

range of chip stiffness coefficient ;  and   

(3) (4)( , )
t ty yF F

(3) (4)( )
t ty yF F

2( )k 1( )cL mm 200( ).rad

s
 
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The forces and force product distributions show the onset of chip seizure at this point, 

see Fig. 36(a,b); respectively.  The grazing bifurcations occur at 

2 46.80,  74.00,  133.20 ( )kN

mm
k   which further attributes to the complexity of the 

motions.  As a result of varying the chip stiffness the natural frequencies of the machine-

tool system vary and may move towards one or more of the exciting frequencies; hence, 

the system may experience more near interruption (grazing bifurcations) possibilities due 

to the added energy.   

The excitation amplitude and frequency in discontinuous systems widely affect 

the appearance and disappearance of grazing bifurcations Gegg et. al. [57].  The 

verification of these numerical predictions will be completed in part as a sample in the 

next chapter.   
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CHAPTER VIII 

VERIFICATION OF NUMERICAL PREDICTIONS 

 

 

The numerical simulation of the periodic chip seizure and cutting motion for this 

machine-tool system subject to an eccentricity force is presented in Fig. 37-Fig. 40.  The 

dynamical system parameters are  

310 ,  740 ,  630 ,e Ns Ns
x ymm mm

eq

m
d d

m
  

 

3 2
1 2 1 2 mm560 ,  10 ,  10 ,  0 ,kN kN kN Ns

x y mm mm mmk k k k d d     
 

and the external force and geometry parameters are 

3
1 2 10 ,  20 ,  0.7mm

sm V         

4 4rad,  0.1rad,  rad,       

  2 3 3 3
1 1,  10 ,  10 , 5 10 .e c eq eqA em L m X Y m X Y m              

A regular cutting periodic motion is illustrated in Fig. 37 for 228 
 

.( )rad

s   
The 

simulations to verify the predictions of Fig. 23 and Fig. 24  are completed via the closed 

form solution.  The initial conditions for this motion are shown in Table 3.  In Fig. 37(a), 

the trajectory of the periodic motion relative to the mapping structure 34P  is illustrated. 

The switching points are noted by circular symbols ( ).  The motion in domain 

 3  is labeled by mapping 3P .  Following intersection of the frictional boundary, the 
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Table 3: Initial Conditions for Simulations of Numerical Predictions. 

       Mapping Fig.

228 1 2.2174 -1.8845 -2.2468  3.5086  37, 38 

200 1 2.2751 -1.8427 -5.5565  2.8721  39, 40 

 

motion then moves into domain  4  (labeled by mapping 4P ). To verify the switching 

ability of motion on the boundary, the forces (    3 4and y yF F  ) versus displacement ( ty ) 

and velocity ( ty ) is presented in Fig. 37(b) and Fig. 38(a), respectively. The switching 

ability condition is observed on the boundary.    Finally, the forces (    3 4 and y yF F  ) time 

history for this motion is shown in Fig. 38(b).  An interrupted cutting periodic motion is 

illustrated in Fig. 39 and Fig. 40 for .200 ( )rad

s
    In Fig. 39(a), the trajectory of the 

periodic motion relative to the mapping structure 
 20 34

P  is illustrated. The switching 

points are noted by circular symbols (  ).  The motion in domain four  4
 
and three 

 3
 
is one portion of the total response which is followed by motion in domain four 

 4
 

and three  3
 

then domain zero (chip seizure, labeled by mapping 0P ) to 

complete the period 3 (3T) motion.   

 To verify the switching ability of motion on the boundary, the forces switching 

ability conditions are observed on the boundary.  Finally, the forces    3 4(  and )y yF F   

   3 4(  and )y yF F   versus displacement ( ty ) and velocity ( ty ) is presented in Fig. 39(b) and  

 ( )cL mm tx ty tx ty bart

-20 34P

-20 20(34)
P



107 
 

(a)  

(b)  

Fig. 37 Non-stick periodic motion ( 34P ): (a) phase trajectory in phase 

plane , (b)  forces  versus ;  and  

 

 

( , )t ty y (3) (4)( , )
t ty yF F ( )ty y  1( )cL mm

228( ).rad

s
 
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(a)  

(b)  

Fig. 38 Non-stick periodic motion ( 34P ): (a) force  versus  and 

(b) forces  time history;  and   

(3) (4)( , )
t ty yF F ( )ty y  

(3) (4)( , )
t ty yF F 1( )cL mm 228( ).rad

s
 
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(a)  

 (b)  

Fig. 39 Non-stick periodic motion ( ): (a) phase trajectory in phase 

plane , b)  velocity  time history;  and   

 20 34
P

( , )t ty y ( )ty y   1( )cL mm 200( ).rad

s
 
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(a)   

(b)  

Fig. 40 Non-stick periodic motion ( ): (a) force  versus  

and (b) forces  time history;  and   

 

 

 20 34
P (3) (4)( , )

t ty yF F ( )ty y  

(3) (4)( )
t ty yF F 1( )cL mm 200( ).rad

s
 
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Fig. 40(a). The time history for this motion is shown in Fig. 40(b).  Observe in Fig. 

40(a,b) the 0P  vanishes with    4 4 0
ty yF F  .  The differences between the orbits of Fig. 

38(a) and Fig. 40(a) depend on the period of the orbit and the existence of the chip 

seizure.   

As observed in Fig. 37(a) the additional loop in the center of the phase will move 

towards the frictional boundary with a variation of the excitation frequency ( ) .    

Through the reduction of the excitation frequency ( )  the orbit associated with chip 

seizure induces higher order periodic motions.  Hence, an investigation of the semi-stable 

periodic motion over a parameter range is necessary to characterize the effects that 

interactions with the chip/tool friction boundary and the chip vanishing boundary will 

have on the complexity/stability of the motions.  The next chapter is dedicated to the 

analytical prediction of semi-stable motions and the boundaries of such motions.   
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CHAPTER IX 

ANALYTICAL PREDICTIONS 

 

 

Analytical Prediction of Periodic Motions Interacting with Boundary 3 

Given the set of equations in Eq.(6.8) and Eq.(6.9) and a proper initial solution set the 

system of equations defining the interrupted cutting periodic motion can be solved 

through traditional numerical techniques.  The cutting motion is affected by various 

parameters of the machine-tool system.  The following are the results of the prediction 

routine described in Chapter VI (Solution Structure and Prediction Routine).  A summary 

of the specific mappings and parameter ranges are in Table 4.  The first parameter 

studied is the absolute amplitude of the excitation force (normalized eccentricity 

amplitude).   

Study of Excitation Amplitude ( ) 

The numerical and analytical predictions of the interrupted periodic cutting motions for 

this machine-tool system with an excitation force, is presented over the range of 

excitation amplitude  322.5,1A k .  The dynamical system parameters are  

74 ,  63 ,Ns Ns
x ymm mmd d   

1 2 1 2 mm56 ,  0.1 , 10 , 0 ,MN kNkN Ns
x y mm mm mm

k k k k d d       

and the external force and geometry parameters are 

3 3
,1 2 10 ,  0.7,  1.0 10 ,  20 mm

c s
m L m V           

A
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Table 4 Summary of Numerical and Analytical Prediction of . 

Range of  
Parameter 

Boundary # 
Interaction

Pure Cutting 
Interrupted  

Cutting Fig. 

@ 200( )rad

s
A    3   41, 42 

 3   43, 44 

 3 see note 45, 46 

 3   47, 48 

@ 400( )rad

s
V    3   49, 50 

 3 None  51, 52 

 3 None  53, 54 

 3 None  55, 56 

 3   57, 58 

Note:  

 
 
 

4 4rad,  0.1rad,  rad,       

3 3
1 1 10 , 5 10 .eq eqX Y m X Y m       

The switching phase  mod ,2it  , switching displacement ( ty ) versus excitation 

amplitude ( FA A m ) are illustrated in Fig. 41(a,b) for 200 ( )rad
s  , respectively.  

The numerical and analytical predictions are illustrated by the solid black line ( ) and 

triangular symbol ( )  in Fig. 41; respectively.  The most useful information is found in 

34P

322.5A   322.5,1k

@ 400( )rad

s
A   319.0A   319.0,1k

@ 500A   379.0,484.4 ( )rad
s

@  200( )rad

s
V   30.1( )mm

sV   0,30.1 ( )mm
s

31.2( )mm

s
V   0,31.2 ( )mm

s

@  200( )rad

s
    0,3

@  400( )rad

s
    0,3

2 @  200( )rad

s
k    0,100 ( )kN

mm

2 @  400( )rad

s
k   2 24.25( )kN

mm
k   0,24.25 ( )kN

mm

379.0( ) and 484.4( ).rad rad
s s   
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Fig. 42(a,b), where the switching forces (    3 4and y yF F  ) and switching force products 

   3 4( )y yF F   versus excitation amplitude ( A ) are shown.  

The dominant motion thru the range of excitation amplitude  322.5,1A k  is 

34 3 4P P P  .  For 322.5A   the chip travels along the tool rake face faster than the tool; 

hence, pure cutting occurs.  The predictions are completed via the closed form solution to 

Eq.(2.20).  The contact conditions are,  

* 3 * 3
1 10.3941 10 ,  -4.4638 10 ,x m y m      * 3 * 3

2 20.2720 10 , -2.9126 10 .x m y m      

Additional interruptions are noted with an excitation frequency of 400 ( )rad
s  .  The 

switching phase  mod ,2it  , switching displacement ( ty ) versus excitation amplitude 

( A ) are illustrated in Fig. 43(a,b), respectively.  Figure Fig. 44(a,b), illustrates the 

switching forces    3 4(  and )y yF F   and switching force products    3 4( )y yF F   versus 

excitation amplitude ( A ) are shown. The periodic motions observed thru a range of 

excitation amplitude  319,1A k
 
are 34 3 4P P P  .  For 319A  the chip velocity travels 

along the tool rake face faster than the tool; hence, pure cutting occurs and no 

interruptions altered the dynamics of the cutting process.  At this point, the grazing of the 

chip/tool friction boundary occurs and creates a potentially unstable orbit for the 

machine-tool.  The excitation amplitude and frequency in discontinuous systems widely 

affect the appearance and disappearance of grazing bifurcations Gegg et. al. [31].  The 

excitation frequency ( ) will be studied in the next section for the effects on the 

34 3 4P P P   motion.  The chip stiffness coefficient ( )  will be studied in the next 

section. 
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(a)  

(b)  

Fig. 41 Numerical and analytical predictions of (a) switching phase , 

(b) switching displacement  for interrupted periodic motions over a range 

of excitation amplitude ;  and   

mod( , 2 )it 

( )ty y 

( )A 1( )cL mm 200( ).rad

s
 
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(a)  

(b)  

Fig. 42 Numerical and analytical predictions of (a) switching forces  

and (b) switching force product for interrupted periodic motions over 

a range of excitation amplitude ;  and   

(3) (4)( , )
t ty yF F

(3) (4)( )
t ty yF F

( )A 1( )cL mm 200( ).rad

s
 
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(a)  

(b)  

Fig. 43 Numerical and analytical predictions of (a) switching phase , 

(b) switching displacement  for interrupted periodic motions over a range 

of excitation amplitudes ;  and   

mod( , 2 )it 

( )ty y 

( )A 1( )cL mm 400( ).rad

s
 
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(a)  

(b)  

Fig. 44 Numerical and analytical predictions of (a) switching forces  

and (b) switching force product  for interrupted periodic motions over 

a range of excitation amplitudes ;  and   

(3) (4)( , )
t ty yF F

(3) (4)( )
t ty yF F

( )A 1( )cL mm 400( ).rad

s
 
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Study of Excitation Frequency ( ) 

The numerical and analytical predictions of the interrupted periodic cutting motions for 

this machine-tool system with an excitation force, is presented over the range of 

excitation frequencies  379.0,484.4  ( )rad
s .  The external force and geometry 

parameters are 

2500,  20 ,  0.7,  100 .kNmm
s mm

A V k      

The switching phase  mod ,2it  , switching displacement ( )ty  versus excitation 

frequency ( )  are illustrated in Fig. 45(a,b), respectively.  The most useful information 

is found in Fig. 46(a,b), where the switching forces    3 4(  and )y yF F   and switching force 

products    3 4( )y yF F   versus excitation frequency ( ) are shown.  The periodic motions 

observed thru a range of excitation frequencies  379.0,484.4  ( )rad
s

 
is 34 3 4P P P  .   

In the neighborhood outside of the interval  379.0,484.4  ( )rad

s
  the periodic 

motions do not intersect the discontinuity (or pure cutting occurs, no interruptions).  

There are two points where the grazing motion is well defined, 397.0,  484.4 ( )rad

s
  .  

Such a phenomenon is verified by the forces products trending toward zero.  The chip 

seizure motion is also a possibility at these points.  The chip velocity ( )V  will be 

studied in the next section.     
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(a)  

(b)  

Fig. 45 Numerical and analytical predictions of (a) switching phase , 

(b) switching displacement  for interrupted periodic motions over a range 

of excitation frequencies ;  and   

mod( , 2 )it 

( )ty y 

( ) 1( )cL mm 500.A 
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(a)  

(b)  

Fig. 46 Numerical and analytical predictions of (a) switching forces  

and (b) switching force product  for interrupted periodic motions over 

a range of excitation frequencies ;  and   

 

(3) (4)( , )
t ty yF F

(3) (4)( )
t ty yF F

( ) 1( )cL mm 500.A 
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Study of Chip Velocity ( )V  

The numerical and analytical predictions of the interrupted periodic cutting motions for 

this machine-tool system with an excitation force, is presented over the range of chip 

velocities  0,30.1  ( )mm
sV  .  The external force parameters are 

2500,  0.7,  10 .kN

mm
A k    

The switching phase  mod ,2it  , switching displacement ( ty ) versus chip velocity 

( )V   are illustrated in Fig. 47(a,b) for 200 ( )rad
s  , respectively.  The most useful 

information is found in Fig. 48(a,b), where the switching forces    3 4(  and )y yF F   and 

switching force products    3 4( )y yF F   versus chip velocity ( V ) are shown. One of the 

simplest periodic motions is observed thru a range of chip velocities  0,30.1  ( )mm
sV 

 

for mapping structure 34 3 4P P P  .  For 30.1 ( )mm
sV   the periodic motions do not 

intersect the discontinuity (or pure cutting occurs, no interruptions); hence the velocity 

grazing boundary is noted at this point.   

Additional interruptions are noted with an excitation frequency of 400 ( )rad
s  .  

The switching phase  mod ,2it  , switching displacement ( ty ) versus chip velocity 

( )V  are illustrated in Fig. 49(a,b), respectively.  The most useful information is found 

in Fig. 50(a,b), where the switching forces (    3 4and y yF F  ) and switching force products 

   3 4( )y yF F   versus chip velocity ( )V  are shown.  One of the simplest periodic 
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 (a)  

(b)  

Fig. 47 Numerical and analytical predictions of (a) switching phase , 

(b) switching displacement  for interrupted periodic motions over a range 

of chip velocities ;  and   

mod( , 2 )it 

( )ty y 

( )V 1( )cL mm 200( ).rad

s
 
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(a)  

(b)  

Fig. 48 Numerical and analytical predictions of (a) switching forces  

and (b) switching force product  for interrupted periodic motions over 

a range of chip velocities ;  and   

(3) (4)( , )
t ty yF F

(3) (4)( )
t ty yF F

( )V 1( )cL mm 200( ).rad

s
 
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 (a)  

(b)  

Fig. 49 Numerical and analytical predictions of (a) switching phase , 

(b) switching displacement   for interrupted periodic motions over a range 

of chip velocities ;  and   

mod( , 2 )it 

( )ty y 

( )V 1( )cL mm 400( ).rad

s
 
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(a)  

(b)  

Fig. 50 Numerical and analytical predictions of (a) switching forces  

and (b) switching force product   for interrupted periodic motions 

over a range of chip velocities ;  and   

(3) (4)( , )
t ty yF F

(3) (4)( )
t ty yF F

( )V 1( )cL mm 400( ).rad

s
 
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motions is observed thru a range of chip velocities  ( ) 0,31.2  ( )mm

s
V 

 
for mapping 

structure 34 3 4P P P  .  For ( ) 31.2 ( )mm

s
V   the periodic motions do not intersect the 

discontinuity (or pure cutting occurs, no interruptions).   

The frequency of loss of contact/cutting is directly related to the cutting velocity 

in a machine-tool Chandiramani and Pothala [28].  The contribution of these results 

relates the percentage of the orbit interrupted to the chip velocity and interruption 

boundary with respect to the chip velocity.  The chip/tool friction coefficient ( )  will be 

studied in the next section.   

Study of Friction Coefficient ( )  

The numerical and analytical predictions of the interrupted periodic cutting motions for 

this machine-tool system with an excitation force, is presented over the range of friction 

coefficients  0,3 .  The external force parameters are 

2500,  20 ,  10 .mm kN

s mm
A V k     

The switching phase  mod ,2it  , switching displacement ( )ty y   versus friction 

coefficient ( )  are illustrated in Fig. 51(a,b) for 200 ( )rad
s  , respectively.  The most 

useful information is found in Fig. 52(a,b), where the switching forces    3 4(  and )y yF F   

and switching force products    3 4( )y yF F   versus friction coefficient ( ) are shown. The 

periodic motions observed thru a range of the friction coefficient  0,3
 

is 

34 3 4P P P  .   
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Additional interruptions are noted with an excitation frequency of 400 ( ).rad
s    

The switching phase  mod ,2it  , switching displacement ( ty ) versus friction 

coefficient ( ) are illustrated in Fig. 53(a,b), respectively.  The most useful information 

is found in Fig. 54(c,d), where the switching forces (    3 4and y yF F  ) and switching force 

products    3 4( )y yF F   versus friction coefficient ( ) are shown. One of the simplest 

periodic motions is observed through a range of friction coefficient  0,3
 

for 

mapping structure 34 3 4P P P  .  The chip/tool friction coefficient ( ) appears to have 

little effect on the switching phase  mod ,2it   and displacement ( )ty y  .  However, 

the switching forces    3 4(  and )y yF F   and switching force products    3 4( )y yF F   increase 

towards a more passable motion for 200 ( )rad
s   and decrease towards a possible chip 

seizure motion for 400 ( ).rad
s     

This implies the excitation frequency ( )  and the chip/tool friction coefficient 

( )  directly affect the degree of passability of this machine-tool system.  The chip 

stiffness coefficient ( 2k ) will be studied in the next section. 

Study of Chip Stiffness ( 2k ) 

The numerical and analytical predictions of the interrupted periodic cutting motions for 

this machine-tool system with an excitation force, is presented over the range of stiffness 

coefficients  2 0,100  ( )N

mm
k k .  The external force parameters are 

500,  20 ,  0.7.mm

s
A V      
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 (a)  

(b)  

Fig. 51 Numerical and analytical predictions of (a) switching phase , 

(b) switching displacement  for interrupted periodic motions over a range 

of friction coefficient ;  and   

mod( ,2 )it 

( )ty y 

( ) 1( )cL mm 200( ).rad

s
 
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(a)  

(b)  

Fig. 52 Numerical and Analytical predictions of (a) switching forces  

and (b) switching force product  for interrupted periodic motions over 

a range of friction coefficient ;  and   

(3) (4)( , )
t ty yF F

(3) (4)( )
t ty yF F

( ) 1( )cL mm 200( ).rad

s
 
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 (a)  

(b)  

Fig. 53 Numerical and Analytical predictions of (a) switching phase , 

(b) switching displacement   for interrupted periodic motions over a range 

of friction coefficient ;  and   

mod( ,2 )it 

( )ty y 

( ) 1( )cL mm 400( ).rad

s
 
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(a)  

(b)  

Fig. 54 Numerical and analytical predictions of (c) switching forces  

and (d) switching force product  for interrupted periodic motions over 

a range of friction coefficient ;  and   

(3) (4)( , )
t ty yF F

(3) (4)( )
t ty yF F

( ) 1( )cL mm 400( ).rad

s
 
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The switching phase  mod ,2it  , switching displacement ( ty ) versus chip stiffness 

coefficient ( 2k ) are illustrated in Fig. 55(a,b) for 200 ( )rad
s  , respectively.  The most 

useful information is found in Fig. 56(a,b), where the switching forces (    3 4 and y yF F  ) 

and switching force products    3 4( )y yF F   versus stiffness coefficient ( 2k ) are shown. 

One of the simplest periodic motions is observed through a range of stiffness 

 2 0,100  ( )N

mm
k k

 
for mapping structure 34 3 4P P P  .   

Additional interruptions are noted with an excitation frequency of 400 ( )rad
s  .  

The switching phase  mod ,2it  , switching displacement ( ty ) versus stiffness 

coefficient ( 2k ) are illustrated in Fig. 57(a,b), respectively.  The most useful information 

is found in Fig. 58(a,b), where the switching forces    3 4(  and )y yF F   and switching force 

products    3 4( )y yF F   versus stiffness coefficient ( 2k ) are shown.  One of the simplest 

periodic motions is observed through a range of stiffness  2 0,24.25  ( )N

mm
k k

 
for 

mapping structure 34 3 4P P P  .  The transition between cutting and ploughing action is 

affected by the stick-slip friction phenomenon Simoneau and Elbestawi [14].   

The increasing stiffness coefficient leads to such a conclusion, but the trend of 

potential stick-slip interruptions are noted to be sensitive to chip resistance and excitation 

frequency.  A claim can be directly made that for high excitation frequencies (at or above 

the highest natural frequency) the stick-slip phenomenon is more likely to occur due to 

the grazing bifurcations of the chip/tool friction boundary.  This can be attributed to the 

increase chip resistance which prevents motion in the direction of the chip shearing  
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(a)  

(b)  

Fig. 55 Numerical and analytical predictions of (a) switching phase , 

(b) switching displacement  for interrupted periodic motions over a range 

of stiffness coefficient ;  and   

mod( , 2 )it 

( )ty y 

2( )k 1( )cL mm 200( ).rad

s
 
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(a)  

(b)  

Fig. 56 Numerical and analytical predictions of (a) switching forces  

and (b) switching force product  for interrupted periodic motions over 

a range of stiffness coefficient ;  and   

(3) (4)( , )
t ty yF F

(3) (4)( )
t ty yF F

2( )k 1( )cL mm 200( ).rad

s
 
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 (a)  

(b)  

Fig. 57 Numerical and analytical predictions of (a) switching phase , 

(b) switching displacement  for interrupted periodic motions over a range 

of stiffness coefficient ;  and   

mod( , 2 )it 

( )ty y 

2( )k 1( )cL mm 400( ).rad

s
 
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(a)  

(b)  

Fig. 58 Numerical and analytical predictions of (a) switching forces  

and (b) switching force product  for interrupted periodic motions over 

a range of stiffness coefficient ;  and   

(3) (4)( , )
t ty yF F

(3) (4)( )
t ty yF F

2( )k 1( )cL mm 400( ).rad

s
 
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direction; hence, a reduction in the change of the friction force during interaction with 

the chip/tool friction boundary (boundary three).  

 

 

Analytical Prediction of Periodic Motions Interacting with Boundaries 3 and 4 

Given the set of equations in Eq.(6.8) and Eq.(6.9) and a proper initial solution set the 

system of equations defining the interrupted cutting periodic motion can be solved 

through traditional numerical techniques.  The dynamical system parameters are  

310 ,  74 ,  63 ,e Ns Ns
x ymm mm

m
d d

m
    

1 2 1 2 mm56 ,  0.1 , 10 , 0 ,MN kNkN Ns
x y mm mm mm

k k k k d d       

and the external force and geometry parameters are 

3 4
,1 2 10 ,  0.7,  1.0 10 ,  20 mm

c s
m L m V           

4 4rad,  0.1rad,  rad,       

3 3
1 1 10 , 5 10 .eq eqX Y m X Y m     

 

The summary of the parameters and their respective characteristics are noted in Table 5.  

Study of Eccentricity Amplitude ( e ) 

Consider the variation of the motion throughout the range of eccentricity amplitude 

 0.0805,0.2000  ( )e mm  for 250 ( )rad

s
  , see Fig. 59 and Fig. 60.  The switching 

phase mod( ,2 )it   and switching displacement ( )iy  versus the eccentricity amplitude ( )e   
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Table 5 Summary of Numerical and Analytical Predictions of . 

Range of  
Parameter 

Boundary 
Interactio

ns 
Pure Cutting 

Interrupted  
Cutting Fig. 

 3,4   59, 60 

 3,4   61, 62 

 3,4   63, 64 

 3,4   
 

65, 66 

 3,4   67, 68 

 3,4   69, 70 

 3,4 n.a.  71, 72 

 3,4 n.a.  73, 74 

 3,4 n.a.  75, 76 

 3,4 n.a.  77, 78 

 3,4 n.a.  79, 80 

 3,4 n.a.  81, 82 

1. ; 

2. ; 

3. ; 

4. 

 

5. ; 

6. ; 

7. ; 

8. ; 

9. ; 

10. . 

234P

@ 250( )rad

s
e  0.0805e   1

0.0805,0.2

@ 400( )rad

s
e   0.0203e   2

0.0203,0.2

@ 0.1( )e mm  191.5   3
0.1915 ,1k k

@ 0.05( )e mm  0.221k 
0.286 0.366k k  

 4
0.2210 ,0.2860k k

 0.3660 ,1k k

@ 250( )rad

s
V   50.41V   5

0,50.41

@ 340( )rad

s
V   28.62V   6

0, 28.62

@ 250( )rad

s
    7

0,3.0

@ 400( )rad

s
    7

0,3.0

2 @ 250( )rad

s
k    8

0,500k

2 @ 400( )rad

s
k    8

0,500k

@ 250( )rad
c s

L    9
0.0,1.0

@ 400( )rad
c s

L    10
0.0,1.0

   34 234: 0.0805,0.0870 ( ) and : 0.0870,0.2000 ( )P mm P mm

   34 234: 0.0203,0.0295 ( ) and : 0.0295,0.2000 ( )P mm P mm

   34 2340.1910 ,0.1945 ( ) and 0.1945 ,1 ( )rad rad

s s
P k k P k k 

   34 0.2315 ,0.2773 ( ) and 0.3660 ,0.3780 ( ),rad rad

s s
P k k k k

   
(034)

0.2773 ,0.2860 ( ) and 0.2210 ,0.2315 ( ),n

rad rad

s s
P k k k k

 234and 0.3780 ,1 ( );rad

s
P k k

   234 34: 0.00,48.90 ( ) and : 48.90,51.41 ( )mm mm

s s
P P

   234 34: 0.00,23.90 ( ) and : 23.90,28.62 ( )mm mm

s s
P P

 234 : 0,3.0 ( )mm

s
P

 234 : 0,500 ( )N

mm
P k

   234 34: 0.0,0.488 ( ) and : 0.488,1.0 ( )P mm P mm

   234 34: 0.0,0.455 ( ) and : 0.455,1.0 ( )P mm P mm
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are presented to show the expanding orbit of the motion for the mappings 34 :P
 0.0805,

 

0.0870
 

( )mm  234and :P
 0.0870,

 0.2000
 

( )mm , see Fig. 59(a,b); respectively.  The 

switching points during this periodic interrupted cutting motion allows for a very clear 

and concise tool for determining the point of bifurcation of the motion to include the 

dynamics of reducing chip length ( 2P ).  Traditional analysis, such as floquet multiplier 

method, cannot predict or establish criterion to define such a transition Gegg [47].  

Observe how the measure switching displacement ( )iy  of Fig. 41(b) grows with respect 

to increasing eccentricity amplitude ( )e ; indeed this is intuitive to linear systems.   

The validation of the predictions are shown in Fig. 60(a,b) by the switching 

forces and switching force products versus eccentricity amplitude ( )e .  Since the force 

products are shown to be greater than zero over the entire range e
 0.0805,

 0.2000
 

( )mm ; the motions are experimentally and theoretically verified.  In effort to identify the 

effects of both the eccentricity amplitude ( )e  and frequency ( ) , the eccentricity 

frequency ( )  will be adjusted appropriately.  Consider the variation of the motion 

throughout the range of eccentricity amplitude  0.0203,0.2000  ( )e mm  for 

400 ( )rad

s
  , see Fig. 61 and Fig. 62.  The switching phase mod( ,2 )it   and switching 

displacement ( )iy  versus the eccentricity amplitude ( )e  are presented to show the 

expanding orbit of the motion for the mappings 34 :P
 0.0203,

 0.0295
 
( )mm  and 234 :P  

0.0295,  0.2000  ( )mm , see Fig. 61(a,b); respectively.   
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 (a)  

(b)  

Fig. 59 Numerical and analytical predictions of (a) switching phase , 

(b) switching displacement  for interrupted periodic motions over a range 

of eccentricity amplitude ;  and   

mod( , 2 )it 

( )ty y 

( )e 0.1( )cL mm 250( ).rad

s
 
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(a)  

(b)  

Fig. 60 Numerical and analytical predictions of (a) switching forces  

and (b) switching force product  for interrupted periodic motions over 

a range of eccentricity amplitude ;  and   

(3) (4)( , )
t ty yF F

(3) (4)( )
t ty yF F

( )e 0.1( )cL mm 250( ).rad

s
 
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(a)  

(b)  

Fig. 61 Numerical and analytical predictions of (a) switching phase , 

(b) switching displacement  for interrupted periodic motions over a range 

of eccentricity amplitudes ;  and   

mod( , 2 )it 

( )ty y 

( )e 0.1( )cL mm 400( ).rad

s
 
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(a)  

(b)  

Fig. 62 Numerical and analytical predictions of (a) switching forces  

and (b) switching force product  for interrupted periodic motions over 

a range of eccentricity amplitudes ;  and   

 

(3) (4)( , )
t ty yF F

(3) (4)( )
t ty yF F

( )e 0.1( )cL mm 400( ).rad

s
 
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Observe how the measure switching displacement ( )iy  of Fig. 61(b) grows with 

respect to increasing eccentricity amplitude ( )e ; indeed this is intuitive to linear systems.   

The validation of the predictions are shown in Fig. 62(a,b) by the switching forces and 

switching force products versus eccentricity amplitude ( )e .  Since the force products are 

shown to be greater than zero over the entire range e
 0.0203,

 0.2000
 

( )mm ; the 

motions are experimentally and theoretically verified.  The change of eccentricity 

frequency seems to affect the magnitude of the switching characteristics and the grazing 

bifurcation of chip/tool friction boundary is notably lower in amplitude for the higher 

eccentricity frequency 0.0203e 
 
for 400 ( )rad

s
 

 
and 0.0805e 

 
for 250 ( ),rad

s
   

see Fig. 61 and Fig. 62.  The eccentricity frequency ( )  will be studied in the next 

section. 

Study of Eccentricity Frequency ( ) 

Consider the variation of the motion throughout the range of eccentricity frequency 
 

0.1915 ,k
 1k

 
( )rad

s
 for 0.100e   ( )mm , see Fig. 63 and Fig. 64.  The switching phase 

mod( ,2 )it   and switching displacement ( )t iy y   versus the eccentricity frequency ( )  

are presented to show the expanding orbit of the motion for the mappings 34 :P
 

 0.1910 ,0.1945k k
 
( )rad

s
 and 234 :P

  0.1945 ,1k k
 
( )rad

s
, see Fig. 63(a,b); respectively.  

Observe how the measure switching displacement ( )t iy y   of Fig. 63(b) grows with 

respect to increasing eccentricity frequency ( ) .  The validation of the predictions are 

shown in Fig. 64(a,b) by the switching forces and switching force products versus 

eccentricity frequency ( ) .  Since the force products are shown to be greater than zero 
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over the entire range 
  0.1915 ,1k k

 
( )rad

s
; the motions are numerically and 

theoretically verified.   

The grazing bifurcation of the chip/tool friction boundary is noted to appear near 

0.1915  ( )rad

s
k  .  By observation the reduction of amplitude between the natural 

frequency peaks may lead to pure cutting motions if the excitation of the system is 

reduced.  Such an occurrence is discovered by reducing the eccentricity amplitude for the 

next frequency range.   Consider the variation of the motion throughout the range of 

eccentricity frequency  0.2210 ,1 ( )rad

s
k k  for 0.050 ( )e mm , see Fig. 65 and Fig. 

66.  The switching phase mod( ,2 )it   and switching displacement ( )t iy y   versus the 

eccentricity frequency ( )  are presented to show the expanding orbit of the motion for 

the mappings 
(034)nP 

 
0.2210 ,k

 0.2315k
 

( ),rad

s
 34P 

 0.2315 ,k
 0.2773k

 
( )rad

s
, 

(034)nP 
 
 0.2773 ,0.2860k k

 
( ), rad

s  34P 
  0.3660 ,0.3780k k

 
( ),rad

s  234P 
 0.3780 ,k

 

1k
 
( );rad

s
 see Fig. 65(a,b); respectively.   

The span of eccentricity frequency 
 0.2860 ,k

 0.3660k
 

( )rad

s  
has no 

motion interacting with the chip/tool friction boundary.  Observe how the switching 

displacement ( )t iy y   of Fig. 65(b) grows with respect to increasing eccentricity 

frequency ( ) .  The validation of the predictions are shown in Fig. 66(a,b) by the 

switching forces and switching force products versus eccentricity frequency ( ) .  Since 

the force products are shown to be greater than zero over the range 
  0.3660 ,1k k

 

( )rad

s
; the motions numerically verify the theory.  However, the grazing and  
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(a)  

(b)  

Fig. 63 Numerical and analytical predictions of (a) switching phase , 

(b) switching displacement  for interrupted periodic motions over a range 

of eccentricity frequencies ;  and   

mod( , 2 )it 

( )ty y 

( ) 0.1( )cL mm 0.1( ).e mm
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(a)  

(b)  

Fig. 64 Numerical and analytical predictions of (a) switching forces (3) (4)( , )
t ty yF F  

and (b) switching force product  for interrupted periodic motions over 

a range of eccentricity frequencies ;  and   

(3) (4)( )
t ty yF F

( ) 0.1( )cL mm 0.1( ).e mm
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(a)  

(b)  

Fig. 65 Numerical and analytical predictions of (a) switching phase , 

(b) switching displacement  for interrupted periodic motions over a range 

of eccentricity frequencies ;  and   

mod( , 2 )it 

( )ty y 

( ) 0.1( )cL mm 0.05( ).e mm
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(a)  

(b)  

Fig. 66 Numerical and analytical predictions of (a) switching forces (3) (4)( , )
t ty yF F  

and (b) switching force product  for interrupted periodic motions over 

a range of eccentricity frequencies ;  and   

(3) (4)( )
t ty yF F

( ) 0.1( )cL mm 0.05( ).e mm
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chip seizure bifurcations occur in the neighborhood of    0.2210 ,k  0.2860k  and  

0.3660k  ( ).rad

s    

Depending on the excitation amplitude (e) and frequency ( )  of the external or 

self excitation, the parameter boundary of stick-slip (chip seizure-cutting motion) 

becomes bifurcated at    0.2210k  ( )rad

s  and 0.2860k  ( )rad

s  
for 0.050e   ( )mm  and 

   0.1910k  ( )rad

s  
for 0.100e   ( )mm .  A parameter boundary is a type of boundary 

defined in parameter space (dynamical system parameters) which defines the transition 

point from one type of motion to another.  In this case the parameter boundary describes 

the transition from pure cutting motion to stick-slip motion with respect to eccentricity 

frequency and amplitude ( , ),A  respectively.  This can be observed in the results 

presented in Fig. 63, Fig. 64, Fig. 65 and Fig. 66.  The chip vanishing parameter 

boundary is also shown in these results at    0.3780k  ( )rad

s  
for 0.050e   ( )mm  and 

   0.1945k  ( )rad

s  
for 0.100e   ( )mm .  A range of the chip velocity ( )V  will be 

studied in the next section.   

Study of Chip Velocity ( V ) 

Consider the variation of the motion throughout the range of chip velocity 

 0.00,51.41  ( )mm

s
V   for 0.100e   ( )mm , see Fig. 67 and Fig. 68.  The switching 

phase mod( ,2 )it   and switching displacement ( )t iy y   versus the chip velocity ( )V  

are presented to show the expanding orbit of the motion for the mappings 234 :P
 

 0.00,48.90
 

( )mm

s
 and 34 :P

  48.90,51.41
 

( )mm

s
, see Fig. 67(a,b); respectively.  

Observe  
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(a)  

(b)  

Fig. 67 Numerical and analytical predictions of (a) switching phase , 

(b) switching displacement  for interrupted periodic motions over a range 

of chip velocity ;  and   

mod( , 2 )it 

( )ty y 

( )V 0.1( )cL mm 250( ).rad

s
 
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(a)  

(b)  

Fig. 68 Numerical and analytical predictions of (a) switching forces (3) (4)( , )
t ty yF F  

and (b) switching force product  for interrupted periodic motions over 

a range of chip velocity ;  and   

(3) (4)( )
t ty yF F

( )V 0.1( )cL mm 250( ).rad

s
 
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(a)  

(b)  

Fig. 69 Numerical and analytical predictions of (a) switching phase , 

(b) switching displacement  for interrupted periodic motions over a range 

of chip velocity ;  and   

mod( , 2 )it 

( )ty y 

( )V 0.1( )cL mm 340( ).rad

s
 



155 
 

(a)  

(b)  

Fig. 70 Numerical and analytical predictions of (a) switching forces (3) (4)( , )
t ty yF F  

and (b) switching force product  for interrupted periodic motions over 

a range of chip velocity ;  and   

(3) (4)( )
t ty yF F

( )V 0.1( )cL mm 340( ).rad

s
 
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how the measure switching displacement ( )iy  of Fig. 67(b) decreases with respect to 

increasing chip velocity ( )V .  The validation of the predictions are shown in Fig. 

68(a,b) by the switching forces and switching force products versus chip velocity ( )V .   

Since the force products are shown to be greater than zero over the entire range 

 0.00,51.41 ( )mm

s
V  ; the passability of the motions are numerically and theoretically 

verified. 

Consider the variation of the motion throughout the range of chip velocity V 
 

 0.00,28.62
 

( )mm

s
 for 340 

 
( )rad

s
, see Fig. 69 and Fig. 70.  The switching phase 

mod( ,2 )it   and switching displacement ( )iy  versus the chip velocity ( )V  are 

presented to show the expanding orbit of the motion for the mappings 234 :P
 

 0.00,23.90
 

( )mm

s
 and 34 :P

  23.90,28.62
 

( )mm

s
, see Fig. 69(a,b); respectively.  

Observe how the measure switching displacement ( )t iy y   of Fig. 69(b) also decreases 

with respect to increasing chip velocity ( )V .  The validation of the predictions are 

shown in Fig. 70(a,b) by the switching forces and switching force products versus chip 

velocity ( )V .  Since the force products are shown to be greater than zero over the 

entire range  0.00,28.62 ( )mm

s
V  ; the passability of the motions are numerically and 

theoretically verified.   

The velocity range was similarly investigated with stochastic and deterministic 

cutting resistances exhibit similar distributions, but the stochastic input yields more 

chaotic results Wiercigroch and Cheng [24].  The onset of seizure is denoted by a critical 

cutting speed which is dependent on a force measurement with respect to the real and 
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apparent contact area of the interfacing surfaces Gekonade and Subramanian [58].  This 

also implies the parameter boundary of chip seizure/grazing bifurcation and chip 

vanishing varies with respect to chip velocity ( )V .  Such a chip seizure/grazing 

bifurcation parameter boundary, regarding the above results, is defined at V   51.41 

( )mm

s  
for 250   ( )rad

s
 and V   28.62  ( )mm

s  
for 340   ( )rad

s
.  The chip/tool 

friction coefficient ( )  will be studied in the next section. 

Study of Friction Coefficient ( ) 

Consider the variation of the motion throughout the range of chip/tool friction coefficient 

 
  0.0,3.0  for 0.100e 

 
( )mm

 
and 250 

 
( )rad

s
, see Fig. 71 and Fig. 72.  The 

switching phase mod( ,2 )it   and switching displacement ( )t iy y   versus the chip/tool 

friction coefficient ( )  are presented to show the expanding orbit of the motion for the 

mappings  234 : 0.0,3.0P , see Fig. 71(a,b); respectively.  Observe how the measure 

switching displacement ( )t iy y   of Fig. 71(b) grows with respect to increasing chip/tool 

friction coefficient ( ) .  The validation of the predictions are shown in Fig. 72(a,b) by 

the switching forces and switching force products versus chip/tool friction coefficient 

( ) .  Since the force products are shown to be greater than zero over the entire range 

   0.0,3.0 ; the passability of the motions are numerically and theoretically verified.   

The chip/tool friction coefficient seems to only slightly increase the force product 

and has no evident trend toward stick-slip in a reasonable range of the friction 

coefficient.  The friction coefficient range associated with interrupted machining range 

from 0.33 to 2 Chandrasekaran and Thoors [54].  Consider the variation of the  
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(a)  

(b)  

Fig. 71 Numerical and analytical predictions of (a) switching phase , 

(b) switching displacement  for interrupted periodic motions over a range 

of chip friction coefficients ;  and   

mod( , 2 )it 

( )ty y 

( ) 0.1( )cL mm 250( ).rad

s
 
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(a)  

(b)  

Fig. 72 Numerical and analytical predictions of (a) switching forces (3) (4)( , )
t ty yF F  

and (b) switching force product  for interrupted periodic motions over 

a range of chip friction coefficients ;  and   

(3) (4)( )
t ty yF F

( ) 0.1( )cL mm 250( ).rad

s
 
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(a)  

(b)  

Fig. 73 Numerical and analytical predictions of (a) switching phase , 

(b) switching displacement  for interrupted periodic motions over a range 

of chip friction coefficients ;  and   

mod( , 2 )it 

( )ty y 

( ) 0.1( )cL mm 400( ).rad

s
 
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(a)  

(b)  

Fig. 74 Numerical and analytical predictions of (a) switching forces (3) (4)( , )
t ty yF F  

and (b) switching force product  for interrupted periodic motions over 

a range of chip friction coefficients ;  and   

(3) (4)( )
t ty yF F

( ) 0.1( )cL mm 400( ).rad

s
 
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motion throughout the range of chip/tool friction coefficient  0.0,3.0  for 0.100e 
 

( )mm
 
and

 
400 

 
( )rad

s
, see Fig. 73 and Fig. 74.  The switching phase mod( ,2 )it   and 

switching displacement ( )iy  versus the chip/tool friction coefficient ( )  are presented to 

show the expanding orbit of the motion for the mappings  234 : 0.0,3.0P , see Fig. 

73(a,b); respectively.  Observe how the measure switching displacement ( )iy  of Fig. 

73(b) grows with respect to increasing chip/tool friction coefficient ( ) .   

The validation of the predictions are shown in Fig. 74(a,b) by the switching 

forces and switching force products versus chip/tool friction coefficient ( ) .  Since the 

force products are shown to be greater than zero over the entire range  0.0,3.0 ; the 

passability of the motions are numerically and theoretically verified.  Although, the force 

products remain greater than zero, the trend is towards a possibility of the stick-slip for 

400 
 
( )rad

s  
which is quite different from the results for 250 

 
( )rad

s
.  This implies 

a parameter boundary for the chip/tool friction coefficient ( )  and eccentricity 

frequency ( ) , but the current operating conditions do not exhibit such a boundary.  

Perhaps studying the chip/tool friction coefficient ( )  at a higher eccentricity frequency 

( )  would reveal this boundary.  The chip stiffness 2( )k  will be studied in the next 

section. 

Study of Chip Stiffness ( 2k ) 

Consider the variation of the motion throughout the range of chip stiffness coefficient 

2k 
  0,500k

 
( )N

mm
 for 0.100e 

 
( )mm

 
and 250 

 
( )rad

s
, see Fig. 75.  The switching  
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(a)  

(b)  

Fig. 75 Numerical and analytical predictions of (a) switching phase , 

(b) switching displacement  for interrupted periodic motions over a range 

of chip stiffness coefficients ;  and   

mod( , 2 )it 

( )ty y 

2( )k 0.1( )cL mm 250( ).rad

s
 
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(a)  

(b)  

Fig. 76 Numerical and analytical predictions of (a) switching forces (3) (4)( , )
t ty yF F  

and (b) switching force product  for interrupted periodic motions over 

a range of chip stiffness coefficients ;  and   

(3) (4)( )
t ty yF F

2( )k 0.1( )cL mm 250( ).rad

s
 
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(a)  

(b)  

Fig. 77 Numerical and analytical predictions of (a) switching phase , 

(b) switching displacement  for interrupted periodic motions over a range 

of chip stiffness coefficients ;  and   

mod( , 2 )it 

( )ty y 

2( )k 0.1( )cL mm 400( ).rad

s
 
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(a)  

(b)  

Fig. 78 Numerical and analytical predictions of (a) switching forces (3) (4)( , )
t ty yF F  

and (b) switching force product  for interrupted periodic motions over 

a range of chip stiffness coefficients ;  and   

(3) (4)( )
t ty yF F

2( )k 0.1( )cL mm 400( ).rad

s
 
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phase mod( ,2 )it   and switching displacement ( )t iy y   versus the chip stiffness 2( )k  

are presented to show the varying orbit of the motion for the mappings 234 :P
  0,500k

 

( )N

mm
, see Fig. 75(a,b); respectively.  Observe how the switching displacement ( )iy  of 

Fig. 75(b) grows with respect to increasing chip stiffness coefficient 2( )k .  The 

validation of the predictions are shown in Fig. 76(a,b) by the switching forces and 

switching force products versus chip stiffness coefficient 2( )k .  Since the force products 

are shown to be greater than zero over the entire range 2k 
  0,500k

 
( )N

mm
; the 

passability of the motions are numerically and theoretically verified.   

The switching force products express no current concern for the appearance of 

chip seizure.  Consider the variation of the motion throughout the range of chip stiffness 

coefficient 2k 
  0,500k

 
( )N

mm
 for 0.100e 

 
( )mm

 
400 

 
( )rad

s
, see Fig. 77.  The 

switching phase mod( ,2 )it   and switching displacement ( )iy  versus the chip stiffness 

coefficient 2( )k  are presented to show the apparent phase shifting or crossing of a single 

or group of natural frequencies for the mappings 234 :P
  0,500k

 
( )N

mm
, see Fig. 77(a,b); 

respectively.  This can also be described as the movement of the natural frequencies of 

the system, due to the ranging of the chip stiffness coefficient 2( )k , toward and 

eventually over, and past the eccentricity frequency ( ) .  Indeed the excitation of the 

system appears to be in part in the x -direction, since the y -direction switching points 

(see Fig. 77(b)) are reducing in amplitude.   
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 (a)  

(b)  

Fig. 79 Numerical and analytical predictions of (a) switching phase , 

(b) switching displacement  for interrupted periodic motions over a range 

of chip contact length ;  and   

mod( , 2 )it 

( )ty y 

( )cL 0.1( )e mm 250( ).rad

s
 
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(a)  

(b)  

Fig. 80 Numerical and analytical predictions of (a) switching forces (3) (4)( , )
t ty yF F  

and (b) switching force product  for interrupted periodic motions over 

a range of chip contact length ;  and   

(3) (4)( )
t ty yF F

( )cL 0.1( )e mm 250( ).rad

s
 
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(a)  

(b)  

Fig. 81 Numerical and analytical predictions of (a) switching phase , 

(b) switching displacement  for interrupted periodic motions over a range 

of chip contact length ;  and   

 

mod( , 2 )it 

( )ty y 

( )cL 0.1( )e mm 400( ).rad

s
 



171 
 

(a)  

(b)  
Fig. 82 Numerical and analytical predictions of (a) switching forces (3) (4)( , )

t ty yF F  

and (b) switching force product  for interrupted periodic motions over 

a range of chip contact length ;  and   

(3) (4)( )
t ty yF F

( )cL 0.1( )e mm 400( ).rad

s
 
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The switching forces and force products also reflect the reduction in amplitude as 

the eccentricity frequency ( )  is approached, see Fig. 78(a,b).  Since the force products 

are shown to be greater than zero over the entire range  2 0,500 ( )N

mm
k k ; the motions 

are numerically and theoretically verified to be passable through the friction boundary.  

The chip contact length ( )cL  will be studied in the next section.   

Study of Chip Contact Length ( cL ) 

Consider the variation of the motion throughout the range of chip stiffness coefficient 

cL 
  0.0,1.0

 
( )mm  for 0.100e 

 
( )mm

 
and 250 

 
( )rad

s
, see Fig. 79.  The 

switching phase mod( ,2 )it   and switching displacement ( )t iy y   versus the chip 

contact length ( )cL  are presented to show the varying orbit of the motion for the 

mappings 234 :P
  0.0,0.488

 
( )mm

 
and 34 :P

  0.488,1.0
 

( )mm , see Fig. 79(a,b); 

respectively.  Observe how the switching displacement ( )iy  of Fig. 79(b) grows with 

respect to increasing chip contact length ( )cL .  The validation of the predictions are 

shown in Fig. 80(a,b) by the switching forces and switching force products versus chip 

contact length ( )cL .  Since the force products are shown to be greater than zero over the 

entire range cL 
  0.0,1.0

 
( )mm ; the motions are numerically and theoretically 

verified.   

Consider the variation of the motion throughout the range of chip contact length 

cL 
  0.0,1.0

 
( )mm  for 0.100e 

 
( )mm

 
and 400 

 
( )rad

s
, see Fig. 81.  The 

switching phase mod( ,2 )it   and switching displacement ( )t iy y   versus the chip 
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contact length ( )cL  are presented for the mappings 234 :P
  0.0,0.455

 
( )mm

 
and 34 :P

 

 0.455,1.0
 
( )mm , see Fig. 81(a,b); respectively.  Since the force products are shown to 

be greater than zero over the entire range  0.0,1.0 ( )cL mm ; the motions are 

numerically and theoretically verified to be passable through the friction boundary.  The 

switching force products appear to affect only in the range of cL   0.488  ( )mm
 
for 

250   ( )rad

s
.  The grazing bifurcation parameter boundary for these two studies is 

defined at cL   0.488  ( )mm
 
for 250   ( )rad

s
 and cL   0.455  ( )mm

s  
for 400   

( )rad

s
.  The next chapter will verify each of the analytical predictions with one or two 

sample from each parameter range for the mappings 34 234and P P .   
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CHAPTER X 

VERIFICATION OF ANALYTICAL PREDICTIONS 

 

 

Numerical Simulations of Periodic Motions Interacting with Boundary 3 

Eccentricity Amplitude (e) 

The numerical simulation of the interrupted periodic motion for this machine-tool, 

subject to an eccentricity force, is presented in Fig. 83-Fig. 86.  The dynamical system 

parameters are  

74 ,  63 ,Ns Ns
x ymm mmd d   

1 2 1 2 mm56 ,  0.1 , 10 , 0 ,MN kNkN Ns
x y mm mm mm

k k k k d d       

and the external force and geometry parameters are 

3 3
,1 2 10 ,  0.7,  1.0 10 ,  20 mm

c s
m L m V           

4 4rad,  0.1rad,  rad,       

3 3
1 1 10 , 5 10 .eq eqX Y m X Y m       

The simulations to verify the predictions of Fig. 41 and Fig. 42 are completed via the 

closed form solution for 200 ( )rad

s
 

 
and 350,500,A 

 
see Fig. 83 and Fig. 84.  The 

initial conditions for this motion are shown in Table 6.  In Fig. 83(a), the trajectory of the 

periodic motion relative to the mapping structure 34P  is illustrated.   

The switching points are noted by circular symbols ( ).  The motion in domain 

 3  is labeled by mapping 3P  (dark and light gray shaded areas).  Following  
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Table 6 Initial Conditions for Simulations Interacting with Boundary 3. 

      Mapping Fig.

250 350 2.2591 -1.7780 -10.4344 -20 1.8573  83, 84 

250 500 2.3016 -1.7013 -7.3116 -20 1.3605  83, 84 

400 350 2.2007 -1.7574 34.7040 -20 2.4539  85, 86 

400 500 2.2371 -1.7956 24.4697 -20 2.8900  85, 86 

385 500 2.3132 -1.8570 3.9301 -20 3.7305  87, 88 

480 500 2.2343 -1.8280 8.2446 -20 4.5851  87, 88 

      Mapping Fig.

200 20 2.1775 -1.9230 -15.6561 -20 2.9863  89, 90 

200 30 2.2218 -1.8533 -17.6011 -30 2.4668  89, 90 

400 20 2.3152 -1.8840 0.5433 -20 4.2851  91, 92 

400 30 2.3009 -1.8486 19.1903 -30 3.7060  91, 92 

       Mapping Fig.

400 10 2.2007 -1.7574 34.7040 -20 2.4539  93, 94 

400 22.5 2.2610 -1.7998 28.6839 -20 2.7651  93, 94 

 
 
 
intersection of the chip/tool friction boundary, the motion then moves into domain  4  

(labeled by mapping 4P ).  To verify the switching ability of motion on the chip/tool 

friction boundary, the forces (    3 4and y yF F  ) versus velocity ( )ty y    is presented in Fig. 

83(b). The switching ability conditions are observed on the boundary.  Finally, the 

displacement ( ty y  ) and velocity ( ty y   ) time histories for this motion is shown in 

( )rad

s
 A tx ty tx ty bart

34P

34P

34P

34P

34P

34P

( )rad

s
 ( )mm

s
V tx ty tx ty bart

34P

34P

34P

34P

( )rad

s
 2 ( )kN

mm
k tx ty tx ty bart

34P

34P
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Fig. 84(a, b).  The shaded and dark shaded areas illustrate the motion in domain three 

(chip reduction, y V ).  
  
 

The simulations to verify the predictions of Fig. 43 and Fig. 44 are completed via 

the closed form solution for 400 ( ) and 350,500,rad

s
A   see Fig. 85 and Fig. 86.  In 

Fig. 85(a), the trajectory of the periodic motion relative to the mapping structure 34P  is 

illustrated. The motion in domain  3  is labeled by mapping 3P (dark and light gray 

shaded areas).  Following intersection of the frictional boundary, the motion then moves 

into domain  4  (labeled by mapping 4P ). To verify the switching ability of motion on 

the boundary, the forces (    3 4and y yF F  ) versus velocity ( ty y   ) is presented in Fig. 

85(b).  

The switching ability conditions are observed on the boundary.  Finally, the 

displacement ( ty y  ) and velocity ( ty y   ) time histories for this motion is shown in 

Fig. 86(a, b).  The shaded and dark shaded areas illustrate the motion in domain three 

(chip reduction, y V ).  The simulations for the variation of excitation amplitudes 

illustrate the intuitive understanding of the response of linear systems with respect to an 

exciting amplitude. The simulations will be completed for 385 and 480 ( )rad

s
   in the 

next section.  
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(a)  

(b)  

Fig. 83 Verification of non-stick periodic motion ( ): (a) phase trajectory in 

phase plane , (b)  forces  versus , , 

 and   

34P

( , )t ty y (3) (4)( , )
t ty yF F ( )ty y   1( )cL mm

350,500A  250( ).rad

s
 
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(a)  

(b)  

Fig. 84 Verification of non-stick periodic motion ( ): (a) displacement  

time history and (b) velocity  time history; ,  and  

 

34P ( )ty y 

( )ty y   1( )cL mm 350,500A 

250( ).rad

s
 
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 (a)  

(b)  

Fig. 85 Verification of non-stick periodic motion ( ): (a) phase trajectory in 

phase plane , (b)  forces  versus ,
 

, 

 and   

34P

( , )t ty y (3) (4)( , )
t ty yF F ( )ty y   1( )cL mm

350,500A  400( ).rad

s
 
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(a)  

(b)  

Fig. 86 Verification of non-stick periodic motion ( ): (a) displacement  

time history and (b) velocity  time history; ,  and  

 

34P ( )ty y 

( )ty y   1( )cL mm 350,500A 

400( ).rad

s
 
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Excitation Frequency ( )  

The numerical simulation of the interrupted periodic motion for this machine-tool, 

subject to an eccentricity force, is presented in Fig. 87 and Fig. 88.  The remaining 

parameters are 

  500,  20  and 0.7.mm

s
A V          

The simulations to verify the predictions of Fig. 45 and Fig. 46 are completed via the 

closed form solutions for 385, 480 
 

.( )rad

s
  The initial conditions for this motion are 

shown in Table 6.  In Fig. 87(a,b), the trajectory of the periodic motion relative to the 

mapping structure 34P  is illustrated. The motion in domain  3  is labeled by mapping 

3P  (dark and light gray shaded areas).  Following intersection of the frictional boundary, 

the motion then moves into domain  4  (labeled by mapping 4P ).  

To verify the switching ability of motion on the boundary, the forces 

(    3 4 and y yF F  ) versus velocity ( )ty y    is presented in Fig. 87(b). The switching ability 

conditions are observed on the boundary.  Finally, the displacement ( )ty y   and 

velocity ( )ty y    time histories for this motion is shown in Fig. 88(a-b).  The amplitude 

of the orbit in the phase plane not only varies from 385   to 480  , but the time the 

motion is affected by the domain three (chip reduction, y V ) parameters is notably 

longer.  The simulations will be completed for 20 and 30 ( )mm

s
V   in the next section. 
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(a)  

(b)  

Fig. 87 Verification of non-stick periodic motion ( ): (a) phase trajectory in 

phase plane , (b)  forces  versus ;  , 

 and   

34P

( , )t ty y (3) (4)( , )
t ty yF F ( )ty y   1( )cL mm

500A  385, 480( ).rad

s
 
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(a)  

(b)  

Fig. 88 Verification of non-stick periodic motion ( ): (a) displacement  

time history and (b) velocity  time history;  ,  and  

 

34P ( )ty y 

( )ty y   1( )cL mm 500A 

385, 480( ).rad

s
 
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Chip Velocity ( )V  

The numerical simulation of the interrupted periodic motion for this machine-tool, 

subject to an eccentricity force, is presented in Fig. 89 through Fig. 92.  The remaining 

parameters are 

500,  200  and 0.7.rad

s
A    

 

The simulations to verify the predictions of Fig. 89 and Fig. 90 and are completed via the 

closed form solutions for 20.0,  30.0V   ( )mm
s .  In Fig. 89(a), the trajectory of the 

periodic motion relative to the mapping structure 34P  is illustrated. The motion in domain 

 3  is labeled by mapping 3P  (dark and light gray shaded areas).   

Following intersection of the frictional boundary, the motion then moves into 

domain  4  (labeled by mapping 4P ).  To verify the switching ability of motion on the 

boundary, the forces (    3 4 and y yF F  ) versus velocity ( ty y   ) is presented in Fig. 89(b). 

The motion can be observed to intersect the frictional boundary with forces implying 

pass-ability.  Finally, the displacement ( ty y  ) and velocity ( ty y   ) time histories for 

this motion is shown in Fig. 90(a-b).  
  

The simulations to verify the predictions of Fig. 

91 and Fig. 92 are completed via the closed form solution for 400 
 
( )rad

s
, see Fig. 91 

and Fig. 92.   

In Fig. 91(a), the trajectory of the periodic motion relative to the mapping 

structure 34P  is illustrated.  The motion in domain  3  is labeled by mapping 3P  (dark  
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(a)  

(b)  

Fig. 89 Verification of non-stick periodic motion ( ): (a) phase trajectory in 

phase plane , (b)  forces  versus , , 

 and   

34P

( , )t ty y (3) (4)( , )
t ty yF F ( )ty y   1( )cL mm

20, 30( )mm

s
V    200( ).rad

s
 
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(a)  

(b)  

Fig. 90 Verification of non-stick periodic motion ( ): (a) displacement  

time history and (b) velocity  time history; , 

 and   

34P ( )ty y 

( )ty y   1( )cL mm

20, 30( )mm

s
V    200( ).rad

s
 
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 (a)  

(b)  

Fig. 91 Verification of non-stick periodic motion ( ): (a) phase trajectory in 

phase plane , (b)  forces  versus , , 

 and   

34P

( , )t ty y (3) (4)( , )
t ty yF F ( )ty y   1( )cL mm

20, 30( )mm

s
V    400( ).rad

s
 
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(a)  

(b)  

Fig. 92 Verification of non-stick periodic motion ( ): (a) displacement  

time history and (b) velocity  time history; , 

 and   

34P ( )ty y 

( )ty y   1( )cL mm

20, 30( )mm

s
V    400( ).rad

s
 
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and light gray shaded areas).  Following intersection of the frictional boundary, the 

motion then moves into domain  4  (labeled by mapping 4P ).  To verify the switching 

ability of motion on the boundary, the forces (    3 4and y yF F  ) versus velocity ( ty y   ) is 

presented in Fig. 91(b). The switching ability conditions are observed on the boundary.  

Finally, the displacement ( ty y  ) and velocity ( ty y   ) time histories for this motion is 

shown in Fig. 92(a-b).   

The grazing phenomenon is expected to occur if the chip velocity continues to 

decrease; such cases are seen for both 200,  400 
 

( ).rad

s
  The simulations will be 

completed for 2 10  and 22.5  ( )k k k N  in the next section. 

Chip Stiffness Coefficient 2( )k  

The numerical simulation of the interrupted periodic motion for this machine-tool, 

subject to an eccentricity force, is presented in Fig. 93 and Fig. 94.  The remaining 

parameters are 

500,  200 ( ) and 0.7.rad

s
A    

 

A regular cutting periodic motion is illustrated in Fig. 93 and Fig. 94 for .400 ( )rad

s
 

  

The simulations to verify the predictions of Fig. 57 and Fig. 58 are completed via the 

closed form solution.  The initial conditions for this motion are shown in Table 6.  In Fig. 

93(a), the trajectory of the periodic motion relative to the mapping structure 34P  is 

illustrated.  

The switching points are noted by circular symbols ( ).  The motion in domain 
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(a)  

(b)  

Fig. 93 Verification of non-stick periodic motion ( ): (a) phase trajectory in 

phase plane , (b)  forces  versus , , 

 and   

34P

( , )t ty y (3) (4)( , )
t ty yF F ( )ty y   1( )cL mm

2 10 , 22.5 ( )N

mm
k k k 400( ).rad

s
 
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(a)  

(b)  

Fig. 94 Verification of non-stick periodic motion ( ): (a) displacement  

time history and (b) velocity  time history; , 

 and   

 

34P ( )ty y 

( )ty y   1( )cL mm

2 10 , 22.5 ( )N

mm
k k k 400( ).rad

s
 
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 3  is labeled by mapping 3P  (dark and light gray shaded areas).  Following 

intersection of the frictional boundary, the motion then moves into domain  4  (labeled 

by mapping 4P ). To verify the switching ability of motion on the boundary, the forces 

(    3 4 and y yF F  ) versus velocity ( ty y   ) is presented in Fig. 93(b). The switching ability 

conditions are observed on the boundary.  Finally, the displacement ( ty y  ) and 

velocity ( ty y   ) time histories for this motion is shown in Fig. 94(a-b).   

The motion for 200 ( )rad

s
   will not be simulated since from the parameter 

range  the amplitude is unchanging and provides no useful insight to complications with 

the boundaries.  The next section will simulate the interrupted cutting motions with the 

mapping 234P . 

 

 

Numerical Simulations of Periodic Motions Interacting with Boundaries 3 and 4 

Further validation of the analytical predictions is the simulation of the motions by exact 

solutions presented in the appendix.  Consider the dynamical system parameters, 

310 ,  74 ,  63 ,e Ns Ns
x ymm mm

m
d d

m
    

1 2 1 2 mm56 ,  0.1 , 10 , 0 ,MN kNkN Ns
x y mm mm mm

k k k k d d       

and the external force and geometry parameters are 

3 4
,1 2 10 ,  0.7,  1.0 10 ,  20 mm

c s
m L m V           
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Table 7 Initial Conditions for Simulations of Numerical and Analytical Predictions, 

3 4 and D D . 

 
 

 
     Mapping Fig.

200 0.085 2.2534 -1.7784 -9.7667 -20 1.8532  95-97 

200 0.100 2.1921 -1.9000 -13.2679 -20 2.8487  98-100 

400 0.025 2.2915 -1.8503 10.2050 -20 3.8727  101 

400 0.040 2.3370 -1.8977 -3.3785 -20 4.3672  101 

340 0.100 2.2816 -1.8926 -54.3393 -20 4.4369  102 

400 0.100 2.4738 -2.0466 -44.5792 -20 4.7672  102 

      Mapping Fig.

250 -20 2.3800 -1.6177 -7.2599 -20 2.1500  103 

250 -40 2.3490 -1.6834 -23.8214 -40 2.6652  103 

340 -20 2.3820 -1.7608 22.9631 -20 2.7871  104 

340 -25 2.3939  -1.7815 6.4147 -25 3.0785  104 

 
      Mapping Fig.

250 0.1 2.1031 -2.0164 -2.5535 -20 4.3452  105 

250 2.0 2.0970 -2.0432 -3.1071 -20 4.6817  105 

400 0.1 2.5012 -2.0570 -4.9865 -20 4.8280  106 

400 2.0 2.4255 -2.0242 -3.4997 -20 4.6685  106 

 
      Mapping Fig.

250 150 2.2205 -2.0868 -5.4724 -20 3.8750  107  

250 400 2.1584 -2.2271 -3.0433 -20 3.7479  107  

400 50 2.3210 -1.9386 -5.8520 -20 4.6282  108 

400 500 2.2021 -1.9748 -6.0114 -20 5.6501  108 

 
      Mapping Fig.

250 0.1 2.0980 -2.0295 -2.7926 -20 4.4271  109 

250 0.4 2.0581 -2.0723 -2.9239 -20 4.4998  109 

 Route to grazing / chip seizure motion. 

( )rad

s
 e tx ty tx ty bart

34P

234P

34P

234P

234P

234P

( )rad

s
 ( )mm

s
V tx ty tx ty bart

234P

234P

234P

34P

( )rad

s
 

tx ty tx ty bart

234P

234P

234P

234P

( )rad

s
 2 ( )kN

mm
k tx ty tx ty bart

234P †

234P †

234P

234P

( )rad

s
 ( )cL mm tx ty tx ty bart

234P

234P

†
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4 4rad,  0.1rad,  rad,       

3 3
1 1, 10 , 5 10 .e

eq eq

m
A e X Y m X Y m

m
        

Eccentricity Amplitude (e) 

The specific motion first illustrated corresponds to the mapping 34P  with initial 

conditions and eccentricity amplitude (e) and frequency ( ) ; noted in Table 7, 

0.0850 ( )e mm  and 200 
 

( )rad

s
; respectively (see Fig. 95 through Fig. 97).  The 

phase plane corresponding to the measure ( )ty y   illustrating the interaction with the 

friction boundary, 20 ( )mm

s
y V   , see Fig. 95(a).  The forces versus the displacement 

( )ty y   validates the passage of motion through the friction boundary, y V , see Fig. 

95(b).  The forces time history provides an intuitive relation to understand what the 

forces are at the specific time the motion intersects the friction boundary, ( )y V , see 

Fig. 96(a).  The displacement ( )ty y   time history show in Fig. 96(b) shows no effect by 

the interaction of the friction boundary.   

An alternative view point is the forces versus the velocity ( )ty y   , which shows 

the effects of the changing friction forces at the boundary, see Fig. 97(a).  The velocity 

time history of the particle is shown directly with the friction boundary, ( )y V , see Fig. 

97(b).  Although this periodic motion experiences interrupted cutting, the interaction 

with the friction boundary is not the only concern.  The interaction with the chip 

vanishing boundary (boundary four) must be studied. Consider the periodic interrupted 

cutting motion defined by the mapping 234P  with initial conditions, eccentricity  
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(a)  

(b)  

Fig. 95 Verification of non-stick periodic motion ( ): (a) phase trajectory in 

phase plane , b)  forces  versus ,  , 

 and  250( ).rad

s
   

34P

( , )t ty y (3) (4)( , )
t ty yF F ( )ty y  0.1( )cL mm

0.085( )e mm
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(a)  

(b)  

Fig. 96 Verification of non-stick periodic motion ( ): (a) forces   

time history and (b) displacement   time history , 

 and  250( ).rad

s
   

34P (3) (4)( , )
t ty yF F

( )ty y  0.1( )cL mm

0.085( )e mm
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(a)  

(b)  

Fig. 97 Verification of non-stick periodic motion ( ): (a) forces  

versus  and (b) velocity  time history ,  

and  250( ).rad

s
   

34P (3) (4)( , )
t ty yF F

( )ty ( )ty y   0.1( )cL mm 0.085( )e mm
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amplitude (e) and frequency ( ) ; noted in Table 7, 0.100 ( )e mm  and 200 
 
( )rad

s
;  

respectively (see Fig. 98 through Fig. 100).     

Observe the motion through the phase plane where the 3P  is followed by the 

mapping 2P  (tool and work-piece contact but no cutting), see Fig. 98(a).  The 2P  (light 

gray shaded area) motion results from the chip length decreasing to zero.  Similar studies 

of this occurrence by Woon et. al. [15] illustrate the effects on the orbit of the interrupted 

cutting motions.  This can be verified by the forces  ( )i
yF  

versus displacement ( )ty y   

for each of the mappings, see Fig. 98(b).  The forces  ( )i
yF  time history clearly shows 

the growth and reduction of the forces, see Fig. 99(a).  The displacement ( )ty y   

appears to have no affects related to the 2P  interruption, besides the change of force at 

the onset of the 2P  motion, see Fig. 99(b).  Such affects could in turn delay the return of 

the cutting action.   

This change in forces  ( )i
yF  

can be verified to change with the velocity ( )ty y    

in Fig. 100(a).  The velocity ( )ty y  
 time history for this periodic motion is shown to 

illustrate the state when the motion switches to the new dynamics for each of the specific 

motions, see Fig. 100(b).   Consider the periodic interrupted cutting motion defined by 

the mapping 34 234 and P P  with initial conditions, eccentricity amplitude and frequency; 

noted in Table 7, 0.025,  0.040e   ( )mm  and 400 
 
( )rad

s
; respectively (see Fig. 101).    

Observe the motion through the phase plane where for 0.040 ( )e mm  the 3P  mapping 

is followed by the mapping 2P  (tool and work-piece contact but no cutting), see  
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(a)  

(b)  

Fig. 98 Verification of non-stick periodic motion ( ): (a) phase trajectory in 

phase plane , b)  forces  versus ,  , 

 and  250( ).rad

s
   

234P

( , )t ty y (2) (3) (4)( , , )
t t ty y yF F F ( )ty y  0.1( )cL mm

0.1( )e mm
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(a)  

(b)  

Fig. 99 Verification of non-stick periodic motion ( ): (a) forces 

 time history and (b) displacement  time history 

,  and  250( ).rad

s
   

234P

(2) (3) (4)( , , )
t t ty y yF F F ( )ty y 

0.1( )cL mm 0.1( )e mm
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(a)  

(b)  

Fig. 100 Verification of non-stick periodic motion ( ): (a) forces 

 versus  and (b) velocity  time history 

,  and  250( ).rad

s
   

234P

(2) (3) (4)( , , )
t t ty y yF F F ( )ty y   ( )ty y  

0.1( )cL mm 0.1( )e mm
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 (a)  

(b)  

Fig. 101 Verification of non-stick periodic motions ( ): (a) phase 

trajectories in phase plane , b)  forces  versus , 

,  and   

34 234,  P P

( , )t ty y (2) (3) (4)( , , )
t t ty y yF F F ( )ty y  

0.1( )cL mm 0.025,0.040( )e mm 400( ).rad

s
 
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Fig. 101(a).  This is verified by the forces  ( )i
yF  

versus displacement ( )ty y   for each 

of the mappings in Fig. 101(b); where the forces versus velocity ( )ty y   .   

Notably the eccentricity amplitudes (e) are much lower for such a high 

eccentricity frequency ( ) .   Implications of a trend to relate these parameters in two-

dimensional space are apparent.  Additionally, a limit could be found where the 

interruptions due to the friction and zero chip length boundaries have no adverse effects 

on the machine-tool system as similarly completed for the stability boundary in Gurney 

and Tobias [59].  A similar study was completed noting limit cycles and the jump 

phenomenon implying loss of contact or possibly friction chatter Vela-Martinez et. al. 

[17].  The stability boundary relating the operating frequency and depth of cut for a 

machine-tool system with regenerative cutting was also presented [17].  The simulations 

will be completed for  

340 and 400 ( )rad

s
   for 0.1 ( )e mm  

in the next section.   

Eccentricity Frequency ( )  

Consider the periodic interrupted cutting motion defined by the mapping 234P  with initial 

conditions, frequency ( )  and eccentricity amplitude ( )e , 340.0,  400.0 
 
( )rad

s
 and 

0.100e   ( )mm ; respectively (see Fig. 102).    Observe the motion through the phase 

plane where the 3P  mapping is followed by the mapping 2P  (tool and work-piece contact 

but no cutting), see Fig. 102(a).  This is verified by the forces  ( )i
yF  

versus displacement  



204 
 

(a)  

(b)  

Fig. 102 Verification of non-stick periodic motions ( ): (a) phase trajectory in 

phase plane , b)  forces  versus ,  , 

 and   

 

234P

( , )t ty y (2) (3) (4)( , , )
t t ty y yF F F ( )ty y   0.1( )cL mm

0.1( )e mm 340, 400( ).rad

s
 
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( )ty y   for each of the mappings in Fig. 102(b); where the forces  ( )i
yF  

versus velocity 

( )ty y   .  The orbit of the low eccentricity frequency 340.0 ( )rad

s
   is small compared 

to the orbit of the motion with eccentricity frequency 400.0 ( )rad

s
  .  This occurrence 

is explained by observing the natural frequencies for this machine-tool reside in two 

frequency ranges i
n 

  ( 210.0,230.0
 
and  390.0,420.0 )

 
( )rad

s  
for i = 2, 3, 4.   

The grazing bifurcation of the chip/tool friction boundary could be expected to 

appear since the amplitude of the orbits reduce with eccentricity frequency ( ) .  The 

simulations will be completed for  

20 and 40 ( )mm

s
V     for 250 ( )rad

s
   

and 

20 and 25 ( )mm

s
V     for 340 ( )rad

s
   

in the next section.    

Chip Velocity ( )V  

Consider the periodic interrupted cutting motion defined by the mapping 234P  with initial 

conditions, eccentricity frequency ( )  and chip velocity ( )V ; noted in Table 7, 

250 
 
( )rad

s
 and 20,  40V   

 
( )mm

s
; respectively (see Fig. 103).    Observe the 

motion through the phase plane where the 4P  mapping is followed by the mapping 

3 2 and P P , see Fig. 103(a).  This is verified by the forces  ( )i
yF  

versus velocity ( )ty y   , 

see Fig. 103(b), but show no potential for concern with this parameter set.  The duration 

of the non-cutting phase 2( )P  of the motion is shorter in length since the chip/tool  
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(a)  

(b)  

Fig. 103 Verification of non-stick periodic motions ( ): (a) phase trajectory in 

phase plane , b)  forces  versus ,  , 

V 
 

20, 40 
 
( )mm

s  
and   

234P

( , )t ty y (2) (3) (4)( , , )
t t ty y yF F F ( )ty y   0.1( )cL mm

250( ).rad

s
 
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(a)  

(b)  

Fig. 104 Verification of non-stick periodic motions ( ): (a) phase trajectory in 

phase plane , b)  forces  versus ,  , 

V 
 

20, 25 
 
( )mm

s  and   

234P

( , )t ty y (2) (3) (4)( , , )
t t ty y yF F F ( )ty y   0.1( )cL mm

340( ).rad

s
 
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friction boundary interaction with the orbit much lower in the phase plane.  Hence; the 

duration of the non-cutting phase 2( )P  of interrupted cutting periodic motion can be 

reduced by decreasing the chip velocity ( )V .   

Consider the periodic interrupted cutting motion defined by the mapping 

234 34 and P P  with initial conditions, eccentricity frequency ( )  and chip velocity ( )V ; 

noted in Table 7, 340 
 
( )rad

s
 and 20,  25V   

 
( )mm

s
; respectively (see Fig. 104).    

Observe the motion through the phase plane where the 4P  mapping is followed by the 

mapping 3 2 and P P , see Fig. 104(a).  This is verified by the forces  ( )i
yF  

versus velocity 

( )ty y   , see Fig. 104(b).  Drawing from the above conclusion the 34P  motion appears as 

a result of decreasing the chip velocity ( )V .  The simulations will be completed for  

0.1  and 2.0   for 250 ( )rad

s
   

and 

0.1  and 2.0   for 400 ( )rad

s
   

in the next section.    

Chip/Tool Friction Coefficient ( )  

Consider the periodic interrupted cutting motion defined by the mapping 234P  with initial 

conditions, eccentricity frequency ( )  and chip/tool friction coefficient ( ) ; noted in 

Table 7, 250 
 

( )rad

s
 and 0.1,  2.0  ; respectively (see Fig. 105).    Observe the 

motion through the phase plane where the 4P  mapping is followed by the mapping 3P  

and 2P , see Fig. 105(a).  This is verified by the forces  ( )i
yF  

versus velocity ( ),ty y    
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see Fig. 105(b).  The increase chip/tool friction coefficient ( )  profoundly affects the 

orbit and slope of the orbit at the switching point on the chip/tool friction boundary (such 

a claim is supported by the forces plane).  Consider the periodic interrupted cutting 

motion defined by the mapping 234 34and P P  with initial conditions, eccentricity 

frequency ( )
 
and chip/tool friction coefficient ( ) ; noted in Table 7, 400 ( )rad

s
   

and 0.1,  2.0  ; respectively (see Fig. 106).    Observe the motion through the phase 

plane where the 4P  mapping is followed by the mapping 3 2and P P , see Fig. 106(a).   

This is verified by the forces  ( )i
yF  

versus velocity ( )ty y   , see Fig. 106(b).  

The effects of eccentricity frequency on the orbit of the interrupted cutting motions is 

varied with respect to the chip/tool friction coefficient ( ) .  The orbit in the phase plane 

( , )y y   is smaller in amplitude for  

0.1 and 250 ( )rad

s
   

 

than the orbit for  

2.0 and 250 ( )rad

s
    .

 

However, for the orbit in the phase plane ( , )y y   is larger in amplitude for  

2.0 and 400 ( )rad

s
   

 

than the orbit for  

0.1 and 400 ( )rad

s
    .
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(a)  

(b)  

Fig. 105 Verification of non-stick periodic motions ( ): (a) phase trajectory in 

phase plane , b)  forces  versus ,  , 

 and   

234P

( , )t ty y (2) (3) (4)( , , )
t t ty y yF F F ( )ty y   0.1( )cL mm

0.1, 2.0  250( ).rad

s
 
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(a)  

(b)  

Fig. 106 Verification of non-stick periodic motions ( ): (a) phase trajectory in 

phase plane , b)  forces  versus ,  , 

 and   

234P

( , )t ty y (2) (3) (4)( , , )
t t ty y yF F F ( )ty y   0.1( )cL mm

0.1, 2.0  400( ).rad

s
 
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This observation can be summarized by the phase plane ( , )y y   orbit amplitude is 

damped more for higher eccentricity frequencies rather than lower.   

Such a qualitative description corresponds to excitation frequencies lower than 

the highest natural frequency.  The simulations will be completed for  

20 and 40 ( )mm

s
V     for 250 ( )rad

s
   

and 

20 and 25 ( )mm

s
V     for 340 ( )rad

s
   

in the next section.    

Chip Stiffness Coefficient 2( )k  

Consider the periodic interrupted cutting motion defined by the mapping 234P  with initial 

conditions, eccentricity frequency ( )  and chip stiffness 2( )k ; noted in Table 7, 

250 ( )rad

s
   and 2 150k,  400k  ( )N

mm
k  ; respectively (see Fig. 107).    Observe the 

motion through the phase plane where the 4P  mapping is followed by the mapping 

3 2 and P P , see Fig. 107(a).  This is verified by the forces  ( )i
yF  

versus velocity  ( )i
yF , 

see Fig. 107(b).  Observe how the forces in the force  ( )i
yF  

verse velocity ( )ty y  
 plane 

for 2 150k k  ( )N

mm   is nearly zero.  Such a point could possibly occur when the motion 

intersects the chip/tool friction boundary and cause a grazing bifurcation.   

The increase of chip stiffness 2( )k  corresponds to an increasing amplitude of the 

orbit in the ( , )y y   phase plane.  Consider the periodic interrupted cutting motion defined  
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(a)  

(b)  

Fig. 107 Verification of non-stick periodic motions ( ): (a) phase trajectory in 

phase plane , b)  forces  versus ,  , 

2k 
 
150 ,400k k

 
( )N

mm  and   

234P

( , )t ty y (2) (3) (4)( , , )
t t ty y yF F F ( )ty y   0.1( )cL mm

250( ).rad

s
 
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(a)  

(b)  

Fig. 108 Verification of non-stick periodic motions ( ): (a) phase trajectory in 

phase plane , b)  forces  versus ,  , 

2k 
 
50 ,500k k

 
( )N

mm  and   

234P

( , )t ty y (2) (3) (4)( , , )
t t ty y yF F F ( )ty y   0.1( )cL mm

400( ).rad

s
 
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by the mapping 234P  with initial conditions, eccentricity frequency ( )  and chip 

stiffness 2( )k ; noted in Table 7, 400 ( )rad

s
   and 2 50k,  500k  ( )N

mm
k  ; respectively 

(see Fig. 108).    Observe the motion through the phase plane where the 4P  mapping is 

followed by the mapping 3 2 and P P , see Fig. 108(a).  This is verified by the forces  ( )i
yF  

versus velocity ( )ty y   , see Fig. 108(b).  The orbit in the phase plane ( , )y y   is smaller 

for the chip stiffness,  

2 50k k  ( )N

mm
 for 400 ( )rad

s
   

than  

2 500k k  ( )N

mm
 for 400 ( )rad

s
   

and the eccentricity frequency has no effects to contradict this observation.   

The flank wear of a tool-piece, when comparing conventional versus interrupted 

machining mode (IMM) cutting, is typically higher for IMM and especially SS 2541Ca 

Chandrasekaran and Thoors (1994).  The simulations will be completed for  

0.1,  0.4  ( )cL mm  for 250 ( )rad

s
   

in the next section.    

Chip Contact Length ( )cL  

Consider the periodic interrupted cutting motion defined by the mapping 234P  with initial 

conditions, eccentricity frequency ( )  and chip contact length ( )cL ; noted in Table 7,  
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  (a)  

(b)  

Fig. 109 Verification of non-stick periodic motions ( ): (a) phase trajectory in 

phase plane , b)  forces  versus ,  

 and   

234P

( , )t ty y (2) (3) (4)( , , )
t t ty y yF F F ( )ty y  

0.1, 0.4( )cL mm 250( ).rad

s
 
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250 ( )rad

s
   and 0.1,  0.4  ( )cL mm ; respectively (see Fig. 107).    Observe the motion 

through the phase plane where the 4P  mapping is followed by the mapping 3 2and P P , 

see Fig. 107(a).  This is verified by the forces  ( )i
yF  

versus velocity ( )ty y   , see Fig. 

107(b).  The increase chip contact length corresponds to an increased orbit in the phase 

plane.  The effects of increased contact length are not significant since the typically 

observed characteristics of chip formation and dynamics are results of the continuous 

systems; hence, the contact length has no profound effect on the interaction of the 

boundaries considered herein due to the linear nature.  Such effects are outside the scope 

of this study.  The chip contact length and cutting depth models are validated through 

high speed micro-photography for interrupted cutting Sutter (2005).  The summary / 

conclusion of this study is presented forthcoming.   
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CHAPTER XI 

SUMMARY / CONCLUSIONS 

 

 

Summation 

Throughout this study the application of discontinuous systems theory by Luo [1] has 

been applied to a machine-tool analogy model.  Such an application is the first among 

literature to completely define the pass-ability of motion for each of the boundaries 

considered to be fundamental to the machining process.  These boundaries are: the 

tool/work-piece contact/impact boundary, the onset / disappearance of cutting boundary, 

the chip/tool friction boundary and the chip vanishing boundary.  The discontinuous 

systems theory has well defined the necessary and sufficient conditions for the pass-

ability of the motion.  The definitions of the appropriate phase planes for this machine-

tool system were developed to analyze the vector fields at the boundaries of the 

continuous dynamical systems.   

The continuous dynamical systems (domains) are: the tool free running; the 

contact of the tool and work-pieces without cutting; the contact of the tool and work-

pieces with cutting, y V ; contact of the tool and work-pieces with cutting, y V ; and 

contact of the tool and work-pieces with chip seizure motion, y V .  The mappings 

were developed to complete a structure which defines the periodic motions in this 

machine-tool system.  Through this mapping structure the periodic motions and a range 

of internal and external dynamics were predicted numerically and analytically.  The 



219 
 

extremes of this range illustrate the complex interactions of the continuous systems at the 

boundaries of these domains.  This phenomenon is the stage for future research of this 

machine-tool system.   

The analytical predictions of the cutting action for six system parameters: 

eccentricity/excitation amplitude (e/A), eccentricity frequency ( ) , chip velocity ( )V , 

chip stiffness 2( )k , chip/tool friction coefficient ( )  and chip contact length ( )cL .  The 

causes of interruptions of the periodic orbit by the chip seizure (stick motion) and 

grazing bifurcations of the frictional boundary (velocity boundary) being dominant 

routes to unstable motions in this machining system are well defined.  The numerical 

predictions of Chapter VII define parameter boundaries for the chip seizure 

appearance/disappearance.  Interruptions due to the chip/tool frictional force are 

dependent on critical values of the parameters; where, the eccentricity amplitude ( )e  has 

a lower boundary.  The eccentricity frequency ( )  has an upper and lower boundary; the 

chip velocity ( )V  has and upper boundary; the friction coefficient ( )  has apparent 

boundary noting semi-stable motion; and the chip stiffness 2( )k  has a value dependent 

upon the eccentricity frequency ( ) .   

These critical values define the boundaries in the six parameter space 

2( ,  ,  ,  ,  ,  )cA V k L   for the interrupted cutting periodic motion.  Observing how the 

dynamics of the periodic cutting motions vary with respect to parameters shows a trend 

about the sensitivity of the motions to the parameters investigated herein.  The dynamics 

of the machine tool in the cutting process is described through a two degree of freedom 
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oscillator with a discontinuity, subject to a periodical force input. The analytical 

solutions for the switching-ability of motion on the discontinuity are presented.  The 

phase trajectory, velocity, and force responses are presented.  

The switch ability of motion on the discontinuous boundary is illustrated through 

force distribution and force product on the boundary.  The following conclusions are 

quantifiably verified in the predictions and simulations of the six parameter space 

studied.   

 

 

Claims 

The first parameter studied herein was the numerical prediction of the excitation 

amplitude (A).  The periodic motion for this parameter was simplified as the eccentricity 

amplitude was increased.  As observed in a different study the stick-slip combination was 

forced to purely slip (non-stick, cutting) motion by an appropriate amplitude Gegg et. al. 

[53].  For e  0.0803 ( )mm  no motion intersected the discontinuity (or pure cutting 

occurs, no interruptions).  The lower extreme of the eccentricity amplitude ( )e  range 

exhibited complex motions, such as pseudo-periodic/chaotic motion.   

Such complexity trends are attributed to the susceptibility of reduced operating 

contact forces, thus allowing the chip/tool friction boundary to have increased effects.  

This is obvious by studding the definition of chip seizure motion defined herein as a 

negative force product at the switching point.  The switching phase was observed to have 

a dense area of switching points which originated from the onset of chip seizure.  Such 
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chip adhesion (seizure) is validated to occur at 0.1822 ( )e mm  for 200 ( )rad

s
   

where added complexity in motion structure appeared as the eccentricity amplitude (e) 

decreased, see Fig. 22(a,b).  Such an observation is concluded to be a route to chaos / 

unstable motions; which then leads to increased tool wear. 

The numerical prediction of the eccentricity frequency ( )  illustrated a different 

type of complexity due to the chip seizure motion.  The moment the chip seizure motion 

appeared the chaotic / unstable motion immediately appeared, not the route to chaotic / 

unstable motion.  Although the evolution of the motion is different from the study of 

eccentricity amplitude ( )e , the onset of the complex motion is caused again by the 

appearance of chip seizure.  Such chip seizure (domain zero, y V ) is validated to occur 

at 225.6 ( )rad

s
   and 0.1 ( )e mm , see Fig. 26(a,b).  The numerical predictions of chip 

velocity ( )V  illustrate the route to chaos / semi-stable motion also.   

As a result of the reducing chip velocity ( )V , the contact switching forces 

oppose each other more readily, thus explaining the increased complexity at lower 

values.   An obvious conclusion from these results is if the relative velocity of the chip 

and tool rake motion is high the appearance of chip seizure can be avoided.  In addition 

the frictional coefficient must remain low; which is verified by the study of the chip/tool 

friction coefficient ( ) .  For this range there are two chip seizure bifurcations for 

200 ( )rad

s
   well defined at 0.210,  0.884   is concluded as the route to chaos / 

unstable motion for this machine-tool system, see Fig. 32.  The grazing bifurcation at 

0.314   immediately induces chaos / unstable motion.   
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The major difference between the opposing vector fields at the chip/tool friction 

boundary is the force due to friction, and not necessarily the stiffness and damping 

parameters.  Hence, the larger the chip/tool friction coefficient the chip seizure motion 

will be more apparent.  The numerical prediction of chip stiffness 2( )k  leads to a similar 

conclusion that the motions were complicated due to the interaction with chip seizure, 

see Fig. 36.  The grazing bifurcations occur at 2 46.80,  74.00,  133.20 ( )kN

mm
k   for 

200 ( )rad

s
   which further attributes to the complexity of the motions.  As a result of 

varying the chip stiffness the natural frequencies of the machine-tool system vary and 

move towards one or more of the exciting frequencies; hence, the system experienced 

more near interruption (grazing bifurcations) possibilities due to the added energy.   

The numerical predictions were extended to include the additional verification of 

analytical prediction.  The prediction with regard to boundary three (chip/tool friction 

boundary) began with the excitation amplitude (A).  This study noted parameter 

boundaries for both excitation amplitude (A) and excitation frequency ( ) , see Fig. 46.  

The chip seizure appearance parameter boundary is observed to vary with frequency and 

amplitude of excitation; which infers the energy input from the natural characteristics of 

the system affect the contact forces and tool velocities.  Hence, the chip seizure can be 

avoided if these boundaries are noted and effective manipulation or control is completed.   

The chip velocity ( )V  directly governs the amount of interruption such a 

boundary as the chip/tool friction boundary will have on the motion.  The chip velocity 

( )V  also exhibits a pure cutting parameter boundary with the chip/tool friction 
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interaction is noted to be dependent on the natural frequency characteristics of the 

machine-tool system, see Fig. 50.  Similarly, an increasing stiffness coefficient 2( )k  leads 

to a trend of potential stick-slip interruptions noted to be sensitive to chip resistance 2( )k  

and excitation frequency ( ) , see Fig. 56 and Fig. 58.  A claim can be directly made that 

for high excitation frequencies (at or above the highest natural frequency) the chip 

seizure phenomenon is more likely to occur due to the grazing bifurcations of the 

chip/tool friction boundary.  This can be attributed to the increase of chip resistance 

which prevents motion in the direction of the chip shearing.  Hence, a reduction in the 

friction force during interaction with the chip/tool friction boundary (boundary three).   

The chip vanishing and chip/tool friction boundaries in combination were also 

studied for the effects on the multiply connected (interaction with the chip vanishing 

boundary) continuous domains of this machine-tool system.  The motion including the 

dynamics of reducing chip length ( 2P ), were studied for the several parameters.   The 

change of eccentricity frequency ( )  and amplitude ( )e  affect the magnitude of the 

switching characteristics; the grazing bifurcation of chip/tool friction boundary and the 

lower amplitude for the higher eccentricity frequency 0.0203e 
 
for 400 ( )rad

s
 

 
and 

0.0805e 
 
for 250 ( ),rad

s
   see Fig. 61 and Fig. 62.   

The eccentricity frequency ( )  showed the grazing bifurcation of the chip/tool 

friction boundary appeared at 0.1915  ( )rad

s
k  .  By observation the reduction of 

amplitude between the natural frequency peaks could have led to pure cutting motions if 

the excitation of the system were reduced.  Such an occurrence was discovered by 
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reducing the eccentricity amplitude where the grazing and chip seizure bifurcations 

occurred in the neighborhood of    0.2210 ,k  0.2860k  and  0.3660k  ( ).rad

s   

Depending on the excitation amplitude (e) and frequency ( )  of the external or self 

excitation, the parameter boundary of chip seizure-cutting motion (stick-slip) became 

bifurcated at    0.2210k  ( )rad

s  and 0.2860k  ( )rad

s  
for 0.050e   ( )mm  and   

0.1910k  ( )rad

s  
for 0.100e   ( )mm .   

In this case, the parameter boundary describes the transition from pure cutting 

motion to stick-slip motion with respect to eccentricity frequency and amplitude ( , ),A  

respectively.  This can be observed in the results presented in Fig. 63 through Fig. 66.  

The chip vanishing parameter boundary was also shown in the results at   0.3780k  

( )rad

s  
for 0.050e   ( )mm  and   0.1945k  ( )rad

s  
for 0.100e   ( )mm .  The parameter 

boundary of chip seizure/grazing bifurcation and chip vanishing varied with respect to 

chip velocity ( )V  was defined at V   51.41 ( )mm

s  
for 250   ( )rad

s
 and V   

28.62  ( )mm

s  
for 340   ( )rad

s
.  The chip stiffness coefficient 2( )k  were presented to 

show the apparent phase shifting or crossing of a single or group of natural frequencies 

for the mappings 234 :P
  0,500k

 
( )N

mm
, see Fig. 77.   

This was also described as the movement of the natural frequencies of the system, 

due to the ranging of the chip stiffness coefficient 2( )k , toward and eventually over, and 

past the eccentricity frequency ( ) .  The chip contact length ( )cL  illustrate the 

switching force products appear to be affected only in the range of cL   0.488  ( )mm
 
for 
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250   ( )rad

s
.  Hence, the chip contact length only affects the motion until the contact 

length becomes larger than the total width of the overall displacement orbit of the 

machine-tool.   

The grazing bifurcation parameter boundary for these two studies was defined at 

cL   0.488  ( )mm
 

for 250   ( )rad

s
 and cL   0.455  ( )mm

s  
for 400   ( )rad

s
.  

Analytical prediction of these solution sets is successful in comparison to the numerical 

predictions and additional solutions are also computed and verified.  As a result of this 

research, the loss of effective chip contact is observed to exist near specific points of 

excitation in this machine-tool system.  These areas are in the neighborhood of the 

natural frequencies of this system.  Further verification of the numerical and analytical 

predictions were completed for both of the analytically predicted mappings 34P  and 234P .   

The numerical simulations of analytical predictions for mapping 34P  began with 

the excitation amplitude (A).  The intuitive understanding of the response of linear 

systems with respect to an exciting amplitude, i.e. the amplitude of the displacement ( )y  

and velocity ( )y  response increased with an increase of the excitation amplitude (A) was 

observed.  The excitation frequency ( )  affected the amplitude of the orbit in the phase 

plane; which was noted to not only vary from 385   to 480  , but the time the 

motion was affected by domain three (chip reduction, y V ) parameters was extended.  

The simulation of two chip velocities ( )V  show a possible grazing phenomenon occur 

if the velocity continued to decrease; such cases were observed for both 200,  400
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( ).rad

s
  Finally, the numerical simulations of analytical predictions for mapping 234P  were 

verified first with eccentricity amplitude (e).  Implications of a trend to relate these 

parameters in two-dimensional space were apparent.   

Additionally, a limit was suggested where the interruptions due to the chip/tool 

friction and chip vanishing boundaries had no adverse effects on the machine-tool system 

as similarly completed for the stability boundary in Gurney and Tobias [59].  The orbit of 

the low eccentricity frequency 340.0 ( )rad

s
   was small compared to the orbit of the 

motion with eccentricity frequency 400.0 ( )rad

s
  .  This occurrence was explained by 

observing the natural frequencies for this machine-tool reside in two frequency ranges 

i
n 

  ( 210.0,230.0
 
and  390.0,420.0 )

 
( )rad

s  
for i = 2, 3, 4.  The grazing bifurcation of 

the chip/tool friction boundary could be expected to appear since the amplitude of the 

orbits reduced with eccentricity frequency ( ) .  The chip velocity ( )V  noted the 

duration of the non-cutting phase 2( )P  of the motion was shorter in length since the 

chip/tool friction boundary interaction with the orbit is much lower in the phase plane.   

Hence; the duration of the non-cutting phase 2( )P  of interrupted cutting periodic 

motion could be reduced by decreasing the chip velocity ( )V  or increasing the relative 

velocity between the chip and tool-piece.   Drawing from the above conclusion the 34P  

motion appeared as a result of decreased chip velocity ( )V  in Fig. 104.  The chip/tool 

friction coefficient ( )  increase profoundly affected the orbit and slope of the orbit at 

the switching point on the chip/tool friction boundary (such a claim is supported by the 
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forces plane).  The orbit in the phase plane ( , )y y   is smaller in amplitude for 

0.1 and 250 ( )rad

s
   

 
than the orbit for 2.0 and 250 ( )rad

s
    .   

However, for the orbit in the phase plane ( , )y y   was larger in amplitude for 

2.0 and 400 ( )rad

s
   

 
than the orbit for 0.1 and 400 ( )rad

s
    .  This observation 

can be summarized by the phase plane ( , )y y   orbit amplitude was damped more for 

higher rather than lower eccentricity frequencies ( ) .  Such a qualitative description 

corresponds to excitation frequencies lower than the highest natural frequency.  The chip 

stiffness coefficient 2( )k  increase corresponds to increased amplitude of the orbit in the 

( , )y y   phase plane.  The orbit in the phase plane ( , )y y   was smaller for the chip 

stiffness, 2 50k k  ( )N

mm
 for 400 ( )rad

s
 

 
than 2 500k k  ( )N

mm
 for 400 ( )rad

s
 

 
and 

the eccentricity frequency ( )  had no effects to contradict this observation.   

The chip contact length ( )cL  increase corresponds to an increased orbit in the 

phase plane ( , )y y  .  The effects of increased contact length ( )cL  were not significant 

since the typically observed characteristics of chip formation and dynamics are results of 

the continuous systems; hence, the contact length has no profound effect on the 

interaction of the boundaries considered herein due to the defined linear nature.  Such 

effects are outside the scope of this study.  Additionally, when the contact length 

becomes longer than the width of the displacement orbit; the variation of the chip contact 

length will not have a profound effect on the motion.     
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Objective Completion 

Ideal operation of a machine-tool system over a broad range of parameters exhibiting 

semi-stable / stable characteristics is the end goal of this research.  In effort to achieve 

this end, the following items were completed: 

1. This research established definitions of the underlying dynamics of interrupted 

cutting motions in a machining-system; 

2. The modeling procedure for a machine-tool system with discontinuities was 

developed; 

3. This research defined qualitative and quantitative definitions of how the semi-

stable interrupted cutting periodic motions lead to unstable motions and vice 

versa. 

The definitions of the underlying dynamics for interrupted cutting motion were 

developed through the application of discontinuous systems theory by Luo [1].  The 

pass-ability of the motion through and along the boundaries of this machine-tool model 

defined both qualitative and quantitative characteristics of the underlying dynamics.  The 

derivation of the phase planes, domains, state, force vector fields, boundary dynamics 

and switching planes lends a path for modeling of any discontinuous system of a similar 

nature.   

The mappings, mappings structures, and force conditions are the end result of this 

modeling procedure.  Although the semi-stable motions do not contain purely desirable 

traits, the boundary interactions illustrate the possibility of stable motions due simply to 

the interaction.  As noted in this dissertation, existing studies dominantly refer to the 

wear and maintenance issues are controllable if the underlying dynamics are completely 
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understood.  Hence; this research completes the main objective by contributing an 

accurate method for interactions of a machine-tool model with various boundaries.     

 

 

Research Pathway Completion and Extension  

Although this research analyzes a machine-tool system inspired by the work of Wu and 

Liu  [19,20] and Grabec [23,27], the model studied herein is more comprehensive in the 

number of boundaries considered.  Hence, this machine-tool model herein is established 

as unique in nature and focus of study.  Specifically, the research path of this dissertation 

begins with the application of discontinuous systems by Luo [1] to investigate a 

machine-tool system.  This step was completed in Chapters I-IV, with many examples of 

equation breakdown and motion specific phenomena.  The criteria for the interrupted 

cutting periodic motions was developed through the state and mapping forms for the four 

boundaries defined herein (Chapter IV).   

 The mappings for the specific motions considered herein are defined with 

simulated cases (Chapter V).  The numerical and analytical prediction of solutions 

structure routine is developed for three specific types of interrupted cutting periodic 

motion (Chapter VI).  The application of the prediction routines begin with numerical 

predictions of Chapter VII for various parameters.  The analytical validation of 

numerically predicted interrupted cutting periodic motions is completed for two types of 

motions in Chapter IX.  Additional verification of this analytically and numerically 

predicted motion is completed by numerical simulation in Chapters VIII and X.   

Specific to the phenomenon defined, predicted and observed herein are the near 



230 
 

interruption (grazing bifurcation) of cutting in the machine-tool system.   

 The chip and tool-piece seizure in the machine-tool system is also defined, 

predicted and observed specifically to induce route to unstable, pseudo-chaotic or chaotic 

motions in the machine-tool.  The tasks noted at the beginning of this dissertation have 

been fulfilled beyond initial expectations and have led to qualitative and quantitative 

definitions of the underlying dynamics for this machine-tool system.  These definitions 

are observed, noted, but not developed fully in literature; herein lays the significance.   
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APPENDIX 
 

 

Discontinuous Systems Theory 

For a general discontinuous system, consider a planar, dynamic system consisting of n-

dynamic sub-systems in a universal domain 2 , divided into n accessible sub-

domains i ; and the union of all the accessible sub-domains 
1

n

ii
 , see Fig.A 1.  On 

the ith sub-domain, there is a continuous system in the form of  

         , , , , ( , , ),   ,
Ti i

i i it t x y    x F x μ π f x μ g x π x                    (A1) 

where  1 2,
T

g gg  is a bounded, periodic vector function with period T and a parameter 

vector  1 2, ,
T m

m   π  . Notice that the superscript “T” represents the transpose.  

The vector field        2
1 2,

T
i i if f f  with parameter vectors 

 1 2, , ,
T n

i i i in   μ   is rC -continuous ( 2r  ).  The boundary dynamics will be 

presented in the next section.  In all the accessible sub-domains i , the dynamical 

system in Eq.(A1) is continuous and the corresponding continuous flow is 

          0 , , ,i i i
it t tx Φ x μ π  with           0 0 0, , ,i i i

it t tx Φ x μ π   accordingly.  Figure 

A1 illustrates the connectable domains and the existence of an interface between the 

dynamic systems  and , where  and  are the bounds of sub-

domains and bounds of the universal domain, respectively.   

i j
1

ijS  1S 
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x

y 

1
ijS   

1S   

i  

j  

 

Fig.A 1 Phase space: connectable domain. 

 
 
 

It is assumed, that the following conditions hold for the non-smooth dynamic 

system theory  

A1: The switching between two adjacent sub-systems possesses time-continuity. 

A2: For an unbounded, accessible sub-domain i , the corresponding vector field 

and flows are bounded in any bounded domain i   , i.e., there exist constant 

1 2 and K K  such that 

 
1

i K f g  on i ,  and       2 const  for 0, .i K t  Φ                     (A2) 

A3: For a bounded, accessible domain i , the corresponding vector field is 

bounded, but the flow may be unbounded in the bounded domain i   , i.e., 
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   1 consti K f g  on i ,  and     for 0, .i t  Φ                      (A3) 

The boundary set in the 2-D phase space is defined as 

      1, ,  satisfying  , 0 ,ij i j ijx y x y x y                       (A4) 

see Fig.A 2.  Generally, ij  is a curve, which satisfies  , 0ij x y   for some ij .  The 

boundary set is a definition of the discontinuity and therefore the focal point.   

The intersection and exiting of motion to and from the boundary set, respectively, 

exists in many forms and fashions.  As in Luo [1], the real and imaginary flows concepts 

or intersecting and exiting the boundary set, are re-stated herein. The termed real flow, or 

actual motion,    i
i tx  in i  is governed by a dynamical system on its own domain;  

             2, , , ,  , ,
T

i i i i i i
i i i i i i it x y   x F x μ π x                        (A5) 

with the initial conditions 

          0 0 0, , , .i i i
i i it t tx Φ x μ π                                              (A6) 

The subscript and superscript on the    i
i tx  denotes the flow in the thi  sub-domain i , 

governed by a dynamical system defined on the thi  sub-domain i .  Consider the thj  

imaginary flow in the -domain  is a flow in  governed by the dynamical system 

defined on the -sub-domain .  

thi i i

thj j
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x

y 

i  

j  

ij i j     

 

Fig.A 2 Sub-domains i  and j , and  the corresponding boundary ij . 

 
 
 

The flow is not a real one governed by the non-smooth dynamical system, thus 

this flow is also termed the imaginary flow, or imaginary motion, in this sense; i.e., 

             2, , , ,  , ,
T

j j j j j j
i i j i i i it x y   x F x μ π x                          (A7) 

with the initial conditions 

          0 0 0, , , .j j j
i i jt t tx Φ x μ π                                          (A8) 

The difference in the subscript and superscript on x denote such imaginary flow or 

application of the adjacent domain dynamic system parameters for computation of flow.  

The flow intersecting the boundary set utilizes the definitions of real and imaginary flow 

to define the existence of passage through the boundary set.  The motion approaching 

and exiting the discontinuous boundary in the sub-domains for a semi-passable boundary 
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set ij


 from the domain i  to j  convex to j  is illustrated in Fig.A 3.  The motion in 

a semi-passable boundary set ij


 from the domain i  to j  convex to i  is illustrated 

in Fig.A 4.   

The curvature is denoted for the most general case and not particular to the results 

or specific model presented herein.  The non-empty boundary set ij  is semi-passable 

from the domain i  to j
 
if and only if 

       
       

either 0 and 0 for  convex to ,

or      0 and 0 for  convex to 

ij ij

ij ij

T T
i m j m ij j

T T
i m j m ij i

t t

t t

 

 

   

   

    


    

n F n F

n F n F

 

 
    

  (A9) 

which simplifies to 

         0
ij ij

T T
i m j mt t 

   
       n F n F  ,                               (A10) 

with        , , ,i m m it t 
 F F x μ π  and        , , ,j m m jt t 

 F F x μ π  and the normal 

vector of the boundary ij  is 

 ,

, .
ij

m m

T

ij ij
ij

x y
x y

 


  
      

n                                      (A11) 

Since the semi passable boundary sets have been discussed the non-passable 

boundary sets will be developed.  One type of non-passable boundary set is a sink 

boundary.  In the traditional sense a sink is a point rather than a boundary.  The length of 

the sink boundary depends on the initial conditions and parameters of the non-smooth 

system.   The non-empty boundary set  is a non-passable boundary of the first kind 

if only if  

ij
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Fig.A 3Semi-passable boundary set ij


 from the domain i  to j  convex to j . 
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Fig.A 4 Semi-passable boundary set ij


 from the domain i  to j  convex to 

i . 
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Fig.A 5 Non-passable boundary set  
ij ij ij    the sink boundary. 

 
 

                              (A12) 

where        , , ,m mt t 
  F F x μ π  and        , , ,m mt t 

  F F x μ π , see Fig.A 5.  The 

proof of the theorems presented herein can be referred to in Luo [1,41].   

 

 

Machine-Tool System Parameters 

The dynamical system parameters for the machine-tool system in, the case the tool does 

not contact the work-piece, domain 1  are 

(1) (1) (1) (1)1 1
11 12 21 22,  0,  ;

eq eqx ym mD d D D D d                                  (A13) 

        0
ij ij

i jT T
i m j mt t   

       n F n F 
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2 2

(1) (1) (1) (1)1 1
11 12 21 22,  0,  ;

eq eq
x ym m

K k K K K k
 

                               (A14) 

and 

(1) (1) (1) (1) 0.x y x yC C A A                                             (A15) 

The dynamical system parameters for this machine-tool system in, the case the tool 

contacts the work-piece where no cutting occurs, domain 2  are 

(2) 2 (2)1 1
11 1 12 1

(2) (2) 21 1
21 1 22 1

[ sin ],  cos sin ,

cos sin ,  [ cos ];

eq eq

eq eq

xm m

ym m

D d d D d

D d D d d

  

  

 

 

    


    
                      (A16) 

2 2

2 2

(2) 2 (2)1 1
11 1 12 1

(2) (2) 21 1
21 1 22 1

[ sin ],  cos sin ,

cos sin ,  [ cos ];

eq eq

eq eq

xm m

ym m

K k k K k

K k K k k

  

  

 

 

    


    

                    (A17) 

and 

2

2

(2) * *1
1 1 1

(2) * *1
1 1 1

(2) (2)
2 2

{ [ sin cos ]sin ,

{ [ sin cos ]cos ,

sin ,  cos .

eq

eq

x m

y m

x y
eq eq

C k x y

C k x y

A AA A
m m

  

  

 





 

  



    

                               (A18) 

The amplitude A  is the force amplitude, such as an eccentricity force.  The dynamical 

system parameters for this machine-tool system in, the case the tool contacts the work-

piece and cutting occurs where 40 and 0z D  , domain 3  and 0z  , domain 4 ; 
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 

 

1( ) 21
11 1 2

1( ) 1
12 1 2

[ sin cos (cos sin )],1

[ cos sin sin (cos sin )],1

eq

eq

jj
xm

jj
m

D d d d

D d d

    

     







     


     
                    (A19) 

 

 

( ) 1
21 1 2

( ) 21
22 1 2

[ sin cos cos (sin cos )],1

[ cos sin (sin cos )];1

eq

eq

jj
m

jj
ym

D d d

D d d d

     

    




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
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                    (A20) 

 

 
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 

2
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2
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1( ) 21
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1( ) 1
12 1 2
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21 1 2
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[ sin cos (cos sin )],1

[ cos sin sin (cos sin )],1

[ cos sin cos (sin cos )],1
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eq
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eq
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jj
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jj

m

jj
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ym

K k k k

K k k

K k k

K k k k
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     

     

    








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

    
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

    

    









                   (A21) 

and 

 

2

( ) * *1
1 1 1

1* *
2 2 2

{ [ sin cos ]sin

[ cos sin ][cos sin ]},1

eq

j
x m

j

C k x y

k x y

  

    





 

   
                         (A22) 

 

2

( ) * *1
1 1 1

* *
2 2 2

{ [ sin cos ]cos

[ cos sin ][sin cos ]},1

eq

j
y m

j

C k x y

k x y

  

    


  

    
                       (A23) 

( ) ( )
2 2sin ,  cos .j j

x y
eq eq

A AA A
m m

  
     

                                  (A24) 

Equations A19-A24 are for j = 3,4; respectively.   

The parameters for the machine-tool where the chip seizes to the tool-piece rake 

face ( 0z  ) are, 
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2 2 2
2 1

1
sin ( ) cos sin ,

2 x y
eq

d d d d d
m

         
                  (A25) 

 2 2 2 2
1 22

1
sin cos sin ,x y

eq

k k k k
m

          
                  (A26) 

 0 2 sin ,
eq

AA
m

  


                                           (A27) 

0 12
cos( )sin( ) ( )cos sin ,x y

eq

V
B k k k

m
           

               (A28) 
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0 0

*
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[ sin cos ]}sin( )
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x y y x

C d V k Vt y
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k x y

V d d Vt y k k

k x

 

   
 

   


  
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







                      (A29) 

 

 

Closed Form Solution to Linear Two Degree of Freedom System 

The exact solution for this machine-tool system is presented as follows 

 (i) For   ( 1,2, ,4   ) is real, 

 
 

       

   

1 0 2 0 3 0 4 0

1 2 3 4
11 12 21 22

1 1 1 1

cos sin

t t t t t t t t

Px Px Px

Py Py Py

x t
C e C e C e C e

y t r r r r

A B C
t t

A B C

                             
          

     
       
     

     (A30) 
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(ii) For 1,2,3,4 1 1 2 2,  i i       ,  

     

     

   

1 0

2 0

1 1 0 2 1 0
11 12

3 2 0 4 2 0
21 22

1 1
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1 1
( cos sin )

cos sin ,

t t

t t

Px Px Px

Py Py Py

x
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e C t t C t t
r r

A B C
t t

A B C





 

 





    
              

     
   

            
   

     
       
                   

(A31) 

(iii) For 1,2,3,4 1 1 ,i      3 4 and    are real 

     

     

 

1 0

3 0 4 0

1 1 0 2 1 0
11 12
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x
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C e C e t
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B C
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     
    

       
     

   
    
   

             (A32) 

The constants        1 2 3 4
1 1 1 1,  ,  ,  C C C C  for the system undergoing forced vibration can be 

found for cases (i)-(iii)  

1

11 12 21 22 2

1 2 3 4 3

11 1 12 2 21 3 22 4 4

1 1 1 1 C A

r r r r C B

C C

r r r r C D

   
   

     
     

                     

,                                    (A33) 

       

1

1 1 2 2 2

1 1 2 2 3

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 4

1 0 1 0 C A

A B A B C B

C C

A B B A A B B A C D

   
       

     
     

                                   

(A34) 
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   

1

11 21 22 2

1 1 2 2 3

1 1 1 1 1 1 1 1 21 3 22 4 4
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                       

                       (A35) 

respectively.  iA  and , ( 1, 2)iB i   are the real and imaginary parts of the modal ratios 

from the eigenvalues of the machine tool system, such that  

for , 1,2;ij i jr A B i j                                                  (A36) 

and if 0jB   then 

for , 1,2.ij ir A i j                                                     (A37) 

The constant vector on the right-hand side of Eqs.(A33-A35), is 

   
   

   
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.                                   (A38) 

The particular solution coefficients are 
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                

        
            

         (A39) 

also,  
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22 12
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.                                     (A40) 

The analytical solution for the chip seizure motion for the special case 2 2d   is 
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where 
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For the special case 2 2d  , 
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where, 
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(A44) 

For the special case 2 2d  , 
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    

  
        

 

                            (A46) 

The particular solution coefficients are, 

  
   

 
   

 

2 2

5 2 22 2

5 2 22 2

2 2
5 0 5 0 04

sin
,

2

2 sin
  ,

2

1
= , = 2 .

F

F

A
A

m d

A d
B

m d

C B D C dB

  



 



 


 


     
 


     



                                      (A47) 
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