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ABSTRACT 

 

Active Suspension Control with Direct-Drive Tubular Linear Brushless Permanent-

Magnet Motor. (May 2009)  

Seungho Lee, B.S., Yonsei University 

Chair of Advisory Committee: Dr. Won-Jong Kim 

 

 Recently, active suspension has been applied to many commercial automobiles. 

To develop the control algorithm for active suspension, a quarter-car test bed was built 

by using a direct-drive tubular linear brushless permanent-magnet motor (LBPMM) as a 

force-generating component. Two accelerometers and a linear variable differential 

transformer (LVDT) are used in this quarter-car test bed.  Three pulse-width-modulation 

(PWM) amplifiers supply the currents in three phases. Simulated road disturbance is 

generated by a rotating cam. Modified lead-lag control, linear-quadratic (LQ) servo 

control with a Kalman filter, and the fuzzy control methodologies were implemented for 

active-suspension control. In the case of fuzzy control, asymmetric membership 

functions were introduced. This controller could attenuate road disturbance by up to 78%. 

Additionally, a sliding-mode controller (SMC) is developed with a different approach 

from the other three control methodologies. While SMC is developed for the position 

control, the other three controllers are developed for the velocity control.  SMC showed 

inferior performance due to the drawback of the implemented chattering-proof method. 
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Both simulation and experimental results are presented to demonstrate the effectiveness 

of these four control methodologies.    
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I.  INTRODUCTION 

Active suspension supports a vehicle and isolates passengers from road 

disturbances for ride quality and vehicle handling using force-generating components 

under feedback control. Notwithstanding its complexity, high cost, and power 

requirements, active suspension has been used by the luxury car manufactures, such as 

BMW, Mercedes-Benz, and Volvo. Development of an active-suspension system should 

be accompanied by the methodologies to control it. Considering costly commercial 

vehicles with active suspension, Allen constructed a quarter-car test bed to develop the 

control algorithms [1]. 

Many researchers developed active-suspension control techniques [2]–[10]. 

These researches could be categorized according to the applied control theories. When it 

comes to the LQ control, Peng, et al. presented the virtual input signal determined by the 

LQ optimal theory for active-suspension control [2]. Tang and Zhang applied linear-

quadratic-Gaussian (LQG) control, neural networks, and genetic algorithms in an active 

suspension and presented simulation results [3]. Sam, et al. applied LQ control to 

simulate an active-suspension system [4]. As for the robust control, Lauwerys, et al. 

developed a linear robust controller based on the µ-synthesis for the active suspension of 

a quarter car [5]. Wang, et al. presented the algorithm to reduce the order of the H

controller in the application of active suspension [6]. 

____________ 
This thesis follows the style of IEEE Transactions on Control Systems Technology. 
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  They were able to reduce the controller‟s order by nearly one third while the 

performance was only slightly degraded. Abbas, et al. applied sliding-mode control for 

nonlinear full-vehicle active suspension [7]. They considered not only the dynamics of 

the nonlinear full-vehicle active-suspension system but also the dynamics of the four 

actuators. Many neural-network controllers were also applied to active suspension. Jin, 

et al. developed a novel neural control strategy for an active suspension system [8]. By 

combining the integrated error approach with the traditional neural control, they were 

able to develop a simple-structure neural controller with small computational 

requirements, beneficial to real-time control. Kou and Fang established active 

suspension with an electro-hydrostatic actuator (EHA) and implemented a fuzzy 

controller [9]. They could attenuate the suspension deflection by 26.76% compared with 

passive suspension. Alleyne and Hedrick developed a nonlinear adaptive controller for 

active suspension with an electro-hydraulic actuator [10]. They analyzed a standard 

parameter adaptation scheme based on the Lyapunov analysis and presented a modified 

adaptation scheme for active suspension. 

Several researchers used electro-hydraulic actuators for active suspension [9, 10]. 

Electro-hydraulic actuators are powerful and less bulky compared to DC and AC 

actuators. Moreover, they can provide the skyhook damping effect, an ideal design of 

suspension [11]. However, electro-hydraulic actuators are highly nonlinear because of 

their hydraulic components such as a servo valve. In most studies, it was assumed that 

the chamber volume of the hydraulic actuator was constant while in fact the volume 

varied with the piston motion. This induced an additional uncertainty to the model.  
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However, due to the compact design, an LBPMM has less modeling uncertainty 

and nonlinearity. Moreover, this LBPMM is directly applicable to active suspension 

without converting rotary motion to linear motion [12]. Besides its smooth, precise 

translational motion without cogging, the fact that the length of the mover can be 

conveniently adjusted makes it appropriate for the force-generating component in an 

active-suspension system. Other actuators such as an oleo-pneumatic unit [13] and a 3-

degree-of-freedom (3-DOF) vibration-isolation system [14] were also used for active 

suspension. The drawbacks of these actuators are bulkiness and design complexity. The 

oleo-pneumatic unit required a sealing structure. The 3-DOF vibration-isolation system 

consisted of five tables, magnets, springs, dampers, which led to a large size. 

Realistic models of the car were considered in several research projects. Gao, et 

al. proposed a load-dependent controller for active suspension control [15]. They 

considered the sprung mass of the car varied with the load condition and assumed this 

value was measurable online. With this information they developed a much less 

conservative controller compared to a previous robust-control approach. Yagiz, et al. 

considered not only vertical but also pitch and roll motions of a nonlinear 7-DOF vehicle 

model [16]. They developed a SMC for the active suspension control in a full vehicle. 

There are issues related with the limitations of active suspension and solutions. 

For example, Suda and Shiba proposed the energy regeneration in active suspension to 

solve the energy problem [17]. They proposed an energy regenerative damper system 

that converts vibration energy into useful energy. Then converted energy is used to the 

active suspension. 
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When it comes to advanced control techniques, Concha and Cipriano developed 

a novel controller combined with the fuzzy and LQR controllers [18]. Gobbi, et al. 

proposed a new control method based on a stochastic optimization theory assuming that 

the road irregularity is a Gaussian random process and modeled an exponential power 

spectral density [19].  

 Since a human body is most susceptible to vibration at around 3 Hz (20 rad/s) 

[20], disturbance from the road is modeled as a sinusoidal input with a frequency of 3.5 

Hz (22 rad/s) and a magnitude of 0.03 m in this research. The LBPMM was designed 

to be able to generate the force up to 29.6 N with a 6 -A phase current [12]. Since 

NdFeB magnet would lose magnetization around 150°C, control performance is 

compromised with the maximum current swing that yields temperature rise. As a result, 

controllers are designed to have the current limit of around 4 A. The piezoelectric 

accelerometers (Piezotronics model 336B18) used in the quarter-car test bed also limit 

the performance. These accelerometers can be used only in the frequency range of 0.5 to 

3000 Hz (3 to 20000 rad/s). Particularly, this implies that our active-suspension system 

is not able to attenuate the disturbance with a frequency component lower than 0.5 Hz.  

The fact that the LBPMM is used for active suspension and four different classes 

of control methodologies are developed and successfully implemented is the key 

contribution of this research and differentiates this thesis from others. Especially, in the 

case of fuzzy control, an asymmetric fuzzy controller was implemented to compensate 

for DC offset in sensor data. As for the control methodologies, a modified lead-lag 

control was chosen to be developed first among the classical control methodologies. The 
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LQ servo control was employed among the modern state-space-based control techniques. 

Then a fuzzy control was selected because it has infinitely many degrees of freedom to 

its design, and the information obtained from the previous two controllers could 

facilitate the determination of its design parameters. Aside from these three controllers, a 

SMC is lastly developed. While the previous three controllers are designed for the 

velocity control, this SMC is designed for the position control of the sprung mass. 

This thesis is organized as follow. In Section II, components of the quarter-car 

test bed and its modeling are introduced. Since the LBPMM is the most important 

component, its working principle is summarized in Section II.A. Section II.B presents 

not only the modeling of the quarter-car test bed but also its major components such as 

wheel, accelerometer, LVDT, PWM amplifier, conditioning circuit, dSPACE 1104 

control board, and disturbance-generating components.  In Section III, control 

methodologies for the active suspension are presented. In Section III.A, implementation 

of a modified lead-lag controller and its disturbance attenuation performance are 

presented. Section III.B describes the design and performance of an LQ servo controller 

and the state estimation by a Kalman filter. Section III.C presents a fuzzy controller with 

asymmetric membership functions and its performance. Section III.D presents the design 

and the performance of a SMC.  The disturbance attenuation performances of the four 

controllers designed in Section III are discussed in Section IV. The conclusions follow in 

Section V. 
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II. TEST BED FOR ACTIVE SUSPENSION CONTROL 

A.  Linear Brushless Permanent-Magnet Motor 

Figure 1 shows a conceptual configuration of the LBPMM that Murphy 

constructed [12].  The mover of the LBPMM consists of a series of cylindrical 

permanent magnets. The magnets are fixed in a brass tube and connected each other in 

an NS–NS––SN–SN fashion with spacers between the pairs. The stator consists of  9 

coils (3 per each phase). The three-phase coils are represented by , ,A B and C  in 

balanced three-phase operation. The magnets are aligned with the arrow pointing to the 

N pole. The pitch of these magnets is kept the same as that of the coils. 

 

 

Figure 1. Schematic diagram of the LBPMM. The direction of the generated force on the 
mover is in the negative z-direction in this particular current distribution [12]. 
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By the Lorentz force equation, the generated force is the vector cross product of 

the current density J in the coils and the magnetic flux density B generated by the 

magnets, F = J B  [12]. The inverse Blondel-Park transformation in the LBPMM  that 

governs the relationship between the three-phase currents and the desired force is 

defined as follows [12]. 
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                                         (1) 

where ( ), ( ),a bi t i t  and ( )ci t are the currents flowing in phases , ,A B and ,C  respectively. 

zdf is the desired force in the axial direction. 1 2 / l  , where l is the pitch of the 

motor (63.3 mm). 
0z  is relative displacement between the mover and the stator. In active 

suspension, it is the distance between the sprung and unsprung masses. The inverse force 

constant C  was determined as 0.1383 A/N by experiments [12]. 

B.  Quarter-Car Test Bed 

Figure 2 shows a photograph of the quarter-car test bed that Allen designed and 

constructed [1]. The sprung mass (
sM ) is considered to be the body of a car, and the 

unsprung mass (
usM ) represents the mass between its suspension and a wheel. As 

shown in Figure 3, two masses are connected with a mechanical spring and the LBPMM. 

The stator of the LBPMM is fixed to the sprung mass and one end of the mover is fixed 

to the unsprung mass so that the force generated by the LBPMM can act on this quarter-
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car test bed. The rotating cam shown at the bottom of Figure 2 simulates sinusoidal road 

disturbance at various frequencies. 

LVDT

LBPMM

accelerometer

accelerometer

wheel

cam

sprung mass

unsprung mass

vertical supporter 

horizontal supporter 

 

Figure 2. Photograph of the quarter-car test bed with active suspension [1]. 

 

mover

stator

sM

usM

LBPMM

sx

usx

rx

actF
k

wheel

sM

usM

k

 

Figure 3. Schematic diagram of the quarter-car test bed with active suspension. 
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Figure 4. Free-body diagram of (a) the sprung mass  and (b) the unsprung mass. 

 

Figure 4 shows the free-body diagrams for the sprung mass and the unsprung 

mass of the quarter-car test bed. From the Figure 4 (a) and (b), equation (2) and (3) are 

obtained, respectively. 

                                               s s s us actM x k x x F                                                       (2) 

                                 us us s us act w us r w us rM x k x x F k x x c x x         ,                        (3) 

where  sx t and  usx t are the positions of the sprung and unsprung masses, respectively, 

( )rx t is the sinusoidal disturbance generated by the rotating cam, and 
actF  is the force 

generated by the LBPMM. Additionally, the wheel is modeled by the spring constant 
wk  

and the viscous damping coefficient 
wc . The parameter values are given in Table 1. 

The equation of motion of the sprung mass is presented in (2). This motion is 

determined by the spring force proportional to its deflection by a spring constant k and 

an actuation force generated by the LBPMM. The equation of motion of the unsprung 
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mass is presented in (3). This motion is governed by not only the spring force and 

actuation force but also the forces imposed through the wheel. The LBPMM generates

actF to mitigate the effect from the force  s usk x x on the motion of the sprung mass  

Table 1 

Parameters and corresponding values of quarter-car model 

Parameters Values 

sM  2.299 kg 

usM  2.278 kg 
k  1521 N/m 

wc  50 N-s/m 

wk  156 N/m 
 

Equations (2) and (3) are presented as a state-space form in (4). As in [11], the 

states of the quarter-car test bed are defined as 

 ( ) ( ) ( ) ( ) ( ) ( )
T

s us s us us rx t x t x t x t x t x t   and its dynamics is expressed as the 

following state-space matrix form.                          
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Figure 5 shows a schematic diagram of the control architecture. Accelerometers 

and the LVDT generate the sensor signals. Analog-to-digital (A/D) channels on the 
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dSPACE 1104 control board receive these sensor signals. Controllers are implemented 

on this board and use the sensor signals for the active suspension control. 

Since the A/D channels of the dSPACE 1104 board have an input voltage swing 

of 10 V and the output swing of the LVDT is 0 V to 5 V, a conditioning circuit is used 

to shift the output range of the LVDT to match the input range of the A/D channels. 

Three PWM amplifiers are used to power the three-phase coils.  

 

cam

2 accelerometers

LBPMM

LVDT
conditioning 

circuit

dSPACE 

1104

3 PWM 

amplifiers

disturbance

sensor signals

reference 

input

control input

 

Figure 5. Schematic diagram of the control architecture. 

1) Wheel  

The wheel of the quarter-car test bed is covered with a tire. It was known that this 

tire is made of nature isoprene, which has Young‟s modulus ,E from 0.0007 to 0.004 

GPa [21]. A tape is used to glue the tire and wheel body together.  Since the exact model 

of this wheel is very hard to obtain, the spring constant and the damping constant of this 

wheel are adjusted from the previous research [1] and determined. The adjustment of 
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those constants is performed under the open-loop condition until the simulation and 

experimental results (Figure 10 when the controller is off) are coincided.  Finally, spring 

constant of the wheel, 
wk  and the damping coefficient, 

wc  are determined as 156 N/m 

and 50 N-s/m, respectively. 

2) Accelerometer 

The accelerations of the sprung mass and unsprung mass are observed by the 

piezoelectric accelerometers (Piezotronics model 336B18). When the piezoelectric 

material undergoes deformation, a small voltage differential output is produced. 

Accordingly, the accelerometer creates a signal proportional to the acceleration of the 

device structure. The accelerometers have a frequency range of 0.5–3000 Hz with a gain 

factor of 10.28 mV/g. The outputs of these accelerometers go to the signal conditioner 

(PCB model 482A22). This signal conditioner provides power to the accelerometers and 

produces the proportional voltage output with the range of ±10 V according to its inputs. 

3) LVDT 

An LVDT (Schaevitz DC-SE 4000) is placed between the sprung mass and the 

unsprung mass. This LVDT directly measures the distance between those masses, which 

is the third state in the state-space representation, and is used in the case of the LQ servo 

control. The LVDT requires a 10-V input supplied by an Agilent 3644A power supply. 

The output of the LVDT is a linear voltage signal between 0–5 V with a maximum 

stroke length of ±100 mm. 
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4) PWM amplifier 

Since the LBPMM consists of three phases, three PWM amplifiers Model 

12A8K from Advanced Motion Controls are used to power each phase. Three amplifiers 

are capable of providing the current output ±6 A.  

The relation between the provided voltage and the output current is monitored 

and recorded to determine the gain of each PWM amplifier. This gain is determined by 

incrementing the input voltage by 1 V, from 10 V to –10 V and recording the current 

output. Then these data are plotted and fitted into a line.  Table 2 shows the result of the 

determined PWM amplifiers gain. 

Table 2 

PWM amplifier gains 

 Phase A Phase B Phase C 

Gain (A/V) 0.512 0.523 0.457 

 

5) Conditioning circuit 

The LVDT generated the output voltage from 0 to 5 V. However, the A/D 

channel of the dSPACE has the range from –10 V to 10 V. To match the voltage range, a 

circuit was implemented. Also, due to noise considerations, an anti-aliasing filter was 

implemented to remove some of the noise present. Dr. Kim designed both of these 

circuits. These two circuits were combined into one circuit. The schematic of the 

combined circuit is given in Figure 6. 
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Figure 6. Schematic diagram of the conditioning circuit. 
 
 

6) dSPACE 1104 control board 

The DS1104 digital-signal-processing (DSP) controller board from dSPACE, 

Inc. is used for the real-time interfacing between the controller and the quarter-car test 

bed. The DS1104 board has a 250-MHz Power PC 603e with a Texas Instruments‟ DSP 

TMS320F240 chip on it. It contains four 16-bit A/D channels, four 12-bit A/D channels, 

eight 16-bit D/A channels.  

The software used for the actual implementation is Control Desk Developer 

Version 2.1.1, which connected with Matlab 6.1.0.450 (R12.1) Simulink. This 

developmental environment supports the graphical user interface (GUI), which allows 

the data acquisition, process, and monitoring of the sensor signal in real time. 
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7) Disturbance generating system 

As in Figure 7, the road disturbance is generated by a rotating cam. This rotating 

cam induces the vertical movement of the wheel. The end of the cam shaft is connected 

to the electric drill (Black & Deker Model# DR550), which rotates the cam shaft.  

Since this electric drill is operated manually, the trigger of this drill should be 

squeezed with the constant pressure to generate the constant road disturbance. For this, a 

bolt and a bolt-cast are installed around the drill trigger. As the winding number of the 

bolt increases, it presses the drill trigger with higher pressure. Accordingly, the cam 

rotates at a higher frequency.  Table 3 shows the relation between the winding of the bolt 

and the generated disturbance frequencies. 

Drill

Wheel

Cam

Cam shaft

Bolt and bolt cast
 

 
 

Figure 7. Photograph of the disturbance-generating system. 
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Table 3 

Bolt winding and generated disturbance frequencies 

 3 turns 4.5 turns 5 turns 

Disturbance 

frequencies 
3.5 Hz 4 Hz 5 Hz 
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III. CONTROL METHODOLOGIES AND EXPERIMENTAL RESULTS 

In this section, four classes of controllers are designed and implemented in the 

quarter-car test bed, and their experimental results are presented.  

A. Modified Lead-Lag Control 

The output of this modified lead-lag controller is three-phase currents. They 

control the velocity of the sprung mass rather than its position. Since the state-space-

based control sets the velocity of the sprung mass as a reference input for the 

convenience of the controller design [11], the same reference input is used in all control 

methodologies for fair comparison of their performances. From (4) and Table 1, the 

transfer function from  actF t to ( )sx t is determined as follows.  

                         

3 2 14

4 3 2 4 4
(

0.435 9.547 29.79 5.831 10

21.95 1398 1.452 10 4.5 0
)

31 1

s s s

s s s s
G s

   

     
                        (5) 

The control objectives are as follows. First, a high loop gain is desirable around 

the operating frequency at 22 rad/s for good disturbance attenuation and command 

following. However, this high gain would yield large current flow in the LBPMM, 

which would raise its temperature and demagnetize the magnets. Therefore, the gain was 

limited by examining the simulation result of the maximum current flow (±4 A) in the 

LBPMM.  Finally, the loop gain of the controller at around the operating frequency was 

determined as 56 dB.  
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Second, the control bandwidth was set to be [10 rad/s, 80 rad/s].  Since the open-

loop frequency response of this quarter car has a low gain in low and high frequencies 

and a high gain in the middle frequency with two cross-over frequencies, the bandwidth 

could be adjusted by changing either the lower cross-over frequency or the higher cross-

over frequency. In this paper, a lag compensation 0.2252 1.15

1.005

s

s

 
 

 
 was applied in the 

low-frequency range to achieve this goal.  

Third, since the gain should be low in the high frequency range to attenuate noise, 

another lag compensation 0.04681 100.5

100.54

s

s

 
 

 
was applied. Finally, sufficient gain and 

phase margins should be obtained due to modeling uncertainties. To achieve this 

objective, a lead compensation 1.949 100

100.02

s

s

 
 

 
 was introduced between the two lag 

controllers. 

The lower-frequency lag controller yields a lower loop gain. The lead controller 

around the operating frequency broadens the bandwidth. Therefore, each lead or lag 

controller should be fine-tuned by examining the overall loop transfer function. To 

decide the exact corner frequencies in each of the lead or lag controllers, the Matlab 

SISO (single-input-single-output) tool was used. The modified lead-lag controller with 

one lead and two lag controllers was finalized in the s domain as (6).   Figure 8 shows 

the frequency response of the loop transfer function. 
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Figure 8. Quarter-car and loop-transfer-function frequency responses of the quarter-car 
dynamics (5) and the modified lead-lag controller (6). Gain and phase margins are 28.2

dB and 66.4 , respectively. 

 

                                     
( 2147)( 51.31)( 5.107)

12
( 100.54)(

( )
100.02)( 1.005)

C
s s

s
s

s s s

  

  
                                (6) 

As seen from Figure 8, the loop-transfer-function gain is higher than that of the 

open-loop transfer function around the operating frequency (22 rad/s). The bandwidth is 

acceptable since it is close to the frequency range of [10 rad/s, 80 rad/s].   

When the quarter-car test bed is under closed-loop control, the LBPMM 

generates the force to attenuate road disturbance, which results in the current flow in 

each coil set as shown in Figure 9. The current flow in each coil set is monitored from 

the Control Desk software. Since the disturbance from the road is a sinusoidal input with 

a specified frequency, the current flow in the LBPMM would generate the force at the 
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same frequency. However, this does not necessarily imply that each current flow in the 

individual coil set should contain exactly the same and only the frequency component as 

in the road disturbance due to some unmodeled nonlinear dynamics in the system.  

 

 

Figure 9. Current flow of the modified lead-lag control in experiment for the 3.5-Hz (22 
rad/s) disturbance. The LBPMM receives no control input when the controller is turned 

off. 

 

The simulation and experimental results of disturbance rejection are presented in 

Figure 10. Due to the modeling uncertainties in the quarter-car model, there are 

discrepancies between these two results. When the controller is turned off, the road 

disturbance affects directly to the quarter-car test bed, which results in high-velocity 

oscillation of the sprung mass.  
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Figure 10. Experiment and simulation results of the modified lead-lag control for the 
3.5-Hz disturbance. 

 

B. Linear-Quadratic Servo Control 

LQ servo control is developed by introducing the command input and the output 

disturbance. From (4), quarter-car model can be expressed as follows. 

                                                   
     

   

p P

p p

t A t B u t

y t C t

 
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
p p

p

x x

x
                                             (7) 

where   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,
T
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as in (4). Thus,   ( ),p sy t x t   
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and  tpx is partitioned as follows. 

                                | |
TT T

p s us s us us rt y t t x t x t x t x t x t x t          
p Rx x   (8) 

 The vertical line indicates that    p sy t x t  .  

 

pByG  s

rG

 


 r s

 u s

 y s
p

 sx
R

 
(a) 

pByG  s

rG

 



1

s
iG


 r s

 u s

 y s
p

 sx
R

 z s
p

 
(b) 

 
Figure 11. Block diagrams of (a) the standard LQ servo control and (b) the LQ servo 

control with an integrator. 

 

As shown in Figure 11, the control gain matrices 
yG  and 

rG  are applied to 

 py s and  sRx , respectively.  To eliminate a non-zero steady-state error for the step 

command input or output disturbance, this LQ servo controller is implemented with an 

integrator as shown in Figure 11 (b). In this application, the LQ servo model is 
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determined by considering the frequency responses of the loop transfer functions of 

these two models given in Figure 12.       

As shown in Figure 11 (b), the control gains for the integrator, output state, and 

rest states are , , ,i y rG G G respectively [22]. This LQ servo system consists of the 

standard LQ servo dynamics (7) and the integrator dynamics. With   0r s   in a 

regulation problem, 

                                            
     .p p s

I I
z s y s x s

s s
    

 
                                      (9) 

 The augmented system is defined as follows. 

                                                            ,t A t Bu t x x                                               (10) 

where        
T

T

p pt z t y t t   Rx x
,

0

0

P

P

C
A

A

 
  
 

 and 0
T

T

pB B    . The control 

law is defined as follows. 

                                                            ( ) ,u t G t  x                                                      (11) 

where i y rG G G G    .  

To obtain G , a control algebric Riccati equation (CARE) should be solved. To 

construct this CARE, a symmetric positive definite matrix R  and a symmetric positive 

semi-definite matrix Q should be determined. The R matrix affects the loop gain that 

determines the system bandwidth. Although a large R  is desirable in terms of command 

following and disturbance rejection, it results in a large control input that yields higher 
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power consumption in the LBPMM. The maximum current flow is constrained at ±4 A 

the same as the case of the modified lead-lag controller. After several design iterations, 

R  was set to be 0.005. The diagonal elements of the Q matrix are the weights of each 

state and determine the shape of the loop transfer function. Since the second state ( ( )sx t ) 

should be regulated, the Q matrix is desirable to have a larger element (2,2)Q  than 

other elements in the Q matrix. After several design iterations, the Q matrix was 

determined as follows.  

                                           
   0.01 170 0.01 0.01 0.01

0 forij

diag Q

Q i j



 
                       (12) 

     A unique positive semi-definite symmetric matrix K  is determined by the following 

CARE. 

                                                 1 0T TKA A K Q KBR B K                                       (13) 

K is solved with Matlab as follows. 

                           

1.1078 0 0 1.1078  1.1078

0 0 0 0.0003 0

0 0 0 0.0003 0

1.1078 0.0003 0.0003 1.1190 1.1104

1.1078 0 0 1.1104 1.1102

K

  
 


 
  
 
   
  

               (14) 

The feedback gain G is determined as follows.  

                              1 0.0013 147.58 25.7212   0  272.5471G R BK                   (15) 
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Figure 12 shows the loop transfer functions of a standard LQ servo model (i.e. 

model a) and an LQ servo model with an integrator (i.e. model b) with the feedback gain 

from (15). The most significant difference between these two models is the low-

frequency response. Model b has the slope of the magnitude plot of 20 dB/decade around 

the lower cross-over frequency. Model a has a larger slope than 20 dB/decade around the 

lower cross-over frequency. Therefore, the magnitude of the sensitivity function of the 

model a is smaller than model b. Model a is desirable in terms of disturbance rejection 

and command following. However, improvement of the sensitivity in some range 

deteriorates the sensitivity in another frequency range. The system could also become 

unstable due to this deterioration [20]. Since the operating frequency of the quarter-car 

model is around 22 rad/s, improvement of the sensitivity in the frequency range less than 

22 rad/s is not as significant factor as the stability of the system. Therefore, model b is 

more suitable for the quarter-car than model a.  

 

Figure 12. Frequency responses of the loop transfer functions in the LQ servo control. 
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Its control objectives are similar to those of the modified lead-lag control. First, 

the loop gains should be high around the operating frequency. Second, the control 

bandwidth should be located in [10 rad/s, 80 rad/s].  The control objectives are more 

conveniently achievable with model b than model a because it has an additional design 

parameter  iG . This also gives the relevance to the usage of the integrator. 

1) Kalman filter design 

LQ servo requires full state feedback. The last state of the system is defined as 

the tire deflection ( ( ) ( )us rx t x t ). This state is difficult to be measured because the 

magnitude is small and locating the sensor is not convenient. Therefore, it is estimated 

by a Kalman filter. This estimator requires the measured output ( ( )sx t ) and the system 

control input  actF t  as an estimator input. To solve the filter algebric Riccati equation 

(FARE) and obtain the Kalman-filter gain, a positive value  and a non-negative value 

  should be determined in (17). With initial values of 1  and ,TL L  they were 

adjusted and determined as 0.00001 and 0.01  after several design iterations. As 

expressed in (4), the output disturbance affects the last state of the quarter-car model. 

Therefore, the matrix L is defined as follows. 

                                                     0 0 0 1
T

L                                                       (16) 

Then the unique positive semi-definite symmetric matrix P is determined by solving the 

following FARE. 
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                                                1 0T T TAP PA L L PC CP                                      (17) 

The solution is obtained as follows by Matlab „CARE‟ function. 

                                         

0.0005 0.0004 0 0.0003

0.0004 0.0012 0 0.0008

0 0 0 0

0.0003 0.0008 0 0.0007

P

 
 


 
 
 
  

                               (18) 

The Kalman-filter gain H is determined as follow. 

                            1 46.9286   41.9643   1.6644  28.9742TH PC                      (19)                                                                   
 

 

Figure 13. Estimated state comparison between simulation and experiment results. 

 

Figure 13 shows the estimated tire deflection ( ( ) ( )us rx t x t ) by the Kalman-filter 

algorithm in closed-loop control. The solid line represents the data generated from the 

Control Desk during the experiment. The dashed line represents the data generated from 

the Simulink block without experiment. There is some discrepancy between the 
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simulation and experimental results of state estimation. In the Kalman-filter algorithm, 

the measured output and the disturbance are assumed as zero-mean white Gaussian 

noises. In the quarter-car model, there is some discrepancy between the measured output 

( ( )sx t ) and the zero-mean white Gaussian noise (Figures 10 and 14), which limits the 

performance of the state estimator. Also, noises from the sensors are the other reason for 

this discrepancy. Since the LQ servo controller requires more sensors (two 

accelerometers and one LVDT) than the other controllers (one accelerometer) and data 

from each sensor contains the noise, LQ servo controller affected by the sensor noise.   

The performance of the disturbance attenuation is presented in Figure 14. Due to 

the error from the state estimator, disturbance attenuation contains some discrepancy 

between the experiment and simulation results.   

 

 
 

Figure 14. Experiment and simulation results of the LQ servo control. 
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C. Fuzzy Control 

A Mamdani-type fuzzy controller is implemented in this section [23]. The input 

to this fuzzy controller is the system error ( ( )e t ), and the output is the control input 

 ( )actF t . To determine  actF t , ( )e t  is fuzzified by the membership functions shown in 

Figure 15 (a) and  defuzzified by the membership functions shown in Figure 15 (b). The 

membership functions for the fuzzification are denoted according to the amount of the 

error: NLE (Negative Large Error), NME (Negative Medium Error), NSE (Negative 

Small Error), ESE (Evenly Small Error), PSE (Positive Small Error), PME (Positive 

Medium Error), and PLE (Positive Large Error). For defuzzification, membership 

functions are denoted according to the force generated by each membership function: 

NLF (Negative Large Force), NMF (Negative Medium Force), NSF (Negative Small 

Force), ESF (Evenly Small Force), PSF (Positive Small Force), PMF (Positive Medium 

Force), and PLF (Positive Large Force). The area under the membership functions (NLF, 

NMF, NSF, ESF, PSF, PMF, PLF) are defined by
i  (i=1, 2, … ,7). The area under the 

membership functions are required to calculate the generated force by the center of 

gravity (COG) method. 

The domains for the fuzzification and the defuzzification are determined from the 

previously obtained results. The range of error in Figure 15 (a) was set as [–0.8, 0.8] 

because the magnitude of the largest measured error ( ( )sx t ) was less than 0.8 m/s. The 

range of outputs in Figure 15 (b) was set as [–30, 30] because the LBPMM could 

generate force up to near ±30N.  
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(a) 

 

   

 

  (b) 

Figure 15. (a) Membership functions for fuzzification. (b) Membership functions for 
defuzzification. 
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membership functions were tested, and the one with seven membership functions was 

selected since it showed the smallest sprung mass velocity under the closed-loop control. 

 
Table 4 

Rules of the fuzzy controller 
  Error 

Force 
NLE NME NSE ESE PSE PME PLE 

NLF 1 0 0 0 0 0 0 
NMF 0 1 0 0 0 0 0 
NSF 0 0 1 0 0 0 0 
ESF 0 0 0 1 0 0 0 
PSF 0 0 0 0 1 0 0 
PMF 0 0 0 0 0 1 0 
PLF 0 0 0 0 0 0 1 

 

Table 4 shows the rules of this fuzzy controller. Since this active-suspension test bed is a 

single-input, single-output system, the input and the output forms single-dimension 

arrays. Each fuzzified value is one-to-one matched for the defuzzification. For example, 

if the error is NLE, the output is NLF. Each rule has the same weight. 

The control input as the result of this fuzzy controller is determined by the COG 

method. The COG method computes  actF t  as follows [23]. 

                                                
 

7 7

1 1

act i i i

i i

F t g  
 

    ,                                          (20) 

where
ig is defined as the COG of the each membership function. 

 There are non-ideal conditions which yields the unexpected behavior of the 

quarter-car test bed. For example, vertical and horizontal supporters (Figure 2) are not 
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perfectly vertical and horizontal. Since the movement of the sprung mass is guided by 

those supporters, the movement of the sprung mass also contains non-ideal aspect. 

Besides of the non-ideality from the supporters, other non-ideal conditions are also 

arisen from the machining process. The combined non-ideal conditions induced the 

phenomenon expressed as follows.  

 When the active-suspension system is under closed-loop control, the sprung 

mass‟s maximum absolute velocity is larger when its velocity is positive compared to 

that with a negative velocity. This phenomenon was observed in both the modified lead-

lag control and the LQ servo control (Figures 10 and 14). This phenomenon indicates 

that additional control input is required to attenuate disturbance when the velocity of the 

sprung mass is positive.  

To solve the problem this phenomenon, a membership function PSF in Figure 15 

(b) was widened. The PSF is the most significant membership function with the system 

under closed-loop control because the domain of the PSE covers a small positive error 

and the PSF is determined by the PSE. The widened PSF induces the increased area of 

the PSF
3( ).  Consequently, the absolute value of the COG of the PSF increased. Finally, 

the magnitude of  actF t  also increased by (20) when 0.1 < Error (m/s) < 0.4. 
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Figure 16. Input-output relation of the asymmetric fuzzy controller. 

Figure 16 shows the relation between the error (input) and the generated control 

force (output). This input-output curve was designed not to be symmetric with respect to 

the origin. In Figure 17, the previously mentioned phenomenon is reduced in comparison 

with Figures 10 and 14 due to the additional control input generated in the hump 0.1 < 

Error (m/s) <0.4 in Figure 16.  

 

Figure 17. Experiment and simulation results of the fuzzy control. 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-30

-20

-10

0

10

20

30

Error (m/s)

F
or

ce
 (

N
)

 

 

Input-output curve

Reference line

4                 4.5                   5                  5.5                  6                   6.5                7  
Time (s) 

0.6 

0.4 

 0.2 

 
0 

-0.2 

-0.4 
 

-0.6 

Sp
ru

ng
 M

as
s V

el
oc

ity
 (m

/s
) 



 34 

Figure 18 and Figure 19 visualize the effect of the asymmetric membership 

functions when the errors are –0.1 m/s and 0.1 m/s, respectively. When error is –0.1 m/s, 

only NSE (fourth row in (a)) and NME (fifth row in (a)) have the value in Figure 18. 

Since NSE matched to NSF (fourth row in (b)) and NME matched to NMF (fifth row in 

(b)), NSF and NMF are selected for the defuzzification. According to the defuzzification 

scheme expressed (20), the areas under the NSF and NMF are calculated. Finally, COG 

of the calculated area is obtained. In this case, generated force is –4.04 N.  

 
                                      (a)                                                               (b) 

Figure 18. Generated force from the asymmetric membership functions for –0.1 m/s 
error. The column (a) and (b) shows the membership functions for the fuzzyfication and 

the defuzzification, respectively. 
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(a)                                                               (b) 

Figure 19. Generated force from the asymmetric membership functions for 0.1 m/s error. 
The column (a) and (b) shows the membership functions for the fuzzyfication and the 

defuzzification, respectively. 

 

The generated force for the 0.1 m/s error is calculated from the Figure 19 with a similar 

process. In this case, generated force is 8.01 N rather than –4.04 N. It is due to the 

extended PSF (third row in (b)). 

D. Sliding-Mode Control 

A SMC is developed in this section. The fundamental difference of this controller 

from the other controllers is that this controller regulates the position of the sprung mass 

while the other controllers regulate the velocity of the sprung mass. It might be possible 

for the SMC to control the velocity of the sprung mass also. However, the position of the 

sprung mass was chosen to be regulated since the construction of the switching function 
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is more convenient when the position of the sprung mass is regulated rather than the 

velocity of the sprung mass. 

 Without the disturbance input, (4) is presented as follows. 

            

( ) ( )

( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
0 0 0

1
0

01 1 0 0

00 1 0 0

w

act

us us

r r

s ss s

us usw

usus us uss s

us us

t t

t t
F t

t x t t x t

t x t t x t

k

M Mx x

x xc kk

MM M Mx x

x x

   
   

   
   

   
   

   
   

       
   

       
   

  



  
 







 

 





       (21) 

Equation (21) can be converted to the following form. 

                     

 

 

1
( ) ( )

( )
( )

( ) 1
( ) ( )

s us

s ss

act

us w w
s us us

usus us us

k
x t x t

M Mx t
F t

x t k k ck
x t x t x t

MM M M

   
   

 
     

         
  






          (22) 

Set the output as   ,sx t  and (22) could be expressed as follow.                     

                                                          

( , ) ,X F x x Bu

y CX

 



 
                                                 (23) 

 

where
 

 

 

1
( ) ( )

( )
, ,

1
( ) ( )

s us

s s s

us w w
s us us

usus us us

k
x t x t

x t M M
X F B

x t k k ck
x t x t x t

MM M M

   
    

      
         

  


 

 , [1 0], .actC u F t   

Assuming that reference input is zero, a switching function and its derivative are 

defined as follow. The following switching function s is used to decide which control 

law is to be used at every point in the phase plane. 
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                                              1 2

1 2 1 2 2 ,

s w y w y

s w y w y w y w CF w CBu

 

    



   
                              (24)                                          

where 
1 ,w and 

2w  are assumed to be positive controller gains.  Among infinitely many 

candidates, a Lyapunov function is chosen as follows since it requires a small 

computational load. 

                                                                 
21

2
V s                                                           (25) 

 
Take time derivative of the Lyapunov function results in 

                                                1 2 2V ss s w y w CF w CBu                                          (26)            

From the Lyapunov stability criteria, s should be negative for the positive s  and vice 

versa. To make the system always stable, i.e. 0V  , This requirements are expressed as 

follows. 

    
1 2 2 0w y w CF w CBu   , i.e.    

1

2 2 1u w CB w CF w y


     when 0s          (27) 

     
1 2 2 0w y w CF w CBu   , i.e.    

1

2 2 1u w CB w CF w y


    when 0s         (28) 

To satisfy the requirements (27) and (28), a signum function sgn( )s is introduced 

where   is a positive number. With (27), (28), and this signum function, a variable 

structure of the control law is expressed as follows. 

                                             
1

2 2 1{ sgn( )},u w CB w CF w y s


                                 (29) 

where 
1

sgn( )
1

if s
s

if s






 

  
 . 
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With an appropriate , equation (29) satisfy the conditions (27), (28) simultaneously 

under the varying switching function.  

 
(a) 

 

(b) 

 
(c) 

Figure 20. SMC result in case of (a) 0.002  , (b) 0.004  , and (c) 0.006  , 

respectively.  
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(a) 

 
 

 
(b) 

 
Figure 21. SMC result in case of (a) 0.007  , and (b) 0.008  , respectively. 
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chattering, a control law is implemented by introducing   for the 1-kHz sampling rate. 

After several design iteration, control parameters were selected as 
1 300,w  2 0.1,w 

0.001  , and 0.004  . 

Figure 20 shows the performances with different values of  . There is no 

significant difference from the value from 0.002  to 0.006  . Figure 20 (b) is 

generated by the use of same  as used in the Figure 24. However, Figure 20 (b) 

includes only the experimental result. As shown in figure 21, the performance begins to 

be distinctively degraded from 0.007  .  

Figure 22 shows significantly degraded performance due to inappropriate value 

of  . When   reaches to the value of 0.009  , disturbance attenuation performance is 

significantly degraded. 

 

 

Figure 22. SMC result in case of 0.009  . 
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Figure 23 shows the state trajectory and sliding surface. The sliding surface has a 

large slope, i.e.  1

2

3000
w

w
   . Switching between the two control laws occurs 

whenever the state trajectory goes across this sliding surface ( 0s   in the right hand side 

of sliding surface and 0s   in the left hand side of sliding surface). The state trajectory 

forms two ellipses i.e. ellipse 1 and ellipse 2. The ellipse 1 is the trajectory when the 

SMC is turned on, and the ellipse 2 is the one without SMC. Initially the sprung mass is 

under closed-loop control, and then the controller is turned off. Therefore, ellipse 1 is 

drawn first, and then the trajectory moves to the ellipse 2. The fact that each trajectory 

forms an ellipse implies that the sprung mass oscillates.  
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Figure 23. State trajectory and sliding surface.  
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Controller ON 
Controller ON 

Controller OFF 

Figure 24 shows the experimental result and simulation result of the SMC. This 

controller is capable of attenuating the road disturbance approximately 55% and it is 

inferior to the other three controllers. It is mainly because  the characteristics of    . 

Even if   prevents the chattering phenomenon, it also degrades the performance because 

it intentionally generates a time delay before the control law is applied. During this time 

delay, the sprung mass moves without any regulation. This is a drawback of this 

chattering-proof method. Besides of the effect from  , the fact that determining 

appropriate   is mostly done by design iteration is another reason of controller‟s 

inferior performance. The   is determined by keep tracking of the control input, u  from 

equation (30), and tested from the experiment. Aside from the applied method that 

prevents the chattering phenomenon and selecting  , other approaches might enhance 

the performance of disturbance rejection in this research.  

  

 

Figure 24. Experiment and simulation results of the SMC with 0.004  . 
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The figure 24 is the case of 0.004  . This value is chosen among the values of 

0.002  , 0.004  , and 0.006  ,which yield similar performances. It is because the 

value of   is compromised between the performance and the chattering-proof. Even 

though the smaller   results in the better performance, it is more likely inducing 

chattering phenomenon. Likewise, even if the larger   degrade the performance, it takes 

the system more away from the chattering phenomenon. 
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IV. PERFORMANCE COMPARISONS 

 
 In this section, the experimental results presented in the Section III are compared 

each other in terms of the disturbance attenuation performance. In this research, 

disturbance attenuation performance is defined as a magnitude ratio of the sprung mass 

velocity under the closed-loop control and the open-loop condition, respectively. The 

magnitude of the sprung mass velocity is defined as a peak-to-peak distance from the 

experimental results (Figure 10, 14, and 24). However, when the experimental results do 

not contain the constant peak value, peak value is assumed as an average value of those 

varying peak values. 

 The determination of the disturbance attenuation performance for the modified 

lead-lag control is shown in the Figure 25. The peak-to-peak value of the sprung mass 

velocity under the closed loop control ( - onlead lag ) is 0.24 m/s. The magnitude of the 

sprung mass velocity under the open loop condition (
offlead lag ) is 1 m/s. Therefore, 

the disturbance attenuation performance is calculated as follows. 

                                  1 100 76%on
lead lag

off

lead lag
Perf

lead lag


 
    
  

                                (31) 

Figure 26 shows the disturbance attenuation performance of the LQ servo 

controller. The performance is calculated as follows. 

                                              1 100 70%,on
LQ

off

LQ
Perf

LQ

 
    
 
 

                                  (32) 

where 0.28onLQ  m/s, 0.89offLQ  m/s. 
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Figure 25. Disturbance attenuation performance of the modified lead-lag controller. 

 

 

Figure 26. Disturbance attenuation performance of the LQ servo controller. 
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                                              1 100 78%,on
fuzzy

off

fuzzy
Perf

fuzzy

 
    
 
 

                            (33) 

where 0.22onfuzzy  m/s, 1offfuzzy  m/s. 

 

 

Figure 27. Disturbance attenuation performance of the fuzzy controller. 

 

 

Figure 28. Disturbance attenuation performance of the SMC. 
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Figure 28 shows the disturbance attenuation performance of the SMC. The performance 

is calculated as follows. 

                                              1 100 55%,on
SMC

off

SMC
Perf

SMC

 
    
 
 

                             (34) 

where 0.4onSMC  m/s, 0.88offSMC  m/s. 

 The modified lead-lag and the fuzzy controller showed similar disturbance 

attenuation performances. The performance of the LQ servo controller was slightly 

degraded due to the Kalman filter. The performance of the SMC was inferior to other 

controllers due to the implemented chattering-proof algorithm that directly degrade the 

performance. 
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V. CONCLUSIONS 

 Modified lead-lag, LQ servo, fuzzy, and SMCs were designed and implemented 

to attenuate modeled road disturbance in an active-suspension system with an LBPMM 

as a quarter-car test bed.  In terms of the disturbance attenuation performance, the 

modified lead-lag and the fuzzy controller showed superior experimental results to the 

other two controllers.  

The modified lead-lag controller consisted of two lag controllers and one lead 

controller. Each lead and lag controller was designed to satisfy its own control objectives. 

Finally, lead and lag controllers were fine-tuned to determine their exact corner 

frequencies. Selecting its design parameters did not require too many design iterations to 

satisfy the control objectives. Also, modified lead-lag control required no LVDT. 

Therefore, the modified lead-lag controller was a fairly acceptable in this research. 

In the case of the LQ servo, performance of disturbance rejection was slightly 

inferior to the modified lead-lag and the fuzzy controllers. The reason is that the 

estimator could not perfectly generate the estimated state because the noise and the 

disturbance were not white Gaussian.  Moreover, an additional sensor (the LVDT) was 

required in this control method. Therefore, both performance- and cost-effectiveness-

wise, the LQ servo was not suitable for this application.  

When it comes to the fuzzy controller, it turned out to be the most suitable 

control methodology for this active-suspension application. It is because its asymmetric 

membership functions allowed the LBPMM to generate the most suitable control force 

to mitigate the error characteristics due to non-idealities of the test bed. However, this 
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fuzzy controller was difficult to design since it has infinitely many design parameters 

such as selecting the domains for the fuzzification and defuzzyfication.  

Unlikely to the other three controllers, SMC was designed to control the position 

rather than the velocity of the sprung mass for the convenient construction of the sliding 

surface. In this point of view, it is not fair for this controller to be compared to other 

three controllers. To avoid the chattering phenomenon, a small time delay was placed 

when the state variable goes across the sliding surface before the control laws were 

applied. Even though this algorithm was implementable without much difficulty, it 

directly degraded the performance. This is the primary reason why this controller 

showed the most inferior performance. 

In summary, an LBPMM, a unique tubular linear motor, was successfully 

employed as the key actuator in active suspension. When it comes to the control, the 

fuzzy controller was the most suitable controller since the design parameters for the 

asymmetric membership functions were finalized with the results from the modified 

lead-lag and LQ servo control. The modified lead-lag control was fairly acceptable. 

However, LQ servo was not an appropriate control methodology for this application. 

Additionally, SMC was constructed for the position control with an intuitive method that 

prevents the chattering phenomenon. Its performance was the most inferior to the other 

three controllers.         

 

 

 



 50 

REFERENCES 

[1]  J.  Allen, Design of Active Suspension Control Based Upon Use of Tubular Linear 

Motor and Quarter-Car Model, Master‟s Thesis, Texas A&M University, August 

2008. 

[2]  H. Peng, R. Stratharn, and A. Ulsoy, “A Novel Active Suspension Design 

Technique–Simulation and Experimental Results,” in Proc. 1997 American 

Control Conference , June 1997, pp. 709–713. 

[3]  C. Tang and T. Zhang, “The Research on Control Algorithms of Vehicle Active 

Suspension System,” in Proc. IEEE International Conference on Vehicular 

Electronics and Safety, October 2005, pp. 320–325. 

[4]   Y. M. Sam, M. R. H. A. Ghani, and N. Ahmad, “LQR Controller for Active Car 

Suspension,” in Proc. of TENCON 2000, September 2000, pp. 441–444. 

[5] C. Lauwerys, J. Swevers, and P. Sas, “Design and Experimental Validation of a 

Linear Robust Controller for an Active Suspension of a Quarter-Car,” in Proc. 

2004 American Control Conference, July 2004, pp. 1481–1486. 

[6]   J. Wang, A. C. Zolas, and D. A. Wilson, “Active Suspension: A Reduced-Order 

H
 Control Design Study,” in Proc. 2007 Mediterranean Conference on Control 

and Automation, July 2007, pp. 132–140. 

[7]  C. Abbas, T. Rahaijaona, and H. Noura, “Sliding-mode Control Applied to Active 

Suspension Using Nonlinear Full Vehicle and Actuator Dynamics,” in Proc.  IEEE 

conference on Decision & Control, December 2006 pp. 3597–3602. 



 51 

[8]   Y. Jin, D. Yu, and X. Song, “An Integrated-Error-Based Adaptive Neuron Control 

and its Application to Vehicle Suspension Systems,” in Proc. IEEE International 

Conference on Control and Automation, May 2007, pp. 564–569. 

[9]   F. Kou and Z. Fang, “An Experimental Investigation into the Design of Vehicle 

Fuzzy Active Suspension,” in Proc. IEEE International Conference on Automation 

and Logistics, August 2007, pp. 959–963. 

[10]  A. Alleyne and J. Hedrick, “Nonlinear Adaptive Control of Active Suspension,” 

IEEE Transactions on Control Systems Technology, vol. 3, no. 1, pp. 91–101, 

March 1995. 

[11]  R. Rajamani, “Adaptive Observers for Active Automotive Suspensions: Theory 

and Experiment,” IEEE Transactions on Control Systems Technology, vol. 3, no. 1, 

pp. 86–93, March 1995. 

[12] W.-J. Kim and B. Murphy, “Development of a Novel Direct-Drive Tubular Linear 

Brushless Permanent-Magnet Motor,” International Journal of Control, 

Automation, and System, vol. 2, no. 3, pp. 279–288, September 2004. 

[13]  R. Williams, “Control of a Low Frequency Active Suspension,” in Proc. 

International Conference on Control, vol. 1, pp. 338–343, March 1994. 

[14]  M. Hoque, M. Yakasaki, Y. Ishino, and T. Mizuno, “Design of a Mode-Based 

Controller for 3-DOF Vibration Isolation System,” in Proc. of IEEE International 

Conference on Robotics, Automation and Mechatronics, December 2004, pp. 478–

483. 



 52 

[15] H. Gao, J. Lam, and C. Wang, “Multi-Objective Control of Vehicle Active 

Suspension Systems via Load-Dependent Controllers,” Journal of Sound and 

Vibration, vol. 290, pp. 654–675, March 2006. 

[16]  N. Yagiz, I. Yuksek, and S. Sivrioglu, “Robust Control of Active Suspensions for a 

Full Vehicle Model Using Sliding-mode Control,” International Journal of the 

Japan Society of Mechanical Engineers, vol. 43, no. 2, pp. 253–258, July 2000. 

[17]  Y. Suda and T. Shiba, “A New Hybrid Suspension System with Active Control and 

Energy Regeneration,” International Journal of Vehicle Mechanics and Mobility, 

vol. 25, pp. 641–654, January 1996. 

[18]  J. Concha and A. Cipriano, “A Design Method for Stable Fuzzy LQR Controllers,” 

in Proc. Sixth IEEE Internationsl Conference, vol. 1, pp. 271–276, July 1997. 

[19]  M. Gobbi, F. Levi, and G. Mastinu, “Multi-Objective Stochastic Optimization of 

the Suspension System of Road Vehicles,” Journal of Sound and Vibration, vol. 

298, pp. 1055–1072, 2006. 

[20]  G. Stein, “Respect the Unstable,” IEEE Control Systems Magazine, vol. 23, no. 4,  

p. 12–25, August 2003. 

[21]   J. Gere, Mechanics of Materials, location: Brooks/Cole, p. 899, 2001 

[22]  B. Anderson and J. Moore, Optimal Control: Linear Quadratic Methods, location: 

Prentice-Hall, p. 74, 1989. 

[23]  K. Passino and S. Yurkovich, Fuzzy Control, location: Addison-Weslsy, p. 42, 

1999. 



 53 

[24] C. Edward and S. Spurgeon, Sliding-mode Control: Theory and Applications, 

location: Taylor & Francis, p. 7, 1998.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 



 54 

APPENDIX A:  SIMULINK BLOCK DIAGRAMS 
 
 
 

A.1 Simulink block diagram for real-time control: Modified lead-lag control  
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A.2 Simulink block diagram for real-time control: LQ Servo control  
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A.3 LQ Servo control: Kalman Filter  
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A.4 Simulink block diagram for real-time control: Fuzzy control  
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A.5 Implementation of the fuzzy controller block 
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A.6 Simulink block diagram for real-time control: Sliding-mode control  
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A.7 Analog-to-Digital input port  
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A.8 Digital-to-Analogue output port  
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APPENDIX B: CONTROL DESK SCREEN SHOTS 
 
 

B.1 Control Desk screen shot: Modified lead-lag control 
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B.2 Control Desk screen shot: LQ Servo control 
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B.3 Control Desk screen shot: Fuzzy control 
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B.4 Control Desk screen shot: Sliding-mode control 
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