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ABSTRACT 

 

Extractability Profiling and Antioxidant Activity of Flavonoids in Sorghum Grain 

and Non-grain Materials. (May 2009) 

Nenge Lynda Azefor Njongmeta, B.Sc. (Hons), Obafemi Awolowo University, 

Ile-Ife Nigeria; M.Sc. University of Ibadan, Nigeria 

Chair of Advisory Committee: Dr. Lloyd W. Rooney 

 

 Grains, leaves, sheaths, glumes and stalks of sorghum varieties were 

analyzed for total phenols, condensed tannins, flavan-4-ols, anthocyanins and in 

vitro antioxidant activity. Black sorghum bran was used to evaluate the 

effectiveness of organic acids and enzymes on extractability of phenols. 

Flavonoid profiles of grains and non-grain tissues were determined and 

characterized using HPLC-PDA and HPLC-ESI-MSn.  

The presence of a pigmented testa and spreader genes (B1B2S) is a 

predictor for polymeric flavonoids (tannins) but not for simple phenols such as 

flavan-4-ols, 3-deoxyanthocyanins, flavones and flavanones. Simple flavonoids 

increased antioxidant capacity of sorghum, and were present in all sorghum 

except for the white pericarp sorghums that did not have flavanones. The “red 

turning into black” gene increased phenols in Type I sorghum.  

The leaves, sheath and glumes of sorghum had higher levels of phenols 
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(78-600 times more), with in vitro antioxidant properties than commonly seen in 

grains. Pigmentation of plant components increased levels of 3-

deoxyanthocyanins but not flavones nor flavanones. The leaves of biomass 

sorghum, Collier variety, had 3.4 times more 3-deoxyanthocyanins than the 

leaves of Tx430 Black x Sumac which had the highest levels (1810 µg/g) of 3-

deoxyanthocyanins among the leaves.  

 The use of 1% HCl/ethanol provides a possible food grade substitute 

solvent for 1%HCl/methanol in the extraction of phenolic compounds from 

sorghum. All enzymes evaluated broke down bran particles forming a gel-like 

material which had increased phenols and antioxidant activities but not 3-

deoxyanthocyanins as revealed by HPLC analysis. Microscopy examination 

showed the gel matrix rich in fiber and can possibly be used for nutraceutical 

applications. Careful understanding of enzyme activities is necessary for 

effective extraction of 3-deoxyanthocyanins from sorghum. 

Sorghum leaves, sheaths and glumes are excellent sources of bioactive 

compounds, up to 600 times more than the grains of some varieties. Sorghum 

with the “red turning to black genes” is a potential source of 3-

deoxyanthocyanins and flavan-4-ols. With the trend towards sorghum as 

biomass for ethanol production, plant breeders must select special traits aimed 

at developing enhanced desired functionality such as antioxidant potential and 

other healthy attributes with application in food, pharmaceutical/nutraceutical 

and cosmetic industries.  
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CHAPTER I 

INTRODUCTION 

 

Sorghum (Sorghum bicolor (L.) Moench) is the fifth most important cereal 

crop in the world and a dietary staple of more than 500 million people in more 

than 30 countries (ICRISAT 2009) in tropical Africa, South America, central and 

north India, and China. It plays an important role in food security as well as a 

source of income (Dendy 1995; Anglani 1998; Taylor & Dewar 2001; Belton & 

Taylor 2004; Dicko et al 2006). It is one of the most drought tolerant cereal crops 

currently under cultivation (Elkin et al 1996) and thrives in semi-arid regions. 

Sorghum contains a wide variety of phenolic compounds which affect the 

classification, color, appearance, nutritional quality and functionality of the grain.  

The levels and profiles of phenolic compounds present in each sorghum cultivar 

are unique and influenced by both genetics and the environmental conditions 

under which the grain matures (Awika and Rooney 2004; Dykes and Rooney 

2006; Krueger et al 2003).  

Phenolic compounds are synthesized by plants during normal 

development (Harborne 1991; Pridham 1959) as phytoalexins, contributing to 

resistance against microorganisms/mold, insects/predation and against stress  

 
 
 
   
This dissertation follows the style of Cereal Chemistry. 
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from UV-light among others (Lo et al 1999; Seitz 2004; Serna-Saldivar and 

Rooney 1995; Waniska and Rooney 2000; Waniska et al 2001). Sorghum 

phytochemicals also act as antioxidants as demonstrated by in vitro assays 

(Awika et al 2003b; Hagerman et al 1998) and some are known to be more 

potent than vitamins found in other plants (Rhodes and Price 1997).  

The chemo-protective properties associated with phytochemicals and the 

restrictions on the use of synthetic antioxidants due to possible 

toxic/carcinogenic effects (Branen 1975; Frankel et al 1995; Ito et al 1983) have 

triggered worldwide interest in phytochemicals as dietary sources of antioxidants 

and food/beverage colorants. Anthocyanins and other flavonoids are receiving 

renewed attention for potential health benefits associated with their antioxidant 

properties. Many studies also suggest that flavonoids exhibit biological activity 

that includes being antiallergenic (Ueda et al 2002 ), anti-inflammatory (Mazza 

and Miniati 1993; Ueda et al 2002; Wang et al 1997) and vasodilating (Brignall 

and Lamson 2000; Rice-Evans et al 1997), neuroprotective (Sharmaa et al 

2007) and having anti-cancer properties (Cherng et al 2007; Gates et al 2007).   

Phenolic compounds in sorghum grains are concentrated in the bran 

layer as a protective mechanism against insects and diseases (Awika et al 2005; 

Hahn and Rooney 1986). The extraction of sorghum bioactive  compounds is  

difficult because in most whole grains, 75 to 85% are present in the bound form 

(Hahn 1984; Waniska et al 1989)  compared to fruits and vegetables which have 

more free than bound phenolic compounds (Liu 2007).  
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 Extraction of phenolic compounds from sorghum is a challenge because 

the cell wall consists mainly of insoluble polysaccharides, protein and lignin in 

which the cell wall matrix restricts solubilization. The structural complexity of the 

sorghum grain cell wall matrix makes extraction of phenolic compounds not only 

difficult but also leads to underestimation of the phenolic compounds present in 

sorghum.  

The commonly used solvents for extraction of phenolic compounds in 

sorghum include 1% HCl/methanol. The residues obtained after extraction with 

1% HCl/methanol still remain dark indicating incomplete extraction. Other 

solvents have been used for the extraction of phenolic compounds from fruits 

and vegetables as well as cereals with varying degrees of success. For 

example, aqueous acetone has been considered a good solvent for the 

extraction of procyanidins, anthocyanins and other phenolic compounds from 

fruits and vegetables (Garcia-Viguera et al 1998; Kallithraka et al 1995).  

Preliminary work in our laboratory using different combinations of acetic, citric 

and tartaric acids in aqueous ethanol resulted in the same profiles of 3-

deoxanthocyanins when compared with the commonly used extraction solvent, 

1% HCl in methanol (Njongmeta et al 2007b).  

Given the new enzyme technology developed for biomass and ethanol 

production, enzyme-assisted extraction of phenolic compounds from sorghum 

should be evaluated. Enzyme extraction of sorghum polyphenols is 

advantageous in that the economics of enzymatic hydrolysis and its impact on 
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the environment could outweigh any benefits other extraction solvents provide. 

Additionally, the use of enzymes could provide an eco-friendly process for the 

extraction of phenolic compounds from sorghum.  

Studies of sorghum phenolics, until now, focused on grains of various 

sorghum cultivars shown to possess a wide range and proportion of major 

flavonoids (Dykes 2008). Limited studies have suggested that other parts of the 

sorghum plant such as the leaves and stems contain phenolic compounds like 3-

deoxyanthocyanins, flavones and flavanone (Doherty et al 1987; Kwon and Kim 

2003; Rey et al 1993; Seitz 2004). Sereme et al (1993) reported higher levels of 

anthocyanins in the leaves and sheaths of Sorghum caudatum variety Monema 

kaya compared to the grains and the roots.  Thus, our interest was to identify 

and quantify phenolic compounds from glumes, leaves, stalks and sheaths as 

well as sorghums grains. 

Overall, the project goals were to determine the phenolic profile of 

intensely pigmented sorghum, including their leaves, glumes and stalks. The 

project intended to optimize the extractability of phytochemicals from sorghum 

by the use of enzyme-assisted extractions and evaluate food-friendly extraction 

solvents to replace 1% HCl/methanol. Phenol profile and distribution depends on 

plant genetics, thus the results of this study will provide sorghum breeders with 

appropriate information for the selection of sorghum varieties with special traits 

to enhance desired functionality and health attributes. Based on the outcome of 

this research, we intend to propose a more food friendly and effective solvent for 
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the extraction of phenolic compounds from sorghum. This study will provide 

fundamental information that will enable decisions about the validity of the whole 

sorghum plant as a viable source of bioactive compounds. 

The objectives of this research were to: 

1. Determine the effect of pigmented testa on flavonoid profiles and 

antioxidant activities of sorghum varieties.  

2. Determine the effect of pericarp color on flavanones. 

3.  Determine the phenolic profiles in leaves, sheaths, glumes, grains 

and stalks of sorghum varieties with varying secondary plant colors. 

4. Determine the most effective food-friendly solvent(s) for the extraction 

of 3-deoxyanthocyanins from black sorghum. 

5. Determine feasibility of enzyme extraction of phenolic compounds 

from black sorghum. 
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CHAPTER II 

LITERATURE REVIEW 

 

Sorghum Kernel Structure 

  The characteristics of sorghum grain have been documented by 

Rooney and Miller (1982). Sorghum caryopses comprise discrete anatomical 

constituents namely: the pericarp (outer layer), the testa or seed coat, which 

occurs just under the pericarp layer; the endosperm tissue, which is divided into 

the aleurone layer, floury and corneous endosperms and the germ “embryo” 

(Waniska 2000). 

 

The Pericarp 

The outer layer of sorghum caryopses originates from the ovary wall and 

is divided into three histological tissues, the epicarp, mesocarp, and the 

endocarp (Earp and Rooney 1982). The outermost layer, the epicarp, in most 

cases is covered with a thin layer of wax. The epicarp is two or three cell layers 

thick consisting of rectangular shaped cells and may often contain pigmented 

material. The sorghum mesocarp unlike in most cereals, contains starch 

granules (Waniska and Rooney 2000).  A thick pericarp usually contains three or 

four mesocarp cell layers filled with small starch granules. The endocarp and the 

inner pericarp tissue are composed of cross and tube cells. 
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 Many interacting factors control to the color and overall 

appearance of sorghum caryopses. Appearance is mainly affected by pericarp 

color and thickness, the presence of pigmented testa and endosperm color 

(Rooney and Miller 1982). It is postulated that the pericarp color of sorghum 

results from a combination of the anthocyanin and anthocyanidin pigments in 

addition to other flavonoid compounds present in sorghum (Hahn and Rooney 

1986; Hahn et al 1984).  

The appearance and quality of sorghum is controlled by genetics and the 

environment under which the sorghum grain matures. Numerous studies report 

that the R and Y genes interact epistatically to produce red, yellow and white 

pericarp colors (Dykes and Rooney 2006; Rooney 2000; Waniska and Rooney 

2000). A combination of these genes can produce: white or colorless pericarp 

when the Y locus is homozygous recessive (R_yy or rryy), lemon yellow when 

the R locus is recessive, with at least one dominant allele at the Y locus (rrY_), 

or red when both R and Y loci posses a dominant allele (R_Y_) (Hahn et al 

1984). The Y gene is thought to be the basic gene for the synthesis of the 

flavonoid skeleton from phenolic acids, while the R gene appears to control the 

reduction of flavanone to its corresponding flavan (Hahn et al 1984).  

The intensifier (I) gene controls the intensity of the pericarp color and is 

most obvious when the pericarp is red (R_Y_). The Z gene influences pericarp 

thickness, with thin pericarp dominant over thick pericarp.  A pericarp is thick 

when the gene is homozygous recessive (zz) and thin when it is dominant (ZZ). 
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Secondary plant color is controlled by the P and Q genes. Plants with 

homozygous dominant PQ genes are purple or red pigmented plants, while 

plants with recessive pq genes produce tan-pigmented plants (Dykes and 

Rooney 2006). 

 

The Testa 

The seed coat of sorghum may either be pigmented or non-pigmented 

and this is genetically controlled by B1 and B2 genes (Waniska and Rooney 

2000). For a pigmented testa to be present, both genes must be dominant 

(B1_B2_) and thus the sorghum is known to contain tannins.  If at least one of 

the genes is recessive then the pericarp is non-pigmented and hence the 

sorghum does not contain tannins (Fig. 1). 

 According to Hahn et al (1984), the dominant B1 and B2 genes appear to 

control the polymerization of flavans (anthocyanidins) to flavan-3-ol polymers 

(tannins). The spreader gene (S) controls the amount of tannins and other 

phenolic compounds present in the pericarp (Gous 1989). When S is dominant, 

more brown pigments are present in the pericarp and testa and the tannin 

content is higher (Doherty et al 1987). The testa color is controlled by Tp genes, 

and can be either brown or purple. A testa is purple when Tp is homozygous 

recessive (tptp) and brown when it is dominant (Tp_). 
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The Endosperm 

        The endosperm is a triploid, resulting from the fusion of a male gamete with 

two female polar cells. It is composed of the aleurone layer, peripheral, corneous 

and floury areas. The aleurone is the outer layer and consists of a single layer of 

rectangular cells adjacent to the testa or tube cells (Waniska and Rooney 2000). 

The cells possess a thick cell wall, large amounts of proteins (aleurone grains, 

enzymes), ash (phytin bodies) and oil (spherosomes).  

             The peripheral starchy endosperm is composed of several layers of 

dense cells containing more protein bodies and smaller starch granules. The 

corneous and floury endosperm cells are composed of starch granules, a protein 

matrix, protein bodies and cell walls rich in glucuronoarabinoxylans. The starch 

granules and protein bodies are embedded in the continuous protein matrix in 

the peripheral and corneous areas. 

 

                        

 

 

Fig. 1.  Fluorescence photomicrograph of cross-sections of sorghum. A non-
tannin sorghum (left) and a tannin sorghum kernel (right). Al, aleurone; CW, 
cell wall; E, endosperm; En, endocarp; Ep, epicarp; M, mesocrap; Testa, 
pigmented testa. Adapted from Earp et al 2004a. 
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Germ 

The germ consists of two major parts: the embryonic axis and the 

scutellum. The embryonic axis contains the new plant and is divided into a 

radicle which develops into the primary roots and plumule which forms the 

leaves and stems. The scutellum is a single cotyledon and contains reserve 

nutrients which include moderate amounts of oil, protein, enzymes and minerals 

and serves as the bridge or connection between the endosperm and germ.  

 

Classification of Sorghum Varieties Based on Tannin Content 

Sorghum varieties are sub-categorized into three major categories based 

on genetics and chemical analyses (Hahn and Rooney 1986; Rooney and Miller 

1982). Genetics control the presence or absence of a pigmented testa, and 

subsequently tannins. Sorghum containing tannin is called tannin or brown 

sorghum even though the pericarp color may be white, yellow, or red. Grain 

appearance is not always related to the presence of tannin. Most cultivated 

sorghums however do not contain condensed tannins even though non-tannin, 

phenolic compounds are sometimes erroneously reported as tannins.  

Type I sorghums (b1b1B2_,B1_b2b2,b1b1b2b2) do not have a pigmented 

testa, have no tannins and contain low levels of phenols. Meanwhile Types II 

and III both have a pigmented testa and contain tannins. Types II and III 

sorghums however differ from each other in that type II sorghums have a 

pigmented testa and a recessive spreader gene (B1_B2_ss), while type III 
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sorghums have both a pigmented testa and a dominant spreader gene 

“B1_B2_S_” ( Earp et al 1981).  

 Earp et al (2004b) showed that the tannins in type II sorghums are 

deposited in the vesicle within the testa layer, whereas the tannins in type III are 

deposited along the cell walls of the testa with some present in the pericarp.  

The tannins in type II sorghum is more difficult to extract than those in type III 

with the tannins in Type II sorghums being extracted with acidified methanol (1% 

HCl methanol) while the tannins in Type III sorghums extracted with either 

methanol or acidified methanol when performing the vanillin/HCl assay.  

 

Phenolic Compounds in Sorghum 

Phenolic compounds constitute a large diverse group of secondary plant 

metabolites commonly found in the plant kingdom and posses a common 

characteristic of an aromatic ring bearing one or more hydroxyl substituents. The 

phenolic units are encountered in proteins, alkaloids and among terpenoids 

(Harborne 1991). Polyphenols are derived from the Shikimate and acetate-

malonate pathways. Shikimate pathways continues with the production of 

phenylalanine, which  is subsequently deaminated by the enzyme phenylalanine 

lyase into cinnamate derivatives (Dicko et al 2006).  On the other hand, acetate-

malonate pathways contributes to flavonoid biosynthesis which continues with 

the conversion of acetyl CoA to malonyl CoA by acetyl CoA carboxylase (ACC) 

(Fig. 2). All sorghum contain phenolic compounds and among the major cereals,  
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sorghum remains unique because of the quality and quantity of phenolic 

compounds, including the condensed tannins in some varieties (Butler 1990). 

Phenolic compounds most frequently encountered in nature are linked to a 

sugar moiety (glycosides) and they are usually water-soluble (Harborne 1991).  

In cereal, phenolic compounds are found in both free and bound form. 

Free phenolic compounds are proanthocyanidins or flavonoids, while the bound 

phenolic compounds are ester-linked to cell-wall polymers with ferulic acid and 

its dehydrodimer derivatives being the major bound phenolic compounds 

present (Bonolia et al 2004).  

Phenolic compounds identified in sorghum belong to three major groups:  

phenolic acids, polymeric flavonoids and simple flavonoids  (Awika and Rooney 

2004, Dykes and Rooney 2006, Serna-Saldivar and Rooney 1995). 

 

Phenolic Acids 

Phenolic acids constitute two groups; hydroxybenzoic acid and 

hydroxycinnamic acids which are the common phenolic acids in plants (Wrolstad 

et al 2005). All sorghum contain phenolic acids located in the pericarp, testa, 

aleurone layer and endosperm (Hahn et al 1984), although the bound phenolic 

acids are associated with the cells walls. Many phenolic acids have been 

identified in sorghum (Table 1). 
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Table 1 
Phenolic Acids and Substitutions Identified in Sorghum 

 

    Phenolic Acid 
a
R1    R2      R3                  References 

 

Hydroxybenzoic Acids    

  

  Gallic OH  OH   OH Hahn et al (1983) 

  Protocatechuic H     OH  OH   Hahn et al (1983); McDonough et al (1986) 

  p-Hydroxybenzoic H     OH    H Hahn et al (1983); McDonough et al (1986)   

  Gentisic OH    H     OH   McDonough et al(1986); Waniska et al (1989) 

  Salicylic OH    H     H  McDonough et al(1986); Waniska et al (1989) 

   Vanillic                   CH3O OH    H  McDonough et al(1986); Hahn et al (1983) 

   Syringic         CH3O OH  CH3O McDonough et al(1986); Waniska et al (1989) 

 

Hydroxycinnamic Acids 

  
 

      Ferulic CH3O  OH    H Hahn et al (1983); McDonough et al(1986) 

      Caffeic OH     OH    H Hahn et al (1983); McDonough et al(1986) 

     p-Coumaric H        OH   H Hahn et al (1983); McDonough et al(1986) 

     Cinnamic         H        H      H Hahn et al (1989); McDonough et al(1986) 

     Sinapic CH3O OH  CH3O Waniska et al1989); (McDonough et al(1986) 

a
 :Parent skeletons are shown on Fig.  3.  

 
 

 

Hydroxybenzoic and hydroxycinnamic acids are benzoic and cinnamic 

acid derivatives, respectively (Fig. 3). Hydroxybenzoic acids include gallic, p-

hydroxybenzoic, vanillic, syringic, and protocatechuic acids, among others.  

Hydroxycinnamic acids include coumaric, caffeic, ferulic, and sinapic acids and 

have a C6-C3 structure. Phenolic acids in cereal grains generally exist as free 

phenolic acids, and as soluble and insoluble esters.  
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Hahn et al (1984) identified free and bound phenolic acids in sorghum, although 

the bound forms were predominant. Ferulic acid is the most dominant (24-47%) 

of the phenolic acids. In sorghum, gallic acid is found in bound form, whereas 

cinnamic acid exists in the free form (Hahn et al 1984). Free and bound phenolic 

acids are extracted with methanol and boiling 2N HCl, respectively.   

 

 

 

 

 

 

 

 

 
 
 

 

Tannins (Polymeric Flavonoids) 

Tannins are high molecular weight polymeric flavonoids with molecular 

weights between 500 and 3,000 (Fennema 1996). Tannins are classified as 

hydrolyzable or condensed tannins and are capable of tanning leather or 

precipitating gelatin in solution. Hydrolyzable and condensed tannins can easily 

be differentiated by their structure and reactivity towards hydrolytic agents. 

OO

A B

OHOH

R3 R3

R2

R1

R2

R1

Fig. 3.  Basic structure of phenolic acids: Benzoic acids (A) and 
Cinnamic acids (B). 
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 Structurally, hydrolyzable tannins (e.g, tannic acid) contain a central core 

of polyhydric alcohol such as glucose and hydroxyl groups which are fully or 

partially esterified by gallic acid or hexahydroxydiphenic acid. Hydrolyzable 

tannins break down into sugars and a phenolic acid (gallic or ellagic) when 

treated with acid, alkali or some hydrolytic enzymes such as tannase (Harborne 

1991). Sorghum does not contain tannic acid and hydrolysable tannins (Awika 

and Rooney 2004; Waniska 2000). 

Sorghum varieties with a pigmented testa contain condensed tannins, 

mainly polymerized products of flavan-3-ols and/or flavan 3, 4-diol subunits (Fig. 

4), that are deposited in the pigmented testa layer of sorghum kernels (Kaufman 

et al 2006). Only sorghum cultivars with a pigmented testa (B1_B2_genes), 

produce condensed tannins or proanthocyanidins (Waniska 2000). According to 

Hahn and Rooney (1986), tannins apparently occur only in the pericarp and 

pigmented testa layers although tannins have also been reported in the glumes 

and leaves of sorghum (Ring 1984). Tannins have in vitro antioxidant properties 

(Hagerman et al 1998) and over the last decade are considered as 

nutraceuticals (Zhang et al 1997; Lui et al 2005). 

Condensed tannins are formed by the biosynthetic condensation of 

catechin or gallocatechin units to form dimmers and higher oligomers, with 

carbon-carbon linking one flavan unit to the next by a 4-8 or 6-8 links (Harborne 

1991; Haslam 1996). Condensed tannins are also referred to as 

proanthocyanidins because they yield anthocyanidins when treated with mineral 
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acids (Hahn et al 1984). Most proanthocyanidins are procyanidins, which means 

that they yield cyanidins or catechin upon treatment with acid (Harborne 1991). 

Condensed tannins are primarily procyanidins (Gu et al 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

Fig. 4. Structure of proanthocyanidin (condensed tannin) polymer; n >10. 
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Simple Flavonoids in Sorghum 

Flavonoids are polyphenolic compounds ubiquitously present in the plant 

kingdom. They are the largest class of phenolic compounds studied and more 

than 8,150 have been identified (Anderson and Markham 2006; Sweeny and 

Iacobucci 1983). Flavonoids constitute important natural pigments with diverse 

biochemical and antioxidant benefits.  

The basic flavonoid structure is composed of the flavan nucleus, which 

consists of 15 carbon atoms derived from two phenyl  groups ( A and B- rings), 

connected by a three-carbon bridge (C-ring) to form  a C6-C3-C6 skeleton (Fig. 

5). Flavonoids are biosynthetically derived from phenylalanine (Fig. 2). 

Three molecules of glucose from malonyl-coenzyme A (CoA) from the 

acetate-malonyl pathway of glucose metabolism condenses to form ring A, 

catalyzed by chalcone synthetase. Ring B and C also come from glucose 

metabolism, but via the shikimate pathway through phenylalanine, which is 

converted to cinnamic acid and then to coumaric acid. Coumaric acid CoA and 

three malonyl CoAs are condensed in a single enzymatic step to form naringenin 

chalcone. 

The C-ring closes and becomes hydrated to form 3-hydroxyflavonoids 

(e.g catechins), 3, 4-diol flavonoids (e.g quercetin), and procyanidins (Formica 

and Regelson 1995). Flavonoids can undergo modifications of their aromatic 

cycles, including hydroxylations, methylations and glycosylations.  

 



 19 

 

   

 

 

 

 

 

 

 

 

Only plants have the biosynthetic capabilities to synthesis flavonoids. 

Flavonoids occur in various forms in plants such  as aglycones, glycosides  or 

hydroxyl, methyl and methoxyl derivatives (Pourcel et al 2006). Polyphenols are 

divided into various classes on the basis of their molecular structure (Fig. 6) with 

the major classes differing in the level of oxidation and substitution pattern on 

the C ring, while individual compounds within a class differ in the substitution 

pattern on the A and B rings (Fig. 5).   

Many classes of flavonoids have been isolated and identified in sorghum 

(Table 2) including flavanols (e.g flavan-3-ols, flavan-4-ols), flavanones, flavones 

and anthocyanins (Fig. 5) (Awika et al 2004b; Awika et al 2004a; Dykes 2008). 

The six common anthocyanins (Fig. 7A) in nature are cyanindin, 

delphinidin, malvinidin, pelargonidin, petunidin, and peonidin. However, the 3-

deoxyanthocyanins are a rare form of anthocyanins commonly found in ferns 

and mosses (Timberlake and Bridle 1975; 1980) with sorghum being the only 

known dietary source (Wu et al 2005).  

O
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C

Fig. 5. Basic diphenylpropane C6-C3-C6 skeleton. 
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Table 2 
 Flavonoids Identified in Sorghums 

 

Compound 
 

References 

Anthocyanins: 
Apigeninidin 
Apigeninidin 5-glucoside 
Luteolinidin 
5-Methoxyluteolinidin 
5-Methoxyluteolinidin 7-glucoside 
7-Methoxyapigeninidin 
7-Methoxyapigeninidin 5-glucoside 
Luteolinidin 5-glucoside 
5-Methoxyapigeninidin 
7-Methoxyluteolinidin 

 
Nip & Burns (1971); Gous (1989); 

a
Rey et al (1993) 

Nip & Burns (1969,1971); Wu and Prior (2005) 
Nip & Burns (1971); Gous (1989) 
Seitz (2004); Wu and Prior (2005) 
Wu & Prior (2005) 
Pale et al  (1997); Seitz (2004); Wu and Prior (2005) 
Wu and Prior (2005) 
Nip and Burns (1971); Wu and Prior (2005) 
Seitz (2004) 
Seitz (2004) 

Flavan-4-ols: 
Luteoforol 
Apiforol 

 
Bate-Smith (1969) 
Watterson and Butler (1983) 

Flavones: 
Apigenin 
Luteolin 
Tricin  

 
Gujer et al 1986; 

a
Rey et al (1993); Seitz (2004)

 
 

a
Rey et al (1993); Seitz (2004) 

a
 Kwon and Kim (2003) 

 
Yasumatsu et al (1965); Kambal and Bate-Smith (1976) 
Gujer et al (1986) 
Gujer et al (1986) 
a
 Kwon and Kim (2003) 

Flavanones: 
Eriodictyol 
Eriodictyol 5-glucoside 
Naringenin  
Quercetin 3,4'-dimethyl ether 

Flavonols: 
Kaempferol 3-rutinoside-7-glucuronide 

 
Nip and Burns (1969) 

Dihydroflavonols: 
Taxifolin 
Taxifolin 7-glucoside 

 
Gujer et al (1986) 
Gujer et al (1986) 

    Source: Modified from Dykes et al 2006.  
      a

 Flavonoid identified in stem 

 

 

Sorghum anthocyanins are called 3-deoxyanthocyanins and are the major 

class of flavonoids studied in sorghum (Awika et al 2005; Dykes 2008; Dykes 

and Rooney 2006; Njongmeta et al 2007b; Njongmeta et al 2007a). Sorghum 3-

deoxyanthocyanins are similar to the common anthocyanins, (Fig. 7A), however, 

they do not contain the hydroxyl group in the 3-position of the C-ring (Fig. 7B). 

This unique structural feature gives sorghum 3-deoxyanthocyanins very different 
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chemical and biochemical properties. For example, 3-deoxyanthocyanins are 

more stable to pH changes and other conditions compared to the common 

anthocyanins (Awika et al 2004b; Awika and Rooney 2004; Gous 1989; Mazza 

and Brouillard 1987; Njongmeta et al 2007a; Sweeny and Iacobucci 1983), 

giving these compounds a competitive advantage as potential natural food 

colorants compared to the common anthocyanins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  Structures of the six common anthocyanidins (A) versus the sorghum  
3-deoxyanthocyanidins (B). 
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3-Deoxyanthocyanins are produced as phytoalexins in plants as a 

response to mold invasion or other stress factors in sorghum (Lo et al1999; Seitz 

2004, Waniska and Rooney 2000). They have in vitro antioxidant activity (Awika 

et al 2004a). The yellow apigeninidin and the bright orange luteolinidin are the 

two most prominent sorghum 3-deoxyanthocyanins (Awika et al 2004b; Gous 

1989; Nip and Burns 1971; Wu and Prior 2005). 

As reviewed in Dykes and Rooney (2006), various substituted forms of 3-

deoxyanthocyanins have also been identified in sorghum grains which include 

apigeninidin 5-glucoside, luteolinidin 5-glucoside, 5-methoxyluteolinidin, 5-

methoxyluteolinidin 7-glucoside (Wu and Prior 2005), 7-methoxyapigeninidin, 7-

methoxyapigeninidin 5-glucoside (Wu and Prior 2005), 5-methoxyapigeninidin 

(Seitz 2004), and 7-methoxyluteolinidin (Table 2).    

 

Structural Features Relevant to Functions of Phenolic Compounds 

Generally, flavonoids are the principal components of phenolic 

compounds responsible for antioxidant capacity and flavonoids with multiple 

hydroxyl substitutions have very potent antioxidant activity against peroxyl 

radicals (Cao et al 1997). Other attributed biological features of polyphenols 

include their potential cytotoxicity (Pourcel et al 2006). 
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Phenolic Compounds as Colorants 

Anthocyanins and 3-deoxyanthocyanins can be used as colorants due to 

their ability to reflect or emit different quantities of energy at wavelengths able to 

stimulate the retina in the eye. Anthocyanins and 3-deoxyanthocyanins have 

double bonds in abundance and these are easily excited. The ease with which a 

molecule is excited depends on the relative electron mobility in the structure.  

The color of these compounds results from excitation of the molecule by 

visible light. Increasing substitution on these molecules results in a deeper hue, 

due to bathochromic change (longer wave length), with a visible light absorption 

band from violet through red to blue.  

The bathochromic effects are caused by auxochrome groups. 

Auxochrome groups are electron-donating groups and in the case of 

anthocyanins are the hydroxyl and methoxy groups. The methoxy groups 

contribute to deeper hues than the hydroxyl group because their electron 

donating capacity is greater than that of the hydroxyl group. These structural 

features make anthocyanins and 3-deoxyanthocyanins suitable for use as 

colorants.   

In terms of stability, sorghum 3-deoxyanthocyanins are superior to other 

common anthocyanins as they are more stable, over a wide range of pH 

change, because of the lack of the hydroxyl group in position 3 of the C-ring, a 

future lacking in the common anthocyanins. Preliminary work in our laboratory 

showed that the stability of the 3-deoxyanthocyanins from sorghum compares 
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favorably with commercial  food colorants such as FC & D Red # 3 and 40 

(Cardenas-Hinojosa et al 2007; Njongmeta et al 2007a; Cardenas-Hinojaso 

2008).  

 

Phenolic Compounds as Antioxidants 

Oxidizing events initiated by free radicals are responsible for many 

human pathological conditions such as stroke, cancer and diabetes (Lam et al 

2007). Increased consumption of plant foods rich in antioxidants such as 

phenolic phytochemicals are recommended for the prevention of human 

diseases caused by free radicals. Non-radical compounds such as Reactive 

Oxygen Species (ROS) are generated through normal physiological processes 

in biological systems and become increased during pathological conditions 

(Mathew and Abraham 2006). Studies on free radical scavenging capacity of 

antioxidants have led to increased interest in the use of plant phytochemicals for 

the treatment of pathological conditions caused by ROS (Aboul-Enein et al 

2007).    

Phenolic compounds act as scavengers of various oxidizing species 

(Awika 2003; Awika et al 2003b), and act as antioxidants by donating a proton to 

a free radical, thus stabilizing it while the antioxidant free radical generated is 

stabilized by resonance due to the presence of the benzene ring which allows 

for the existence of many resonant structures (Coultate 1996).  
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The ring orientation of the compound determines the ease by which a 

hydrogen atom from a hydroxyl group can be donated to a free radical and the 

ability of the compound to support an unpaired electron. The antioxidant activity 

of anthocyanins has been associated with a variety of properties including free 

radical scavenging, chelation of trace metals, and inhibition of lipid peroxidation 

and DNA oxidation. The structural characteristics responsible for antioxidant 

effect of anthocyanins are generally associated with the number of free 

hydroxyls around the pyrone ring (greater number of hydroxyls= greater 

antioxidant capacity). 

The conjugation of the anthocyanin ring structure with the C2-C3 double 

bond is consistently associated with a higher antioxidant capacity and a 

stabilizing effect on the phenoxy radical. The positioning of the hydroxyl group in 

relation to one another is also a very important determinant of the antioxidant 

capacity of anthocyanins. Hydroxyl groups in close proximity, such as the ortho-

hydroxyls of the B-ring appear to greatly enhance the antioxidant capacity of the 

anthocyanin in experimental models (Lien et al 1999; Zheng and Wang 2003), 

but information on this in biological systems is however limited. 

The antioxidant property of some phenolic compounds, for example 

tannins, is attributed to the proximity of many aromatic rings and hydroxyl groups 

and the fact that tannin cannot act as prooxidants (Hagerman et al 1998). It has 

been suggested that the free radical scavenging in human systems by 

antioxidants is a possible protective mechanism for reducing the pathological 
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damages of free radicals and ROS on human genetic materials and other 

biological molecules such as lipids (Wu et al 2004). 

 

Antimutagenic and Anticarcinogenic Properties of Phenolic Compounds 

Natural foods and food-derived antioxidants including vitamins and 

polyphenols continue to receive great attention as these bioactive 

phytochemicals are known to affect many biological processes such as 

antimutagenic and anticarcinogenic activities. The antimutagenic and 

anticarcinogenic properties of phenolic compounds are directly related to their 

antioxidant capacity (Potter 1997; Rafter 2002; Roy et al 2003). This is 

associated with their redox properties and the number of hydroxyl groups and 

the ability to donate proton which plays a role in adsorbing and neutralizing free 

radicals.  

Phenolic compounds possess ortho-hydroxyls in the B-ring of some 

flavonoids (e.g, catechin, quercetin and luteolin) which have antimutagenic and 

anticarcinogenic properties (Lee et al 2002; Mouria et al 2002; RoyChowdhury et 

al 2002; Yamashita & Kawanishi 2000). In vitro and in vivo studies suggest that 

phenolic compounds exhibit antimutagenic and anticarcinogenic activities by 

inducing cell cycle arrest, apoptosis and inhibiting proliferation of cancer cell 

lines and tumor development in rats (Mertens-Talcott and Percival 2005; Laurent 

et al 2007). 
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Antimicrobial Properties of Phenolic Compounds 

Growing interest in phenolic compounds and other natural antimicrobials 

from foods for treating human diseases has been fueled by the emergence of 

antimicrobial resistance to current antibiotics. Keen interest in polyphenols as 

antimicrobials is based on their protective role in plants against biotic and abiotic 

stress since they are produced as phytoalexins in response to microbial attack 

(Seitz 2004; Waniska et al 2001).  

The efficacy of polyphenols as antimicrobial agents has been 

demonstrated in vitro against a wide array of microorganisms (Lin et al 2004). 

Polyphenols such as isoflavonoids, flavans and flavanones are recognized as 

antifungal agents in plants and have been proposed for use against fungal 

pathogens in humans (Harborne and Williams 2000).  

The presence of hydroxyl group on the phenolic compound is the main 

structural feature contributing to their antimicrobial properties (Harborne and 

Williams 2000). The site(s) and number of hydroxyl groups on the phenols are 

related to their relative toxicity to microorganisms, with evidence that increased 

hydroxylation results in increased toxicity (Giron et al 1988). Some authors 

reported that more highly oxidized phenols are more inhibitory (Scalbert 1991).  

The extent of antioxidant potential of phenolic compounds in humans and 

other observed positive health effects studied both in vitro and in vivo is 

dependent on absorption, metabolism, distribution and excretion of these 

compounds within the body after ingestion (Rice-Evans 2003). 
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Phenolic Compounds in Non-Grain Materials of Sorghum 
 

In Benin and other West African countries, red pigments extracted from 

the leaves of local sorghum cultivars are used as food colorants and dyes for 

leather and other art work (National Research Council. 1996). In Ancient China, 

sorghum glume pigments used as dyes in local textile making were very stable 

under variable light and heating conditions (Zou and Shi 1999). Presently, this 

Chinese “Red Sorghum Pigment” extract has been patented. It is commercially 

available and used as additives/colorant in foods (meat and candy) and as 

coating in tablets and capsules. This suggests that the leaves, glumes, sheaths 

and stalks of these cultivars contain high levels of phenolic compounds such as 

3-deoxyanthocyanin which are stable to light and heat (Cardenas-Hinojosa et al 

2007) and other antioxidant compounds.  

Limited studies have been done on the identification and quantification of 

phenolic compounds from non-grain materials of sorghum such as the stems, 

leaves, stalks and glumes (Doherty et al 1987; Kwon and Kim 2003; Rey et al 

1993).  Doherty et al (1987) identified free phenolic compounds and tannins in 

the glumes of sorghum cultivars. Kwon and Kim (2003) and Rey et al (1993) 

identified flavonoids and antioxidant compounds such as apigeninidin, luteolin 

and apigenin in the stems of some other sorghum cultivars. Seitz (2004) 

reported 3-deoxyanthocyanidins and flavones in glumes of purple and tan-plant 

hybrid sorghums with varying degrees of moldiness; however the sorghum 

varieties were not reported. 
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In other plant species for example, in Brazil, sugarcane (Saccharum 

officinarum L., Gramineae), a close relative of sorghum, has a promising 

potential  as a source of flavonoid compounds, mainly the form of C-glycosides 

(Colombo et al 2006). This shows that evaluating the whole sorghum plant will 

offer added benefit to the utilization of sorghum. 

 

Extraction of Sorghum Phenolic Compounds 
 

  The principal goal in extraction of compounds from any plant material is 

usually to maximize removal of most of the compounds from the sample into 

solution (Waterman and Mole 1994b). Extraction is a critical step for accurate 

determination of phenol profiles in any given food material and the process is 

dependent on factors such as the extraction solvents, the number of extraction 

cycles and the concentration in the sample relative to the solvent. 

The physical process involves solvation or dissolution and diffusion into 

solution; hence, phenolic compounds are extracted faster if they are not 

saturated in the extraction solvent. This process also depends on temperature. 

Generally, the dissolution process takes longer from dry material compared to 

fresh material (Waterman and Mole 1994b). 

Several methods have been used in the extraction and isolation of 

phenolic compounds from plant materials. In sorghum, Hahn (1984) and Gous 

(1989) found 1%HCl in methanol was the most efficient solvent, whereas 70% 
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aqueous acetone was reported as the most efficient solvent for extracting 

polyphenols from fruits (Kallithraka et al 1995). 

 The extraction of sorghum bioactive compounds is difficult because of 

the way these compounds are located in the cell wall matrix which restricts 

solubilization. In whole grains, 75 to 85% of the phenols are present in the 

bound form (Hahn 1984; Waniska et al 1989) while in fruits and vegetables there 

are more free than bound phenolic compounds (Liu 2007).  

Extraction of phenolic compounds from sorghum is also a challenge 

because the cell wall consists mainly of insoluble polysaccharides, protein and 

lignin. Acidified 1% HCl/methanol is the commonly used solvent for the 

extraction of phenolic compounds from sorghum. The residues obtained after 

extraction with 1% methanol/HCl still remains dark indicating incomplete 

extraction.  

Other solvents have been used for the extraction of phenolic compounds 

from fruits and vegetables as well as cereals with varying degrees of success. 

For example, aqueous acetone has been considered a good solvent for the 

extraction of procyanindins, anthocyanins and other phenolic compounds in 

fruits and vegetables (Garcia-Viguera et al 1998; Kallithraka et al 1995). Lu and 

Foo (2001) observed significant anthocyanin interaction when aqueous acetone 

was used as extraction solvent for fruits and vegetables. Awika et al (2004b) 

reported modification of the HPLC-spectral characteristic of 3-

deoxyanthocyanins associated with formation of pyranoluteolinidin and 
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pyranoapigeninidin, which resulted in significantly lower levels of detectable 

anthocyanins.  

Different combinations of acetic, citric and tartaric acids in aqueous 

ethanol gave the same profiles of 3-deoxanthocyanins as the commonly used 

1% HCl in methanol extractions although with about 50% reduction (Njongmeta 

et al 2007b).  

Enzyme assisted extraction of phenolic compounds from fruits is 

successfully practiced. For example, in the extraction of antioxidant compounds 

from black currant press residues (Ribes nigrum), enzymes increased phenol 

yields (Landbo and Meyer 2001). In another study, cell wall degrading enzyme 

preparations increased anthocyanin yield and phenol profiles in bilberry and 

black currant juices (Buchert et al 2005). Kim et al (2005) reported increased 

yields in the extraction of phenolic compounds from apple peel when cellulases 

from Thermobifida fusca were used. Enzyme-assisted extraction is un-exploited 

for sorghum phenolics and offers an opportunity to optimize the extractability of 

sorghum phenolics. 

 

Analysis of Phenolic Compounds from Sorghum 
 

Several  methods are used for determination of phenolic compounds 

(Hagerman et al 1997; Shahidi and Naczk 1995). Most methods use 

spectrophotometric assays because the techniques are easy to master and are 

very valuable in the evaluation of phenolic compounds (Waterman and Mole 
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1994b). Total phenols are measured using the Folin-Ciocalteu assay (Singleton 

and Rossi 1965; Kaluza et al 1980) or the Prussian Blue assay (Price and Butler 

1977).  Total phenol assays measure the ability of phenolic groups to reduce the 

folin-reagent (Huang et al 2005). 

 

Folin-Ciocalteau Assay 

This is the most commonly used method as reported by (Waterman and 

Mole 1994b). The principle is based on a reduction-oxidation reaction in which 

the phenolate ion undergoes oxidization under alkaline conditions while reducing 

the phosphotungstic-phosphomolybdic complex in the reagent. Since this is 

credited to the reducing power of phenolic hydroxyl groups (Hahn et al 1984), 

the reactions are not specific to a class of phenols. For example, the assay 

measures the amino acid tyrosine (Hahn and Rooney 1986) and non-phenolics 

such as ascorbic acid (Hagerman et al 1997; Waterman and Mole 1994b).   

 

Bleach Test 

The presence of condensed tannin is determined using rapid methods of 

identifying tannin sorghums. One such method is the bleach test which 

qualitatively identifies sorghum with tannins (Waniska et al 1992). In the bleach 

test, the pericarp is dissolved by the bleach reagent, to expose the testa layer, 

which is black in tannin sorghum, and white to yellow in non-tannin sorghum. 

The bleach test provides an estimate of the amount of tannin sorghum present 
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which is calculated from the percentage of kernels containing the pigmented 

testa. It is a good method to determine whether a sample contains a mixture of 

tannin and non-tannin sorghum. The bleach test is inexpensive and relatively 

quick to perform. It is also effective when used with the appropriate standards. It 

does not measure tannin content or differentiate between Type II and Type III 

sorghums (Waniska et al 1992). There are more specific tests which can be 

done to confirm the presence or absence of tannins.  

 

Vanillin-Hydrochloric Acid (Vanillin/HCl) Method 

 Condensed tannins are measured using the vanillin/HCl or the 

butanol/HCl assays. The modified vanillin/HCl method of (Price et al 1978) 

involves the condensation of the aromatic aldehyde vanillin (4-hydroxy-3-

methoxy benzaldehyde) with monomeric flavanols and their oligomers  in the 

presence of mineral acids to form a red adduct or colored complex, which 

absorbs at 500 nm.  

Type I sorghums give low tannin values due to the interference of other 

non-tannin phenolics (Waniska and Rooney 2000). Sorghums that do not have a 

pigmented testa contain non-tannin phenolics that react with the reagent and 

give some “tannin values” that are artifacts (Earp et al 1981; Hahn and Rooney 

1986).  These values are generally reported as tannin content in the literature 

and give rise to the false assumption that all sorghums have tannins (Rooney 

2005).  Because of the lack of an appropriate standard for condensed tannins, 



35 

 

 

the vanillin/HCl assay does not measure tannin content accurately; a major 

limitation based on the heterogeneous nature of these compounds (Schofield et 

al 2001). The preferred standard for the vanillin/HCl assay is catechin but it 

gives values that are unrealistically high (Schofield et al 2001). Attempts to 

obtain pure tannin standards over the years have proven challenging.  

 In the vanillin-HCl assay, the flavonoid A-ring at the C-6 position reacts 

with vanillin forming a red chromophore, thus the assay detects any monomeric 

or polymeric flavanols using catechin as a standard (Beta et al 2000). In most 

cases, if this assay is used alone, it leads to a wrong assertion about tannin 

content of a given sample. For example, in sorghum, the tannins reside mainly in 

the pigmented testa, and the pigmented testa is about 5-6% dry weight of the 

kernel. Consequently, high catechin equivalent values are unrealistic in some 

varieties. Hence, tannin values from this assay have generally been viewed as 

relative indices of tannin content among samples only and the values are 

combined with information on the genetic background of the sorghum to make 

meaningful conclusions on the tannin content.  

 

Butanol/HCl Assay Method for Condensed Tannins 

The butanol/HCl assay also measures tannin content and involves the 

depolymerization of condensed tannins in boiling acidic butanol to yield 

anthocyanidins (Porter et al 1986). The butanol-HCl method is specific for 

proanthocyanidins. As upon treatment with mineral acid solutions, 
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proanthocyanindins depolymerize to colored anthocyanidins that absorb at 

maximum wavelength of around 550nm. The cleavage of the inter-flavanoid 

bond results in the formation of carbocations, which undergo autooxidation to 

yield anthocyanidins (Porter et al 1986).  

 

Modified Butanol/HCl Method for Flavan-4-ol 

   Flavan-4-ols are measured by a modified method of the 

butanol/HCl (Govindarajan and Mathew 1965). Flavan-4-ols are reported as 

absorbance readings due to the absence of an appropriate standard curve for 

quantification. The instability of the pure compounds such as luteoferol and 

apiferol standards makes it difficult to obtain a standard curve. 

 

pH Differential Method for Total Anthocyanins 

Total anthocyanin content is commonly determined using the pH 

differential method of Fuleki and Francis (1968). Absorbance is read 

spectrophotometrically at two separate wavelengths; 485 nm (luteolinidin) and 

465 nm (apigeninidin). It is possible to compare the absorbance readings with a 

standard curve of either luteolinidin or apigeniniden to obtain values that are 

universally acceptable.  
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Separation and Identification of Phenolic Compounds Using HPLC 

Reversed-phase high-performance liquid chromatography (RP-HPLC) 

with UV-Vis or photodiode array (PDA) detection, using C18 columns has been 

successfully used to separate, identify, and quantify sorghum phenolic acids and 

flavonoids (Awika et al 2004a, Chen et al 2001, Gujer et al 1986, Hahn et al 

1983, Lopez et al 2001). The main chromatographical separation principle 

involved in reversed-phase HPLC is partition of solutes between the polar 

mobile phase and the non-polar stationary phase. The overall polarity and 

stereochemistry of the flavonoids are the key factors for the separation 

(Anderson and Francis 2004, Strack and Wary 1994). The elution of the 

flavonoids in reversed-phase HPLC columns depends on the pattern of 

hydroxylation/methoxylation of aglycone, the degree of glycosylation, acyl 

substitution as well as the mobile phase composition and solvent gradient 

steepness. For quantification, standard calibration curves are prepared by 

plotting the area of peaks against different concentrations of phenolic compound 

standards (Lopez et al 2001). 

 Condensed tannins or procyanidin profile in tannin sorghum is 

determined using normal phase chromatography.  However, the sample extracts 

are usually cleaned of sugars and phenols by gel filtration methods (Waterman 

and Mole 1994a). Sephadex LH-20 columns have been successfully used in the 

separation of condensed tannins from sorghum (Awika et al 2003a; Nomusa 

2007).  Separation of procyanidins from other phenolic compounds is possible 
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because in 95% ethanol, tannins are absorbed by Sephadex LH- 20 and then 

they are eluted with aqueous acetone (Strumeyer and Malin 1975).  

 
 

Determining Antioxidant Activity of Phenolic Compounds in Sorghum 

Three in-vitro methods have been commonly used in determining 

antioxidant activity of phenolic compounds in sorghum and sorghum products.  

The 2, 2’–azinobis (3-ethylbenzothiozoline-6-sulphonic acid) (ABTSÿ+) and 2, 2-

Dipheny-1-picrylhydrazyl (DPPHÿ) are the two commonly used free radicals 

(Awika et al 2003b). 

 

ABTS 

The ABTS assay measures the relative ability of antioxidants to scavenge 

the ABTSÿ+ generated in aqueous phase as compared with Trolox standard (a 

water soluble vitamin E analogue). The ABTSÿ+  is generated by reacting a 

strong oxidizing agent  (e.g potassium permanganate or potassium persulfate) 

with the ABTS salt (Awika et al 2003b). The reduction of the blue-green ABTSÿ+ 

by hydrogen-donating antioxidant is measured by the suppression of its 

characteristic long wave absorption spectrum (Miller and Evans 1997).  

The reaction is based on a single electron transfer mechanism. The 

ABTS method can be used over a wide range of pH values (Arnao et al 1999; 

Lemanska et al 2001), and the radical is soluble in both aqueous and organic 
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solvents (Awika et al 2003b). Results are expressed as Trolox equivalent 

antioxidant capacity (TEAC).   

The method is simple, inexpensive to perform and is highly repeatable.  

The ABTS radical however, does not exist in humans and has not been 

correlated with biological systems and as such the actual relevance to in vivo 

antioxidant efficacy is unknown. 

 

DPPH 

The DPPH assay determines the capacity of a sample to donate 

hydrogen and/or electrons to quench DPPH· radicals. The assay mimics 

quenching and prevention of radical expansion through hydrogen atom transfer 

(HAT). As the free radical is quenched, the free radical changes the color of 

DPPH from deep purple to light yellow and the absorbance at 515nm decreases. 

The DPPH method is widely used to determine antioxidant activity of purified as 

well as crude natural plant extracts (Brand-Williams et al 1995). The DPPHÿ is a 

stable free radical that absorbs at 515 nm, but loses its absorption when 

reduced by an antioxidant or free radical species. Basically the method 

measures the decrease of DPPHÿ absorbance in the presence of antioxidants. 

From the reaction kinetics, Brand-Williams et al (1995) observed that most 

phenolic antioxidants react slowly with  DPPHÿ  and most phenols react with  

DPPHÿ  in a  third order kinetics taking 1- 6 hours to reach a steady state.  The 

slow reaction rate suggests a complex reaction mechanism to reach a steady 
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state (Bondet et al 1997). Consequently, antioxidant activity using DPPHÿ must 

be evaluated over time (Awika et al 2003b).  

The reaction of DPPH like the ABTS assay is based on a single electron 

transfer mechanism. The DPPH method has good repeatability and is cheap to 

perform but also has limited applicability in biological systems since DPPHÿ is 

extraneous to biological systems. One serious drawback of the DPPH assay is 

the fact that in systems with anthocyanins, color interference of the DPPHÿ with 

anthocyanins leads to underestimation of antioxidant activity (Arnao 2000). In 

addition, the DPPH method is sensitive to low pH. The results are commonly 

expressed as Trolox equivalent antioxidant capacity (TEAC).   

ORAC 

Oxygen radical absorbance capacity (ORAC) method developed by Cao 

et al (1993) measures the ability of antioxidants to protect protein from damage 

by free radicals and has been used to evaluate the antioxidant capacity of 

sorghum (Awika et al 2003b; Kamath et al 2004; Wu et al 2004). 

ORAC generally employs different generators to produce three radicals; 

peroxyl (ROOÿ), hydroxyl (OHÿ) and Cu2+, a transition metal. Measured 

antioxidant activity of biological samples depends on which free radical or 

antioxidant is used in the assay (Cao et al 1996). Recently, the methods 

adopted peroxyl radical (ROOÿ) as standard radical because of its common 

place and relevance to biological systems (Cao and Prior 2001). Since this 

radical is present in biological systems, it gives ORAC values more credibility as 
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an indication of antioxidant activity of phenols in biological systems. The ROOÿ 

reacts with a fluorescent probe, fluorescein (a synthetic protein) to produce a 

non-fluorescent product that is measured by fluorescence (Ou et al 2001).  

The method has an advantage of being automated and standardized for 

comparison of data. However it requires expensive equipment, limiting its wide 

usage. Moreover, the reaction is sensitive to variations in temperature among 

other factors making the results highly variable from day to day. 
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CHAPTER III 

FLAVONOID PROFILE AND ANTIOXIDANT ACTIVITY OF SORGHUMS WITH 

AND WITHOUT PIGMENTED TESTA 

 

Introduction 

Sorghum has unique and diverse bioactive phenolic compounds that 

could provide health benefits beyond standard nutrition. High levels of various 

phenolic compounds have been reported in sorghum. Hahn et al (1984) reported 

high levels of polyflavanols (970 mg CE/g) in sorghum, while Awika (2004) 

showed that both brown sorghum grains and brans had high proanthocyanidin 

contents (21-58 mg/g) compared to blueberry (20 mg/g).  

 The genetics affect the presence or absence of a pigmented testa and 

consequently tannins. Most cultivated sorghums do not contain condensed 

tannins even though non-tannin phenolic compounds are sometimes reported as 

tannins when vanillin/HCl or butanol/HCl methods are used to measure tannin.  

As a source of flavonoids, sorghum has numerous competitive 

advantages over other natural sources such as ease of storage for long periods 

of time because of its dry nature at harvest and the ease of processing into 

shelf-stable concentrates (Awika and Rooney 2004). This suggests that 

sorghum may not only be a source of uniquely stable compounds but also 

contain high antioxidant compounds with potential health benefits that may 

complement those of fruits and vegetables. 
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This work focuses on different sorghum varieties selected based on types 

and will provide potentially useful information for the selection of sorghum 

varieties with special traits to enhance flavonoid composition, thus improving 

functionality and health attributes of the sorghum grain. The specific objective of 

this chapter was to determine how the presence or absence of a pigmented 

testa affects the level and profile of flavonoids in sorghum. 

 

Materials and Methods 

Sources of Materials 

 Twenty four sorghum varieties grown in a sorghum breeding nursery in 

College Station, TX in 2005 were analyzed. They comprised 4 non-tannin and 

20 tannin sorghums grouped as Type I, Type II, Type III red pericarp and Type 

III white pericarp (Figs. 8-11). For ORAC assay ATX631 x RTX436 grown in 

College Station, TX in 2001 was used as a control.  

 

Reagents 

Gallic acid, catechin hydrate, 2, 2’-azinobis (3-ethyl-benzothiazoline-6-

sulfonic acid (ABTS), naringenin and potassium persulfate, were purchased from 

Sigma-Aldrich (St. Louis, MO). The 2-2-diphenyl-1-picrylhydrazyl (DPPH) was 

obtained from Acros Organics (Morris Plains, NJ), and Trolox (6-hydroxy-2, 5, 7, 

8 tetramethylchroman-2-carboxylic acid) was obtained from Aldrich (Milwaukee, 

WI).  Apigenin and luteolin were obtained from Indofine Chemical Co., Inc. 
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(Hillsborough, NJ).  Eriodictyol, luteolinidin chloride, and apigeninidin chloride 

were obtained from ALSACHIM (Strasbourg, France) and 7-methoxyapigeninidin 

chloride was obtained from ChromaDex (Santa Ana, CA).  Sec-butanol was 

reagent grade, while all other solvents were HPLC grade. 

 

Extraction for Colorimetric Assays 

All samples were ground for 2 min using a Cuisinart DCG-20 coffee 

grinder (East Windsor, NJ) prior to analysis. For all assays with the exception of 

the DPPH and ORAC assays, samples (0.1-0.5 g) were weighed into centrifuge 

tubes in which 25 mL 1% HCl/methanol (v/v) was added, and rocked for 2 hours 

at low speed on an Eberbach shaker (Eberbach Cor, MI). For the butanol assay, 

samples were extracted in 10 mL of 1% HCl in methanol (v/v). For the DPPH 

and ORAC assays, samples (0.15-0.3 g), depending on tannin content, were 

extracted in 25 ml (for DPPH) or 20 ml (for ORAC) 70% aqueous acetone (v/v). 

After shaking in each instance, all extracts were centrifuged at 2790 x g for 15 

minutes in a Sorvall SS-34 centrifuge (DuPont Instruments, Wilmington, DE) and 

then decanted. To avoid oxidation, extracts were stored in the dark at 0°C and 

analyzed within 24 hours.   
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Shawaya Black Shawaya Mostly Black Shawaya Red with 
Specks 

SC 650 

Fig. 8. Type I sorghum varieties grown in College Station TX, 2005. 
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SC 575 Shawaya Type II 
white 

Hegari SC 66 

SC 22 SC109-14E SC 808 

Fig. 9. Type II sorghum varieties grown in College Station TX, 2005. 
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Shawaya Brown Shawaya Red with 
Black 

Shawaya Red  SC1321  

SC124  SC1318  Hi Tannin  SC 103  

Fig. 10. Type III red pericarp sorghum varieties grown in College Station, TX 2005. 
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Shawaya Brownish Tan Dobbs SC 574-14 

SC 121 SC 237 

Fig. 11. Type III white pericarp sorghum varieties grown in College Station TX, 2005. 



49 

 

 

 

Extraction for HPLC -PDA Analysis 

Extraction and analyses were done according to the method of Dykes 

(2008). Briefly, 1 g ground samples were extracted in 10 mL of 1% HCl/methanol 

(v/v) for two hours in a shaker. The extracts were centrifuged at 2790 x g for 15 

minutes, and were then decanted. A second set of extracts were prepared in the 

same manner for flavanone analysis, but after decanting, each supernatant was 

transferred to glass tubes, sealed, and placed in a water bath at 80ºC for 90 

minutes to hydrolyze flavanone glycosides to their aglycones prior to flavanone 

analysis. All extracts were immediately filtered using a 0.45µm nylon membrane 

filter (Whatman Inc., Maidstone, UK) prior to HPLC analysis. 

 

Colorimetric Assays 

Determination of Total Phenol Content  

  The modified Folin-Ciocalteu method of Kaluza et al (1980) was 

used for the analysis of total phenols. One aliquot (0.1 mL) of HCl acidified 

methanolic extract was combined with 1.1 mL of water, to which 0.4 mL of Folin 

reagent and then 0.9 mL of 0.5 M ethanolamine were added. The reaction was 

allowed to proceed at room temperature for 20 minutes. Gallic acid was used to 

prepare a calibration curve and the absorbance readings of standards and 

samples were taken at 600 nm using a UV/Vis spectrophotometer. 

Measurements were expressed as milligrams of gallic acid equivalents per gram 

(mg GAE/g) of dry weight sample. 
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Determination of Tannin Content 

Tannin content was determined using the vanillin-HCl method as 

described by Price et al (1978). The ground samples were extracted at 30oC for 

20 min using acidified methanol. The extracts were centrifuged at 2790 x g for 

15 minutes, and then decanted. One aliquot (1 mL) of the supernatant was 

mixed with 5 mL vanillin reagent, allowed to react at room temperature for 20 

min and the absorbance readings taken at 500 nm. Catechin was used as the 

standard and tannin content was expressed as milligrams catechin equivalents 

per g (mg CE/g). 

 

Antioxidant Assay  

Antioxidant activity was determined using the 2, 2’-Azinobis (3-

ethylbenzothioline-6-sulfonic acid) (ABTS), 1, 1-Diphenyl-2-picry-hydrazyl 

(DPPH) and Oxygen radical absorbance capacity (ORAC) assays. 

 

ABTS 

The ABTS analysis was performed as described by Awika et al (2003b). 

First, the ABTS radical was generated overnight (12 hours) in the dark, by 

reacting  equal volumes of 8 mM ABTS solution in distilled/deionized water with 

3 mM potassium persulfate. Then a working solution was prepared by diluting 

the 5mL ABTS free radical mixture with 145 mL of  phosphate buffer, pH 7.4, 

containing 150 mM NaCl (PBS), to obtain an initial absorbance of  1.5 at 
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wavelength of 734 nm. One aliquot (0.1mL) of sample extract and standard were 

reacted separately, with 2.9 mL of ABTS solution for 30 min at room 

temperature. Trolox was used as the standard. The absorbance was measured 

at 734 nm and results expressed as micromolar Trolox Equivalent Antioxidant 

Capacity per g (µmol TE/g) dry weight sample.  

 

DPPH 

The DPPH analysis was done based on the method of Brand-Williams et 

al (1995) as modified by Awika et al (2003b) for grain products. The DPPH 

reagent was dissolved in methanol and kept in the dark prior to use. One aliquot 

(0.15 mL) of sample extract was reacted with 2.85 mL DPPH mixture. The 

reaction was left for 6 hours in the dark and the absorbance measured at 515 

nm. Trolox was used as the standard and the results expressed as micromolar 

Trolox Equivalent Antioxidant Capacity per g (µmol TE/g) of dry weigh sample. 

 

ORAC Analysis 

The ORAC procedure was adapted from Cao et al (1993) and Prior et al 

(2003) to determine the free radical scavenging activity of sorghum samples,  

using an automated Fluostar Optima plate reader (BMG technologies, 

Offenburg, Germany).  All analyses were conducted in phosphate buffer pH 7.4 

and at 37oC. Peroxyl radical was generated using 2, 2’-azobis (2-

amidinopropane) dihydrochloride (AAPH) (Wako chemicals, Richmond, VA), and 
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fluorescein was used as probe. The AAPH was added to individual wells just 

prior to assaying. A microplate reader with excitation at 485 nm and emission at 

520 nm was used to read samples. The final ORAC values were calculated 

using a quadratic regression equation between Trolox concentration or sample 

and net area under the fluorescein decay of sample extracts. The results were 

expressed as micromoles of Trolox Equivalent Antioxidant Capacity per g (µmol 

TE/g) of dry weight sample. 

 

Determination of Flavan-4-ol Content 

Flavan-4-ol content was determined using the modified method of 

Govindarajan and Mathew (1965) as described by Gous (1989).  Briefly, one 

aliquot of extract (1 mL) was reacted with 5 mL of HCl-butanol reagent, prepared 

by dissolving 0.0616g of FeSO4.7H2O in 5% HCl in sec-butanol (V/V). The 

reaction was allowed to proceed for 1 hour at room temperature and the 

absorbance measured at 550 nm and expressed as absorbance per milliliter 

(abs/mL) per gram of dry weight sample. 

 

Determination of Anthocyanin Content 

Anthocyanin content was measured using the method of Fuleki and 

Francis (1968) and Wrolstad (1976) with some modifications. One aliquot of 

each sample was diluted 2-fold using the extraction solvent and allowed to 
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equilibrate for 2 hours at room temperature and in the dark. Absorbance 

readings were taken at 465 nm for apigeninidin and 485 nm for luteolinidin.  

The concentrations of anthocyanins were calculated using the molar 

extinction coefficient (ε) of luteolinidin (29,157). The molar extinction coefficient 

(ε) of luteolinidin was determined from the formula based on Lambert Beer’s 

Law (A = εCL) as described by Wrolstald (1976): C(mg/l) = A/εL x 103 x MW x 

Dilution Factor, where MW is molecular weight which was 306.7 because 

luteolinidin standard was in the chloride form, ε is molar absorbance or molar 

extinction coefficient, A is absorbance, C is molar concentration. Rearranging 

the Lambert-Beer’s Law equation, C= A/εL (L, the pathlength is commonly 1); 

concentration in milligrams per liter was obtained by multiplying by the molecular 

weight of luteolinidin.  

From rearranging the equation, we obtained εL= A/C(mg/l) x 103 x MW x 

Dilution Factor. MW in this equation is the MW of the pigment, in this case 

luteolinidin (270.0), because that was the predominant pigment in the sorghum 

extracts. The results were expressed as mg luteolinidin equivalent (LE) per gram 

sample dry weight. 
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HPLC -PDA Analysis 

HPLC analyses of extracts were done using an Alliance 2695 system 

(Waters Corp., Milford, MA) connected to a Waters 996 photodiode array 

detector (PDA) as described by Dykes (2008). Sorghum phenolics were 

separated using a Luna C18 column (150 mm x 4.6 mm i.d., 5 µm) from 

Phenomenex (Torrance, CA). Column temperature was maintained at 35ºC, 

injection volume was 20 µL. The mobile phase consisted of 4% formic acid in 

water (v/v) (Solvent A) and acetonitrile (Solvent B). The solvent flow rate was 1.0 

mL/min. Different conditions were used for the separation of the various phenolic 

compounds in the extracts. 3-Deoxyanthocyanins were separated using the 

following gradient:  0-20 min., 12-20% B; 20-40 min., 20-50% B; 40-50 min., 

50% B. Flavones and flavanones were separated using the following gradient:  

0-45 min., 15-41% B; 45-50 min., 41% B. Detection wavelengths for the 3-

deoxyanthocyanins, flavones, and flavanones were 485 nm, 340 nm, and 280 

nm respectively.   

Identification of sorghum flavonoids was determined based on 

commercial standards’ retention times, and UV-Vis spectra. Quantification of 

each compound was accomplished by comparing peak areas with that of a 

standard curve of each respective standard. Molecular weight correction factors 

(Chandra et al 2001; Wu et al 2006) were used to quantify 5-methoxyluteolinidin 

and 7-methoxyapigeninidin. The molecular weight correction factors for the 

specific calculation of individual 3-deoxyanthocyanins were determined by 
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dividing the molecular weight of the 3-deooxyanthocyanin to be quantified by 

that of the standard 3-deoxyanthocyanin (Chandra et al2001). Data was 

collected and processed using the Empower software version 1.0 (Waters Corp., 

Milford, MA).   

 

Statistical Analysis 

All values are expressed as means ± standard deviation for three 

replicates. One-way ANOVA was used to determine significant differences in 

total phenols, antioxidant activities, tannin contents, anthocyanin levels and 

flavan-4-ols among sorghum types. Least square means (LSMeans) were used 

to compare the means. Separation of means was achieved using Turkey’s 

Minimum Significant Difference (MSD). Pearson correlations were used to 

determine correlation between total phenol, tannins ABTS antioxidant activity, 

DPPH antioxidant activity, ORAC antioxidant activity anthocyanins and flavan-4-

ols. P values were considered significant when less than 0.05. All statistical 

analyses were done using the statistical software SAS version 9.1 (SAS Institute 

Inc. Cary, NC) and SPSS version 16.0 (SPSS Inc. Chicago, IL).  
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Results and Discussion 

 

Evaluating Sorghum Total Phenols 

Figure 12 compares the total phenols for the sorghum varieties grouped 

by types. Total phenols for Type III red pericarp and Type III white pericarp 

sorghums ranged from 4.3-14 mg GAE/g and 4.6-9.4 mg GAE/g, respectively. 

Meanwhile, Type II and Type I sorghum varieties had total phenols ranging from 

3.4-6.7 mg GAE/g and 2.3-5.6 mg GAE/g, respectively. Three of the 4 Type I 

sorghums had higher total phenols than some of the Type II and III sorghums. 

For example, Shawaya mostly black had 6 mg GAE/g while Hegari had 4 mg 

GAE/g total phenols. Thus, total phenols can be high in sorghums without a 

testa, especially the black varieties. These results agreed with Gous (1989). 

Statistical differences (p<0.05) were observed in the mean total phenols 

for Type III red (9.4mg GAE/g) and Type III white (7.2 mg GAE/g) pericarp 

sorghum varieties. There were no differences in mean total phenols between 

Type II (4.8 mg GAE/g) and Type I (3.9 mg GAE/g) sorghums.  

The presence of a pigmented testa, the dominant spreader gene and the 

red turning black genes also had an effect on total phenols. The presence of a 

pigmented testa and “B1_B2_S_” increased total phenols among Type III 

sorghums (Fig. 12). Among the Type I sorghums, the presence of the red turning 

into black genetics in the Shawaya black sorghum increases the levels 
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Fig. 12. Total phenols in sorghums grown in College Station, TX  2005. S = Shawaya. 
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of total phenol compared to the levels in SC650. Shawaya mostly black had 

higher total phenols than SC1318, a Type III red pericarp sorghum (Fig. 12).   

The effect of pigmented testa and pericarp color on total phenol content 

was consistent with Dykes et al (2005); Dicko et al (2005) and Nomusa et al 

(2007). Other attributes that affect total phenol distribution among sorghum 

varieties include pericarp thickness and plant color. Beta et al (1999) and Dykes 

et al (2005) reported a positive correlation between pericarp thickness and total 

phenol. Sorghum from red and purple plants had higher levels of total phenol. 

The sorghum germplasm remains a viable source of phenolic compounds 

because it competes favorably with other known sources.  Berries, for example 

are known to be good sources of phenolic compounds. Total phenol of blue 

berry fruits for example is 1.8 mg GAE/ g dry weight (Ehlenfeldt and Prior 2001), 

while it is between 3- 5 GAE/ g dry weight for raspberries (Liu et al 2003). The 

levels of total phenols in 64 % of the sorghums varieties used in this study were 

1.2-2.8 times higher than in fruits and berries. 

 

Evaluating Condensed Tannins in Sorghum 

Figure 13 shows the tannin levels among the different types of sorghum 

that ranged from 3.3-30 mg CE/g and were within the range reported in other 

studies (Hahn and Rooney 1986; Awika 2000). The presence of pigmented testa 

and a dominant spreader gene affected tannin content. Type III red and white 

pericarp sorghums had the highest levels of tannin ranging from 5.8-30 and  
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Fig. 13. Condensed tannins in sorghums grown in College Station, TX 2005. S = Shawaya. 
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7.4-21.1 mg CE/g respectively. Shawaya Red and Shawaya Red with Black had 

the highest levels of tannins (30 mg CE/g). SC103 had 13 mg CE/g tannins, 

lower than 18.7 mg CE/g reported by Awika (2003). The tannin content of Type 

II sorghums ranged from 1.1-5.7 mg CE/g, while Type I sorghum had 

undetectable levels of tannins.  

These values were lower than those reported for some of the sorghum 

varieties. For example, Boren & Waniska (1992) reported 6-16 mg CE/g for Type 

II sorghums, Hegari had 7 mg CE/g compared to 3 mg CE/g, while SC109-14E 

had 6 mg CE/g versus 2 mg CE/g reported in this study. They found higher 

values for Type III sorghums with Dobbs at 20 mg CE/g compared to 12 mg 

CE/g found in this study. Overall, the authors reported about twice the levels of 

tannin reported in this study. The low levels found in this study may be attributed 

to the weathered condition of the 2005 grains used. Levels of phenolic 

compounds in sorghum are greatly affected by genetic and the environment 

under which the grains mature. 

The mean tannin content for Type III red and Type III white pericarp 

sorghums were 16 and 12 mg CE/g respectively and both means were different 

from Types I (0.6 mg CE/g) and Types II (4 mg CE/g) varieties (p<0.05). 

Extracted tannins often may react with other components in the extraction 

medium to form products that do not react with vanillin, thus giving false low 

absorbance and consequently low to non-detectable tannin levels even in tannin 

sorghum.  
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  Tannins in type II sorghum are generally more difficult to extract than 

those in type III and this could be the reason for higher tannin content in Type III 

sorghums compared to Type II varieties. The difficulty in extraction of tannins 

from Type II sorghums might be due to their location in the sorghum grain. The 

tannins in type II sorghums are deposited in vesicles within the testa layer, 

whereas the tannins in type III are deposited along the cell walls of the testa with 

some present in the pericarp as observed by Earp et al (2004a).  

 

Evaluating Flavan-4-ols in Sorghum 

Flavan-4-ol levels were in the range of 1.2-8.6 abs/mL/g (Fig.14). Type III 

red pericarp varieties had flavan-4-ols levels ranging from 4.0-8.6 Abs/mL/g 

except for SC1318 with a value of 1.4 abs/mL/g, while levels for Type III white 

pericarp varieties ranged from 1.4-3.3 abs/mL/g. Type I sorghum had values in 

the range of 3.3-7.1 abs/mL/g while Type II values ranged from 1.2-2.1 

abs/mL/g.  

In general, the red and black pericarp sorghums had higher levels of 

flavan-4-ols than the white pericarp sorghum. These were consistent with the 

findings of Menkir et al (1996) and Dykes (2008) who reported higher flavan-4-

ols in red sorghums.  
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Fig. 14. Flavan-4-ol levels in sorghums grown in College Station, TX 2005. S = Shawaya. 
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Flavan-4-ol compounds such as luteoferol and apiferol are produced from 

flavanones and are considered precursors of 3-deoxyanthocyanins (Watterson 

and Butler 1983; Wharton and Nicholson 2000). It is not clear whether flavan-4-

ols are produced in response to mold attack or as a byproduct of a defense 

mechanism by the plant (Jambunathan et al 1986), but both flavan-4-ols and 3-

deoxyanthocyanins are produced in response to biotic and abiotic stresses. 

Flavan-4-ols and 3-deoxyanthocyanins may exist in a state of equilibrium or in 

about the same amount. Whatever is the case merits further investigation.  

 

Evaluating Sorghum Anthocyanins 

Anthocyanin levels ranged from 1.1-4.7 mg LE/ gram (Fig.15). 

Luteolinidin was identified as the main anthocyanin in 92 % of the sorghum 

varieties used. Its molar extinction coefficient was determined as 29,157 in 

1%HCl/methanol as described earlier (p. 52).  

Black pericarp sorghums had higher levels of anthocyanins (3.4-4.7 mg LE/g), 

followed by the red pericarp sorghums (2.9-3.4 mg LE/g). White pericarp 

sorghums had the lowest levels of anthocyanins with 1.1 mg LE/g in SC 121. 

Anthocyanins levels of 3.7 mg/g were reported for black sorghum bran (Gous 

1989), which according to Awika (2003) could have been an underestimation in 

the amount of anthocyanins because the standard used was cyanidin which is 

not a major pigment in sorghum.  
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Fig. 15. Anthocyanin content in sorghums grown in College Station, TX 2005. S = Shawaya. 
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The levels of anthocyanins increased when grains were spotted 

irrespective of the pericarp color, for example in SC808 (4.0 mg LE/g). Seitz 

(2004) reported that 3-deoxyanthocyanins in sorghum were present mostly in 

the damaged spots on seeds depending on the pericarp color. 3-

Deoxyanthocyanins are produced in response to biotic and abiotic stresses and 

are released and accumulated by the host plant as by-products of the defense 

mechanism. 

 

Antioxidant Potential of Sorghum Varieties 

 

Antioxidant Activities by ABTS  

Antioxidant activities as measured by ABTS (Fig. 16) ranged from 21-175 

µmol TE/g. Shawaya Red sorghum, a Type III red pericarp variety, had the 

highest antioxidant activity (175 µmol TE/g), while SC575, a Type II variety, had 

the lowest level (21 µmol TE/g). The antioxidant activity of Type III red and Type 

III white pericarp sorghums were higher (49-175 µmol TE/g) than those for Type 

II and I sorghums except for Shawaya Type II white with antioxidant activity 

higher than some Type III red and Type III white pericarp sorghums.  

The Type I sorghum with black pericarp had higher antioxidant activities 

than Type II sorghums except for Shawaya Red with Specks (Fig. 16). The high 

levels of flavan-4-ols and the increased levels of 3-deoxyanthocyanins  
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Fig. 16. ABTS antioxidant activity of sorghums grown in College Station, TX 2005. S = Shawaya. 
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contributed to the increased antioxidant activities in Type I sorghum with the red 

turning into black pericarp.  Mean antioxidant activities of Type III red (109 µmol 

TE/g) and white (76 µmol TE/g) pericarp varieties were statistically different 

(p<0.05). The mean antioxidant activity of Type II and I sorghum varieties were 

50 and 41 µmol TE/g, respectively, but were not statistical different. 

The antioxidant activities as measured by ABTS showed Type III 

sorghums had higher antioxidant activity than Type II and I sorghums in that 

order. Tannins are more easily extracted from Type III than Type II sorghum. 

Type I sorghum do not contain tannins and the antioxidant activity observed was 

from flavan-4-ols, anthocyanins and other flavonoids in the Shawaya and SC650 

sorghums.  The antioxidant activity in tannin sorghum is contributed mainly by 

condensed tannins which have demonstrated higher free radical quenching 

ability in vitro than other phenolic compounds (Hagerman et al 1998; Awika et al 

2003b).  

Dykes (2008) reported twice the total phenol and antioxidant activity for 

Shawaya Black as reported in this study. Upon visual examination of the grains, 

the 2006 grains used by Dykes (2008) were bright black compared to the dull or 

grayish black color of the 2005 grains used in this study. The dull color was due 

to severe weathering suffered by the 2005 grain which likely altered the phenolic 

content of the grains. 
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Antioxidant Activities by DPPH 

Type III red and white pericarp varieties had the highest DPPH 

antioxidant activity potential (Fig. 17). Type III red pericarp had values ranging 

from 42-134 µmol TE/g and 43-107 µmol TE/g for Type III white pericarp 

sorghums. Mean antioxidant activity levels were higher for Type III red pericarp 

(119 µmol TE/g), followed by Type III white pericarp (71 µmol TE/g) and were 

statistically different from each other (p<0.05). Type II varieties had antioxidant 

activity levels ranging from 5-13 µmol TE/g, while for Type I the range was 11- 

27 µmol TE/g. Type I varieties had higher antioxidant activity levels than Type II 

varieties except for Shawaya Type II white that had a value of 13 µmol TE/g. 

Mean antioxidant activity levels from DPPH analysis for Type I and II 

varieties were 15.4 and 8.4 µmol TE/g respectively and were not different from 

each other statistically. Higher values observed in red and black pericarp 

sorghum may be attributed to the high levels of flavan-4-ols (Jambunathan et al 

1991; Menkir et al 1996) and 3-deoxyanthocyanins contributing to the 

antioxidant activity.  

 

Antioxidant Activities by ORAC 

The presence of a pigmented testa did not affect ORAC values (Fig. 18).  

Type I sorghums are normally expected to have low antioxidant activity because 

they lack tannin, but the surprisingly high ORAC values observed for Type I 

sorghum varieties in this study is likely because of 3-deoxyanthocyanins and  

flavan-4-ols in the pericarp. 
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Fig. 17. DPPH antioxidant activity of sorghums grown in College Station, TX 2005. S = Shawaya. 
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Type I varieties without pigmented testa, having the special red turning 

black pericarp had higher ORAC values than most Type III and Type II varieties. 

Type I sorghum (non-black) had low ORAC values (Fig. 18). The special black 

sorghums had outstanding levels of 3-deoxyanthocyanins, contributing to the 

high antioxidant activity similar to Awika (2000).   

Low values observed for DPPH might be due to color interference from 

colored pigment compounds such as 3-deoxyanthocyanins interfering with 

DPPH radical, leading to an underestimation of the antioxidant capacity (Arnao 

2000; Awika 2003b; Dykes et al 2005).  

Overall, pericarp color of sorghum did not affect antioxidant capacity.  For 

example, Shawaya Brownish Tan (Type III white pericarp), had higher 

antioxidant capacity than Hi Tannin sorghum (Type III red pericarp). Awika 

(2003) reported black sorghum bran which has predominantly 3-

deoxyanthocyanins giving low DPPH values because the DPPH chromogen 

absorption maxima (515nm) is close to the absorption range for anthocyanins 

(475-485nm). 

Awika et al (2003b) reported ORAC values that were 2-3 times higher 

than ABTS and DPPH. A positive correlation was observed among the three 

assays. The antioxidant activity values are compared relative to that of trolox in 

all three assays, but because individual molecules are known to be more 

efficient in quenching particular radicals than others (Wang et al 1998; Lotito et 

al 2000), it is possible that high ORAC values (Table 3) are due to lower 



72 

 

 

reactivity of Trolox in the ORAC system compared to ABTS and DPPH systems 

(Awika 2003). 

From the ORAC assay the red and black pericarp sorghums had higher 

antioxidant activity than the white pericarp sorghums.  The high antioxidant 

activity may be due to the high levels of flavan-4-ols and 3-deoxyanthocyanins 

present in these varieties. The presence of pigmented testa in addition to red 

and black pericarp increased phenol levels and antioxidant activity as measured 

by DPPH and ABTS methods but when the ORAC method was used, the 

antioxidant activity levels were increased by the presence of the red turning to 

black pericarp. 

ORAC is considered to be the most reliable method to assess in vitro 

antioxidant activity as it applies to biological systems (Cao et al 1996; Prior and 

Cao 2000; Cao and Prior 2001). ORAC values indicated Shawaya mostly black, 

Shawaya red with specks and Shawaya black had higher antioxidant activity 

than most Type III sorghums used in this study. The antioxidant capacities are 

contributed mainly by flavan-4-ols and 3-deoxyanthocyanins which were high in 

these varieties.  

 

Correlations among Colorimetric Analyses 

 Correlation coefficients (Table 4) of total phenol with ABTS were 

0.97 and 0.87 for total phenol with DPPH. The strong correlation between total 

phenol and  
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antioxidant activity indicates that phenolic compounds were responsible for  

antioxidant activity. The lower correlation coefficient of total phenol with DPPH 

could be attributed to the possible color interference from sorghum 3-

deoxyanthocyanins.  

 
 

 

Table 3 

Antioxidant Activity of Sorghum Varieties Assessed by ORAC, ABTS 
 and DPPH Methods 

  Values in µmol TE/100 g sample (Dry weight basis). Samples for ABTS were extracted in 
1%HCl/Methanol, while samples for DPPH and ORAC were extracted in 70% aqueous acetone.  
P=Pericarp. ND=Not determined. 

 
 

Sample ID  Types 
 
 

       
       ORAC 

    
ABTS DPPH 

Shawaya Red with  Black  Type III Red P 21600 15500 25800 
Shawaya Brown                          Type III Red P 21500 13700   7200 
Shawaya Red  Type III Red P 16300 17500 26000 
Shawaya Mostly Black  Type I  14200 

13700 
7200  2600 

Shawaya Red with specks  Type I  4100  1300 
SC103  Type III Red P 11700 11800 10900 
Shawaya Black  Type I 11600 4600   1800 
Shawaya Brownish Tan  Type III White P 9900 9700   6400 
SC1321  Type III Red P 8500 8300   9200 
Hi Tannin  Type III Red P 7500 8100   4800 
SC574-14  Type III White P 7200 9300 11200 
SC124  Type III Red P 7100 7600 6700 
Dobbs  Type III White P 6700 8400 8100 
SC 121  Type III White P 6700 5700 5400 
SC 237  Type III White P 5900 5000 4500 
Shawaya Type II White  Type II 5100 8800 1200 
SC650  Type I 4800 2200 1000 
SC575  Type II 4800 2700 1000 
SC1318  Type III Red P  4600 4900 4300 
SC808  Type II  2400 4600 900 
Hegari  Type II 2300 4100 1000 
SC22  Type II 1400 4500 700 
SC66  Type II 1400 4600 700 
SC109-14E  Type II 1200 3600 500 

ATx631 x RTx436 2001  Type I 900 
              

ND 
        

ND     
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Table 4  
Pearson's Correlation Coefficients of Sorghum Phenols and Antioxidant 

Activity 
 

 TP ABTS DPPH ORAC Tannins Flavan-4-ols 

TP  0.97 0.87 0.78 0.97 - 

ABTS   0.88 0.79 0.90 0.52 

DPPH    0.88 0.95 .41 

ORAC     0.71 0.86 

Tannins      - 

ANTH       

Correlation is significant at p<0.01 
TP=Total phenols. 
 
 
 

 
  
 DPPH is measured at 515 nm while ABTS is at 734 nm, which is 

far beyond the absorption wavelength for other components that could interfere 

with the absorbance reading hence interference is not expected for ABTS 

(Awika et al 2003). Arnao (2000) associated lower DPPH values with other 

grain pigments including anthocyanins and carotenoids. The correlation 

coefficients of tannins with ABTS, tannins with DPPH, and tannins with ORAC 

were 0.90, 0.95 and 0.71 respectively (p<0.01). These correlations agreed with 

the results of Awika et al (2003a), Dykes et al (2005) and Nomusa et al (2007) 

for DPPH and ABTS.  
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Eighty-three percent of the samples had pigmented testa. Tannins are 

generally the most effective natural phenolic antioxidant in vitro, so a strong 

correlation between condensed tannins and antioxidant activity was expected. 

However, there was a low correlation between tannin and ORAC values.  ORAC 

seems to be better at determining the antioxidant activities of non-tannin 

phenolic compounds such as 3-deoxyanthocyanins which were higher in the 

Type I sorghums with black pericarp.   

ABTS and DPPH analysis are cheaper, easier and results are repeatable. 

They have consistently given repeatable results for sorghum antioxidant activity. 

ORAC is automated and more standardized across laboratories but it expensive 

and needs training with the technique. ORAC may however be a better method 

to assess antioxidant activity of non-tannin sorghums phenolics. There was a 

positive correlation (0.97) between total phenol and tannin (p<0.01).  

Overall, the positive correlation between total phenol with both ABTS and 

DPPH suggest that total phenols can be used to predict antioxidant capacity in 

tannin sorghum but probably not in non-tannin sorghums. As noted by Awika et 

al (2003b), tannins are largely responsible for antioxidant activities in sorghum. 

 

Evaluation of Sorghum 3-Deoxyanthocyanins 

In all sorghum varieties, four main 3-deoxyathocyanidins were identified 

as luteolinidin (LUT), apigeninidin (AP), 5-methoxyluteolinidin (5-MeO-LUT) and 

7-methoxyapigeninidin (7-MeO-AP) (Fig. 19). The other common anthocyanidins 
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such as cyanidin and delphinidin were not detected which agreed with the 

results of Awika (2003) and Dykes (2008). The presence of pigmented testa had 

no effect on 3-deoxyanthocyanins. 3-deoxyanthocyanin levels ranged from 15-

234 ug/g (Fig. 20); SC121 had the lowest value. The presence of spots on the 

grains increased 3-deoxyanthocyanins levels among white pericarp sorghums. 

For example weathered grains of Dobbs, SC808 and Type II white sorghum had 

higher 3-deoxyanthocyanins than other Type III and Type II white sorghums 

(Figs. 9 & 11; p. 46 & p. 48). The spots on the grains were 3-deoxyanthocyanins 

produced in response to molds.  

3-Deoxyanthocyanidins identified were of varying proportions among the 

sorghum varieties (Fig. 21). Shawaya black, for example had the highest levels 

of LUT (116 ug/g) accounting for 53% of the total 3-deoxyanthocyanin followed 

by Shawaya mostly black (95 ug/g) where LUT accounted for 41% of the total 3-

deoxyanthocyanins. LUT and 5-MeO-LUT together contributed more than 50% 

of total 3-deoxyanthocyanin in 67% of the sorghum varieties and was more 

influenced by pericarp color than presence of a pigmented testa. 

In general, the Shawaya sorghums had higher LUT and 5-MeO-LUT 

accounting for 55-78% of the total 3-deoxyanthocyanin with the exception of 

Shawaya Brownish Tan. In some sorghum varieties for example SC124, 

SC1321, SC22, Hegari, SC575, Hi Tannin and SC808, the methoxylated 

derivatives contributed higher levels to the total 3-deoxyanthocyanins than the 
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non- methoxylated components. In SC575 and SC808, 5-MeO-LUT accounted 

for 41 and 38 % respectively of the total 3-deoxyanthocyanins.  

Pericarp color affected the levels of 3-deoxyanthocyanins, but not the 

profile of 3-deoxyanthocyanins. Shawaya sorghums with the red turning black 

pericarp had the highest levels of 3-deoxyanthocyanins ranging from 196-234 

ug/g. These results provide vital information for the selection of sorghums for 

application in functional foods or dietary sources of colorants. The levels 

reported here were 20 % of those reported by Dykes (2008) due to weathering. 
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Fig 19. HPLC chromatograms for 3-deoxyanthocyanins of sorghum grown in 
College Station, TX 2005. A) Hageri; B) Dobbs. 1 = Luteolinidin; 2 = 
Apigeninidin; 3 = 5-Methoxyluteolinidin; 4 = 7-Methoxyapigeninidin. 
PDA = 485 nm. 
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Fig. 20. 3-Deoxyanthocyanin levels in sorghums grown in College Station, TX 2005. S = 
Shawaya. 
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Visually, the 2005 Shawaya black sorghums had evidence of severe 

weather damage with grayish-brown kernels compared to the bright black 

appearance of the 2006 grains used by Dykes (2008). Awika (2003) using 2003 

crops, identified 3-deoxyanthocyanins as the major flavonoids in black pericarp 

sorghums accounting for 50% of the total anthocyanins. Heavy rainfall reported 

in the summer of 2005, which was at the latter stage of sorghum development, 

was not observed for 2003 and 2004 (Dykes 2008). This variation both in 

weather and sorghum phenolic content over different crop years confirms that 

the environment under which a sorghum grain matures affects its phenolic 

profile. 

Among the Type I sorghums, Shawaya mostly black had 11 times more 

3-deoxyanthocyanins than SC650. This suggests that the genetics responsible 

for blackness are responsible for the synthesis of 3-deoxyanthocyanins in these 

varieties. SC650 (non-black) is a Type I red pericarp sorghum with low levels of 

3-deoxyanthocyanins compared to the rest of the Type I sorghums with the red 

turning into black pericarp (Fig. 8; p. 45). 

Among the Type III red pericarp sorghum, Shawaya Red with black 

sorghum had 10 times more 3-deoxyanthocyanins than SC574-14. Gous (1989) 

reported 8 times more 3-deoxyanthocyanins in Shawaya Black lines than in 

Type III control sorghum, ATx623xSC103. The presence of a pigmented testa 

did not affect the levels or the profiles of the 3-deoxyanthocyanins similar to 

studies by Dykes (2008). In addition, there was no significant difference between 
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the mean 3-deoxyanthocyanin levels of Type II sorghums (67 µg/g) and Type III 

white pericarp sorghum (62 µg/g).  

Type II and Type III white pericarp sorghums with specks or dark spots 

had high levels of 3-deoxyanthocyanins (Shawaya Type II white, SC808, Dobbs) 

which were probably produced as phytoalexins. Dykes (2008) demonstrated that 

3-deoxyanthocyanins may be produced in response to sunlight. However, 

weathering and other stress factors can also cause its synthesis (Lo et al 1999; 

Seitz 2004; Waniska and Rooney 2000). The bright black sorghum gave higher 

concentrations of 3-deoxyanthocyanins and other flavonoids. Genetic and 

environment play major roles in determining the 3-deoxyanthocyanin content of 

sorghum.  

 

Evaluation of Flavones in Sorghum 

The flavones detected were the yellow luteolin and the pale yellow 

apigenin with retention times of 7.3 and 9.4 minutes respectively (Fig. 22). 

Flavones were detected in all samples; levels ranged from 2-101 µg/g with 

SC650 and Shawaya Red the highest and lowest respectively (Fig. 23).  

SC650 might be a viable source of flavones. Flavones in SC650 were distinctly 

higher (101 µg/g) than the other sorghum varieties which ranged from 2-29 µg/g. 

This elevated flavone content might account for the high antioxidant 

activity obtained for SC650. Flavones are concentrated in the pericarp and 

reported as phytoalexins (Seitz 2004). The presence of a pigmented testa and 
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pericarp color did not increase flavone levels. Dykes (2008) also found pericarp 

color did not affect flavone levels.  

Flavones were detected in varying proportions among the sorghum 

varieties (Fig. 24). Apigenin and luteolin were detected in all samples except 

SC574-14, SC66 and SC1321. SC650 had high levels of luteolin and apigenin 

accounting for 55 and 45% respectively of total flavones. In SC109-14E and 

SC1318, luteolin and apigenin were almost equally distributed. The Shawaya 

sorghums had lower levels of apigenin with luteolin accounting for most of the 

flavones detected. Shawaya black, Shawaya red with specks, Shawaya Brown 

and Shawaya Type II white, had very low levels of apigenin constituting only 4-6 

% of the total flavone content.  
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Fig 22. HPLC chromatograms for flavones of SC650 grown in College 
Station, TX 2005. 1 = Luteolin; 2 = Apigenin; * Identified as 
hydroxycinnamic acids (i.e. Caffeic and ferulic acids) on the basis of their 
UV spectra. PDA = 340 nm. 
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Fig. 23. Flavone levels in sorghums grown in College Station, TX 2005. S = Shawaya. 
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Fig. 24. Flavone profiles of sorghums grown in College Station, TX 2005. S = Shawaya. 
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Overall, luteolin accounted for between 79-95 % of total flavones in some 

varieties. Information on the source of flavones in sorghum is scarce but in this 

study, the presence of flavones in SC650 in such high levels suggests that plant 

breeders can develop sorghum varieties that are good sources of flavones. 

Flavones are synthesized to protect plants from UV-light and as phytoalexins 

with antimicrobial properties (Dixon 1986; Schmelzer et al 1988; Yu et al 2006). 

Flavones have anticarcinogenic, anti-inflammatory, antiallergenic, and analgesic 

properties (Hirano et al 2004; Matsui et al 2005; Cherng et al 2007; Ziyan et al 

2007). They are used as vascular relaxation agents and for treating corneal 

neovascularization (Block et al 1998; Xu et al 2007).  

 

 

Evaluation of Flavanones in Sorghum 

  Flavanones ranged from 28.1-229.1 ug/g (Fig. 25). The presence 

of pigmented testa did not affect flavanone content. However, pericarp color was 

associated with flavanones; the red pericarp sorghum had flavanones ranging 

from 74-229 ug/g while the white pericarp sorghum did not have flavanones. 

The flavanone levels observed were in agreement with those obtained by 

Dykes (2008) who did not detect flavanones in white pericarp sorghum, but 

reported very high levels in lemon-yellow sorghums. The flavanone profiles 

varied among sorghum varieties (Fig. 26). Eriodictyol and naringenin were the 

two flavanones detected.  
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Eriodictyol predominated in all varieties with the exception of SC103 and 

Shawaya Brown, accounting for 53-86 % of the total flavanones. SC650 had 

almost equal distribution of eriodictyol and naringenin. In general, the red turning 

into black pericarp Shawaya had higher levels of eriodictyol than naringenin 

accounting for more than half the amounts of flavanones detected.  

Total phenol in Type I sorghums were contributed mainly by flavan-4-ol 

and the flavones. Type I Black sorghum had elevated levels of 3-

deoxyanthocyanins, while the red sorghum SC650 had very high levels of 

flavones. The presence of a pigmented testa did not influence levels of 3-

deoxyanthocyanin; however, sorghums with a black pericarp had elevated levels 

of 3-deoxyanthocyanins. 

In all samples, the four main sorghum 3-deoxyanthocyanins, the orange 

luteolinidin, the yellow apigeninidin, and their methoxylated derivatives, 5-

methoxyluteolinidin and 7-methoxyapigeninidin were identified. 3-

Deoxyanthocyanin levels ranged from 14-234 µg/g. Two flavones, apigenin and 

luteolin were detected in the range of 2-101 µg/g. Flavanones such as 

eriodictyol and naringenin, ranged from 28.1-229.1 µg/g. However, in white 

pericarp sorghums, flavanones were undetectable.  
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Special black sorghums which are actually red pericarp sorghums which 

turn black upon exposure to UV light are very high in 3-deoxyanthocyanins and 

flavan-4-ols resulting in high antioxidant capacity. It is possible therefore to 

develop non-tannin sorghums with very high phenols and antioxidant potential. 

Sorghum breeders could also develop tannin sorghums containing the red 

turning to black pericarp to further enhance the antioxidant potential of sorghum. 

 Proper selection of sorghum and the right environmental conditions can 

enhance the availability of bioactive compounds from sorghum germplasm for 

variable beneficial applications. Developing special sorghums with antioxidant 

activity and other potential healthy attributes will increase the market potential of 

sorghum.  

 

 

 

 

 

 

 

 

 

 

 



90 

 

 

 

CHAPTER IV 

FLAVONOID PROFILES AND ANTIOXIDANT ACTIVITY OF GRAINS, 

LEAVES, SHEATHS, GLUMES AND STALKS OF SOME SORGHUM 

 

Introduction 

The stalks, sheaths, glumes and leaves, constitute a greater portion of 

the total biomass of a sorghum plant than the grain. Typically for a US hybrid 

sorghum, the grain is 40-50% of dry weight, with 5-10% leaves and the rest are 

stalk and debris (Bill Rooney; personal communication) while biomass sorghum 

yields about 2.8-4.5% panicle and the rest are leaves, stalks and debris 

(Unpublised data). As the use of sorghum biomass for energy is developed, 

there is a possibility of tons of bioactive compounds synthesized as genetic 

tradeoffs and eventually left in by-products of ethanol production. The waste 

product might be a potential viable source of sorghum bioactive compounds.  

Over the years, the grains of sorghum have been studied as a source of 

phenolic compounds. Other parts of the sorghum plant such as the leaves, 

glumes, sheaths and stalks probably contain 3-deoxyanthocyanins, flavones and 

flavanones that have not been characterized.  

The phenolic profiles of leaves, glumes, sheaths and stalks of sorghums 

grown in College Station, TX in 2008 were identified and quantified. This will 

provide information on potential use of by-products from ethanol production as a 

viable source of phytochemicals. 
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Materials and Methods 

Sorghum leaves, glumes, sheaths and grains of Tx2911, SC748-5, R-

07007, Tx430 Black, Tx430 Black x Sumac, ATx631 x RTx436 (Figs. 27 & 28) 

and stalks from a purple plant (Tx430 black), a red plant (Tx2911) and a tan 

plant (ATx631 x RTx436) grown in College Station, TX, in 2008  were obtained 

from Texas AgriLife Research in College Station, TX.  

 
 
 
 

 

 

 

 

 

 

 

 

 

Fig. 27.   Sorghum components. Sheaths are the thin covering surrounding the stalks. 
Glumes are the covering on the grains. 



 

 

9
2
 

                        

 

 

 

 

                                           

 

 

 

                                               

 

 

 

 

R-07007      SC748-5   Tx2911 

Fig.  28.   Sorghum varieties grown in College Station, TX 2008. 

     Tx430   T x430 Black x Sumac  ATX631 x RTX436 
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Reagents 

The same reagents as described in Chapter III were used. 

 

Sample Preparation 

After harvesting, leaves, sheaths and stalks were placed in liquid 

nitrogen, and freeze-dried. The dried glumes and grains were stored in the 

refrigerator at 8OC. All samples were ground through a cyclotec mill (UDY Corp., 

Fort Collins, CO (0.5 mm mesh) prior to extraction. 

 

Extraction for Colorimetric Assays 

All extractions were carried out as previously described in Chapter III. 

Extraction for HPLC and LC-MS Analyses 

Ground samples (1 g) were extracted in 10 mL of 1% HCl/methanol (v/v) 

for two hours in a shaker, followed by centrifuging at 2790 x g for 10 min and 

then decanted. To remove the chlorophyll from the leaves and sheath extracts, 

10 mL of petroleum ether was added to the supernatant and mixed by shaking 

for 1 min. To recover the petroleum ether, 10% water was added.  The mixture 

was allowed to separate for 5 min. The 1%HCl/methanol fraction which settled at 

the bottom was carefully collected for HPLC and LC-MS analyses as previously 

described (p. 49). Grains and glumes were extracted in the same manner as 

previously described in Chapter III (p. 49).  
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Colorimetric Assays 

All colorimetric assays were carried out as previously described in 

Chapter III (p. 49). 

 

HPLC-PDA and LC-MS-ESI Analyses 

Extracts were analyzed on an Alliance 2695 system (Waters Corp., 

Milford, MA) connected to a Waters 996 photodiode array detector (PDA). 

Sorghum phenolics were separated using a Luna C18 column (150 mm x 4.6 

mm i.d., 5 µm) from Phenomenex (Torrance, CA) with a C18 guard column.  

Column temperature was maintained at 35OC with an injection volume of 20 µL. 

The mobile phase consisted of 4% formic acid in water (v/v) (Solvent A) and 

acetonitrile (Solvent B). The solvent flow rate was 1.0 mL/min. The 3-

deoxyanthocyanins were separated using the gradient for sorghum grains as 

previously described in Chapter III (p. 52). Flavones and flavanones of glumes 

and grains were separated using the same gradient as described in Chapter III 

(p. 54). Flavones and flavanones in leaves and sheaths were separated using 

the following gradient:  0-5 min., 5-10% B; 5-41min., 10-40% B; 41-45 min., 40-

65% B; 45-50 min., 65% B. The 3-deoxyanthocyanins, flavones, and flavanones 

were detected and identified as previously described in Chapter III (p. 54).  

Structural information on flavonoids that could not be identified by HPLC-

PDA was obtained by LC-MS analysis, performed on a Thermo Finnigan LCQ 

Deca XP Max MSn ion trap mass spectrometer equipped with an ESI ion source 
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(Thermo Fisher, San Jose, CA) adopted from the method of Pacheco et al 2008.  

Separations were conducted using the same Luna C18 column with a C18 guard 

column. Column temperature was maintained at 20ºC.  The mobile phase 

consisted of 4% formic acid in water (v/v) (phase A) and acetonitrile (v/v) (phase 

B). The solvent flow rate was 0.4 mL/min and the sample injection volume as 

50µL. The flavones were separated in the gradient elution program were phase 

B changed from 5 to 10% in 5 mins, continued at 10-40% B; 41-45 min., 40-65% 

B; 45-50 min., 65% B. Electrospray ionization was conducted in the negative 

mode for flavone glycosides under the following conditions: sheath gas (N2), 60 

units/min; auxiliary gas (N2), 5 units/ min; spray voltage 3.3 kV; capillary 

temperature, 250ºC; capillary voltage, 1.5 V; tube lens offset, 0 V. The 

chromatograms were recorded at 340 nm for flavones.  

  

Absorption Spectra of Chlorophyll 

Chlorophyll constitutes a major component of sorghum leaves and is also 

present in the sheath.  Based on the wavelength in which the colorimetric 

readings were measured, there were minimal concerns about interferences from 

chlorophyll. This was because the absorbance maxima of chlorophyll a and b 

(Fig. 29) were not within the maxima at which the phenolic compounds and 

antioxidant activities were measured. However, chlorophyll was removed before 

HPLC and MS analysis.  
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Results and Discussion 

 

Total Phenols of Sorghum Plant Components 

Total phenols in the different sorghum components ranged from 1.3-28.2 

mg GAE/g (Fig. 30 & Table 5). Secondary plant color affected total phenols in 

sorghum leaves, sheaths, glumes and grains but did not for stalks. The red and 

purple sorghum plants (Tx2911, R-07007, Tx430 Black and Tx430 Black x 

Sumac) had higher total phenols than the tan plant (ATx631xRTx436) (Table 5), 

with the exception of the leaves of ATx631 x RTx436 (13.9 mg GAE/g) which 

had higher total phenol content than SC748-5 (10.5 mg GAE/g).   

The sheaths, glumes and leaves of sorghum had higher phenol contents 

than their respective grains. These large differences in phenol levels between 

grains and other sorghum components could be because the phenolic 

compounds in the grains are not as easily extracted as those in the sheaths, 

leaves and glumes or simply that those components truly have higher levels 

than the grains. Other authors have reported similar patterns using other plant 

sources. For example, blueberry fruit was reported to have total phenol levels of 

1.8 mg GAE/g fresh weight, while the leaves had 34% more (Ehlenfeldt and 

Prior 2001). 
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Simpson (2006) showed the leaves and roots of peanuts to have higher total 

phenols than the nuts on dry weight basis. Berries for example, are considered a 

high source of phenolic compounds. Liu et al (2003) reported total phenols of 

raspberries ranging from 3.59 to 5.13 mg GAE/g fresh weight.  

Fig. 29. Chlorophyll spectra. Chlorophyll a has approximate absorbance maxima of 430 

nm and 662 nm, while chlorophyll b has approximate maxima of 453 nm and 642 nm.  
From  Kurzon http://en.wikipedia.org/wiki/File:Chlorophyll_ab_spectra.png). 
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 Table 5  
Summary of Phenol and Antioxidant Levels in Sorghum Plant Components 

grown in College Station, TX 2008 
 

Variety Component Total Phenols 
(mg GAE/g)

ab
 

Tannins 
(mg CE/g)

cd
 

Flavan-4-ols 
(Abs/mL/g) 

Anthocyanins 
(mg LE/g) 

ABTS 
(µmol TE/g)

e
 

DPPH 
(µmol TE/g) 

Tx2911 

*Red 

Leaves 17.43±0.34 0.46±0.01 16.8±0.51 13.50± 0.93 244.75±0.59 85.89±2.61 

Glumes 24.33±0.47 1.09±0.03 25.4±0.61 86.28±1.01 412.21±7.23 69.01±1.01 

Sheaths 11.13±0.17 1.02±0.01 19.8±0.61 20.35±1.19 207.85±2.61 48.49±1.43 

Grains 4.87±0.14 0.22±0.01 5.9±0.17 5.22±0.04 74.31±2.05 24.32±0.13 

Stalk 3.42±0.30 ND
f
 1.20±0.91 0.85±0.27 55.30±0.34 13.64±1.53 

SC748-5 

Purple 

Leaves 10.52±0.16 0.56±0.01 8.2±0.11  4.17±0.20 164.77±0.97 41.21±1.81 

Glumes 8.98±0.71 ND 13.6±0.39 24.56±1.05 150.04±3.46 56.32±3.23 

Sheaths 10.84±0.17 1.02±0.02 14.7±0.57 19.78±0.69 170.31±2.06 55.16±1.43 

 Grains 2.82±0.08 ND 0.4±0.07 0.67±0.10 35.56±1.90 12.46±0.71 

R-07007 Leaves 15.17±0.07 1.22±0.01 9.8±0.13 4.49±0.09 235.08±4.17 71.66±2.21 

Red Glumes 18.21±0.62 ND 19.1±0.71 69.69±1.10 337.36±7.14 47.74±2.11 

Sheaths 7.51±0.02 ND 3.1±0.07 6.89±0.19 136.19±1.68 36.32±0.63 

 Grains 2.69±0.03 0.40±0.03 0.3±0.08 0.56±0.06 38.11±1.01 14.51±1.12 

Tx430 
Black 

 
Purple 

Leaves 18.59±0.37 ND 24.2±0.33 16.73±0.34 253.94±2.72 100.76±3.12 

Glumes 19.09±0.09 ND 34.3±0.18 72.06±1.11 297.53±4.25 82.76±4.31 

Sheaths 28.24±0.69 1.53±0.01 55.7±0.12 101.89±2.61 364.43±8.78 167.55±5.12 

 Grains 5.02±0.06 0.50±0.01 10.5±0.21 23.4±0.49 73.38±1.11 28.23±1.12  

Stalk 3.57±0.12 ND 0.84±0.11 2.17±0.04 61.77±0.17 11.68±0.11 

Tx430 
Black x 
Sumac 

 
Red 

 
 

Leaves 22.47±0.66 1.58±0.02 17.7±0.91 97.15±0.58 387.85±3.41 134.35±3.00 

Glumes 21.83±0.56 ND 28.4±0.22 57.56±0.85 355.76±6.24 133.05±4.92 

Sheaths 23.52±0.61 ND 29.4±0.71 84.03±1.21 377.15±9.81 100.58±4.31 

Grains 8.72±0.44 18.37+0.11 5.6±0.23 6.69±0.06 122.79±4.37 37.56±0.55 

ATx631xR
Tx436 

 
Tan 

Leaves 13.87±0.67 0.71±0.03 15.6±0.31 3.90±0.43 190.20±2.36 57.69±2.50 

Glumes 6.42±0.03 1.82±0.03 2.8±0.23 1.85±0.03 121.33±3.01 45.89±0.56 

Sheaths 4.59±0.96 1.20±0.01 2.0±0.83 0.77±0.07 84.33±2.61 16.43±0.62 

Grains 1.29±0.09 0.30±0.01 0.1±0.02 0.19±0.11 11.90±0.22 4.08±0.32 

 Stalk 3.93±0.10 ND 2.31±0.08 0.75±0.30 58.75±0.47 16.11±0.80 

a
GAE = Gallic acid equivalents. 

b
 Dry weight basis.

  c
CE = Catechin equivalents.

d
Components 

with values lower than 2.0 are considered tannin-free. 
e
TE = Trolox equivalents. 

f
ND = Not 

detected.* Secondary plant color. 
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The values obtained for total phenols from sorghum plant components 

compare favorably to those from other common food products and plant 

sources. These studies suggest that materials such as grains, nuts, leaves and 

roots can vary considerably in total phenol content even within the same plant. 

 

Condensed Tannins of Sorghum Plant Components 

Condensed tannins in all sorghum non-grain components ranged from 0-

1.8 mg CE/g (Table 5). Contrary to Sereme et al (1993) who reported more than 

8 mg/g of tannins in the sheaths, leaves, roots and stalks of Sorghum 

caudataum variety Moneme kaya grown in Burkina Faso in 1989, the leaves, 

sheaths, glumes and stalks in this study did not have tannins (Table 5). The 

tannin values reported by Sereme et al (1993) could not be an indication of 

tannin content because the standard used was tannic acid and results were 

expressed as tannic acid equivalents. This is misleading because sorghum does 

not contain tannic acid. 

The grains of Tx430 Black x Sumac with a pigmented testa had the 

highest level of condensed tannin (18.4 mg CE/g). For this reason we expected 

the glumes, sheaths and leaves to have tannins, but this was not the case 

(Table 5). 
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Flavan-4-ols in Sorghum Plant Components 

Flavan-4-ol levels ranged from 0.1-55.6 abs/mL/g (Table 5). The leaves, 

sheaths and glumes had higher levels of flavan-4-ols such as luteoforol and 

apiforol compared to the grains. Secondary plant color affected flavan-4-ols in all 

sorghum plant components except the stalk which all had low flavan-4-ols. 

Sorghum leaves, sheaths and glumes from red and purple-plant sorghums had 

higher levels of flavan-4-ols than the tan-plant sorghum. Tx430 Black had the 

highest flavan-4-ols for the leaves (24.2 abs/mL/g), glumes (34.3 abs/mL/g), 

sheaths (55.7 abs/mL/g) and grains (10.5 abs/mL/g) (Fig. 31 & Table 5).  

Watterson and Butler (1983) reported apiforol in the leaves of 12 lines of 

sorghum [Sorghum bicolor (L.) Moench]. Jambunathan et al (1986) reported that 

leaves of mold-resistant sorghums have a much higher concentration of flavan-

4-ols than mold susceptible varieties and concluded that higher concentrations 

of flavan-4-ols in leaves may give an indication of grain mold resistance.  

Sorghum plant components from purple and red-plant with lemon-yellow 

pericarp grains had lower levels of flavan-4-ols than the plant components from 

purple and red-plant sorghum with red pericarp. The genetics for lemon-yellow 

pericarp might be responsible for reduced flavan-4-ols in sorghum components 

from the red and purple-plant producing yellow-lemon pericarp sorghums. The 

pigmented glumes had higher levels of flavan-4-ols than the non-pigmented or 

tan glumes (ATx631 x RTx436).  
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Dicko et al (2005) in a study using sorghum grains, reported higher levels 

of flavan-4-ols (0.20-0.42%, w/w, cyanidin, dry wt.) in red-plant sorghums with a 

red pericarp and pigmented glumes than the other varieties studied; Dykes 

(2008) reported a similar pattern for grains. The plant component of Tx430 Black 

x Sumac cross had the same flavan-4-ol pattern like the Tx430 Black. This could 

be due to the fact that the genetics of Tx430 Black was dominant over that of 

Sumac.  

A positive correlation between flavan-4-ol and total phenols for sheaths 

and glumes (r2=0.90 and 0.72 respectively, p<0.01) suggest that flavan-4-ol may 

contribute to total phenols in these components. A positive correlation between 

flavan-4-ol levels in grains with leaves, glumes and sheaths (r2= 0.79, 0.77 and 

0.89 respectively, p<0.01) suggest that the non grain components of sorghum 

with high levels of flavan-4-ols may equally be resistance to mold.  

 

Anthocyanins in Sorghum Plant Components 

Anthocyanin levels ranged from 0.2-101.9 mg LE/g in various plant 

tissues (Table 5). Anthocyanins followed a pattern similar to flavan-4-ols. The 

leaves, sheaths and glumes of red and purple-plant sorghums had higher levels 

of anthocyanins than the tan-plant sorghums (Fig. 32 & Table 5). The leaves of 

Tx430 Black x Sumac and sheaths of Tx430 Black had intense purple color with 

very high levels of anthocyanins (97 and 102 mg LE/g respectively) compared to 

leaves and sheaths from the other varieties. 
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The results are in agreement with Sereme et al (1993) who reported 108 mg 

Apigeninidin equivalent/g in the sheaths of Sorghum caudatum vartiety Moneme 

kaya. The sheaths and leaves of Sorghum caudatum variety Moneme kaya is 

used in Benin as dye for art work and colorant in food, cosmetics and folklore 

medicine probably because its intense color is due to high levels of 

anthocyanins (Sereme et al 1993; National Research council 1996).  

High levels of anthocyanins from sheaths, leaves and glumes relative to 

grain, suggest that these compounds can be obtained in high concentrations 

from non-grain components.  Thus high levels of anthocyanins can be obtained 

from non-grain components of the sorghum plant. The sheaths and glumes had 

4-13 times higher levels of anthocyanins than the grains in some varieties 

(Tx430 Black: 4 and Tx430 Black x Sumac: 13). Sereme et al (1993) reported 

concentrated levels of anthocyanins in the sheaths of Sorghum caudatum 

variety Moneme kaya.  

ATx631 x RTx436 (tan plant sorghum) was used as a control since they 

are typically low in phenolic compounds. All components had low levels of 

anthocyanins measured at 485 nm, supporting the fact that there was no 

interference with the peak maxima for chlorophyll, which are 430 and 662 nm for 

chlorophyll a and 453 and 642 nm for chlorophyll b (Fig. 29; p. 97). 
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Anthocyanins and total phenols in sheaths, glumes and leaves were 

positively correlated (r2=0.99, 0.89 and 0.65 respectively, p<0.01). This suggests 

that anthocyanins contribute greatly to the total phenol content of these plant 

components. Anthocyanins also positively correlated with flavan-4-ol in sheaths 

and glumes (r2=0.87 and 0.72 respectively, p<0.01). Flavan-4-ols are precursors 

of 3-deoxyanthocyanins (Fig. 2; p. 12) (Wharton and Nicholson 2000). 

 

Antioxidant Activities 

Glumes, sheaths and leaves of all sorghum varieties had higher 

antioxidant activity than their respective grains (Table 5; p. 99). Secondary plant 

color affected antioxidant activity. The sheaths, glumes and leaves from red and 

purple-plant sorghums had higher antioxidant activity than those from tan plant 

sorghum with the exception of the leaves of SC748-5 (Fig. 33 & Table 5). 

Comparatively, the grains had relatively low antioxidant activity ranging from 12 

to 123 µmol TE/g in Tx430 Black x Sumac. The leaves of ATx631 x RTx436 had 

the highest antioxidant activity relative to all other components of this variety. 

The antioxidant activity may be because of high levels of flavan-4-ols (Fig. 31; p.  

104) and flavones will be discussed later.  

A strong correlation was observed between DPPH and ABTS with total 

phenols for leaves (0.98 and 0.89 respectively), sheaths (0.94 and 0.95 

respectively) and grains (0.93 and 0.99 respectively); p<0.01.  

 



 

 

1
0

7
 

0

50

100

150

200

250

300

350

400

450

500

Tx2911 SC748-5 R-07007 Tx430 Black Tx430 Black x

Sumac

ATx631 x

RTx436

Sorghum variety

A
n

ti
o

x
id

a
n

t 
a

c
ti

v
it

y
 (

u
m

o
l 
T

E
/g

)

sheaths

Glumes 

Leaves

Grains

Fig. 33. ABTS antioxidant activity of sorghum components grown in College Station, TX 2008. Dry 
weight basis. 



108 

 

 

The low correlation between DPPH and total phenol observed for glumes 

may be due to the low DPPH values obtained for the glumes (Fig. 34) which is 

associated with interference from the anthocyanins leading to an underestimation 

of antioxidant activity. In systems with anthocyanins, color interference of the 

DPPH˙ with anthocyanins has been reported to lead to an underestimation of 

antioxidant activity (Arnao 2000). The strong correlation observed between total 

phenol and antioxidant activity suggest total phenol content can be used to 

predict in vitro antioxidant potential in sorghum plant components. A similar 

correlation pattern was observed between ABTS and DPPH using sorghum 

grains (Awika et al 2003b; De-Beer et al 2003 and Dykes 2008).  

Chlorophyll did not contribute to antioxidant activity. Simpson (2006) using 

thin layer chromatography showed that peanut leaves fractions with green 

pigments did not have significant antioxidant activity compared to other extracted 

components confirming chlorophyll is not a major antioxidant in leaves.  
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3-Deoxyanthocyanins in Sorghum Components 

Plant color had an effect on 3-deoxyanthocyanins. The red and purple-

plant sorghum had higher 3-deoxyanthocyanins than the tan-plant sorghum 

(Table 6). Tan-plant sorghum did not have significant levels of 3-

deoxyanthocyanins in the leaves, sheaths as well as the grains (Fig. 35). The 

sheaths of Tx430 Black with an intense color at harvest had high levels of 3-

deoxyanthocyanins (9738 µg/g). The glumes of R-07007 (8767 µg/g) and 

Tx2911 (8738 ug/g) had intense red color at harvest and high levels of 3-

deoxyanthocyanins (Fig. 35 & Table 6).  

The amounts of 3-deoxyanthocyanins from leaves, sheaths and glumes 

of sorghum were very high compared to those in grains (Fig. 35 & Table 6).  

When sorghum plant components were intensely colored, high levels of 3-

deoxyanthocyanins were observed, suggesting the colors in these components 

are mainly due to the presence of 3-deoxyanthocyanins. The results were in 

agreement with Sereme et al (1993), who reported that the sheaths and leaves 

of Sorghum caudatum variety Moneme kaya had 10. 8 % dry weight 

anthocyanins compared to the roots and grains in which anthocyanins levels did 

not exceed 1.6 %. Four 3-deoxyanthocyanins peaks (Luteolinidin, Apigeninidin, 

5-Methoxyluteolinidin and 7-methoxyapigeninidin) were identified from all 

sorghum leaves with the exception of ATx631 x RTx436 which did not have 

luteolinidin and 5-methoxyluteolinidin.  
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Table 6 

Summary of Flavonoids Identified in Sorghum Plant Components Grown in 
College Station, TX 2008 

 

  Sorghum component 

Sorghum 
Varieties 

Flavonoids 
a
  Leaves 

 
Sheaths 
 

Glumes Grains Stalk 
 

Tx2911 3-Deoxyanthocyanins 744.00±4.21 3629.10±28.08 8737.90±25.51 75.00±3.89 9.65±1.41 

*Red Flavones  244.37±12.19 344.58±9.60 1276.03±89.63 21.91±0.72 ND 

 Flavanones ND 6.84±0.57 1348.98±20.11 318.03±13.55 ND 

SC748-5 3-Deoxyanthocyanins 94.70±4.60 1661.50±9.45 1502.00±8.45 17.7±0.56 NA 

Purple Flavones  265.53±6.03 731.99±6.27 147.75±2.03 54.81±0.58 NA 

 Flavanones 173.92±1.04 265.74±12.78 159.85±5.19 911.25±35.83 NA 

R-07007 3-Deoxyanthocyanins 60.70±3.35 660.00±6.56 8766.90±24.9 15.70±1.16 NA 

Red Flavones  815.45±2.33 681.39±13.92 754.25±42.33 21.68±0.68 NA 

 Flavanones 1260.30±7.17 377.2±5.19 923.70±39.11 1375.06±38.84 NA 

Tx430 Black 3-Deoxyanthocyanins 849.60±8.52 9738.40±54.6 5439.90±31.41 877.40±10.21 50.75±1.17 

Purple Flavones  379.42±10.45 319.74±41.62 857.34±45.79 69.80±0.37 ND 

 Flavanones ND ND ND 47.95±0.67 ND 

Tx430 Black x  
Sumac 

  3-Deoxyanthocyanins 1810.60±20.11 7094.40±61.81 4431.70±34.82 156.50±4.10 NA 

Red Flavones  1448.50±8.31   708.99±7.46 408.38±15.67 19.41±2.43 NA 

 Flavanones ND ND ND ND NA 

ATx631x 
RTx436 

  3-Deoxyanthocyanins 12.60±4.72 5.50±0.24 226.90±3.87 1.50±0.23 8.01±0.82 

 
Tan 

Flavones  255.46±10.93 236.00±7.94 775.89±6.51 79.43±2.59 ND 

 Flavanones ND ND ND ND ND  

Sweet Sorghum  
(Collier) 

3-Deoxyanthocyanins 6198.51±24.45 196.24±7.73 ND ND ND 

Flavones ND ND NA NA NA 

Flavanones ND 395.30±1.95 NA NA NA 

 

 

 

 

The 3-deoxyanthocyanin profile varied among samples and among the 

various components analyzed (Figs. 36-40). The leaves of red-plant sorghums 

had higher levels of apigeninidin than luteolinidin. Tx2911 and Tx430 Black x 

a
  µg /g Dry matter basis. 3-Deoxyanthocyanins, flavones and flavanones were detected at 485, 340 nm, 

and 280 nm, respectively. ND =Not detected. NA= Not analyzed. * Secondary plant color. 
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Sumac had higher levels of apigeninidin accounting for 72% of the total 3-

deoxyanthocyanin levels (Fig. 36), while the purple-plant sorghum had higher 

levels of luteolinidin. Tx430 Black had higher levels of luteolinidin which 

accounted for 58% of its total 3-deoxyanthocyanins.  

The red pigment found by Sereme et al (1993) in the sheaths and leaves 

of Sorghum caudatum variety Moneme kaya varieties identified as anthocyanins 

probably was 3-deoxyanthocyanins. Pigments extracted from the leaves of an 

intensely purple sorghum (sweet sorghum collier) obtained from Texas AgriLife 

Research had 6,189 ug/g 3-deoxyanthocyanin on dry weight basis (Table 6). 

Luteolinidin (3,291 ug/g) and 5-methoxyluteolinidin (1,934 ug/g) constituted 53 

and 31 % of the total 3- deoxyanthocyanins detected.  

The sheaths of Tx430 Black with its intense purple color had 9,738 ug/g 3-

deoxyanthocyanins.The sheaths of red plant sorghum had higher levels of 

apigeninidin compounds, while those of purple plant sorghum had higher 

luteolinidin compounds. For example, Tx430 Black x Sumac had apigeninidin 

(2,836 µg/g) and 7-methoxyapigeninidin (870 µg/g) accounting for 40 and 36% 

respectively of total 3-deoxyanthocyanin identified.  The sheaths of Tx2911 and 

R-07007 had only apigeninidin and 7-methoxyapigeninidin detected. Tx430 Black 

had high levels of luteolinidin (2,470 µg/g) and 5-methoxyluteolinidin (4,442 µg/g) 

accounting for 25 and 46 % respectively, of its total 3-deoxyanthocyanins (Fig. 

37). The sheaths of the tan-plant sorghum (ATx631 x RTx436) did not have 

significant levels of 3-deoxyanthocyanins (Table 6). 
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Fig. 36. 3-Deoxyanthocyanin profile of leaves of sorghums grown in College Station TX, 2008. Dry 
weight basis. 
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Fig. 37. 3-Deoxyanthocyanin profile of sheaths of sorghums grown in College Station TX, 
2008. Dry weight basis. 
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Secondary plant color affected the levels of 3-deoxyanthocyanins in the 

glumes but did not affect the profile. The glumes of red and purple plant 

sorghums had higher levels of 3-deoxyanthocyanins than the tan plant sorghum.  

Apigeninidin and 7-methoxyapigeninidin were the predominant 3-

deoxyanthocyanins in the glumes of sorghum varieties (Fig. 38). In R-07007 and 

Tx2911, apigeninidin alone constituted 78 and 67% of the total 3-

deoxyanthocyanins. 

The grains from all varieties had low levels of 3-deoxyanthocyanins 

compared to the other plant tissues with the exception of the stalks. The glumes 

and sheaths had higher levels of 3-deoxyanthocyanins than the leaves in all the 

sorghum varieties. The red and purple plant sorghum had higher levels of 3-

deoxyanthocyanins than the tan plant sorghum. The red sorghum had higher 

levels of apigeninidin and 7-methoxyapigeninidin than luteolinidin and 5-

methoxyluteolinidin while the purple plant had more luteolinidin compounds. 

Tx430 Black had the highest 3-deoxyanthocyanins. Luteolinidin and 5-

methoxyluteolinidin constituted 31 and 28% respectively of the total 3-

deoxyanthocyanins (Fig. 39). Dykes (2008) reported a similar pattern for red 

sorghum grains which were higher in apigeninidin and 7-methoxyapigeninidin 

than in luteolinidin and 5-methoxyluteolinidin.  

Secondary plant color did not affect levels of 3-deoxyanthocyanins in the 

stalks of the varieties evaluated. The stalks generally had low 3-

deoxyanthocyanins relative to all other tissues, ranging from 10-51 µg/g (Fig. 40).  
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The four main 3-deoxyanthocyanins were detected in the stalk of Tx430 

Black, while in ATx631 x RTx436 and Tx2911, only apigeninidin and 7-

methoxyapigeninidin were detected (Fig. 40). The leaves of Tx430 Black x 

Sumac had deep purple/red color in the field. The color was contributed mainly 

by the apigeninidin and 7-methoapigeninidin which was the predominant peak in 

the leaves of this sample.  The grains of Tx430 Black had almost equal 

distribution of the 3-deoxyanthocyanins with luteolinidin compounds slightly 

higher. The sheath and leaves had higher levels of luteolinidin and 5-MeO-

Luteolinidin, while the glumes had higher levels of apigeninidin and 7-MeO-

Apigeninidin.  

The sheaths, glumes and leaves of sorghums with purple-plant secondary 

color are excellent sources of the bright orange luteolinidin and 5-MeO-

Luteolinidin, while the glumes, sheaths, and leaves of red-plant sorghum are 

suitable sources for the yellow apigeninidin and 7-MeO-Apigeninidin.  

The sheaths, glumes and leaves of Tx430 Black x Sumac is predominant 

in apigeninidin and 7-MeO-Apigeninidin, although it still had high levels of 

luteolinidin and 5-MeO-Luteolinidin comparable to those in the purple plant 

sorghum. The Tx430 Black gene may be dominant, contributing to high 

luteolinidin and 5-MeO-Luteolinidin based on the Tx430 Black 3-

deoxyanthocyanin profile. 

A strong correlation was observed between anthocyanin levels measured 

by the colorimetric method of Fuleki and Francis (1968) expressed as luteolinidin 
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equivalent and by HPLC methods for leaves, sheaths, grains and glumes (Table 

7). When all the components were taken together the correlation was 0.76.  The 

strong correlation suggests that the anthocyanins measured colorimetrically 

were mainly 3-deoxyanthocyanins. Thus the colorimetric method can be used as 

a rapid, inexpensive method to screen for 3-deoxyanthocyanins in grain and 

non-grain components of sorghum. 

 
Flavones in Sorghum Components 

Flavone levels and profiles varied within components and varieties (Fig. 

41). Flavones ranged from 244-1,449 µg/g in leaves, 148-1,276 µg/g in glumes, 

236-732 µg/g in sheaths and 19-79 µg/g in grains (Table 6; p. 112). 

Secondary plant color affected levels in the leaves and sheaths (Figs. 42 

& 43). The leaves and sheaths of red-plant sorghums had higher levels of 

apigenin than luteolin while for purple and tan plant sorghums, luteolin was 

higher.  

 

Table 7  
Pearson's Correlation Coefficients of Anthocyanins Measured 

Colorimetrically and 3-Deoxyanthocyanins 
 

                               ACY measured colorimetrically 

3-Deoxy-ACY 

measured by HPLC 

Leaves  Sheaths Glumes Grains 

0.85 0.96 0.87 0.98 

Correlation is significant at p<0.01 
ACY=Anthocyanins. 
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For example, apigenin was the major flavones in the leaves of Tx430 

Black/Sumac (1,068 µg/g) and R-07007 (658 µg/g) accounting for 74 and 81% 

respectively of the total flavones detected in those varieties (Fig. 42). SC748-5 

(197 µg/g), Tx430 Black (349 µg/g) and ATx631 x RTx436 (234 µg/g) had higher 

luteolin levels than apigenin, that accounted for 74%, 92% and 91% respectively 

of the total flavones in those varieties. Apigenin was the only compound 

identified in the leaves of Tx2911.  

The sheaths of SC748-5 and ATx631 x RTx436 had higher levels of 

luteolin than apigenin, constituting 96 and 95% respectively of their total flavone 

levels (Fig. 43). R-07007 and Tx430 Black x Sumac had higher levels of 

apigenin than luteolin, constituting 82 and 58% respectively of the total flavones 

detected. Similar to the leaves, only apigenin was identified in the sheaths of 

Tx2911. Unlike the leaves of Tx430 Black in which both luteolin and apigenin 

were detected, the sheaths had luteolin as the only flavone detected. 

Secondary plant color did not affect flavone profiles in the glumes, grains 

and stalks. The glumes of all varieties had apigenin as the predominant flavone 

with the exception of SC748-5 in which only luteolin was detected (Fig. 44). The 

glumes of R-07007 had apigenin as the only flavone while its grain had luteolin 

as the only detectable flavone. Similar to leaves and sheaths, apigenin was the 

only flavone detected in glumes and grains of Tx2911 (Figs. 44 & 45). The 

flavones in the leaves, sheaths and glumes of tan-plant sorghum may contribute 

to the total phenols and high antioxidant activities observed (Table 5; p. 99). 
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Fig. 42. Flavone profile of leaves of sorghums grown in College Station TX, 2008. Dry weight basis. 
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Fig. 43. Flavone profile of sheaths of sorghums grown in College Station TX, 2008. Dry weight basis. 
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Fig.  44. Flavone profiles of glumes of sorghums grown in College Station TX, 2008. Dry 
weight basis. 
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The flavone for R-07007 and SC748-5 grains agreed with Dykes (2008) 

who found 34 and 30.8 µg/g  in R-07007 grown in College station in 2006 and 

Lubbock in 2005 respectively; 47.3 and 46.2 µg/g in SC748-5 for the same 

locations and period respectively. Dykes (2008) found luteolin as the only 

flavone in Tx2911 grown in Lubbock in 2005 compared to both luteolin and 

apigenin found in Tx2911 grown in College Station in 2006. 

These differences support the hypothesis that the environmental 

condition under which the sorghum matures influences its flavonoid composition. 

Low levels of flavones were detected in the stalks evaluated, ranging from 0-12 

µg/g (Fig. 46). The stalk of Tx2911 (red plant) had no detectable levels of 

flavones, while only apigenin was detected in the stalks of Tx430 Black and 

ATx631 x RTx436.   

Luteolin and apigenin are major dietary flavones, commonly found in 

aromatic herbs (parsley, rosemary & thyme). Both flavones have been identified 

in sorghum and sorghum compares favorably with other common sources of 

these compounds (Fig. 47). The leaves, sheaths and glumes of red, purple and 

tan plant sorghums are viable sources of flavones with potential health 

applications. Flavones have anticancer, anti-inflammatory, antiallergic, and 

analgesic properties (Block et al 1998; Hirano et al 2004; Horinaka et al 2005; 

Matsui et al 2005; Cherng et al 2007; Ziyan et al 2007). They are used as 

vascular relaxation agents and for the treatment of corneal neovascularization 

(Block et al 1998; Xu et al 2007).  
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Fig. 47. Flavones (ug/g) in sorghum compared to common sources. (Data from USDA Database for the 
Flavonoid content of selected Foods, Release, 2.1). 
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The glumes of Tx2911 gave the most viable apigenin while the sheaths of

SC748-5 gave the most luteolin from the sorghum varieties analyzed (Figs. 48 &

49). In addition to luteolin and apigenin, flavone-glycosides, which had not been

previously identified in sorghum, were detected in the non-grain sorghum tissues.

Non-grain sorghum tissues, with the exception of the stalks provide excellent

sources of large quantities of flavones and flavone-glycosides.

The grains of sorghum are low in flavones compared to the non-grain

tissues. The grain of sorghum provides an indication of the presence or absence

of flavones in the non-grain tissues but cannot be used to predict the flavone

profiles. The profiles found in the leaves and sheaths suggest that one might use

such information to predict the profile of the others, but not the levels.

Characterization of Flavone-Glycosides

The total flavones reported were based on retention times of commercial

standards and UV-Vis spectral characteristics. The known peaks for luteolin and

apigenin (1 & 2 respectively) were minor peaks compared to the unidentified

peaks; a, b, c, d, e and f (Fig. 50) measured at 340 nm.

Flavone-glycosides were detected in the leaves, sheaths and glumes of

sorghum. Tentative identifications of the flavone-glycosides (Table 8) were based

on spectral and mass spectrometric characteristics, showing distinctive

fragmentation patterns of pseudomolecular ions [M-H]-.
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 Fig. 48. Luteolin in sorghum compared to common sources. (Data from USDA Database for the 
Flavonoid content of selected Foods, Release, 2.1). Tx430BxS= Tx430 Black x Sumac. 
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Fig. 49. Apigenin in sorghum compared to common sources. (Data from USDA Database for the 
Flavonoid content of selected Foods, Release, 2.1).Tx430BxS= Tx430 Black x Sumac. 
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Fig. 50. HPLC Chromatograms of sheaths and leaves of sorghum grown in 
College Station TX, 2008. A=Tx430 Black sheaths; B=Tx430 Black x Sumac 
sheaths; C= Tx430 Black x Sumac leaves; D= Tx 2911 leaves at 340nm. 
1=Luteolin; 2= Apigenin. A,b,c,d,e,f. 
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The fragmentation yielded product ion signals at [M-H-60]-, [M-H-90]-, and 

[M-H-120]- in the negative ion mode MSn analyses (Gattuso et al 2007; Caristi et 

al 2006; Pereira et al 2005; Ferreres et al 2003; Voirin et al 2000).  

Luteolin and apigenin-C-glycosides were detected in the leaves, sheaths and 

glumes of sorghum (Caristi et al 2006; Pereira et al 2005).  

The tentative identifications were based on typical characteristic loss of 

ions (absorption at 350-360 nm) of [M–H–18]–, [M–H–60]–, [M–H–90]–, [M–H–

120]–, [M–H–120–90]–, [M–H–120–120]– (Caristi et al 2006). Fragment ions 

corresponding to luteolin (m/z=285.2, [M-H]-) and apigenin (m/z=269.1, [M-H]-) 

aglycones were also present. More detail identification needs to be done to 

confirm these compounds using appropriate standards and NMR analyses. Acid 

hydrolysis test could be done to confirm the presence of C as oppose to O- 

glycosides.  

The principal feature of O-glycosides fragmentation product ion of mass 

spectra [M-H]- are the formation of Y- and (Y-H)•- ions . An example of O-

glycoside fragmentation is illustrated (Fig. 51) for apigenin-O-glycosides (March 

et al 2006). Y- is formed as a result of the loss of 162 Da and re-arrangement, 

while (Y-H)•- radical anion is formed by scission with the loss of 163 Da (March 

et al 2004; March et al 2006). The product ion showed three major 

fragmentations of the glycan that yield m/z 341, m/z 311 and also m/z 413 from 

loss of a water molecule.  
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Table 8 

Characterization of Non-3-Deoxyanthocyanin Flavonoids Present in 
Sorghum Non-Grain Materials 

Peak 
No. 

RT  
(min) 

Compound* λmax 

(nm) 
[M-H]

- 

(m/z) 
MS/MS 
(m/z) 

 
1 

 
17.4 

 
Apigenin 

 
337 

 
269.2 

 
269.2, 197.4, 133.1 

 
2 

 
17.7 

 
Apigenin-C- glycoside 

 
258, 352 

 
563.1 

 
503.1,  473.1, 443.1, 383.1, 353.1, 
341.1 
 

3 
 

19.2 Apigenin-C- glycoside 272, 352  563.0 545.1, 473.1, 443.1, 383.1, 353.1, 
294.2, 250.9 
 

4 19.3 
 

Unidentified flavone 
glycoside 

347  367.0 367.1, 307.2, 270.1, 195.7, 191.2, 
179, 135.2 

5 22.3  Luteolin-glucoside 327, 
330, 347 

   447.1  429.4, 327.1, 285.2, 190.9 

6 23.9 
 

Flavone-glucoside 340,347 497.2 497, 451.3, 399, 335.1, 290.2, 
177.5 
 7 

 
 

24.5 
 

Unidentified flavone 
glycoside 

347 622.4 
 
 

555.9, 544.9, 521.2, 460.1, 371.6, 
245.3, 188.7 
 

8  26.1  Apigenin-O-glucoside 267, 337 431.2 413.5, 334.8, 311, 269.2. 285 

9 30.1 Unidentified flavone 
glycoside 

347  489.0 489.1, 457.1, 445.1, 337.1, 323.2, 
280, 233, 161 

10 30.2 Unidentified procyanindin 
glycoside 

347 723.3 723.2, 677.5 

11       35.5 Apigenin-gylcoside 347  531.0 498.9, 431.1, 412, 311.1, 269.2 

       *
 Tentative identification based on similarities on spectral characteristics and ESI-MS

n
   

fragmentation patterns. 
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Flavanones in Sorghum Components 

Flavanones ranged from non-detectable to 1,375.1 µg/g (Table 6; p. 112). 

Secondary plant color did affect flavanones in the leaves, sheaths, glumes and 

grains. All components of R-07007 and SC748-5 had detectable levels of 

flavanones. In Tx2911 flavanones were detected in the glumes and grains only 

and in the grains of Tx430 Black (Fig. 52). Flavanone profile varied among the 

sorghum varieties and also among components within the same variety (Figs. 

Fig.  51. Tentative identification of [M-H]- of apigenin-O-glycosides m/z 431. 
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53-56).  The leaves and the glumes had higher levels of naringenin than 

eriodictyol while the sheaths had higher levels of eriodictyol. 

Flavanones were detected only in leaves of SC748-5 and R-07007, with 

naringenin accounting for 70 and 62% respectively of the total flavanone levels 

in these two varieties (Fig. 53). The sheaths of R-07007 had 75% of its 

flavanones from eriodictyol (Fig. 54). In SC748-5 eriodictyol and naringenin were 

evenly distributed constituting 49 and 51% respectively of its total flavanone 

levels. 7 ug/g of eriodictyol was detected as the only flavanone in the sheaths of 

Tx2911. 

The Glumes of Tx2911 had the highest level of flavanones (1349 /g) with 

only naringenin detected. R-07007 had 932.7ug/g of total flavanones with 45 

and 55 % of eriodictyol and naringenin respectively. The glumes of SC748-5 and 

TX2911 had only naringenin as detectable flavanones (Fig. 55). The glumes of 

Tx430 Black, Tx430 Black x Sumac and ATx631 x RTx436 had no detectable 

flavanones.  

Sorghum grains with lemon yellow pericarp had the highest levels of 

flavanones. The grains of R-07007 had the highest levels of flavanones with  

eriodictyol constituting 84 % of the total flavanones and SC748-5 had 51 % 

eriodictyol constituting of its total flavanones (Fig. 56).  
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 Fig.  52. Comparing Flavanones in different sorghum components grown in College Station 
TX, 2008. Dry weight basis. 
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Fig. 53. Flavanones in leaves of sorghums grown in College Station TX, 2008. Dry weight 
basis. 
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Fig. 54. Flavanones in sheaths of sorghums grown in College Station TX, 2008. Dry weight basis. 



 

 

 

 

1
4

2
 

0

200

400

600

800

1000

1200

1400

1600

Tx2911 SC748-5 R-07007 Tx430 Black Tx430 black x

Sumac 

ATx631 x

RTx436 

Glumes of sorghum varieties

A
m

o
u

n
ts

 (
U

g
/g

)
Eriodictyol

Naringenin

Fig. 55. Flavanones in glumes of sorghums grown in College Station TX, 2008. Dry weight basis. 
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Grains of Tx2911 and Tx430 Black had only naringenin as detectable 

flavanone. The results for Tx2911 were in agreement with the results of Dykes 

(2008) who detected naringenin as the only flavanone in this variety at levels of 

240 and 209 µg/g from different locations and different crop years.  

The glumes and sheaths of R-07007 as well as the glumes of Tx2911 are 

viable sources of flavanones. These sources have flavanones as high as the 

lemon-yellow pericarp sorghums. With the exception of flavanones, sorghum 

leaves, sheaths and glumes are the most viable source of flavonoids compared 

to grains. 

The grains and non-grain tissues of selected sorghum varieties are 

excellent sources of flavanones (Figs. 57 & 58). R-07007 grains are a viable 

source of eriodictyol, while the glumes of Tx2911 are a viable source for 

naringenin. The lemon-yellow pericarp sorghums are potent sources of 

flavanones as reported by Dykes (2008).  

Each component had its unique profile and it was not evident that the 

profile of one component can be used to predict the flavanone profile of another. 

Tx430 Black x Sumac and ATx631 x RTx436 did not have detectable levels of 

flavanones in any component. There were no detectable flavanones in the stalks 

of Tx430 Black (purple plant), Tx2911 (red plant) nor ATx631 x RTx436. 
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Fig. 57. Eriodictyol in sorghum components compared to common sources. (Data from USDA Database 
for the Flavonoid content of selected Foods, Release, 2.1). 
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Fig. 58. Naringenin in sorghum components compared to common sources. (Data from USDA 
Database for the Flavonoid content of selected Foods, Release, 2.1). 
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Non-grain sorghum tissues are potential sources for all classes of 

sorghum flavonoids. These tissues provide sources of sorghum bioactive 

compounds up to between 78-170 folds more than grains in some varieties. This 

offers a possibility for concentrated amounts of sorghum bioactive compounds 

with high antioxidant capacity compared to their respective grains for large scale 

applications.  

The levels of flavonoids in non-grain sorghum tissues compared favorably 

with common dietary sources (Figs. 48-49, 57 &, 58). There is a potential of 

sorghum biomass by-product of ethanol production as a source of raw material 

for these compounds. This will add value to the market potential of sorghum and 

its importance as source of dietary flavonoids with applications in food, 

nutraceutical, cosmetic and pharmaceutical industries.  
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CHAPTER V 

OPTIMIZING EXTRACTION OF PHENOLIC COMPOUNDS FROM SORGHUM 

 

Introduction 

The commonly used solvent for extraction of phenolic compounds from 

sorghum is 1% HCl/methanol. The residues obtained after extraction with 1% 

methanol/HCl remain dark indicating incomplete extraction. Other solvents have 

been used for the extraction of phenolic compounds from fruits, vegetables and 

cereals with varying degrees of success. For example, aqueous acetone has 

been considered a good solvent for the extraction of procyanidins, anthocyanins 

and other phenols in fruits and vegetables (Kallithraka et al 1995; Garcia-Viguera 

et al 1998) although Lu and Foo (2001) observed significant anthocyanin 

interaction with  aqueous acetone.  

Awika et al (2004b) reported modification of the HPLC-spectral 

characteristic of 3-deoxyanthocyanins associated with formation of pyrano-3-

deoxyanthocyanins and significantly lower levels of detectable 3-

deoxyanthocyanins in sorghum when aqueous acetone was used.  

Enzyme assisted extraction of phenolic compounds from fruits is utilized 

(Landbo and Meyer 2001; Buchert  et al 2005; Kim et al 2005). Enzymes are 

used for biomass digestion in ethanol production to increase yield. The use of 

enzymes could provide an eco-friendly process for extraction of phenolic 

compounds from sorghum and from sorghum biomass co-products.  
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The objective of this work was to evaluate food-friendly extraction 

methods for use in nutraceuticals and food systems.  

 

Materials and Methods 

Tx430 Black and Black PI Tall grown in College Station, TX in 2001 and 

2006 respectively were used. The black sorghum grains were decorticated to 

yield 15 % bran using a PRL dehuller (Nutama Machine Co., Saskatoon, 

Canada). 

 

Reagents 

Organic acids (citric acid, tartaric acid, acetic acid) and alpha (α)-amylase 

were obtained from Sigma (St. Louis, MO). Spezyme® CP and Optimash™ BG 

enzymes were provided by Genencor (Danisco Inc, NY), while Validase® AFP 

1000L, Validase® ANC L, Validase® TRL and Validase® BNP L, were provided  

by Valley Research (Indiana, USA). All solvents were HPLC grade. 

 

Extraction Using Different Organic Acids 

Black sorghum brans were ground through a cyclotec mill (UDY Cor, Fort 

Collins, CO (0.5 mm mesh) prior to extraction. Acetic acid (AA), citric acid (CA) 

and tartaric acid (TA) at 0.5%, 1% and 5% in 70% aqueous ethanol and 1% 

HCl/methanol were used for extraction of phenolic compounds from black 
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sorghum bran. Citric acid at 0.5 % in 70 (30% water) and 100 % methanol and 

ethanol were also used.   

For all analyses, 0.1 g of bran was weighed into centrifuge tubes, the 

solvents were added, and shaken for 2 hours at low speed on an Eberbach 

shaker (Eberbach Cor, MI). The extracts were centrifuged at 2790 x g for 15 

minutes in a Sorvall SS-34 centrifuge (DuPont Instruments, Wilmington, DE) and 

then decanted. The supernatants were analyzed for total phenols and antioxidant 

capacity using the Folin Ciocalteu and ABTS methods respectively. 

 

Extraction for HPLC Using Different Organic Acids 

Ground samples (0.1 g) were extracted using 10 mL of 0.5%, 1% and 5% 

organic acids [acetic acid (AA), Citric acid (CA) and Tartaric acid (TA)], in 70% 

aqueous ethanol/30% water. 0.5 % CA in 70% aqueous ethanol and 100 % 

methanol and ethanol were also used. 1% HCl/methanol was used as a 

reference. Extraction and analyses were carried out as described in Chapter III 

(p. 47 & 52). 

 

Enzyme Extraction 

Ground samples (1.0 g dry weight) were extracted in a 20% slurry 

containing appropriate buffer solutions at optimum pH levels per manufacturers’ 

specifications. Incubation was at the optimum temperature of the enzyme (Table 

9). A second set of samples was extracted using different pH buffers (2, 3, 4.5 
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and 7.4) as controls. Extractions were done for 72 hours in a water bath while 

shaking. The enzyme activities were stopped by freezing the samples at -8OC.  

 

 

Table 9 
Enzymes and Their Optimum Conditions of Activity* 

 

Enzymes Optimum pH Optimum Temperature 

Spezyme® CP                4.5 55oC 

Optimash™ BG              4.5 65oC 

Validase® AFP 1000L    3.5 55oC 

Validase®  ANC L          4.5 55oC 

Validase® TRL                4.5 55oC 

Validase® BNP L            7.0 55oC 

CP&TRL =Cellulases; AFP & BNP L =Proteases; ANC L Cellulase/Hemicellulase ;BG= Beta 
Glucanses/Xylanase  * Based on manufacturer’s specifications 
 

 

 

The samples were dried in a speed vac at ambient temperature. Samples were 

shaken in methanol for 1 hour, centrifuged at 2790 x g for 15 min; the 

supernatants were collected for colorimetric and HPLC analyses. 

 

Colorimetric and HPLC Analyses 

All colorimetric and HPLC analysis were conducted as described in 

Chapter III (p. 47 & 52) 
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Microscopy 
 

Within 24 hours of extraction and/or enzyme treatment, the residues of 

Tx430 Black bran were placed on a slide with 50% glycerol/water prior to 

examination with a Zeiss Universal Microscope equipped with a 100-W mercury 

arc lamp and Zeiss Neofluor objectives as described by McDonough (1986). Nile 

Blue (0.01% w/v) in distilled water was used to stain neutral lipids in the epicarp 

layer and aleurone cells. The stain was applied to the surface of the slide, and 

viewed immediately.  

 

Results and Discussion 

Total Phenol Levels as Indication of Solvent Efficiency 

Total phenol levels ranged from 14.0-17.5 mg GAE/g (Fig. 59). 1% 

HCl/methanol gave 15.0 mg GAE/g total phenols. Extracts from all combinations 

of CA, TA and AA in 70% ethanol gave total phenol levels comparable to using 

1% HC/methanol. Tartaric acid extracted more phenols (16.3-17.3 mg GAE/g) 

than other acids.  

The differences in total phenols extracted were not statistically significant 

for the solvents. Thus it is not cost effective to use high concentrations of organic 

acids for extraction of phenolic compounds from black sorghum bran. Although 

TA at 1 and 5 % extracted the most phenols (17.3 mg GAE/g) it is expensive and 

uneconomical compared to the other organic acids. 0.5% CA in 70% aqueous 

ethanol extracted compared favorably with 1% HCl/methanol.  
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Antioxidant capacity as indication of solvent efficiency 

Antioxidant capacity of extracts using the individual solvents ranged from 

50.6-156.2 µmol TE/g (Fig. 60). Extraction with 1% HCl/methanol gave the 

highest level of antioxidant activity. The antioxidant activities of extracts from all 

combinations of citric acid in 70 % aqueous ethanol compared favorably with 

antioxidant activity of extracts obtained with1% HCl/methanol. 

As the levels of organic acid increased, the antioxidant activity decreased. 

At 5% in 70% aqueous ethanol all organic acids gave lower antioxidant capacity 

compared to 0.5 and 1 % acid in 70% aqueous ethanol.   

CA is the most efficient of all the three organic acids tested. At 0.5% the 

antioxidant activity and the total phenols compared favorably with 1% 

HCl/methanol extracts. Citric acid is inexpensive and cost effective if used in 

large scale extractions.  

 
Comparing Extraction Efficacy Based on 3-Deoxyanthocyanins 

 
Organic acids in 70% ethanol gave about 50% less 3-deoxyanthocyanins 

than 1% HCl/methanol (3474.2 ug/g). TA and CA at 0.5, 1 and 5% in 70% 

aqueous ethanol extracted more 3-deoxyanthocyanins than acetic acid. No 

significant differences were observed in the total levels of 3-deoxyanthocyanins 

extracted by similar levels of CA and AA but TA extracted larger amounts (Fig. 

61). Overall at all levels, AA extracted less than CA and TA. No significant 

difference exists between the amounts of 3-deoxyanthocyanins extracted by TA 

and CA.  
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Fig. 59. Total Phenols from Tx430 Black sorghum bran using different extraction solvents 70% 
EtOH= 70% ethanol: 30%H2O (70%aqueous ethanol). 
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Fig. 60. Antioxidant activity (ABTS) of Tx430 Black sorghum bran using different solvents. 
70% EtOH= 70 ethanol %:30% H2O (70%aqueous ethanol). 
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3-Deoxyanthocyanin profiles and proportions from extracts of 1% 

HCl/methanol were not different from 3-deoxyanthocyanin profiles in extracts 

obtained with all the other acid/solvent combinations (Fig. 62). This suggests 

that any of these acids/solvent combinations can be used as a substitute for 1% 

HCl/MetOH providing a more food friendly extraction solvent for phenolic 

compounds from sorghum. 

 

Flavone Levels 

Flavone levels in the extracts ranged from 147-219 ug/g (Fig. 63). 

Flavone levels in extracts using various levels of acids (0.5, 1 and 5%) had no 

significant differences across all the acids used, except when 1% HCl/ methanol 

were used. Increasing acid levels did not increase levels of extracted flavones. 

Although TA extracted slightly more flavones than citric acid at 0.5%, CA. 

 The flavones in extracts from all levels of acid/ solvent combinations 

were similar to levels obtained with 1% HCl/ methanol (Fig. 64).  0.5 % CA in 

70% aqueous ethanol was proposed as a food friendly solvent for the extraction 

of 3-deoxyanthocyanins from sorghum, however the use of food grade 

1%HCl/ethanol might provide a more valuable substitute for 1%HCl/methanol. 

At 0.5%, CA in 70% aqueous EtOH compares favorably with 1%HCl in methanol 

in the extraction of phenolic compounds from black sorghum bran. The 

quantities of flavonoids extracted with the use of 0.5% CA was about half those 

obtained with 1% HCl/methanol.  



 

 

1
5

8
 

0 500 1000 1500 2000 2500 3000 3500 4000

0.5%AA/70%EtOH 

1% AA/70%EtOH 

5% AA/70%EtOH 

0.5%CA/70%MetOH

1% CA/70%EtOH

0.5%TA/70%EtOH

5% CA/70%EtOH

1%TA/70%EtOH

5%TA/70%EtOH

1%HCl/MetOH

Amounts  (µg/g)

Luteolinidin

Apigeninidin

5-MeO-Luteolinidin

7-MeO-Apigeninidin

Fig. 62. 3-Deoxyanthocyanin profile of Tx430 Black sorghum bran using different levels of acid and 
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 Fig. 63. Flavone levels in Tx430 Black sorghum bran using different levels of acid in 70% 
ethanol compared to 1 % HCl / methanol. 
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Fig.  64. Flavone profile in Tx430 Black sorghum bran using different extraction solvents. AA= Acetic 
acid, TA=Tartaric acid, CA=Citric acids.  
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However, methanol is not acceptable in food preparation. Hydrochloric in 

ethanol might be a better solvent for food systems. 

The profiles of 3-deoxyanthocyanins and flavones (Figs. 62 & 64) 

obtained from both solvents also suggest that CA can be used in place of HCl 

for extraction of phenolic compounds from sorghum to obtain the same 

compounds extracted by 1% HCl/methanol although the quantities  are reduced 

(Figs. 65 & 66).   

The use of citric acid in ethanol, like 1% HCl in methanol did not 

completely extract the phenolic compounds in black sorghum bran. The residues 

obtained from both extraction solvents still remained black suggesting that more 

work still needs to be done to determine the most effective solvent for the 

extraction of phenolic compounds from sorghum grains and brans.  

 

Validation of Extraction Solvent 

After a number of runs it was evident that extraction using food acids in 

70% aqueous ethanol was more efficient than using 100% ethanol (Fig. 67). 

0.5% citric acid in 70% aqueous ethanol (CA/70% in EtOH) was selected as the 

best combination for use in subsequent experiments because it was more cost 

effective than the other combinations. Higher concentrations of citric acid were 

inefficient in extracting phenolic compounds. The phenolic compounds were 

generally difficult to extract as the residues still remained dark after all 

extractions. The brans of Black PI Tall and Tx430 Black were used to verify the 
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Fig. 65. Extractability of total phenols from black sorghum brans using of 0.5% CA / 70% 
aqueous ethanol and 1% HCl/ methanol. 
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Fig. 66. Antioxidant activity of black sorghum brans extracted with 0.5% Citric acid/ 70% 
aqueous ethanol and 1% HCl/ methanol.  
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Fig. 67. 3-Deoxyanthocyanins in Tx430 Black sorghum bran using 0.5% CA in methanol and 
ethanol.  
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potential of 0.5 % CA in 70% aqueous ethanol for extraction of phenols from 

sorghum. Total phenols (Fig. 65) and antioxidant activity (Fig. 66) obtained from 

the brans were similar to those obtained with extracts using 1% HCl/methanol. 

These confirmed previously discussed results. This extraction solvent was used 

in determining the stability of 3-deoxyanthocyanins from black sorghum bran 

under different processing conditions (Cárdenas-Hinojosa 2007). 

The 3-deoxyanthocyanin profile was similar to 1% HCl/ methanol extract 

profile and the chromatogram from Tx430 Black and Black PI Tall extracted with 

0.5% Ca/70% aqueous ethanol contained luteolinidin (1), apigeninidin (2), 5-

methoxyluteolinidin (3) and 7-methoxyapigeninidin (4) (Fig. 68). 

 

Effects of Storage on Extractability of Phenolic Compounds from  

Black Sorghum Bran 

Tx430 Black sorghum bran, decorticated and stored for 3 years at 8OC 

and fresh bran from the same sorghum grain stored in a freezer were extracted 

with 1% HCl/methanol (Fig. 69). Total phenols were lower in the stored bran 

compared to fresh bran when both acidified methanol and methanol were used. 

Reduction in total phenols was 47 and 50% for 1% HCl/methanol and methanol 

respectively. Antioxidant activity of stored Tx430 Black bran was 60% lower 

compared to the fresh bran using 1% HCl/methanol (Fig. 70).  
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Fig.  68. HPLC chromatograms of A= Tx430 Black bran; B= Black PI Tall 
bran using 0.5% Ca/70% aqueous EtOH; C=Tx430 black bran using 1% 
HCl/MetOH at 485 nm. CA=citric acid; 1=Luteolinidin; 2 =Apigeninidin; 3= 5-
MethoxyLuteolinidin; 4=7-MethoxyApigeninidin. 
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Fig. 69. Total phenols of Tx430 Black bran stored for 3 years compared to freshly 
decorticated bran.  
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Fig. 70. Antioxidant Activity of Tx430 Black bran stored for 3 years compared to freshly decorticated bran.  
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More effective methods of disrupting the cell wall components need to be 

established to enable proper quantification of phenolic compounds in sorghum 

grain and bran. Storage of bran results in break down, deterioration or   

binding of phenols. Decortications might release or activate phenol catabolizing 

enzymes present in sorghum such as polyphenol oxidases (PPO) and 

peroxidases (POX).  Mayer and Harel (1979) reported two types of PPO 

activities in sorghum: the monophenolase activity located in the endosperm and 

the o-diphenolase activity localized in the pericarp. PPO and POX affect post 

harvest quality of foods by causing degradation (browning) and the development 

of off-flavors in raw and un-blanched cereals (Marsh and Galliard, 1986; Hatcher 

and Kruger, 1993). These enzymes are capable of modifying phenolic 

compounds in sorghum and other cereals during processing (Dicko et al 2006). 

The appearance of colored products in wheat flour is attributed to the oxidation 

of endogenous phenols by PPO (Marsh and Galliard, 1986; Hatcher and Kruger, 

1993). Sorghum bran should be processed as needed and cannot be stored for 

a long time for optimum performance. 

 
Enzyme Assisted Extraction of Phenolic Compounds from Sorghum 

 
The unit of activity of each enzyme was calculated from the respective 

enzyme activity and the specific gravities specified by the manufacturer (Table 

10).  
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Table 10 
Enzyme Activity Levels Calculated Based on Manufacturer's Specification 

 

 Volume (µl) ANC-L AFP BG BNP-L CP TRL 

1000 140 8 79 17 26 54 

800 112 6 63 14 15 43 

600 84 5 47 10 20 32 

400 56 3 32 7 10 22 

200 28 2 16 3 5 11 

CP&TRL =Cellulases ; AFP & BNP L =Proteases; ANC L Cellulase/Hemicellulase ;  
BG= Beta Glucanses/Xylanase 

 

 

Total Phenols Extracted with Enzymes 

  Upon treatment with six different enzyme systems, all extracts had 

an intense color with AFP treated samples showing the highest intensity. 

Enzyme treated samples had higher levels of total phenols than samples 

extracted at different pH buffers without enzymes (Fig. 71). The total phenol 

levels increased as the enzyme unit increased.   

Bran incubated with proteases resulted in higher total phenol values. For 

example, AFP produced 350-725% increased in total phenol levels compared to 

the control, BPN gave 175-650% increased and CP and TRL gave 275-475 and 

150-300% increased respectively compared to the controls. This suggests that 

the phenolic compounds in sorghum are mainly associated with protein and 

cellulose. 
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Fig. 71. Effect of varying enzyme units on total phenols of Tx430 Black sorghum bran.  CP&TRL 
=Cellulases; AFP & BNP L =Proteases; ANC L Cellulase/Hemicellulase;  BG= Beta Glucanase. 
Control  were without enzymes but different pH levels  ( a= 3, b=4.5 ,c=7.4 and d=distilled water) . 
Table 8 =Enzyme activity units. 

a b 
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Sorghum phenols are concentrated in the pericarp (Awika et al 2003a). 

10% decorticated Sorghum bran has 30% starch, 18% hemicelluloses, 11% 

cellulose, 11% protein, 10% crude fat and 3% ash (Corredor et al 2007). The 

starch in bran is from the endosperm during the decortication process.  An 

enzyme complex (ANC) with cellulase and hemicellulase gave 200-475 % more 

phenols while beta glucanase gave total phenols of 150% more compared to the 

controls. Sorghum contains very little beta-glucans. Cellulases, hemicellulases 

and proteases will increase phenols extractability from sorghum, by breaking the 

association between phenols and the cell wall components.  

Distilled water gave the lowest total phenols. This confirms that the 

extraction of phenolic compounds from sorghum is different from fruits and 

vegetables where water is used to extract phenolic compounds. Because of the 

structure of sorghum cell walls, an aggressive method is required to extract 

phenols. That is why 1% HCl in methanol has been used for the extraction of 

phenols from sorghum.  

1% HCl in methanol gave 16 mg GAE/g of phenols. Extraction with 

cellulase and proteases gave about 45-106 % more phenols. When phenols 

were extracted in sequence, first by extracting with 100% methanol, followed by 

the enzyme systems acting on the residues, about 300 % increased in total 

phenols was obtained compared to the control (Fig. 71). Enzymes had an effect 

on the extractability of phenols from sorghum bran. 
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Overall it is difficult to determine if the values by the Folin-Ciocalteu assay 

for sorghum phenols extracted were truly total phenols because HPLC analysis 

of the extracts did not show any of the peaks expected in black sorghum bran 

extracts. 

 

Antioxidant Activities from Enzyme Extraction 

The ABTS antioxidant activity of Tx430 Black bran extracted with 

enzymes gave 72-770 % higher values than samples extracted with different pH 

solutions as controls. ANC a cellulose/hemicellulase complex gave 390-647% 

increased and TRL a cellulase gave 304-471% increased compared to the 

controls. BNP gave 373-770% more antioxidant activity compared to the control. 

BG and AFP had the least effects compared to the other enzymes with only 97-

141% and 72-120% increase respectively compared to the controls. Values 

increased as the enzyme activity units increased (Fig. 72).  

Sequential extraction using 100% methanol followed by enzymes gave 

antioxidant activity resulted in 227-263 % increased in antioxidant activity 

resulted in 227-263 % increased in antioxidant activity compared to the controls. 

The increased levels of antioxidant activity for enzyme treated samples suggest 

that phenolic compounds contributing to antioxidant activity were present in the 

extracts and certainly more were released by the enzyme treatment. The fate of 

the phenolic compounds after leaching is still unknown. Further work needs to 

be done to understand the fate of these compounds.  
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Fig.  72. Total Phenols in Tx430 Black sorghum bran extracted with enzymes. CP&TRL =Cellulases; 
AFP & BNP L =Proteases; ANC L Cellulase/Hemicellulase ;  BG= Beta Glucanase. Table 8 =Enzyme 
activity units. 
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Fig. 73. ABTS of Black sorghum bran from different enzyme assisted extractions. CP&TRL =Cellulases 
; AFP & BNP L =Proteases; ANC L Cellulase/Hemicellulase ;  BG= Beta Glucanse. Control were 
without ezymes but different pH levels (a=3, b=4.5 ,c=7.4 and d=distilled water).  
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3-Deoxyanthocyanins from Enzyme Extraction 

 HPLC analysis of the extracts obtained with enzymes showed no 

traces of 3-deoxyanthocyanin, although they had an intense orange color. 

Perhaps the 3-deoxyanthocyanins released by the enzyme treatment formed 

complexes that could not be detected or did not match the spectral 

characteristics of the four 3-deoxyanthocyanins that are present in black 

sorghum bran. The 3-deoxyanthocyanins may also be trapped in the gel matrix 

that was formed in the process of enzyme extraction. 

 
Microscopic Analysis of Enzyme Extracted Residues of  

Black Sorghum Bran 

 
Microscopic examination of residues to investigate the effect of the 

enzyme on the cell wall structural components and to determine the fate of 

phenolic compounds after leaching revealed that the cell wall components were 

disrupted and phenolic compounds likely leached out. These phenolic 

compounds however could not be quantified.    

Microscopic examination of residues from extracts using pH 4.5 (control) 

showed the epicarp, mesocarp and starch granules were not disrupted (Fig. 75). 

The pigments were intact in all components. This suggests that the control 

solvent used did not extract any phenolic compounds.  
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The use of different enzymes resulted in the breakdown of different cell 

components. For example, extraction with cellulases (TRL) hydrolyzed the seed 

coat (Figs. 76 & 77) and although the cell wall and cell content were still intact, 

irregular pigment leaching could be seen.   

 
 
 
 

Fig. 75. Tx430 Black bran extracted for two hours at pH 4.5. 100X. (control).   
Epicarp, mesocarp and starch granules. Pigment still intact in all components. 
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Fig. 76. Bran after using 2 mL (108 enzyme units) TRL (Cellulase). 100X. 
Epicarp is still intact. Irregular leaching of pigments can be seen. 
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Different enzymes degraded bran differently (Figs. 78 & 79). There was 

loss of pigments in the mesocarp while the epicarp cells still retained the 

pigments. This suggests that a combination of enzymes might result in a 

synergistic effect that could be controlled for optimum benefits in the food 

industry if the chemistry of extraction of phenolic compounds from sorghum 

using enzymes is better understood.  

Fig. 77. Epicarp with contents using 2mL (108 enzyme units) TRL(Cellulase). 
250X. Seed coat taken off, cell wall and cell contents still intact. Pigment not 
leached. 
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Fig. 78. CP (Cellulase) 2mL (52 enzyme units) [a] and AFP (Protease) 1.5 mL (118 
enzyme units) [b], treated bran.100X. Different enzymes degrade bran layer 
differently.  
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Fig. 79. AFP ( Protease) 1.5 mL (10 enzyme units) [a] and BNP(Protease) 1.5 
mL (26 enzyme units) [b],  treated bran. 100X. Epicarp cells still retain 
pigments, while mesocarp has reduced pigment.  
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Fig. 80. BG (Beta Glucanase), 2mL (158 enzyme units) [a] and BG treated 
bran, Stained with Nile Blue A dye [b]. 100X; no lipids observed in epicarp. 
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Fig . 81.  AFP (Protease) (a); BG (Betalucanase) enzyme matrices (b)  
100X. 
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Enzyme treatment produced a gel like structure (Fig. 80). Staining of the 

structure showed it was neither a protein nor a starch gel (Fig. 81). The gel from 

the enzyme treatment was rich in fiber, because of the epicarp and mesocarp 

fractions present and could possibly have applications as a high energy 

beverage if further studies are done to establish its content.  

 

 

             

 

 

  Treating the bran with a combination of enzymes showed that the 

pigments from the epicarp are difficult to extract (Fig. 83). Different extraction 

solvents affected the bran differently (Fig. 84).       

Fig. 82. Bran treated with BG 2mL (158 enzyme units), Nile Blue A dye 
stained, 250X. 



186 

 

 

            

  
 
 
 
 
 
 
 
 

 For example, 1% HCl/methanol does not remove pigments from 

epicarp completely. However, it breaks down epicarp into smaller pieces. The 

mesocarp loses pigments, while starch remains in large endosperm fractions. 

1% HCl/ethanol reduces starchy endosperm cells into separate starch granules.  

Mesocarp loses pigments, while starch remains in large endosperm cells. 

Pigment appears in all layers. As seen under the light microscope, pigments 

might be present in the aleurone layer wall, but not in the aleurone cell content 

(picture not shown). 

Fig. 83. ANC (Cellulase/Hemicellulase) + AFP (Protease) and α-amylase, 
treated bran.100X.  No starch gel revealed, pigments in mesocarp leached 
out more than epicarp which still retains pigment. 
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Fig. 84. I % HCl/MetOH (a), and 1%HCl/EtOH (b), treated bran. 100X. Different 
solvents break down bran particles differently. 1% HCl/methanol does not leach 
pigment from epicarp completely, but breaks epicarp into smaller pieces.  
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In most cases, enzyme treatment left intact cross and tube cells (pictures 

not shown), in which pigments were trapped. The colored compounds (3-

deoxyanthocyanins) were trapped in the gel matrix as seen under the 

microscope. Microscopic examination of the residues from enzyme extraction 

revealed a break-down of cell wall components and leaching of pigments which 

was not detected by HPLC analysis.  

A gel-like material resulting from the enzyme treatments was neither 

protein nor starch gel as revealed by the staining characteristics. It is probable 

the phenolic compounds were trapped in the gel-like structure.  The structure of 

the 3-deoxyanthocyanins might be altered as a result of the enzyme activities.   

Appropriate enzyme preparation increased anthocyanins yields in berries and 

formed unknown components as well as caused changes in the anthocyanin 

profiles of the juices (Buchert et al 2005). Beta-glucanase did not have much 

effect on sorghum bran probably because sorghum has limited beta-glucans. 

Although the study created more questions than answers, there is a 

potential to develop the gel-like material rich in fiber and phenolic compounds 

into antioxidant capsules or some nutritional beverage. More research is 

required to test this idea. Further studies are needed to understand the fate of 

phenolic compounds after enzyme extraction. It is probable that with careful 

understanding of enzyme activities, enzyme extraction of 3-deoxyanthocyanins 

from sorghum can be achieved.   
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CHAPTER VI 

SUMMARY AND CONCLUSION 

 

Analysis of sorghum varieties with and without pigmented testa confirmed 

that pigmented testa can be used as a predictor of polymeric flavonoids 

(tannins) in sorghum but not of simple flavonoids such as flavan-4-ols, 3-

deoxyanthocyanins, flavones and flavanones. Non-tannin sorghums with the 

“red turning into black" pericarp had increased phenol levels and antioxidant 

activities as measured by ABTS, DPPH and ORAC methods. These high values 

were due to high levels of flavan-4-ols and 3-deoxyanthocyanins. Further studies 

are needed to understand the factors contributing to the unusually high 

antioxidant ORAC values in these special sorghums and the role of the “red 

turning black gene”. 

Flavan-4-ols were higher in sorghum with black pericarp followed by 

those with red pericarp, but were not dependent on the presence or absence of 

a pigmented testa (Fig. 14; p. 62). Flavan-4-ols are associated with mold 

reduction in sorghums (Jambunathan et al 1991; Menkir et al 1996). Total 

phenols were highly correlated with ABTS (0.97) and DPPH (0.87) suggesting 

that, in addition to tannins, other phenolic compounds such as flavan-4-ols and 

3-deoxyanthocyanins contribute to antioxidant activity.  

Pericarp color affected 3-deoxyanthocyanins, flavones and flavanones 

differently. For example, black pericarp sorghums had elevated levels of 3-
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deoxyanthocyanins; however the levels decreased when grains are severely 

weathered. The presence of a pigmented testa and pericarp color did not affect 

flavones. Flavones are concentrated in the pericarp and reported as 

phytoalexins (Seitz 2004), but may not contribute to pericarp color. 

Pericarp color affected the flavanones but pigmented testa did not (Fig. 

25: p. 87). In general, the red and black Shawaya had higher levels of eriodictyol 

than naringenin. There were no detectable flavanones in white pericarp 

sorghums. The sorghum varieties used in this study were grown in 2005 and 

suffered severe weathering. Thus, the phenols were low compared to non-

weathered sorghums from other crop years (Awika 2003; Boren & Waniska 

1992; Dykes 2008). The brighter the black color of a sorghum grain, the higher 

the concentration of the 3-deoxyanthocyanins and the brighter the lemon-yellow, 

the higher the levels of the flavanones present. Genetics and environment have 

major roles in determining the phenolic content of sorghum. Pigmented testa 

does not affect the composition of simple flavonoid. 

The non-grain materials of sorghum, with the exception of the stalks, are 

potential sources of sorghum bioactive compounds for large scale applications 

especially when sorghum biomass for alcohol production is developed. The 

glumes of R-07007 had almost 600 folds more 3-deoxyanthocyanins than the 

grains while the glumes of ATx631xRTx436 and the leaves of Tx430Black x 

Sumac had 161 folds and 77 folds more flavones respectively than their grains 

(Table 6; p. 112).  
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Color intensity of the non-grain tissues had an effect on 3-

deoxyanthocyanin but not on flavones and flavanones. Intensely pigmented 

leaves sheaths and glumes had high levels of 3-deoxyanthocyanins.  For 

example, the leaves of Tx430 Black x Sumac and the sheaths and glumes of 

Tx2911 were the most intensely colored and had the highest levels of 3-

deoxyanthocyanins among the hybrid sorghums. The leaves of an intensely 

purple colored biomass sorghum “collier” variety, contained higher levels of 3-

deoxyanthocyanins (6199 µg/g dry weight) than all hybrid  sorghum leaves; 3.4 

times higher than in the leaves of Tx430 Black x Sumac. Biomass sorghum has 

a potential as a source of sorghum bioactive phenols. Among the traditional 

biomass sorghum cultivars, grains make up about 2.2-4.8% and the rest is 

biomass (Unpublished data). This suggests that with the interest in sorghum 

biomass for alcohol production, the by-products of this technology are potential 

sources for bioactive phenols. Tx430 Black and SC748-5 sheaths, glumes 

leaves and grains are good sources of the bright orange luteolinidin and its 

methoxylated derivative. The glumes, sheaths, leaves and grains, in descending 

order, for R-07007, Tx2911 and Tx430 Black x Sumac, are good sources of the 

yellow apigeninidin and its methoxylated derivative (Table 6; 113).  

Luteolin and apigenin are major dietary flavones commonly found in 

aromatic herbs (parsley, rosemary and thyme). In general the sheaths, glumes 

and leaves of red plant sorghum varieties were higher in apigenin than luteolin. 

The grains were higher in luteolin, except for Tx2911 which did not have 
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detectable levels of luteolin. Clearly, the grains of sorghum are low in flavanoids 

in general compared to their non-grain components.  Probably because 

flavonoids are produce as a defense mechanism and the parts of the sorghum 

plant that are more prone to biotic and abiotic stresses will have more of these 

compounds than the parts that are protected like the stalks and the grains.  

Non-grain sorghum components compared favorably with common 

sources of flavones (Fig. 47; p. 130). The non-grain tissues are viable sources of 

large quantities of flavones compared to the grains. The glumes of Tx2911 had 

high levels of apigenin, while the sheaths of SC748-5 had high luteolin among all 

the components evaluated (Fig. 48; p. 132 & Fig. 49; p. 133).  

The flavone-glycosides (Table 8; p. 136) were identified based on their 

spectral and mass spectrometric characteristics, showing distinctive 

fragmentation. The fragmentation yielded product ion signals at [M-H-60]-, [M-H-

90]-, and [M-H-120]- in the negative ion mode MSn analyses (Gattuso et al, 2007; 

Caristi et al, 2006; Pereira et al, 2005; Ferreres et al, 2003; Voirin et al, 2000). 

The grains and non-grain components of selected sorghum varieties are 

excellent sources of flavanones (Fig. 57; p. 145 and Fig. 58; p. 146). R-07007 

grains are rich in eriodictyol, while the glumes of Tx2911 are a viable source of 

naringenin. The lemon-yellow pericarp sorghums are potent sources of 

flavanones as reported by (Dykes, 2008). The non-grain sorghum materials are 

excellent sources of bioactive phenols with potential application in food, 

nutraceutical, pharmaceutical and cosmetic industries. Overall, the glumes 
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sheaths and leaves all provide large concentrations of flavonoids; however, 

specific classes of flavonoids may be obtained from specific sorghum tissues. 

For example, 3-Deoxyanthocyanins are predominant in the 

glumes>sheaths>leaves; flavones in the glumes>leaves>sheaths while 

flavanones are predominant in the glumes>grains>leaves>sheaths in varieties in 

which they are present. Sorghum grains with lemon-yellow pericarp are high in 

flavanones. Given the diversity in sorghum germplasm, more studies are 

required to evaluate the phenolic compounds and profile in a wide variety of 

sorghum.  

0.5% Citric acid in 70% aqueous ethanol was the most suitable food 

friendly solvent for the extraction of phenolic compounds from black sorghum. 

This solvent gives the same flavonoid profile as the commonly used 1 % 

HCl/methanol although the levels are reduced by 50%. O.5% CA/70% ethanol 

was more effective in extracting phenolic compounds from black tannin sorghum 

than the 1%HCl/methanol (Fig. 65; p. 162 & Fig. 66; p. 163) which extracted 

more phenols from Tx430 non-tannin black sorghum. However, using food grade 

HCl at 1% in ethanol might be a better option since it yields more phenols and 3-

deoxyanthocyanins than the food acids. 

Storage of bran leads to reduction in levels of phenolic compounds. 

Phenols were 47 % higher in freshly prepared sorghum bran compared to stored 

bran (Fig. 69; p. 167 & Fig. 70; p. 168). Decortication may release phenol 

catabolizing enzymes like polyphenol oxidases (PPO) and peroxidases (POX).   
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Extraction of phenols from sorghum using enzymes was not successful. 

The enzymes succeeded in breaking down the cell wall components and 

releasing some phenols but which were trapped in a gel-like matrix rich in fiber 

and high in antioxidant capacity. Perhaps this matrix can be processed into a 

high fiber, high antioxidant supplement or ingredient with potential food and 

nutraceutical application. Use of enzyme for extraction of sorghum phenols is 

possible if the chemistry is better understood.  

The conversion of sorghum biomass into alcohol will likely produce by-

products that will concentrate the phenols and other potentially useful bioactives.  

Some sorghum can be valuable sources of unique compounds such as 3-

deoxyanthocyanins, flavones, flavanones and flavan-4-ols. Further studies are 

however needed to understand the fate of these compounds released after 

enzyme treatment. With appropriate processing technology this might be a 

potential source for bioactive phenolic compounds.  

Sorghum leaves, sheaths and glumes in addition to the grains are viable 

sources of various bioactive compounds. Further studies are required to 

evaluate the antioxidant, anticarcinogenic and anti-inflamatory properties of 

these compounds as well as the bioavailability of sorghum phenols in biological 

systems as well as the effect of processing on these compounds.  

The increased levels of phenols and antioxidant activities in sorghum with 

the “red turning into black gene” is a promising finding that plant breeders can 

use to select for special traits aimed at developing sorghums with enhanced and 
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desired functionality such as antioxidant potential and other healthy attributes. 

The leaves, sheaths and glumes of sorghum are excellent sources of unique 

phenolic compounds with in vitro antioxidant properties. Extraction of bioactive 

phenols from by-products of the alcohol production will adds value to the market 

potential of sorghum and provides an additional dietary source of phenols with 

potentials for commercialization. 
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