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ABSTRACT 

 

Slotted Ground Structures and Their Applications to Various Microwave 

 Components. (May 2009) 

Dong Jin Jung, B.S., Soonchunhyang University, Korea 

Chair of Advisory Committee: Dr. Kai Chang 

 

 This thesis discusses microstrip circuits and components with a slotted area on 

the ground plane. In recent years, various slot geometries have been placed on the 

ground plane with the purpose of reducing harmonics, producing frequency pass/stop-

bands, and enhancing coupling effects. Among several ground slot geometries, a 

dumbbell shaped slot (DSS) is attractive because of its simple structure and easy analysis. 

The DSS and its applications to RF/microwave filters are studied and discussed. A 

lumped equivalent circuit model of the dumbbell shaped ground slot is introduced by 

utilizing resonator and filter theories. The accuracy of the equivalent circuit model is 

demonstrated through the comparison of circuit simulations and measurements. A 

lowpass filter (LPF) using slotted ground structure (SGS) with dumbbell shape is 

designed and measured to validate its theories. By using SGS techniques presented in 

this thesis, some other RF/microwave components such as a periodic structure, ultra-

wideband bandpass filter (UWB-BPF), and rectenna with SGS-LPF are designed and 

tested. 
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NOMENCLATURE 

 

DSS Dumbbell Shaped Slot 

LPF Low-pass Filter 

SGS Slotted Ground Structure 
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EM                             Electromagnetic 

DGS  Defected Ground Structure 
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MOM                          Method of Momentum 
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CHAPTER I 

INTRODUCTION 

 

 Electromagnetic band-gap (EBG) materials known as photonic crystals (PC’s) or 

photonic band-gap (PBG) are a new class of artificially fabricated structures which have 

the ability to control the propagation of electromagnetic (EM) waves [1]. Recently, 

various RF and microwave components with slots in the ground plane have been 

reported [2]-[7]. These structures, known as defected ground structures (DGS), may be 

treated as electromagnetic band-gap (EBG) structures since they allow or forbid wave 

propagation at certain frequency bands. Any periodic structure or slot geometry on the 

ground plane can disturb the field distribution of the guided electromagnetic wave and 

create an EBG effect in some frequency ranges. This EBG effect is useful for 

suppressing harmonics and preventing undesired signals in components, the primary 

function of filters. As the frequency spectrum becomes increasingly crowded, an 

accurate filter design is necessary for system performance and interference prevention. 

Various slotted geometries on ground plane have been reported and found [8]-[10]. 

These slotted ground structures (SGS) are realized by etching off certain geometry from 

the conducting ground plane. Among several slot geometries, a dumbbell shaped-slotted 

ground structure (DS-SGS) has attracted many researchers’ attention because of its 

simple structure and easy analysis method. 

____________ 
This thesis follows the style of IEEE Transactions on Microwave Theory and 
Techniques. 
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The lumped equivalent circuit model of this dumbbell shaped slot (DSS) has 

been reported in [11]. Basically, a simulated frequency response of a DSS shows the 

band-gap (or band-stop) characteristic. This simulated frequency response is used to 

extract the equivalent circuit components of a DSS. In this thesis, a simple slotted 

ground structure with a dumbbell shape is extensively studied to extract its lumped 

equivalent circuit model and mathematical expressions. In order to suggest an accurate 

equivalent circuit model of the dumbbell shaped slot, a loss analysis from this slot 

section is performed. Through these investigations, modified mathematical expressions 

for DSS are proposed and used for lowpass filter (LPF) design that doesn’t produce a 

cutoff frequency error. Ultra-wide band (UWB) band-pass design using two simple 

rectangle ground slots is also introduced. 

By placing the dumbbell shaped slot underneath the microstrip transmission line, 

the anti-resonant frequency response is observed. This dumbbell shaped slot in the 

ground plane disturbs the guided field distributions and the disturbance changes the 

characteristics of inductance and capacitance of the transmission line. Thus, the 

propagation constant of the transmission line is changed. Periodic structures with 

dumbbell shaped slots are also studied from this theory. 

For the theoretical background, this thesis begins with a low-pass filter design of 

insertion loss method because this filter synthesis method is useful for analyzing a DSS 

in the ground. Because the EM simulated S-parameter characteristics of a single DSS 

show a similar frequency response to a Butterworth (or maximally flat) prototype LPF 

(N=1) [12], which is one of the insertion loss methods, a DSS can be analyzed by the 
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general LPF design theory. To validate all the theories in this thesis, simulation and 

measured results are provided. Good agreement between the theory and experiments has 

been achieved. 
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CHAPTER II 

BACKGROUND 

 

A. Insertion Loss Method 

A filter that allows or forbids the certain frequency range is an important 

component in RF/microwave systems. High performance, compact size, and low 

production cost are required for modern microwave filters. The filter design with SGS 

can meet these requirements through its several advantages such as compact size, simple 

design process, and suppressing higher harmonics. 

In this section, the insertion loss method which is one of the general filter design 

theories is presented for practical design with SGS. For modern microwave filters, the 

insertion loss method is more desirable as compared to the image parameter method. In 

the insertion loss method, a pass-band ripple and attenuation characteristics are 

accurately predicted, but they can not be predicted in the image parameter method. In the 

insertion loss method a filter response is defined by its insertion loss or power loss ratio 

in (1). 

  2

Power availible from source 1

Power delivered to load 1

incident
LR

load

P
P

P 
 

 
   (1) 

 
Since |Γ(ω)|2 is an even function  in terms of ω from (1), it can be expressed as a 

polynomial of ω2 in (2). 

    
   

2
2

2

M

M N




2 
 


   (2) 
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By substituting (2) into (1), the following is obtained:  

 
 
 

2

2
1LR

M
P

N




     (3) 

 
This equation specifies that the power loss ratio in the insertion loss method has the form 

of (3). Equations (1)-(3) are found in [13]. 

There are three different attenuation characteristics in the insertion loss methods: 

maximally flat (or Butterworth), equal ripple (or Chebyshev), and elliptic function. Only 

the maximally flat deign theory is introduced. The following maximally flat filter theory 

can be found [14]. 

 

B. Maximally Flat Lowpass Filter 

This type of filters provides the flat pass-band with a smooth cutoff characteristic. 

Its attenuation characteristic is shown in Fig. 1. Equation (4) shows a mathematical 

expression of maximally flat attenuation characteristic. In (4), '  represents a variable 

for prototype frequencies.   is determined in (5), where ArL  is defined as 3 dB. 

  
2'

'
10 '

1

10 log 1      [dB]
n

AL
 


  
    
   

   (4) 

 

 10log 1
10

ArL
anti     

   (5) 

 
When the attenuation ( '( )AL  ) is 3 dB, the frequency ( '

1 ) in (4) is defined as the pass-

band edge (or prototype 3 dB cutoff frequency).   is approximately calculated as 

0.995262 when ' '
1   (LA=LAr). 
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Fig. 1. A maximally flat low-pass attenuation characteristic. 
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Fig. 2. The maximally flat type attenuation characteristics depending on the number of 

reactive elements. 
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The response in Fig. 2 can be achieved by the prototype low-pass filter circuits 

shown in Fig. 3. 

 

'
o oG g

'
1 1L g '

3 3L g '
n nL g

'
2 2C g '

4 4C g '
1 1n nG g  '

n nC g '
1 1n nR g 

 

(a) 

'
o oR g

'
2 2L g

'
1 1C g

'
4 4L g

'
3 3C g '

n nC g '
1 1n nR g 

'
n nL g

'
1 1n nG g 

 

(b) 

Fig.3. Definition of the prototype low-pass filters (a) T-type and its dual, (b) π-type. 

 

In Fig. 3, the following conventions are observed: 

 

1 to n 

'
1 1

'
1 1

1

The inductance of a series element
  

The capacitance of a shunt element

The source is resistance if g
            

The source is conductance if g

The
          

k k

o

n

g

C
g

L

g





 
  

 
    

  


'

'

 load is resistance if g

The load is conductance if g

n n

n n

C

L

  
 

  
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Prototype parameters of the maximally flat prototype filters can be computed by (6) and 

(7) [15]. 

 1 1o ng g      (6) 

 

 
 2 1

2sin   , 1, 2,3, ,
2k

k
g k

n

 
  

 
n     (7) 

 
Table 1 shows the prototype element values for filters with the maximally flat 

attenuation characteristic. Since the prototype element values determined in (6) and (7) 

are all normalized to make 0 1g   and '
1 1  , the impedance and frequency 

transformation are required for its actual element values. 

 

Table 1. Prototype element values for filters with maximally flat attenuation 

n 
1g  2g  3g  4g  5g  6g  7g  8g  

1 2.0000 1.0000       
2 1.4140 1.4140 1.0000      
3 1.0000 2.0000 1.0000 1.0000     
4 0.7654 1.8480 1.8480 0.7654 1.0000    
5 0.6180 1.6180 2.0000 1.6180 0.6180 1.0000   
6 0.5176 1.4140 1.9320 1.9320 1.4140 0.5176 1.0000  
7 0.4450 1.2470 1.8020 1.8020 1.8020 1.2470 0.4450 1.0000

 

 

Once a set of normalized prototype element values have been selected, the next 

step is to convert the prototype values into real scale values in order to design a filter that 

has the cutoff frequency and impedance level of the given design specifications. This 

process is called as scaling or de-normalization of the prototype values. The frequency 
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transformation and impedance scaling are used in the process and they are discussed in 

the following sections. 

 

C. Frequency Transformation 

The frequency transformation function from a prototype frequency to real 

frequency can be found in Fig. 4. 

 

A
tt

en
ua

ti
on

 [
dB

]

A
tt

en
ua

ti
on

 [
dB

]

 

(a)                                                                              (b) 

Fig. 4. Low-pass filter attenuation characteristics in (a) prototype frequency domain and 

(b) real frequency domain. 

 

The transformation function can be obtained from the proportional expression of 

Fig. 4. Equation (8) holds (9). 

 ' '
1 : c :       (8) 

 

 
'

' 1

c

 


    (9) 
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In Fig. 3 (a), the first series inductor and second parallel capacitor can be expressed as an 

impedance form in (10). 

 

'
1

'
2

The series inductor :  

1
The parallel capacitor : 

jg

j g





   (10) 

 
By substituting the frequency transformation function (9) into (10), the impedance of the 

series inductor and parallel capacitor are shown in (11). 

 

'
1 1

1

'
21 2

The series inductor : 

1 1
The parallel capacitor : 

c

c

g
j j L

j Cg
j

 





 
 

 


 
 
 

   (11) 

 
As mentioned above, the prototype cutoff frequency is defined as , so the 

first series inductor and second parallel capacitor in the real frequency domain can be 

expressed in the form of (12). 

'
1 1 

 

1
1

2
2

c

c

g
L

g
C








   (12) 
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D. Impedance Scaling 

If n has the odd number of elements in Fig. 3 (b), the source and load 

terminations have the resistance. These resistances are unity in the prototype design 

because the source and load terminations are normalized by the original terminating 

resistance. In case of that the termination has the conductance, the termination is scaled 

by the original terminating conductance. When the original source and load terminating 

resistance is 0R , the impedance scaling of the series inductance and parallel capacitance 

in (12) can be shown in (13). 

 

1
1

2
2

o

c

o c

g R
L

g
C

R











   (13) 

 
 Finally, the general expressions of the frequency and impedance scaling for a prototype 

low-pass filter have the form of (14) 

 

, 1, 2,3, ,

k o
k

c

k
k

o c

g R
L

g
C k

R




n




  


  (14) 
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CHAPTER III 

THEORY OF DUMBBELL SHAPED SLOT 

 

A. Modeling Equivalent Circuit of DSS 

 

 
 

Fig. 5. Microstrip transmission line with a single DSS on the ground plane. 

 

As mentioned above, this thesis treats a DSS on the ground plane as a parallel LC 

resonator due to its band-stop frequency response characteristic. EM simulation of a 

DSS structure is required because the 3 dB cutoff and anti-resonant frequency of the 

DSS are the key information to find the equivalent inductance and capacitance. Once 

that frequency information is found, the equivalent inductance and capacitance of the 

DSS can be calculated by the general insertion loss method LPF design equation and a 

resonator theory. Figure 5 shows the microstrip configurations consisting of a 50 ohm 

transmission line and a single DSS underneath the microstrip line. 
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Fig. 6. EM simulation of microstrip line with the DSS dimensions of d=7.5 mm, 

g=0.3 mm, and w=2.3 mm (substrate thickness=30 mil and r =2.2). 

 

In Fig. 6, EM simulation of the single DSS shows a 3dB cutoff frequency of 2.5 

GHz and an anti-resonant frequency of 5.7 GHz. There is only one anti-resonant pole at 

5.7 GHz, which means that the inductance and capacitance due to the DSS dimensions 

are unique over the frequencies. In the frequency bands from 1.0 GHz to 5.7 GHz, the 

DSS shows similar S-parameter characteristics as a maximally flat type LPF (N=1) 

designed to have the same cutoff frequency of 2.5 GHz. Thus, a parallel LC resonator 

which is the equivalent circuit of a single DSS can be equated with the maximally flat 

type LPF with N=1 and fc=2.5 GHz. 

Figure 7 shows a lumped equivalent circuit model of a maximally flat prototype 

LPF (N=1) and a single DSS in the ground plane. Equations (15) and (16) can be found 

from Fig.7 and (14). 
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                                              (a)                                               (b) 
 

Fig. 7. Equivalent circuit models of (a) a prototype LPF (N=1) and (b) a single DSS. 
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Since (15) and (16) have the same reactance at ω=ωc, the following holds: 

 L DSSjX jX    (17) 

 
Equation (17) results in (18), which gives the equivalent capacitance. Once the 

capacitance is found, the other equivalent circuit component, inductance can be easily 

calculated from (19). 
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Fig. 8. EM and circuit simulations from the conventional equivalent circuit extracting 

method for a single DSS with the dimensions of d=7.5 mm and g=0.3 mm 

(LDSS=5.163 nH and CDSS=0.151 pF). 

 

Based on the above analysis, the equivalent inductance and capacitance of a 

single DSS with the dimensions of d=7.5 mm and g=0.3 mm are 5.163 nH and 0.151 pF, 

respectively. With these calculated circuit components, EM and circuit simulation results 

are compared in Fig. 8. As shown in Fig. 8, the equivalent circuit components of a DSS 

can be easily found. In spite of the simple calculation for an equivalent circuit, a LPF 

design with a DSS is limited by finding the proper DSS dimensions to meet the required 

specifications. In filter design the filter dimensions should be defined from the given 

design specifications (the cutoff frequency, pass and stop-band, the number of element 
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stages, and etc.). In other words, designing a filter should start from the design 

specifications. In LPF design with a DSS, the cutoff frequency of the DSS dimensions 

must be equal to the specified design cutoff frequency. This means that one cannot 

design a LPF with a DSS if the DSS dimensions producing the same cutoff frequency 

are not found. As a result, the curve fitting analysis is required to find the DSS 

dimensions from the calculated equivalent inductance and capacitance. 

 

B. Modeling Losses of DSS 

As shown in Fig. 8, the anti-resonant peak points of the circuit and EM 

simulations are different. The difference of these peak points is caused due to losses of 

the microstrip transmission line and a loss of slotted ground section.  In practical case, 

microstrip transmission line has the dielectric, conductor, and radiation losses. The 

conductor loss caused by the finite conductivity of the conducting microstrip line and 

ground plane is represented by the series resistance, and the dielectric loss caused by the 

complex permittivity of dielectric material is represented by the shunt conductance [16]. 

Normally, a radiation loss is generated due to the impedance mismatching and 

discontinuity of a transmission line.  

In order to consider a loss of the slotted ground discontinuity through EM 

simulation, microstrip line and ground plane are selected with a perfect electric 

conductor (PEC), i.e., no conductor loss. A very small dielectric loss, which can be 

disregard, is assumed since a low loss dielectric material is used for a microstrip. 

Radiation loss can be also disregard at anti-resonance because the return loss is 0 dB in 
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Fig. 8, which means that almost all incident power is reflected back to the input port at 

resonance. This can be regarded as mismatch loss at anti-resonance, thus the incident 

power is reflected back to input. The mismatch between the source impedance (50 ohm) 

and input impedance of a slotted ground section is occurred since the slot area on the 

ground changes the characteristic capacitance and inductance of a transmission line. By 

changing these characteristic capacitance and impedance of the transmission line, the 

characteristic impedance of transmission line with slotted ground section is also changed 

by (20). 

 0 0 a c
c

a a e

C ZL L
Z

C CC C C

  o


       (20) 

 
In (20), Zc0 and Ca is the characteristic impedance and capacitance of the air-

filled line and the ratio C/Ca gives the effective dielectric constant e  [17]. For these 

reasons anti-resonant peak point of EM simulation in Fig. 8, which is near 27dB, is 

mostly related with the mismatch loss between the source impedance and input 

impedance of the dumbbell shaped-slotted ground section at anti-resonance. Thus, if the 

equivalent circuit simulation of the dumbbell shaped-slotted ground section, which 

includes a radiation and mismatch loss, matches the measured data, it proves that this 

circuit model presents the exact equivalent circuit of the slotted ground section. 

In order to model the loss of a slotted ground structure as a circuit parameter, 

DSS with different slot dimensions are used to confirm the reliability of the previous 

theory. A new DSS dimensions with d=5 mm and g= 0.7 mm are fabricated on substrate 

with h=30 mil and ε=2.2. From the previous theory, CDSS and LDSS are found as 0.096 pF 
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and 3.4072 nH, respectively. Figure 9 shows the simulated and measured results with the 

dimensions of d= 5 mm and g=0.7 mm. As it is shown, the anti-resonant point of the 

simulated result does not match the one of measured. The magnitude of the measured S21 

resonant point is 27 dB in Fig. 9. 

 

 

Fig. 9. Circuit simulation and measured s-parameters of a DSS with the dimensions of 

d=5 mm and g=0.7 mm. 

 

To present the radiation and mismatch loss, the resistance (RDSS) is added to a LC 

parallel resonator which is the equivalent circuit model of the slotted ground section in 

lossless case. Figure 10 (a) shows the complete equivalent circuit model of the slotted 

ground section. The impedance of DSS section in the ground can be expressed as (21). 
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At resonance the imaginary part of (21) is zero. Equation (21) can be expressed as (22) 

at its resonance. 

  at =DSS DSS oZ R      (22) 

 
The series resistance RDSS representing the radiation and mismatch loss can be 

determined through measured or EM simulated S21. The following steps from (23) to 

(27) show the mathematical derivation for the series resistance, RDSS. ABCD matrix can 

be set to (23) from Fig. 10 (a). 
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ABCD matrix shown in (23) can be converted to the scattering matrix in (24) through 

matrix conversion table [18]. 
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(a) 

Fig. 10. (a) Complete equivalent circuit model of a DSS and (b) corresponding section. 
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(b) 

Fig. 10. Continued. 
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Since DSS DSSZ R  at resonance ( o  ), S21 in (24) can be expressed as (25). 
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With the definition of the insertion loss in (26), (25) can be shown as (27) 
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The insertion loss is found as 27dB, i.e.,   dBS 27log20 21   in Fig. 9, so S21 is 

determined as 0.0446 by (26). Thus, DSSR  is also determined as 2142.2 ohm by (27). 

Finally, the resulting lumped equivalent circuit model is shown in Fig. 10 (b). 

For the slot dimension of d=5 mm and g=0.7mm, CDSS, LDSS, and RDSS are found as 

0.096 pF, 3.4072 nH, and 2142.2 ohm, respectively. To prove the validity of the lumped 

equivalent circuit model, the measured result and circuit simulation result are compared 

with each other. Figure 11 shows that the simulation result of the complete equivalent 

circuit model and measured result of its corresponding dimensions of d=5 mm and g=0.7 

mm. As shown in Fig. 11, the circuit simulation and measurement show very good 

agreement. Thus, the accuracy of the equivalent circuit extracting method of DSS is 

proved. 

 

 
 

Fig. 11. Circuit simulation of the complete equivalent circuit model and measurement of 

DSS with the dimensions of d=7.5mm and g=0.3mm. 
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(a) (b) 

 

 
                                (c)                                                                         (d) 
 
Fig. 12. The current flow in an equivalent circuit model of a slotted ground section: 

“Conventional model in lossless – (a) and (b)” and “Proposed model with losses 

– (c) and (d)”. 

 

Figure 12 (a) shows the current flows of the conventional equivalent circuit 

model in low frequency ranges (pass-band) where an inductance is dominant. The 

impedance in Fig. 12 (b) is infinity at resonance, so the incident power is reflected back 

to the input. The inductance of the proposed model in Fig. 12 (c) is also dominant, so the 

current flows along the inductance in low frequency ranges. Since the reactance is 

infinity in Fig. 12 (d), the resistance is dominant. Thus, the currents flow along the 

resistor. 
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(a) 

 

 
(b) 

 
Fig. 13. The current distributions of the slotted ground with the dimensions of d=7.5 mm 

and g=0.3 mm at (a) pass-band and (b) stop-band. 
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In Fig. 13 (a), the currents flows along the square slotted area, and that makes the 

currents travels more distance. As a result, the longer current travel distance produces 

the corresponding amount of inductance in lower frequency range, i.e., pass-band. This 

also makes a sense in the impedance view point. For a parallel LC resonator, an 

inductance becomes dominant in low frequency range because the impedance of a 

capacitance is infinity in the low frequencies. As a result, the currents only flow along 

the square slotted area that produces the inductance. Figure 13 (a) shows the 

characteristic of the current flows when a slotted ground structure with dumbbell shape 

has the inductance dominant characteristic in low frequency range. As it is shown in Fig. 

13 (a), the currents do not flow on a gap area since the impedance of the capacitance of 

the parallel LC resonator is infinity in low frequencies. In the other case, the capacitance 

becomes dominant as the frequency goes up.  Figure 13 (b) shows that the current 

distributions of the slotted ground structure in high frequency range, i.e., stop-band. 

Since the impedance of the inductance of the parallel LC resonator goes infinity, as the 

frequency increases, the currents only flow through the gap. At resonant frequency, 

parallel LC resonator is open circuit so all current can not pass the slotted ground section. 

From Fig. 13 (a) and (b), one can expect that slotted area produces the inductance and 

the gap connecting two slot section generates the capacitance. 
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C. Curve Fitting Analysis of DSS 

As shown in Fig. 14, the dumbbell shaped slot dimensions of g=0.2 mm and d=5 

mm on substrate Duroid 5880 (ε=2.2, h=30 mil) produces the cutoff frequency and 

resonant frequency of 3.9 GHz and 7.2 GHz, respectively. From the frequency 

characteristics, the capacitance and inductance are determined as 0.1694 pF and 2.8836 

nH by (18) and (19). Once a capacitance and an inductance are found from certain slot 

dimensions, other capacitances and inductances can be determined by varying the slot 

dimensions through EM simulation. The loss of slotted area is not considered for 

simplicity. 

 

 
Fig. 14. EM simulated frequency response characteristics with a slot dimensions of d=5          

mm and g=0.2 mm. 

 
As previously mentioned, the two square slot (d×d) areas and the rectangle gap 

slot (g×d) produce the inductance and capacitance, respectively. It is interesting to 
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calculate the gap capacitance versus the gap dimensions, while the inductance remains 

constant. This means that the two square slot dimensions do not change but the gap 

distance (g) varies. Varying the gap dimensions changes the resonant frequencies of the 

parallel LC resonator, so the gap capacitances can be calculated from the fixed 

inductance and varying resonant frequencies. Likewise, the inductance versus the slot 

dimensions can be calculated from the fixed gap capacitance and varying resonant 

frequencies. The curve fitting data is based on the substrate of Duroid 5880 

(thickness=30 mil, εr=2.2).  Later these slot dimensions for a LPF are determined by 

these curve fitting graphs. 

 

 
 

Fig. 15. EM simulation depending on different gap dimensions; the slot dimension is 

fixed as d=5 mm (2.8836 nH). 
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Figure 15 shows that the different resonant frequencies with varying gap 

dimensions. As the gap distance is bigger and bigger, the resonant frequency increases. 

This means that the capacitance decreases. In Fig. 15, the 3 dB cutoff point of S21 slope 

is not varied, which means that the inductance does not change even though the gap 

dimensions vary. Thus, varying the gap dimensions only changes the capacitance of the 

equivalent circuit model of a dumbbell shaped slot. Magnitudes of S21 at resonance also 

decrease as the gap dimensions are bigger. This could be explained as a resistance 

concept. As the insertion loss decreases, RDSS also decreases from (27). Thus, the more 

currents can flow along the resistance path as the resistance (RDSS) gets smaller and 

smaller.  

 

Table 2. Capacitance variations with varying gap dimensions 

 
Gap Dimension Resonant Frequency (GHz) Capacitance (pF) 

0.2 mm   2.3 mm 7.2 0.169 
0.3 mm   2.3 mm 7.7 0.148 
0.4 mm   2.3 mm 8.0 0.137 
0.5 mm   2.3 mm 8.3 0.127 
0.6 mm   2.3 mm 8.5 0.121 
0.7 mm   2.3 mm 8.7 0.116 
0.8 mm   2.3 mm 9.1 0.106 

 

 

From the data in Table 2, a curve fitting graph of the capacitance versus gap 

dimensions can be plotted as shown in Fig. 16. Since its slope shows the approximately 

linear variation, equation (28) can be used to describe the linear curve shown in Fig. 16. 
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Fig. 16. Capacitance curve fitting graph with the varying gap dimensions. 

 

    0.096 0.18DSSC pF g mm       (28) 

 
 

One can instantly calculate the equivalent capacitance from (28) by giving the gap 

dimensions. 

Figure 17 shows that the different resonant frequencies with varying slot 

dimensions. As the slot dimensions are bigger and bigger, the resonant frequencies 

decreases. This presents that as the slot dimensions increase, an inductance due to the 

slot dimensions also increases. Thus, the resonant frequency decreases because of 

increased inductance. 
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Fig.17. EM simulation depending on the different slot dimensions; the gap 

dimension is fixed as g=0.2 mm (0.1694 pF).  

 

Table 3. Inductance variations with varying slot dimensions 

Slot Dimension  Resonant Frequency (GHz) Inductance (nH) 
3.0 mm  3.0 mm  10.05 1.480 
3.5 mm  3.5 mm  9.35 1.710 
4.0 mm  4.0 mm  8.50 2.070 
4.5 mm  4.5 mm  7.80 2.457 
5.0 mm  5.0 mm  7.20 2.883 
5.5 mm  5.5 mm  6.75 3.281 
6.0 mm  6.0 mm  6.40 3.650 
6.5 mm  6.5 mm  6.00 4.152 
7.0 mm  7.0 mm  5.70 4.601 
7.5 mm  7.5 mm  5.50 4.941 
8.0 mm  8.0 mm  5.25 5.423 
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From the data in Table 3, Fig. 18 which is the curve fitting graph of the 

inductance versus slot dimensions can be plotted. Since its slope shows the linear 

variation, (29) can be also written for the curve shown in Fig. 18. 

 ( ) 0.7886 ( ) 0.974DSSL nH d mm      (29) 

 
 

 
Fig. 18. Inductance curve fitting graph with the varying slot dimensions. 

 

The equivalent inductance depends on the slot dimensions. The bigger slot dimensions 

give the larger inductance. One can instantly calculate the equivalent inductance from 

(29) by giving the slot dimensions. 
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CHAPTER IV 

PERIODIC STRUCTURE ANALYSIS 

 

A. Equivalent Circuit of Periodic DSS 

An infinite transmission line or waveguide periodically loaded with reactive 

elements or discontinuities is referred to as a periodic structure [19]. Wave propagation 

through various periodic structures has attracted many researchers’ interests [20, 21] and 

their applications are found in filters, antennas, and waveguides [22]-[25]. Two 

interesting properties in all periodic wave-guiding structures are following [26]: (a) they 

exhibit pass-band/stop-band characteristics and (b) they can support slow wave 

propagations whose phase velocities are less than the velocity of light.  These properties 

can be briefly explained by transmission line theory. The propagation constant and phase 

velocity in a lossless transmission line are defined as LC   and 1pv L C , 

respectively. Here L and C in these two equations are the characteristic inductance and 

capacitance of a transmission line per unit length. Increasing these inductance and 

capacitance by loading reactive elements or placing discontinuities the phase velocity of 

the transmission line can be decreased. Thus, the increased propagation constant,   

makes the phase velocity less than speed of light in (30). In this case, the ratio k   is 

less than the unity, which results in slow wave propagation where the unloaded 

propagation constant, k , is less than the loaded propagation constant,  . 
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Pass/stop-bands can be also determined through the transmission line theory and 

cascaded network analysis technique. From the analysis, the propagation constant in 

periodic structures is solved by two different conditions which produce the propagation 

( 0,  0   ) or attenuation ( 0,  =0  ). This is very useful to define the pass/stop-

bands in a periodic structure. Since a periodically load line exhibits the pass/stop-band, it 

can be considered as a filter. Even though the frequency response of the periodic 

structures is similar to a filter, they may not be suitable for the modern filter design. The 

periodic structures have the drawbacks in size, pass/stop-band characteristics, and loss. It 

is also difficult to design a periodic structure filter from given specifications such as 

cutoff frequency, pass/stop-band characteristics, and bandwidth. 

In this section, analytical techniques and mathematical derivations are presented 

to investigate the periodic structure with a dumbbell shaped slots in the ground plane. 

Brillouin diagram, so called k   diagram, is shown to predict the pass/stop-bands. 

Figure 19 shows the periodic structure constructed in microstrip. Dumbbell 

shaped slots are periodically loaded with a certain distance in the ground plane. As 

studied earlier, this dumbbell shaped slot is considered as pure reactive elements in a 

lossless case. Figure 20 shows its equivalent circuit model consisted of LC parallel 

resonators and transmission lines. CDSS and LDSS are the capacitances and inductances 

produced by each dumbbell shaped slot. L presents the distance between two adjacent 

resonators. k is defined as the propagation constant of a unloaded line in (31). 
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Fig. 19. 1D-periodic structure with dumbbell shaped slots in the ground plane. 
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Fig. 20. Equivalent circuit model of 1D-periodic structure with dumbbell shaped      

slots in the ground plane. 
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B. k-β Diagram of Periodic DSS 

For a cascaded network shown in Fig. 20, a single unit cell can be expressed as 

(32) by using transmission line theory. In (32), transmission line’s electrical length is 

expressed as k L   . 
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By using the half angle equation in (33), (32) can be shown as (34). ABCD 

matrix in (34) presents the single unit cell of dumbbell shaped slot. Since A=D and AD-

BC=1 in (34), the single unit cell is symmetrical and reciprocal, respectively. A and D 

are real and B and C are imaginary, therefore the network is lossless. 
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Since ABCD matrix explains the current and voltage relation of the input and 

output of the nth network, (36) can be derived from (35). Each term of ABCD matrix in 

(36) is defined as (37). 
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In order to solve (36) in terms of 1nV   and 1nI  , (38) must be satisfied for 

nontrivial solution. If the determinant in (36) is not zero, the inverse matrix exists. Thus, 

one has the infinite number of solutions and this doesn’t have any physical meaning. 
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 ' ' ' ' 0A D B C     (38) 

 
Equation (39) is obtained by substituting (37) into (38). From the original 

condition which is the reciprocal unit cell, (42) is derived through (40) and (41). 

  2 0L rLAD e A D e BC        (39) 

 
 1AD BC     (40) 

 
 L rLe e A D      (41) 

 

cosh( ) cosh( ) cos( ) sinh( )sin( )
2

A D
L L L j L L     

    (42) 

 
The right hand side of (42) is real, so either   or   should be zero. To solve 

(42), two different conditions are assumed as following: (a) propagating condition and 

(b) non-propagating condition in periodic structure.  
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(a): 0   and 0  . In this case, the phase constant,   becomes the 

propagation constant, i.e., j   . Equation (43) is obtained from (42) with the 

condition of 0   and 0  . This defines the pass-band. 

 cos( ) cos sin
2 o

X
L

Z
  


    (43) 

 
(b): 0   and 0 or L=    . In this case, when the phase constant is zero the 

attenuation constant,   becomes the propagation constant, i.e.,   . Equation (44) is 

obtained from (42) with the condition of 0   and 0  . This defines the stop-band. 

Since the lossless condition is assumed, the most of input power is reflected back to 

input rather than dissipated. There is also the power radiated through slot discontinuities. 

In both cases of (a) and (b), the attenuation constant and phase constant are greater than 

zero, i.e. 0   and 0  , for the wave propagating in positive direction. With the 

condition of 0   and L   ,  (45) is derived from (42). In this case, the distance 

between all reactive elements is 2g , thus an input impedance is the same with the 

condition of  0  . 
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By solving (43) and (44) in terms of L   and L  , k   diagram can be 

plotted in Fig. 21. Even though (42) and (43) are derived from a single unit cell, the 

k   diagram in Fig. 21 or 22 represents the periodic structure with the infinitely 
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loaded elements.  When L   is purely real, L   is purely imaginary, and this yields 

that the propagation constant,   is purely imaginary ( j  ), i.e., pass-band. When 

L   is purely imaginary, L   is purely real, then this produces that   is purely real 

(  ), i.e., stop-band. 
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Fig. 21 k   diagram of the periodic structure with the infinite number of dumbbell 

shaped slots. 
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Fig. 22. Frequency versus k   diagram of the periodic structure with the infinite 

number of dumbbell shaped slots. 

 

C. Simulation and Measurement 

To validate the theory of the periodic structure, calculated and measured data are 

compared. Figure 23 shows the fabricated periodic structure with dumbbell shaped slots 

in the ground plane. Duroid 5880 ( 2.2r  ) is used as substrate and its’ thickness is 

0.765 mm. The number of the slots are N=7 and the distance between adjacent slots is 15 

mm. The dimensions of the dumbbell shaped slots are d=4.8 mm g=0.6 mm, which 

produce the inductance of 2.842 nH and capacitance of 0.123 pF, respectively. Figure 24 

shows the circuit configurations (N=7) for simulation. The calculated and measured 
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results are compared in Fig. 25. The expected pass/stop-bands shown in Fig. 22 illustrate 

good agreement with the simulated results in Fig. 25, but the frequency response of 

measured results is shifted to the left about 500 Mhz as compared to calculated and 

simulated one.  

 

 

(a) 

 

(b) 

Fig. 23. Fabricated periodic structure with dumbbell shaped slots (N=7) (a) top view and 

(b) bottom view. 
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Fig. 24. Circuit simulation schematic using [27] Ansoft Designer v. 3.0. 
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(a) 

Fig. 25. Calculated and measured periodic structure with dumbbell shaped slots (N=7) 

(a) return loss and (b) insertion loss. 
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Fig. 25. Continued. 
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CHAPTER V 

LOWPASS FILTER DESIGN WITH DUMBBELL SHAPED SLOT 

 

A. Design Theory for Lowpass Filter with DSS 

In the previous section, the slotted ground structure with a dumbbell shape has 

been studied and its equivalent circuit model also introduced. Based on insertion loss 

method filter theory, LPF can be designed by using this dumbbell shaped slot in the 

ground plane. This section begins with introducing the conventional LPF design with 

DS-SGS reported in [28]. Later, the proposed technique to improve the conventional 

method is also presented. The drawback to this conventional method using two slotted 

ground sections and one parallel stub is that the parasitic inductance of the parallel stub 

is not accounted for, producing errors in the cutoff frequency. This error is tolerable for a 

filter with a single parallel stub, but many filters feature multiple sections to provide a 

sharper cutoff. For these filters, the conventional LPF design methodology with the 

slotted ground is insufficient. In order to improve the accuracy of the LPF design with 

the slotted ground, this thesis provides a technique for addressing the otherwise ignored 

parasitic inductance. 

In this proposed analysis technique, the inductance, which is one of the 

equivalent circuit components of a DSS, is recalculated by the modified inductance 

equation. The modified inductance equation excludes the additional inductance effect 

from the parallel stub since the parasitic inductance of the parallel stub is subtracted 

from the initial inductance of the DSS dimensions. This means that the slot dimensions 
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of the DSS should be readjusted to compensate for the parasitic inductance from the 

parallel stub. The curve fitting graphs representing the inductance and capacitance 

versus the different slot dimensions are plotted through the computer aided EM analysis. 

By using these curve fitting plots, the DSS dimensions are estimated and applied to the 

LPF design with the dumbbell shaped slot. 

To compare the conventional and proposed methods, this thesis suggests a π-type 

LPF utilizing two parallel stub sections and a single DSS on the ground plane. The 

desired 3 dB cutoff frequency and the number of filter stages are fc= 4.2 GHz and N=3, 

respectively. The accuracy of the proposed method is demonstrated by comparing the 

simulated and measured results. Circuit and EM simulation in the proposed method 

show good agreement with measured data. 

In this section, two π-type LPFs are designed, simulated, and measured in order 

to compare the conventional and proposed methods. Both design techniques are based on 

a maximally flat type LPF design theory because the frequency response characteristics 

of a single DSS and a maximally flat type LPF (N=1) are the same. In the conventional 

LPF design with the dumbbell shaped slot, EM simulation is performed first to 

determine the cutoff and resonant frequencies of a DSS, from which equivalent circuit 

components are calculated. Finding the cutoff and resonant frequency information from 

EM simulation is not an efficient way to design a LPF with a DSS. This conventional 

procedure is also not convenient for designing a LPF with a randomly defined cutoff 

frequency. The equivalent inductance and capacitance need to be calculated from the 

specified design cutoff frequency for design convenience. This method is introduced in 
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(17), (46) and (47), which can be found in [12]. Equation (47) still has two unknown 

parameters, ωr and LDSS, even though ωc has been determined. To make the conventional 

design equations simpler, ωr=2ωc is defined. Setting ωr=2ωc is a suitable assumption for 

keeping good pass-band and stop-band characteristics. With ωr=2ωc, (47) can be 

simplified to (48). 
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The proposed equation (48) enables one to determine the desired cutoff 

frequency first and calculate the equivalent inductance without EM simulation. Once the 

equivalent inductance is found, the equivalent capacitance can be calculated from (19), 

where ωr=2ωc. At this point, two LPFs with fc=4.2 GHz and N=3 are designed by using 

the conventional and proposed methods. The resonant frequency of a DSS is set to 8.5 

GHz (≈2fc) for convenience. Since fc and fr are determined, CDSS and LDSS can be 

determined: LDSS=2.842 nH and CDSS=0.123 pF from (48) and (19). Once CDSS and LDSS 

are known, the DSS dimensions can be found from the inductance and capacitance curve 

fitting plots in Fig. 16 and Fig. 18. Curve fitting graphs give the DSS dimensions of 

d=4.8 mm and g=0.6 mm in order to produce the equivalent inductance and capacitance. 

In Fig. 26, EM simulation of the DSS (d=4.8 mm, g=0.6 mm) and its lumped equivalent 

circuit model simulation show very good agreement, which proves the validity of the 
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modified equivalent circuit extracting method. The desired cutoff frequency of 4.2 GHz 

and resonant frequency of 8.5 GHz are shown in Fig. 26. The DSS dimensions (d=4.8 

mm and g=0.6 mm) can be immediately used for the LPF design because the cutoff 

characteristic matches that of a maximally flat type LPF with the cutoff frequency of 4.2 

GHz and N=1. The DSS in the ground plane replaces the series inductance of the lumped 

prototype LPF model. 
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Fig. 26. EM and the equivalent circuit simulations of the single DSS with the dimensions 

of d=4.8 mm and g=0.6 mm. 
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B. Conventional Lowpass Filter Design with DSS 

A maximally flat type LPF with N=3 and fc=4.2 GHz is designed by using the 

well-known filter theory shown in Fig. 27(a). From the given cutoff frequency of fc=4.2 

GHz, C1=C3=0.757 pF and L2=3.79 nH are found using (49) and (50). 
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    (a)                                                                       (b)  

Fig. 27. The lumped equivalent circuit models of (a) a prototype LPF and (b) a 

conventional LPF with a dumbbell shaped slot. 

 

The lumped equivalent circuit configuration of a LPF with a dumbbell shaped 

slot is shown in Fig. 27 (b), where LDSS and CDSS are derived to be equivalent with L2 

according to (17) and as found in LDSS=2.842 nH and CDSS=0.123 pF through (48) and 

(19). Parallel capacitances, Cp1 and Cp3 are the same as C1 and C3. Because the lumped 

equivalent circuit models of (a) the prototype LPF and (b) the LPF with a dumbbell 

shaped slot, as shown in Fig. 27, are designed to produce the same cutoff frequency of 
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4.2 GHz, they must show the same frequency response in circuit simulation. Circuit 

simulation of Fig. 27 (a) is the standard of a maximally flat type LPF with N=3 and 

fc=4.2 GHz, so the agreement between the two LPF models reveals the reliability of a 

LPF with a dumbbell shaped slot and its lumped equivalent circuit model. Figure 28 

shows the frequency response characteristics of the models in Fig. 27 (a) and (b). The 3 

dB cutoff frequencies of these two models occur at 4.2 GHz exactly, and the frequency 

responses match in the pass-band. The anti-resonant frequency of the rejection-band 

occurs at 8.52 GHz in the LPF model with a dumbbell shaped slot. This resonant 

frequency is produced by the parallel LC resonator (LDSS and CDSS) of the equivalent 

circuit model with a dumbbell shaped slot. 

 

 

Fig. 28. The circuit simulation of the prototype LPF and the equivalent circuit of a LPF 

with a dumbbell shaped slot. 
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Thus, it has been proven that the lumped equivalent circuit model of the 

conventional LPF with a dumbbell shaped slot is accurate enough compared to its 

standard model. Although the lumped model is transformed to the distributed circuit by 

using the conventional LPF method with a dumbbell shaped slot, the frequency response 

should be also accurate enough to validate its conventional design theory.  

Now the distributed model of the LPF with a dumbbell shaped slot is designed 

through the conventional method introduced in [28]. To design the equivalent distributed 

model of Fig. 27 (b), the DSS dimensions on the ground should be defined to realize the 

equivalent LC parallel resonator. With its calculated inductance and capacitance, this 

dimension can be instantly found from the curve fitting graphs in Fig. 16 and Fig. 18. 

For 2.842 nH and 0.123 pF, the DSS dimensions on the ground are determined to be 

d=4.8 mm and g=0.6 mm. It has been already proven that the inductance of 2.842 nH 

and the capacitance of 0.123 pF and its corresponding DSS dimensions (d=4.8 mm and 

g=0.6 mm) generate the same cutoff frequency of 4.2 GHz in Fig. 26. The parallel 

lumped capacitance of Cp1 and Cp3 can be easily realized for the distributed circuit model 

by using the transmission line theory in Fig. 29, where the characteristic impedance of 

the stub line is defined as 30 ohm. The parallel capacitances of Cp1 and Cp3 are 

calculated as 0.757 pF by using (50). 
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(a)                                                                 (b) 

Fig. 29. The equivalent circuit models of (a) a microstrip transmission line and (b) a 

lumped parallel capacitor. 

 

The input admittance of each model, (a) and (b), in Fig. 29 is presented in (51) 

and (52). The equivalent distributed stub dimensions of this parallel capacitor in Fig. 29 

(b) can be found by equating these two equations. Since the characteristic impedance of 

the shunt stub is already set at 30 ohm, the shunt stub width (ws) can be calculated with 

the substrate information. For the parallel capacitance of 0.757 pF, the width and length 

of the microstrip stub are found to be ws=4.7 mm and l=4.38 mm, respectively. Figure 30 

represents the relation between the lumped and distributed model of a LPF with a DSS 

on the ground plane. 

  , tanin TL oY jY  l     (51) 

 
 ,in CY j C    (52) 
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Fig. 30. The transformation from the lumped model of dumbbell shaped slot LPF to its 

distributed circuit model. 

 

Figure 31 presents the circuit and EM simulated and measured results of the LPF 

with the dumbbell shaped slot designed with the conventional method. As it is shown, 

the circuit simulation demonstrates the 3 dB cutoff frequency of 4.2 GHz exactly, 

however the EM simulated and measured cutoff frequencies are shifted to the left by 1 

GHz because of the increased inductance due to the shunt stub width. Thus, the 

conventional LPF design method with a dumbbell shaped slot faces the problem of 

limiting the parallel stub because the 3 dB cutoff frequency error increases as the 

number of stubs increase. One of the easiest ways to produce steep cutoff characteristics 

is to increase the number of parallel stub sections, but this is not suitable for the 

conventional design method. To overcome this, the additional inductance due to the 
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parallel stub sections should be subtracted from the inductance generated by a slot 

section, thus one could increase the number of element stages without the cutoff 

frequency error. 
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Fig. 31. The simulated and measured results by using the conventional LPF 

design method with a dumbbell shaped slot. 

 

C. Proposed Lowpass Filter Design with DSS 

Finding the exact inductance from the parallel stub sections is primarily required 

to design a LPF without cutoff frequency error. The proposed method starts with 

assuming that the undesirable inductance is added to an inductance produced by two 

square slot areas of a DSS. The following steps are used to attain the desired solution. 

Step 1)  -type equivalent circuit of microstrip transmission line is investigated 

by using even and odd mode analysis. Image theory supports this step. 
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Step 2) A mathematical expression representing an inductance in the  -type 

equivalent circuit is derived. This expression is used to account for the parasitic 

inductance of parallel stub sections.  

In this section, the static analysis of a transmission line is used, and its validity is 

confirmed by EM theory. By choosing two different excitation modes from the each end 

of a transmission line, the perfect magnetic conductor (PMC) or perfect electric 

conductor (PEC) can be virtually constructed in the middle of the microstrip 

transmission line. This satisfies the image theory that validates the static analysis method. 

Since the waves are incident from the sources placed at each end of the transmission line, 

the standing wave pattern is formed; this wave pattern still conserves a plane wave. 

Figure 32 shows the image theory illustrating the direction of two different current 

sources over the PEC and PMC boundaries. The normal component of an electric current 

source and its image component are in the same direction over a PEC boundary while 

they are in the opposite direction on a PMC surface [29]. 

 

 

Fig. 32. The electric and magnetic current distributions on the PEC and PMC boundaries 

by image theory. 
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A microstrip transmission line cannot support a pure transverse electromagnetic 

(TEM) mode because of its unsymmetrical structure, but it could be considered as an 

approximate TEM wave structure in the low frequency range, where the strip width and 

substrate thickness are much smaller than the guided wavelength. Any two port network 

can be represented as a π or T network, thus the microstrip line can be modeled as a π or 

T network by considering the transmission line itself as a two port network. To find the 

parasitic inductance of the transmission line, an equivalent circuit of the microstrip is 

modeled as a π-network in Fig. 33. Since the fundamental propagation mode of a 

microstrip transmission line is assumed as a TEM mode, surface currents on a strip line 

can be expressed as (53). 

 ˆSJ n H  S

 
   (53) 

 

In (53), the unit vector ( n ) is in the normal direction to the strip surface. ˆ

pL

pC pC

 

                              (a)                                                                         (b) 

Fig. 33. Equating (a) a microstrip transmission line and (b) a π-type lumped equivalent 

circuit model. 
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                                                                      (b) 

Fig. 34. π-type lumped equivalent circuit models for an even mode (a) the surface 

current distribution on a strip line, and (b) its resulting lumped equivalent circuit 

model for an even mode. 

 

Figure 34 presents the microstrip transmission line with the symmetrical 

excitation and its lumped equivalent circuit for an even mode. For a symmetrical 

excitation the electric field must be a maximum on the cross section plane. Because the 

waves travel the same distance from the source, they are in phase and their magnitudes 

are added on the cross section plane. Thus, as one can see from (54), the electric field is 

a maximum when the magnitude of a voltage wave is a maximum. 
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 E V 


   (54) 
 

From the standing wave pattern, the magnetic field is a minimum when the 

electric field is a maximum. Thus the cross section plane is shown as the PMC boundary 

according to the boundary condition. On that cross section plane the maximum 

tangential electric field is in the same direction and the normal surface current is in the 

opposite direction for a λg/2 period. This PMC plane makes a π-type equivalent circuit 

that is virtually open, as shown in Fig. 34 (a). Thus, the parallel capacitor in the left side 

is only activated in Fig. 34 (b). The input impedance of a microstrip line and its lumped 

equivalent circuit are shown in (55) and (56). These equations are derived from Fig. 34 

(b). 
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By equating (55) and (56) at c  , the parallel capacitance of a π- network can 

be calculated by (57). 
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In general, this parasitic parallel capacitance is small enough so that one could 

ignore its effect for the low frequency band. The series inductor of a π- network is 

dominant for determining the cutoff frequency, so the series inductance, which increases 
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the overall inductance of the LPF, is the important parameter to design an accurate LPF 

with a dumbbell shaped slot.  
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Fig. 35. π-type lumped equivalent circuit models for the odd mode (a) surface current 

distribution on the strip line, and (b) the resulting lumped equivalent circuit 

model for odd mode. 

 

For an asymmetrical excitation the cross section plane appears as PEC boundary. 

Two different voltage waves with the same magnitude but opposite signs are subtracted 

on the cross section plane, thus the electric field is a minimum but the magnetic field is a 
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maximum. This field distribution can be also verified from the standing wave pattern. 

Since the tangential electric field is a minimum, this cross section plane is shown as a 

PEC boundary. This presents an odd mode equivalent circuit model of a π-network in 

Fig. 35. In this mode, a virtual short point is generated in the middle of the π-network 

equivalent circuit, so the resulting model is illustrated in Fig. 35 (b). For an odd mode 

case, the input impedance of a microstrip line and its lumped equivalent circuit are 

shown in (58) and (59). These equations are derived from Fig. 35 (b). 
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By equating (58) and (59) at c  , the equation for a series inductance can be 

derived. In (59), Cp is the same as (57). Equation (60) presents the series parasitic 

inductance due to a shunt stub section, and Zo is the characteristic impedance of the stub 

line. 

 sino
p

c

Z
L 


    (60) 

 
This parasitic inductance is generated by the line width of the shunt stub. A wider shunt 

stub width produces a bigger parasitic inductance because of the increased wave travel 

distance. As a result, the increased overall inductance lowers the actual 3 dB cutoff 

frequency point compared to their circuit simulation. Since this parasitic inductance is 

added to the inductance caused by the DSS dimensions, it should be subtracted from the 

total inductance of a DSS to keep the desired cutoff frequency of a LPF. The modified 



 58

inductance equation from (48) is presented in (61) where s
oZ  is defined as the 

characteristic impedance of the parallel stub, and θ is shown in (62). 
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To calculate the parasitic inductance from the shunt stub width, the effective 

dielectric constant (εeff) should be known. The parameters ws and εeff in (62) are defined 

as the shunt stub width and the effective dielectric constant, respectively, for the 

characteristic impedance of the parallel stub (30 ohm). Figure 36 shows the parameters 

ws and Zo of the parallel stub. Since the width of the shunt stub is already determined as 

ws=4.7 mm, its corresponding inductance can be calculated by (60). With a substrate 

thickness of 0.762 mm, a dielectric constant of 2.2, and a characteristic impedance of 30 

ohm, εeff  is found to be 1.95 [30], and θ is determined as θ =33° from (62). Finally, the 

parasitic inductance (1.23 nH) caused by the two parallel stub lines is counted with the 

inductance (2.84 nH) from a DSS dimension. As a result, the new LDSS is calculated as 

1.61 nH by the modified inductance equation in (61). 
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Fig. 36. The parameters (ws and Zo) of a parallel stub causing parasitic inductance. 

 

The new DSS slot dimensions producing the inductance of 1.61 nH can be 

immediately found as d=3.3 mm by the inductance curve-fitting graph in Fig. 18. Figure 

37 shows the photos of this fabricated LPF. Figure 38 compares the results of circuit 

simulation, EM simulation, and measurement. The simulated and measured results show 

the exact 3 dB cutoff frequency at 4.2 GHz. Thus, any additional tuning work to meet a 

desired cutoff frequency is not required with this proposed design method. 

 

 

(a) 

Fig. 37. The fabricated LPF with a single DSS on the ground plane (a) The top and (b) 

the bottom view. 
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(b) 

Fig. 37. Continued. 
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Fig. 38. Simulated and measured results by using the proposed LPF design 

method with a dumbbell shaped slot. 
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D. Conclusions 

In this chapter, an accurate analysis and design technique for a LPF with a 

dumbbell shaped slot have been introduced. An equivalent circuit extracting method for 

a single DSS is based on an insertion loss type filter design theory. The validity of the 

equivalent circuit extracting method is proven by circuit simulation and electromagnetic 

field analysis. Inductance and capacitance curve fitting graphs that depend on the slot 

dimensions are also plotted and used to define the dimensions of a DSS on the ground. 

Two LPFs designed by using conventional and proposed methods are compared to one 

another. The insertion loss in the pass-band is measured as less than 0.2 dB from both 

LPFs. The simulated and measured results prove the validity of the proposed method. 
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CHAPTER VI 

UWB BANDPASS FILTER DESIGN WITH GROUND SLOTS 

 

A. UWB Bandpass Filter Design on Microstrip 

Recently, the ultra-wideband (UWB) radio system design techniques have been 

attracted by many researchers and engineers from both in academy and industry since 

the Federal Communications Commission (FCC) has released the frequency band from 

3.1 GHz to 10.6 GHz for commercial applications in 2002 [31]. Filters with wide pass-

band, sharp frequency cutoff characteristics, and flat group delay are required for 

broadband communication systems. For these reasons, vigorous researches have been 

conducted and numerous results have been reported [32]-[34]. The basic principle of a 

broadband pass filter is to generate the multi resonant poles to produce wide pass-band 

and this can be realized by tight coupling between resonators. However, increasing the 

coupling may cause the low Q-factor and thus high insertion loss. 

In this section, the UWB band-pass filter with ground slots introduced in [34] is 

studied, simulated, and measured. Furthermore, based on its theory in [34], UWB band-

pass filter is designed with coplanar waveguide (CPW) structure.  

Most of fields in microstrip transmission line is confined between the top strip line 

and bottom ground. By placing a slot underneath the parallel coupled line, the coupling 

between two parallel strip lines can be increased. The inductance is also produced by the 

ground slot underneath the gap because the gap disturbs the current flows on the ground 



 63

plane. Figures 39 and 40 show the UWB band-pass filter configuration on microstrip 

with slots on the ground plane. 

 

 

Fig. 39. UWB bandpass filter circuit configuration with two square slots on the ground. 

 

DSlot Length

W

Gap Width
 

Fig. 40. Parameters of UWB band-pass filter with two square slots on the ground. 
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To study the resonant characteristic of a parallel line gap, EM simulation using 

finite element method (FEM) is conducted through HFSS [27]. As the slot length in Fig. 

40 varies with different dimensions, gap width is fixed. When the dimensions of the gap 

width changes, slot length is fixed. Frequency response with the varying slot length 

dimensions is shown in Fig. 41. By increasing the slot length, the upper cutoff frequency 

is dramatically decreased compared to the lower cutoff frequency. Increasing the slot 

length generates the additional inductance since the length of the thin line of coupling 

gap becomes longer. Therefore, the inductance is more dominant to upper cutoff 

frequency. Figure 42 shows the frequency response as the gap width varies with 

different dimensions. As the gap width increases, the gap capacitance decreases. 

Decreased gap capacitance is more dominant to lower cutoff frequency. Thus, by 

changing the slot length and gap width, the upper and lower cutoff frequency can be 

adjusted. 
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           Fig. 41. Slot length variation (gap width fixed as 0.3mm). 
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          Fig. 42 Gap width variations (slot length fixed as 4.4mm). 

 

UWB band-pass filter is designed with the dimensions of slot length=4.4 mm, 

gap width=0.1 mm, slot width=2.3 mm, D=7.7 mm, and W=0.6 mm. Figure 43 shows 

the photos of a fabricated circuit and Fig. 44 presents the simulated and measured results 

of the UWB band-pass filter with those dimensions. 

 

 

                               (a)                                                                       (b) 

Fig. 43. Image of fabricated UWB band-pass filter on microstrip. 
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Fig. 44 Simulated and measured UWB band-pass filter. 

 

B. UWB Bandpass Filter Design on Coplanar Waveguide 

Many commercial RF/microwave applications have been appeared since 

microwave monolithic integrated circuit (MMIC) techniques had been introduced. 

Compared to hybrid type circuits, MMICs have advantages such as compact size, light 

weight, and low production cost for mass production. For some applications, CPW type 

circuits have advantages for MMIC designs because solid-state devices can be easily 

mounted. Thus, UWB filter design using CPW is needed for these applications. 
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Coplanar waveguide was first introduced by Wen [35] in 1969. The electric and 

magnetic field distributions of even and odd mode for CPW transmission line are shown 

in Fig. 45. Even mode, so called coplanar waveguide mode, is a quasi-transverse 

electromagnetic (qusi-TEM) mode with even symmetry to the vertical plane A-A’ and 

its dispersion is very low [36]. Because of the low dispersion characteristic of the even 

mode, broadband applications are possible with this mode. In other hands, odd mode, so 

called slot line mode, has opposite signs for each side ground plane. Since the potentials 

are different for two ground planes, the electric field lines are headed from one to the 

other. Magnetic fields are in longitudinal direction and this odd mode has competitively 

large dispersion effect. The parameters for CPW cross section are shown in Fig. 46. 

 

Electric Field
Magnetic Field

A

A  

(a) 

Fig. 45. Electric and magnetic field distributions of the (a) even mode and (b) odd 

mode on a CPW. 
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(b) 

Fig. 45. Continued. 

 

Wen [35] has carried out a quasi-static analysis of these transmission lines using 

conformal mapping and with the assumption that the dielectric substrate is thick enough 

to be considered infinite [37]. This conformal mapping method is an analytical analysis 

and gives the exact solution.  In this section, each derivation step is not introduced, but 

some fundamental equations are shown for CPW transmission line analysis. 

 

WW S

r
 

Fig. 46. Cross section of CPW transmission line. 
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Equations (63)-(68) are found in [38]. These equations are useful for determining 

the characteristic impedance of CPW transmission line. Here the K(k) is the complete 

elliptical integral of the first kind. The parameters, k and k’, are the elliptic modulus of 

an elliptic integral and the complementary modulus, respectively. Complete elliptic 

integrals with respect to the complementary modulus are also denoted as  

[38]. The characteristic impedance, 

' '( ) ( )K k K k

cZ , and effective dielectric constant, eff , are given 

below in (63) and (64). 

 
 

'( )

4
o o

c

eff

K k
Z

K k

 


 


   (63) 

 

 1
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 ' 1k 2k     (68) 

 
Based on the techniques in previous section, the two grounds on each side of 

parallel coupling gap have slots to produce the tight coupling between two parallel 

coupled lines in Fig. 47. Figure 48 shows the photo of the fabricated UWB bandpass 

filter on CPW. 
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Fig. 47. UWB band-pass filter with two square slots on CPW. 

 

 

 

Fig. 48. Image of the fabricated UWB bandpass filter on CPW. 
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UWB band-pass filter is constructed on CPW and its dimensions are given in the 

following: slot length=4.4 mm, gap width=0.1 mm, slot width=0.5 mm, W=0.37 mm, 

G=0.2 mm, and D=5 mm. Figure 49 present the simulated and measured results of this 

filter. 
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Fig. 49 Simulated and measured UWB band-pass filter in CPW. 
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CHAPTER VII 

RECTENNA DESIGN USING LOWPASS FILTER  

WITH DUMBBELL SHAPED SLOT 

 

A. Rectenna Operation Theory 

The term rectenna represents the rectifying antenna which converts microwave 

power to DC power. Basically, the rectenna includes the rectifying circuit as well as 

antenna.  The rectification of microwave beam through a solid state device has studied 

by R. H. George in Purdue University [39]. Since this first study many researchers have 

investigated those techniques to increase the conversion efficiency [40]-[42]. 

Fig. 50 shows a block diagram of a rectenna. The source power is received by 

antenna and the source resistance (RS) represents the input impedance of the antenna [43]. 

The main purpose of LPF between the antenna and rectifying circuit is to reflect 

harmonics generated by the rectifying diode. Thus the conversion efficiency of the 

rectifying circuit can be increased since the reflected harmonics by the LPF are re-

rectified through the diode. 

 

 

Fig. 50. Block diagram of rectenna circuit [43]. 
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B. Comparison of Conventional and Simplified Rectenna 

In this section, a 2.45 GHz rectenna using the conventional LPF with several 

parallel stubs is modified to reduce the rectenna dimensions. The LPF with a DSS is 

used to replace the conventional stub type LPF. By using the LPF with a DSS, the 

overall dimensions of the rectenna can be reduced. Generally, LPF with DSS has the 

advantage of reducing the harmonics as compared to conventional LPF with stubs. 

 

Zin

 

Fig. 51 Antenna design with transition from microstrip to CPS. 
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   Figure 51 shows the antenna with transition from microstrip to coplanar strip 

line (CPS). By using CPS transmission line, the rectifying diode and lumped load 

resister can be easily mounted between the CPS transmission lines. Antenna’s input 

impedance (Zin) is found as 140 ohm by computer aided simulation using method of 

momentum (MoM). In rectenna design, antenna’s input impedance is not necessary to 

match 50 ohm, but the input impedance of the location, where the rectifying diode is 

mounted, must be optimized for the conversion efficiency. This means that impedance 

matching is required between the rectifying diode and circuit.  Approximately, allowable 

input impedance for mounting the diode is from 100 to 200 ohms. A M/A-COM’s GaAs 

schottky barrier diode (MA4E1317) is used for rectification. The substrate used for 

fabrication has a thickness of h=30 mil and dielectric constant of ε=2.2. The line widths 

of the microstrip feed line and CPS are 0.4 mm and 0.2 mm, respectively. 

 

 
Fig. 52. The S11 characteristic of the antenna without LPF. 
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As show GHz. The RF 

power 

n in Fig. 52, the 2nd harmonic could be radiated at 4.9 

at this frequency can be re-radiated through the antenna if no LPF is used. By 

placing a LPF this harmonic can be removed. Figure 53 represent the comparison of the 

conventional and modified rectenna model. By using LPF with DSS, overall rectenna 

dimensions can be reduced. Thus, this single rectenna using LPF with DSS can be used 

for array and the array dimensions can be also reduced. The block diagrams for Fig. 53 

are shown in Fig. 54. The DSS used for this LPF is designed under the transmission line 

with the characteristic impedance of 100 ohm. 
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                                (a)                                                                         (b) 

ectenna and (b) 

modified rectenna (dimensions are in mm). 

Fig. 53. The 2.45 GHz rectenna comparison; (a) the conventional r
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(a) 

 

(b) 

Fig. 54. The block diagrams of (a) the conventional and (b) modified rectenna. 

C. Simulation and Measurement of Modified Rectenna 

g a 

LPF. Thus, the most dominant second harmonic generated by the rectifying diode is 

capacitor. This trapped second 

harmon

 

As shown in Fig. 55, the 2nd harmonic near 5 GHz can be removed by usin

trapped between the LPF and DC pass filter, i.e., 

ic is also converted to DC power through the rectifying diode. Therefore, the 

rectenna’s conversion efficiency is increased by rectifying both fundamental (2.45 GHz) 

and second harmonic (4.9 GHz) RF power. Figure 56 shows the simulated unit rectenna 

array’s radiation pattern through MoM and Fig. 57 presents the fabricated unit rectenna 

array. Transition from CPS to microstrip is used for measurement in Fig. 57. The 

rectenna is measured in the anechoic chamber of Electromagnetics and Microwave 
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Laboratory at Texas A&M University. Conversion efficiency of this unit rectenna array 

is determined by (70). 
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Fig. 55. Simulated VSWR of the rectenna with DSS-LPF. 
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DC

c
RF
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RF P
      (70) 

PDC (DC output power) in (70) is defined as (69)

measured voltage from rectenna. PRF can be calculated from the Friis transmission 

equation. Parameters for calculating PRF of the proposed unit rectenna array are shown in 

. RDC is the load resistance and VDC is a 
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Table 4.  A standard gain horn antenna (Narda 644) is used for wireless RF power 

transmission. The rectenna’s conversion efficiency depends on the electrical parameters 

of the rectifying diode and losses of microwave circuits at the operation frequency. In 

that sense, LPF for a rectenna must have low insertion loss. Measured insertion loss of 

the DSS-LPF used for this rectenna is less than 0.2 dB in pass-band. 

 

Table 4. Parameters for the unit rectenna array 

Frequency 0 (cm) Far field Gr (dBi) Gt (dB
(cm) 

i) Ae(cm2) 

2.45 GHz 12.2 87.1 8.0 14.5 74.5  
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Fig. 56. Simulated rectenna’s radiation pattern. 
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                                  (a)                                                                   (b) 

Fig. 57. Modified rectenna in (a) top and (b) bottom view. 

 

Measured rectenna conversion efficiencies are presented in Fig. 58. Maximum 

efficiency of 80.1 m2 with the load 

resistance of 168 . 
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Fig. 58.  Measured conversion efficiency. 
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CHAPTER VIII 

CONCLUSIONS 

 

. Summary 

In Chapters II and III, LPF design theory by insertion loss method is presented as 

background. By using this filter design theory, a dumbbell shaped slot (DSS) on the 

ground is analyzed and mathematical expressions are derived. Lumped equivalent circuit 

model of the dumbbell shaped slot (DSS) is presented and its validity is demonstrated 

through the comparison of circuit simulations, EM simulations, and measurements. 

Curve fitting analysis, which is for an inductance and capacitance versus a dumbbell 

shaped slot (DSS) dimensions, is also shown. 

   In Chapter IV, a periodic structure with dumbbell shaped slot on the ground is 

 Since the periodic structure provides both pass and stop bands, it can be treated 

as a filter. Equivalent circuit model of the proposed periodic structure is presented and 

analyzed by using cascaded network and 

periodic slotted ground section in the ground plane, the characteristic capacitance and 

ission line are changed. Therefore, the variations of these 

capacitance and inductance of transm

A

studied.

transmission line theories. By placing the 

inductance of transm

ission line also modify the propagation constant (β). 

The k- β diagram are plotted to estimate the pass/stop bands of this dumbbell shaped 

periodic structure. To validate the theory, a dumbbell shaped slot periodic structure with 

N=7 is fabricated and measured. Finally, the experimental results are compared with the 

calculated results and good agreement has been achieved. 
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In Chapter V, the LPF design using dumbbell shaped slot (DSS) is presented 

based on the previous studies in Chapters II and III. In this chapter, a new design 

techniq

iency from RF power to DC 

power,

 

ue is introduced. By using this proposed technique, LPF which does not produce 

the cutoff frequency error is designed. In order to compare the conventional design 

method and the new technique, two LPFs are designed by using both conventional and 

new method. Through the circuit simulations, 3D electromagnetic (EM) simulations, and 

measurements, the proposed new theory is validated. 

 In Chapter VI, a UWB bandpass filter with slotted ground structure introduced 

from [34] is studied for the purpose of extending the techniques of a slotted ground 

structure. Frequency responses over the different dimensions of parameters are also 

investigated.  A coplanar waveguide UWB bandpass filter is designed and measured. 

In Chapter VII, a rectenna is introduced as another application of the LPF with a 

dumbbell shaped slot (DSS). For good conversion effic

 LPF used in rectenna must have low insertion loss. Rectenna also requires LPF 

with compact size to minimize its overall dimensions. LPF with a dumbbell shaped slot 

matches well with these requirements. The new rectenna is developed by utilizing the 

LPF with dumbbell shaped slot and tested. The measured conversion efficiency of this 

single unit rectenna is approximately equal to 80 %. 
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B. Recommendations and Further Research 

A dumbbell shaped slot (DSS) in the ground plane has been extensively 

investig

idic techniques 

 

 

 

 

ated and characterized through the theoretical and experimental work in this 

thesis. In analysis, a 3D EM simulation tool is used to estimate the capacitance and 

inductance from the DSS dimensions. Mathematical expressions of these capacitance 

and inductance over certain DSS dimensions and microstrip parameters need to be 

further studied. Other tuning techniques for a dumbbell shaped slot are also required to 

be operated as an active resonator or filter. These tuning abilities of DSS may be 

accomplished by using solid state devices or microflu
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APPENDIX I 

MAXIMALLY FLAT INSERTION LOSS PLOT 

 

This section presents a matlab program for estimating the insertion loss pattern 

ased on maximally flat type depending on the number of reactive elements. The matlab 

ode is shown between the rows of asterisks. Figure 2 is plotted by this code. 

 

********************************************************************** 
 
=[0:.01:5]; % Define the x-ranges 
 

2=10*log10(1+1*x.^4); %                “                N=2 
y3=10*log10(1+1*x.^6); %                “                N=3 
4=10*log10(1+1*x.^8); %                “                N=4 
5=10*log10(1+1*x.^10);%                “                N=5 

old on 
plot(x,y1); 
lot(x,y2); 

lot(x,y4); 
lot(x,y5); 
  
old off 

********************************************************************** 

 

 

 

 

b

c

*

x
 
y1=10*log10(1+1*x.^2); % The maximally flat function for N=1 
y

y
y
  
h

p
plot(x,y3); 
p
p

h
 
*
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APPENDIX II 

 

ands of the 

de is shown 

e rows of asterisks. Figure 21 is plotted by this code. 

********************************************************** 

n diagram versus kd 
iodic structure 

dss=2.842*10^-9    % inductance of dumbbell shaped slot 
Cdss=0.123*10^-12   % capacitance of dumbbell shaped slot  
=3*10^8            % speed of light 

% distance between unit cell [in m] 

----------------------------------------------------------------------- 
 
esultkd=[];  % Generate matrix for 'kd' [in 'mm'] 
esultbd=[];  % Generate matrix for 'bd'(complex) [in 'radian'] 
resultAR=[];  % Generate matrix for 'AR'(real part of 'bd') [in 'radian'] 
esultad=[];  % Generate matrix for 'ad'(complex) [in 'Np'] 
esultAI=[];  % Generate matrix for 'AI'(imaginary part of 'ad')[in 'Np'] 

----------------------------------------------------------------------- 
 
d=0.00; % initial value of kd 
or cl=0:1001   % loop 

    kd=kd+0.01; % define k value 
 
%----------------------------------------------------------------------- 
     

x=(c*Ldss/d)*kd-(d/c*Cd tion of kd 
    A=cos(kd)-(x./100).*sin(kd);                        % A  
    B=j*((x./2).*cos(kd)+50*sin(kd)+x./2);              % B  
    C=j*((x./5000).*cos(kd)+(1/50)*sin(kd)- x./5000);   % C 
    D=cos(kd)-(x./100).*sin(kd);                        % D 
 
%-----
 

re the same}) 
    AR=real(bd);        % Put real values in AR from bd. 

BRILLOUIN DIAGRAM 1 

This section presents a matlab program for estimating pass/stop b

periodic structure with a dumbbell shaped slot in the ground. The matlab co

between th

 

*************

%  Brilloui
 DSS per% 

clear all; 
lc; c

L

c
d=0.015             
 
%

r
r

r
r
 
%

k
f

ss)./kd; % reactance: func

------------------------------------------------------------------ 

    bd=acos((A+D)./2);  % Beta*d  
% (Passband:real & Stopband:complex{all real values are the same}) 
    ad=acosh((A+D)./2); % Alpha*d  
% (Passband:zero & Stopband:complex{all imaginary values a
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   AI=imag(ad);        % Put real values in AI from ad. 

 
ore 'kd'(0->10) in the resultkd matrix 
 is save form 0 to 10 in the matrix 

 % Store 'bd' in the resultbd matrix 
=[resultAR;AR]; % Store 'AR' in the resultAR matrix 

atrix 
rix 

**** 

 
%----------------------------------------------------------------------- 

    resultkd=[resultkd;kd]; % St
d], kd% If "resultkd=[kd;resultk

d=[resultbd;bd];    resultb
esultAR    r

    resultad=[resultad;ad]; % Store 'ad' in the resultad m
    resultAI=[resultAI;AI]; % Store 'AI' in the resultad mat
end 
[resultkd,resultbd,resultad] % Shows data on screen 
old on h

plot(resultbd,resultkd) 
lot(resultad,resultkd, 'r') p
hold off 

 

*******************************************************************
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APPENDIX III 

 

This section presents a matlab program for estimating pass/stop bands of the 

mbbell shaped slot in the ground. The matlab code is shown 

between the rows of asterisks. Figure 22 is plotted by this code. 

%  Brillouin diagram versus frequency 
  DSS periodic structure 

all; 
lc; 
dss=2.842*10^-9    % inductance of dumbbell shaped slot 
Cdss=0.123*10^-12   % capacitance of dumbbell shaped slot  
=3*10^8            % speed of light 
=0.015             % distance between unit cell [in m] 
 
----------------------------------------------------------------------- 

% Generate matrix for 'f' [in 'hertz'] 
esultbd=[]; % Generate matrix for 'bd' [in 'radian'] 
resultad=[]; % Generate matrix for 'ad' [in 'Np'] 
esultAR=[]; % Generate matrix for 'AR'(real part of 'bd') [in 'radian'] 
esultAI=[]; % Generate matrix for 'AI'(imaginary part of 'ad')[in 'Np'] 

 
----------------------------------------------------------------------- 

f=0.00; 
=10*10^6; 

for cl=0:1200;  % loop 
    f=f+s; % frequency sweep 
    kd=(sqrt(1.9)*2*pi*d*f)./c;   unloaded propagation constant 
    x=(c*Ldss/d)*kd-(d/c*Cdss)./kd; % reactance: function of kd 
 
%----------------------------------------------------------------------- 
 
    A=cos(kd)-(x./100).*sin(kd);                        % A  
    B=j*((x./2).*cos(kd)+50*sin(kd)+x./2);              % B  
    C=j*((x./5000).*cos(kd)+(1/50)*sin(kd)- x./5000);   
    D=
 

    bd=acos((A+D)./2);  % Beta*d  

BRILLOUIN DIAGRAM 2 

periodic structure with a du

 

*********************************************************************** 

%
clear 
c
L

c
d

%
 
resultf=[];  
r

r
r

%
 

s

   % 'k' is the

% C 
cos(kd)-(x./100).*sin(kd);                        % D 

%----------------------------------------------------------------------- 
 

    ad=acosh((A+D)./2); % Alpha*d  
    AR=real(bd);        % Put real values in AR from bd. 
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   AI=imag(ad);        % Put real values in AI from ad. 

    resultf=[resultf;f]; 

 % Store 'AR' in the resultAR matrix 
=[resultAI;AI]; % Store 'AI' in the resultad matrix 

------------ 

lpha)=imag(beta)]. 

******************************************** 

%----------------------------------------------------------------------- 
 

    resultbd=[resultbd;bd]; 
;     resultad=[resultad;ad]

R=[resultAR;AR];    resultA
esultAI    r

end 
 

-----------------------%------------------------------------
 
resultf,resultbd,resultad] [

hold on 
 If beta is pure real, alpha is pure imaginary [real(beta)=imag(alpha)]. %
% This is pass-band. 
plot(resultf,resultbd) 

eal(a% If alpha is pure real, beta is pure imaginary [r
% if beta is complex number, alpha is also complex. 
% Then, [real(beta)=imag(alpha), imag(beta)=real(alpha)] 
 This is stop-band %
plot(resultf,resultad,'r'); 
old off h

 

***************************
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