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ABSTRACT

Hypergeometric Functions over Finite Fields and Their Relations to
Algebraic Curves. (May 2009)

Maria Valentina Vega Veglio, B.S., Universidad de la Republica, Uruguay;
M.S., Texas A&M University

Chair of Advisory Committee: Dr. Matthew Papanikolas

Classical hypergeometric functions and their relations to counting points on
curves over finite fields have been investigated by mathematicians since the begin-
nings of 1900. In the mid 1980s, John Greene developed the theory of hypergeometric
functions over finite fields. He explored the properties of these functions and found
that they satisfy many summation and transformation formulas analogous to those
satisfied by the classical functions. These similarities generated interest in finding
connections that hypergeometric functions over finite fields may have with other ob-
jects. In recent years, connections between these functions and elliptic curves and
other Calabi-Yau varieties have been investigated by mathematicians such as Ahlgren,
Frechette, Fuselier, Koike, Ono and Papanikolas. A survey of these results is given at
the beginning of this dissertation. We then introduce hypergeometric functions over
finite fields and some of their properties. Next, we focus our attention on a particular
family of curves and give an explicit relationship between the number of points on
this family over I, and sums of values of certain hypergeometric functions over F,.
Moreover, we show that these hypergeometric functions can be explicitly related to
the roots of the zeta function of the curve over F, in some particular cases. Based
on numerical computations, we are able to state a conjecture relating these values

in a more general setting, and advances toward the proof of this result are shown in



v

the last chapter of this dissertation. We finish by giving various avenues for future

study.
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CHAPTER I

INTRODUCTION

A. General Introduction

Called “the queen of mathematics” by the legendary mathematician Carl Friedrich
Gauss, number theory is one of the oldest and largest branches of pure mathematics.
It encompasses topics from the study of integers to number fields to solutions of
Diophantine equations. In the past few decades, research in number theory has
progressed at a rapid rate on many fronts. Recently, important new results have
arisen from analytic, geometric, and p-adic methods. These advances had been used

to bring about breakthroughs, solve longstanding problems, and inspire questions.

In this dissertation we explore connections between values of hypergeometric
functions over finite fields and algebraic curves. In the remainder of this chapter
we give an introduction to the problems we are working on together with a brief
survey of recent results connecting the previous objects. The second chapter has the
purpose of introducing the necessary background material. In particular, in Chapter
IT Section B we define hypergeometric functions over finite fields and state some
of their properties. In Chapter III we introduce a particular family of algebraic
curves and study connections that these curves have to hypergeometric functions
over . More specifically, in Theorem A.2 we present an explicit relationship between
the number of points on these curves over F, and values of certain hypergeometric
functions over [F,. In Chapter IV we focus on the particular hypergeometric functions

that appear in Theorem A.2 and present, in Section B, a conjecture relating values of

The journal model is IEEE Transactions on Automatic Control.



each one of these hypergeometric functions over F, with the roots of the zeta function
associated to the curve over [F,. In the remainder of Chapter IV we give proofs of the
conjecture in some particular cases and progress toward the proof of the conjecture
in the general case is shown in Chapter V. Finally, in Chapter VI, we summarize our

work and provide avenues for future study.

The problem of finding the number of solutions over a finite field of a polynomial
equation has been of interest to mathematicians for many years. A typical result in
this direction is the Hasse- Weil bound, which states that a smooth projective curve
of genus g defined over a finite field with ¢ elements has between ¢ + 1 — 2¢,/¢ and
q+ 1+ 2g,/q points. A natural question to ask is whether there are simple formulas

for counting points in terms of interesting mathematical objects.

Classical hypergeometric functions and their relations to counting points on
curves over finite fields have been investigated by mathematicians since the begin-
nings of 1900. Recall that for ay,...,a,,by,..., b, x € C, the classical hypergeometric

series is defined by

ay, Qg, ..., Qp (al)k(az)k" (ar)k$
e o= o 1.1
by, by, ..., b, ; (b1)r(b2)g - -~ (bs)k k! (1.1)

where (a)g :=a(a+1)---(a+k — 1) is the Pochhammer symbol.

Many connections between classical hypergeometric series, elliptic curves and
modular forms have been discovered. For example, if we consider the Legendre family

of elliptic curves given by y? = z(z — 1)(z — t), t # 0,1, and denote

a, b
2F1 [a, b; C|t] = 2F1 t s



the specialization 2F1[%, %; 1]t] is a multiple of an elliptic integral which represents

a period of the lattice associated to the previous family, as Kummer showed. For

3

another examples, Beukers [4] related a period of y? = x3 — x — t to the values

1 5.1
127 127 2

| |2017]

In the 1980’s, J. Greene [11, 12| initiated a study of finite field hypergeometric
functions. Let p be an odd prime, and let Iﬁg denote the group of multiplicative

characters y on FX, extended to all of F, by setting x(0) = 0. If A,B € ]ﬁ‘p; and J

P ?
denotes the Jacobi sum, then define (g) = #J (A, B). Greene defined hypergeo-

metric functions over I, for Ay, Ay,..., Ap, B1,Bs, ..., B, € E} and x € F, by

_ P <on) (A1X> (Anx)x(x)
Cp—1 =\ x J\Bix) \Bux ’

x€F,

A07 Al) ceey An
n+an x

By, ..., B,
where n is a positive integer. (See Chapter II, Section B for more details.)

Greene explored the properties of these functions and found that they satisfy
many summation and transformation formulas analogous to those satisfied by the
classical functions. For example, classical hypergeometric series have the following

inductive integral representation [2]

Qg, ar, y Qn I'(b, ! g, a1, y  Qp—
n+1F1 " 1 Tr| = ( ) / nFn_1 " ' : tx
bla S bn F(an)r<bn B an) 0 b17 ) bn—l
dt
(L=t ———
Hi—1)

where I'(z) denotes the Gamma function defined by

F(x):/ tre_t@.
0 t



The analogous to this result in the finite field case is

Theorem A.1 ([12] Theorem 3.13). For characters Ag, Ay, ..., Ay, By, ..., B, of F

and x € I,

AOa A17 ) An Aan —1 AOa A1> SRR An—l
n+1Fn X = T() Z nanl ry

B17 SR Bn y€eFp B17 te Bn—l

) An(y)A_an(l —y).

These similarities generated interest in finding connections that hypergeometric
functions over finite fields may have with other objects, for example elliptic curves. In
recent years, many results have been proved in this direction and as expected, certain
families of elliptic curves are closely related to particular hypergeometric functions

over finite fields.

Consider the two families of elliptic curves over I, defined by

Eit):y*=x(x—1)(x—1t), t#0,1

Ey(t):y? = (z - 1)(2* +1), t#0,—1.
Then, define the traces of Frobenius on the above families by

ai(p,t) =p+1—#E(t)(Fp)

as(p,t) =p+ 1 — #E5(t)(Fp)

where, for i=1,2

HE(D)(F,) = #{(2,y) € E(t) : 2,y € F,} U (P}



denotes the number of points the curve E;(t) has over the finite field F,, with P =
[0 :1: 0] being the point at infinity. Denote by ¢ and e the quadratic and trivial

characters on F respectively, i.e., for a € F;

1 if 2% = a is solvable in F,
P(a) =

—1 if 22 = a is not solvable in F,

is the Legendre symbol, and

e(a) = 1.

Then, the families of elliptic curves defined above are closely related to particular
hypergeometric functions over F,. For example, o F}[¢, ¢; €|t] arises in the formula for
Fourier coefficients of a modular form associated to Ei(t) [15, 20]. Further, Koike

and Ono, respectively, gave the following explicit relationships:

Theorem A.2 ((1) Koike [15], (2) Ono [20]). Let p be an odd prime. Then

1. fort#0,1:
p2Fi ” (bt = —¢(—=1Dai(p, 1)
B
2. fort+#0,—1:
2|7 e | S oot —p)
g, €

In addition, Frechette, Ono, and Papanikolas [8] gave relations between counting
points on more general varieties over I, and hypergeometric functions over finite

fields. For p and odd prime and k£ > 4 even, define three sequences of varieties U,



Vi, and Wy by

k—2

Uy y® = [ [ = 1) +1),

i=1

k—2
Vi iy? = Hazl(xz —1)(x; — 1),
i=1

k—2
W y* = sz(xl —1)(z; — t?).
i=1

Then, the number of points in Uy(F,), Vi(F,) and W(F,) are directly related to
values of certain hypergeometric functions over F,. In fact, they are related to the
number of points in E)(F,) and Es(F,) which, by Theorem A.2, are related to the
hypergeometric functions. Specifically, they showed that:

p—2

HUF,) =P + 24> ax(p 1),
t=1
p—1

HVe(F,) =p 7 + 24> ai(pt)* 2,

t=2

HW,(F,) = ’“+3+Z + (1) ar(p, 1)

t=2

Motivated by these types of results, we have explored more relations between

hypergeometric functions over finite fields and counting points on varieties over finite

fields.



CHAPTER II

PRELIMINARIES

A. Multiplicative Characters

Let p be a prime and let [F, be a finite field with ¢ elements, with ¢ = p” for some
positive integer r. We will denote by Fy the multiplicative group of Fy, i.e., Fy =
F, — {0}. Recall that [Fx is a cyclic group of order ¢ — 1. A multiplicative character
on FX is a map x : F — C* that satisfies x(ab) = x(a)x(b) for all a,b € FY, in
other words, x is a group homomorphism. It is often useful to extend the domain of
definition of a multiplicative character x to all F, and we do this by defining x(0) = 0.
Throughout, we let € denote the trivial character defined by the relation e(a) = 1 for
all a € F . Also, recall that the multiplicative characters on Fy form a cyclic group
of order ¢ — 1 which will be denoted by ]ﬁq;. Now we state the orthogonality relations
for multiplicative characters, of which we will make use in Chapter III. For proofs of

these properties and more information on multiplicative characters see Chapter VIII

of [13].

Lemma A.1. Let x be a multiplicative character on F . Then

qg—1 ify=c¢

(@) > x(z)=
z€Fy 0 if x #e¢
g—1 ifx=1

(b > x(@) =
XE]P:q; 0 ifl‘#l.

\



B. Hypergeometric Functions over F,

The theory of hypergeometric functions over finite fields was developed by Greene
[12] in the 1980s. As above, let p be an odd prime and and let F, denote the finite

field with ¢ elements where ¢ = p" for some positive integer 7.

Definition B.1 ([12] Defn. 2.4). For A, B € ﬁq;, let J(A, B) denote the Jacobi sum
J(A, B) =3, cp, A(x)B(1 — x). Then define the binomial coefficient

(g) = B(q_l) J(A,B Z A(z)B(1 — z)

z€ly

where x is defined by yx = ¢ for x € ﬁq;.

Greene defined Gaussian hypergeometric functions over I, in the following way:

Definition B.2 ([12] Defn. 3.5). For characters A, B,C € Iﬁq; and z € IF,

More generally, Greene proved the following theorem which connects these func-
tions to Jacobi sums, and extended the previous definition to a higher number of

multiplicative characters.
Theorem B.3 ([12] Theorem 3.6). For characters A, B,C € Iﬁq; and x € Fy,

J-as s @) Ee

—

XEFq

A B
C

2F1

This leads to the following definition.



Definition B.4 ([12] Defn. 3.10). Let n be a positive integer. For z € F, and
characters Ag, A1,...,A,,B1,Bsy,....B, € Iﬁq;, define the hypergeometric function
over F, by

A07 A17 te An
n+1Fn

=gt 2 () (e
B, ..., B, ¢—1—=\ x /\Bix Bnx
x€Fq
A comprehensive introduction to these functions can be found in Greene’s paper
[12], where he presented many properties and transformation identities they satisfy.

One transformation that is of interest to us is presented in the next theorem, and it

allows to replace the arguments A, B € Iﬁq; by A, B respectively.

Theorem B.5 ([12] Theorem 4.4). If A, B,C € Iﬁq; and x € Fy, then

A B _ CA, CB
2F1 T :C<—1>CAB(1—JI)2F1 T
C C
+ A(-1) b 61 —x) (2.2)
ac ! '
1 ifz=0
where §(z) =

0 ifx 0.

In particular, when A and B are inverses of each other and C' = ¢ we get the

following result.

Corollary B.6. Let A € FY and = € F,\{1}. Then

A A A A
2 F1

T :2F1 X

9 9

Proof. Just notice that, since x # 1 then the last term in the right hand side of 2.2

vanishes, and AA(1 — ) = 1. O
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C. The Zeta Function of a Variety

In this section we introduce the Zeta function of a projective variety, which is a
generating function for the number of solutions of a set of polynomial equations
defined over a finite field F,, in finite extension fields F,» of F,. In this way, we

collect all the information about counting points into a single object.

Again, let p be an odd prime and and let F, denote the finite field with ¢ elements
where ¢ = p” for some positive integer r. Let V be a projective variety, so V is the
zero-set

fi(zo, ..., xn) == flzo,...,xn) =0

of a collection of homogeneous polynomials with coefficients in F,. Denote by V(IFn)
the set of points of V with coordinates in Fjn, where F,n is the field extension of

degree n of IF,.

Definition C.1. The zeta function of V/F, is the power series

n
n=1

o0 Tn
Z(V/F;T) :=exp (Z #V(Fyn) ) € Q[T
(Here if F(T) € Q[[T]] is a power series with no constant term, then exp(F(T)) is
the power series > ) F(T)"/i!). Thus, the zeta function Z(V/F,;T) associated to
V contains all the information concerning the number of points of V over each field

extension of F, of finite degree. Notice that, once we know Z(V/F;T), it is not hard

to recover the numbers #V(F;») by the formula

1 dar
#V(F) = mﬁlog Z(V/[Fg;T) L

In 1949, André Weil [27] made a series of conjectures concerning the number of points

on varieties defined over finite fields. In what follows, we state Weil’s conjectures and
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apply them to algebraic curves.

Theorem C.2. (Weil Conjectures). Let F, be the field with q elements and V/F, a

smooth projective variety of dimension n.
1. Rationality
Z(V/FT) € Q(T).
2. Functional equation: There is an integer € (the Euler characteristic of V) so

that
ZV[Ri1/q"T) = % T Z(V R ;).

3. Riemann Hypothesis: There is a factorization

oy PUT) - Poua(T)
Z(V[Fg;T) = Po(T)Py(T) - - Po(T)

with each Py(T) € Z[T]. Further, Po(T) =1 =T, Py,(T) = 1 — ¢"T, and for

1<i<2n-—1, P(T) factors over C as

J
The polynomial P(T) := [, Py_1(T) is called the L-polynomial of V.
Weil proved these conjectures for curves and abelian varieties, and Dwork [7] in

1960 established the rationality of the zeta function in general. In 1973 Deligne [6]

proved the Riemann hypothesis.

Applying these conjectures to a smooth projective curve V of genus g defined

over [F;, we obtain that

(1— ayT)(1—@iT) - (1 a,T)(1 — 5T)

-1 —47) (23)

Z(V[Fy;T) =
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where |o;| = /q for all i = 1,...,g. Notice that in this case we have a beautiful

formula for counting points on V over [Fy», namely

HV(EFp) =q"+1=> (o +a;") (2.4)

We will make strong use of formulas (2.3) and (2.4) applied to a particular families

of curves to prove the results in Chapter III and IV.
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CHAPTER III

HYPERGEOMETRIC FUNCTIONS OVER FINITE FIELDS AND ALGEBRAIC
CURVES

A. Counting Points on Families of Curves over Finite Fields

We consider the problem of connecting the number of points that certain families
of curves have over finite fields to values of particular hypergeometric functions over
finite fields. Troughout, let F, denote the finite field with ¢ elements, where ¢ is some
prime power. We start with a result that allows to count the number of solutions of

a particular equation by using multiplicative characters on F,,.

Lemma A.1. Let ¢ be a prime and a € F,\{0}. If n|(¢ — 1) then

#HaeF,a"=a} = Y x(a)

X"=e

where the sum runs over all characters y € ﬁq; of order dividing n.

Proof. We start by seeing that there are exactly n characters of order dividing n. Let
X : F; — C* be a character such that x" = ¢ and let g € F be a generator. Since

" = ¢, the value of x(g) must be an nth root of unity, hence there are at most n

X
such characters. Consider y € ﬁq; defined by x(g) = €™/ (i.e. x(g*) = ¥/, It
is easy to see that y is a character and e, y, x?,--- , X" ! are n distinct characters of

order dividing n. Therefore, there are exactly n characters of order dividing n.

Now let a # 0 and suppose that 2™ = a is solvable; i.e., there is an element b € F,

such that b" = a. Since x" = ¢ we have that x(a) = x(b") = x(b)" = 1. Thus

d x(a)=>Y 1=n

ana Xn:{_:



14

Also notice that in this case, #{x € F, : 2" = a} = n because if 2" = a (mod q)
is solvable then there exist exactly ged(n, ¢(q)) solutions, where ¢ denotes the FEuler
function. But since ¢(¢) = ¢ — 1 and n|(q — 1) it follows that ged(n,q — 1) = n (for

a proof of this result see [13] Proposition 4.2.1).

To finish the proof we need to consider the case when 2™ = a is not solvable, in
which case #{z € Fy : 2" = a} = 0. Call T := }_ .__x(a). Since 2" = a is not
solvable, there exist a character p such that p" = ¢ and p(a) # 1 (take p(g) = e*™/"
where < g >=F). Since the characters of order dividing n form a group, it follows

that p(a)T = T. Then (p(a) — 1)T = 0 which implies that 7" = 0 since p(a) # 1. O

Similar to the results given in Chapter I, the main theorem of this chapter pro-
vides an explicit relation between the number of points on certain family of curves

over finite fields and values of particular hypergeometric functions.

Theorem A.2. Let a = m/n and b = s/r be rational numbers such that 0 < a,b < 1,
and let z € F,, z # 0,1. Consider the smooth projective algebraic curve with affine
equation given by

Céa’b) . yl _ tl(l—b)<1 . t)lb(l . Zt)la
where | := lem(n,r). If g =1 (mod [) then:

_ il(l1—a il(1—b
-1 q( )’ 77q( )

#HCD(Fy) = g+ 1+ ¢ > _m(=1) 25 z (3.1)
=1 15

where 1, € Iﬁq; s a character of order [, and #Cﬁ“”’) (F,) denotes the number of points

that the curve Cg“’b) has over F,.

Proof. To simplify the notation, we will denote the curve ¢\ = ¢,. Since ﬁq; is a

cyclic group of order ¢ — 1 and /|(q — 1) there exists a character 7, € Iﬁ‘} of order [.
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Recall that C, is a projective curve, so adding the point at infinity we have
#C.(Fy) =14 ) #{y € Fyry =001 —0)"(1 - zt)}
teF,
Breaking the sum and applying Lemma A.1 we see that:
#C.(Fy) =1+ Z #{y € Fy: yl = tl(l_b)(l - t)lb(l - Zt)la}
teF,
tl(l*b)(l_t)lb(l_zt)la7£0
+#{t e F 001 — ) (1 — zt)l* = 0}
-1
=1+ ) g1 =) (1 - zt)') (Lemma A.1)
teF, i=0

+#{t e F, #0701 —1)(1 — zt)!* = 0}.

Now, by separating the sum according to whether : = 0, and collecting the second

and last terms into a single one we have

-1
HC(F) =1+ (@A =) (1 —2t)) + > it (1 —)"(1 — zt)")

tel, telF, i=1

+#{t €T, #0791 — )b (1 — 2t)e = 0}

-1
=1+4q+ > > g -0t — zt))

teF, i=1
-1

=1+q+ Y Y @)l —t)yle1 - ). (3.2)
i=1 telF,

The last equality follows from the multiplicativity of 7, and switching the order of

summation.

On the other hand, by Definition B.2 in Chapter II, we have
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pil(i=a)  pil(1=b)
0P | 2 | = <@ D (=) X0 T~ (1 2
5 t€F,
_ €< zl(l b anl (1— b 1lb 1 t) nila(l _ Zt)
teF,
(3.3)
Since z # 0, combining (3.2) and (3.3) we get the desired result. O

In he proof of Theorem A.2 we applied Lemma A.1 which requires for ¢ to be a
prime number in a particular congruence class modulo /. However, Theorem A.2 is

valid over any finite field extension F  of F; as we see in the next Corollary.
Corollary A.3. With same notation as in Theorem A.2, we have that

1—1 il(l1—a) il(1-b)
; n n
#OD (Fp) = ¢ + 14+ ¢" Y f(-1)aFr | E

—

where Mg € IFqu 1s a character of order .

Proof. Again, denote the curve by C,. First notice that Iﬁi is a cyclic group of order
¢* — 1. Then, if /(g — 1) it also divides ¢" — 1, hence there exists n, € Iﬁ; of order [.

Next, we show that Lemma A.1 is also true over F » for any positive integer k.
The proof is almost identical. We only need to check that if a € F;k and z" = a is
solvable, then #{x € Fr : 2" = a} = n. For this recall the following two statements,

one of which was already used in the proof of Lemma A.1 (for proofs of them see [13]

Propositions 4.2.1 and 4.2.3):

1. If (a,q) = 1, then 2" = a (mod ¢) is solvable <= a?@/¢ = 1 (mod q),
where d := ged(n, ¢(q)). Moreover, if a solution exists then there are exactly d

solutions.
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2. Let ¢ be an odd prime such that ¢ { @ and ¢ t+ n. If 2" = a (mod q) is
solvable, then 2" = a (mod ¢*) is also solvable for all k¥ > 1. Moreover all these

congruence have the same number of solutions.

Then, for ¢ prime and in the case ™ = a is solvable we have
#reFp:a"=a} =#{x €Fy:2" =a} = ged(n, ¢(q)) = ged(n, g — 1) =n

since n|(q — 1). Hence, Lemma A.1 generalizes over F . The proof of the Corollary

now follows analogously to the proof of Theorem A.2.

As a consequence of Corollary A.3 we get the following result that relates the

number of points of certain curves over finite extensions of F,.

Corollary A.4. Letl be a prime, m,m’, s, s' be integers satisfying 1 < m,m’, s, s’ <1
and m + s = m' + s = 1, and consider the curves with affine equations given by
cim) syt = t"™(1 —t)*(1 — zt)™ and el Lyl = ™ (1 — 1) (1 — 2t)™ with z # 0, 1.

Then, for a prime q such that ¢ =1 (mod l) we have
#Cgm,s) (]Fqk) — #Cgm/’S/) (]Fqk)
for all k € N.

Proof. Again, we drop the dependency of the curves on the integers m,m’, s, s’ and
denote ¢™* = C, and ™) = C.. Let ng € I[*‘qu be a character of order {. If [ =2
then C, = C. since (m, s) and (m/,s’) are both (1,1). Therefore, there is nothing to

prove in this case.

Suppose now that [ is an odd prime. Then, the order of 7, is odd and so

ng(—1) = 1. Next, consider a :=m/l, b:= s/l and a’ :=m//l, V' := s/l in Theorem
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A.2. The curves defined by these values are exactly C, and C’,, hence by Corollary

A.3 and taking into account that m + s = [ and m’ + s’ = [, we have

-1 i(l-m) im
My "o
HC(Fy) = (¢ +1) =" 2R | 7 “ 2 (3.4)
=1 g
-1 =) i
k 9
HCL(Fy) = (" +1)=d"> F| 2 (3.5)
=1 g

As we can see, the exponents of the characters appearing in the hypergeometric

functions in (3.4) and (3.5) add up to 0 (mod 7). Also notice that
o #H(rt): 1<rt<l—-1,r+t=I1}=101—-1
e i(l—m)=jl—m) (modl) <= im = jm (mod ) <= I|m(i — j). Since
[ is prime and 0 < m < [, | must divide : — 5. But 1 < 1,7 <[ —1, then
il—m)=jl—m) (modl) <= i=
By these two observations, we see that the terms appearing in the RHS of (3.4) are

the same ones appearing in the RHS of (3.5), therefore we conclude that
#Cz (Fqk) = #C; (Fqk)

]

It is not hard to see that the previous result can be generalized to the case when
[ is an odd integer and (I, m) = (I, m') = 1, and the argument is the same done above.
However, the result is not true in general if we just ask for m + s = m’ + s/, as we

can see in the following example for [ =5 and m + s = 4:

o If (m,s) = (1,3) then Z(CofFyy, T) = LSHLEL ence

|#Ca(Fpq) — (114 1)] = 12



o If (m/,s") =(2,2) then Z(C'o|F11,T) = % hence

|#Cy(Fyy) — (11 4+1)| =8

19
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CHAPTER IV

THE MAIN CONJECTURE

A. Introduction

In the previous chapter we proved that we can relate, in an explicit way, the number
of points on certain curves over finite fields and values of particular hypergeometric
functions. My next interest has been to find a closed formula for hypergeometric
functions over finite fields, and more specifically, I have been interested in relating
each particular term that appears in the right hand side of sum (3.1) to the curve C,.
First, we recall some basic facts and the Riemann-Hurwitz genus formula, which is

extremely useful when trying to compute the genus of an algebraic curve.

Let K be a perfect field (i.e., every algebraic extension of K is separable). We
say that a non-constant map of curves ¢ : C; — C, is separable if the extension of
function fields K (Cy)|¢*(K(C2)) is a separable extension of fields. Also, 1 has a non-
zero degree n := deg(v) that can be defined as the number of points in a generic fiber
P~ HQ) for Q € Cy. Now, there is a finite set of points Q € Cy for which the inverse
image 11 (Q) does not have size n, we call these points the ramification points of 1,

and associated to them there is an integer called ramification index (for more details

see [9]).

Theorem A.1 (Riemann-Hurwitz genus formula). Let C; and Cy be two smooth
curves defined over K of genus g1 and go respectively. Let ¢ : C; — Co be a non-
constant and separable map. Then

291 — 2 > deg(1h)(2g2 — 2) + Y _ (ey(P) = 1)

PeCy
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where ey (P) is the ramification index of ¢ at P. Moreover, there is equality if and
only if either char(K) = 0 or char(K) = p and p does not divide e, (P) for all P € C;.

Next, we apply the Riemann-Hurwitz formula to compute the genus of the

smooth projective curve C, with affine equation
C.:yf =t™(1 —1t)*(1 —2t)™ (4.1)
where [ is prime and 1 < m, s < [ such that m +s = [. For that, we consider the map
V:C, =P [riy:z]e[r: 2]

and notice that [0: 1: 0] — [1: 0]. Generically, every point in P! has [ preimages, so
the degree of this map is [. Now, the genus of P! is 0 and 1/ is ramified at 4 points,
namely P, =[0:0:1],P,=1[1:0:1,P=[2":0:1] and P, = [0: 1 : 0] the
point at infinity, with ramification indices ey (F;) = [ for all ¢ = 1,...,4. Denoting

g := genus(C, ), we obtain that 29 —2 = —2[+4(l — 1) = 2] — 4, hence g =1 — 1.

Remark A.2. The fact that the curve C, has genus [ — 1 can also be seen by noticing
that C, is a hyperelliptic curve and has model Y? = F(X) with deg(F(X)) = 2[ (see

Chapter V Theorem A.5). Hence, 2] = 2 genus(C,) + 2, therefore, genus(C,) =1 — 1.

Now, applying Theorem A.2 in Chapter III to the curve (4.1), we see that the
upper limit in the sum is the genus of the curve. Also, as we mentioned in the

previous chapter, since [ is prime and 7, € Iﬁq; is a character of order [, we have that
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ny(—1) = 1. Then,

g 18 “m
Mg 7
HC.(F)=q+1+q) B | "
i=1 €
=q+ 1+ F4(2)+ Fyu(2) + -+ Fyu(2) (4.2)
where F, ,(z) = q2F Mo Tl z
€

Notice the resemblance between formulas (2.4) and (4.2). With this similarity in
mind, we are now interested in finding relations between the terms in these formulas,
i.e., relations between the F; ;(z) in formula (4.2) and the «; (2) + @i4(2) in formula

(2.4).

B. The Main Conjecture

As we mentioned in the previous section, we want to relate the terms F; ,(z) in formula
(4.2) to the a; 4(2) + @ig(2) in formula (2.4). Denote a;4(2) = a; 4(2) + @iq(z). We
state next our main conjecture, and in the next sections we prove it in some particular

cases.

Conjecture B.1. Let [ and ¢ be odd primes such that ¢ =1 (mod [) and let z € F,,

z # 0,1. Consider the smooth projective curve with affine equation given by

Coms) .yl = #™(1 — £)5(1 — 2t)™

z

where 1 < m, s < [ are integers such that m 4+ s = [. Then, using the notation from

previous section and after rearranging terms if necessary

Fiq(2) = —a;4(2) forall 1 <i<yg.
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The previous conjecture gives a closed formula for the values of some hypergeo-
metric functions over finite fields in terms of the traces of Frobenius of certain curves.

In the next two sections we prove the conjecture for particular values of the prime .

C. Proof of Conjecture for [ = 3

Throughout this section fix [ = 3 and let ¢ be a prime such that ¢ =1 (mod 3). Let
z €, z# 0,1, and consider the smooth projective curve with affine equation given
by

C2 : g = (1 — )31 — 2t) (4.3)

z

Denote CM = C.. The idea will be to show that the L-polynomial of the curve C, is
a perfect square, and from that and formulas (2.4) and (4.2) conclude that the values
of the traces of Frobenius must agree with the values of the hypergeometric functions,

up to a sign.

Recall that, by the Riemann-Hurwitz formula, C, has genus 2. Now, every curve

of genus 2 defined over F, is birationally equivalent over F, to a curve of the form
C:Y?=F(X) (4.4)

where

F(X)=fo+ X+ X+ + f6X° € F [X]

is of degree 6 and has no multiple factors (see [5]). This identification is unique up

to a fractional linear transformation of X, and associated transformation of Y,

aX +0b eY
Y-
cX +d (cX +d)3

—

(4.5)

where

a,b,c,d € Fy, ad—bc#0, ecF;.
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In our particular case we have

Lemma C.1. The curve C, : y* = ¢(1 — ¢)*(1 — zt) is birationally equivalent to
C:Y?=X%+2(1-22)X%+1. (4.6)

Proof. We begin by translating ¢ — 1 — ¢, so the double point is now at the origin.
We get:
Cay:y* =1 -1 —2(1—1)

= (1 - 2)* + (22 — 1)t* — 2",
Since z # 0, multiply both sides by 27! and define
Golt,y) = (1 — 27t

Gs(t,y) =271y = (2= 271
G4(ta y) = t4'
Then, each G; is a homogeneous polynomial of degree i in F,[¢, y] and C, is birationally

equivalent to

C(l) : GQ(tv y) + G3(t7 y) + G4(t7 y) = 0.

Next, put y = tX and complete the square to get:

Co:0=t"+("'X*+27"=2) + (1 — 27

D C I 2)2

24+ (1 — 2792
y +(1-27)

1 2
— (t2 + §(z—1X3 S 2)t) _ !

Multiply by 4 (char(F, # 2)) and divide by ¢* to get that C, is birationally equivalent
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to

C:Y?=F(X)

where

Y =2G,(1, X)t + G3(1, X)
F(X) = G3(1,X)* — 4G5 (1, X)G4(1, X)
By substituting Go, G3 and G4 in F(X), and rescaling Y — 27!V we get the desired
result, i.e., C, is birationally equivalent to

C:Y? =X04+2(1-22)X°+1.

]

In order to show that the L-polynomial of the curve C, over I, is a perfect square,
we will start by showing that the Jacobian of C,, Jac(C,), is isogenous to the product
of two elliptic curves, i.e., that the Jac(C,) is reducible. To do that, it is convenient to
find a slightly different model for our curve as we can see in the next criterion. First,

we need to introduce the concept of equivalent curves.

Definition C.2. We say that two curves Y? = F(X) are equivalent if they are
taken into one another by a fractional linear transformation of X and the related

transformation of Y given by (4.5).

Theorem C.3 ([5] Theorem 14.1.1). The following properties of a curve C of genus

2 are equivalent:

1. It is equivalent to a curve
Y2 =X+ X+ X%+ (4.7)

with no terms of odd degree in X.
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2. It 1s equivalent to a curve
Y? = G (X)Ga(X)Ga(X) (4.8)

where the quadratics G;(X) are linearly dependent.

3. It 1s equivalent to

Y2

X(X —1D)(X —a)(X =b)(X —ab) (4.9)
for some a,b.
If one (and so all) of the previous conditions is satisfied, the Jacobian of C is reducible.

There are two maps of (4.7) into elliptic curves
51 . Y2 :C3Z3+0222+01Z+CO (410)
with Z = X2 and
52 ZV2:C()U3+01U2+CQU+03 (411)

with U = X2,V = Y X73. These maps extend to maps of the Jacobian, which is
therefore reducible (see [5]).
Hence, to apply Theorem C.3 we find a different model for C,. In particular we

will put our curve in form (4.7).

Lemma C.4. The curve (4.6) is equivalent to the curve
Y2=(1-2)X+32+2)X*+383—2)X*+ 2. (4.12)

Proof. Consider the fractional linear transformation given by

X+1
X—
X1
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2Y

YR

]

Combining Lemma C.4 and the observation at the end of Theorem C.3, we find

two maps from (4.12) to the elliptic curves

E1.: Y (1—-2)22 4302+ 2)2°+3(3—2)Z + 2 (4.13)

E, V=202 4+3B3-2)U*+32+2)U+ (1 - 2) (4.14)

Notice that & . and &, have discriminant 6912z(1 — z), which is non-zero since

z # 0,1. Also, after rescaling, we can write

E1.:Y? 1 22 +32+2) 22 +33 - 2)(1—2)Z + 2(1 — 2)? (4.15)
and

En  V2=U?+3(3—2)U? +3(2+2)2U + (1 — 2)2* (4.16)

As we mentioned above, the existence of these two maps implies that Jac(C,)
is isogenous to &, x & .. Next, we see that these elliptic curves are not totally
independent of each other. In fact, one is isogenous to a twist of the other as we see

in our next result.
Proposition C.5. The curve & , is isogenous to the twisted curve (Es.)_3.

Proof. Consider the equation for the twisted curve (&,)_s:

(E0.) 3 :V2=U?-9(3 —2)U* +27(2+ 2)2U — 27(1 — 2)2° (4.17)
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Define ¢ : &, — (&;,)—3 such that ¢[0:1:0] =[0:1:0] and

. [*+ A+ Br+C (P+Di*+Ex+F)y
plr:y: 1] = GrGoD)e G+ 1) 01 (4.18)

A=9
B=3(1-2)(z+9)
C=(27—-2z2)(z—1)2
where

D=3(z-1)

E=3(2+15)(z — 1)

F=(z—81)(z—1)>

One can check by hand or with Maple for example, that the map ¢ is well defined

and gives an isogeny between the two curves. ]

Denote by L(C,/F,,T) the L-polynomial of C, over F,. Recall that we want to
show that, for ¢ =1 (mod 3) we have L(C,/F,,T) = (14 aT + qT?*)? for some a € R.

So far, we have seen that
L(C.JF,, T) = (14 a14(2)T + qT*)(1 + ag,(2)T + qT?)

where a;,(2) and as4(2) are the traces of Frobenius on the curves & , and &, re-
spectively. Therefore, we need to show that a;,(z) = ag4(2), or equivalently, that

#& ,(F,) = #&.(F,) for ¢ =1 (mod 3). This is the statement of our next result.

Corollary C.6. Let q be a prime such that ¢ =1 (mod 3). Then

#5172 (Fq) = #52,z (Fq) .

Proof. Fix ¢ in the conditions of the corollary. Let a1 ,(z) and as4(z) be the traces
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of Frobenius on the elliptic curves &; . and &, , respectively, i.e.
#E1.(Fy) = q+1—a14(2)
#E . (Fy) =q+1—as,(2)
Since (&s,.)—3 is a twist of &, we have
-3
#(E22)-3(Fg) =1+ ¢ — v (2,4(2)

where (E) is the Legendre symbol.

Now, by Proposition (C.5) we know that

#(&1,2)(Fy) = #(E2,2) -3(Fy)

hence
Gq(2) = (?) ary(2).

To finish the proof, it only remains to see that (%) = 1 for all primes ¢ =1 (mod 3).

Since the Legendre symbol is completely multiplicative on its top argument, we can
decompose <;3> = (;1) <§> Also
q q q

(_1) _ (1) 1 ifg=1 (mod4) (419)

—1 if g=3 (mod 4).

q

and

= (—1)l@tn/6] = (4.20)
-1 if ¢=5,7 (mod 12).

(3) 1 if ¢g=1,11 (mod 12)
q

We will divide the analysis in cases. First notice that since ¢ = 1 (mod 3) then ¢

must be congruent to either 1 or 7 (mod 12).
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e Suppose ¢ = 1 (mod 12) and therefore (g) = 1 by (4.20). Also, since ¢ = 1
(mod 12), we have that ¢ = 1 (mod 4), hence (%) = 1 by (4.19). Then
(%) = 1 as desired.

e Suppose ¢ = 7 (mod 12), then (%) —1. Also, in this case ¢ = 3 (mod 4),

and so (%) = —1, giving that (f’) =1 as desired.

Hence

#&1.(F,) = #&.(F,) forall g=1 (mod 3).

We have now all the necessary tools to complete the proof of Conjecture B.1 for

the case when [ = 3.
Theorem C.7. Conjecture B.1 is true for | = 3.

Proof. First notice that when [ = 3 we have two different cases to consider, namely
the curves with (m,s) = (1,2) and (m, s) = (2,1). However, by Chapter III Corollary
A .4 these two curves have the same number of points over every finite field extension
of F,, therefore they have the same zeta function over F,. Also, the hypergeometric
functions that appear on the right hand side of equation (3.1) are the same for both
curves. Because of these, it is enough to prove that the conjecture is true for one of
these curves, say C, : y® = t(1 — t)?(1 — zt). As above, write the zeta function of C,

as

(1= a1g(2)T)(1 = a1,4(2)T)(1 = 3(2)T) (1 = ag4(2)T)

_ (1 —a14(2)T + qT?)(1 — ag4(2)T + qT?)
(1-=T)(1—qT)

where a;4(z) = a;4(2) + @4(2). Using the same notation as in equation (4.2), we
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have that

Fig(2) + Fog(2) = =(a14(2) + a2,4(2)) (4.21)

Recall that Fy 4(z) = oF1[n7,1g; €]2] and F4(2) = 2Fi[ng, n7; €| 2], therefore, Corollary
B.6 in Chapter II implies that F ,(z) = Fy,(z). Also, as we have seen in Corollary

C.6, a1 4(z) = as4(2), Hence, (4.21) becomes
2F) ,(2) = —2a14(2)

S0 a1,4(2) = —F14(%) and ag4(2) = —F4(2), proving the conjecture for [ = 3. O

D. Proof of Conjecture for [ =5

Our next objective is to prove that Conjecture B.1 also holds when [ = 5. The proof
has some ingredients in common with the previous case, however is not completely
analogous and requires some different techniques as we will see.

Consider the smooth projective curve with affine model
C.:y° =t(1 —t)*(1 — zt) (4.22)

over a finite field F, with ¢ prime, ¢ =1 (mod 5) and z € F,\{0,1}. Notice that, by
performing the same transformations done in Lemma C.1 and the fractional linear

transformation
X+1
X ==
X1
2Y

e

on the curve (4.22) we get the following result.
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Lemma D.1. The curve C, : % = (1 — t)*(1 — zt) is equivalent to the curve

C:Y?=(1-2)X"4(20+52) X5+ (110 —102) X®+ (1004 102) X* 4+ (25— 52) X? + 2.
(4.23)

Define the curves H; . : y* = f(x) and Ha. : y* = g(x) where

flx) = (1-2)2° +(20+52)2* + (110 — 102)2” + (100 + 102) 2> + (25— 52)x + 2 (4.24)

g(7) = 22”4+ (25— 52)2* + (100 + 102) 2z + (110 — 102) 2 + (20 +52)z + (1 — 2). (4.25)

Then, by the same argument in the previous section, we can find two maps from
C to Hy. and Hs ., and extending these maps to the Jacobians of the curves, we
conclude that Jac(C) is isogenous to Jac(H; .)x Jac(Hz ). We start by showing that
the L-polynomial of C, over F, with ¢ = 1 (mod 5) is a perfect square. First, we

recall some results about abelian varieties.

Let k be a perfect field, which will eventually be finite. Recall that an abelian

variety over k is a subset of some projective n-space over k which
1. is defined by polynomial equations on the coordinates (with coefficients in k),
2. is connected, and

3. has a group law which is algebraic (i.e., the coordinates of the sum of two points

are rational functions of the coordinates of the factors).

We say that an abelian variety over k is simple if it has no nontrivial abelian subva-

rieties. We have the following result.
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Theorem D.2. (Poincaré-Weil) Every abelian variety over k is isogenous to a prod-

uct of powers of nonisogenous simple abelian varieties over k.

Consider C, : y®> = t(1 — t)*(1 — zt) over the algebraically closed field Q and
let ¢ := e*/® be a fifth root of unity. Then the map [(] : C, — C. defined by
[C](t,y) = (t,Cy) defines an automorphism on the curve C,. Denote J, := Jac(C,) and
Ji» = Jac(H,; ), for i = 1,2. The automorphism [(] induces a map from J, to itself,
hence

[(] € End(.J,).

On the other hand, as we mentioned above, we can find an isogeny over Q
¢ : Jl,z X JQ’Z — Jz'

Applying ¢ we get
(b(t]l,z) g Jz

where J; , here denotes J; , x {0}. Similarly

¢(J2,z) g Jz-

We also have
Kl(o(Ji2)) € Je

fori=1,2.

Consider now the curve y° = t(1 — t)*(1 — zt) defined over Q(z). We can apply
to this curve the same argument we did before, and we can see that J; ., are simple
abelian varieties over Q(z). Otherwise, if .J; . is isogenous to the product of two elliptic

curves, then, for all z the L-polynomial would have two quadratic factors, which is

not the case. (See example in section E at the end of this chapter). Therefore,



34

we have ¢(.J; ) and [(](¢(J1,)) two simple abelian varieties inside J,. By Poincaré

complete reducibility theorem, we have that either ¢(J; ) N [C](¢(J1)) is finite or
¢(Jl,z) = [C](¢<J1,z))

e Case 1: ¢(J1.) N[C](¢(J1,2)) is finite.

In this case, by dimension count we have

[C]((b(Jl,z)) + (b(‘]l,z) = Jz-

Then, since ¢(J; ) and ¢(Jo.) are simple abelian varieties, the Poincaré -Weil

Theorem implies that
[C1(¢(J12) = &(Ja2)

over Q(¢), where ~ denotes isogeny. Notice that this isogeny will exist over
any field containing a fifth root of unity, therefore, finite fields F, with ¢ = 1
(mod 5) are fine. Then, we get that [(](¢(J1.)) is isogenous to ¢(Jy ) over F,
for g =1 (mod 5).

o Case 2: [(J(¢(/1.2)) = &(J12)-
For this case, we recall first some facts about abelian varieties (for details see
[16] or [18]). Suppose A/k is a simple abelian variety of dimension g, and denote
A := Endg(A) ®z Q. Then, Poincaré’s complete reducibility Theorem implies
that A is a division algebra. Also, from the theory of division algebras we know
that the dimension of a division algebra over its center is a perfect square, hence,
if K ={x € A:xa=ax for all a € A} is the center of A, we have [A : K] = d*
for some integer d. On the other hand, if [K : Q] = e then de|2g, moreover, in

characteristic zero, we have that de|2g.

Now that we have reviewed the results we need we can go back to case 2. In
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this case, let A := End(¢(J;.)) ®zQ and K be its center. Applying the results
above, we can assume that [A : K] = d? and [K : Q| = e, for some integers d
and e. Since the dimension of ¢(.J;.) = 2 and char(Q(z)) = 0, we have that
d*el4.

By assumption, we have that

[€] € End((/1.)),

hence

Q(¢) € End(¢(J1,.)) ®z Q := A.

Now, we have

and
[A: Q4.
Therefore, 4 = 4[A : Q(¢)], hence

Q¢) =A

i.e., End(¢(J;.)) ®z Q is a field of degree 4 over Q.

Recall the following definition.

Definition D.3. A totally imaginary quadratic extension of a totally real field

is called a CM field (Complex Multiplication).

Then, A is a CM field, since it is equal to Q(¢) and every cyclotomic field is a
CM field (Q € Q(¢, <) € Q(())-
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Theorem D.4 (Shimura [17]). Let k be a field of characteristic zero. Over k
there do not exist non-constant families of abelian varieties with full CM (i.e.,

the endomorphism ring has mazximal dimension).

However, our family ¢(.J; .) is non-constant, as it can be computationally checked

with Magma using Igusa invariants.

Therefore, only case 1 is possible, and we have

We now state and prove our theorem.

Theorem D.5. Conjecture B.1 holds for | =5 over F,, for a prime ¢ =1 (mod 5).

Proof of Theorem D.5. By the same argument done in the proof of Conjecture B.1
for [ = 3, it is enough to prove the conjecture for the curve C, : 3° = t(1 —t)*(1 — 2t).
Also, by the previous argument, then the L-polynomial of C, is a perfect square,
i.e., we can assume, after rearranging terms if necessary, that a; ,(z) = a44(2) and

a2,4(2) = asq4(z). We can write then

(1 —ay(2)T + qT?)*(1 — ax(2)T + qT?)?
(1-=T)(1—qT)

Z(C.[Fy;T) =

By Corollary B.6 in Chapter II, we know that F ,(2) = Fy,(2) and Fb4(2) = F;4(2).

At the end, we get that

—(a1,4(2) + a2,4(2)) = Fr4(2) + F3,4(2). (4.26)

We want to prove that —a; ,(z) = Fi4(2) and —aq4(2) = Fo4(2). Recall, from (2.4)
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that

—(a14(2)* = 2q + a2 4(2)* — 29) = Fy 2(2) + Fyp2(2). (4.27)

Also, keep in mind that for the hypergeometric functions F} , and F, , we are choosing

a character 7, € ]ﬁq; of order 5, and for the hypergeometric functions F 2 and F .

the character we are choosing is in IFZQ, also of order 5.

Claim 1. It is enough to show that

Fyp2(2) = —Fig(2)* +2¢ (4.28)

fori=1,2.

Proof of Claim. We will write a; 4 := a;4(2) and F; v := F, (2) for i,k = 1,2 . If

(4.28) is true, from (4.26) and (4.27) we get the system of equations in a; , and ag,

—a1q— Q24 = F1 g+ Foy
2 2 _ 12 2
14 + a4 = FLq + F27q‘

which is equivalent to

—a1q — G4 = P14+ Fo4

al,qalq = Flqu27Q‘

hence, a1, = —Fi, and az g = —Fh,. O

Continuing with the proof of the conjecture for [ = 5, it only remains to show that
(4.28) holds. For that, let’s start by writing explicitly the functions we have on the

4
left and right hand side of (4.28). We start with F} , = Fy, = 115F; o> Tla z

3

The other case will be the result of a similar argument.
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FP,= > mi(ay) ng((1—2)(1 =) my((1 — z2)(1 — 2y))

= > nks) Y (1= 2) (1 = 5/2)) (L — z2)(1 = 25/x))  (ay = s)
- Z 77;1(5> Z Nyl —x—s/z+s) 77;1(1 —z(x+s/x) + 225),

On the other hand, define y € IEq;Q such that y := 7,0 N];F:Q, ie., for a € Fp,
x(a) = nq(NH;F;Z (a)) = n,(ad™!), where N]IFF:Q denotes the norm from Fp. down to F,.
Since N];quz (a) € Fy for all o € Fp2 then x is well defined and it actually defines a
character of F; (see [13] Chapter 11).. Moreover, since the order of 7, is 5 then
the order of xy must divide 5. But if z € F, then N§;2 () = 9%t = 22, therefore
X|r, = 77q2 # . Then x € IE/‘q% is a character of order 5. We choose this character for

our computations and we have

ZX (1 —e)x*(1 — zc)

celF 2
= > (e g (1= )T (1 = z0)7H)
ceIqu
_ Z 4 o a1 2
= 1,(s) Z Ng(l1 —a—s/a+s)n,(1 —2(a+s/a)+ 2%s)
seFy aEF:Q, adtl=s

where the last equality follows by putting ¢?™ = s and noting that, since char(F,) = ¢

and a?t! = s then

1-a)™=1-a)(1-a)=(1-a)(l-a)=1-a—al+a’™ =1—-a—s/a+s.
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A similar computation gives that
(1—z20)"" =1~ z(a+s/a) + 2%s.

For s € F define h : F); — Fg2 such that h(t) = ¢ + s/t and let f and g be the
restrictions of h to the sets F) and N7 (s) := {a € Fp2 : a9%! = s} C I, respectively,
ie.,

f=hlpx :Fy = F,
g = h‘N_l(s) . Nfl(s) — ]Fq

Notice that, if @« € N7!(s) then g(a) = a + s/a = a + o? = tr(a) € F,, hence
Im(g) C F,. Making use of these functions, we can rewrite
Fﬁq = Z 77;‘(3) Z 1y (1 —b—l—s)ng(l — bz + 27%s)
s€F) belm(f)CF,

and

Fip= Z 77;1(3) Z ne(1 =0+ s)ng(l — bz + 2%s)

seFy belm(g)CF,

Combining both equations, we have

FP 4 Fie =Y m(s) > nl—b+s)n(l—bz+2%). (4.29)

sEF some beF,

Our next and last step will be to describe over what elements are we summing in the
inner sum of (4.29). Fix s € ;. Note that h is generically a 2-to-1 map. To see this,
suppose b € Im(h), therefore there exists t € IF;2 such that t+ s/t = b, or equivalently
t2 — bt + s = 0. Hence, h is 2-to-1 except when b®> — 4s = 0, i.e., except when s is a

perfect square in F,.

e Case 1: s is not a perfect square in F.

By previous comment, we know that in this case h is 2-to-1 map. Also, is not
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too hard to show that h is surjective when restricted to the two domains [Fy
and N~!(s). Therefore, in this case every element b € Fo will appear exactly

twice in the inner sum of (4.29).

e Case 2: s is a perfect square in F.
In this case, let s = a?, then b = 2a or b = —2a. As in previous case, every
b € F, different from 2a and —2a will appear exactly twice in the inner sum
of (4.29). What about b = 2a and b = —2a? If s is a perfect square then
Im(f) NIm(g) = {2a,—2a}, hence both 2a and —2a will also appear twice in

the sum, once as part of the sum for Ff , and once as part of the sum for F g.

Summarizing we have

FR o+ Fre= > nis) > ng(1—b+s)i(1— bz + 2%)

s€Fy some belF,

+ Z 1y (5) Z Ng(1 = b+ s)n;(1 — bz + 2°s)

sEFY some beF,

(5
=2 Z 77;1(3) Z Ng(1—b+ 5)773(1 — bz + 223),
seFy belF,
(=
+2 Z ng(s) Z%(l —b+ S)T];l(l — bz + 2%s)
seFy beF,

()
=2 Z ng(s) Z ne(1 —b+ s)ng(l — bz + 2%5).

seFy beFq
To finish the proof we need to see that
Z ng(s) Z ne(1 —b+ s)ng(l — bz + 2%s) = q.
seFy bely

We begin by rewriting the inner sum in the above formula, but first recall that the
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action of GLy(F,) on F, given by

a b aw + b
Cw =
d cw—+d

c

defines an automorphism of P! (F,). Now, since n, = ¢ and 74(0) = 0 we get

1—0+s
E 4 2 E
nq(l—b+8)77q(1—bz+z 8) = nq (m)

beF, beF,
b#(z7 1 4-25)

= Z Mg (7 - b)

belF,
b#(z "1 +25)

-1 s+1
where v := . Now, dety = (z — 1)(1 — sz), therefore, since z # 1

—z 2’s+1

we see that as long as s # 27!, v defines an automorphism of P'(F,). Then, by

separating the sums according to whether s = 27! or not, we have:

Sugs) D mglyb) =Y mals) D> mgly-b)

seFy bely seFy beFq
b# (2~ +2s) s#z7 1 b# (2~ +zs)
1—b+271
4/ —
o S ()
beF,
bA(z14+1)
=A+B

where A and B are set to be the two sums appearing in the previous line. We now
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compute A and B. First we have

1—b+ 21
B = 40 —1
O e
beF,
b#(z71+1)

B z—bz+1 A —1\
- Y (R i) = m(2)
beF,
b~ 11)

Now we compute A. Since in this case the action of v defines an automorphism of

PY(F,), and since 7 - b runs over F, — {z7'} as b runs over F, — {z! + sz} we see that

A= Z 773(5) Z 1g(w)

seFy u€lFg

s#£z71 utz !
= (—ng(z_l))(—nq(z_l)) (orthogonality relations for characters)
— 5 _
=1 (nq - E)

Therefore, combining our calculations for A and B we see that

Fi, 4+ Fip=2A+B)=2q (4.30)

finishing the proof. ]
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E. Example

In this section we illustrate with an example the result of the conjecture. Consider

the smooth projective curve with affine model given by
Cs:y® =t2(1 —1)*(1 — 3t)?

over the finite field F1;. C3 is a hyperelliptic curve of genus 4, and using Magma we

can compute its zeta function. We have that

(1217* + 6672 + 2672 + 6T + 1)

Z(C3/Fu,T) = (1—T)(1— 117)

Therefore, after doing some algebra, we find the values of a;11(3) for i = 1,...,4.

6271'1'/5

Specifically, if (5 := we have

a111(3) =as11(3) = -4 — 2C§ — 2§§’

CL2711(3) = (13711(3) = -2 + 2CBQ + 2C§

On the other hand, consider the multiplicative character 1;; € Fy| defined by n11(a) :=
(5, where a is a primitive element of F}{, i.e., a generates F}, and recall that F} ;,(3) =

11, F [, m3t; e|3]. Using Magma we get

Fi11(3) = Fun(3) =4+ 2C§ + 2(53

Fy1(3) = F511(3) =2 —2¢2 — 2¢3.

Hence

Fi11(3) = —a;11(3) foralli=1,23 4.
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CHAPTER V

ADVANCES TOWARD THE GENERAL CASE

A. The Conjecture in Its Full Generality

Even though it is still work in progress to prove the conjecture in its full generality,
some advances have already been made toward it. To show these advances is the

purpose of this chapter.

Suppose now that [ and ¢ are odd primes, with ¢ = 1 (mod l), and let z €
F,\{0,1}. Recall that our conjecture relates values of certain hypergeometric func-
tions over IF; to counting points on certain curves over IF,. Recall also, that the curves

we are interested in are smooth projective curves of genus [ — 1 with affine model

Cim) syt = ™1 — 1) (1 — 2t)™

z

where 1 < m,s < [ are integers such that m + s = [. Now, as we mentioned in the
previous chapter, Corollary A.4 in Chapter III states that the curves c!™*) have all
the same number of points over every finite extension of F, as (m, s) varies over all
pairs of positive integers with m + s = [, hence they all have the same zeta function
over [F,. This, together with the fact that the hypergeometric functions that appear
on the right hand side of equation (3.1) are the same for all these curves imply that

it is enough to prove the conjecture for only one of them, say
CHl gt = (1 — )7 (1 — 2t). (5.1)
Throughout this chapter, we will denote this curve by C,.

So, the question is: what results would be enough to know in order to prove the
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conjecture for all primes [ and ¢ with ¢ =1 (mod [)? Recall that, by equations (2.4)

and (4.2) we have that

Frgn(2) + Fogn(2) - 4 Froag(2) = = ) (afty(2) + alfy(2)) (5.2)

i i(l—1
77q"7 T]q(" :

where F} n(2) = ¢" o F3 z | with ng € Fy. a character of order [, and

3

«; 4(2) are the reciprocals of the roots of the zeta function of C, over F, i.e.,

(1= 1g(2)T)(1 = a1y ()T) - (1 = w1y ()TN = a1,4(2)T)
(1 =T)(1 = ¢T) '

Z(C,JF;T) =

From now on we will omit the dependency on z of the hypergeometric functions

and the roots of the zeta function, therefore, we will denote F; jn := F; n(2) and
Qiq = a;4(z). Also, as in the previous chapter, denote a;, = a; 4 + @4, for i =
1,---,0 — 1. Since we want to relate the hypergeometric functions above with the

values a; 4, first we are going to express the values o', + o, in terms of a;, and gq.

We have the following theorem:

Lemma A.1. For a € C such that |a| = /g denote o + @ := a, and let n be a

non-negative integer. Then:

,i
|3

J
a"+a" =Y (-1)T(n,i)q a"* (5.3)

7=

o

where 7'(0,0) := 2, T'(n,0) := 1 for n > 0 and

n(n—i—1)!

Tlnd) = = =

forn > 0,1 > 0.

Proof. We will prove the result by induction on n. For n = 0 and n =1 is clear.

Now suppose the result is true for all £ < n. We want to show then that is also true
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for n + 1. Notice that

(" +a")(a+ @) =" + @ +a"a +a"a
n+1 +—n+1 _i_aa(anfl _i_anfl)

anJrl +an+1 + q<oén71 _i_anfl) (o@ — q)
Hence, since a = o + @, we have
ot @t = (@ + @) a—q@" Tt +arh). (5.4)

Combining equation (5.4) and the inductive hypothesis we have

L5] 125
ot +an+l _ Z(_l)i T(n,z) qz Q12 Z (_1)i T(n —1, Z) qi+1 qn— 12

=0 =0
n+1 + 2 zan+1—2z

Y 1T (n—1,5—-1)¢ a"% (5.5)
7=1

after breaking apart the ¢ = 0 contribution in the first sum, and making the change
of variables ¢ + 1 = j in the second sum.

Now we separate in two cases.

e Case 1: n is even.
Notice that, in this case we have that [2] = |%5] + 1. Then, equation (5.5)

becomes

ot gt — gt (n—1)
o ++Z ( n—22)+(z—1)(n—|—1—2@)>

(n—l—z) qz n+1-21
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_ n+1 +Z ’I’L+ 1 Z) qz an+1—2i

= Z (=)' T(n+1,i) ¢ a"*'~*

after replacing T'(n, k) by its definition, doing some algebra, and noticing that,

if n is even then | 2] = [%%]|. This proves the lemma for n even.

e Case 2: n is odd.
In this case we have [2] = [®7'] and [%*| = [%2] + 1. Combining these,
breaking apart the contribution of i = |7 ] 41 in the second sum, and using the

previous computation, equation (5.5) becomes

Y
ot gttt = gt Z T(n+1,i) qz n+1-2i
+ ()l (711 D —-1- L"T“J)!l gL 25 G122t
([%7]) = Din+ 1 —2[23])!
To finish the proof, we need to see that
(n—1)(n—1- %)) n+1

=T(n+1,| ). (5.6)

(%) = Dln+ 1 =2 =2 ])!
This is not a hard computation. Write n = 2m + 1 for some m € N, then
|21 | = m + 1. Substituting this in equation (5.6) we get 2 = 2 finishing the

proof for n odd.

]

Now, equation (5.2) and Lemma A.1 allow us to relate explicitly the hypergeo-
metric functions with the traces of Frobenius, giving

1—1LJ

Fign+ Fogn -+ Foig=—) 1Y T(n,j) ¢ aly ™. (5.7)
i=1 jZO

V|3
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Since in Conjecture B.1 we want to prove that F,, = —a;, forallt =1,...,1 -1,

then we have the following result.

Proposition A.2. If for all i,n=1,...,l — 1 we have that
1] ’
Fogr = (=1 Y (1Y T(n,j) ¢ Fy (5.8)
§=0

then Conjecture B.1 is true.

Proof. Assume equation (5.8) is true. Then, substituting into equation (5.7) for
n=1,...,1 —1 we get a system of equations relating sums of the hypergeometric
functions F; ;, and their powers to sums of the traces of Frobenius a; , and their powers.

After simplifying this system of equations, we get an equivalent one of the form

(

Filg+F,+ - +F_1,=—(a14+a,+ - +a-14)

2 2 2 _ 2 2 2
FilgtIag+ o+ L =aj ta,+ - Fai,

(5.9)
R o+ F -+ Fry = (1) (e, +as, + -+ aiy,)

-1 -1 -1 _ -1 -1 -1
\Flvq + F27q + T + F’lflzq - al’q + a27q + T + al*l,q'

This fact can be seen by induction. For n = 1 there is nothing to prove. Suppose

now that Ff',+ Fy,+---+FF, , = (=1)"(a} ,+ab,+...+aj ) for all k < n. Now,
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by equation (5.8) we have

(5.10)

where the last equality follows from the inductive hypothesis.
On the other hand, by breaking apart the contribution of j = 0 in equation (5.7) we

have

]

Fign 4 Fag=—(al, .o+ ay )+ 3 (1T, 5) ¢ (a2 + .. 4 af ).
1

ﬁ
|3

J

(5.11)
Therefore, combining equations (5.10) and (5.11) and noticing that (—1)?"*177 =
(—1)7"! we get

Filo4- o+ By = (=1)" (a’f,q +...+ a?_l’q)

as desired.
Next, by using the Newton-Girard formulas, which give relations between elementary

symmetric polynomials and power sums, we see that the system (5.9) is equivalent
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to .
FLq + -+ ﬂ_17q = —(al’q + CL27q + -+ al_Lq)
Zl§i<j§l71 FigFiq = Z1§¢<jng1 Qiqjq
FLq . F}fl,q =Q1,4q---QA1—14
\
i.e., the elementary symmetric polynomials in the variables F} 4, ..., Fj_; , equal (up
to a sign) the elementary symmetric polynomials in a; 4, ..., a;—1 4. Then, we can think

of these values as being roots of the same polynomial, therefore, after rearranging
terms, we have that

Fog=—-a;, foralli=1,...,1-1
and Conjecture B.1 follows. ]

Remark A.3. Notice that it is enough to prove equation (5.8) only for prime powers
of g, i.e., only for 1 <n <1 —1 with n prime. Otherwise, if n = mr then Fpn|Fm|F,
is a tower of extensions, and we can use the relation for these extensions of lower

degree.

As we have seen above, proving equation (5.8) for prime powers of ¢ would be
enough to prove Conjecture B.1 in the general case. However, equation (5.8) gets
complicated as n grows, so it would be helpful if this equation is needed for even
fewer values of n in order to prove the conjecture. This might be possible; in fact,
this is what we did to prove cases [ = 3 and [ = 5 in Chapter IV. Hence, looking at

the proofs in previous chapter, we see that

Proposition A.4. If the L-polynomial of the smooth projective curve of genus [ — 1

with affine model C, : y* = t(1 — t)'"Y(1 — 2t) is a perfect square, and equation (5.8)
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is verified for all primes n such that 1 <n < (I — 1)/2, then Conjecture B.1 holds..

Proof. Recall that
-1

L(C./Fy; T) = [ [(1 = asgT + qT?).
i=1
Hence, if the proposition is true, we would have
(-1)/2
LC./Fy;T) = ] (1= ai T+ qT?)

=1

~

therefore, after rearranging terms, we have a;, = a;_; 4, forall i =1,--- [ — 1.

On the other hand, recall that by Corollary B.6 in Chapter II the hypergeometric
functions Fj, come in pairs, ie., F;, = Fj_;4 for ¢ = 1,--- [ — 1. Hence, system
(5.9) gets reduced to half of it, having only (I — 1)/2 unknowns. Then, it is enough
to prove relation (5.8) only for primes n up to (I — 1)/2 in order to prove Conjecture

B.1. ]

Now, the question is how can we determine if the L-polynomial of C, over F, is
a perfect square. One possible way is to do an argument similar to the one done for
the cases [ = 3 and [ = 5. First, notice that we have the following result, analogous

to Lemma C.1.

Theorem A.5. The curve C, : y' = t(1 — t)'"1(1 — 2t) is birationally equivalent to
C:Y?=X*"+2(1-22)X"+1. (5.12)

Proof. The proof is analogous to the proof of Lemma C.1. [

Also, analogous to Lemma C.4, by considering the fractional linear transforma-

tion

x o At
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we see that the curve (5.12) is equivalent to a curve of the form
Y2 = Clel + lelXQ(lil) R Cle + Co

with no terms of odd degree in X, where the coefficients ¢; are polynomial equations in
z. Then, as in previous chapter, we can conclude that the jacobian of C, is isogenous
to the product of the jacobians of two curves of genus (I — 1)/2, call them H; , and

Hs, .. Therefore, by Proposition A.4, we have

Theorem A.6. Let g =1 (mod 1). If #H,.(Fy) = #Ho.(Fy) foralli=1,... (1
1)/2, and equation (5.8) holds for all primes n such that 1 < n < (I —1)/2, then

Congecture B.1 holds.

Proof. Notice that the fact that #H, . (F,i) = #Ho.(Fy) foralli =1,..., (I —1)/2
implies that the curves H; , and H; . have the same L-polynomial over [y, then, as
we mentioned above, the system (5.9) gets reduced to half of it, having only (I —1)/2

unknowns. The rest of the proof follows from Proposition A.4. O

Remark A.7. Notice that, if Proposition A.2 holds (i.e. Conjecture B.1 is true over
[F,), using Lemma A.1 we can get a result similar to Conjecture B.1 over Fyn, for

n € N.
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

The main objective of this dissertation is to find connections hypergeometric functions
over finite fields have to algebraic curves. In particular, we focused our attention to
a specific family of curves. For a = m/n and b = s/r rational numbers such that
0<a,b<1 and z € F,, 2 # 0,1 we considered the smooth projective algebraic curve
with affine equation

z

where [ := lem(n,r). If ¢ is prime and ¢ = 1 (mod /), we showed in Chapter III

Theorem A.2, an explicit formula for the number of points on cl™® over F, in terms

il(1-a) niz(kb)
of sums of hypergeometric functions o F} ! P z |, where n, € F is a

3

character of order [. Moreover, we showed that this result can be extended to any
finite extension IF» of F,. Next, we restricted our attention to the family of curves
ci*? where a = m/l and b = s/l with [ a prime and m+s = [, and showed, in Chapter

[T Corollary A.4 that, if =1 (mod I) and ¢l ) are two such curves, then
#Cga’b) (Fq’“) = #Cia/ﬂ) (Fqk)
for all £ € N.

Then, in Chapter IV, we were interested in relating each particular hypergeo-
il(1—a) 77il(l—b)
metric function oF; P z | to the curve Cé“’b’. We proved that we

3

can relate explicitly each one of these hypergeometric functions to the roots of the

zeta function of C1*? over F, for ¢ =1 (mod /) when [ = 3, and in many cases when
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[ = 5. The proof of these results involved studying properties of the Jacobian variety
associated to the curve together with relations between hypergeometric functions over
finite fields and their extensions. Based on numerical computations, we conjectured
that the previous relations between the hypergeometric functions and the roots of the
zeta function of the curve over F, hold for all prime [, and ¢ = 1 (mod [), and this is
the statement of Conjecture B.1 in Chapter IV. We are currently working on proving
Conjecture B.1 in its full generality and some progress has already been made in this
direction. These advances toward the general case are the content of Chapter V.
We plan to continue the work of the previous chapters to future research. Another
project is to study what kind of relations, maybe similar to the ones presented in this
dissertation, can be found in the case when m + s is not a prime [. We have already
started to investigate in this direction, and have collected some data that suggests
there might be some relation between the values in this more general setting. For

example, over [Fi;, consider the curve with affine equation
C.:y° =11 —1)*(1 — 2t).

Notice that in this case we are considering | = 5 and (m,s) = (1,3) in Theorem A.2

of Chapter III, so m + s # [.

e In the case that z = 2 we obtain a;11(2) = =3 and F; 1;(2) =3 forall 1 <i < 4.
This might mislead to think that the hypothesis of m + s = [ is not needed
in Conjecture B.1. However, one more computation shows that this is not the

case, as we see next.

e When z = 6, for (5 := €™/ a fifth root of unity, we obtain that
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a1,11(6) =5+ ¢+ G5 : az,11(6) =5+ ¢ + (2,
az11(6) = =5+ ¢ + ¢ , as11(6) = =5+ (5 + (5.

On the other hand, we get that

F1,11(6)=1+C5+C§) ; F2,11(6):1+§5+C527

F51(6) =1+ + ¢ 7 Fyn(6) =14 + (.

Manipulating these values we can have

F1,11(6) = —C?(al,u - 5) ) F2,11(6) = —Cs(a2,11 - 5),

F511(6) = —Cg(ag,n +5) ) Fy11(6) = —C52(CL4,11 +5).

As we can see in this example, the data suggests that some connection can be made

between these values. However, it is more subtle than the case m + s = [.

In addition to these previous ongoing projects, the problem can be generalized
even more, to finding relations when [ in Chapter I1I Theorem A.2 is any composite

number, and not necessarily a prime.
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