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ABSTRACT

G-Varieties and the Principal Minors of Symmetric Matrices. (May 2009)

Luke Aaron Oeding, B.A., Franklin & Marshall College

Chair of Advisory Committee: Dr. J.M. Landsberg

The variety of principal minors of n×n symmetric matrices, denoted Zn, can be

described naturally as a projection from the Lagrangian Grassmannian. Moreover, Zn

is invariant under the action of a group G ⊂ GL(2n) isomorphic to (SL(2)×n) ⋉ Sn.

One may use this symmetry to study the defining ideal of Zn as a G-module via a

coupling of classical representation theory and geometry. The need for the equations

in the defining ideal comes from applications in matrix theory, probability theory,

spectral graph theory and statistical physics.

I describe an irreducible G-module of degree 4 polynomials called the hyper-

determinantal module (which is constructed as the span of the G-orbit of Cayley’s

hyperdeterminant of format 2 × 2 × 2) and show that it that cuts out Zn set the-

oretically. This result solves the set-theoretic version of a conjecture of Holtz and

Sturmfels and gives a collection of necessary and sufficient conditions for when it is

possible for a given vector of length 2n to be the principal minors of a symmetric

n× n matrix.

In addition to solving the Holtz and Sturmfels conjecture, I study Zn as a pro-

totypical G-variety. As a result, I exhibit the use of and further develop techniques

from classical representation theory and geometry for studying G-varieties.
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CHAPTER I

INTRODUCTION

The problem of finding the relations among principal minors of a matrix of

indeterminants dates back (at least) 1897 when Nanson [25] found relations among

the principal minors of an arbitrary 4 × 4 matrix. In 1928 Stouffer [29] found an

expression for the determinant of a matrix in terms of a subset of its principal minors.

Subsequently, interest in the subject seems to have diminished, however much more

recently, there has been a renewed interest in the relations among principal minors

and their application to matrix theory, probability, statistical physics and spectral

graph theory. This renewed interest motivated Holtz and Sturmfels [14] to provide an

algebraic framework for the relations among principal minors of symmetric matrices,

namely, they introduced Zn, the algebraic variety of principal minors of symmetric

n× n matrices, and asked for generators of its ideal.

In the first nontrivial case, Holtz and Sturmfels showed that Z3 is an irreducible

hypersurface in P7 cut out by a special degree four polynomial, namely Cayley’s hy-

perdeterminant of format 2×2×2. In the next case they showed that the ideal of Z4

is minimally generated by 20 degree four polynomials, but only 8 of these polynomials

are copies of the hyperdeterminant found by natural substitutions. The geometric

meaning of the remaining polynomials was somewhat mysterious. Because of the

symmetry of the hyperdeterminant, Landsberg conjectured, and Holtz and Sturmfels

showed, that Zn is invariant under the action of G ∼= (SL(2)n) ⋉ Sn ⊂ GL(2n) [14].

Holtz and Sturmfels named the span of the G-orbit of the hyperdeterminant the hy-

perdeterminantal module. It was then understood that the 20 degree four polynomials

The journal model is Representation Theory.
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are a basis of the hyperdeterminantal module when n = 4. This interpretation led to

the following conjecture.

Conjecture I.1 (Conjecture 14 [14]). The prime ideal of Zn, the variety of principal

minors of symmetric matrices, is generated in degree four by the hyperdeterminantal

module for all n ≥ 3.

The dimension of the hyperdeterminantal module grows exponentially with n.

The number of variables and the number of polynomials generating the hyperdetermi-

nantal module renders computational methods ineffective already in the case n = 5.

The symmetry of Zn allows tools from representation theory to be used to study Zn.

In fact, Zn is a prototypical (non-homogeneous) G-variety and we study it within the

framework of G-varieties in spaces of tensors. By using a combination of represen-

tation theory and geometry, we prove Theorem III.3, which verifies the set theoretic

version of the Holtz-Sturmfels Conjecture.

A unifying purpose of this work is to study Zn as a prototypical (non-homo-

geneous) G-variety, and in so doing, we show the use of standard constructions in

representation theory and geometry and further develop general tools for studying

the symmetries and the ideals of such varieties. We anticipate these techniques will

be applicable to otherG-varieties in spaces of tensors such as those that arise naturally

in computational complexity, probability, signal processing, and algebraic statistics

for example. For references, see [3, 5, 16, 20, 26].

In Chapter II we recall basic definitions and concepts used in the study of G-

varieties, establish notation, cover necessary background material and prove a couple

of basic lemmas. We show how one can recover a symmetry group for a variety by

finding projection of a homogeneous variety G/P and restricting the group G via the

projection. This idea is used in Chapter III to give a geometric proof of the symmetry
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of Zn.

Chapter III is a study of the algebraic and geometric properties of the vari-

ety of principal minors of symmetric matrices. Therein we prove the set theoretic

version of the Holtz-Sturmfels conjecture. Additionally, we give a new proof of the

symmetry of Zn. We find a connection to the work of Landsberg and Weyman

and their study of tangential varieties [21]. In particular, Theorem III.25 says that

τ (Seg(P1 × · · · × P1)), the tangential variety to the Segre product n copies of P1’s,

is a subvariety of Zn. Moreover, τ (Seg(P1 × · · · × P1)), is the G-orbit of the image

of the rank-1 symmetric matrices under the principal minor map. We define the

hyperdeterminantal module in terms of Schur modules and study its properties. In

particular, we generalize a property of the hyperdeterminantal module which we call

augmentation since it constructs the hyperdeterminantal module in the n + 1 case

based on the hyperdeterminantal module in the n case. We use geometry to prove a

crucial lemma (Lemma III.32) that characterizes the zero set of an augmented module

in terms of the zero set of the original module. With this geometric characterization

we show that the zero set of the hyperdeterminantal module is precisely Zn, thereby

proving the main theorem, Theorem III.3.

Chapter IV is an exposition of a known algorithm from representation theory

that constructs polynomials in G-modules from representation theoretic data. Be-

cause we have not found any implementations of this algorithm in the literature, it

was necessary to write our own. Our implementation in Appendix D, Section A com-

putes an isotypic decomposition necessary for studying ideals of G-modules. We have

included a Maple implementation for constructing highest weight vectors of Schur

modules in Appendix D, Section B. The implementation in Appendix D, Section

C is an example using lowering operators to construct a basis of a G-module when

the highest weight vector is known. This implementation was used by S. Lin and B.
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Sturmfels in their study of relations among the principal minors of (not necessarily

symmetric) 4 × 4 matrices, [23].

Holtz and Sturmfels were working to answer questions posed by Holtz and Schnei-

der [13], Wagner [30] and others. In Chapter V we briefly state these questions and

show how Theorem III.3 answers these questions.
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CHAPTER II

BACKGROUND

“I think those two modules are

isomorphic.” “Are you Schur?”

unknown

This chapter contains basic definitions and facts coming from representation

theory and geometry. For more background, see [6, 7, 9, 11, 20].

A. G-varieties and representations: basic definitions

A representation of a group G on a finite dimensional complex vector space V is a

group homomorphism ρ : G → GL(V ). In this setting, V becomes a G-module, i.e.

a vector space with a compatible G-action. It is common to call V a representation

of G. These definitions, as well as a good introduction to representation theory can

be found in [7]. Unless otherwise stated, we always consider reductive groups.

An algebraic variety X ∈ PV is said to be a G-variety if g.x ∈ X for every

x ∈ X and g ∈ G. A variety X is said to be a homogeneous variety if for some x ∈ X,

X = G.x = G/P , where P is the stabilizer of x. Homogenous varieties are often

the first G-varieties that one encounters. They have rich geometric and algebraic

properties and are well studied, see for instance [17] for a modern treatment.

If V and W are G-modules, a map f : PV → PW is said to be G-equivariant if

g.f(x) = f(g.x) for every g ∈ G and every x ∈ V .

A rational mapping between projective spaces f : PV 99K PW can be defined

in coordinates as follows. Let {x0, . . . , xn} and {y0, . . . , ym} be bases of V and W

respectively. Let U be the open set U = {x0 6= 0} and on U define coordinates
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zi = xi

x0
. On U ⊂ PV , there is a regular (polynomial) map fU representing f ,

fU(z1, . . . , zn) = [h0(z1, . . . , zn), . . . , hm(z1, . . . , zn)],

where the hi are polynomials.

The image of the rational mapping is understood to be fU(U), the Zariski closure

of f|U(U), where U is any open dense set. One can show that this definition is

independent of the choice of open dense set U .

Note that if the action of G is transitive on V , i.e. for every v, w ∈ V there is a

g ∈ G so that g.w = v, then any open set U ⊂ PV of the form Ui = {[x0, . . . , xn] |

vi 6= 0} is as good as any other.

The following lemma is useful for understanding maps between varieties and how

various symmetries are preserved.

Lemma II.1. Let T be a G-module and let X ⊂ PT be a G-variety. Let H < G

be a subgroup which splits T - i.e. T = W ⊕W c as an H-module. Let π : P(W ⊕

W c) 99K P((W ⊕W c) /W c) ≃ PW be the projection map. The map π is obviously

H-equivariant, so the image π(X) is an H-invariant subvariety of PW .

Proof. We must consider the fact that π is only a rational map: certainly, π(x) = 0

if x ∈ W c, so the map is not defined at all points. Let U be the open set defined by

U = {[w1 + w2] | w1 6= 0, w1 ∈ W,w2 ∈ W c}. Let Y := π(U ∩X). Then it is clear

that our assumptions imply H.(U ∩X) ⊂ U ∩X.

Let y ∈ π(U ∩ X) and let h ∈ H . By definition, π is surjective onto its image,

so let x ∈ U ∩ X be such that π(x) = y. Now we use the H-equivariance of π to

conclude that h.y = h.π(x) = π(h−1.x) ∈ π(U ∩X).

Suppose y ∈ π(U ∩X). Then choose a sequence yi → y ∈ Y such that ∃xi ∈

U ∩ X and π(xi) = yi. If h ∈ H then h.yi = h.π(xi) = π(h−1.xi) ∈ Y for all i. If
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{pi} ⊂ Y is a convergent sequence such that pi → p, and f is a polynomial which

satisfies f(pi) = 0, then by continuity, f(p) = 0 also. So Y must contain all of its limit

points, and therefore h.yi → h.y ∈ Y , and we conclude that Y is an H-variety.

This lemma tells us that if we are presented with a variety that is the projection

from a G-variety, then we should look for the symmetry group of our variety among

subgroups of G. We carry out this procedure explicitly in Chapter III, Section A and

arrive at a new proof of the symmetry of the variety of principal minors of symmetric

matrices.

B. Spaces of tensors and G-varieties

Let V1, . . . , Vd be complex vector spaces and let V1 ⊗ · · · ⊗ Vd denote their tensor

product. The group GL(V1) × · · · × GL(Vd) acts by change of coordinates in each

factor. If Vi ≃ V for every i we can consider the induced action of GL(V ) on the

tensor product,

GL(V ) × V ⊗ · · · ⊗ V −→ V ⊗ · · · ⊗ V

(g, x1 ⊗ · · · ⊗ xd) 7−→ (g.x1) ⊗ (g.x2) ⊗ · · · ⊗ (g.xd),

where g.xi is the usual action of GL(V ) on V and we extend the action via linearity.

There is also a natural action of the symmetric group Sd on V1⊗· · ·⊗Vd when Vi = V

for every i just by permuting the factors. More specifically, the left action is given

(on a basis) by

Sd × V ⊗ · · · ⊗ V −→ V ⊗ · · · ⊗ V

(σ, (x1 ⊗ · · · ⊗ xn)) 7−→ xσ−1(1) ⊗ · · · ⊗ xσ−1(d).
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With this convention one may define a left action of the semi-direct product GL(V )⋉

Sn on V ⊗n.

In fact there is a classical result of Weyl’s, see also [9].

Theorem II.2 (The Double Commutant Theorem). Let V ≃ Cn. Then Sd and

GL(V ) are commutants of each other, i.e.

Sd = {g ∈ GL(V ⊗d) | g.A.(v1 ⊗ · · · ⊗ vd) = A.g.(v1 ⊗ · · · ⊗ vn) ∀A ∈ GL(V )}

GL(V ) = {g ∈ GL(V ⊗d) | g.σ.(v1 ⊗ · · · ⊗ vd) = σ.g.(v1 ⊗ · · · ⊗ vn) ∀σ ∈ Sd}.

A natural subspace of the space of tensors are the symmetric tensors i.e. the

space of Sd invariants in V ⊗d, Sd(V ) := (V ⊗ · · · ⊗ V )Sd ⊂ V ⊗d. The algebra of

symmetric tensors is graded by degree,

Sym(V ) =
⊕

SdV (2.1)

and each graded piece is a GL(V )-module with the induced action,

GL(V ) × Sd(V ) −→ Sd(V )

(g, x◦d) 7−→ (g.x)◦d.

There is also a natural GL(V )-action on the dual, V ∗ - the vector space of linear

maps V → C. If ω ∈ V ∗, is a linear map ω : V → C, the dual action of GL(V ) is

defined by g.ω(x) = ω(g−1.x) for every x ∈ V and g ∈ GL(V ).

If X ⊂ PV is an algebraic variety, its ideal (also vanishing ideal or defining

ideal), I(X) ⊂ P(Sym(V ∗)) is the ideal of polynomials vanishing on X. Often

algebraic varieties are given via an explicit parameterization by a rational map, but

the vanishing ideal may be unknown. A basic question in algebraic geometry is to find

generators for the ideal of a given variety. Though there are many known theoretical
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techniques, this remains a difficult practical problem.

1. Examples of classical G-varieties

The following are classic examples of G-varieties which happen to show up in the

study of the variety of principal minors of symmetric matrices. These definitions can

be found in many texts on algebraic geometry such as [11].

The space of all rank-one tensors (also called decomposable tensors) is the Segre

variety, defined by the embedding,

Seg : PV1 × · · · × PVn −→ P (V1 ⊗ · · · ⊗ Vn)

([v1], . . . , [vn]) 7−→ [v1 ⊗ · · · ⊗ vn]
. (2.2)

If X1 ⊂ PV1, . . . , Xn ⊂ PVn are varieties, let Seg (X1 × · · · ×Xn) denote their Segre

product. Seg (V1 × · · · × Vn) is a G-variety for G = GL(V1)×· · ·×GL(Vn), moreover

it is homogeneous since Seg (V1 × · · · × Vn) = G.(x1 ⊗ · · · ⊗ xn).

The space of all rank-one symmetric tensors is the Veronese variety, defined by

the embedding,

vd : PV −→ P
(
SdV

)

[w] 7−→ [(w)d]
. (2.3)

The Veronese variety is invariant under the action of GL(V ) and it is also homoge-

neous since vd(PV ) = GL(V ).(wd).

The tangential variety to a smooth variety X ⊂ PV , denoted τ(X), is the Zariski

closure of all embedded tangent P1’s to X, i.e., if γ(t) : [0, 1] → X is a smooth curve,

P
−−→
γ′(0) ⊂ PV is an embedded tangent line to X. Note: when the underlying variety

X is not smooth, more care is needed in defining the tangential variety, see [21].

The rth secant variety to a variety X ⊂ PV , denoted σr(X), is the Zariski closure
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of all embedded secant Pr−1’s to X, i.e.,

σr(X) =
⋃

x1,...,xr∈X

P(span{x1, . . . , xr}) ⊂ PV. (2.4)

Secant varieties and tangential varieties inherit the symmetry of the underly-

ing variety. In particular, σr (Seg (V1 × · · · × Vn)) and τ (Seg (V1 × · · · × Vn)) are

G-varieties for G = GL(V1) × · · · ×GL(Vn). However, homogeneity is not preserved

in general.

Remark II.3. Secant varieties and tangential varieties are classical, but were given a

modern framework by Zak, in his work [31]. They come up in many applications such

as computational complexity, signal processing and algebraic statistics.

The Grassmannian Gr(k, V ) is the space of k-planes in V . The Plücker embed-

ding of Gr(k, V ) into projective space is the map

Gr(k, V ) →֒ P

(∧k V
)

〈v1, . . . , vk〉 7−→ [v1 ∧ · · · ∧ vk]
(2.5)

which sends the k-plane spanned by the vectors v1, . . . , vk to their wedge product. One

checks that this is well-defined independent of our choice of vectors v1, . . . , vk spanning

a given k-plane. The Grassmannian is a homogeneous variety for G = GL(V ) and is

a central object in the study of G-varieties.

2. Using representation theory to study the ideals of G-varieties

Let I(X) ⊂ Sym(PV ∗) denote the homogeneous ideal of polynomials vanishing on X.

Often we want to have a greater understanding of I(X). The following proposition is

a key observation because it allows us to use the representation theory of G-modules

to study I(X).

Proposition II.4. X is a G-variety if and only if I(X) is a G-module.
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Proof. By definition, f(x) = 0 for every x ∈ X and every f ∈ I(X). But X is a

G-variety, so, in particular, g.x ∈ X ∀g ∈ G. We must show that G leaves I(X)

invariant. Indeed (g.f)(x) = f(g−1.x) = 0, because G is a group and g−1.x ∈ X, so

I(X) is a G-submodule of Sym(V ∗). The proof in the other direction is similar.

The dth graded piece of I(X) by Id(X) = Sd(V ∗) ∩ I(X). In particular, each

Id(X) is a G-module. If we want to study the ideal I(X), it makes sense to study

the various graded pieces. Even more, we will restrict ourselves to studying reductive

groups, i.e. those whose G-modules all split into a unique direct sum of irreducible

G-modules.

A G-module said to be irreducible if it has no non-trivial G-invariant subspaces.

Fact: If G is reductive, then M is an irreducible G module if and only if M = 〈G.v〉,

i.e. it is the linear span of the orbit of a single vector.

Proposition II.5. Let z ∈ PV , and let B ⊂ Sym(V ∗) be a collection of polynomials

(B is not necessarily a G-module). Then

G.z ⊂ V(B) ⇐⇒ z ∈ V(〈G.B〉)

Proof. G.z ⊂ V(B) if and only if f(g.z) = 0 for all g ∈ G and for all f ∈ B. But from

the definition of the G-action on the dual space, f(g.z) = (g−1.f)(z), so f(g.z) = 0

for all g ∈ G and for every f ∈ B. This happens if and only if (g.f)(z) = 0 for all

g ∈ G and for all f ∈ B, but, this is the condition that z ∈ V(〈G.B〉).

Suppose X ⊂ P(V1 ⊗ · · · ⊗ Vn) is a variety in a space of tensors, and suppose X

is invariant under the action of G = GL(V1)× · · · ×GL(Vn). To study Id(X) as a G

module, we need to understand how to decompose Sd(V ∗
1 ⊗· · ·⊗V ∗

n ) into a direct sum

of irreducible G modules. This is a standard computation in representation theory.
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Lemma II.6 (Schur’s Lemma [7]). Let V and W be irreducible G-modules. If a

homomorphism f : V →W is G-equivariant, then

1. Either f is an isomorphism or f = 0

2. If V = W , then f = λId for some λ ∈ C.

Theorem II.7 (Proposition 15.47 [7]). Let SπV = image
(
cπ|

V ⊗d

)
where cπ is the

Young symmetrizer associated to the partition π. Every irreducible representation of

GL(V ) is isomorphic to one of the form SπV .

Young symmetrizers are the key objects used to construct polynomials in spaces

of tensors. We study these maps in more detail in Chapter IV.

Proposition II.8 (Landsberg-Manivel [19] Proposition 4.1). Let V1, . . . , Vn be vector

spaces and let V = V1 ⊗· · ·⊗Vn, and let G = GL(A1)×· · ·×GL(An). Then we have

the following decomposition as a direct sum of irreducible G-modules:

Sd(V1 ⊗ · · · ⊗ Vn) =
⊕

|π1|=···=|πk|=d

([π1] ⊗ · · · ⊗ [πk])
Sd ⊗ Sπ1V1 ⊗ · · · ⊗ Sπn

Vn

where ([π1] ⊗ · · · ⊗ [πk])
Sd denotes the space of Sd-invariants (i.e., instances of the

trivial representation) in the tensor product.

Proof from [19]. Schur-Weyl duality is the assertion that the following map is an

isomorphism of GL(V )-modules

⊕

|π|=d

[π] ⊗ SπV −→ V ⊗d.

Apply Schur-Weyl duality separately to each of V1, . . . , Vn, take the tensor product of

the corresponding isomorphisms, and compare with Schur duality for V1⊗· · ·⊗Vn.

The following is a special case of the previous theorem.
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Theorem II.9. We have the following decomposition into irreducible G-modules:

Sd(V ⊗W ) =
⊕

|π|=d

SπV ⊗ SπW

Proof. (sketch) In this case, we consider the fact that [π1] ⊗ [π2] is equivalent to a

Sd-module homomorphism ϕ : [π1] → [π2] because [π1] and [π2] are self-dual. But

[π1] and [π2] are irreducible Sd-modules, so Schur’s lemma implies that ϕ = λId, and

in particular, [π1] = [π2].

This is not such an unfamiliar concept since

S2(V ⊗W ) = (S2V ⊗ S2W ) ⊕ (

2∧
V ⊗

2∧
W )

is just the statement from linear algebra that a square matrix can be decomposed

into its skew symmetric and symmetric pieces.

When Vi = V , Proposition II.8 specializes to give the following decomposition

formula found in [19]:

Sd(V ⊗ · · · ⊗ V ) =
⊕

|π1|=···=|πk|=d

(Sπ1V ⊗ · · · ⊗ Sπn
V )⊕Nπ1,...,πk , (2.6)

where the multiplicity Nπ1,...,πk
can be computed via characters. We give an imple-

mentation of this calculation in Appendix D, Section A.

3. Weight spaces

As mentioned before, the algebras Sym(V ) and V ⊗ are graded by degree. We get a

further decomposition by weights as follows. If we choose an ordered basis e1, . . . , en of

V , this induces a natural ordering on the decomposable tensors (i.e. the monomials)

in V ⊗d. A common way to assign weights to each ei is via a weight function, i.e. an
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additive homomorphism

wt : V −→ Zn

ei 7−→ [0, . . . 0, 1, 0, . . . , 0].

The requirement that wt is additive allows us to give a weight to each monomial in V ⊗.

For example wt
(
e⊗n1
1 ⊗ e⊗n2

2 ⊗ · · · ⊗ e⊗nk

k

)
= [n1, n2, . . . , nk]. This induces a grading

by weights on V ⊗ and Sym(V ). This is also known as grading by multi-degree.

Each irreducible representation, SπV of GL(V ), has a highest weight vector, vπ

and since GL(V ) is reductive, we have the nice property that 〈GL(V ).vπ〉, i.e. each

irreducible representation of GL(V ) is the span of the orbit of a highest weight vector.

We recall an algorithm of Landsberg and Manivel [19] for constructing highest

weight vectors in Chapter IV and provide an implementations of this algorithm in

Appendix D, Section B. We also provide an implementation of a standard algorithm

for finding a weight basis of an irreducible module in Appendix D, Section C.

These facts along with the implementations provided allow us to carry out an

ideal membership test (for small degree), which is present in [19]. The basic idea

is that we can (in theory) write down a highest weight vector for each irreducible

module of polynomials for a fixed small degree. Then we can test each highest weight

vector on a general point of the variety X. If the highest weight vector vanishes,

then the entire module is in the ideal I(X). There are complications that come up

in practice and we give a full treatment of this in Chapter IV.

4. Kostant’s theorem

An important theorem due to Kostant identifies the ideal of every homogeneous va-

riety in the language of representation theory. Though this theorem does not appear

to be published by Kostant, it can be found in [15] Corollary 10.1.11 pg 346. We
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quote a more recent formulation [20] Theorem 4.8.4.2.

Theorem II.10 (Kostant). Let Vλ be an irreducible G-module of highest weight λ,

and let X = G/P ⊂ PVλ be the orbit of a highest weight line. Then I(X) is generated

in degree two by V ⊥
2λ ⊂ S2(Vλ)

∗.

This theorem uses representation theory to treat all homogeneous varieties in the

same way, and gives a uniform identification of their ideals. It serves as motivation for

what can be done when representation theory is used to study questions in algebraic

geometry.



16

CHAPTER III

THE VARIETY OF PRINCIPAL MINORS OF SYMMETRIC MATRICES

“Those smaller determinants

shouldn’t drink - they’re minors!”

unknown

In this chapter we will focus on the variety of principal minors of symmetric

matrices. In order to give a precise definition of this variety, we need to introduce

notation. Let I = (i1, . . . in) be a multi-index, with ik ∈ {1, 2} for k = 1, . . . , n, and let

|I| denote the number of 2’s appearing. If A is an n×n matrix, then let ∆I(A) denote

the principal minor of A with row and column set indicated by the multi-index I, in

the sense that the location of the 2’s in I indicate which rows and columns are to be

used in computing the minor determinant of A. If one includes the 0×0 minor, there

are 2n principal minors, therefore, a natural home for vectors of principal minors is

C2n

. Because of the symmetry that will eventually become apparent, we will consider

C2n

as a space of tensors as follows: Let V1⊗V2⊗· · ·⊗Vn ≃ C2n

, where each Vi ≃ C2.

A choice of basis {x1
i , x

2
i } of Vi for each i determines a basis of V1 ⊗ · · · ⊗ Vn. We

represent basis elements compactly by setting XI := xi1
1 ⊗xi2

2 ⊗· · ·⊗xin
n . We use this

basis to introduce coordinates on PC2n

; if P = [CIX
I ] ∈ PC2n

, the coefficients CI are

the coordinates of the point P .

The projective variety of principal minors of n × n symmetric matrices, Zn, is

defined by the following rational map,

ϕ : P(S2
C

n ⊕ C) 99K PC
2n

[A, t] 7−→
[
tn−|I|∆I(A) XI

]
.

The map ϕ is defined on the open set where t 6= 0. Moreover, ϕ is homogeneous of



17

degree n, so it is well defined on projective space. In addition ϕ is generically finite-

to-one and Zn is a
(

n+1
2

)
-dimensional variety. The affine map (on the set {t = 1})

defines a closed subset of C2n

, [14].

Remark III.1. Griffin and Tsatsomeros [10] point out that the dimension of Zn was

essentially known to Stouffer in 1924, [28, 29]. In fact, Stouffer [29] claims that this

result was already known to MacMahon in 1893 and later by Muir.

From this definition, the structure of this variety is not immediately apparent.

In the first nontrivial case (the 3×3 case), the defining ideal is generated by Cayley’s

hyperdeterminant of format 2×2×2, [14]. This polynomial, which was discovered over

150 years ago [4], is invariant under the action of (SL(2) × SL(2) × SL(2))⋉S3, (see

also [8] p. 448 ). This implies that Z3 is also invariant under the action of the same

group. The symmetric group, Sn, was known to preserve Zn, but it was not known

that SL(2) × SL(2) × SL(2) preserves Z3. In fact, for the general case, Landsberg

noticed the following theorem, which is proved in [14].

Theorem III.2. The variety Zn is invariant under the action of

G = (SL(V1) × · · · × SL(Vn)) ⋉ Sn ⊂ GL(V1 ⊗ · · · ⊗ Vn),

where Vi
∼= C2 for 1 ≤ i ≤ n.

We often make the abbreviation, (SL(V1) × · · · × SL(Vn)) ⋉ Sn
∼= (SL(2)×n) ⋉ Sn.

In Chapter III, Section A, we use geometric methods that exploit a connection to

the well known Lagrangian Grassmannian to prove a stronger result (Theorem III.14),

namely G is the largest subgroup of GL(2n) that can leave Zn invariant. Another

consequence of this method of proof is that we find a subgroup of the symmetry group

of the variety of principal minors of arbitrary square matrices (Proposition III.10).

This theorem was originally proved by different methods in [2] and is also inherent in
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the work of [14], however neither of these proofs include the stronger result that this

symmetry group is the largest possible among the subgroups of GL(2n).

In fact, Theorem III.3 gives a G-module of set theoretic defining equations for

Zn. The form of this module implies the sharper result that G is the largest subgroup

of GL(V1 ⊗ · · · ⊗ Vn) ≃ GL(2n) that can leave Zn invariant.

This symmetry is the key for how we should study this variety and its defining

ideal. Representation theory becomes an essential tool for this task in that it allows

us to study the defining ideal as a G-module. One key use of representation theory

comes from the work of Landsberg and Manivel, [19], where they use a classical test

for ideal membership in the G-variety setting. A candidate irreducible G-module is

either in the ideal or not, there is no in-between. To test whether a given G-module is

in the ideal of a G-variety, it suffices to check whether the highest (or lowest) weight

vector of that module vanishes at all points of the variety.

For what follows, I(X), (respectively Id(X)) denotes the ideal (respectively com-

ponent of the ideal in degree d) of the variety X, and V(M) denotes the zero set of

M .

The next idea comes from rephrasing the results of [14]; in the cases n = 3 and

n = 4, a single irreducible module of degree 4 polynomials generates the defining

ideals I(Z3) and I(Z4). Although the group gets larger from one case to the next,

the module is generated by the span of the G-orbit of the same polynomial. (Since

the polynomial is actually a hyperdeterminant, this module is called the hyperdeter-

minantal module in [14].) This idea led to Conjecture 14 of [14]: The prime ideal of

the variety of principal minors of symmetric matrices is generated by the hyperdeter-

minantal module. Conjecture 14 was verified by computational methods for the cases

of 3×3 and 4×4 matrices in [14]; however, due to the rapid growth of the number of

variables and number of polynomials, the next case proved to be infeasible to verify
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on a computer.

The hyperdeterminantal module can be expressed precisely in the language of

representation theory as follows. Let M denote the irreducible G-module

M =
⊕

σ∈Σ

S(2,2)V
∗
σ(1) ⊗ S(2,2)V

∗
σ(2) ⊗ S(2,2)V

∗
σ(3) ⊗ S(4)V

∗
σ(4) ⊗ · · · ⊗ S(4)V

∗
σ(n),

where Σ = {σ ∈ Sn | σ(1) < σ(2) < σ(3), and σ(4) < σ(5) < · · · < σ(n)}.

(We commit a standard abuse of notation in that we omit an implied permutation

of the factors so that every module is still in S4(V ∗
1 ⊗ · · · ⊗ V ∗

n ), but since the Vi

are all isomorphic, this is harmless.) We often abbreviate the notation to M =

S(2,2)S(2,2)S(2,2)S(4) . . . S(4).

In Chapter III, Section B, we investigate properties of M . As defined, we only

know that M ⊂ (V1 ⊗· · ·⊗Vn)⊗4. In Proposition III.17, we show that M is a module

of degree 4 homogeneous polynomials. (We believe that this is the module that was

intended to be the so-called hyperdeterminantal module; however, it has a different

dimension than what is claimed for the hyperdeterminantal module in [14].)

Theorem III.3 (Main Theorem). The variety of principal minors of symmetric n×n

matrices, Zn, is cut out set theoretically by the irreducible (SL(2)×n) ⋉ Sn-module of

degree 4 polynomials

M = S(2,2)S(2,2)S(2,2)S(4) . . . S(4).

Theorem III.3, verifies Conjecture 14 of [14] in the set theoretic version. As

mentioned above, the ideal theoretic result is known to hold in the cases n = 3 and

n = 4 [14]. A list of 250 polynomials which form a basis of M for the case n = 5 is

available at

http://www.math.tamu.edu/∼oeding/mypolys5.txt

or by request of the author.
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For the benefit of readers not familiar with representation theory, we recall a stan-

dard algorithm (Remark III.16) to find a weight basis of a given irreducible module.

We also include an example of Maple code that accomplishes this task in Appendix

D, Section C. This allows one to compute a finite list of polynomials that cut out

the variety. This list of polynomials gives necessary and sufficient conditions for a

vector of length 2n to actually be a vector of principal minors of a symmetric matrix;

in other words, it is a complete algebraic solution to the principal minor assignment

problem for symmetric matrices posed by [13].

Remark III.4. We note that Zn is cut out by a single irreducible module of degree

4 polynomials. There are instances of varieties being cut out by a single irreducible

module, for instance the 2 factor Segre variety, Seg(Pa × Pb), and its secant varieties

exhibit this property. However in the case of the 4 factor Segre variety, the ideal is

not generated by a single irreducible module. It may be interesting to know how often

G-varieties are cut out by a single irreducible module, and what can be deduced from

this property.

A practical membership test is the following:

Corollary III.5. Suppose v = vIX
I ∈ C2n

. Then v represents the principal minors

of a symmetric n × n matrix if and only if for any element g = (ai1,j1) × · · · ×

(ain,jn
) ∈ SL(2)×n and any σ ∈ Σ = {σ ∈ Sn | σ(1) < σ(2) < σ(3), and σ(4) <

σ(5) < · · · < σ(n)}, the transformed vector with coordinates wI defined by g.(σ.v) =
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ai1,j1 . . . ain,jn
vσ(I)X

J = wIX
I satisfies the 2 × 2 × 2 hyperdeterminantal equation

(wI[1,1,1]
)2(wI[2,2,2]

)2 + (wI[2,1,1]
)2(wI[1,2,2]

)2

+(wI[1,2,1]
)2(wI[2,1,2]

)2 + (wI[1,1,2]
)2(wI[2,2,1]

)2

−2wI[1,1,1]
wI[2,1,1]

wI[1,2,2]
wI[2,2,2]

− 2wI[1,1,1]
wI[1,2,1]

wI[2,1,2]
wI[2,2,2]

−2wI[1,1,1]
wI[1,1,2]

wI[2,2,1]
wI[2,2,2]

− 2wI[2,1,1]
wI[1,2,1]

wI[1,2,2]
wI[2,1,2]

−2wI[2,1,1]
wI[1,1,2]

wI[1,2,2]
wI[2,2,1]

− 2wI[1,2,1]
wI[1,1,2]

wI[2,1,2]
wI[2,2,1]

+4wI[1,1,1]
wI[1,2,2]

wI[2,1,2]
wI[2,2,1]

+ 4wI[1,1,2]
wI[1,2,1]

wI[2,1,1]
wI[2,2,2]

= 0,

where I[k,l,m] = [k, l,m, 1, . . . , 1].

The main ideas that go into the proof of Theorem III.3 are as follows. In Propo-

sition III.21 we show that the module M is in the ideal I(Zn) using representation

theory. We need a more geometric understanding of the zero set of the module. For

this, we prove Lemmas, III.30 and III.32 about the zero sets of modules of the form

Sπ1V1 ⊗ · · · ⊗ Sπn
Vn with at least one πi = (d). Finally in Chapter III, Section G,

with the aid of Lemma III.43, we show that every point of the zero set has a matrix

that maps to it via the principal minor map.

We anticipate that the same techniques used in this work will be applicable to

other problems, especially to the case of principal minors of arbitrary matrices studied

by Lin and Sturmfels, [23] and A. Borodin and E. Rains [2].

A. The symmetry of Zn

Suppose V s a vector space and that G ⊂ GL(V ) is a group. A variety X ⊂ PV is

said to be invariant under the action of G or a G-variety if g.x ∈ X for every x ∈ X

and for every g ∈ G. In particular, I(X) is a G-module and we can study I(X) via

the representation theory of G-modules.
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In this section, we will give a geometric proof of Theorem III.2. We will consider

the problem in a slightly more general context. In particular, in the case that a

variety X is the linear projection from a G-variety, we give a method to identify a

subgroup of G that leaves X invariant. (This will not be a priori the full symmetry

group of X.)

As mentioned in the introduction to this chapter, we find a symmetry group for

the variety of principal minors of arbitrary square matrices. We will then specialize

this proof for the case of symmetric matrices. In both cases, we show that no larger

subgroup of GL(V ) will preserve the variety.

1. A short introduction to the Grassmannian and the Lagrangian Grassmannian

Here we give a short exposition of the portion of the work of Landsberg and Manivel

[17] that we will need for this paper. For more details as well as the generalization to

all compact Hermitian symmetric spaces, see [17].

In the introduction to this chapter, we chose an ordered bases {x1
i , x

2
i } for each

Vi ≃ C2. For this section, we will rename these elements by x1
i = ei and x2

i = fi and

let E = span{e1, . . . , en} and F = span{f1, . . . , fn}. Finally, let V = E ⊕ F ≃ C2n,

and consider the Grassmannian of n-planes in V denoted Gr(n, V ).

The module
∧n V =

∧n(E ⊕ F ) is irreducible as a GL (V )-module, but it de-

composes into a sum of irreducible components as a GL (E) ×GL (F )-module:

n∧
(E ⊕ F ) =

n⊕

k=0

(
n−k∧

E ⊗
k∧
F

)
. (3.1)

Remark III.6. This decomposition will show the connection between points of the

Grassmannian and vectors of minors. Later, we will actually want a finer decom-

position as a GL(V1) × · · · × GL(Vn)-module. This will elucidate the connection to

principal minors.
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To fix notation, let eR = er1∧er2∧· · ·∧erk , withR = {1 ≤ r1 < r2 < · · · < rk ≤ n}

and define the size |R| = k. Similarly, let fS = fs1 ∧ · · · ∧ fsk
, with S =

{
1 ≤ s1 <

s2 < · · · < sk ≤ n
}

and |S| = k.

We can choose e1 ∧ · · · ∧ en to be a volume form on E. Using this volume form,

we can define an isomorphism
∧n−k E ≃

∧k E∗, given on a basis by eR 7→ eRc , where

Rc is the complement of R. We can use this isomorphism to write our decomposition

as
n∧

(E ⊕ F ) =

n⊕

k=0

(
k∧
E∗ ⊗

k∧
F

)
. (3.2)

The space
∧k E∗ ⊗

∧k F has the interpretation as the space generated by the k × k

minors of E∗ ⊗ F , the space of n × n matrices, namely eR ⊗ fS(A) is the minor of

a matrix A ∈ (E∗ ⊗ F )∗ with row set R and column set S. By convention, we take

e∅ ⊗ f∅ = 1 ⊗ 1 - this is the 0 × 0 minor.

Now consider the rational map,

ψ : P(E∗ ⊗ F ⊕ C) 99K P

(
n∧
V

)
= P

(
n⊕

k=0

(
k∧
E∗ ⊗

k∧
F

))

[(A), t] 7−→


 ∑

|R|=|S|

tk−|R|eR ⊗ fS(A)


 .

The map ψ is a variant of the Plücker embedding of the Grassmannian, and it is

compatible with the decomposition (3.2). In light of this mapping ψ and the decom-

position (3.2), the Grassmannian Gr(n, 2n) has the interpretation as the variety of

minors of n× n matrices.

It is well known that Gr(n, 2n) is a homogeneous variety for GL(2n), and in

particular, it is GL(2n)-invariant.

Now we consider the Lagrangian Grassmannian. Let ω ∈
∧2 V ∗ be a non-

degenerate symplectic form and let Sp(2n) ⊂ GL(V ) be the symplectic group pre-
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serving ω. Let Grω(n, 2n) denote the Lagrangian Grassmannian – the variety of n

planes in V ≃ C2n that are isotropic for ω,

Grω(n, 2n) = {E ∈ Gr(n, 2n) | ∀ v, w ∈ E, ω(v, w) = 0}.

As a parallel to what we already did for Gr(n, 2n), we can give a parameterization

of Grω(n, 2n), by modifying the map ψ as follows. Restrict the source to symmetric

matrices and restrict the target to only the non-redundant minors. The vector space

of all non-redundant minors of symmetric matrices is actually the Sp(2n)-module,

Γn :=
∧n V/

(
ω ∧

∧n−2 V
)
. In order to see this fact, we would need to understand

the decomposition of
∧n(V ) as an Sp(2n)- module just as we did in the classical

Grassmannian case. For the sake of brevity, we do not include this here. (For more

details, see [17].) Under these modifications, we have

ψ(S2V ⊕ C) = Grω(n, 2n) ⊂ PΓn.

As a parallel to the previous case, Grω(n, 2n) has the interpretation as the variety of

all (non-redundant) minors of n× n symmetric matrices.

Grω(n, 2n) is a homogeneous variety for Sp(2n) so, in particular, it is invariant

under the action of Sp(2n).

2. Finding the symmetry of the variety of principal minors of (arbitrary) matrices

via a projection from the Grassmannian

Observation III.7. The variety of principal minors of (arbitrary) n × n matrices,

Z̃n ⊂ P(V1 ⊗ · · · ⊗ Vn), is a linear projection from the Grassmannian, Gr(n, 2n) ⊂

P(
∧n

C2n).

Proof. From the exposition of Gr(n, 2n) above, it is clear that the projection is given
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by deleting the non-principal minors.

We will exploit this projection to find a subgroup of the symmetry group of Z̃n

that lies in GL(2n) by showing that this projection is equivariant for a subgroup

G′ ⊂ GL(2n).

Recall from above that we have identified the space
∧n(E ⊕ F ) as the vector

space of all minors,
⊕n

k=0

(∧k E∗ ⊗
∧k F

)
. We have identified eR∧fS with the minor

with row set R and column set S. Therefore {eR ∧fR} are the minors which have the

same row and column set - i.e. the principal minors. So, we may identify the space

of principal minors, denoted W , in relation to the decomposition (3.2):

W = span
{
eR ∧ fR | R ⊂ {1, 2, . . . , n}

}
⊂

n⊕

k=0

(
k∧
E∗ ⊗

k∧
F

)
.

Often it is more convenient to use the isomorphism
∧n−k E ≃

∧k E∗ and make the

following identification related to the decomposition (3.1) above:

W ≃ span {eR ∧ fS | R ∩ S = ∅, |R| + |S| = n} ⊂
n⊕

k=0

(
n−k∧

E ⊗
k∧
F

)
.

Notice that dimW = 2n, and in particular, W and V1 ⊗ · · ·⊗ Vn are isomorphic.

The isomorphism is given (on a basis and extended linearly) by the mapping eR∧fS 7→

xǫ1
1 ⊗ xǫ2

2 ⊗ · · · ⊗ xǫn
n where ǫi = 1 if i ∈ R and ǫi = 2 if i ∈ S. Indeed, eR ∧ fS is

the principal minor with row and column set equal to S. This isomorphism realizes

W as a module for the group G′ = (GL(V1) × · · · ×GL(Vn)) ⋉ Sn with the inherited

action from GL(V1 ⊗ · · · ⊗ Vn) - the natural group acting on V1 ⊗ · · · ⊗ Vn.

Notice that
∧n

C2n is naturally a GL(2n)-module. So it will also be a G-module

for any subgroup G ⊂ GL(2n). For our purposes, it is important to see W ⊂
∧n

C2n

as a G-submodule.



26

Lemma III.8. There exists an embedding

(
GL(2)×n

)
⋉ Sn

∼= (GL(V1) × · · · ×GL(Vn)) ⋉ Sn ⊂ GL(2n)

so that the vector space W ≃ V1⊗· · ·⊗Vn is a (GL(2)×n)⋉Sn-submodule of
∧n

C2n.

Moreover, (GL(2)×n) ⋉ Sn is the largest subgroup of GL(2n) preserving W .

Proof. Let G̃ = GL(2)×n ≃ GL(V1) × · · · × GL(Vn) ⊂ GL(2n), and let V ≃ C2n.

The group G̃⋉ Sn obviously acts on W . But we would like to see this action as the

inherited action from GL(V ). Otherwise, there would be no reason to expect that

G̃⋉ Sn acts on
∧n V .

We start with an arbitrary subgroup of GL(V ) acting on
∧n(V ) and consider

only the conditions forced on any potential subgroup which could preserve W . This

will show that indeed G̃ is the largest subgroup of GL(V ) which preserves W .

Step 1: Sn invariance: The space V = E⊕F is left invariant under the action of

the permutation group S2n. Let SE
n be the subgroup of permutations preserving E,

and similarly define SF
n . Consider the diagonal action of Sn inside of SE

n ×SF
n ⊂ S2n

defined as follows. Let eR ∧ fS be a basis element of
∧n(E ⊕ F ). Then for σ ∈ Sn,

the action is given by

σ.(eR ∧ fS) = eσ(R) ∧ fσ(S).

Now suppose eR ∧ fS ∈W . In this case R∩S = ∅, so also σ(R)∩ σ(S) = ∅, and

obviously |R| = |σ(R)| (similarly for S), so σ.P ∈ W ∀σ ∈ Sn, ∀P ∈ W . Therefore

the action of Sn is defined on
∧n(E ⊕ F ) and preserves the subspace W .

Step 2: G̃ invariance: Here, it is easier to work with the Lie algebra g̃ associated

to the group G̃. It is sufficient to prove that W is invariant under the action of g̃.

Also, the Lie algebra gl(V ) ≃ gl(2n) acts linearly on W , so it suffices to work on a

basis of W and then extend by linearity.
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Since we have chosen bases, we may express g̃ as a subgroup of

gl(2n) =




E∗ ⊗E F ∗ ⊗E

E∗ ⊗ F F ∗ ⊗ F


 .

Fix indices 1 ≤ i, j ≤ n. We will consider an arbitrary element

α =




ai
j bij

cij di
j


 ∈ gl(2n),

and place restrictions on α so that it leaves W invariant. We calculate

α. (e1 ∧ · · · ∧ en) =

(
n∑

i=1

ai
i

)
e1 ∧ · · · ∧ en

+
n∑

j=1

e1 ∧ · · · ∧ ej−1 ∧

(∑

i

cijfi

)
∧ ej+1 ∧ · · · ∧ en.

We see that α. (e1 ∧ · · · ∧ en) /∈W unless cij = 0 for i 6= j, so for what follows, set cij =

0 if i 6= j. Similarly, we compute α. (f1 ∧ · · · ∧ fn) to find that α. (f1 ∧ · · · ∧ fn) /∈W

unless bij = 0 for i 6= j, so for what follows, set bij = 0 if i 6= j.

Next, let Ek = e1 ∧ . . . ek−1 ∧ fk ∧ ek+1 · · · ∧ en, and in general, let Ek1,...kp denote

E = e1 ∧ · · · ∧ en with ekq
replaced with fkq

for each q ∈ {1, . . . , p}. In fact, the

elements Ek1,...kp form a basis for W . We compute α.Ek and notice that,

α.Ek ≡
∑

j, j 6=k

e1 ∧ · · · ∧ ej−1 ∧
(
ak

j ek

)
∧ ej+1 ∧ · · · ∧ ek−1 ∧ fk ∧ ek+1 ∧ · · · ∧ en

+e1 ∧ · · · ∧ ek−1 ∧
∑

l

(
dl

kfl

)
∧ ek+1 ∧ · · · ∧ en mod(W ).

We see that the only way to have α.Ek ∈ W is if ai
j = di

j = 0 for i 6= j. So set

ai
j = di

j = 0 if i 6= j. The restrictions that we have found are all necessary. We need

to prove now, that these are, in fact, all of the restrictions that we get. For α ∈ g̃, as
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restricted so far,

α.Ej,k =
∑

i6=j,i6=k

(
ai

iE
j,k + bjjE

k + bkkE
j + dj

jE
j,k + dk

kE
j,k
)

+
∑

i6=j,i6=k

(
ciiE

i,j,k
)
∈W.

A similar calculation for α.Ek1,...kp shows that in fact there are no more restrictions.

The restrictions we have found force

g̃ =

{(
D1 D2

D3 D4

)
| Di diagonal matrices

}
.

Note that g̃ ∼= (gl(2))×n. Explicitly, each copy of gl(2) is an n×n sub-matrix centered

on the diagonal of
„

D1 D2

D3 D4

«

. Notice that at every step, we have only considered the

necessary restrictions. So G̃ ⊂ GL(V ) cannot be any larger.

Step 3: We have shown that the diagonal subgroup Sn ⊂ SE
n × SF

n ⊂ S2n

is the largest possible subgroup that can preserve W , and we found an action of

GL(V1)×· · ·×GL(Vn) as the largest possible subgroup of GL(2n) preserving W . But

there is a natural inclusion S2n ⊂ GL(2n), so GL(2n) ⋉ S2n = GL(2n). Therefore

(GL(V1) × · · · ×GL(Vn)) ⋉ Sn ⊂ GL(2n) ⋉ S2n = GL(2n) is the largest possible

subgroup of GL(2n) that can preserve W .

Remark III.9. Now we can consider W as a G̃ submodule of
∧n(E ⊕ F ). But G̃ is a

reductive group, so there must exist a complement W c so that
∧n(E⊕F ) = W ⊕W c.

For a more detailed description of W c as a sum of irreducible modules both in this

case and in the case for symmetric principal minors, see Appendix C.

Theorem III.10. The variety of principal minors of n × n matrices, Z̃n ⊂ P(V1 ⊗

· · · ⊗ Vn), is invariant under the action of (GL(2)×n) ⋉ Sn ⊂ GL(2n). Moreover,

(GL(2)×n) ⋉ Sn is the largest subgroup of GL(2n) which preserves Z̃.

Remark III.11. The first statement of this theorem was proved in [2] Theorem 4.2
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and is implicit in [14] Theorem 12.

Proof. For the Sn part, let P ∈ Z̃n be the vector of principal minors of an n × n

matrix A. Notice that for σ ∈ Sn, the line through P = ψ([A, t]) is sent to the line

through σ.P = ψ([σ.A, t]):

σ.P = σ.
[
t|R1| (eR1 ∧ fS1) (A), . . . , t|R2n | (eR2n ∧ fS2n ) (A)

]

=
[
t|R1| (eR1 ∧ fS1) (σ.A), . . . , t|R2n | (eR2n ∧ fS2n ) (σ.A)

]
,

where σ.A is the matrix constructed from A by permuting both its row set and column

set by the same permutation σ. So σ.P is a vector of principal minors of the matrix

σ.A, and in particular, the cone over the variety of principal minors Z̃n is preserved

by the action of Sn, and by passing to the projectivization, Z̃n is also preserved by

the action of Sn.

For the continuous group we use the projection from the Grassmannian (Ob-

servation III.7), the invariance of the module V1 ⊗ · · · ⊗ Vn under the action of G̃

(Lemma III.8), and the information about the preservation of symmetry under a

linear projection (Lemma II.1) to conclude that Z̃n is a G̃-variety.

Finally, notice that we used the largest possible subgroup of GL(2n) that could

preserve P(V1 ⊗ · · · ⊗ Vn) (the ambient space containing Z̃n) for our application of

Lemma II.1, so this also implies that no larger subgroup of GL(2n) will preserve

Z̃n

3. Finding the symmetry of Zn via a projection from the Lagrangian Grassmannian

Now we will prove Theorem III.2 by specializing the proof for the case of principal

minors of arbitrary square matrices.

Observation III.12. The variety of principal minors of symmetric n× n matrices,
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Zn ⊂ P(V1 ⊗ · · · ⊗ Vn), is a linear projection from the Lagrangian Grassmannian,

Grω(n, 2n) ⊂ PΓn.

Proof. From the exposition of Grω(n, 2n) above, it is clear that the projection is given

by deleting the non-principal minors.

As in the case of Z̃n, we will exploit this projection to find a subgroup of the

symmetry group of Z̃n that lies in Sp(2n) by showing that, in fact, this projection is

equivariant for a subgroup G ⊂ Sp(2n). Similar to the Z̃n case, since Γn is a Sp(2n)-

module, Γn is also G-module for any subgroup G ⊂ Sp(2n). In the course of the proof

we will find that the subgroup that does the job is G = (SL(V1) × · · · × SL(Vn))⋉Sn.

For our purposes, it is important to see W ⊂ Γn as a G-submodule.

Lemma III.13. There exists an embedding

(
SL(2)×n

)
⋉ Sn ≃ (SL(V1) × · · · × SL(Vn)) ⋉ Sn ⊂ GL(2n)

so that the vector space W ≃ V1 ⊗ · · · ⊗ Vn is a (SL(2)×n) ⋉ Sn-submodule of Γn.

Moreover, (SL(2)×n) ⋉ Sn is the largest subgroup of Sp(2n) preserving W .

Proof. The same proof works as in the GL(V ) case, with the additional restriction

that we start with elements in gl(V ) which preserve a symplectic form ω ∈ S2V , i.e.

sp(V ) = {g ∈ gl(V ) | g.ω + ω.gt = 0}. Since we have already done the work with

GL(2n), we hold off on applying the restriction coming from the symplectic form until

the end. In particular, the proof concerning Sn goes through without modification.

For the continuous group, we must consider the Lie algebra

g = {α ∈ g̃ ⊂ gl(2n) | ω (αv, w) + ω (v, αw) = 0} .

We show that g preserves W . In matrices, the relation is that elements of C ∈ g must

satisfy the relation CΩ + Ω(tC) = (0), where Ω is a matrix realization of ω. Recall
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that matrices in g̃ are of the form C =

(
D1 D2

D3 D4

)
∈ g̃, with Di diagonal matrices.

With the particular choice

Ω =

(
0 Idn

−Idn 0

)
,

the relation CΩ + Ω(tC) = (0) implies that D1 +D4 = (0), i. e.. g ≃ sl×n
2 .

Again, Sn and SL(2)×n are commutants in Sp(2n) and both actions leave W

invariant. Since all of the restrictions on g are necessary, we have also found that

G = (SL(2)×n) ⋉ Sn is the largest the subgroup of Sp(2n) ⊂ GL(V ) that could

possibly act on W and leave it invariant.

A direct application of Observation III.12 and Lemmas III.13 and II.1 proves the

following theorem, of which Theorem III.2 is a special case.

Theorem III.14. The variety of principal minors of symmetric n × n matrices,

Zn ⊂ P(V1 ⊗ · · · ⊗ Vn), is invariant under the action of (SL(2)×n) ⋉ Sn ⊂ Sp(2n).

Moreover, (SL(2)×n) ⋉ Sn is the largest subgroup of Sp(2n) preserving Zn.

B. The hyperdeterminantal module

As a consequence of Theorem III.2, the defining ideal of Zn, I(Zn) ⊂ Sym(V ∗
1 ⊗· · ·⊗

V ∗
n ), is a G-module for G = (SL(V1) × · · · × SL(Vn))⋉Sn. As in the introduction to

this chapter, we will consider the G-module M = S(2,2)S(2,2)S(2,2)S(4) . . . S(4) (called

the hyperdeterminantal module in [14]).

Observation III.15. The dimension of the module M = S(2,2)S(2,2)S(2,2)S(4) . . . S(4)

is (
n

n− 3

)
5n−3.

Proof. The module S(2,2)C
2 is 1-dimensional and the module S(4)C

2 is 5-dimensional.
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Remark III.16. For the sake of the reader not familiar with representation theory, we

will recall a standard algorithm for finding an explicit basis of an irreducible G-module

M . Start with a highest weight vector. In our case, the highest weight vector of M is

the hyperdeterminant of format 2×2×2 on the variables X [i1,i2,i3,1,...,1]. Consider the

Lie algebra of lowering operators, g−. In our case, the lowering operators are of the

form l1 + · · ·+ ln where li are lower triangular. Successively apply lowering operators

to the highest weight vector to get vectors of lower weight. Since M is a g-module,

each new vector will be in M . Since M is finite dimensional, the process will stop

at the lowest (nonzero) weight vector. The collection of weight vectors found in this

way will be a weight basis of M , and will also be minimal set of generators of 〈M〉,

the ideal generated by M .

Proposition III.17. The module M occurs with multiplicity 1 in S4(V ∗
1 ⊗· · ·⊗V ∗

n ).

Moreover, M is an irreducible G-module for G = (SL(V1) × · · · × SL(Vn)) ⋉ Sn ≃

(SL(2)×n) ⋉ Sn.

Remark III.18. The fact that M occurs with multiplicity 1 saves us a lot of work

because we do not have to worry about which isomorphic copy of the module occurs

in the ideal.

Proof. For the “moreover” part, notice that the module M is the span of the G-orbit

of a single polynomial (namely the hyperdeterminant of format 2 × 2 × 2 on the

variables X [i1,i2,i3,1,...,1]) and therefore M is an irreducible module.

We need to examine the SL(2)×n-module decomposition of S4(V ∗
1 ⊗· · ·⊗V ∗

n ). It

suffices to prove for any fixed permutation σ, that S(2,2)V
∗
σ(1)⊗S(2,2)V

∗
σ(2)⊗S(2,2)V

∗
σ(3)⊗

S(4)V
∗
σ(4) ⊗ · · · ⊗ S(4)V

∗
σ(n) is an SL(2)×n-module which occurs with multiplicity 1 in

the decomposition of S4(V ∗
1 ⊗ · · · ⊗ V ∗

n ).

We will follow the notation and calculations similar to [19]. Let χπ denote the
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character of the representation [π] in the group algebra C[Sd]. The number of occur-

rences of Sπ1V
∗
1 ⊗· · ·⊗Sπn

V ∗
n in the decomposition of Sd(V ∗

1 ⊗· · ·⊗V ∗
n ) is computed

by the dimension of the space of Sd invariants, dim
(
([π1] ⊗ · · · ⊗ [πn])Sd

)
. This may

be computed by the formula

dim
(
([π1] ⊗ · · · ⊗ [πn])Sd

)
=

1

d!

∑

σ∈Sd

χπ1(σ) . . . χπn
(σ). (3.3)

In our case, we need to compute

dim
(
([(2, 2)] ⊗ [(2, 2)] ⊗ [(2, 2)] ⊗ [(4)] ⊗ · · · ⊗ [(4)])S4

)

=
1

4!

∑

σ∈S4

χ(2,2)(σ)χ(2,2)(σ)χ(2,2)(σ)χ(4)(σ) . . . χ4(σ).

But, χ(4)(σ) = 1 ∀σ ∈ S4. So, our computation reduces to the following

dim
(
([(2, 2)] ⊗ [(2, 2)] ⊗ [(2, 2)] ⊗ [(4)] ⊗ · · · ⊗ [(4)])Sn

)

=
1

4!

∑

σ∈S4

χ(2,2)(σ)χ(2,2)(σ)χ(2,2)(σ) = 1,

where the last equality is found by direct computation. The module S(2,2)V
∗
1 ⊗

S(2,2)V
∗
2 ⊗ S(2,2)V

∗
3 occurs with multiplicity 1 in S4(V ∗

1 ⊗ V ∗
2 ⊗ V ∗

3 ). (The full de-

composition of S4(V ∗
1 ⊗ V ∗

2 ⊗ V ∗
3 ) was computed in (prop 4.3 [19]).) Therefore the

module S(2,2)V
∗
σ(1) ⊗ S(2,2)V

∗
σ(2) ⊗ S(2,2)V

∗
σ(3) ⊗ S(4)V

∗
σ(4) ⊗ · · · ⊗ S(4)V

∗
σ(n) occurs with

multiplicity 1 in S4(V ∗
1 ⊗ · · · ⊗ V ∗

n ).

We have seen that each summand of M is an irreducible SL(2)×n-module which

occurs with multiplicity 1 in S4(V ∗
1 ⊗ · · · ⊗ V ∗

n ). Therefore M is an irreducible G-

module, and it occurs with multiplicity 1 in S4(V ∗
1 ⊗ · · · ⊗ V ∗

n ).

We remark that the above argument generalizes to:
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Lemma III.19. For every collection π1, . . . , πn of partitions of d,

dim
(
([π1] ⊗ · · · ⊗ [πn])Sd

)
= dim

(
([π1] ⊗ · · · ⊗ [πn] ⊗ [(d)])Sd

)
. (3.4)

In particular, if M is any irreducible SL(V1)×· · ·×SL(Vn)-module which occurs with

multiplicity m in Sd(V ∗
1 ⊗· · ·⊗V ∗

n ), then M⊗SdV ∗
n+1 is an irreducible SL(V1)×· · ·×

SL(Vn) × SL(Vn+1)-module which occurs with multiplicity m in Sd(V ∗
1 ⊗ · · · ⊗ V ∗

n ⊗

V ∗
n+1).

Proof. Use the formula

dim
(
([π1] ⊗ · · · ⊗ [πn])Sd

)
=

1

d!

∑

σ∈Sd

χπ1(σ) . . . χπn
(σ). (3.5)

and note that χ(d)(σ) = 1 ∀σ ∈ Sd.

Let Sk̂
n denote the permutation group generated by the letters {1, . . . , n}\{k} and

let Let Σk
n = {σ ∈ Sk̂

n | σ(1) < σ(2) < σ(3) and σ(4) < . . . σ(k − 1) < σ(k + 1) · · · <

σ(n). Then let Mk denote the following module

Mk =
⊕

σ∈Σk
n

S(2,2)V
∗
σ(1) ⊗ S(2,2)V

∗
σ(2) ⊗ S(2,2)V

∗
σ(3) ⊗ S(4)V

∗
σ(4) ⊗

· · · ⊗ ̂S(4)V
∗
σ(k) ⊗⊗ · · · ⊗ S(4)V

∗
σ(n)

⊂ S4(V ∗
1 ⊗ · · · ⊗ V ∗

k−1 ⊗ V ∗
k+1 ⊗ · · · ⊗ V ∗

n ).

Remark III.20. There is a reduction we can make by realizing that M =
∑4

i=1(Mi ⊗

S(4)V
∗
i ). This is because all of the modules that occur in Mi ⊗ S(4)V

∗
i for 5 ≤ i ≤ n

have already occurred when 1 ≤ i ≤ 4. More explicitly, M1 ⊗ S(4)V
∗
1 contains all the

modules in M except for those that have an S(2,2)V
∗
1 . The module

(
M1 ⊗ S(4)V

∗
1

)
+

(
M2 ⊗ S(4)V

∗
2

)
contains all the modules in M except for those that have a factor

which is S(2,2)V
∗
1 ⊗S(2,2)V

∗
2 . The sum

(
M1 ⊗ S(4)V

∗
1

)
+
(
M2 ⊗ S(4)V

∗
2

)
+
(
M3 ⊗ S(4)V

∗
3

)
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contains all the modules in M except for those that have S(2,2)V
∗
1 ⊗S(2,2)V

∗
2 ⊗S(2,2)V

∗
3 ,

and these modules are contained in M4 ⊗ S(4)V
∗
4 , so we have covered every possible

module that occurs in the decomposition of M .

Proposition III.21. Notation as above. We have the following inclusion

M ⊆ I(Zn),

and in particular, Zn ⊆ V(M).

Proof. Both M and I(Zn) are G-modules and M is an irreducible G-module, so we

only need to show that the highest weight vector of M vanishes on all points of Zn.

The highest weight vector of M is the hyperdeterminant of format 2 × 2 × 2 on the

variables X [i1,i2,i3,1,...,1]. The set Zn ∩ span{X
[i1,i2,i3,1,...,1] | i1, i2, i3 ∈ {0, 1}}, is the set

of principal minors of the upper 3×3 corner of n×n matrices. The hyperdeterminant

vanishes on these principal minors because of the case n = 3, so there is nothing more

to show.

Remark III.22. Our proof actually proves that if M is a module in Id(Zn), then

M ⊗ SdVn+1 is a module in Id(Zn+1). The real utility of this is its contrapositive

version. It gives a test for ideal membership for modules that have at least one

S(d)V
∗
i factor. Suppose we know Id(Zn) for some n. If we want to test whether

N = Sπ1V
∗
1 ⊗ · · · ⊗ Sπn+1V

∗
n+1 is in Id(Zn+1) and we know that N has at least one

πi = (d), then we can remove Sπi
V ∗

i and check whether the module we have left is in

the ideal Id(Zn).
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C. The tangential variety of the Segre product of P1’s

The tangential variety to the Segre, τ (Seg (PV1 × · · · × PVn)), is the set of points of

the form

[
a1 ⊗ · · · ⊗ an +

∑

i

a1 ⊗ · · · ⊗ ai−1 ⊗ a′i ⊗ ai+1 ⊗ · · · ⊗ an

]
,

with ai, a
′
i ∈ Vi and ai nonzero. While the tangential variety is not homogeneous, it

is invariant under the action of the group SL(V1) × · · · × SL(Vn).

Remark III.23. S(2,2)S(2,2)S(2,2) is a 1-dimensional module. As mentioned in the in-

troduction to this chapter, one can compute that this line is spanned by Cayley’s

hyperdeterminant of format 2 × 2 × 2. The fact that S(2,2)S(2,2)S(2,2) gives a minimal

generating set for the prime ideal of Z3 was pointed out by [14]. S(2,2)S(2,2)S(2,2) also

generates the prime ideal for two (identical) varieties. The first is the tangential vari-

ety to the Segre variety, τ(Seg(P1×P1×P1)), and the second is the dual variety to the

Segre variety, Seg∗(P1 ×P1 ×P1). This tells us that for the case n = 3, the tangential

variety to the Segre, the dual variety to the Segre, and Z3 are the same variety. When

n > 3 the dual and tangential varieties of the Segre variety differ. While we were

unable to exploit the dual variety, we found that the tangential variety is a proper

subvariety of Zn (cf. Proposition III.25).

Proposition III.24. The G-orbit of the image of the zero matrix is the Segre variety,

i.e.

G.ϕ([(0), t]) = Seg(PV1 × · · · × PVn).

Proof. Notice that ϕ([(0), t]) = [tnx1
1 ⊗ · · · ⊗ x1

n] ∈ Seg(PV1 × · · · × PVn). But the

Segre variety is a homogeneous variety for the group G, so the result follows.

Consider the following variant of the Veronese embedding of Pn−1 into the n× n
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matrices.

v2 : P
n = P (Cn ⊕ C) −→ P

(
S2

C
n ⊕ C

)
⊂ P

(
C

n×n ⊕ C
)

[w1, w2, . . . , wn, s] 7−→







w2
1 w2w1 . . . wnw1

w1w2 w2
2 . . . wnw2

...
...

. . .
...

w1wn w2wn . . . w2
n



, s2




= [w.tw, s2].

This parameterizes the projectivization of the rank 1 symmetric matrices.

Proposition III.25. The closure of the G-orbit of the image (under ϕ) of the rank

1 symmetric matrices is the tangential variety to the n-factor Segre variety. In par-

ticular, τ(Seg(P1 × · · · × P1)) ⊂ Zn.

Proof. Let Y = ϕ(v2(P
n)). It remains to show that G.Y = τ(Seg(P1 × · · · × P1)).

Since w.tw is a rank 1 symmetric matrix, all k× k minors vanish for k > 1, and

in particular, the k × k principal minors vanish for k > 1. Therefore a generic point

in Y has the form

P =

[
t
(
x1

1 ⊗ · · · ⊗ x1
n

)
+
∑

i

w2
i

(
x1

1 ⊗ · · · ⊗ x1
i−1 ⊗ x2

i ⊗ x1
i+1 · · · ⊗ x1

n

)
]
,

where wi, t ∈ C. In particular, Y ⊂ τ (Seg (PV1 × · · · × PVn)).

Since τ (Seg (PV1 × · · · × PVn)) is a G-variety, G.Y ⊂ τ (Seg (PV1 × · · · × PVn)).

The tangential variety is closed, so it contains G.Y .

In the other direction, suppose we are given an arbitrary point Q =
[
a1 ⊗ · · · ⊗

an +
∑

i a1 ⊗ · · · ⊗ ai−1 ⊗ a′i ⊗ ai+1 ⊗ · · · ⊗ an

]
∈ τ (Seg (PV1 × · · · × PVn)).

Consider a generic element of SL(2)×n,

g =




a1 b1

c1 d1


× · · · ×




an bn

cn dn


 ,
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with aidi − bici = 1. The generic orbit of a generic point P ∈ Y has the form

g.P =
[
t (a1x1

1 + c1x2
1) ⊗ · · · ⊗ (anx1

n + cnx2
n)

+
∑

i w
2
i (a1x1

1 + c1x1
2) ⊗ · · · ⊗

(
ai−1x1

i−1 + ci−1x2
i−1

)
⊗

(bix1
i + dix2

i ) ⊗
(
ai+1x1

i+1 + ci+1x2
i+1

)
⊗ · · · ⊗ (anx1

n + cnx2
n)
]
.

We can choose t, wi, a
i, bi, ci, di so that the expressions ai = (aix1

1 + cix2
i ) and a′i =

w2
i (bix1

i + dix2
i ) hold for each i, and Q = P is a point in the orbit. (The choice in wi

allows us to scale so that aidi−bici = 1.) This implies that τ (Seg(PV1 × · · · × PVn)) ⊂

G.Y . Therefore G.ϕ(v2(Pn)) = τ (Seg(PV1 × · · · × PVn)). Finally, since ϕ(v2(P
n)) ⊂

Zn, we know the closure of the G-orbit of ϕ(v2(P
n)) is a subvariety of Zn, and we are

done.

Landsberg and Weyman have studied tangential varieties to secant varieties and

their defining ideals. We draw the following connections to their work [21]:

Theorem III.26 (Theorem 7.3 [21]). I (τ (Seg (PV1 × · · · × PVn))) (when Vi are all

2-dimensional) is generated in degree less than or equal to 6.

Conjecture III.27 (Conjecture 7.6 [21]). I (τ (Seg (PV1 × · · · × PVn))) is generated

by the quadrics in S2 (V ∗
1 ⊗ · · · ⊗ V ∗

n ) which have at least four
∧2 factors, the cubics

with four S2,1 factors and all other factors S3,0, and the quartics with three S2,2’s and

all other factors S4,0.
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D. Secant varieties and more geometry of Zn

For an algebraic variety X ⊂ PN , let σk(X) ⊂ PN denote the kth secant variety of X,

defined by

σk(X) =
⋃

p1,...,pk∈X

Pp1,...,pk
,

where the overline indicates Zariski closure.

Polarization of a polynomial is a tool used to study ideals of secant varieties

in [18] and in [27]. For this section only, we will follow the notation of [27].

Lemma III.28 (Lemma 2.5(1) [27]). If F is a homogeneous degree d polynomial, let

−→
F denote its polarization. Let v = t1x1 + · · · + tkxk. Then the following expression

holds:

F (v) =
−→
F (v, . . . , v) =

∑

β

1

β!
tβ−→F

(
xβ
)
, (3.6)

where β = (β1, . . . , βk), |β| = d, β! = β1! . . . βk!, tβ = tβ1

1 . . . tβk

k , and
−→
F
(
xβ
)

=

−→
F
(
xβ1

1 , . . . , x
βk

k

)
.

In general, the polarization of the tensor product of two polynomials is not likely

to be the product of the polarized polynomials; however, there is something we can

say in the following special case:

Lemma III.29. Let F ∈ Sd(W ∗) and let
−→
F denote its polarization. Then for y ∈ V ∗

we have
−−−−−→
F ⊗ (y)d =

−→
F ⊗

−−→
(y)d =

−→
F ⊗ (y)d.

Proof. A standard fact about the polarization is that
−→
F is a symmetric multi-linear

form. It is obvious that
−−→
(y)d = (y)d, because (y)d is already symmetric and multi-

linear.

We will prove this by induction on the number of terms in F . Suppose F is a

monomial, F = wα = wα1
1 ◦ · · · ◦ wαn

n . Then use the isomorphism W⊗d ⊗ V ⊗d ≃
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(W ⊗ V )⊗d, and write wα ⊗ yd = (wα1
1 ⊗ yα1) ◦ · · · ◦ (wαn

n ⊗ yαn) = (w1 ⊗ y)α1 ◦ · · · ◦

(wn ⊗ y)αn = (w ⊗ y)α.

If F is not a monomial, suppose F = F1 + F2. It is clear that
−−−−−→
F1 + F2 =

−→
F1 +

−→
F2. Also, the operation ⊗yd is distributive. So

−−−−−→
F ⊗ (y)d =

−−−−→
F1 ⊗ yd +

−−−−→
F2 ⊗ yd.

By induction, we know that
−−−−→
Fi ⊗ yd =

−→
Fi ⊗ yd for i = 1, 2. We conclude that

−−−−→
F1 ⊗ yd +

−−−−→
F2 ⊗ yd = (

−→
F1 +

−→
F2) ⊗ yd =

−→
F ⊗ yd.

We are studying a module M that is constructed by an augmentation procedure

M =
∑

iMi⊗S(4)Vi. This procedure is similar to prolongation, however augmentation

does not change the degree. The following lemma was inspired by methods found

in [18].

Lemma III.30 (Step Up Lemma). Let W and V be complex vector spaces. Let

X ⊂ PW be a variety and suppose Id(X) ⊂ SdW ∗ is the ideal in degree d. Then

V(Id(X)⊗SdV ∗) = Seg(V(Id(X))×PV )⊔
⋃

L⊂V(Id(X))

σd(PL×PV ) ⊂ P(W⊗V ), (3.7)

where L ⊂ V(Id(X)) are linear subspaces.

Remark III.31. Note that if X is generated in a single degree no larger than d, then

one can replace V(Id(X)) with X in the statement of the lemma. In particular, we

will use the result of Lemma III.30 with I4(X) = M and X = V(M).

Proof. Recall that we can choose a basis of SdV ∗ consisting of dth powers of linear

forms, {(y1)
d, . . . , (yr)

d}, where r =
(

n+d−1
d

)
and the yi are in general linear position.

So one can construct a basis of the module Id(X) ⊗ SdV ∗, consisting of polynomials

of the form f ⊗ yd.

First we prove ⊇. Suppose [v] = [tx ⊗ a] ∈ Seg(V(Id(X)) × PV ) and evaluate

(f ⊗ yd)(tx ⊗ a) = f(x)yd(ta). But x ∈ V(Id(X)), so f(x) = 0 ∀f ∈ Id(X), and in

particular, [v] ∈ V(Id(X) ⊗ SdV ∗).
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Now suppose [v] ∈ σd(PL × PV ) for some k-dimensional linear subspace L ⊂

V(Id(X)) with L = span{x1, . . . , xk}. We will show that v is in the zero set of

Id(X) ⊗ SdV ∗. Let [v] = [t1x1 ⊗ a1 + · · ·+ tkxk ⊗ ak] with [xi ⊗ ai] ∈ Seg(PL× PV )

and ti ∈ C. But L ⊂ V(Id(X)) ⇐⇒ f(r1x1 + · · · + rkxk) = 0, for all scalars ri

and all f ∈ Id(X). By allowing r1, . . . , rk to vary and using (3.6), we see that this

condition is equivalent to
−→
f (xβ) = 0 for all β.

Then by Lemma III.29,
−−−−→
f ⊗ yd =

−→
f ⊗ yd and using the polarization formula

(3.6), we write

(
f ⊗ yd

)
(v) =

(−→
f ⊗ yd

)
(v, . . . , v) =

∑

β

1

β!
tβ−→f (xβ)yd(aβ).

But every term of (f⊗yd)(v) vanishes, so (f⊗yd)(v) = 0. Therefore, [v] ∈ V(Id(X)⊗

SdV ∗).

Now to prove ⊆, we argue by cases depending on the rank of [v] ∈ P(W⊗V ). We

will show for each k, if [v] ∈ V(Id(X)⊗SdV ∗) has rank k, then [v] ∈ Seg(V(Id(X))×

PV ) ⊔
⋃

L⊂V(Id(X)) σd(PL× PV ).

If k = 1, then consider [v] = [x ⊗ a] ∈ V(Id(X) ⊗ SdV ∗) for some x ∈ PW and

a ∈ PV . Let f ⊗ yd be an element of Id(X) ⊗ SdV ∗ such that y(a) 6= 0. Then the

equation (f ⊗ yd)(x ⊗ a) = f(x)(yd)(a) = 0 must hold ∀f ∈ Id(X). So f(x) = 0 for

every f ∈ Id(X) and [v] ∈ Seg(V(Id(X)) × PV ).

If k > 1, let [v] = [t1x1 ⊗ a1 + · · ·+ tkxk ⊗ ak] ∈ V(Id(X)⊗ SdV ∗), with xi ∈W ,

ai ∈ V and ti ∈ C. For any f ⊗ yd ∈ Id(X) ⊗ SdV ∗ we can write

0 = (f ⊗ yd)(v) =
∑

β

1

β!
tβ−→f (xβ)yd(aβ).

WLOG we can assume that y(ai) 6= 0 ∀i. If not, re-choose y ∈ V ∗. Now yd(aβ) is a

nonzero scalar, so by appropriate choices in t1, . . . , tk we can insist that 1
β!
tβyd(aβ) =
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1 ∀β. The expression above now reduces to

0 =
∑−→

f (xβ).

But, of course, we could re-scale the xi’s so that we still define the same k-plane,

and the previous expression is still true, so we must conclude that 0 =
−→
f (xβ) for all β

and for all f ∈ Id(X). But this is the condition that the k-plane L = span{x1, . . . , xk}

must be contained in V(Id(X)). Therefore [v] ∈ σk(PL× PV ).

If A,B,C are vector spaces of polynomials such that C = A + B then V(C) =

V(A)∩V(B). So a direct application of this fact and the Step Up Lemma III.30 yields

the following

Lemma III.32 (Characterization Lemma). Assume that M =
∑n

i=1Mi ⊗ SdV ∗
i ⊂

Sd(V ∗
1 ⊗ · · · ⊗ V ∗

n ), then

V(M) =
n⋂

i=1


Seg(V(Mi) × PVi) ⊔

⋃

L⊂V (Mi)

σd(PL× PVi)


 .

Additionally, we have the following inclusion of algebraic varieties:

V(M) ⊆
n⋂

i=1

σd(V(Mi) × PVi).

Finally note that if dim(V ) = s, then σd(PW × PV ) = P(W ⊗ V ) ∀d ≥ s. Also,

if L ⊂ V(Id(X)) is a linear subspace, then σd(PL× PV ) ⊆ σd(V(Id(X)) × PV ).

Remark III.33. A consequence of the characterization lemma is the following test.

Suppose [z] = [ζ1 ⊗ x1
i + ζ2 ⊗ x2

i ] ∈ P2n−1. If either [ζ1] or [ζ2] /∈ Z(n−1)̂i, then [z]

is not a vector of principal minors of a symmetric matrix. This observation can be

iterated, and each iteration cuts the size of the vector in question in half.

Remark III.34. We would like to have a better understanding of the algebraic implica-

tions of the procedure of augmentation. A natural guess for how the (ideal theoretic)
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Holtz-Sturmfels Conjecture could be established is as follows. Attempt to define a

ring homomorphism

f : Sym(V ∗
1 ⊗ · · · ⊗ V ∗

n+1) −→ Sym(V ∗
1 ⊗ · · · ⊗ V ∗

n )

so that f−1 ((〈SL(2)n) ⋉ Sn.hyp〉) = 〈(SL(2)n+1) ⋉ Sn+1.hyp〉. If such a homomor-

phism exists, then since prime ideals pull back under ring homomorphisms we could

use this map to do induction on n to show that the hyperdeterminantal module al-

ways generates a prime ideal. This would be sufficient to prove the Holtz-Sturmfels

Conjecture.

E. More structure of Zn

Let Z(n−1),̂i denote the isomorphic copy of Zn−1 inside of P(V1⊗· · ·⊗ V̂i ⊗· · ·⊗Vn) ≃

P(V1⊗· · ·⊗Vn−1). Let Ji = [j1, . . . , ĵi, . . . , jn] be a multi-index omitting the ith entry.

Then Z(n−1),̂i can be described in the coordinates XJi.

The variety Seg(Z(n−1),̂i ×P{x1
i }) is an isomorphic copy of Zn−1 inside of P(V1 ⊗

· · ·⊗Vi−1⊗{x1
i }⊗Vi+1⊗· · ·⊗Vn) ⊂ P(V1⊗· · ·⊗Vn), where {x1

i } indicates the span of x1
i .

Let Ji,1 = [j1, . . . , ji−1, 1, ji+1, . . . , jn], (respectively Ji,2 = [j1, . . . , ji−1, 2, ji+1, . . . , jn]),

be a multi-index that has a fixed 1 (respectively 2) in the ith entry. Our convention

is that XJi,1 are the principal minors which do not include the ith row and column,

and XJi,2 are the principal minors which do include the ith row and column. Then

Seg(Z(n−1),̂i × P{x1
i }) can be described in the coordinates XJi,1, and we will see

that points of Seg(Z(n−1),̂i × PVi) have the interpretation as the principal minors of

n− 1 × n− 1 matrices.

It is obvious that we have isomorphisms, Z(n−1),̂i ≃ Zn−1 ≃ Seg(Z(n−1),̂i×P{x1
i });

however, Seg(Z(n−1),̂i × P{x1
i }) is the only one that is actually a subvariety of Zn.
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Also, from Proposition III.21, we know Zn ⊆ V(M), and in particular, we also get

Z(n−1),̂i ⊂ V(Mi).

Proposition III.35. The variety Seg(Z(n−1),̂i×PVi) is a subvariety of Zn. Moreover,

any point of Seg(Z(n−1),̂i × PVi) has an interpretation as the principal minors of a

(n− 1) × (n− 1) matrix.

Proof. Notice that Seg(Z(n−1),̂i × P{x1
i }) ⊂ Zn, and the SL(2)×n-orbit of

Seg(Z(n−1),̂i × P{x1
i }) is Seg(Z(n−1),̂i × PVi). Since Zn is a G-variety, it contains all

of the G-orbits of points within Zn, and in particular, it contains all of the SL(2)×n-

orbits. For the “moreover” statement, notice that every point of Seg(Z(n−1),̂i × PVi)

is in the G-orbit of a point which is the principal minors of an n− 1× n− 1 block of

an n× n matrix, so after a change of basis, we have the result.

With a little bit more work, one can show that a stronger result than Proposition

III.35 holds:

Proposition III.36. Let Zp ⊂ P (V1 ⊗ · · · ⊗ Vp) and Zq ⊂ P (Vp+1 ⊗ · · · ⊗ Vn). Then

Seg(Zp × Zq) is a subvariety of Zp+q.

Let U0 = {[z] ∈ P(V1 ⊗ · · · ⊗ Vn) | z = zIX
I ∈ V1 ⊗ · · · ⊗ Vn, z[1,...,1] 6= 0}. Then

ϕ([A, t]) ∈ Seg(Zp × Zq) ∩ U0, if and only if A is of the form




P 0

0 Q


 ,

where P ∈ S2Cp and Q ∈ S2Cq.

Proof. Let ϕi denote the principal minor map on i × i matrices. Let [x ⊗ y] ∈

Seg(Zp × Zq) be such that [x] = ϕp([P, r]) and [y] = ϕq([Q, s]). If r = 0 and s = 0,

then [x] = [0, . . . , 0, det(P )] with det(P ) 6= 0 and similarly [y] = [0, . . . , 0, det(Q)]
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with det(Q) 6= 0, so [x⊗ y] = [0, . . . , 0, det(P )det(Q)], But it is clear that

ϕp+q










P 0

0 Q


 , 0





 = [0, . . . , 0, det(P )det(Q)],

and therefore is in Zp+q.

Now suppose that s = 0 but r 6= 0. Then we have [x] = [rp, . . . , det(P )] =

[rn, . . . , rn−pdet(P )] and [y] = [0, . . . , 0, det(Q)], therefore

[z] = [x⊗ y] =
[
det(Q)rn−|I|∆I(P )X2,...,2,I

]
.

It suffices to assume det(Q) = 1. To make our computation easier, we use the group

action to move to g.[z] = [rn−|I|∆I(P )X1,...,1,I ]. Now we show that we can map to

this point. Indeed,

ϕp+q










P 0

0 0


 , r





 =

[
rn−|I|∆I(P )X1,...,1,I

]
.

Now, since g.[z] ∈ Zn we must also have [z] ∈ Zn so we are done with this case.

Now consider the case that r 6= 0, s 6= 0, and consider

[x⊗ y] = [(sqx) ⊗ (rpy)] =
[(

(s)n−|I|∆I(P )XI
)
⊗
(
(r)n−|J |∆J(Q)XJ

)]
.

Consider the following point:

[A, t] =







sP 0

0 rQ


 , rs


 . (3.8)

We claim that ϕp+q([A, t]) = [x⊗ y]. Notice that we have the following:

ϕn([A, t]) =
[
(rs)n−|I|−|J |∆I(sP )∆J(rQ) XI,J

]
.
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where [I, J ] is an multi-index of the form [I, J ] = [i1, . . . , ip, j1, . . . , jq], X
[I,J ] =

XI ⊗XJ . But now it is clear that

[
(rs)n−|I|−|J |∆I(sP )∆J(rQ) XI,J

]
=
[(

(r)n−|I|∆I(P )XI
)
⊗
(
(s)n−|J |∆J(Q)XJ

)]
.

For the second statement in the proposition, we need to show that every point

in Seg(Zp ×Zq)∩U0 comes from a blocked matrix as in (3.8). Let [zIX
I ] = [x⊗ y] ∈

Seg(Zp × Zq) with [x] = [xI1X
I1] and [y] = [yI2X

I2]. Since [x ⊗ y] ∈ Zp+q, let

C = (ci,j) ∈ S2Cp+q be such that ϕp+q([C, t]) = [x⊗ y].

By rescaling, we may assume that z[1,...,1] = x[1,...,1] = y[1,...,1] = 1.

In coordinates, if zIX
I = x⊗ y, then z[I1,I2]X

[I1,I2] = (xI1X
I1) ⊗ (yI2X

I2). From

this, we conclude that z[I1[1,...,1]] = x[I1] and z[[1,...,1],I2] = yI2, and therefore,

z[I1,I2] = zI1,[1,...,1]z[1,...,1],I2. (3.9)

Fix index ranges 1 ≤ α ≤ p and 1 ≤ γ ≤ q. It remains to show that cα,γ = 0 for

each α, γ. By (3.9) with |I1| = |I2| = 1,

cα,αcα+γ,α+γ − c2α,α+γ = cα,αcα+γ,α+γ ,

and therefore cα,α+γ = 0.

Remark III.37. By the same proof, this proposition still holds for the variety of prin-

cipal minors of generic matrices.

Remark III.38. Proposition III.36 gives a useful tool in finding candidate modules for

I(Zn): We are forced to consider I(Zn) ⊂
⋂

p+q=n I(Seg(Zp × Zq)).

Lemma III.39. For Zn and V(M) as above,

Zn ⊂ σ2(Seg(Z(n−1),̂i × PVi)),
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and

V(M) ⊂ σ2(Seg(V(Mi) × PVi))

and moreover, in both cases, the containment is strict.

Proof. For the first part, if ϕ([A, t]) = [z], then z = zJi,1
XJi,1 + zJi,2

XJi,2 is such that

ϕ([A(i),t]) = [zJi,1
XJi,1] and ϕ([Adj(A)(i), t]) = g.[zJi,2

XJi,2], where A(i) is the principal

submatrix of A formed by omitting the ith row and column, Adj(A) is the adjoint

matrix, and g ∈ SL(2)×n is the element that is the identity in the ith factor and
(

0 −1

1 0

)
in the rest. So therefore [z] ∈ σ2(Seg(Z(n−1),̂i × PVi)).

For the second part, the Step Up Lemma III.30 applies directly and yields the

result. The containment of varieties is strict since the point X [1,...,1] + X [2,...,2] is

in both secant varieties but is not on Zn and does not vanish at the polynomial

hyp1,2,3 ⊗
(
(x1

4)
(2)(x2

4)
(2)
)
⊗ · · · ⊗

(
(x1

n)(2)(x2
n)(2)

)
∈M .

We can restate the Characterization Lemma III.32 as follows

Lemma III.40 (Characterization Lemma again). Assume that V(Mi) = Z(n−1),̂i.

Then we have the following useful characterization of the zero set of M ,

V(M) =

n⋂

i=1


Seg(Z(n−1),̂i × PVi) ⊔

⋃

L⊂Z(n−1),̂i

P(L⊗ PVi)


 .

Additionally, we have the following inclusion of algebraic varieties:

V(M) ⊆
n⋂

i=1

σ(Z(n−1),̂i × PVi).

Remark III.41. We can actually do better. Because of redundancies in the various

Mi’s, we made the reduction M =
∑n

i=1Mi ⊗ S(d)Vi =
∑4

i=1Mi ⊗ S(d)Vi, and on the
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variety side, we make the same reduction. In particular,

V(M) =
4⋂

i=1


Seg(Z(n−1),̂i × PVi) ⊔

⋃

L⊂Z(n−1),̂i

P(L⊗ PVi)


 .

For computational purposes, this will make things easier.

The following is another useful application of the Step Up Lemma (III.30).

Proposition III.42. Suppose Bi ⊂ Sd(V ∗
1 ⊗ . . . V̂ ∗

i ⊗ · · · ⊗ V ∗
n ) is such that V(Bi) =

Seg(PV1 × . . . P̂Vi × · · · × PVn) and that d ≥ dim(Vi) for all i. Then V(
⊕

i(B
i ⊗

SdV ∗
i )) = Seg(PV1 × · · · × PVn).

Proof. Work by induction and use the Step Up Lemma (III.30). It is clear that

V(
⊕

i(B
i ⊗ SdV ∗

i )) ⊃ Seg(PV1 × · · · × PVn). All the linear spaces on Seg(PV1 ×

· · · × PVn) are (up to permutation) of the form V1 ⊗ â2 ⊗ · · · ⊗ ân, where ai ∈ Vi

are nonzero and âi denotes the line through ai. Then compute the intersection,
⋃

Li

⋂n
i=1 P(Li ⊗ Vi), and notice that in the intersection of just 3 factors, all of the

resulting linear spaces must live in Seg(PV1 × · · · × PVn).

F. The Almost Lemma

Suppose we have a point [z] ∈ V(M) and a matrix A which satisfies ϕ([A, t])I = zI for

all I 6= [2, . . . , 2]. In other words, we have determined that the matrix A almost maps

to z in the sense that all of its principal minors except possibly for the determinant

agree with the entries of z. What can we say about z?

Lemma III.43 (The Almost Lemma). Let n ≥ 4. Suppose [z] = [zIX
I ] ∈ V(M),

and [vA] = [vA,IX
I ] = [ϕ([A, t])] ∈ Zn are such that zI = vA,I for all I 6= [2, . . . , 2]. If

z[2,...,2] 6= vA,[2,...,2], then
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[z] ∈
⋃

|Is| ≤ 2

1 ≤ s ≤ m

(Seg (PVI1 × · · · × PVIm
)) ⊂ Zn.

Otherwise [z] = [vA] ∈ Zn.

Observation III.44. Z1 ≃ P1 and Z2 ≃ P3, so Proposition III.36 implies that a

point [A, t] with t 6= 0 mapping to Seg (PVI1 × · · · × PVIm
) with |Is| ≤ 2 for each s

is permutation equivalent to a block diagonal matrix consisting of 1 × 1 and 2 × 2

blocks. Moreover, such a block diagonal matrix is a special case of a symmetric tri-

diagonal matrix, and therefore none of its principal minors depend on the sign of the

off diagonal terms.

In what follows, we will show that if vA,I = zI for all I 6= [2, . . . , 2] and z[2,...,2] 6=

vA,[2,...,2], then z is a zero of an auxiliary set of polynomials denoted B. We will then

show that the zero set V(B) is contained in the union of Segre varieties. Finally,

Proposition III.36 provides the inclusion into Zn.

1. Reduction to one variable

Suppose [vA] and [z] are as above. Both points are zeros of every polynomial inM , but

the only coordinate in which they can differ is [2, . . . , 2]. Now consider the coordinates

zI ( = vA,I) as fixed constants ∀I 6= [2, . . . , 2], and for f ∈ M define fz by the sub-

stitution f(X [1,...,1], . . . , X [2,...,2]) 7→ f(z[1,...,1], . . . , z[1,2,...,2], X
[2,...,2]) =: fz(X

[2,...2]). Let

M[2,...,2](z) = {fz | f ∈ M} denote the resulting set of univariate polynomials. Then

z[2,...,2] and vA,[2...,2] are two (possibly different) roots of each univariate polynomial

fz ∈M[2,...,2](z).

Lemma III.45. If f ∈ M , then the corresponding polynomial fz ∈ M[2,...,2](z) is

either degree 0, 1, or 2 in X [2,...,2].
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Proof. It is sufficient to prove the lemma on a weight basis for M . In particular

these polynomials have the property that all of their terms have the same weight.

The weight of a monomial XI . . .XJ is a vector which is computed the following

procedure (standard in representation theory). Take the index vectors I, . . . , J and

replace all the 1’s with −1’s and all the 2’s with +1’s. The weight is the sum of the

modified index vectors.

We recognize that S(2,2)S(2,2)S(2,2) is 1-dimensional, has weight zero, degree 4,

and in particular, it is spanned by the hyperdeterminant, hyp. It is easy to see that,

hyp, is a quadratic in X [2,2,2]: (X [2,2,2])2 has weight [2, 2, 2], and the only way to raise

this to [0, 0, 0] is to multiply by (X [1,1,1])2. We cannot have anything of lower weight

because we will not be able to raise its weight back up to [0, 0, 0] and still be degree

4.

Consider the module S(2,2)V
∗
1 ⊗S(2,2)V

∗
2 ⊗S(2,2)V

∗
3 ⊗S(4)V

∗
4 ⊗· · ·⊗S(4)V

∗
n . A lowest

weight vector in this module is constructed by taking the weight [0, 0, 0] vector which

spans S(2,2)V
∗
1 ⊗S(2,2)V

∗
2 ⊗S(2,2)V

∗
3 , (i.e. hyp1,2,3) and tensoring with (x2

4)
4⊗· · ·⊗(x2

n)4

- the lowest weight vector for S(4)V
∗
4 ⊗ · · · ⊗ S(4)V

∗
n . The leading term is

(x1
1 ⊗ x1

2 ⊗ x1
3)

2(x2
1 ⊗ x2

2 ⊗ x2
3)

2 ⊗ (x2
4)

4 ⊗ · · · ⊗ (x2
n)4

= (X [1,1,1,2,...,2])2(X [2,...,2])2.

There cannot be any higher power of X [2,...,2] occurring in a polynomial in M , other-

wise, the vector would have a weight that is lower than the lowest weight.

Now we know that vA,[2,...,2] and z[2,...,2] are both common zeros of univariate

polynomials, all with degree 2 or less. A quadratic (not identically zero) in one

variable has at most two solutions, and a linear polynomial (not identically zero) has

at most one solution. The only way then for us to have vA 6= z and vA, z ∈ V(M) is
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if all of the linear polynomials were identically zero and if all of the quadratics were

scalar multiples of each other.

Therefore, we need to study the points [z] ∈ V(M) for which fz = λf,ggz ∀f, g ∈

M[2,...,2](z), for some λf,g ∈ C. Define polynomials af ,bf , and cf (which necessarily do

not depend on X [2,...,2]) for each fz ∈M[2,...,2](z) by

fz = af(z)
(
X [2,...,2]

)2
+ bf (z)

(
X [2,...,2]

)
+ cf (z).

The condition fz = λf,ggz ∀f, g ∈ M[2,...,2](z) is described (without reference to λ) by

the polynomials B′ := span{af (z)bg(z) − ag(z)bf (z) | f, g ∈M}.

Notice that B′ is not G-invariant. Let B = 〈G.B′〉 denote the corresponding

G-module.

The polynomials in B′ have the property that if h(z) 6= 0 for some h ∈ B′, i.e.

[z] 6∈ V(B′), then the polynomials in M[2,...,2](z) must have a single common root, and

therefore v[2,...,2] = z[2,...,2]. If, however h(z) = 0 ∀h ∈ B′ (i.e. z ∈ V(B′)), then it is

possible that the polynomials in M[2,...,2](z) have 2 common roots.

Since V(M) and Zn are G-varieties, [z] ∈ V(M) implies that G.[z] ⊂ V(M), and

similarly for Zn. If g.[z] /∈ V(B′), then by our remarks above, g.[z] ∈ Zn, and in

particular, [z] ∈ Zn.

So consider the case that G.[z] ⊂ V(B′). This implies that [z] ∈ V(B). So, we

need to look at the variety V(B). If [z] 6∈ V(B), then [z] ∈ Zn. If [z] ∈ V(B) then we

claim that (independent of vA) [z] ∈ Zn, and we will show this by the following:

Proposition III.46. Let B be as above. Then

V(B) ⊂
⋃

|Is| ≤ 2

1 ≤ s ≤ m

Seg (PVI1 × · · · × PVIm
) ⊂ Zn.

This proposition will be proved in the following sequence of lemmas.
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1. S(4,1)S(4,1)S(4,1)S(5) . . . S(5) ⊂ B.

2. V(S(4,1)S(4,1)S(4,1)S(5) . . . S(5)) =
⋃

|Is| ≤ 2

1 ≤ s ≤ m

Seg (PVI1 × · · · × PVIm
) .

3. Seg (PVI1 × · · · × PVIm
) ⊂ Zn is by Proposition III.36.

Lemma III.47. We have the following inclusion, S(4,1)S(4,1)S(4,1)S(5) . . . S(5) ⊂ B.

Suppose we can write down a polynomial h in the G-module B. Since B is a

g-module, the following algorithm is a standard idea in representation theory and can

be used to find submodules of B.

Input: h ∈ B.

Step 0. Choose an ordered basis of lowering operators g− = {α1, . . . , αn}.

Step 1. Find the largest integer k1 ≥ 0 so that αk1
1 .h 6= 0, and let h(1) = αk1

1 .h.

Step 2. Find the largest integer k2 ≥ 0 so that αk2
2 .h

(1) 6= 0, and let h(2) = αk2
2 .h

(1).

Step n. Find the largest integer kn ≥ 0 so that αkn
n .h(n−1) 6= 0.,and let h(n) =

αkn
n .h

(n−1).

Output: The vector h(n) is a lowest weight vector in B and span{G.h(n)} is a sub-

module of B.

Proof. We will carry out the steps in the algorithm given above. For this proof, we

introduce some new notation. If i1, i2, i3 are fixed, let XIp,q,r denote the coordinate

vector with i1 = p, i2 = q, i3 = r and ik = 2 for k ≥ 4.

Suppose f[i1,i2,i3] ∈ S(2,2)V
∗
i1 ⊗ S(2,2)V

∗
i2 ⊗ S(2,2)V

∗
i3 ⊗ S(4)V

∗
i4 ⊗ · · · ⊗ S(4)V

∗
in is a

lowest weight vector. Define a[i1,i2,i3], b[i1,i2,i3], c[i1,i2,i3] by the equation f[i1,i2,i3] =

a[i1,i2,i3](X
[2,...,2])2 + b[i1,i2,i3](X

[2,...,2]) + c[i1,i2,i3].

Since f[i1,i2,i3] is a hyperdeterminant of format 2 × 2 × 2, aI = (XI1,1,1)2 and

b[i1,i2,i3] = XI1,1,1
(
XI2,1,1XI1,2,2 +XI1,2,1XI2,1,2 +XI1,1,2XI2,2,1

)
− 2XI2,1,1XI1,2,1XI1,1,2 .
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The weight of a[i1,i2,i3] is (up to permutation) [−2,−2,−2, 2, . . . , 2], where the −2’s

actually occur at {i1, i2, i3}. The weight of b[i1,i2,i3] is (up to permutation)

[−1,−1,−1, 3, . . . , 3], where the −1’s actually occur at {i1, i2, i3}. Now consider

h[i1,i2,i3],[j1,j2,j3] = a[i1,i2,i3]b[j1,j2,j3] − a[j1,j2,j3]b[i1,i2,i3] ∈ B.

We notice that h[i1,i2,i3],[j1,j2,j3] can have 3 different (up to permutation) weights, de-

pending on how [i1, i2, i3] and [j1, j2, j3] match up. The three possible weights of

h[i1,i2,i3],[j1,j2,j3] are (up to permutation): [−3,−3, 1, 1, 5, . . . , 5], [−3, 1, 1, 1, 1, 5, . . . , 5],

or [1, 1, 1, 1, 1, 1, 5, . . . , 5].

In each case, apply the algorithm above. The output in each case is a vector

of weight (up to permutation) [3, 3, 3, 5, . . . , 5]. The fact that we are dealing with

the tensor product of SL(2) modules implies that the module with lowest weight

[3, 3, 3, 5, . . . , 5] is S(4,1)S(4,1)S(4,1)S(5) . . . S(5) and this must be a submodule of B.

Lemma III.48. We have the following equality of sets

V
(
S(4,1)V

∗
1 ⊗ S(4,1)V

∗
2 ⊗ S(4,1)V

∗
3

)

= Seg(P(V1 ⊗ V2) × PV3) ∪ Seg(P(V1 ⊗ V3) × PV2) ∪ Seg(P(V2 ⊗ V3) × PV1).

Proof. The space V ∗
1 ⊗ V ∗

2 ⊗ V ∗
3 has a finite number of orbits under the action of

SL(2)×3. We list these orbits and normal forms below.

• Seg(PV1 × PV2 × PV3) : Normal form [x] = [a⊗ b⊗ c].

• τ(Seg(PV1 × PV2 × PV3))sing = S3.Seg(P(V1 ⊗ V2)× PV3): Normal form (up to

permutation) [x] = [a⊗ b⊗c+a′⊗ b′⊗c]. This orbit is called the singular orbit.

• τ(Seg(PV1 × PV2 × PV3)): Normal form [x] = [a⊗ b⊗ c + a′ ⊗ b⊗ c+ a⊗ b′ ⊗

c+ a⊗ b⊗ c′].

• σ(Seg(PV1 × PV2 × PV3)): Normal form [x] = [a⊗ b⊗ c + a′ ⊗ b′ ⊗ c′].
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The lowest weight vector for S(4,1)S(4,1)S(4,1) is

f = (X [2,2,2])2
(
X [1,1,1](X [2,2,2])2 + 2X [2,1,2]X [1,2,2]X [2,2,1]

−X [2,2,2](X [1,2,2]X [2,1,1] +X [2,1,2]X [1,2,1] +X [2,2,1]X [1,1,2])
)
.

Since the orbits are nested, consider a generic point the singular obit. We find

that f(x) = 0 for every x ∈ τ(Seg(PV1 × PV2 × PV3))sing. So therefore τ(Seg(PV1 ×

PV2 × PV3))sing ⊂ V(S(4,1)S(4,1)S(4,1)).

Next, we show that the other two orbits are not in V(S(4,1)S(4,1)S(4,1)). The

orbits are nested, so consider the point [x] =
[
X [2,2,2] +X [1,2,2] +X [2,1,2] +X [2,2,1]

]
∈

τ(Seg(PV1 × PV2 × PV3)). But f(x) = 2 6= 0, so the other two orbits are not in

V(S(4,1)S(4,1)S(4,1)). Since we have considered all possible orbits, we are done.

Notation III.49. Let VI = Vi1 ⊗ · · · ⊗ Vi|I| and let v̂I ∈ VI denote the line through

vi1 ⊗ · · · ⊗ vi|I|. If π is a partition, let S[π]VI = SπVi1 ⊗ · · · ⊗ SπVi|I|. Note: This is

not the same as Sπ(Vi1 ⊗ · · · ⊗ Vi|I|).

Observation III.50. All the linear spaces on
⋃

|I|≤2, |J |≤2, |I|+|J |=3Seg(PVI1 × · · · ×

PVIm
), are (up to permutation) of the form VI1 ⊗ v̂I2 ⊗ · · · ⊗ v̂Im

.

Let

B̃ =
⊕

|I|=n

(
S[(4,1)]V

∗
{i1,i2,i3}

⊗ S[(5)]V
∗
I\{i1,i2,i3}

)
,

and let

B̃k =
⊕

|I|=n−1, k /∈I

(
S[(4,1)]V

∗
{i1,i2,i3} ⊗ S[(5)]V

∗
I\{i1,i2,i3}

)
.

Notice that B̃ =
∑n

k=1 B̃k ⊗ S(5)V
∗
k .
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Lemma III.51. Suppose

V
(
B̃k

)
=

⋃

|Is| ≤ 2, k /∈ Is∑
s |Is| = n − 1

Seg (PVI1 × PVI2 × · · · × PVIm
) .

Then

V
(
B̃k ⊗ S(5)V

∗
n

)
=

⋃

|Is| ≤ 2, k /∈ Is∑
s |Is| = n − 1

Seg
(
PVI1∪{k} × PVI2 × · · · × PVIm

)
. (3.10)

Proof. Apply the Step Up Lemma III.30 to the left hand side of (3.10). It remains

to check that

⋃

L⊂V(B̃k)

P(L⊗ Vk) =
⋃

|Is| ≤ 2, k /∈ Is∑
s |Is| = n − 1

Seg
(
PVI1∪{k} × PVI2 × · · · × PVIm

)
,

where L ⊂ V(B̃k) are linear spaces. Because of symmetry, there is only one type of

linear space to consider, VI1 ⊗ v̂I2 ⊗ · · · ⊗ v̂Im
⊗ Vk = VI1∪{k} ⊗ v̂I2 ⊗ · · · ⊗ v̂Im

. It is

clear that each of these linear spaces is on one of the Segre varieties on the right hand

side of (3.10), and moreover every point on the right hand side of (3.10) is on one of

these linear spaces.

Proposition III.52.

V
(
B̃
)

=
⋃

|Is| ≤ 2∑
s |Is| = n

Seg (PVI1 × · · · × PVIm
) .

Proof. Proof by induction. The base case is Lemma III.48. For the induction step,

use Lemma III.51. We need to show that
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n⋂

k=1

⋃

|Is| ≤ 2, k /∈ Is∑
s |Is| = n − 1

Seg
(
PVI1∪{k} × PVI2 × · · · × PVIm

)

=
⋃

|Is| ≤ 2∑
s |Is| = n

Seg (PVI1 × · · · × PVIm
) .

It suffices to check that

Seg
(
PV{i1,i2,i3} × PVi3 × PVI4 × · · · × PVIm

)

∩ Seg
(
PV{i1,i2,i4} × PVi3 × PVI5 × · · · × PVIm

)

= Seg
(
PV{i1,i2} × PVi3 × PVi4 × PVI5 × · · · × PVIm

)
.

This can be done by writing a point [p] in the first Segre variety in coordinates and

then requiring the 2 × 2 minors in the ideal of the second Segre variety to vanish on

[p].

G. Proof of Theorem III.3

The outline of proof is as follows. Assume for induction that V(Mi) = Z(n−1),̂i. In

the cases of n = 3, 4, the ideal theoretic version of the theorem was proved with the

aid of a computer in [14]. Recall that the Characterization Lemma (III.32) says that

V(M) =
n⋂

i=1


Seg(Z(n−1),i × PVi)

⋃

 ⋃

L⊂Z(n−1),̂i

P(L⊗ PVi)




 .

Also, Seg(Z(n−1),i × PVi) ⊂
⋃

L⊂Z(n−1),̂i
P(L⊗ PVi), therefore

V(M) =
n⋂

i=1

⋃

L⊂Z(n−1),̂i

P(L⊗ PVi). (3.11)
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Lemma III.21 says that Zn ⊆ V(M). To show containment in the other direction,

we will take any point z ∈ V(M) and use the characterization (3.11) to show that

the restrictions placed on [z] force it to live in Zn. We will do this by constructing a

matrix A so that [A, t] 7→ [z] or by using the Almost Lemma III.43 to conclude that

[z] ∈ Zn.

Suppose we take a point in the zero set

[z] ∈
n⋂

i=1

⋃

Li⊂Z(n−1),i

P(Li ⊗ Vi) = V(M).

Now since z is fixed, we can also fix a single Li for each i. So, now we have [z] ∈
⋂n

i=1 P(Li ⊗ Vi). For each i, we know that [z] ∈ P(Li ⊗ Vi), so after choosing a basis

work in the cone over projective space write

z = zJX
J =

(
zJi,1

XJi,1
)

+
(
zJi,2

XJi,2
)

=
(
zJi,1

XJi
)
⊗ x1

i +
(
zJi,2

XJi
)
⊗ x2

i

= ηi ⊗ x1
i + νi ⊗ x2

i ,

where ηi := ηi
Ji
XJi = zJi,1

XJi, and νi := νi
Ji
XJi = zJi,2

XJi, and ηi, νi ∈ Li. If either

of ηi, νi is zero, then z is in a Segre variety, and this is in Zn. We consider the case

that neither ηi, νi is zero for each i. We now have n different expressions for our point

z:

z = η1 ⊗ x1
1 + ν1 ⊗ x2

1

...

z = ηn ⊗ x1
n + νn ⊗ x2

n.

Next, we compare the n different expressions for z in coordinates, one coordinate at

a time. This gives n2n relations on the entries of z in terms of the entries of ηi and
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νi. Our induction hypothesis says that Z(n−1),i = V(Mi) for 1 ≤ i ≤ n. In particular,

ηi and νi have (n − 1) × (n − 1) matrices that map to them. Let [A(i), t(i)] be such

that ϕ([A(i), t(i)]) = ηi, where the parenthetical superscript on t(i) or A(i) indicates an

index, not a power.

1. Building a matrix

Now we attempt to build a matrix A so that it agrees with all of the information we

have. We consider the restrictions forced on us by the η’s.

Consider the [1, . . . , 1] coordinate of the ηi’s. Our restrictions imply that z[1,...,1] =

ηi
[1,...,1] = (t(i))n for each i. So, t(i) all agree up to a factor of a root of unity. But,

with out loss of generality, we can just assume that they are all equal. This is

because if not, then we can just re-scale each individual ηi. (We are allowed to do

this because ϕ is a well-defined homogeneous degree n map on projective space, so

ϕ([λA, λt]) = [λnzIX
I ] = [zIX

I ] = ϕ([A, t]).) So, we take t(i) = t for all i. We might

need to consider two cases, depending on whether t = 0; however, we notice that

without loss of generality, we may assume that z[1,...,1] 6= 0. This is because of the

following lemma:

Lemma III.53. Let U0 = {[z] ∈ P(V1⊗· · ·⊗Vn) | z = zIX
I ∈ V1⊗· · ·⊗Vn, z[1,...,1] 6=

0}. Then V(M) ∩ U0 ⊂ Zn implies that V(M) ⊂ Zn.

Proof. Since Zn and V(M) are G-varieties, and G.U0 = P(V1 ⊗ · · · ⊗ Vn) the result

follows.

Therefore, by replacing [z] with g.[z] if necessary, we may assume that z[1,...,1] 6= 0.

The assumption z[1,...,1] 6= 0 implies that t 6= 0 and if A, and A′ are n × n matrices,

tn−|I|∆I(A) = tn−|I|∆I(A
′) then ∆I(A) = ∆I(A

′). So it is no loss to set t = 1.
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Next, we are working to build a matrix A so that ϕ([A, 1]) = z. We want

A to have the property that its principal submatrices are actually the matrices

A(1), . . . , A(n) from above. If we can do this, we will have determined that all of

the principal minors of A, except possibly the determinant, match z, and by the Al-

most Lemma III.43, we will be done. However, we do not yet know if our choices of

A(i) are consistent with each other. Let (A(i))(j) be the submatrix of A(i) obtained

by deleting the jth row and column. The question of consistency comes down to

the following question. If we have already chosen a matrix A(1), is it possible to

choose a matrix A(2) so that it satisfies the two properties; that it maps to η2, and

(A(2))(1) = (A(1))(1)?

Define a candidate matrix,

A(x) =




x1,1 x1,2 . . . x1,n

x1,2 a2,2 . . . a2,n
...

...
. . .

...

x1,n a2,n . . . an,n,


 ,

where the xi,j are indeterminants and the principal submatrix formed by omitting the

first row and column of A(x) is A(1). A(x) is now a candidate for a matrix that will

satisfy ϕ([A, 1]) = [z]. We must have z[2,1,...,1] = ∆[2,1...,1](A(x)) = x1,1, therefore we

fix x1,1 = a1,1. Also, the equations on the 2 × 2 minors, x2
1,i − a1,1ai,i = z[2,1...1,2,1,...,1],

determine x1,i up to sign.

Throughout what follows, the term “works” will mean that the matrix in question

has all of its principal minors matching the appropriate entries of z. So, of the 2n−1

choices of combinations of signs, we want to know if there is one choice that will work

for all of the principal minors. Also, in light of the Almost Lemma III.43, it suffices

to prove that all of the principal minors smaller than the determinant work. Our

question then becomes the following:



60

Proposition III.54. Suppose [z] ∈ V(M) and z[1,...,1] = 1. Suppose A(x) as above

such that ∆[1,i2,i3,...,in](A(x)) = z[1,i2,i3,...,in]. Then either there exists a choice of y =

(x1,2, . . . , x1,n) so that ∆I(A(x)) = zI for all I and hence, z ∈ Zn, or [z] ∈ Seg(PVI1×

· · · × PVIm
) ⊂ Zn with |Is| ≤ 2 and

∑
s |Is| = n.

We work by induction. Suppose A(x)(2) is such that

∆[1,i3,...,in](A(x)(2)) = z[1,1,i3,...,in].

There are two cases to consider. Case 1, there is a choice in y2 = (x1,2, . . . , x1,n) so

that ∆I2,1(A(x))(2) = zI2,1 for all I2,1. Case 2, [zI2,1X
I2] ∈ Seg(PVI1 × · · · × PVIm

).

In the second case, we apply Proposition III.36 to conclude that there is a matrix

that is permutation equivalent to a block diagonal matrix (with only 1× 1 and 2× 2

blocks) that maps to [zI2,1X
I2]. If this happens, we start over by insisting that A(2)(x)

is of this form and because of this, none of its principal minors depend on the sign of

the off diagonal entries (see Observation III.44).

In either case, we are still left to choose x1,2. We do not know if there is single

choice of x1,2 that works for all principal minors. Proposition III.54 will follow from

the following proposition.

Proposition III.55. Suppose [z] ∈ V(M). Work on the set where z[1,...,1] = 1. Let

A(x1,2) =




a1,1 x1,2 a1,3 . . . a1,n

x1,2 a2,2 . . . . . . a2,n

a1,3
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

a1,n a2,n . . . an,n



,

with ai,j fixed and x1,2 variable. Assume that ∆I(A(x1,2)) = zI for I = [1, i2, . . . , in]

or I = [i1, 1, i3, . . . , in] - i.e. all principal minors not involving x1,2. Then either

there exists a choice of x1,2 so that ∆I(A(x)) = zI for all I and hence, [z] ∈ Zn, or
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[z] ∈ Seg(PVI1 × · · · × PVIm
) ⊂ Zn with |Is| ≤ 2 and

∑
s |Is| = n.

We will use the following observation often in the course of the proof:

Observation III.56. Suppose A is an n× n matrix. The set of all of the principal

minors of all principal submatrices of size n − 1 × n − 1 is equal to the set of all of

the principal minors of A except the determinant.

Proof of Proposition III.55. We will see how to step up from 3 × 3 to 4 × 4, and

then we will do the general case. Our hypotheses are that n = 4, [z] ∈ V(M) and

that A(x1,2) is a 4× 4 matrix depending on x1,2 with the property that the principal

minors of A(x1,2) which do not involve x1,2 agree with z, i.e. ϕ([A(1), 1]) = zI1X
I1 and

ϕ([A(2), 1]) = zI2X
I2. Now consider A(3)(x1,2) and A(4)(x1,2). We know, by induction,

that one choice of ±p = x1,2 will work so that ϕ([A(3), 1]⊗ (x1,2)) = zI3X
I3. Similarly,

one choice of ±p = x1,2 will work for A(4)(x1,2). If the same choice works for both, then

we will have determined that A(p) works for the principal submatrices A(1), . . . , A(4).

By Observation (III.56), we know that all the principal minors of A(x) work except

possibly the determinant. So, by the Almost Lemma III.43 we are done.

Now suppose that p = x1,2 works for A(3)(x1,2) and −p = x1,2 works for A(4)(x1,2).

Then by our construction, the principal minors A(1), A(2), and A(3)(+p) actually work

for z. The submatrices A(1,4), A(2,4), A(3,4), are submatrices A(1), A(2), and A(3)(+p),

so they work for +p, but they are also submatrices of A(4), so they must also work

for −p. Therefore we have determined that all of the principal minors of A(4) except

for det(A(4)) actually work for +p (by Observation III.56).

Now if det(A(4)(p)) 6= z[2,2,2,1], then by the Almost Lemma III.43,

η4 = z[i1,i2,i3,1]X
[i1,i2,i3,1] ∈ Seg

(
P(Vj1 ⊗ Vj2) × PVj3 × P{x1

4}
)
,

for some {j1, j2, j3} = {1, 2, 3}. But Proposition III.36 says that any matrix mapping
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to η4 is permutation equivalent to a block diagonal matrix, and hence by Observation

III.44 the principal minors of A(4)(p) do not depend on the sign of the off diagonal

entries. In particular, we must have det(A(4)(p)) = det(A(4)(−p)), but we assumed

that det(A(4)(p)) 6= z[2,2,2,1] and det(A(4)(−p)) = z[2,2,2,1], a contradiction. So A(4)(x1,2)

must work for both signs and we are back to the previous case and we are done with

the case n = 4.

This motivates the following lemmas.

Lemma III.57. Suppose [z] ∈ V(M) and A(x1,2) are as Proposition III.55. Suppose

that we have found that the matrices A(i)(x1,2) all work for the same choice in sign

of x1,2. Then either ϕ([A(x1,2), 1]) = [z] ∈ Zn, or there is a matrix A such that

ϕ([A, 1]) = [z] ∈ Zn and every such matrix A has the property that none of the

principal minors of A depend on the sign of its off diagonal entries.

Proof. In light of Observation III.56 we see that the hypotheses of the lemma imply

that ∆I(A(x1,2)) = zI for all I 6= [2, . . . , 2], so we may apply the Almost Lemma III.43

to conclude that either ϕ([A(x1,2), 1]) = [z] or [z] ∈ Seg(PVI1 × · · · × PVIm
) ⊂ Zn

with |Is| ≤ 2 and
∑

s |Is| = n. In the latter case, we use Proposition III.36 and

Observation III.44 to conclude.

Lemma III.58. Suppose [z] ∈ V(M) and A(x1,2) are as Proposition III.55 and that

ϕ([A(x1,2), 1]) = [z]. If all of the principal submatrices A(i)(x1,2) work for both signs

x1,2 = ±p, then A(x1,2) also works for both signs.

Proof. Suppose the determinant of A(x1,2) matches [z] for x1,2 = +p but it is unknown

whether x1,2 = −p also works. Then since all of the principal submatrices A(i)(x1,2)

work for x1,2 = −p, apply the Lemma III.57 to conclude that every matrix mapping

to [z] (and in particular A(+p)) must have the property that none of the principal
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minors of A depend on the sign of its off diagonal entries, so x1,2 = −p must also

work.

For the general case, suppose we know the proposition for n−1. More specifically,

this will say that each of A(i)(x1,2) work for at least one choice of x1,2 = ±p. In

our construction, we will have matrices A(1) and A(2) independent of x1,2 = ±p,

and (possibly after a permutation), choose matrices A(3), . . . , A(k) which work for

x1,2 = +p and matrices A(k+1), . . . , A(n) which do not work for x1,2 = +p. We could

do the same construction with −p replaced with +p. If either construction ends up

with all of the matrices A(i) working for the same sign, then apply Lemma III.57 to

conclude.

For the sake of contradiction, suppose 3 ≤ k < n, that A(3), . . . , A(k) work for

x1,2 = +p and that none of the matrices A(k+1), . . . , A(n) work for x1,2 = +p. Consider

A(k+1,...,n) - the matrix formed from A(x1,2) by omitting the rows and columns labeled

k + 1, . . . , n. Each of the matrices A(i,k+1,...,n) for 1 ≤ i ≤ k, must work for both

signs. This is because A(i,k+1,...,n) is a submatrix of A(n) which is assumed to work for

−p, and it is a submatrix of A(i) which is assumed to work for +p. By allowing i to

vary, this determines that all of the principal minors of A(k+1,...,n) work for both signs

except possibly for the determinant. Now apply Lemma III.58 to conclude that the

determinant of A(k+1,...,n) also works for both signs.

Next, consider A(k+1,...,ŝ,...,n), the submatrix of A(x1,2) obtained by omitting the

rows and columns k + 1, . . . , n, but not the row and column s, with k + 1 ≥ s ≥ n.

Again, we know that for each i, A(i,k+1,...,ŝ,...,n) must work for both signs, and we have

assumed that A(k+1,...,n) works for both signs. So can apply Lemma III.58 to conclude

that A(i,k+1,...,ŝ,...,n) also works for both signs.

We continue to repeat this argument with A(k+1,...,r̂,...,ŝ,...,n) to conclude that this
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larger matrix works for both signs. This process will continue until we are forced to

conclude that the matrices A(s) work for both signs, but we assumed for contradiction

that these matrices do not work for x1,2 = +p. So this finishes the proof of the

proposition.
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CHAPTER IV

CONSTRUCTION OF HIGHEST WEIGHT VECTORS

“Is this in bad character?”

“I’ll have to think about it a Weyl.”

unknown

The description of the various pieces of an ideal as irreducible G-modules is useful

because it allows one to look at various pieces of an ideal as isotypic G-modules. More-

over, each irreducible G-module has a highest weight vector, and to check whether

an irreducible G-module is in a G-invariant ideal, it suffices to check whether the

highest weight vector is in the ideal. This is a significant dimensional reduction. In

particular, this description allows one to avoid looking at the individual monomials

in an ideal that may have a Groebner basis that is too large for many computations.

In some applications, however, one might actually want to know how to write out

a basis of polynomials in the ideal. Perhaps less ambitious, one might want to just

write down a highest weight vector for each module in a given degree. Landsberg and

Manivel [19] gave an algorithm (based on standard facts in representation theory)

to accomplish this goal, and though this is a standard algorithm in representation

theory, an implementation of this algorithm was not readily available.

We wrote two implementations of the Landsberg-Manivel algorithm. The first

was an attempt to directly emulate the algorithm suggested in [19]. The second is

a significant practical improvement. We describe the main algorithm and the direct

implementation of it. We point out some undesirable aspects of this implementation

and describe the second implementation of the algorithm.
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A. Schur modules, Young symmetrizers and polynomials

It is necessary to recall some basic representation theory from Fulton and Harris [7].

To a partition π of d, there is an associated Young diagram Yπ of d boxes arranged

in the shape π. When a Young diagram is filled with numbers, it is called a Young

tableau Tπ. A Young tableau is called standard when it is strictly increasing in

its rows and columns. For example, the partition (3, 1) of 3 has the corresponding

Young diagram Y(3,1) = . Y(3,1) has three standard fillings,
1 2 3
4 ,

1 2 4
3

and
1 3 4
2 .

The irreducible representations of GL(V ) in V ⊗d are indexed by standard Young

tableau as STπ
V ⊂ V ⊗|π| with |π| = d. Two irreducible representations are isomor-

phic if they are indexed by Young tableau of the same shape, therefore irreducible

representations can also be indexed by the partitions π along with a multiplicity Mπ.

In this case, Sπ is usually called a Schur functor and SπV is known as a Schur module.

A Young tableau provides a combinatorial recipe for constructing a highest

weight vector. Suppose π is a partition of d such that π = (p1, . . . , pl(π)), with

conjugate partition π′ = (q1, . . . , ql(π′)). Then for each Young tableau Tπ one can

associate a skew-symmetrization map bπ : V ⊗d →
∧q1 V ⊗ · · ·⊗

∧ql(π′) V ⊂ V ⊗d, (i.e.

skew-symmetrization of the vector spaces in positions marked by the indices in the

columns of Tπ) and a symmetrization map aπ : V ⊗d → Sp1V ⊗ · · · ⊗ Spl(π)V ⊂ V ⊗d,

(i.e. symmetrization of the vector spaces marked by the indices in the rows of Tπ).

From the maps aπ and bπ one constructs a Young symmetrizer cπ = aπbπ. These

maps depend on the filling Tπ, and wiring diagrams are a convenient way to keep

track of this dependence on filling.

The Landsberg-Manivel algorithm from [19] is described in more detail in the

forthcoming book [20]. Here we just present an outline in the multiplicity 1 case.
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1. Compute the decomposition of Sd(V1 ⊗ · · · ⊗ Vn) and select a module Sπ1V1 ⊗

· · · ⊗ Sπn
Vn ⊂ Sd(V1 ⊗ · · · ⊗ Vn) which occurs with multiplicity 1.

2. Construct the pre-highest weight monomial for Sπ1V1 ⊗ · · · ⊗ Sπn
Vn.

If {e1, . . . , eN} is an ordered basis of V and π = (p1, . . . , pl(π)) then eπ =

e⊗p1

1 ⊗ e⊗p2

2 · · · ⊗ e
⊗pl(π)

l(π) is the pre-highest weight monomial for SπV .

3. For each πi, choose a (random) column standard filling Tπi
of the Young Tableau

Yπi
associated to πi. Let cπi

= aπi
bπi

be the associated Young symmetrizer to

Tπi
.

4. Construct a wiring diagram of skew-symmetrizations bπi
and symmetrizations

aπi
based on the choice of filling Tπi

.

5. Braid the output strands of the n diagrams by selecting for each strand one

wire from each diagram.

6. Symmetrize the output of the braiding (by appropriately replacing ⊗ with ◦)

so that the output lives in Sd(V1 ⊗ · · · ⊗ Vn).

7. If the result is non-zero, stop. If not, return to step 3.

This makes a black box which does the following: Given an input vector, eπ1 ⊗

· · · ⊗ eπn ∈ (V1 ⊗ · · · ⊗ Vn)⊗d, produces an element in Sπ1V1 ⊗ · · · ⊗ Sπn
Vn ⊂ Sd(V1 ⊗

· · · ⊗ Vn) which has the same weight as the input. The final step is to make sure

that the result is non-zero. If you start with a vector which has the highest possible

weight that could live in Sπ1V1 ⊗ · · ·⊗Sπn
Vn, then the result will be a highest weight

vector of the module, however this vector could actually be a complicated expression

for the zero vector, and this can be a big annoyance.
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When the multiplicity Mπ of Sπ1V1 ⊗ · · · ⊗ Sπn
Vn ⊂ Sd(V1 ⊗ · · · ⊗ Vn) is greater

than 1, the only modification we need is to repeat the multiplicity 1 algorithm as many

times as it takes to find Mπ (non-zero) linearly independent vectors. The number of

times we have to repeat the algorithm may be much larger than Mπ if good fillings

are hard to find.

This algorithm has been used effectively to produce polynomials in low degree.

An undesirable aspect of the algorithm is the random choice of filling. This is done

because we do not have a sufficient understanding of the correct combinations of

fillings that will construct a diagram that gives a non-zero highest weight vector.

Since we know that such a combination exists, we just randomly search for one in

the space of possibilities. Eventually we will find a set of acceptable fillings, so the

algorithm will terminate, however it may take many iterations. The understanding

we would need to fix this problem relies on some unsolved problems in combinatorics,

however there may be a way to get enough information to narrow our search. A

suggested route to follow is outlined in section D.

A second undesirable aspect of this algorithm is the complexity of the sym-

metrization and skew-symmetrization maps. A priori we need to do roughly s! com-

putations for each symmetrization or skew symmetrization of each monomial in a

polynomial of degree s in the intermediate stages. The final symmetrization map is a

potential nightmare of computation. This causes the computation time and the mem-

ory requirements of this algorithm to grow very quickly. The algorithm we present

has two aspects that attempt to alleviate some of this burden.
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B. Implementing the algorithm

Note, the algorithm we present works for more than 3 factors, but all the essential as-

pects are present in the 3-factor case. We have included Maple code for this algorithm

in Appendix D, Section B.

Our goal is to compute a non-zero highest weight vector inside a given isotypic

component in the following isotypic decomposition of Sd(A ⊗ B ⊗ C) as GL(A) ×

GL(B) ×GL(C)-modules:

Sd(A⊗ B ⊗ C) =
⊕

|π|=d

Sπ1A⊗ Sπ2B ⊗ Sπ3C
⊕Mπ1,π2,π3 , (4.1)

where the multiplicity Mπ1,π2,π3 can be computed via characters. We have included

Maple code for computing these decompositions in Appendix D, Section A.

When the multiplicity is greater than 1, we would like to compute a (natural)

basis of the highest weight space inside Sπ1A⊗ Sπ2B ⊗ Sπ3C
⊕Mπ1,π2,π3 . To avoid too

many notational headaches, we give the description with an example. We would like

to construct a highest weight vector of S(2,2,2)A⊗ S(2,2,2)B ⊗ S(3,1,1,1)C.

In general, if ei
1, . . . , e

i
Ni

is an ordered basis of Vi, Suppose πi = (p1
i , . . . , p

l(π)
i )

is a partition, and let π′ = (q1
i , . . . , q

l(π′)
i ) denote the conjugate partition. Then

Sπi
Vi ⊂

∧q1
i Vi ⊗

∧q2
i Vi ⊗ · · · ⊗

∧q
l(π′)
i Vi ⊂ V ⊗d

i . Using this inclusion, a pre-highest

weight vector for Sπ1V1 ⊗ · · · ⊗ Sπn
Vn is

eπ1 ⊗ eπ2 ⊗ · · · ⊗ eπn,

where eπ = e⊗p1
1 ⊗ e⊗p2

2 · · · ⊗ e
⊗pl(π)

l(π) . The result of the skew-symmetrization stage has

a notationally compact expression when we use the wedge product

⊗

i

(
e11 ∧ · · · ∧ e1q1

i

)
⊗ · · · ⊗

(
en
1 ∧ · · · ∧ en

q
l(π′

i
)

i

)
. (4.2)



70

Here we specialize to the three factor case. Suppose {a1, a2, a3}, {b1, b2, b3} and

{c1, c2, c3, c4} are ordered bases of A, B and C respectively. In our example, expression

(4.2) becomes

((a1 ∧ a2 ∧ a3) ⊗ (a1 ∧ a2 ∧ a3)) ⊗ ((b1 ∧ b2 ∧ b3) ⊗ (b1 ∧ b2 ∧ b3))

⊗ ((c1 ∧ c2 ∧ c3 ∧ c4) ⊗ c1 ⊗ c1) .
(4.3)

At this stage we notice our first improvement. The expression (4.3) looks like a

product of determinants. A fact from linear algebra implies that the determinant of an

n×n matrix can be computed in roughly n3 operations rather than the n! operations

suggested by the naive formula. This speed up is built in to most mathematical

programming languages. By programming in Maple, we let the Maple Kernel handle

this speed up by telling it to compute a determinant rather than telling it to compute

the naive definition of the skew-symmetrization maps.

The next step is to partially symmetrize the expression (4.3). But we haven’t said

which vectors we want to symmetrize. We are going to accomplish the symmetrization

stage and the final braiding / symmetrization stage in one step by keeping track of

labels on the various terms.

The expression (4.3) is a product of three degree 6 polynomials, fafbfc, each only

depending on a’s, or b’s or c’s respectively. The final result will be a polynomial of

degree 6, on the variables ai ⊗ bj ⊗ cr =: Zi,j,r, where 1 ≤ i, j,≤ 3, 1 ≤ r,≤ 4. To

construct this polynomial, consider a monomial in fa, fb, fc. It will have 6 a’s, 6 b’s,

and 6 c’s. We just need a consistent rule for selecting six triples of an a, b and a c. The

key to this is to decide on this rule before skew-symmetrizing. We do this by adding

a label to each of the symbols and carry this label throughout the computation. For

example a1 will become a1,l, and the l indicates that a1,l will eventually go towards

building the lth factor in the monomial Zi1,j1,r1 . . . Zi6,j6,r6.
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Fix indices 1 ≤ i, j, µ ≤ 3, 1 ≤ r, φ ≤ 4 , 4 ≤ ν ≤ 6 and permutations α, β, γ of

{1, . . . , 6} and construct a product of determinants from expression (4.3)

∣∣ai,α(µ)

∣∣ ∣∣ai,α(ν)

∣∣ ∣∣bi,β(µ)

∣∣ ∣∣bi,β(ν)

∣∣ ∣∣cr,γ(φ)

∣∣ ∣∣c1,γ(5)

∣∣ ∣∣c1,γ(6)

∣∣ , (4.4)

where, for example if α = (6, 5, 4, 3, 2, 1),

∣∣ai,α(µ)

∣∣ =

∣∣∣∣∣∣

a1,6 a1,5 a1,4

a2,6 a2,5 a2,4

a3,6 a3,5 a3,4

∣∣∣∣∣∣
.

Next, we do a replacement as follows: Iteratively extract the coefficient of the

partial monomial ai,1bj,1cr,1 in (4.4) and multiply this expression by the single variable

Zi,j,r. The new expression will be a polynomial on a’s, b’s, c’s and Z’s. Repeat this

process, replacing ai,2bj,2cr,2 with Zi,j,r, and so on, until the final expression only

involves the variables Zi,j,r.

In this stage we have accomplished two symmetrizations at once. Since the

product of determinants (4.4) was constructed with regular multiplication and not

tensor product, we have already accomplished the first symmetrization stage. We

have not lost the information of the tensor product because we have kept track of

where each term should be in the expression of the tensor by the second index on,

for example, ai,µ. Second, we made the grouping of one each of an a, b and a c and

multiplied the results by standard multiplication.

The output is a polynomial in S(2,2,2)A⊗S(2,2,2)B⊗S(3,1,1,1)C, however this poly-

nomial may simplify to 0, so this process may have to be repeated with a new choice

in permutations α, β, γ. In fact, in an example where the multiplicity is greater than

one, we would just need to repeat the above procedure with random permutations

α, β, γ as many times as it takes to get a basis of the highest weight space.
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1. The keys to speed

This algorithm is fast because of the following features: The procedure “coeff ” for

finding the coefficient of a given monomial is built in to the kernel of Maple and is

already optimized. The command “coeff” works well when every symbol occurs in

degree at most 1 - this is the case for our application. (For other applications when

this is not the case and a given symbol occurs in an expression in higher degree, more

care needs to be taken.)

A key to the built in “coeff” procedure is that numerical methods can be used

without sacrificing accuracy. A simple example of this is as follows. Suppose it is

known that all the monomials in a polynomial f(x1,...,xN
) are square free. Then the

coefficient of x1 is found by evaluating f(1, x2, . . . , xN) − f(0, x2, . . . , xN ).

Second, this algorithm (specifically the command “coeff”) does not require the

expression 4.4 to be expanded. Though this expression of the polynomial is not

the densest expression, it is better computationally because on a fundamental level

it allows for quicker evaluation. Also, we have allowed any cancellations that might

happen to happen as early as possible in the symmetrization stages, rather than all at

once in the final symmetrization. Finally, the most significant savings is that we never

had to implement a procedure that involved a sum with factorial-many terms. This

symbolic symmetrization is preferable to the naive summation over all permutations.

The limitations of this algorithm lie in the memory requirements for the interme-

diate stages. For example, Maple quickly runs out of memory when trying to compute

the degree 9 polynomial S(3,3,3)A⊗ S(3,3,3) ⊗ S(3,3,3).



73

C. A theoretical advantage

Eventually we want to use the polynomials we constructed and evaluate them on a

point of a given algebraic variety. It may be possible to get more out of the algorithm

we presented above. For instance notice that in expression (4.3) we have a product of

determinants. We know precisely when a product of polynomials is zero - if and only

if one (or more) of the factors is zero. Therefore if we know that we will be evaluating

our polynomial on a point that does not have “enough independent vectors” one of

the determinants will automatically be zero.

To be more specific, let Suba,b,c(A⊗B⊗C) = {T ∈ P(A⊗B⊗C) | ∃A′ ⊂ A, B′ ⊂

B, C ′ ⊂ C, dim(A′) = a, dim(B′) = b, dim(C ′) = c, T ∈ P(A′ ⊗ B′ ⊗ C ′)}. Let

n(π) be the length (the number of parts) of the partition π. We have shown

Proposition IV.1. Let T ∈ Suba,b,c(A ⊗ B ⊗ C), and let fπ be a non-zero highest

weight vector of Sπ1A
∗ ⊗ Sπ2B

∗ ⊗ Sπ3C
∗. Then f(T ) = 0 if a < l(π1) or b < l(π2) or

c < l(π3).

Obviously this proposition holds for more than 3 factors. Therefore we recover

a weaker version of a result of Landsberg and Weyman (cf. Theorem 3.1 [22]).

Remark IV.2. We would like to have a better understanding of the process of pairing

a point T ∈ P(A⊗B⊗C) with the product of determinants (4.3) in the intermediate

stage of our algorithm. In particular, if we could have a complete description of the

kernel of this pairing, then we would be able to push our understanding of the highest

weight vectors in Schur modules much further than a computer could ever take us

as this would allow us to evaluate polynomials without actually constructing them

explicitly.
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1

1 1

1 2 1

1 3 2 3 1

Fig. 1. An Example Young Lattice

D. Littlemann paths and good fillings

Figure 1 is an example of a Young lattice. In general, the Young lattice is a systematic

way of enumerating all partitions. But the diagram does much more. For example,

we have put labels above each the Young diagram Yπ to count the number of paths

in the Young lattice (also called Littlemann paths) that end at the node for Yπ.

Proposition IV.3 (Young). There is a 1 − 1 correspondence between the number

of paths to Yπ in the Young lattice and the number of standard fillings of the Young

tableau Tπ.

Proof. Proof by picture. See Figure 2.

But the standard Young tableau Tπ index the irreducible representations STπ
V

in V ⊗|π| [11]. Therefore there is a 1− 1 correspondence of paths in the Young lattice

and representations STπ
V in V ⊗|π|.

Now we come back to our question: How do we find good fillings Tπ1, . . . , Tπn
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1

1
2

1 2

1
2
3

1 3
2

1 2
3

1 2 3

1
2
3
4

1 4
2
3

1 3
2
4

1 2
3
4

1 3
2 4

1 2
3 4

1 3 4
2

1 2 4
3

1 2 3
4

1 2 3 4

Fig. 2. Paths in the Young Lattice and Standard Young Tableau

so that our algorithm produces a non-zero vector in Sπ1V1 ⊗ Sπn
Vn? Since we are

concerned with more than one filling, consider the paths in many overlaid Young

lattices, henceforth called the Young multi-lattice. In this setting, we are now asking

for a rule that tells us which combinations of Littlemann multi-paths in the Young

multi-lattice are allowable. This idea deserves further investigation.

Goal IV.4. Describe the allowable Littlemann multi-paths via graph theoretic prop-

erties of the Young multi-lattice.



76

CHAPTER V

COROLLARIES AND RESTATEMENTS

“All algebras are associative.”

PBW

The results of Theorem III.3 can be used to answer many different questions.

Most of these questions can be found in the literature [1,10,13,14] and the references

therein. In this chapter we address a few of the applications of Theorem III.3.

A. GKK-τ matrices

In one fell swoop, O. Holtz [12] gave a counterexample to four conjectures, all of them

involving the requirement of positivity of principal minors. The abstract of the paper

states,

Hermitian positive definite, totally positive, and nonsingular M-matrices

enjoy many common properties, in particular

(A) positivity of all principal minors

(B) weak sign symmetry

(C) eigenvalue monotonicity

(D) positive stability

The class of GKK matrices is defined by properties (A) and (B), whereas

the class of nonsingular τ -matrices by (A) and (C).

Holtz proves that no combination of (A) with any of (B) or (C) imply (D).
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In their list of open problems related to GKK − τ matrices, O. Holtz and H.

Schneider, [13] asked the principal minor assignment problem (PMAP): Given a vector

of length 2n does there exist a matrix which has its vector of principal minors equal

to the given vector? Their motivation for this problem comes from the following

theorem.

Theorem V.1 (Gantmacher-Krein-Carlson). A P -matrix (all principal minors pos-

itive) is GKK if and only if its principal minors satisfy the generalized Hadamard-

Fisher (HF) inequality

A[α]A[β] ≥ A[α ∪ β]A[α ∩ β] ∀α, β ∈ 〈n〉

This can be used as follows. An answer to PMAP would tell whether or not there

exist at least one matrix with a prescribed set of potential principal minors. If there

is no such matrix, then stop. If there is such a matrix, then there exist GKK matrices

with the prescribed principal minors if and only if the following two conditions are

satisfied, (1) the vector satisfies the HF inequality and (2) has all positive entries.

We also know that the spectrum of a matrix is determined by its principal minors,

so the outline above allows one to find (in principle) all possible spectra of GKK

matrices.

Holtz and Schneider also point out that PMAP is also equivalent to the following

inverse eigenvalue problem. Given a vector v ∈ C2n

, is there a matrix with its

eigenvalues and the eigenvalues of all of its principal submatrices given by v? The

equivalence of these problems comes from the fact that specifying all principal minors

implies specifying all characteristic polynomials and all eigenvalues of the principal

submatrices.
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We should mention that Griffin and Tsatsomeros gave a partial numerical answer

to PMAP [10]. Their main result is a MatLab program that can take a reasonably

sized input vector of potential principal minors and either return a matrix with those

principal minors or say that a matrix probably does not exist. However, their program

is restricted to a subclass of all matrices, and it loses accuracy and reliability when

the entries are close to 0.

In the case of symmetric matrices, Theorem III.3 answers the symmetric principal

minor assignment problem and the equivalent inverse eigenvalue problem. Therefore

due to the remarks in [13], the polynomials in the hyperdeterminantal module can

be used to give a complete description of possible symmetric P -matrices, possible

symmetric GKK-matrices, possible symmetric non-singular τ -matrices, etc.

B. Negatively correlated random variables

Consider a real symmetric n× n matrix A. The principal minors of A can be inter-

preted as values of a function ω : P({1, . . . , n}) → [0,∞), where P is the power set.

This function ω, under various restrictions, is of interest to statisticians. In particu-

lar, in D. Wagner’s study of the covariance of random variables [30] he is interested

in the following example.

Question V.2. When is it possible to prescribe the principal minors of the matrix A

as well as the off-diagonal entries of A−1?

When A = (ai,j) is symmetric,

a2
i,j = ∆i(A)∆j(A) − ∆i,j(A)∆∅(A).

So to prescribe the off-diagonal entries in a symmetric matrix A is equivalent to

prescribing the 2 × 2 principal minors and a sign for each off-diagonal term.
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Another useful fact is if A is invertible then

A−1 =
adj(A)

det(A)
,

where adj(A)i,j = ((−1)i+jdet(Aj
i )) is the adjugate matrix.

This formula implies that up to scale, the vector of principal minors of A−1 is

the vector of principal minors of A in reverse order. So Wagner’s question specialized

to symmetric matrices is equivalent to the following question:

Question V.3. When is it possible to prescribe the principal minors and the signs of

the off-diagonal terms of a symmetric matrix A

Our main result immediately provides an answer to the first part of the question:

Corollary V.4. It is possible to prescribe the principal minors of a symmetric ma-

trix if and only if the candidate principal minors satisfy all the relations given the

hyperdeterminantal module.

C. Determinantal point processes

An important notion in statistical physics is that of a determinantal point process.

Of particular interest to this study is the work of Borodin and Rains. In [2] they

considered the space of all determinantal points. A non zero point pS ∈ C2n

is called

determinantal if there is an integer m and an (n+m)× (n+m) matrix K such that

for S ⊂ {1, 2, . . . , n}

pS = det
S∪{n+1,...,n+m}

(K).

Borodin and Rains were able to completely classify all such points for the case n = 4

(Theorem 4.6 [2]) by giving a nice geometric characterization. Lin and Sturmfels [23]

studied the geometric and algebraic properties of the algebraic variety of determi-

nantal points and independently arrived at the same result as Borodin and Rains,
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moreover Lin and Sturmfels gave a complete proof of the claim of [2] that the ideal

of the variety is generated in degree 12 by 718 polynomials.

Consider the case where we impose the restrictions that the matrix K to be

symmetric and the integer m = 0, and call these restricted determinantal points

symmetric determinantal points.

Corollary V.5. The variety of all symmetric determinantal points is cut out set

theoretically by the hyperdeterminantal module.

Corollary V.5 is useful because it provides a complete list of necessary and suffi-

cient conditions for determining which symmetric determinantal points can possibly

exist.

D. Spectral graph theory

Let Γ be a finite graph with vertex set Q0 = {v1, . . . , vn} and edge set Q1 = {ei,j |

−−→vivj ∈ Γ}. A weight wt : Q0 × Q0 → C on a graph is an assignment of a complex

number to every edge and 0 if no edge exists between a pair of vertices.

The weighted Laplacian of a graph is the matrix ∆wt(Γ)i,j = wt(vi, vj). When

no weight is indicated, the weighted Laplacian is the usual graph Laplacian of an

undirected graph, ∆(Γ), i.e. the weighted Laplacian with

wt(vi, vj) =





−1 if i 6= j and ei,j ∈ Q1

0 if i 6= j and ei,j /∈ Q1

deg(vi) if i = j

The eigenvalues of ∆wt(Γ) are invariants of the graph. The first example is with

the standard graph Laplacian. The well known Kirchoff’s Matrix-Tree theorem states

that any (n − 1) × (n − 1) principal minor of ∆(Γ) counts the number of spanning
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trees of Γ.

There are many generalizations of the Matrix-Tree Theorem, such as the Matrix-

Forest Theorem which states that ∆(Γ)S
S, the principal minor of the graph Laplacian

formed by omitting rows and columns indexed by the set S ⊂ {1, . . . , n}, computes

the number of spanning forests of Γ rooted at vertices indexed by S.

The principal minors of the graph Laplacian are graph invariants. The relations

among principal minors are then also relations among graph invariants. Relations

among graph invariants are central in the study of the theory of unlabeled graphs.

In fact, Mikkonen holds that “the most important problem in graph theory of unla-

beled graphs is the problem of determining graphic values of arbitrary sets of graph

invariants,” (p. 1 [24]).

Theorem III.3 gives relations among the graph invariants that come from prin-

cipal minors, and in particular, since a graph can be reconstructed from a symmetric

matrix, Theorem III.3 implies the following Corollary.

Corollary V.6. There exists an undirected weighted graph Γ with invariants [v] ∈

P2n−1 specified by the principal minors of a symmetric matrix ∆wt(Γ) if and only if

[v] is a zero of all the polynomials in the hyperdeterminantal module.
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CHAPTER VI

SUMMARY

The variety of principal minors of symmetric matrices is a prototypical G-variety

in a space of tensors. We have studied it in the setting of G-varieties using repre-

sentation theory and geometry with a secondary goal that the techniques used and

presented here will be useful in the study of other G-varieties in spaces of tensors.

Groebner basis techniques were used successfully by Holtz and Sturmfels to prove

that the hyperdeterminantal module gives a set of minimal generators of the prime

ideal I(Zn) only for the first two non-trivial cases [14]. Now the set theoretic result is

established for all n, but there is still more work to be done for the full Holtz-Sturmfels

Conjecture - i.e. the ideal theoretic case.

The set theoretic result is good enough for many applications related to principal

minors of symmetric matrices. In particular, set theoretic defining equations of Zn

are necessary and sufficient conditions for a given vector of length 2n to be expressed

as the principal minors of a symmetric matrix. In Chapter V we pointed out several

applications of this result.

The study of Zn has raised several natural questions.

Question VI.1. A single irreducible module cuts out the Zn set theoretically. Under

what conditions does the G-orbit of an irreducible polynomial generate a prime ideal?

An answer to this question could help to resolve the Holtz-Sturmfels Conjecture

by allowing us to decide whether the hyperdeterminantal module generates a prime

ideal.

As far as applications are concerned, Z̃n, the variety of principal minors of ar-

bitrary square matrices is also interesting. Borodin-Rains [2] and Lin-Sturmfels [23]
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independently found that the ideal of Z̃4 is generated in degree 12. It would be com-

pelling to see how many of the techniques in this study could be used in the absence

of the assumption that the matrix be symmetric. We reiterate a question of Lin and

Sturmfels.

Question VI.2. Does the (GL(2)n) ⋉ Sn orbit of I12(Z̃4) cut out Z̃n?

An affirmative answer to this question would completely resolve the principal

minor assignment problem [13]. A negative answer might help to shed light on the

subtleties of Question VI.1.

In the course of this study, we showed that τ (Seg(P1 × · · · × P1)) is a natural

subvariety of Zn. Because of this we ask the following:

Question VI.3. Can the inclusion τ (Seg(P1 × · · · × P1)) ⊂ Zn be used to verify

the conjecture of Landsberg and Weyman [21] on the defining ideal of the tangential

variety?

Our hope is that these questions about G-varieties and their ideals can be an-

swered using techniques similar to those which were used to study Zn.
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APPENDIX A

THE DIMENSION OF THE ZERO SET OF THE HYPERDETERMINANTAL

MODULE

Proposition A.1. The hyperdeterminantal module M has dim(V(M)) =
(

n+1
2

)
.

Proof. To compute dim(V(M)), first notice that dim(V(M)) ≥
(

n+1
2

)
. This is because

dim(Zn) =
(

n+1
2

)
and Zn ⊆ V(M). So we need to show that dim(V(M)) ≥

(
n+1

2

)
, i.e.

we only need to find at least 2n−
(

n+1
2

)
−1 polynomials fi inM so that their differential

has maximal rank at a smooth point. We’ll accomplish this by successively selecting

polynomials that are involve new variables not used in the previous polynomials. This

will construct an upper triangular matrix. It will have full rank as long as all of the

diagonal entries are nonzero.

The selection will go as follows: Let hypi,j,k denote the hyperdeterminant on

factors {i, j, k}. Choose

f0 := hyp1,2,3 ⊗ (x1
4)

4 ⊗ · · · ⊗ (x1
n)4

- depends on X [1,...,1]. Notice that f0 is a hyperdeterminant on the variables

X [i1,i2,i3,1,...,1]. Next, choose

fj := hypi1,i2,i3 ⊗ (x1
i4
)4 ⊗ · · · ⊗ (x1

ij−1
)4 ⊗ (x2

ij
)4 ⊗ (x1

ij+1
)4 ⊗ (x1

in)4

- depends on XIj,1 for |I| = 1, but not X [1,...,1]. This selects
(

n
1

)
independent polyno-

mials, fj, and each fj is a hyperdeterminant on the variables XI where I is such that

the entries i1, i2, i3 can be either 1 or 2, the entry j must be a 2 and the rest must be

1’s.
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Continue until finally choosing

fj1,...,jn−3 := hypi1,i2,i3 ⊗ (x2
i4)

4 ⊗ · · · ⊗ (x2
in)4

- depends on XIj1,...,jn−3,2,2,2 for |I| = n− 3, but not XI when |I| < n− 3. This selects
(

n
n−3

)
independent polynomials, fj1,...,jn−3 which are each a hyperdeterminant on the

variables XI where, I is such that the entries i1, i2, i3 can be either 1or 2, and each

of the entries jk must be a 2.

Recall that
n∑

i=0

(
n

i

)
= 2n

Also recall,
(

n
2

)
+
(

n
1

)
=
(

n+1
2

)
.

We have constructed a set of polynomials which has size 1 +
(

n
1

)
+ · · ·+

(
n

n−3

)
=

2n − 1 −
(

n+1
2

)
. Call this set of polynomials E and compute rank

(
d(E)|p

)
. Notice

that by our construction, each of our polynomials is actually the same polynomial,

only the variables have different names. Order the variables consistently with the

ordering of the polynomials so that d(E) is upper triangular.

Now it remains to show that we can choose a point p so that d(E) will have

maximal rank. First, notice the diagonal entries are

dfj1,...,jk

dXIj1,...,jk,2,...,2
,

and modulo change of names of variables in each case, this is actually

d(hyp123)

dX [2,2,2]

In the next proposition, we will show that this quantity is always nonzero for a nice

choice in form of matrix, and then we’ll be done.

Now we just need to select a point that behaves similarly no matter which set of
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minors we take.

Consider the following matrix:

C :=




1 1 1 . . . 1

... 2 2 . . . 2

...
... 3 . . . 3

...
...

...
. . .

1 2 3 . . . n




Because of the structure of Zn, we may consider any set of 8 variables of the form

XIi1,i2,i3 (where all of the entries of I are fixed except for the entries in the i1, i2, i3

positions) to be the principal minors of a certain 3 × 3 matrix. Every matrix that

arises in this way when constructed from C, still has a nice enough form so that we

can compute
d(hyp123)

dX [2,2,2]
.

Proposition A.2. Consider the projection

π : Zn → Z3

t|I|∆I(A)XI 7→ t|Ii1,i2,i3
|∆Ii1,i2,i3

(A)X i1,i2,i3

Then ∃C3 such that ϕ([C3, t]) = t|Ii1,i2,i3
|∆Ii1,i2,i3

(C)X i1,i2,i3 and
d(hyp123)

dX [2,2,2]
(ϕ(C3)) 6= 0.

Proof. ϕ([C, t]) = [tn, tn−1(i1), t
n−2(i1(i2 − i1)), t

n−3(i1(i2 − i1)(i3 − i2), . . . , i1(i2 −

i1) . . . (in − in − 1)] After reordering the indices, we may assume

Ii1,i2,i3 = [i1, i2, i3, i4, . . . , ik, . . . , in], where i4 = · · · = ik = 2, ik+1 = · · · = in = 1.
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So,

π(ϕ([C, t])) = [tn−kc4(c5 − c4)(. . . )(ck − ck−1),

tn−k−1c1(c4 − c1)(c5 − c4)(. . . )(ck − ck−1),

tn−k−1c2(c4 − c2)(c5 − c4)(. . . )(ck − ck−1),

tn−k−1c3(c4 − c3)(c5 − c4)(. . . )(ck − ck−1),

tn−k−2c1(c2 − c1)(c4 − c2)(c5 − c4)(. . . )(ck − ck−1),

tn−k−2c1(c3 − c1)(c4 − c3)(c5 − c4)(. . . )(ck − ck−1),

tn−k−2c2(c3 − c2)(c4 − c3)(c5 − c4)(. . . )(ck − ck−1),

tn−k−3c1(c2 − c1)(c3 − c2)(c4 − c3)(c5 − c4)(. . . )(ck − ck−1)]

= [t3(c4), t
2c1(c4 − c1), t

2c2(c4 − c2), t
2c3(c4 − c3),

tc1(c2 − c1)(c4 − c2), tc1(c3 − c1)(c4 − c3),

tc2(c3 − c2)(c4 − c3), c1(c2 − c1)(c3 − c2)(c4 − c3)]

So we notice that we can define the following matrix

[C3, t] :=




1

c4




c1(c4 − c1) c1(c4 − c1) c1(c4 − c1)

c1(c4 − c1) c2(c4 − c2) c2(c4 − c2)

c1(c4 − c1) c2(c4 − c2) c3(c4 − c3)



, t




so that π(ϕ([C, t])) = ϕ([C3, t]).

Remark A.3. We could have found this matrix using Schur complement and would

have gotten the same answer - perhaps this gives a more streamlined approach to this

problem.

We compute the differential:
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d(hyp123)

dX [2,2,2]
= −2X [1,1,1]X [1,2,1]X [2,1,2] − 2X [1,1,1]X [1,2,2]X [2,1,1]

−2X [1,1,1]X [1,1,2]X [2,2,1] + 2(X [1,1,1])2X [2,2,2] + 4X [1,1,2]X [1,2,1]X [2,1,1]

Then we evaluate on the point:

ϕ(C3) =




X [1,1,1] = t3c4, X
[2,1,1] = t2c1(c4 − c1),

X [1,2,1] = t2c2(c4 − c2), X
[2,2,1] = tc1(c4 − c2)(c2 − c1),

X [1,1,2] = t2c3(c4 − c3), X
[2,1,2] = tc1(c4 − c3)(c3 − c1),

X [1,2,2] = tc2(c4 − c3)(c3 − c2),

X [2,2,2] = c1(c4 − c3)(c3 − c2)(c2 − c1)




Finally, we find that

d(hyp123)

dX [2,2,2]
(ϕ([C3, 1])) = 4c2c

2
1(c4 − c3)

2(c4 − c2)

So as long as we choose c1, c2 both nonzero, and c4 6= c3 and c4 6= c2, then we have a

nonzero differential. This is what we wanted to show.

Remark A.4. In the course of this proof, we have shown that the P -matrices with the

same form as C above are in the smooth locus of V(M).
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APPENDIX B

A GENERALIZATION OF TWO LEMMAS

This appendix generalizes and provides an alternate proof of the Step Up Lemma

and the Characterization Lemma.

Suppose Xn ⊂ P(V1⊗· · ·⊗Vn) is a sequence of linearly non-degenerate varieties.

Consider the linear projections π : Xi+1 → P(V1 ⊗ · · · ⊗ Vi ⊗ {x}). If for each i and

each x ∈ Vi we have π(Xi+1) ⊆ Seg(Xi × P{x}), then say the sequence (Xn) satisfies

the cutting property (CP).

Lemma B.1. Suppose Xn ⊂ P(V1⊗· · ·⊗Vn) is a sequence of linearly non-degenerate

varieties which satisfy the cutting property (CP). Then

Id(Xn) ⊗ Sd(V ∗
n+1) ⊆ Id(Xn+1).

Moreover,

Xn+1 ⊂ σmn+1(Seg(Xn × PVn+1)),

where mn+1 = dim(Vn+1).

Proof. The space Id(Xn)⊗SdV ∗
n+1 has a basis of the form f ⊗ (yd) where f ∈ Id(Xn)

and y ∈ V ∗
n+1. We need to show that f ⊗ (yd) vanishes at all points of Xn+1.

Given such a polynomial f⊗(yd), we know that f⊗(yd) ⊂ Sd(V ∗
1 ⊗· · ·⊗V ∗

n ⊗{y}),

so in particular, f ⊗ (yd) vanishes on all points in V1 ⊗ · · · ⊗ Vn ⊗ {y}⊥. So we only

need to consider the image of the projection π : Xn+1 → P(V1⊗· · ·⊗Vn ⊗{y}) which

is contained in Seg(Xi × P{y}) by hypothesis.

But now if [x⊗a] ∈ Seg(Xi×P{y}) it is clear that f⊗yd(x⊗a) = f(x)(yd(a)) = 0.

So f ⊗ yd vanishes at all points of Xn+1 and we are done with the first part.
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For the “moreover” statement, Let v1, . . . vmn+1 be a basis of Vn+1. Notice that

by the cutting property and the fact that Xn+1 is linearly non-degenerate, every point

[z] ∈ Xn+1 can be written in the form [z] = [x1⊗v1 + · · ·+xn+1⊗vmn+1 ] with xj ∈ Xn

for all j.

Remark B.2. This lemma could be used to replace the Characterization Lemma as

follows. Show that V(M) satisfies the hypothesis, so the lemma implies that V(M) ⊂

σ2(V(Mi)× PVi)). Then proceed with the proof of the main theorem with a point in

the intersection V(M) ∩ σ2(V(Mi) × PVi)). This point will satisfy the property that

it is the sum of two points and moreover, every point of V(M) has that property.

Lemma B.3. An immediate corollary of the previous lemma is the following.

Id(Z(n−1),̂i) ⊗ SdVi ⊂ Id(Zn)

and

Zn ⊂ σ2(Z(n−1),̂i × PVi),

and moreover, the second containment is strict.

Proof. The varieties Zn are linearly non-degenerate since they contain Seg(PV1×· · ·×

PVn). Zn satisfies the cutting property because of its symmetry. More specificially,

the action of SL(Vi) on Vi is transitive, so with out loss of generality, we only need to

show the cutting property for V1⊗· · ·⊗Vn−1⊗{x1
n}. But this is no problem. Consider

[z] = ϕ([A, t]). In our preferred basis, we may write z = zJi,1
XJi,1 + zJi,2

XJi,2. We

must show that [zJi,1
XJi,1] ∈ Seg(Z(n−1),̂i×P{x1

i }). Let A(i) denote the submatrix of A

obtained by omitting the ith row and column. It is clear that ϕ([Ai, t]) = [zJi,1
XJi] ∈

Z(n−1),̂i, and this is what we needed to show.

The containment of varieties is strict since the point X [1,...,1] + X [2,...,2] is in the

secant variety, but not in Zn.
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Remark B.4. While the first part of this lemma proves Proposition III.21 , it is a bit

of overkill. The real utility comes its contrapositive version. It gives a test for ideal

membership for modules that have at least one S(d) factor. Suppose we know Id(Zn)

for some n. If we want to test whether N = Sπ1V
∗
1 ⊗ · · · ⊗ Sπn+1V

∗
n+1 is in Id(Zn+1)

and we know that N has at least one πi = (d) then we can just remove Sπi
V ∗

i and

check whether the module we have left actually lives in the ideal Id(Zn). If not, then

we know that N can’t be in the ideal Id(Zn+1).
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APPENDIX C

MODULE DECOMPOSITIONS VIA REPRESENTATION RINGS

In this appendix, we show how to decompose a fundamental representation Γn

of Sp(2n) as g-module for g = sl2 × · · · × sl2. Before we dive into this task, we recall

some basic facts from representation theory found in Fulton and Harris, [7].

A. Representation rings

Here we follow Fulton and Harris [7] and introduce representation rings. The set of

isomorphism classes [V ] of representations of a semi-simple (rank n) Lie algebra g

is a ring, denoted R(g) under the operations [V ] + [W ] = [V ⊕W ] and [V ] ∗ [W ] =

[V ⊗W ]. Let Λ = ΛW be the weight lattice for g. If λ is a weight, write e(λ) as the

corresponding basis element of Z [Λ] of weight λ.

Proposition C.1 (Fact). The Character map

Char : R (g) → Z [Λ]

is a well defined injective ring homomorphism.

Let Γi be the fundamental representations of Sp(2n). In particular,

Γn =

∧n
C2n

(
ω ∧

∧n−2
C2n
) .

Let Z
[
ΛW
]

denote the ring generated by the invariants of the Weyl group, W, and

let Pi = Char (Γi).

Proposition C.2 (Fact). The following map is a ring isomorphism.

Char : R (g) → Z
[
ΛW
]
≃ Z [P1, . . . , Pn] .
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Proposition C.3 (Fact). If g′ ⊂ g and h′ ⊂ h then the restriction map Res : R (g) →

R (g′) is a surjective ring homomorphism.

So, all we need to do to describe the representation ring of a sub-algebra is to

determine what happens to the polynomial generators under the restriction map. The

generators are the characters of the fundamental representations.

1. The representation ring of sln+1C

For sln+1C let Li ∈ Λ denote the weights and let xi = e (Li) ∈ Z [Λ] denote their

corresponding basis element. Using WCF (or simpler formulas) one can determine

that the representation ring of sln+1C is Z [A1, . . . , An], where Ai is the ithelementary

symmetric polynomial on the variables x1, . . . , xn+1 with the additional requirement

that x1x2 . . . xn+1 = 1.

2. The representation ring of sp2nC

For sp2nC, it can be determined that R (sp2nC) ≃ Z [C1, . . . , Cn] where Ci is the ith

elementary symmetric polynomial on the variables x1, x
−1
1 , . . . , xn, x

−1
n . Also, the char-

acters of the fundamental representations are given by Char (Γ1) = C1, Char (Γ2) =

C2 − C1, Char (Γ3) = C3 − C1, . . . , Char (Γn) = Cn − Cn−2.

Proposition C.4. R (sp2C) ≃ R (sl2C).

Proof. Notice that A1 = x1 +x2,A2 = x1x2 = 1, C1 = (x1)+
(
x−1

1

)
but C2 = x1x

−1
1 =

1. So the identifications x2 = x−1
1 , A1 = C1 and A2 = C2 make sense for n = 2, and

we will use them in what follows.
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3. Eigenvectors

As a subgroup of sp2n, sl2 × · · · × sl2 = g has the same Cartan subalgebra (they

both have the same rank). Therefore, the eigenvectors for the action of h∗ on g are

a subset of (in general a subspace of the span of ) the eigenvectors for the action on

sp2n, which are

{Ei,j −En+i,n+j, Ei,n+j − Ej,n+i, En+i,j −En+j,i, Ei,n+i, En+i,i} ,

with corresponding roots {Li − Lj , Li + Lj ,−Li − Lj , 2Li,−2Li}. The eigenvectors

for g are {Ei,n+i, En+i,i}, and the corresponding roots are {2Li,−2Li}. We rescale so

that the roots for g are ±Li.

B. Decomposing the fundamental sp(2n) modules as sl(2)×n-modules

Our goal is to determine a formula for the decomposition of the restriction corre-

sponding to the inclusion sl2 × · · · × sl2 ⊂ sp2n, where we identify sp2 ≃ sl2.

The fundamental representations Γk of sp2n are the kernels of the maps

k∧
C

2n →
k−2∧

C
2n.

So, we need to understand how to decompose the module

k∧
C

2n =
k∧

(V1 ⊕ · · · ⊕ Vn) ,

where Vi ≃ C2 as a sl(2)×n-module.

Theorem C.5. The following decomposition holds as a g ⊂ sp2n-module.

k∧
(V1 ⊕ · · · ⊕ Vn) =

⊕

(k1,...,kn)∈Pn,2(k)

n⊗

i=1

ki∧
Vi,

where Pn,2(k) = {(k1, . . . , kn) | k1 + · · · + kn = k, ki ∈ {0, 1, 2}}, the set of distinct
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partitions of k with n parts, each part has size at most 2.

Proof. Use induction on pairs (n, k). For (n, k) = (1, 1) this is obvious. Assume the

theorem is true for all pairs (i, j) such that i < n and j < k.

We will use the following standard fact

k∧
(A⊕ B) =

⊕

a+b=k

a∧
A⊗

b∧
B. (C.1)

Apply formula (C.1) with A = V1 and B = V2 ⊕ · · · ⊕ Vn as follows:

k∧
(V1 ⊕ · · · ⊕ Vn) =

⊕

a+b=k

a∧
V1 ⊗

b∧
(V2 ⊕ · · · ⊕ Vn)

=

(
0∧
V1 ⊗

k∧
(V2 ⊕ · · · ⊕ Vn)

)

⊕

(
1∧
V1 ⊗

k−1∧
(V2 ⊕ · · · ⊕ Vn)

)

⊕

(
2∧
V1 ⊗

k−2∧
(V2 ⊕ · · · ⊕ Vn)

)
.

The summation ends after 3 steps because dim(V1) = 2.

The induction hypothesis says that

1∧
V1 ⊗

k−1∧
(V2 ⊕ · · · ⊕ Vn) =

1∧
V1

⊕

(k2,...,kn)∈Pn−1,2(k−1)

n⊗

i=2

ki∧
Vi

=
⊕

(1,k2,...,kn)∈Pn,2(k)

n⊗

i=1

ki∧
Vi,

and

2∧
V1 ⊗

k−2∧
(V2 ⊕ · · · ⊕ Vn) =

⊕

(2,k2,...,kn)∈Pn,2(k)

n⊗

i=1

ki∧
Vi.

But now, we need to see what to do with
∧k (V2 ⊕ · · · ⊕ Vn). Using the formula
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(C.1) again, we have

k∧
(V2 ⊕ · · · ⊕ Vn) =

(
0∧
V2 ⊗

k∧
(V3 ⊕ · · · ⊕ Vn)

)

⊕

(
1∧
V2 ⊗

k−1∧
(V3 ⊕ · · · ⊕ Vn)

)

⊕

(
2∧
V2 ⊗

k−2∧
(V3 ⊕ · · · ⊕ Vn)

)
.

We can use the induction hypothesis for the factors involving
∧k−2 (V3 ⊕ · · · ⊕ Vn)

and
∧k−1 (V3 ⊕ · · · ⊕ Vn). For the factor involving

∧k (V3 ⊕ · · · ⊕ Vn), we continue to

apply (C.1) to cut down the number of summands until the module
∧k (Vi ⊕ · · · ⊕ Vn)

is zero just by dimension count. This completes the proof.

Remark C.6. The statement and proof of the previous theorem works for the case of

g = gl(2)×n ⊂ gl(2n), and in particular, it allows us to conclude two things. First, we

recognize that V1 ⊗ · · · ⊗ Vn is in fact a G = (Gl(2)×n) ⋉ Sn ⊂ Gl(2n)-module where

the G action is the induced action from Gl(2n). And second, we can now identify the

complementary G-module complement to V1⊗· · ·⊗Vn in
∧n(V1⊕· · ·⊕Vn) ≃

∧n
C2n.

Using the decomposition from the previous theorem, we can now understand how

the restriction map behaves: The terms on the right hand side are combinations of

fundamental representations for sp2 ≃ sl2. We have

Ck

(
x1, x

−1
1 , . . . , xn, x

−1
n

)
7→

∑

(k1,...,kn)∈Pn,2(k)

n⊗

i=1

Ci
ki
,

where Ci
ki

are the elementary symmetric polynomials on the variables
{
xi, x

−1
i

}
, i.e.

Ci
1 = xi + x−1

i and Ci
0 = Ci

2 = 1.

Proposition C.7. The decomposition of the fundamental representation Γn of sp2n
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as an sl2 × · · · × sl2-module is given by the following character:

Cn − Cn−2 7→
∑

(k1,...,kn)∈Pn,2(k)

n⊗

i=1

Ci
ki
−

∑

(k1,...,kn)∈Pn,2(k−2)

n⊗

i=1

Ci
ki
.

Proposition C.8. We can give a refinement:

Cn − Cn−2 7→
n∑

l=0

∑

Kl

(
1

m+ 1

)(
2m

m

)
Ci1

1 ⊗ Ci2
1 ⊗ · · · ⊗ Cil

1 ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
n−l

,

where Kl is a partition with precisely l-1’s. More specifically, Kl = (k1, . . . , kn) ∈

Pn,2(k) with ki1 = · · · = kil = 1 and kj ∈ {0, 2} whenever j 6∈ {i1, . . . , il} and we

define m by, 2m = n− l. Implicitly we are including the requirement that if n is even

(odd) then l must be even (odd) also.

Proof. This proposition comes from counting the number of isomorphic modules in

the image. There are
(

n
l

)
such choices for the location of the ones in Kl.

Once the locations for the ones in Kl have been chosen, there are
(

n−l
n−l
2

)
=
(
2m
m

)

choices for the remaining zeros and twos. Each of these modules is isomorphic. We

can see that under the restriction map, Ck hits all
(
2m
m

)
possibilities, whereas Ck−2

only hits
(

n−l
n−l−2

2

)
=
(

2m
m−1

)
of them. Using basic facts about binomial coefficients, we

see that there are
(
2m
m

)
−
(

2m
m−1

)
=
(

1
m+1

) (
2m
m

)
isomorphic copies of the module with l

ones in the prescribed locations given by Kl. This is what we wanted to show.

Since all the modules with l ones are isomorphic (no matter their location) we

see that the multiplicity for such modules in the image of Ck−Ck−2 is
(

n
l

)(
2m
m

) (
1

m+1

)
.

Finally, we arrive at our goal:

Theorem C.9. The decomposition of Γn as an sl2×· · ·×sl2 module into irreducibles

is given by

Γn ≃
⊕

l

[
l⊗

i=1

Vi ⊗
n−l⊗

k=1

C

]⊕Nl

, (C.2)



102

where Nl =
(

n
l

)(
2m
m

) (
1

m+1

)
and 2m = n − l. (Implicitly, if n is even (odd) then l is

even (odd)).

Remark C.10. This theorem allows us to conclude two things. First, we recognize

that V1⊗· · ·⊗Vn is in fact a G-module where the G action is the induced action from

Sp(2n). And second, we can now identify the complementary G-module complement

to V1 ⊗ · · · ⊗ Vn in Γn.
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APPENDIX D

MAPLE CODE

A. Using characters to compute an isotypic decomposition

with(combinat):

reverse := proc(L::list)
[seq(L[nops(L)-i+1], i = 1 .. nops(L))]

end proc:

mypartition := proc(d ::integer)
local X;
X := reverse(partition(d)):
return [seq(reverse(X[i]),i=1..numbpart(d))];

end proc:

myconjpart := proc (L::list)
local preK, K;
description "I needed to have a conjugate partition

function that is in decreasing order.";
return reverse(conjpart(reverse(L)));

end proc;

smash := proc (u, v)
description "smash two vectors together";
[seq(u[i], i = 1 .. nops(u)), seq(v[i], i = 1 .. nops(v))]

end proc;

dimModule := proc (LL::list, k)
local L, m;
description "this just applies a formula from

Fulton and Harris pg 77";
L := smash(LL, [seq(0, i = 1 .. k)]);
m := ‘*‘(seq(seq((L[i]-L[j]+j-i)/(j-i), j = i+1 .. k), i = 1 .. k-1));
if k < nops(LL) then m := 0 end if;
return m

end proc;

numbclass:= proc (L::list) local m, f, g, r, top, i, j, c, LL;
description "see exercise in
http://www.math.unibas.ch/~kraft/Papers/KP-Primer.pdf
for the formula for computing the number of elements
in a given conjugacy class. This procedure computes
the number of elements in the conjugacy class
corresponding to a given partition as imput";
top := max(seq(L[k], k = 1 .. nops(L)));
for i to top do c := 0;

for j to nops(L) do
if L[j] = i then c := c+1 end if

end do;
r[i] := c

end do;
LL := [seq(r[i], i = 1 .. top)];
m := ‘+‘(seq(i*LL[i], i = 1 .. nops(LL)));
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f := ‘*‘(seq(i^LL[i], i = 1 .. nops(LL)));
g := ‘*‘(seq(factorial(LL[i]), i = 1 .. nops(LL)));
return factorial(m)/(f*g)

end proc;

mults := proc (degree::integer, numfacts::integer, maxdim::integer)
local M, Par, i, p, X, IP2, N, NN, k, numpar, temp, stopper, d, n,

count, myindicator, myoutput, breaker, cc, K;
description "This procedure computes the multiplicites of the

irreducible modules in the decomposition of
S^d(A_1\otimes \dots \otimes A_n). It expects three integers,
the degree - d, the number of factors -n, and the maximum
dimension of the A_i - maxdim.";

d := degree;
n := numfacts;
if d = 1 then return start*over end if;
K := partition(d);
N := [seq(numbclass(K[i]), i = 1 .. nops(K))];
M := character(d);
Par := mypartition(d);
numpar := nops(Par);
count := 1;
for i to numpar do

if evalb(nops(Par[i]) <= maxdim) then
myindicator[count] := i; count := count+1

end if
end do;
stopper := count-1;
count := ’count’;
for i to stopper do

X[myindicator[i]] := S[Par[myindicator[i]]]
end do;
i := ’i’; cc := 1;
if n <= 10 then
breaker := [seq(1, i = 1 .. n), seq(0, i = n+1 .. 11)];

for i[1] to stopper do
for i[2] from i[1] to i[1]+breaker[2]*(stopper-i[1]) do
for i[3] from i[2] to i[2]+breaker[3]*(stopper-i[2]) do
for i[4] from i[3] to i[3]+breaker[4]*(stopper-i[3]) do
for i[5] from i[4] to i[4]+breaker[5]*(stopper-i[4]) do
for i[6] from i[5] to i[5]+breaker[6]*(stopper-i[5]) do
for i[7] from i[6] to i[6]+breaker[7]*(stopper-i[6]) do
for i[8] from i[7] to i[7]+breaker[8]*(stopper-i[7]) do
for i[9] from i[8] to i[8]+breaker[9]*(stopper-i[8]) do
for i[10] from i[9] to i[9]+breaker[10]*(stopper-i[9]) do

temp := simplify((‘+‘(seq(N[q]*(‘*‘(
seq(M[myindicator[i[p]], q], p = 1 .. n))),
q = 1 .. nops(Par))))/factorial(d));
if 0 < temp then

myoutput[cc] :=
[temp, [seq(X[myindicator[i[p]]], p = 1 .. n)]];

cc := cc+1;
end if
end do
end do
end do
end do
end do
end do
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end do
end do
end do

end do
end if;

return [seq(myoutput[i], i = 1 .. cc-1)]
end proc;

##examples ##

mults(3,6,3);

dimModule([3,2,1],4);

B. Making polynomials via Young symmetrizers

This Maple file contains procedures that construct highest weight vectors. Many of

the examples we have included at the end of this file are found in [19]. In the final

example we find that no submodule of
(
S(3,2,1)V1 ⊗ S(3,2,1)V1 ⊗ S(3,1,1,1)V1

)⊕4
occurs

in the ideal of σ4 (Seg(P2 × P2 × P3)).

with(LinearAlgebra): with(combinat):

### some necessary procedures ###
reverse := proc(L::list)

return [seq(L[nops(L)-i+1],i = 1 .. nops(L))]
end proc:

mypartition := proc(d ::integer)
local X;
X := reverse(partition(d)):
return [seq(reverse(X[i]),i=1..numbpart(d))];

end proc:

myconjpart := proc (L::list) local preK, K;
description "I needed to have a conjugate partition function that is in
decreasing order.";
return reverse(conjpart(reverse(L)));

end proc:

### procedures specific to this task ###

makeDets:=proc(a,LL::list,mu::list)
local L:
description "this procedure makes a product of

determinants of sizes determined by a partition LL. The
first index of each column is twisted by a permutation mu.";

L:=myconjpart(LL):
return ‘*‘(seq(Determinant(Matrix([seq([seq(a[op(j+( ‘+‘

(seq(op(p,L),p=1..k-1))),mu),i],j=1 .. op(k,L))], i = 1 .. op
(k,L))])) ,k=1..nops(L)))
end proc:

makeUnsymmetric:=proc(J::list,K::list)
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description "this procedure takes in a list of partitions J and
a list of permutations K and produces the unsymmetrized
(and factored!) tensor";
local alpha;

if(nops(J)<> nops(K)) then
return "uneven";

else
alpha:= [a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z]:
return ‘*‘(seq(makeDets(alpha[i],J[i],K[i]),i=1..nops(J)))

fi:
end proc:

unfactor:= proc(X,degree,L::list)
description "X is the tensor, d is the degree, L is the list of
dimensions of the vector spaces":
local temp,temp2,p,i;
if nops(L) >8 then

return "too many factors";
fi:

if nops(L) = 1 then
temp2 := X;
for p to degree do

temp := 0;
for i[1] from 0 to op(1,L)-1 do

temp := coeff(temp2, a[p, i[1]+1])*Z[[i[1]]]+temp;
end do;
temp2 := temp; #print(nops(temp2))

end do;
return temp;

fi:

if nops(L) = 2 then
temp2 := X;
for p to degree do

temp := 0;
for i[1] from 0 to op(1,L)-1 do

for i[2] from 0 to op(2,L)-1 do
temp := coeff(coeff(temp2, a[p, i[1]+1]), b[p, i[2]+1])
*Z[[ seq(i[p],p=1..nops(L) )]]+temp

end do
end do;

temp2 := temp; #print(nops(temp2))
end do;
return temp;

fi:

if nops(L) = 3 then
temp2 := X;
for p to degree do

temp := 0;
for i[1] from 0 to op(1,L) do

for i[2] from 0 to op(2,L) do
for i[3] from 0 to op(3,L) do

temp := coeff(coeff(coeff(temp2, a[p, i[1]+1]), b[p, i
[2]+1]), c[p, i[3]+1])*Z[[ seq(i[p],p=1..nops(L) )]]+temp

end do
end do

end do;
temp2 := temp; #print(nops(temp2))

end do;
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return temp;
fi:

if nops(L) = 4 then
temp2 := X;
for p to degree do

temp := 0;
for i[1] from 0 to op(1,L) do

for i[2] from 0 to op(2,L) do
for i[3] from 0 to op(3,L) do

for i[4] from 0 to op(4,L) do
temp := coeff(coeff(coeff(coeff(temp2, a[p, i[1]

+1]), b[p, i[2]+1]), c[p, i[3]+1]),d[p, i[4]+1])*Z[[ seq(i
[p],p=1..nops(L) )]]+temp ;

end do
end do

end do
end do;
temp2 := temp; #print(nops(temp2))

end do;
return temp;

fi:

if nops(L) = 5 then
temp2 := X;
for p to degree do

temp := 0;
for i[1] from 0 to op(1,L) do

for i[2] from 0 to op(2,L) do
for i[3] from 0 to op(3,L) do

for i[4] from 0 to op(4,L) do
for i[5] from 0 to op(5,L) do

temp := coeff(coeff(coeff(coeff(coeff(temp2, a[p,
i[1]+1]), b[p, i[2]+1]), c[p, i[3]+1]),d[p, i[4]+1]),e[p,i[5]+1])*Z[[
seq(i[p],p=1..nops(L) )]]+temp

end do
end do

end do
end do

end do;
temp2 := temp; #print(nops(temp2))

end do;
return temp;

fi:

if nops(L) = 6 then
temp2 := X;
for p to degree do

temp := 0;
for i[1] from 0 to op(1,L) do

for i[2] from 0 to op(2,L) do
for i[3] from 0 to op(3,L) do

for i[4] from 0 to op(4,L) do
for i[5] from 0 to op(5,L) do

for i[6] from 0 to op(6,L) do
temp := coeff(coeff(coeff(coeff(coeff(coeff
(temp2, a[p, i[1]+1]), b[p, i[2]+1]), c[p, i[3]+1]),d[p, i[4]+1]),e
[p,i[5]+1]),f[i[6]+1])*Z[[ seq(i[p],p=1..nops(L) )]]+temp

end do
end do
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end do
end do

end do
end do;
temp2 := temp; #print(nops(temp2))

end do;
return temp;

fi:

if nops(L) = 7 then
temp2 := X;
for p to d do

temp := 0;
for i[1] from 0 to op(1,L) do

for i[2] from 0 to op(2,L) do
for i[3] from 0 to op(3,L) do

for i[4] from 0 to op(4,L) do
for i[5] from 0 to op(5,L) do

for i[6] from 0 to op(6,L) do
for i[7] from 0 to op(7,L) do

temp := coeff(coeff(coeff(coeff(coeff(coeff
(coeff(temp2, a[p, i[1]+1]), b[p, i[2]+1]), c[p, i[3]+1]),d[p, i[4]
+1]),e[p,i[5]+1]),f[i[6]+1]),g[i[7]+1])*Z[[ seq(i[p],p=1..nops
(L) )]]+temp

end do
end do

end do
end do

end do
end do

end do;
temp2 := temp; #print(nops(temp2))
end do;
return temp;

fi:
end proc:

## examples ##

T:=makeUnsymmetric([[2,1,1,1],[3,1,1],[2,1,1,1]],[[1,2,3,4,5],
[1,5,3,4,2],[1,4,5,2,3]]):
unfactor(T,5,[3,2,3]): nops(expand(%));

T:=makeUnsymmetric([[2,2,2],[2,2,2],[3,1,1,1]],[[1,2,3,4,5,6],
[1,5,3,4,2,6],[1,4,5,2,3,6]]):
unfactor(T,6,[2,2,3]): nops(expand(%));

T:=makeUnsymmetric([[3,1,1],[3,1,1],[2,2,1]],[[1,2,3,4,5],
[1,4,5,2,3],[1,2,3,4,5]]):
unfactor(T,5,[2,2,2]): nops(expand(%));

T:=makeUnsymmetric([[3,1,1],[3,1,1],[2,2,1]],[[1,2,3,4,5],
[1,2,4,3,5],[1,3,5,2,4]]):
unfactor(T,5,[2,2,2]): nops(expand(%));

## Here is an example where there is multiplicity greater
than 1 and Landberg and Manivel have already guessed
the correct permutations to give linearly independent
elements of the highest weight space ##

sigma:=[1,2,3,5,6,4]:
tau := [3, 4, 5, 1, 2, 6]; mu := [1, 4, 5, 6, 2, 3];
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T1:=makeUnsymmetric([[3,2,1],[3,2,1],[3,1,1,1]],
[sigma,tau,mu]):
P1:=unfactor(T1,6,[2,2,3]): nops(expand(%));

tau := [3, 4, 5, 1, 2, 6]; mu := [2, 3, 5, 6, 1, 4];
T2:=makeUnsymmetric([[3,2,1],[3,2,1],[3,1,1,1]],
[sigma,tau,mu]):
P2:=unfactor(T2,6,[2,2,3]): nops(expand(%));

tau := [3, 4, 5, 1, 2, 6]; mu := [2, 3, 4, 5, 1, 6];
T3:=makeUnsymmetric([[3,2,1],[3,2,1],[3,1,1,1]],
[sigma,tau,mu]):
P3:=unfactor(T3,6,[2,2,3]): nops(expand(%));

tau := [3, 4, 6, 1, 2, 5]; mu := [2, 3, 4, 5, 1, 6];
T4:=makeUnsymmetric([[3,2,1],[3,2,1],[3,1,1,1]],
[sigma,tau,mu]):
P4:=unfactor(T4,6,[2,2,3]): nops(expand(%));

PP:= ss*P1+tt*P2+uu*P3+vv*P4:

for count from 1 to 4 do
for j to 6 do

mysegrepoint[j] := expand(unfactor(‘+‘(seq(‘+‘(seq(a[1,k]
*U[[k-1,i]],k=1..3))*‘+‘(seq(b[1,k]*V[[k-1,i]],k=1..3))*‘+‘(seq(c
[1,k]*W[[k-1,i]],k=1..4)),i=1..j)), 1, [2,2,3] ));
end do:
for j to 6 do mysegrerandomizer := {}:
for i to j do
x:= RandomVector(3); y := RandomVector(3); z :=

RandomVector(4);
mysegrerandomizer := ‘union‘(mysegrerandomizer, {seq

(U[[k-1,i]] = x[k], k = 1 .. 3), seq(V[[k-1,i]] = y[k], k = 1 .. 3),
seq(W[[k-1,i]] = z[k], k = 1 .. 4)})
end do:
x := ’x’; y := ’y’; z := ’z’:
end do:
for j to 6 do
myrandomsegrepoint[j] := subs(mysegrerandomizer,

mysegrepoint[j])
end do:
for p to 6 do
mysegreevaluator || p := {seq(seq(seq(Z[[i, j, k]] = coeff
(mysegrepoint[p], Z[[i, j, k]]), i = 0 .. 2), j = 0 .. 2), k = 0 .. 3)}:

myrandomsegreevaluator || p := {seq(seq(seq(Z[[i, j, k]] =
coeff(myrandomsegrepoint[p], Z[[ i,j,k]]), i = 0 .. 2), j = 0 .. 2),
k = 0 .. 3)}:

end do:

val||count:=subs(myrandomsegreevaluator || 4, expand
(PP));
od:

solve({val1,val2,val3,val4});



110

C. Construction of a weight basis of a Schur module

This Maple file reads a file called “initialvectors” in “yourpath.” It expects that

the file contain highest weight polynomials F , G and H in the variables xijkl with

0 ≤ i, j, k, l ≤ 1. The output is put into a file “outputbasis”. There is also a check that

the polynomials generated by this program actually vanish on the variety of principal

minors. Many aspects of this program have been tailored to the polynomials F,G,H

given to us by Lin and Sturmfels, however this file can be easily adapted to many

other applications.

restart:with(combinat):with(LinearAlgebra):

monoweight := proc (X)
local K, Y;
description "This procedure calculates the weight of a monomial.";
if type(op(1, X), list) then K := op(1, X); return [seq(K[i], i =

1 .. nops(K))]
elif type(op(1, X), integer) then return X
else return "bad imput"
end if

end proc;

weight := proc (X)
local i, S, Y, WP, count;
description "This procedure calculates the weight of an expression.";
if op(0, X) = ‘+‘ then

Y := op(1, expand(X)) else Y := X end
if;
count := 1;
if op(0, Y) = ‘*‘ then

for i to nops(Y) do
if not type(op(i, Y), integer) then

if type(op(i, Y), atomic) then S[count] := monoweight(op(i,
Y)); count := count+1

end if;
if op(0, op(i, Y)) = ‘^‘ then

S[count] := monoweight(op(1, op(i, Y)))*op(2, op(i, Y));
count := count+1

end if
end if

end do;
if 2 <= count then

WP := S[1];
for i from 2 to count-1 do

WP := WP+S[i]
end do

end if;
return WP
elif type(X, atomic) then

return monoweight(X)
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elif op(0, X) = ‘^‘ then
return monoweight(op(1, X))*op(2, X)

end if
end proc;

#Example:
weight(Z[[1,3,1,1]]*Z[[1,3,1,1]]);

raise := proc (x, f)
local temp, i, j, k;
description "this procedure raises the vector x in the f th factor
(limited to 4 factors right now) and raises the p th coordinate.";
temp := 0;
if f = 1 then
for i from 0 to 1 do

for j from 0 to 1 do
for k from 0 to 1 do

temp := temp+(diff(expand(x), Z[[0, i, j, k]]))*Z[[1, i, j, k]]
end do

end do
end do;
elif f = 2 then

for i from 0 to 1 do
for j from 0 to 1 do

for k from 0 to 1 do
temp := temp+(diff(expand(x), Z[[i, 0, j, k]]))*Z[[i, 1, j, k]]

end do
end do

end do;
elif f = 3 then

for i from 0 to 1 do
for j from 0 to 1 do

for k from 0 to 1 do
temp := temp+(diff(expand(x), Z[[i, j, 0, k]]))*Z[[i, j, 1, k]]

end do
end do

end do;
elif f = 4 then

for i from 0 to 1 do
for j from 0 to 1 do

for k from 0 to 1 do
temp := temp+(diff(expand(x), Z[[i, j, k, 0]]))*Z[[i, j, k, 1]]

end do
end do

end do;
end if;
return expand(temp)

end proc:

lower := proc (x, f)
local temp, i, j, k;
description "this procedure raises the vector x in the f th factor
(limited to 4 factors right now) and lowers the p th coordinate.";
temp := 0;
if f = 1 then

for i from 0 to 1 do for j from 0 to 1 do for k from 0 to 1 do
temp := temp+(diff(expand(x), Z[[1, i, j, k]]))*Z[[0, i, j, k]]

end do end do end do;
elif f = 2 then

for i from 0 to 1 do for j from 0 to 1 do for k from 0 to 1 do
temp := temp+(diff(expand(x), Z[[i, 1, j, k]]))*Z[[i, 0, j, k]]

end do end do end do;
elif f = 3 then

for i from 0 to 1 do for j from 0 to 1 do for k from 0 to 1 do
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temp := temp+(diff(expand(x), Z[[i, j, 1, k]]))*Z[[i, j, 0, k]]
end do end do end do;

elif f = 4 then
for i from 0 to 1 do for j from 0 to 1 do for k from 0 to 1 do

temp := temp+(diff(expand(x), Z[[i, j, k, 1]]))*Z[[i, j, k, 0]]
end do end do end do;

end if;
return expand(temp)

end proc:

varschange:=seq(seq(seq(seq( cat(cat(cat(cat(x,i),j),k),l)
= Z[[i,j,k,l]],i=0..1),j=0..1),k=0..1),l=0..1);

varschangeback:=seq(seq(seq(seq( Z[[i,j,k,l]] = cat(cat(cat
(cat(x,i),j),k),l) ,i=0..1),j=0..1),k=0..1),l=0..1);

with(linalg);
sqtest := proc (f) local A, para, paraZ;

A := randmatrix(4, 4);
para := {x1111 = det(submatrix(A, [1, 2, 3, 4], [1, 2, 3, 4])),
x1110 = det(submatrix(A, [1, 2, 3], [1, 2, 3])),
x1101 = det(submatrix(A, [1, 2, 4], [1, 2, 4])),
x1011 = det(submatrix(A, [1, 3, 4], [1, 3, 4])),
x0111 = det(submatrix(A, [2, 3, 4], [2, 3, 4])),
x1100 = det(submatrix(A, [1, 2], [1, 2])),
x1010 = det(submatrix(A, [1, 3], [1, 3])),
x1001 = det(submatrix(A, [1, 4], [1, 4])),
x0110 = det(submatrix(A, [2, 3], [2, 3])),
x0101 = det(submatrix(A, [2, 4], [2, 4])),
x0011 = det(submatrix(A, [3, 4], [3, 4])),
x0001 = det(submatrix(A, [4], [4])),
x0010 = det(submatrix(A, [3], [3])),
x0100 = det(submatrix(A, [2], [2])),
x1000 = det(submatrix(A, [1], [1])),
x0000 = 1};
paraZ := subs(varschange, para);
return subs(paraZ, f)

end proc;

read "/yourpath/initialvectors";

FZ:=subs(varschange,F):nops(%);sqtest(FZ);
GZ:=subs(varschange,G):nops(%);sqtest(GZ);
HZ:=subs(varschange,H):nops(%);sqtest(HZ);
weight(FZ);
lower(FZ,4):nops(%);
Hmodule[0]:=HZ:
for i from 1 to 6 do

raise(Hmodule[i-1],1):
if %<>0 then

Hmodule[i]:=%:
print(weight(%));

fi:
od:

seq(nops(Hmodule[i]),i=0..6);
seq(sqtest(Hmodule[i]),i=0..6);

c:=1:
Gmodule[0,0]:=GZ:
for i from 1 to 4 do



113

raise(Gmodule[i-1,0],1):
if %<>0 then

Gmodule[i,0]:=%:
print(weight(%),[c]);
c:=c+1:

fi:
od:

for i from 0 to 4 do
for j from 1 to 4 do

raise(Gmodule[i,j-1],2):
if %<>0 then

Gmodule[i,j]:=%:
print(weight(%),[c]);
c:=c+1:

fi:
od:

od:
c;
seq(seq(nops(Gmodule[i,j]),i=0..4),j=0..4);
seq(seq(sqtest(Gmodule[i,j]),i=0..4),j=0..4);

c:=0:
for i from 0 to 4 do

for j from 0 to 2 do
for k from 0 to 2 do

for l from 0 to 2 do
Fmodule[i,j,k,l]:=0:c:=c+1:

od:
od:

od:
od:

c:=1:
Fmodule[0,0,0,0]:=FZ:
for i from 1 to 4 do

raise(Fmodule[i-1,0,0,0],1):
if %<>0 then

Fmodule[i,0,0,0]:=%:
print(weight(%),[c]);
c:=c+1:

fi:
od:

for i from 0 to 4 do
for j from 1 to 2 do

raise(Fmodule[i,j-1,0,0],2):
if %<>0 then

Fmodule[i,j,0,0]:=%:
print(weight(%),[c]);
c:=c+1:

fi:
od:

od:

for i from 0 to 4 do
for j from 0 to 2 do

for k from 1 to 2 do
raise(Fmodule[i,j,k-1,0],3):
if %<>0 then

Fmodule[i,j,k,0]:=%:
print(weight(%),[c]);
c:=c+1:

fi:
od:
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od:
od:

for i from 0 to 4 do
for j from 0 to 2 do

for k from 0 to 2 do
for l from 1 to 2 do

raise(Fmodule[i,j,k,l-1],4):
if %<>0 then

Fmodule[i,j,k,l]:=%:
print(weight(%),[c]);
c:=c+1:

fi:
od:

od:
od:

od:

seq(seq(seq(seq(nops(Fmodule[i,j,k,l]),i=0..4),j=0..2),k=0..2),l=0..2);

seq(seq(seq(seq(sqtest(Fmodule[i,j,k,l]),i=0..4),j=0..2),k=0..2),l=0..2);

subs(varschangeback,Fmodule[1,1,1,1]):op(1,%);

for i from 0 to 4 do
for j from 0 to 2 do

for k from 0 to 2 do
for l from 0 to 2 do

xFmodule[i,j,k,l]:=subs(varschangeback,Fmodule[i,j,k,l]):
od:

od:
od:

od:

for i from 0 to 4 do
for j from 0 to 4 do

xGmodule[i,j]:=subs(varschangeback,Gmodule[i,j]):
od:

od:

for i from 0 to 6 do
xHmodule[i]:=subs(varschangeback,Hmodule[i]):

od:

fd := fopen("outputbasis", APPEND):
c:=1:
for i from 0 to 4 do for j from 0 to 2 do for k from 0 to 2 do

for l from 0 to 2 do
fprintf(fd, "F[%a] = %a : \n\n", c, xFmodule[i,j,k,l]):
c:=c+1:

od:
od:od:od:
c:=1:
for i from 0 to 4 do for j from 0 to 4 do

fprintf(fd, "G[%a] = %a : \n\n", c, xGmodule[i,j]):
c:=c+1:

od:od:
c:=1:
for i from 0 to 6 do

fprintf(fd, "H[%a] = %a : \n\n", c, xHmodule[i]):
c:=c+1:
od:
fclose(fd):
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