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ABSTRACT 

Probabilistic Prediction Using Embedded Random Projections of High Dimensional 

Data. (May 2009) 

Richard Cable Kurwitz, B.S.; M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Frederick R. Best 

 The explosive growth of digital data collection and processing demands a new 

approach to the historical engineering methods of data correlation and model creation. A 

new prediction methodology based on high dimensional data has been developed. Since 

most high dimensional data resides on a low dimensional manifold, the new prediction 

methodology is one of dimensional reduction with embedding into a diffusion space that 

allows optimal distribution along the manifold. The resulting data manifold space is then 

used to produce a probability density function which uses spatial weighting to influence 

predictions i.e. data nearer the query have greater importance than data further away. 

The methodology also allows data of differing phenomenology e.g. color, shape, 

temperature, etc to be handled by regression or clustering classification.  

The new methodology is first developed, validated, then applied to common 

engineering situations, such as critical heat flux prediction and shuttle pitch angle 

determination. A number of illustrative examples are given with a significant focus 

placed on the objective identification of two-phase flow regimes. It is shown that the 

new methodology is robust through accurate predictions with even a small number of 
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data points in the diffusion space as well as flexible in the ability to handle a wide range 

of engineering problems.  
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NOMENCLATURE 

Section 2 

Y  signal vector 
Yi ith element of signal vector 
A Matrix Used for Projecting Signal Vector Onto Lower Dimensional Space 
Aij ith row, jth column of projection matrix 
d size of lower dimensional space 
N Original dimensional space 
D Distance matrix – matrix of interpoint distances between a set of signal 

vectors 
Dij Distance between signal vector i and signal vector j 
RMSD Root Mean Square Deviation between two elements 
n Total number of signals 
ψij Signal i element j  
ε Normalized RMSD  
ϴi ith eigenvector or embedding/diffusion coordinate 
ν Normalization coefficient 
σ Window Parameter for Gaussian kernel 
k Gaussian kernel 
��  Normalized kernel matrix 
a Symmetric Conjugate of ��
A Diffusion operator 
λj jth eigenvalue 
ζ Diffusion distance 
ξ Known point used in constructing Experimental Probabilistic 

Hypersurface 
x Query on the EPH 
pi Probability at point i 
I Entropy 
γ Range of possible outcomes on the EPH 
Γ Output of known points 
τ Discritization of Output Space 
ϑ Proportionality constant 
δ Absolute difference 
c Roots of probability function 
b Roots of probability function 
q Standard deviation of Γ
gj Output of EPH at point j for query x 
m Number of known measurements 
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Section 3 

hL Pipe Head Loss 
L Length of Pipe 
f Friction factor 
V Velocity of fluid in pipe 
D Diameter of pipe 
Re Reynolds Number 
µ Dynamic viscosity of fluid 
ν Kinematic viscosity 
ρ Density of fluid 
α Scaling factor 
β Scaling factor 
ε Pipe roughness 
Α Constant 
Β Constant 
C Constant 
MSC Model Selection Criterion 
CWi Colebrook-White Friction Factor at Point i 
�������  Mean of Colebrook-White Friction Factor 
NP Number of Parameters (ε/D, Re) 
Mi Model Friction Factor at Point i 
n Number of Test Points 
P Probability 
CDF Cumulative Probability Function 
σ Standard deviation of distribution 
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1. INTRODUCTION 

 With the increased availability of both data measurement and storage 

technologies as well as broader use of complex computational codes, methods that allow 

the user to quickly and easily interpret results allowing accurate prediction are becoming 

paramount. Previously, the development and validation of useful engineering models 

was either a theory driven process or an empirical data statistically driven process. Both 

are hindered by high-order dimensionality and the lack of sophisticated statistical 

techniques to interpret multiple dimensions. Methods exist, including neural networks, 

which can efficiently solve linear systems, but quickly become ineffective when non-

linearity is introduced or when training data are not available. Recent developments in 

the area of dimension reduction allow for the collapsing of complex, high dimensional, 

non-linear problems commonly found in engineering into optimal low dimension 

embeddings. The following work presents a paradigm shift in the art of predictive 

modeling through the development of a new methodology to quantitatively identify the 

spatial arrangement of data in these low dimensional embeddings collected from 

common engineering problems thereby allowing the user to develop probabilistic tools  

____________ 
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that can be used to either classify or predict phenomena. To predict the result of an 

unknown function, a probability density is constructed using known information. This 

process is facilitated by utilizing a low dimensional mapping of the original data to 

provide fast, accurate results. Contrast this with classic correlation techniques based 

predictions that provide a single point estimate with no information regarding the 

uncertainty.  

Scientists and engineers strive to develop simpler, faster, more accurate models 

that allow one to predict the behavior of nature. From visual observation based 

classifications to sophisticated multiscale physics codes, we desire to understand the 

complex, high dimensional world around us. Dimensionality manifests itself in the 

number of variables required to define phenomena e.g. pixels in an image, the variables 

in an input deck to a sophisticated computational code, or the channel readings of a 

multichannel analyzer. As our understanding has grown, the complexity as defined by 

the number of variables or dimensions of our methods has increased. However, the 

complexity is ultimately bounded by our ability to effectively handle or solve these high 

order problems. Empirical approaches to model building require an abstraction phase 

where underlying patterns of information are recognized. This information is then 

integrated with basic physical laws or phenomenological models to produce a model that 

can be used for predictive purposes. The development of dimensionless (unit less) terms 

or Buckingham Pi theory is a common approach to dimension reduction found in 

engineering. The collection of these terms presents a simpler model that can be 

visualized or easily solved. This is due to the fact that the underlying dimensionality of 
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the problem is small compared to the actual dimensional space in which the data reside. 

Unfortunately, identifying these terms or developing relationships is extremely difficult. 

It is not unheard of for the development and refinement of these relationships to 

encompass decades of scientific research. This is due to the fact that a limited set of tools 

were available to reduce dimensions and simplify the problem. This abstraction process 

is made more difficult with increasing complexity, i.e. dimension of the problem or 

system under investigation, and nonlinearity. Methods to assist this process are the 

purpose of this study. 

The goal of this study is to develop an algorithmic method that detects the 

intrinsic dimension of the data that thus will allow prediction. Several methods have 

been utilized throughout the last fifty years. These include principal component analysis, 

self organizing maps, and neural networks.1,2,3 Several nonlinear global methods have 

been proposed dealing with low dimensional mappings with some success.4,5 Recently, a 

geometrically oriented algorithm that essentially produces a graph of neighboring data 

points that approximates the manifold has been presented by Lafon.6 The manifold’s 

intrinsic dimension is essentially a dimension reducing mapping from the ambient space 

where the local information of the data is preserved.7 Another recent approach is the use 

of random projections to map high dimensional data to a low dimensional subspace. This 

method is related to Compressed Sensing and has been shown to be a viable dimension 

reduction approach.8 Methodologies would then be needed to make predictions given a 

query in the original dimensional space. Recent work by Beauzamy9,10 in the 

construction of an Experimental Probabilistic Hypersurface (EPH) allows one to store 



4

information and make predictions based on the propagation of information from what is 

known to the query point. EPH is based on the theory of maximal entropy and for each 

query point, this technique produces a probability density which a value can be 

extracted. The concentration or shape of the probability density is dependent upon how 

far away the query is from the measure points; thus, for queries far from given data, the 

density is flat. Conversely, for a query near given data, the probability density is more 

peaked ultimately producing a Dirac function for a query at a given data location. 

1.1.  Statement of Problem and Scope 

The proposed project will develop and demonstrate a methodology that will 

allow for the dimensional parameterization of two-phase flow and other large data sets 

as well as the ability to make predictions based solely on available data. The complete 

integration of dimensional reduction, embedding, and probabilistic prediction based on 

the embedding of observed data have not previously existed as an integrated 

methodology. The application of this methodology to the area of fluid dynamics and heat 

transfer is new and presents an exciting new approach to modeling in this area. 

The rapid rise in the ability to collect large amounts of data from multiple 

sources such as video and digital sensors produces a temporal stream of information that 

is becoming increasing difficult to analyze. For instance, recent two-phase flow testing 

aboard NASA’s Reduced Gravity Aircraft yielded electronic data for flow rates, 

pressure, acceleration, etc. collected at 100 Hz and high speed video collected at 500 
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frames per second.11 How does one relate or fuse the data for analysis and ultimately to 

make predictions?  

Gene expression or protein charge data is a classic candidate for dimension 

reduction. Typical mass spectrometry datasets consist of thousands of 

parameters/variables. Recent tests performed at Texas A&M investigated a novel 

perfusion system to examine the effects of radiation on model respiratory tissue.12 The 

data consists of three sets of three samples of intensity readings for 10399 channels that 

correspond to in-vivo unirradiated, ex-vivo unirradiated, and ex-vivo irradiated 

treatments of analog human respitory tissue from Fischer 344 rats. The 10399 channels 

correspond to approximately 9028 gene probes with the difference in corresponding to 

bacterial transcripts and other pads. Using the new methodology, nine samples were 

randomly compressed and embedded into a diffusion space resulting in three distinct 

clusters that correspond to the different classes which are shown in Figure 1.1. Without 

any training data, identified channels, or special processing, clusters corresponding to 

the treatment classes are easily identified. This amazing result demonstrates the power of 

this method and allows very complex data to be analyzed objectively without an existing 

model.  

In the past, predictive models were developed because of the high cost and 

difficulty of using large amounts of data. In an effort to scale from previously tested 

conditions to a desired state, dimensional analysis provides a method for scaling using 

computed sets of dimensionless parameters of the given variables, even if the form of the 

equation was unknown. However, new kinds of data such as video and still images are 
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highly dimensional and are difficult to utilize in predictive models which typically 

requires the researcher to watch the video to discern the phenomena of interest. 

Automated processing is limited due to the training of pattern recognition algorithms or 

other computationally intensive processing of the imagery. This process of using 

disparate data types e.g. images, color, flow rate, etc is commonly referred to as data 

fusion and is as area of extreme interest in the analysis of complex problems. 

Figure 1.1 Processed Spectrum Data Plotted Using Output from the New Methodology. 

An example related to fluid mechanics is shown below in Figures 1.2 and 1.3. 

High speed video of a flow boiling system was recorded at different heat flux levels.13

Nine videos were used in the analysis corresponding to five values of heat flux. Figure 

1.2 consists of a selection of image frames from the videos illustrating the movement of 
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bubbles. The larger values of heat flux are shown to have a larger number of bubbles due 

to the higher amount of energy being transferred to the working fluid. It is apparent that 

the change in the number of bubbles is not linear. To demonstrate the result of the 

method presented in this dissertation, two videos at heat fluxes of 80 kW/m2, 120 kW/m2, 

140 kW/m2, and 160 kW/m2, were used as the known inputs and the heat flux was 

predicted for the 100 kW/m2 video. Each image in the 340 frames of the video 

corresponds to 141 x 400 pixels resulting in 19,176,000 elements or variables to evaluate 

per movie. The 19 million variables are reduced to 64 variables which are embedded into 

a two dimensional diffusion space. These two element vectors are used to predict the 

heat flux. Thus, the two diffusion coordinates of the eight videos corresponding to four 

known heat fluxes are used to construct a probability distribution for the remaining 

video.  

Figure 1.3 shows the diffusion coordinates (ϴ1, ϴ2) for the known and query 

videos. Based on Figure 1.2, it is expected that the query video at 100 kW/m2 should lie 

between 80 kW/m2 and 120 kW/m2, which is best captured by the probability distribution 

in Figure 1.3 that is peaked at respective values of heat flux. Taking the mean of the 

probability distribution results in a predicted heat flux of 106 kW/m2. Thus, one can 

predict the actual heat flux to within 10% based on the video alone. The tremendous 

amount of data in each video is compressed into 64 meta-variables that are embedded 

into a two dimensional map that accurately reflects the actual heat flux. That each 

observation of boiling resulted in over 19 million variables that can be accurately 
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described through dimensional reduction by two values is an amazing feat. Thus, the 

utilization of visual or other higher dimensional data has been greatly enhanced. 

Figure 1.2 Selected High Speed Video Frames for Flow Boiling at Various Heat Fluxes. 

The goal of the research is to utilize recent developments in data mining to make 

accurate predictions of phenomena of interest without complete understanding of the 

underlying physics. The research will utilize existing large data sets found in thermal-

hydraulics, high speed imagery, and large scale computational models. A methodology 
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will be developed that will allow one to discover the underlying dimension of the data 

and utilize existing information to make accurate predictions for a given query. Today, 

we are able to utilize complex computational tools that require a large number of inputs 

and we are able to gather voluminous amounts of data quickly and cheaply. The clear 

importance of this work in regard to engineering systems is the ability to utilize the 

considerable amount of data collected or time intensive computational output to quickly 

make accurate predictions. 

Figure 1.3 Plot of a) Embedding Coordinates and b) Probability Distribution. 

1.2.  Literature Review 

The demand to process large amounts of data is driving the development of 

dimensional reduction techniques.14 The large data sets for marketing,15 politics,16 and 
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science17 are being utilized more frequently and since the fundamental inputs to these 

methods are application neutral, advances in one field are quickly transferred to another. 

Traditionally, for dimensional reduction, principal component analysis has been utilized. 

However, this approach is only applicable to problems with essentially linear structures, 

whereas recent research has shown success for nonlinear applications when applying 

various linear programming techniques. The focus of this research is the application and 

extension of these graph based methods to higher dimensional engineering problems 

resulting in a low dimension model that has an accurate predictive capability.  

1.2.1.  Dimension Reduction Techniques 

Principal components analysis (PCA) is a simplification technique whereby 

multidimensional datasets are reduced to lower dimensions for analysis.18 PCA is also 

referred to as the (discrete) Karhunen-Loève transform or the Hotelling transform. PCA 

is a linear transformation that maps the high dimensional data, expressed as a covariance 

matrix, to a new coordinate system. The covariance matrix is a matrix made up of 

covariances between the elements of a vector that describes high dimensional data. This 

new coordinate system is ranked with the first coordinate describing the greatest 

variance (called the first principal component), the second greatest variance on the 

second coordinate, and so on. The orthogonal decomposition of the data covariance 

matrix can then be evaluated such that only the desired information is retained. PCA can 

be used for dimensionality reduction in a dataset while retaining those characteristics of 

the dataset that contribute most to its variance, by keeping lower-order principal 
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components and ignoring higher-order ones. Such low-order components often contain 

the "most important" aspects of the data. But this is not necessarily the case, depending 

on the application. PCA has the distinction of being the optimal linear transformation for 

keeping the subspace that has largest variance. This advantage, however, comes at the 

price of greater computational requirement if compared, for example, to the discrete 

cosine transform. Unlike other linear transforms, the PCA does not have a fixed set of 

basis vectors. Its basis vectors depend on the data set. 

Multidimensional scaling (MDS) utilizes a number of statistical methods to 

reduce data to a low dimensional space as an exploratory tool,19 This eigenvalue 

technique is used to visualize proximities in a low dimensional space suitable for 

graphing or 3D visualization allowing for interpretation of the major parameters that 

may provide insight into the processes underlying the perceived nearness of entities.19 A 

subset of MDS is referred to as Metric Multidimensional Scaling and differs only in that 

the output graph is governed by a procedure called stress majorization that is essentially 

an optimization process on a weight function dealing with the Euclidean distance 

between data points. All methods use a Euclidean distance between data to form a 

dissimilarity matrix of inputs and produce a corresponding output matrix that optimizes 

some cost function. For Metric MDS, significant reduction in the stress requires only a 

few dimensions.20 Therefore, only these terms are needed to accurately arrange the data 

for visualization. Many current methods ultimately utilize MDS but build the input 

matrix to extract the desired features of the manifold on which the data reside. If the 

dissimilarity or pair wise distances are Euclidean then the results are the same as PCA.  



12

Since many data sets contain nonlinear structures that are invisible to PCA and 

MDS, new approaches are needed to handle these complex manifolds. Importantly, 

methods that succeed in learning nonlinear manifolds are required for use with most real 

world data. One of the most frequently used methods to deal with the problems of 

nonlinearity is kernel methods. This approach projects or maps the data into a high 

dimensional feature space, where each coordinate corresponds to one feature. In this 

feature space, a number of methods can be used to find relations in the data including 

PCA. Since the mapping can be quite general (not necessarily linear, for example), the 

relations found in this way are accordingly very general.21  

Kernel methods owe their name to the use of kernels or radial basis functions, 

that enable them to operate in the feature space without ever computing the coordinates 

of the data in that space.22 Kernel functions have been introduced for sequence data, text, 

images, as well as vectors. Kernel PCA implicitly constructs a higher dimensional space, 

in which there are a large number of linear relations between the dimensions. 

Subsequently, the low-dimensional data representation is obtained by applying 

traditional PCA. For good or bad, the choice of kernel adds a further parameter for the 

investigator to decide upon.  

New methods that are able to efficiently explain hidden structure or relationships 

and that are less susceptible to user error are needed. Unlike classical techniques such as 

principal component analysis (PCA) and multidimensional scaling (MDS), a new 

approach needs to be capable of discovering the nonlinear degrees of freedom that 

underlie complex natural observations, such as human handwriting or images of a face 
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under different viewing conditions.4 Unlike other nonlinear approaches, Isomap is a new 

method that computes a globally optimal solution rather than a local solution. 

Tenenbaum's Isomap algorithm extracts meaningful dimensions by measuring 

the distance between data points in the geometric shapes formed by items in a nonlinear 

data set. The technique utilizes the distances between points on the surface of a manifold 

or the geodesic distance. High dimensional data is typically nonlinear and is represented 

by complicated shapes that are difficult to resolve or project onto lower dimensions. 

Isomap measures the distance between any two points on the manifold, then uses these 

geodesic distances in combination with a classic multidimensional scaling algorithm in 

order to make a low dimensional representation of that data. The Isomap algorithm 

computes the distances between neighboring data points. For each pair of non-

neighboring data points, a distance is calculated by determining the shortest path 

required to hop from neighbor to neighbor Finally, the classical method of 

multidimensional scaling is used to find a set of low-dimensional points with similar pair 

wise distances. 

Locally Linear Embedding (LLE) is a dimensional reduction technique that 

utilizes an unsupervised algorithm to link local points and then maps them to a low 

dimension. Unlike clustering methods for local dimensionality reduction, LLE maps its 

inputs into a single global coordinate system of lower dimensionality, and its 

optimizations do not involve local minima.5 Implementing LLE starts with the 

calculation of how each item in a data set is related to the few items nearest to it. It then 

preserves these neighborhood relationships when the data is converted from its high 
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dimensional form into a low dimensional form.5 The method utilizes weight coefficients 

based on the point’s neighbors and then finds a set of corresponding low-dimensional 

points. LLE is able to learn the local structure of nonlinear manifolds, such as those 

generated by images of faces or documents of text using local information.  

The goal of these recent approaches is to find a system of coordinates that 

parameterize/describes the underlying manifold. Discovering mappings to low-

dimensional representations has been a focus of much recent work on unsupervised 

learning.4,5,23,24,25 A key theme of these learning algorithms is to preserve (local) 

topological and geometrical properties (for example, geodesics, proximity, symmetry, 

angle) while projecting data points to low dimensional representations.26  

A promising recent approach is the method of Laplacian eigenmaps that map 

points in high dimensional space to a low dimensional representation that preserves local 

relationships similar to LLE. Belkin and Niyogi23  showed a technique to construct the 

Laplace-Beltrami operator on a manifold from points uniformly sampled. The 

eigenfunctions of this operator can be used to perform dimensionality reduction. Like 

other methods previously mentioned, this technique uses a pair wise dissimilarity 

measure as input and applies a radial basis function or kernel as a weighting tool to 

produce a sparse distance matrix. Dimension reduction or parameterization of the 

manifold is then performed by choosing the n-largest eigenvalues.  

The work by Lafon6,27 and Coifman28 describes a method of constructing what 

they call a diffusion kernel on the data and then employing its spectral properties to 

define a map that embeds the data into a lower dimension space. This approach builds 
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upon that of Belkin and extends the method to handle general inputs that are not 

uniformly sampled through renormalizing the kernel matrix. The method is very similar 

to the construction of Laplacian eigenmaps including the use of pair wise distances and 

radial basis functions to produce a sparse matrix whose spectral properties can be 

evaluated. By combining the eigenfunctions and values, one can construct a new 

distance matrix that is robust to the sampling distribution of the input parameters. This 

method scales relatively well to high dimensional29; however, since high dimensional 

data typically lies on a low dimensional space the input is sparse in terms of the original 

dimension, recent work in the area of compressed sensing24 may allow this method to be 

extended to very large data. Thus the signal is sparse in the high dimensional setting and 

can be reduced prior to being embedded. Restated, the high dimensional vector for each 

datum is sparse in the high dimensional setting and can be reduced prior to being 

embedded. 

1.2.2. Cluster Analysis 

Cluster analysis is used for the classification of data into groups allowing one to 

discover previously unseen structures or relationships. These relationships or classes 

allow one to provide taxonomy for phenomena, objects, or suggest statistical models 

with which to describe populations. This method may produce either hierarchal, with an 

increasing number of nested classes, or non-hierarchal clustering which is commonly 

used in techniques such as k-means clustering. Typically, this approach is used to divide 

data from a single population into a smaller number of groups. The underlying 
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mathematics of most of these methods is relatively simple but large numbers of 

calculations are needed which can put a heavy demand on the computer.30 One must 

determine the pair wise distance between all elements of the given population and then 

apply amalgamation rules to determine when two clusters are sufficiently similar to be 

linked together. The classification will depend upon the particular method (distance, 

amalgamation) used. Thus, multiple classifications are possible and it is up to the one 

evaluating the results to provide the expert knowledge that defines an 'optimal' 

classification.  

1.2.3. Experimental Probabilistic Hypersurface 

Recent work by Beauzamy and his student, Zeydina,10,31,32,33 provides a 

mechanism to take a small number of high dimensional data and develop a probability 

density of possible output values for an input query. For example, one may have 300 

realizations or results of a computational model that utilizes 20 inputs. If each parameter 

is limited to four values, there are 160,000 possible states. The method can utilize the 

limited amount of information (the 300 results) and produce a probabilistic density for a 

new set of inputs. Thus, the Experimental Probabilistic Hypersurface (EPH) allows one 

to store information obtained from any number of measures, in a physical experiment or 

in a computational code.33 If one considers the output from given realizations to be exact 

for the given input, the existing information may be propagated away from known inputs 

to cover the entire space. If you are close to a place where the experiment has been 

performed, the density will be more concentrated; if you are far away, the density will be 
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less concentrated, because you know less. This propagation requires the maximization of 

information entropy. The principle of maximal entropy thus governs the whole 

construction, which allows a construction with no artificial rules or probability laws.31  

1.3. Contribution of Work 

The present work contributes a number of new elements: first, the work presents 

a new, non-parametric approach to modeling high dimensional data; second, the work 

melds new advances in dimension reduction with a probabilistic predictive method; the 

reduction in dimension of video data is demonstrated; and fourth, applies the method to a 

number of problems in the field of nuclear engineering. 

The dissertation begins with this introduction followed by the methodology 

section. Section 3 provides examples of the methodology as it is applied to common 

engineering problems found in the area of thermal-hydraulics. The method is used as a 

regression tool to predict a response given a new input query. Several figures are 

presented to demonstrate various aspects of the proposed methodology’s accuracy and 

robustness. Section 4 applies the method to a prediction code used in nuclear 

engineering. Both predictions to new queries and predictions for the whole data space 

are made. An interesting aspect is the ability to utilize both continuous and categorical 

input data. A discussion of the computational time aspects is also presented. Section 5 

introduces large dimensional data to demonstrate the power of the methodology. Several 

problems dealing with regression and classification are presented using very high 

dimensional data that include video and medical spectrum data. Section 6 applies the 
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methodology to co-current two-phase flow regime classification and prediction. This 

section presents both microgravity and Earth gravity vertical up flow video data. The 

final section discusses the results and provides recommendations for further work.
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2. METHODOLOGY 

Engineers and scientist are increasingly using complex, high dimensional data to 

make important decisions. Often, the amount of data is much less than the total number 

of variables thus limiting the use of common statistical approaches. A common example 

in the nuclear industry would be large scale integrated system blow down tests for which 

numerous repetitions would be prohibitively expensive. A modern approach is needed to 

understand the underlying structure of the data and use this information to make 

predictions for new sets of conditions. Modern machine learning techniques coupled 

with recent advances in sampling theory and maximum entropy methods provide a new, 

unique methodology for solving these important problems.  

An example of this high dimensional, low sample phenomenon can be shown in 

the area of facial recognition. Consider a series of facial images where the head is 

rotated about a fixed axis simulating a person turning their head.  Even for a moderate 

number of pixels, the number of variables/pixels outnumbers the number of images. This 

issue and the fact that each variable does not change linearly, make it difficult to develop 

a correlation using classic approaches. The key observation is that although facial 

images can be regarded as points in a high-dimensional space, they often lie on a 

manifold (i.e., subspace) of much lower dimensionality, embedded in the high-

dimensional image space. The main issue is how to properly define and determine a low-

dimensional subspace of face appearance in a high-dimensional image space. 

Dimensionality reduction techniques using linear transformations have been very 



20

popular in determining the intrinsic dimensionality of the manifold as well as extracting 

its principal directions (i.e., basis vectors). The most prominent method in this category 

is PCA. PCA determines the basis vectors by finding the directions of maximum 

variance in the data and it is optimal in the sense that it minimizes the error between the 

original image and the one reconstructed from its low-dimensional representation. PCA 

has been very popular in face recognition, especially with the development of the 

method of “eigenfaces.1” Its success has triggered significant research in the area of face 

recognition and many powerful dimensionality reduction techniques (e.g., Probabilistic 

PCA, Linear Discriminant Analysis (LDA) Independent Component Analysis (ICA), 

Local Feature Analysis (LFA), Kernel PCA have been proposed for finding appropriate 

low-dimensional face representations. 

2.1. Dimension Reduction Using Random Projections 

In the past, most engineering problems dealt with a small number of N variables. 

As long as the value of N remains small, these problems can usually be handled with 

standard statistical techniques. As N increases, the need to reduce the number of 

variables from N to d becomes desirable to reduce the computational burden of 

analyzing data. PCA and many of the nonlinear methods work well but are 

computationally expensive with a computational cost of estimating PCA as O(N2M) + 

O(N3) where M is the number of data points.34  

Random projections (RP) is an emerging technique for dimensionality reduction 

where the computational cost is O(dkN) or if the projection matrix c is sparse, O(ckN) 
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where k is a constant.35 This technique, part of a broader technique referred to as 

“compressed sensing,” allows a high dimensional signal vector to be projected onto a 

low dimensional space using a random orthonormal basis. Random projections are 

concerned only with the dimension reduction mapping whereas compressed sensing 

usually deals with both the dimension reduction and signal reconstruction. This new 

theory is based on the Johnson-Lindenstrauss lemma36 that essentially states that a set of 

M points in a high-dimensional space of size N can be embedded with little distortion 

into a space of much lower dimension, d. The mapping is performed using a simple 

matrix of size d x N and preserves the interpoint distances between the points37; 

furthermore, it is data independent and computationally simple in that it can be applied 

to new data as it comes in rather than the ensemble of signals as in more classic 

techniques such as PCA. Researchers have demonstrated the use of random projections 

for capturing information about sparse or compressible signals.24,38,39

The Nyquist–Shannon sampling theorem states that a function, f(t), to be 

represented without error must be sampled at twice its highest frequency. This demand 

requires acquisition and storage systems to be able to handle twice the bandwidth 

required for the measurement, limiting the number of instruments used in sensing 

systems as well as the acquisition rate. Several techniques have been developed to 

reduce the storage requirements such as file compression but these do not address the 

requirements for handling the bandwidth of acquisition nor the computational power 

required to perform file compression. The low dimensional space or random projection 

of a high dimensional signal contains enough concentrated information to enable signal 
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reconstruction with small or zero error.40 This is due to the fact that most high 

dimensional signals are sparse and can be embedded into a space of much lower 

dimension in such a way that distances between the points are nearly preserved. The 

sparseness of the information in the original data space leads to dimensionality reduction 

and efficient modeling and has implications for the data acquisition process itself that 

lead to efficient data acquisition protocols.41

In random projections (RP), the projection is accomplished using a random 

matrix whose columns have unit length. Other matrices have been proposed and used to 

attempt to simplify the construction.42,43,44 The usefulness of RP is that it preserves 

approximately pairwise distances of points in Euclidean space45, which is desirable for 

embedding techniques and clustering.35  

Starting with a signal vector, one can project Y onto a smaller space of  
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dimension d using a specially constructed matrix A. The matrix A consists of dN entries 

that are independent and identically distributed values with a mean of zero and a 

standard deviation of one. The rows are essentially orthogonal which produces an  
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incoherent basis with the signal Y. Multiplying A by the signal vector Y produces a 1 x 

d vector that retains the same interpoint or pairwise distance information as the original. 

This is shown in Figure 2.1. The N x N pairwise distance matrix calculated using 
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Equation 2.3 is determined for five vectors of size 1 x 10000 and compared against the 

corresponding N x N pairwise distance matrix random projection of size 1 x d. The 

average Root Mean Square Deviation is calculated for twenty different random  
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projections using Equation 2.4. The averages for various values of d are shown in Figure 

2.1. As the value of d increases, the RMSD decreases. For a value of approximately 100, 
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Figure 2.1 indicates that the RMSD is approximately 0.1, thus the distortion of the 

random projection is quite small for d << N. The predicted normalized RMSD using 

Equation 2.6 is based on the proof presented by and shown in Equation 2.4, which 

agrees with the calculated normalized RMSD.46
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Figure 2.1 Comparison of Calculated RMSD and Predicted RMSD. 

The following example illustrates the power of random projections to identify the 

correct facial pose out of a library of images with only a corrupted query image. The 

facial images are from the UMIST database47 shown in Figure 2.2 and consist of 

grayscale, normalized, rotated images, with two images off axis. The query image also 

shown in Figure 2.2 is drawn from the database and corrupted. The images are 92 x 112 

pixels that correspond to a 1 x 10304 vector or 10304 variables/dimensions. Using the 

figure above, it is desired to reduce the dimension of the input data with little distortion 

so a value of 100 is used for the random projection matrix. The projection matrix that is 
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10304 x 100 in size is used to reduce the size of the feature vector to a 1 x 100 vector. 

Figure 2.2 Library of Facial Poses and Corrupted Facial Pose. 

This small vector is then used for comparison. The resulting identification of the 

correct image in the Library of Facial poses is performed using the reduced vector with 

the results shown in Figure 2.3. An interesting aspect is the comparison of the Euclidean 

distance between the query image and each image in the library for both the feature 
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vector of the full image and the reduced vector. Figure 2.4 shows the query and 

corresponding image from the where the reduced feature vector accurately identifies the 

correct target image in the library that is the original image before corruption and is quite 

similar to the Euclidean distance of the full feature vector. If needed, the corrupt image 

could be reconstructed using a number of algorithms but is not needed for 

identification.48,49

Figure 2.3 Corrupted Query Image and Identified Library Image. 

  

The above example illustrates the use of a random matrix with mean zero and 

standard deviation of 1. There are several matrices that can be utilized for random 

projections such as discrete wavelet transforms (DWT), discrete sine and discrete cosine 

transforms (DST/DCT), and noiselet transforms. A study evaluating DST and DCT 

transforms for image compression indicated an improvement in image compression 
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using these special matrices when the original image needed to be restored.42 This is due 

to the ability to accurately capture important features in the image or data.

Figure 2.4 Comparison of Euclidean Distance Calculations between Query and Each  

Image in Library for both Full Image Vector and Reduced Image Vector. 

The ability to contain all useful information in a reduced dimensional space is 

very desirable in the context of sorting, clustering, and analyzing high dimensional data. 

One can now use smaller, denser representations of high dimensional information 

resulting in faster, efficient, and potentially more accurate computations. The successful 

results of this method are applicable to a number of areas of interest to fluid mechanics 

and heat transfer. Sorting two-phase flow regimes is a prime example of an area where 

compressed sensing methods can be used to reduce the dimension of the feature space to 
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classify regimes objectively without the need for training data. This approach would 

provide a simple, robust approach to regime identification by eliminating subjective 

labeling that is currently performed and can be applied to image, video, or sensor data 

such as capacitance or conductance probes.  

2.2.  Embedding Using Diffusion Maps 

Another dimension reduction approach is the method of “Diffusion Maps.” The 

term, coined by Lafon,27 describes a technique that is based on the spectrum of a 

normalized dissimilarity matrix. The method is based on constructing a weighted graph 

and then computing the first few eigenvectors and eigenvalues of the corresponding. The 

first few eigenvectors present a low dimensional representation of data and/or 

coordinates for embedding.6,28 This approach preserves the local geometry and interpoint 

relationship of the data into a lower dimensional subspace.  

For many high dimensional data and problems found in engineering, a low 

dimensional structure, a hyperplane, of the data in relation to each other is usually found. 

This allows one to develop models and the simplicity and accuracy of these models is 

determined by how small the subspace in which the data reside. The Swiss roll shown in 

Figure 2.5 is often utilized in machine learning due to the difficulty in projecting the 

points onto a lower dimensional manifold.5,29 The Swiss roll is made up of discrete 

points in three dimensional space. Although the data reside in three dimensions, the data 

are structured and fixed to a two dimensional manifold. One could develop a 
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mathematical model to describe this surface but this becomes exceedingly difficult with 

higher dimensions and fewer known points. 

Figure 2.5 Randonly Sampled Swiss Roll 

  

Many manifold learning techniques utilize distance measurements between 

points and these techniques are typically accomplished by calculation of the Euclidean 

distance. Unfortunately, complex structures commonly found in high dimension data 

introduce errors due to short circuits or paths between surfaces. An example is shown in 

Figure 2.6. The line segments ������ and ������represent the distance measurements between 

three points. The line segment ������corresponds to points along the surface while segment 
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������ is for a short circuit. Points A and C are much further apart if one moves along the 

manifold which is shown by the dotted line segment.

Figure 2.6 Graphical Representation of Euclidean and Geodesic Distance. 

By using a radial basis function, a Gaussian kernel, the local distance information 

is reshaped with points far away from each other are neglected and a new weighted 

graph constructed. The spectrum of this matrix is calculated and results in a set of 

eigenvalues starting at one and monotonically decreasing. As in PCA, the first few 

eigenvectors are usually sufficient in describing the important features of the data. 

Following Lafon’s method, the first eigenvector provides sufficient information to 

embed the swiss roll information and describe the three dimensional surface/manifold as 
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a one dimensional structure shown in Figure 2.7. The coordinates of Figure 2.7 are the 

first two eigenvectors with the data from Figure 2.6 mapped into the new coordinate 

system. Since the swiss roll can be described as a set parametric of parametric equations 

with one variable, the resulting embedding being described with one eigenvector is 

appropriate. The line shown in Figure 2.7 closely preserves the local structure of the 

manifold and although the coordinate system has changed, the new space can still be 

used for prediction. 

Figure 2.7 Swiss Roll Data Plotted in First Two Diffusion Coordinates. 
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An analog can be found in the area of Riemannian geometry where local 

parameters can be utilized to describe global quantities, and in the following, it will be 

useful to think of the data as forming a weighted oriented graph.27 The mathematical 

development of these methods follows the work on functions operating on manifolds. 

One operator, the Laplace-Beltrami operator, is defined as the divergence or gradient of 

the manifold. Belkin and Niyogi23,50  showed that the first few eigenvectors of the 

distance matrix are discrete approximations of the eigenfunctions of the Laplace-

Beltrami operator on the manifold when data is uniformly sampled from a low 

dimensional manifold. 

Staring with datum Ψ described by N dimensional points, the Euclidean distance 

is calculated for n pairwise set of vectors. A Gaussian kernel shown in Equation 2.7 is  
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then applied to the resulting n x n distance matrix resulting in a sparse similarity matrix. 

This matrix has a diagonal of ones corresponding to each datum compared to itself. Off 

diagonal values of the matrix correspond to a weight or distance of how “similar” two 

data are with each other. The similarity matrix is then normalized as shown in Equations 

2.8 and 2.9:  
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Since we are interested in the spectral properties, eigenfunctions, of the operator it is 

preferable to work with the symmetric conjugate or redefining Equation 2.9 we get 

Equation 2.10.51 The diffusion operator can then be defined as shown in Equation 2.11 

and can be shown to be compact and self-adjoint.  

( ) ( )
( ) ( )

,
,

i j

i j

i j

k
a

ψ ψ
ψ ψ

ν ψ ν ψ
=  (Eq. 2.10) 

( ) ( ) ( ) ( ),i i j j jAf a f dψ ψ ψ ψ µ ψ= ∫  (Eq. 2.11) 

Thus, we can now show through Equations 2.12 through 2.14 the resulting mapping: 

( ) ( ) ( )
0

,i j j j i j j

j

a ψ ψ λ ϕ ψ ϕ ψ
≥

=∑  (Eq. 2.12) 

( ) ( )j i j j i
Aθ ψ λ θ ψ=  (Eq. 2.13) 

( )1 2, , , pθ θ θΦ = �  (Eq. 2.14) 

The mapping shown in Equation 2.14 consists of the eigenfunctions of diffusion operator 

A. In his dissertation, Lafon27  utilizes a singular value decomposition to diagonalize the 

kernel matrix, k. The embedding coordinates or eigenvectors are then determined from 

normalizing the left singular vectors which provides an orthonormal basis of k. Since 

each eigenfunction can be interpreted as a coordinate on the set, this mapping can be 

used as a diffusion metric to measure the diffusion distance between the data points 

which is shown in Equation 2.15. 

( ) ( ) ( )( )2
2

0

, p

p i j j j i j j

j

ζ ψ ψ λ θ ψ θ ψ
≥

= −∑  (Eq. 2.15) 
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It can be shown that sufficient information is carried along in the first few 

eigenvectors and only these are needed for dimension reduction. Thus, for embedding 

high dimensional data, only the first few eigenvectors are used. Although diffusion maps 

are being used for a number of machine learning tasks52,53,54 it has not found its way to 

modeling engineering systems. This may be due to the fact that adding new data 

becomes problematic since the entire embedding needs to be recomputed or engineers 

have usually attempted to simplify the problems in order to avoid dimensionality issues. 

In order to develop a methodology that utilizes these techniques, one must find a way to 

make use of new information or be able to locate the placement of new data. 

2.3.  Prediction Using the Experimental Probabilistic Hypersurface 

The principle was first expounded by E.T. Jaynes when he introduced what is 

now known as Maximum entropy thermodynamics and suggested that thermodynamics, 

and in particular thermodynamic entropy, should be seen just as a particular application 

of a general tool of inference and information theory.55 Essentially a Bayesian approach, 

the principle of maximum entropy is used to determine a unique probability distribution 

that makes explicit use of prior information. Thus, when the outcome is known, 

information entropy is zero whereas at points located far from known information, the 

entropy is large.  

There have been several attempts to extend spectral methods for new data27 but 

these are mathematical derivations that do not utilize the history of existing data and thus 

are biased. EPH provides a method to predict the outcome for new inputs with no bias 
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and also provides information in how close a new query is to existing data. In fact, many 

of the methods mentioned previously, are compromised with new realizations or input 

meaning that the process or embedding must be recalculated when presented with new 

data. Merging dimension reduction methods with EPH provides a powerful tool that 

would allow one to analyze and classify data as new inputs become available. Further, 

EPH would allow one to quickly forecast the result prior to performing the test which is 

extremely useful when the cost of performing new tests becomes expensive. Comparing 

the forecast and new data would provide insight into how well sampled the local 

embedding is. 

The Experimental Probabilistic Hypersurface is based on the theory of maximal 

entropy which is best illustrated with the example below in Figure 2.8. The example is 

based on a single parameter or input variable with a corresponding output. The abscissa 

is the range of possible inputs where two known or measured data labeled ξ(1) and ξ(2) 

are shown. The ordinate is the ‘knowledge’ or entropy of the system based on the 

information provided. Thus, at the measured points, we know the value explicitly and 

the entropy is zero which corresponds to a probability density in the form of a dirac; 

however, as we move away from our measurements, our ‘knowledge’ decreases until we 

reach maximum entropy (no information, uniform probability). This allows us to 

construct a density or probability distribution using the knowledge from measured data. 

If the queried input has already been tested and a measurement exists, the result is a 

certainty, and the density is a Dirac  measure; otherwise,  it  is  a  true  density,  and  this  

density  is  less  and  less concentrated.9 Ultimately, the density approaches a uniform 
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distribution far from any measured points. If a new query, x’, was set between ξ(1)  and 

ξ(2) the entropy is bounded by the information propagated by ξ(1)  and ξ(2). 

Figure 2.8 Propagation of Information from Measured Points Throughout State Space.9

Figure 2.9 shows the input parameters and corresponding probability 

density/function of the possible outputs. Providing information regarding the response of 

the function to the known inputs and by placing bounds on the input and output states, 

which is commonly done in engineering modeling, EPH allows the construction of the 

probability distribution for each set of inputs. For Figure 2.9, there are two known values 

for the given input coordinates.  Thus, it is expected that the probability density will 

contain two peaks corresponding to the output states of ξ(1) and ξ(2) and the most likely 

value for x’ is closer to the output of ξ(1) due to the proximity of x’ to ξ(1). 
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Figure 2.9 Illustration of Probability Construction for New Query X Given ε1 and ε2. 

In Figure 2.10, the query x = 1 has a peak or near Dirac distribution due to its 

proximity (certainty) to a known input. Conversely, Figure 2.11 has a more open 

distribution due to the known points lying further away. One can observe that the known 

points closer to the query value exhibit more influence on the probability producing a 

higher probability at these locations versus the known values further away. If no points 

were close by, the distribution would be uniform over all possible outputs. The key point 

in the construction is the propagation of information from a measure point to any other 

point.33

As more points are known, the probability becomes spread amongst the known 

values; however, the combinations of each of these points sharpen the predictive 

capability focusing the peak probability toward the correct value for the query. This is 
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shown in Figures 2.11, 2,12, and 2.13. This is due to the weighting that is proportional to 

the distance from the query that is applied to each known point. Thus, as one collects 

more data, making predictions become more accurate. Figures 2.10 through 2.12 are 

probabilities constructed using more known data or information about the underlying 

function. Although more information is quite useful, information closer to the point of 

query produces a more significant result as shown in Figure 2.13. The more peaked 

probability density is due to more information being available near the point of query. 

Figure 2.10 Construction of the Experimental Probabilistic Hypersurface for a Single 

Variable Function with Two Known Data Points. a) Plot of Function, Known Data, and 

Query Point b) Probability Density Function, Mean of Probability Density, and Actual 

Value for Query. 
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 Figure 2.11 Construction of the Experimental Probabilistic Hypersurface for a Single 

Variable Function with Five Known Data Points. a) Plot of Function, Known Data, and 

Query Point b) Probability Density Function, Mean of Probability Density, and Actual 

Value for Query. 

This is quite intuitive for the single variable functions given here but will be less so for 

the high dimensional functions that are presented later. Constructing the hypersurface is 

straightforward and will be explained in the following section. One may consult the 

references by Beauzamy9 and Zeydina10 for a detailed explanation. 

If we take the above example and assume the output can be characterized as a 

single input parameter/dimensional function as shown in Equation 2.16.  

( )
( )

output f input

f x

=

Γ =
 (Eq. 2.16) 
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One may consider θ to represent any output or experimental result that is a function of a 

given set of inputs, x. Outlining the correct input parameters, the range of possible 

inputs, and the range of acceptable outputs is required and is considered the expert 

knowledge provided by the user. This information is required for one to produce a 

uniform law for possible outputs, values of θ. Hence, with no information provided, one 

assumes that the answer lies between some θmin and θmax with an equal probability. 

Figure 2.12 Construction of the Experimental Probabilistic Hypersurface for a Single 

Variable Function with Eleven Known Data Points. a) Plot of Function, Known Data, 

and Query Point b) Probability Density Function, Mean of Probability Density, and 

Actual Value for Query. 

Past results such as experimental measurements or code output provide 

information or knowledge of the result at the specific location. This information is then 
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conveyed throughout the output space producing a new probability density. As 

mentioned previously, the probability density at this specific information is a Dirac. 

Moving away from this point the information or influence of known values becomes less 

and less. This information degradation is termed entropy. Entropy or information 

entropy is the measure of uncertainty associated with a variable and has connections to 

thermodynamic entropy. Jaynes described thermodynamic entropy as being an estimate 

of information needed to define the detailed microscopic state of the system.55

Figure 2.13 Construction of the Experimental Probabilistic Hypersurface for a Single 

Variable Function with Five Concentrated Known Data Points. a) Plot of Function, 

Known Data, and Query Point b) Probability Density Function, Mean of Probability 

Density, and Actual Value for Query. 
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The Minimal Information Lemma shows that entropy must increase linearly with 

the distance.9 Beauzamy utilizes the discrete entropy as defined in Equation 2.17. 

Equation 2.17 defines entropy as a function of probability. The axioms of probability  

1
log

j

j j

I p
p

 
=   

 
∑  (Eq. 2.17) 

apply such as ∑ =1jp  and 0>jp . The minimum value for entropy, I, is zero when 

the probability distribution is a Dirac (the pj’s are all zero except one). Determining the 

maximum value  is more involved but can be directly computed realizing that the 

probability distribution is uniform (all pj’s are equal). Thus, we start with Equation 2.18, 

the maximum entropy, characterized by a uniform probability distribution over the range 

of possible outcomes, γ.  

log( )I γ=  (Eq. 2.18) 

The output space is divided to provide discrete coordinates that partition the range of 

possible outcomes. Each step is easily defined as the difference between the maximum 

and minimum values the result can take on divided by the range of possible coordinates.  

max minτ
γ

Γ − Γ
=  (Eq. 2.19) 

( ) ( )1,I x xϑδ ε=  (Eq. 2.20) 

For a known point, the distribution is perturbed and the entropy is given by Equation 

2.20. The entropy is proportional to the distance between x and ε1. The proportionality 

constant, ϑ, is dependent upon the range, γ, and the distance between the query, ε1, and 
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the furthest corner of the hypersurface. Thus, Equation 2.20 can be restated to show that 

the value of the proportionality constant is the following: 

( ) max

max

Iϑ γ
δ

=  (Eq. 2.21) 

where: 

max 1xδ ε= −

Now, one sets Equation 2.17 equal to Equation 2.20 using the relationship shown in 

Equation 2.22. 

( )1

1
log ,
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j j

p x
p

ϑδ ε
 

=  
 

∑  (Eq. 2.22) 

Beauzamy9,31 shows that entropy and the associated probability at a given point is a 

Gaussian of the form: 

( )
2
jcg b

j
p x e

− +=  (Eq. 2.23) 

Equation 2.23, along with the axiom of probability indicating that the sum of discrete 

probabilities 1=∑
j

jp  adds to unity, allows one to solve Equation 2.17 to give: 

21
log

j

j

cg b
p

 
= −  

 
 (Eq. 2.24) 

 Substituting Equation 2.24 into Equation 2.22 we get Equation 2.25.  

( )2
j j

t

c g p b ϑ γ δ− =∑  (Eq. 2.25) 

 Beauzamy shows that the probabilities, pj, are symmetric and given by Equation 2.269.  
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2 2
j j

t

q g p= ∑  (Eq. 2.26) 

Now, from Equation 2.25 and 2.26, we can derive Equation 2.26.  

( )2cq b ϑ γ δ+ =  (Eq. 2.27) 

Since the probabilities sum to one,we can solve for c and b using Equation 2.23. 
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1jcgb
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e e
− =∑  (Eq. 2.28) 

 So Equation 2.25 becomes: 
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 (Eq. 2.29) 

A simplifying assumption can be made, with τ defined as the discritization of the output 

space, the summations can be replaced with the following integrations: 

2 2
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e e d
c

π
τ τ

∞
− −
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Γ ≈ Γ =∑ ∑∫  (Eq. 2.30) 

 And 
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π
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−∞

Γ ≈ Γ =∑ ∑∫  (Eq. 2.31) 

where Γ is the output of the function we are building the probability on. Substituting into 

Equation 2.28 and solving for c and b. 

( )( )1 2
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c e
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−=  (Eq. 2.32) 
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b τ
π
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 (Eq. 2.33) 
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( )1

2
b ϑ γ δ= −  (Eq. 2.34) 

Solving for the probability, p, can be carried out by substituting Equations 2.32 and 2.34 

into Equation 2.23. Equation 2.35 is the general form for the probability based on a 

single input parameter. 

( )
( ) ( )( ) ( )
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1 1 2 1
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τ
− −

 −Γ − + − − 
 
 =  (Eq. 2.35) 

Equation 2.35 provides the probability, p, over the range, j, of possible outputs, g. 

Equation 2.35 assumes one known measure or data point is provided by the input, ε, and 

corresponding output, Γ.  

 The preceding relationship can be expanded to account for more known 

measurements and for multiple parameters as shown in the development of Equations 

2.36 through 2.41. 
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 =  (Eq. 2.36) 

Now we must sum over m measurements, i, to get the probability at point j. This is  

( ) 1, 2, ,
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…  (Eq. 2.37) 

extended to k measurements in Equation 2.38 and 2.39.  
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( ) 1, 2, ,
1 2
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 ∑
…  (Eq. 2.39) 

where the normalization coefficient, γ, is given in Equation 2.40. We can recast Equation 

2.39 in a simpler form 
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i i
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δ
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Ξ =

∑
 (Eq. 2.40) 

Shown below in Equation 2.41 by substituting Equation 2.40. 

( ) ( ) ( ),j m m j

m

p x x p x= Ξ∑  (Eq. 2.41) 

The EPH generates probabilities based on the available information and weights 

the information by the proximity of the known data to the query point. A simple example 

is shown below. Consider the simple, single parameter/variable function shown by 

Equation 2.42 and graphically in Figure 2.14. The function ranges between -7 and 4  

( )
3

sin
44cos

3

x
x

y x e

ππ  −  
  =  

 
 (Eq. 2.42) 

 over the range of possible inputs from 0 to 12. The periodic function is shown in green 

with the known points shown as black circles. The known points are all the information 

we have regarding the function. Thus, EPH returns a probability based on only these 

three points of information and their location in regard to the point of our query shown 

in blue. The query point, x = 6, is equidistant from two of the data and the EPH produces 

a higher probability at the realizations of these closer known points compared to the 

further third point. Now, consider Figure 2.15. There are still three known points and 
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EPH produces a probability density with three peaks corresponding to the three known 

inputs and the magnitude of the probability is based on the known data distance to the 

query point. As one learns more about the function, the EPH produces a more accurate 

density function. 

Figure 2.14 Construction of the Experimental Probabilistic Hypersurface for a Single 

Variable Humps Function with Three Known Data Points of Near Equal Value. a) Plot 

of Function, Known Data, and Query Point b) Probability Density Function, Mean of 

Probability Density, and Actual Value for Query. 

Figure 2.16 illustrates this for eleven known points. The large probability is 

located near the actual value of Equation 2.41 at the query point of 6. However, the 

accuracy is driven by the locality of the known data.  
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Figures 2.14 through 2.16 shows that EPH is similar to a form of tessellation 

where the distance between the query and known data is of utmost importance. 

Expanding this to higher dimensions, it becomes clear that standard Euclidean distances 

could introduce errors and the manifold learning techniques shown earlier could provide 

more physically correct inputs to the EPH. 

Figure 2.15 Construction of the Experimental Probabilistic Hypersurface for a Single 

Variable Humps Function with Three Known Data Points . a) Plot of Function, Known 

Data, and Query Point b) Probability Density Function, Mean of Probability Density, 

and Actual Value for Query. 
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Figure 2.16 Construction of the Experimental Probabilistic Hypersurface for a Single 

Variable Hump Function with Eleven Known Data Points. a) Plot of Function, Known 

Data, and Query Point b) Probability Density Function, Mean of Probability Density, 

and Actual Value for Query. 

2.4.  Diffusion Maps and EPH 

An example of the merging of diffusion space and EPH is shown below. Figure 

2.17 contains three plots. The top plot shows the known data points in blue circles, the 

query point is indicated as a black square, and the actual function that is unknown is 

shown as a green line. The X and Y axis are considered the input to the function and the 

value of Z is the output as shown by the parametric equations in Equation 2.43.  
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 (Eq. 2.43) 

The center plot is the Euclidean distance between the query point and the known data 

points. The smallest distance corresponds to the point closest to the query; however, all 

points contribute to the calculation of the probability density which is shown in the 

bottom plot of Figure 2.17. The mean of the probability distribution is shown for 

comparison with the expected actual value. This contribution places peaks in the 

probability density at approximately 1, 2.3 and 3.5. In fact, the most probable result is 1 

and the mean of the distribution is 2 rather than the actual value of 2.2.  

Figure 2.18 also contains three plots. The first replaces the values of X and Y 

with the first two embedding coordinates from the diffusion maps. In calculating the 

coordinates, the diffusion distance is calculated prior to having a Gaussian kernel 

applied. With the scaling factor of the kernel (σ in Equation 2.6) set to 0.1, distance 

values shown in Figure 2.18 greater than 0.5 are essentially infinite. This greatly affects 

the weighting during construction of the Experimental Probabilistic Hypersurface. A 

greater weighting is applied to the close points resulting in a more peaked probability 

distribution shown in the bottom plot of Figure 2.18. The mean value of the density  
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Figure 2.17 a) Helix Function (green), Known Data (blue), Query (black) b) Plot of 

Euclidean Distance Between Query and Index of Known Data c) Probability Density 

(green), Mean Probability Density (red), and Query Value (blue). 
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corresponds to a value of Z of 2.3. The helix example is somewhat trivial due to the fact 

that it only has two input dimensions. The following sections illustrate the combined 

methodology for problems with a larger number of prediction variables. 

When dealing with data, noise is an issue that must be considered if a modeling 

approach is to be considered robust. An illustration can be found in the prediction of the 

manifold shown in Figure 2.19. The “peaks” surface is commonly used in MATLAB and 

is used in this example to illustrate the effects of noise on the predictive capability. Let 

one assume the underlying function or manifold is the grey surface. The known 

information regarding the surface is the 100 points, shown in blue, sampled randomly 

over the given domain. Thus, the known information consists of two variables and a 

corresponding output. The query point is shown in black and corresponds to the two 

input values shown in Figure 2.19. The output of the function of the query inputs is a 

value of approximately 15. The associated mean of the probability density indicates that 

the most likely value at this location is 13. One could expect better results with the 

proper design of experiments or expert knowledge that would allow a better sampling of 

the function near the query. For this smooth function, the number of random data 

required to accurately predict the output to a given accuracy is plotted in Figure 2.20. It 

is clear that not many points are needed to accurately predict the manifold. Only 100 

points are needed to provide a prediction within 1%. 
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Figure 2.18 a) Helix Function (green), Known Data (blue), Query (black) b) Plot of 

Diffusion Distance Between Query and Index of Known Data c) Probability Density 

(green), Mean Probability Density (red), and Query Value (blue). 



54

Figure 2.19 Construction of the Experimental Probabilistic Hypersurface for a Two 

Variable Function with 100 Known Data Points. a) Plot of Function, Known Data, and 

Query Point b) Probability Density Function, Mean of Probability Density, and Actual 

Value for Query. 

Real data and many stochastic simulations produce noisy responses. The noise 

may manifest itself in the electronics used to measure the system, environmental factors 

that cannot be controlled, human error, or a myriad of other phenomena. In order to 

evaluate the methodology’s resilience to noise, or robustness, the function shown in 

Figure 2.19 was recalculated with Gaussian noise with a mean of zero and a standard 

deviation of 0.2. A subset of the data along with a plot of the residual between the noisy 

and original function is shown in Figure 2.21. 
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Figure 2.20 Plot of the RMSD versus Number of Random Measurements. 

Random points were selected and used to construct a probability density for a 

particular query point as done previously. An example is shown in Figure 2.22. This 

process was repeated for various numbers of given points with the results used to 

produce Figure 2.23. This shows the percent difference between the actual value and the 

value with highest probability. One can see that the percent difference quickly reaches 

the value of the underlying noise within 100 samples. Thus, the method is robust to noise 

and allows one to potentially learn the inherent accuracy of the collected data as well as 

the form of the underlying function. 
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Figure 2.21 Description of White Noise Added to Function in Figure 2-10. a) 

Comparison of Original Function (blue) and Noisy Function (green) b) Plot of Residuals. 

Figure 2.22 Construction of the Experimental Probabilistic Hypersurface for a Two 

Variable Noisy Function with 100 Known Data Points. a) Plot of Function, Known Data, 

and Query Point b) Probability Density Function, Mean of Probability Density, and 

Actual Value for Query. 
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Figure 2.23 Plot of the RMSD versus Number of Random Measurements. 

2.5.   New Methodology 

 Section two has introduced the concepts of random projections, diffusion maps 

for manifold learning and embedding, and the experimental probabilistic hypersurface. 

These concepts have been synthesized into a new methodology that provides a new 

approach to understanding engineering phenomena. This is a fundamental change to how 

modeling or regression has been performed in the past. Further, the integrated use of the 

individual methods has never been done and provides a way of overcoming the 

limitations of each. Stated more clearly, 
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• The addition of new data produces biased results contrary to EPH which utilizes 

existing data/knowledge. 

• The embedding of data in new coordinates from diffusion maps provides a more 

accurate weighting compared with the distance measurements previously used in 

EPH. 

• Random projections provide a robust, fast technique to reduce the dimensionality 

of data allowing for quicker computation of both the diffusion maps and EPH. 

The method to analyze high dimensional problems is shown in Figure 2.24. Both 

the known data and query are randomly projected onto a low dimensional manifold. The 

data are then embedded using the diffusion map approach discussed earlier in the 

section. The embedding coordinates for the known data and the query are used to 

construct the EPH. Based on the type of problem being solved, the probability density 

produced is used accordingly.  

The need to reduce the dimension of the data is twofold. First, the time 

requirements for performing the embedding and constructing the EPH are quite sensitive 

to the dimensionality of the data. Second, the reduced dimension allows one to find 

features or trends that are difficult to find in the sparse, high dimensional space in which 

the data reside. Calculating the diffusion map requires the calculation of the distance 

matrix which is the pairwise Euclidean distance between all data, the time requirements 

scale as O(N2) and constructing the Experimental Probabilistic Hypersurface scale as 

O(N3).56 Random projections require an extra operation with complexity of O(dkN) but  
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this reduces the pairwise complexity to 

order of 4, and d is � log�

that problems with approximately 10 or more variabl

random projections.  

2.24 Methodology Graphically Represented. 

this reduces the pairwise complexity to O((dk)2 + (dk)3). Since k is a constant on the 

����, plotting the time requirements in Figure 2.25 ind

that problems with approximately 10 or more variables/dimensions will run faster using 
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, plotting the time requirements in Figure 2.25 indicates 

es/dimensions will run faster using 
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This approach can be used for regression and classification type problems. An 

example is for a given set of input data, a known output value exists. Classification type 

problems are a variation of regression except that the output state is not continuous but 

made up of discrete values. Thus, one can evaluate the cumulative distribution to 

determine in which category a query resides. 

Figure 2.25 Comparison of CPU Time versus Number of Variables for Calculating 

Euclidean Distance for Full Vector and Reduced Vector. 

  

This completes the development of the new methodology. The following sections 

apply the technique to problems of engineering interest. The problems are chosen to 

introduce elements with progressively higher dimensional data.  
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3. FRICTION FACTOR AND CRITICAL HEAT FLUX 

The focus of this section is to contrast historical approaches to developing useful 

engineering predictive models versus the approach outlined in Section 2. Further, an 

important aspect to consider in this section is the development time required. This may 

be due to a number of factors including communication of results, the expense of 

performing experiments, or the difficulty of the problem. This difficulty manifests itself 

in the number of parameters or variables. In the past, recording and storing large 

amounts of information limited what problems could be tackled or required one to 

develop simpler models. Today, both communication of information, cost of acquiring 

data, and acquisition and storage limits are not limiting factors. Now, the time waiting to 

understand the enormous amount of data is limiting; therefore, a better method than the 

classic approach to modeling is needed.   

A classic fluid dynamics problem is the calculation of pressure drop in a closed 

conduit. This elementary problem is implemented across a number of disciplines and 

provides an excellent history of the abstraction process. It is well established that the 

pressure drop or head loss is a function of the fluid properties (density, viscosity), the 

wall material (roughness), pipe diameter, and fluid velocity. Julius Weisbach57 proposed 

Equation 3.1, which is still in use today. The head loss, hL, per unit length of pipe, L, is a 

2

2
L

h V
f

L D
=  (Eq. 3.1) 
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function of the fluid velocity (V), pipe diameter (D), and a proportioning factor named 

friction (f) and given by Equation 3.2. The coefficients α and β depend on the wall  

f
V

βα= +  (Eq. 3.2) 

material and fluid. Several other relationships for pressure drop and/or friction factor 

have utilized different coefficients but the magnitude and meaning were debated since 

many didn’t consider fluids other than water. These relationships were almost 

exclusively developed from individual experiments and the model developed statistically 

to varying levels of rigidity. In fact, “the dimensional rigidity of the relationship was lost 

on many in the fluid mechanics community, which led to the use of several irrational, 

dimensionally inhomogeneous, empirical formulas.58”  

3.1. Historical Perspective 

It is difficult to assign a date for the beginning of hydraulic engineering. A book 

that may be considered the foundation of modern hydrodynamics, Della Misura 

dell'Acque Correnti, or "On the Measurement of Running Waters," was written by 

Castelli.59 Although this is not the starting point, if we consider it so, nearly 350 years 

elapses before the work of Moody presented a simple tool for solving the pressure drop 

in piping systems. Three hundred and fifty years of work to describe the simple 

phenomena of head loss of fluid flow through pipes. The difficulty was determining the 

variables of interest and how to deal with the nonlinearity of the head loss due to 

changes in these variables. 
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Osborne Reynolds observed the transition from laminar to turbulent flow and 

introduced a new parameter to predict the transition that would become what is known 

today as the Reynolds number.60 The Reynolds number is the ratio of inertial to viscous 

forces with the transition for flow in pipes in the range of 2000 to 4000 and was a 

tremendous contribution allowing modelers to separate the two regions allowing 

different linear predictive models. The friction factor could then be described as a 

function of the Reynolds number for laminar flow based on the independent work of 

Hagen61 and Poiseuille.62 For turbulent flow, several predictions for pipe friction 

continue to be used including the smooth wall relationship described by Blasius63 and 

the more accurate Colebrook-White64 relationship. 

Hunter Rouse incorporated these relationships into a more useful design tool, 

which was improved upon by Moody.65 Of note, Rouse stated "these equations are 

obviously too complex to be of practical use. On the other hand, if the function which 

they embody is even approximately valid for commercial surfaces in general, such 

extremely important information could be made readily available in diagrams or 

tables.66" Stated more clearly, Rouse felt the five dimensions were too complicated for 

practical use and was able to reduce the needed dimensions to two where (Re, )f F ε= . 

The friction factor is a function of the Reynolds number and the pipe roughness. The 

Moody diagram, shown below in Figure 3.1, continues to be used today because it 

provides a simple, accurate method to predict the friction factor given the Reynolds 

number and the wall roughness. 
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Figure 3.1 Moody Chart Used for Predicting Wall Friction.

It is well known that the shape of the velocity profile changes with increasing 

velocity due to changes in the boundary layer and the flow field with the move from a 

laminar to turbulent flow. In order to easily determine the friction factor for various flow 

conditions in round pipes, various authors have put forward a graphical representation, 

which is referred to today as the Moody Chart. Figure 3.1 is the Moody Chart, which has 

lines that relate the non-dimensional friction factor to the dimensionless Reynolds 

number and to dimensionless wall roughness. For laminar flow, Poiseuille’s law, shown 

in Equation 3.3, is derived relationship as a function of the Reynold’s number is used to 

predict pipe wall friction.   
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Re
f =  (Eq. 3.3) 

 where 
    

Re
VDρ
µ

=  (Eq. 3.4) 

Reynolds number is typically referred to as the ratio of inertial to viscous forces 

and is derived from simplifications of the momentum equation. For the turbulent regime, 

one must consider the effects of wall roughness in order to calculate the friction factor. 

The effects of wall roughness must be considered and those effects are illustrated by the 

various lines on the Moody Chart that correspond to different roughness described by the 

variable ε. Roughness, ε, is a length measurement that describes the irregularities of the 

wall surface. Darcy and others have put forward relationships to describe friction as a 

function of Reynolds number and pipe roughness. Relationships of the form described 

by Colebrook and White, Equation 3.5, are typically used to determine the friction factor  

1 2.51
2log

ReDf f

ε 
= − +  

 
 (Eq. 3.5) 

in the turbulent range; however, Blasius63, using similarity theory, found the friction to 

be well calculated by the relationship shown below. It can be seen that this relationship 

is for smooth pipes (i.e. ε = 0); whereas the implicit form in Equation 3.5 considers 

roughness. Equation 3.6 is widely used for predicting wall friction in smooth wall pipes. 

0.25

0.3164

Re
f =  (Eq. 3.6) 
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The Moody Chart is a mainstay of most engineers wishing to estimate the friction 

head loss in flow through pipes and the basis for this statistical work on the accuracy of 

the predicted values. There is error associated with the use of each line represented on 

this graph due to assumptions made in developing the model and conclusions drawn 

from the experimental data used in validating the models. Statements of true accuracy 

are rare, but White67  has stated the Moody chart is only accurate to +/-15%.  

The starting point for this study is the survey by Drew.68 The paper presents the 

results of a literature review conducted primarily to determine if the available data for 

turbulent flow were represented accurately by a form of Equation 3.2 as the widely 

accepted equation of Lees69 (Equation 3.7) for the friction factor in isothermal flow  

0.35

0.612
0.0072

Re
f = +  (Eq. 3.7) 

through smooth pipes. The validation of the Lees model is not done statistically; 

however, a new relationship is derived of the same form and is compared with Lees’ 

model qualitatively. This paper was instrumental in compiling the data used in this 

investigation. The writers compiled an extensive list of English, American, German, and 

French experimenters. Although the paper does not present any new data itself, it 

presents existing data in both the turbulent and laminar regions for smooth pipes as well 

as boundary lines of +/- 5% of the value of the prediction model given in Equation 3.8. 

Again, the form is similar to Equation 3.2 and is shown in Figure 3.2 which illustrates 

the data compiled for the model comparison. 
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Figure 3.2 Friction Factor Data versus Reynolds Number. 

0.32

0.5
0.0056

Re
f = +  (Eq. 3.8) 

The paper by Freeman70 is an exhaustive study of the flow of water through 

rough and smooth pipes, with extreme detail placed on accuracy of the results. The data 

presented is mostly in the range of turbulent flow, although some data points are from 

the laminar flow regime.  Also, great attention was placed on varying the size of pipes 

and the velocity. Care was taken in the design of the experiment to ensure fully 

developed flow in this tank emptying experiment. Differential pressure measurements 

were taken with a manometer with a stated accuracy of 0.001 ft H2O. Details concerning 

the connection with the main pipe were discussed explaining how they were designed to 

minimize the disturbance to the boundary layer.  

The Ombeck paper71 contains significant data along the turbulent range. 

Although the paper was written in German, interpretation of the data was not difficult, 

but the lack of description of the experiment leaves no way of determining the accuracy 

of the data. Ombeck utilized air as the working fluid and drawn brass tubing. With 
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respect to other published data, Ombeck’s data fit the standard curve well but have a 

different asymptotic value which is shown in Equation 3.9. 

0.224

0.242

Re
f =  (Eq. 3.9) 

Blasius’ paper did much to further research into the turbulent and transition 

regions of flow in pipes.63 The paper presents all of the data collected in the same 

manner as the other experimenters, so the interpretation of the data was not difficult. 

Blasius did his experiments on small pipe diameters made of lead and glass with both air 

and water and developed an equation for turbulent flow between Reynolds numbers of 

4000 and 100000 given above in Equation 3.6.63  

The Stanton and Pannell72 paper contains data that covers the entire range of flow 

from laminar to turbulent. Their data, derived from both air and water experiments has 

high accuracy and includes a number of points in the laminar region. Of particular 

interest is the use of pumps or fans to produce the desired flow condition in contrast to 

the others use of elevated tanks. 

Clapp and Fitzsimons73 did their work with water and oil at low Reynolds 

numbers. The smooth pipe used was drawn copper, but their results are only for 0.494 

inch diameter pipe. The thesis presented in the paper was not on the subject of friction 

factor versus Reynolds number, but experiments were documented and Reynolds 

number and Friction factor can be calculated from the printed results. The calming 

length of the pipe was over 100 diameters allowing the flow to fully develop. 

The Poiseuille paper contains data that covers only the laminar portion of flow.62

The data, derived from water experiments in glass with satisfactory development length, 
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has very good accuracy, though there is a portion of data that is extremely inconsistent 

and which was removed from the dataset. Poiseuille used glass tubing with enough 

development length for good measurements. 

Herman,74 using water as his working fluid, pioneered high Reynolds number 

research in the turbulent range. To obtain his accurate results in the turbulent range he 

used very long calming lengths, from 150 to 250 length over diameter ratios, to make 

sure the flow was fully developed. Utilizing drawn brass and copper tubing, using the 

form for friction shown below, Hermann reported values of (A) 0.00135 and 0.00132 for 

the intercept of Brass and Copper respectively, (B) 0.099 (Brass) and 0.0998 (Copper) 

for the slope, and (C) -0.300 for the exponent.74  

ReC
f A B= + ⋅  (Eq. 3.10) 

3.2. Current Approaches to Predicting the Friction Factor 

Currently, Poiseuille’s law provides a purely theoretical approach to predicting 

the friction factor for laminar flow. The Colebrook and White relationship is used for 

turbulent flow but due to the difficulty of its implicit nature there is a desire to find 

explicit forms. The most common is the Blausis equation for smooth walled pipes shown 

in equation 3.5. More recent relationships proposed are the Swamee-Jain equation75 and 

the Serghides solution76 shown below in equations 3.11 and 3.12 respectively. 
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There is an active community working on the development of friction factor 

predictive models.77,78,79 The work in this area deals primarily with the accuracy of 

explicit formulations of the Colebrook-White formula. A number of different approaches 

have been used to produce an explicit form for predicting pipe wall friction that include 

Lambert W function,80 the Weymouth equation,81 and the Panhandle A and B 

equations.82 A comparison of selected formulations is presented by Romeo79 and is 

shown below in Table 3.1 with the addition of Sonnad’s linear and continuing fraction 

approximations.  

The Model Selection Criterion (MSC) shown in Equation 3.13, is a statistic that 

describes the accuracy of one model over the other. The weighted difference is modified 

with a term that includes the number of parameters for each model. Thus, more elaborate 

models with a large number of parameters are penalized versus simpler models. Larger 

values indicate a higher degree of similarity between the proposed model results and the  
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Table 3.1 Comparison of Various Predictive Models with the Colebrook-White 

Approximation for Friction for Turbulent Pipe Flow.

Author Reference 
Model 

Selection 
Criterion 

Colebrook-
White 

C. F. Colebrook, Turbulent flow in pipes with particular 
reference to the transition region between the smooth and 
rough pipe laws. J. Inst. CiV. Eng. 1938-1939, 11, 133.83

  

- 

Moody 
L.F. Moody, Friction factors for pipe flow, Trans. ASME 66 
(8) (1944) 671.65 4.639 

Wood 
D.J. Wood, An explicit friction factor relationship, Civil 
Engrs. ASCE 60 (December 1966).84 -4.019 

Churchill 
S.W. Churchill, Empirical expressions for the shear stress in 
turbulent flow in commercial pipe, AIChE J. 19 (2) (1973) 
375.85

8.980 

Jain 
A.K. Jain, Accurate explicit equations for friction factor, 
Proc. ASCE, J. Hydraulics Div. 102 (HY5) (1976) 674.75 9.118 

Chen 
N.H. Chen, An explicit equation for friction factor in pipe, 
Ind. Eng. Chem. Fundam. 18 (3) (1979) 296.86 12.180 

Round 
G.F. Round, An explicit approximation for the friction-factor 
Reynolds number relation for rough and smooth pipes, Can. 
J. Chem. Eng. 58 (1) (1980) 122.87

3.067 

Barr 
D.I.H. Barr, Solutions of the Colebrook–White function for 
resistance to uniform turbulent flow, Proc. Inst. Civil Engrs., 
Part 2 71 (1981) 529.88,89

12.247 

Zigrang-
Sylvester 

D.J. Zigrang, N.D. Sylvester, Explicit approximations to the 
Colebrook’s friction factor, AIChE J. 28 (3) (1982) 514.90 12.537 

Haaland 
S.E. Haaland, Simple and explicit formulas for the friction 
factor in turbulent pipe flow, Trans. ASME, JFE 105 (1983) 
89.91

8.845 

Manadili 
G. Manadili, Replace implicit equations with signomial 
functions, Chem. Eng. 104 (8) (1997) 129.92 9.722 

Romeo 
E. Romeo, C. Royo, and A. Monzon, Improved explicit 
equations for estimation of the friction factor in rough and 
smooth pipes. Chem. Eng. J. 2002, 86, 369.79

22.111 

Sonnad –
Linear 

C.T. Goudar and J.R. Sonnad, Explicit friction factor 
correlation for turbulent flow in smooth pipes, Industrial 
Engineering and Chemical Research 42 (2003), pp. 2878–
2880.78

26.57 

Sonnad -
CFA 

28.22 
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output of the Colebrook-White formula. For Table 3.1, each of the models proposed by 

the authors was compared with the Colebrook-White equation and the resulting MSC is 

shown.  
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 − 
 

∑

∑
 (Eq. 3.13) 

The current work is aimed at demonstrating a new approach to modeling. 

Although the head loss equation is based upon physics, the proportional constant known 

as friction is derived entirely from experimental data. This interesting aspect is similar to 

many other problems encountered in engineering where one can accurately describe the 

underlying physics but not detailed features. This is commonly due to the scale of the 

problem but many times the difficulty is in determining or measuring the variables or the 

large number of variables needed to accurately describe the phenomena. The following 

section will review the predictions for the wall friction in a pipe and compare the classic 

approach to the methodology described in this paper.  

3.3.  New Approach to Predicting the Friction Factor 

The methodology described earlier in this paper provides an alternative approach 

to predicting pipe friction and demonstrates a new approach to modeling. Rather than 

relying on a curve fit based on the three parameters of wall roughness, pipe diameter, 

and Reynolds number, a pure statistical approach to sampling the manifold described by 

all parameters (wall roughness, pipe diameter, fluid velocity, fluid viscosity, and fluid 
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density) would allow direct calculation and provide a measure of certainty associated 

with the result. The ease with which the new methodology is applied should be 

considered against the 400 years of development that continues to go into the prediction 

of head loss. 

3.3.1. Comparison with Current Predictive Models 

As shown in Table 3.1, explicit models have been developed that show high 

fidelity with the Colebrook-White formula. However, the Colebrook-White formula is a 

fit of data and contains no mechanistic underpinnings. The accuracy of this fit must be 

considered when comparing models. One may ask, “why we would desire higher fidelity 

explicit models when a simpler model would suffice?” Figure 3.3 contains two plots of 

actual data from the references listed above along with curves associated with various 

models. The top plot is for fluid in smooth wall pipes with ε/D of 10-8 with predictions of 

all authors in Table 3.1. The lower plot is a close up of the range of Reynolds numbers 

from 104 to 105 along with selected models and includes bounding lines corresponding to 

+/- 5% of the Colebrook-White formula. The root mean square deviation is the statistic 

used to compare the models with data. This formula, shown in Section 2, is commonly 

used to compare the differences between values predicted by a model or an estimator 

and the values actually observed. Root mean square deviation values are shown in Table 

3.2. Clearly, there is little difference among the models when compared with the 

distribution of actual data in smooth wall piping. 
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Figure 3.3 Comparison of Predictive Models for Turbulent Pipe Flow versus Data. a) 103

< Re < 107 b) 104 < Re < 105
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Table 3.2 Comparison of Various Predictive Models with Data for Friction for Turbulent 

Pipe Flow. 

Author Root Mean Square Deviation 
Colebrook-White 0.00150 

Moody 0.00162 
Wood 0.01608 

Churchill 0.00151 
Jain 0.00152 

Chen 0.00150 
Round 0.00167 
Barr 0.00150 

Zigrang-Sylvester 0.00151 
Haaland 0.00153 
Manadili 0.00150 
Romeo 0.00149 

Sonnad –Linear 0.00150 
Sonnad -CFA 0.00150 

To compare the new methodology with recent published methods for 

determining the friction factor, a synthetic dataset was created. This initial synthetic 

dataset consisted of 2420 points for four values of  roughness, 11 pipe diameters, 11 

values of velocity, and the fluid density and viscosity for three fluids. Values for 

Reynolds number ranged from 4000 to 9.1 x 109 and 31 values for ε/D ranging from 10-13

to 0.0033 which is similar to the work done by previous authors.65,78,79 The data was 

produced using equation 3.14. The values in the dataset correspond to the friction factor 

determined 

( )3 0,1
synthetic Colebrook White

f f Pσ−= +  (Eq. 3.14) 
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from the Colebrook-White formula with Gaussian noise corresponding to a standard 

deviation of  ������. The root mean square deviation was used to compare the various 

models with the synthetic data which is shown in Table 3.3. 

Table 3.3 Comparison of Various Predictive Models with Synthetic Data for Friction for 

Turbulent Pipe Flow. 

Author 
Root Mean Square Deviation 

(smooth wall) 
Root Mean Square Deviation 

(All Data) 
Colebrook-White 0.00017 0.00410 

Moody 0.00074 0.00402 
Wood 0.00951 0.01139 

Churchill 0.00019 0.00408 
Jain 0.00018 0.00409 

Chen 0.00017 0.00410 
Round 0.00028 0.00412 
Barr 0.00017 0.00410 

Zigrang-Sylvester 0.00017 0.00411 
Haaland 0.00018 0.00410 
Manadili 0.00017 0.00410 
Romeo 0.00017 0.00410 

Sonnad –Linear 0.00017 0.00410 
Sonnad -CFA 0.00017 0.00410 

3.3.2. Comparison with New Methodology 

The models developed above were derived from measurements and an 

understanding of the Reynolds number and pipe roughness. Colebrook was able to 

develop a fit to data for various pipe roughness values. The authors listed above have 

essentially developed explicit models to closely match the results of the Colebrook-
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White formula but have not considered the accuracy of the Colebrook-White formula 

compared with actual data. The methodology presented in the previous section is used to 

predict the friction factor based on available data. Rather than assuming an underlying 

model (Lambert W, Weymouth, or Panhandle) and adjusting the number of parameters 

to better fit the data or another model, this new approach uses the data to generate a 

probability distribution. One can then use the friction factor with the highest probability 

or calculate a probability for the pressure drop directly. 

Twenty randomly selected data points consisting of fluid properties, velocity, 

pipe diameter and roughness, and the corresponding friction factor are sampled from the 

synthetic dataset. The five input variables, pipe roughness, pipe diameter, velocity, fluid 

density, and fluid viscosity are used as inputs with the corresponding friction factor used 

as the known outputs. A query point is also selected from the dataset and the input 

variables used as the query in the EPH algorithm while the friction factor is used for 

comparative purposes. The result is shown below in Figure 3.4. It should be noted that 

the data in Figures 3.4a, 3.5a, and 3.6a are plotted versus Reynold’s number for 

visualization purposes. The data is in five dimensions and this is what is used in the 

methodology irrespective of the calculation for friction factor using the Colebrook-

White relationship. 

The plot on the left portion of Figure 3.4 is for the random data and query point 

plotted on a Moody chart or Reynolds number versus friction factor. The red points are 

the randomly selected points whereas the blue square is the query point. The plot on the 

right of Figure 3.4 is a plot of friction factor versus probability produced from EPH. The 
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green curve is the probability distribution and the blue and red lines are the actual 

friction factor and the mean value of the probability respectively. For the query point in 

Figure 3.4, the five randomly selected data points produce a probability distribution with 

an mean corresponding to a friction factor of 0.0155. The friction factor from the dataset 

is 0.0089.  Figures 3.5 and 3.6 are for 50 and 500 randomly selected points respectively. 

As shown in Figures 3.4b, 3.5b, and 3.6b, the probability distribution becomes more 

peaked and the most likely friction factor predicted approaches the actual friction factor 

due to more information present. Friction factor is directly proportional to the pressure 

drop so one can evaluate the cumulative distribution function (CDF) to determine the 

likely range based on the desired level of accuracy. 

Figure 3.4 a) Plot of Five Known Data Points (red) and Query (blue) b) Plot of 

Probability Density (green), Mean Probability (red), and Actual Value of Query (blue). 
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Figure 3.5 a) Plot of Fifty Known Data Points (red) and Query (blue) b) Plot of 

Probability Density (green), Mean Probability (red), and Actual Value of Query (blue).

Figure 3.6 a) Plot of Five Hundred Known Data Points (red) and Query (blue) b) Plot of 

Probability Density (green), Mean Probability (red), and Actual Value of Query (blue). 
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Figure 3.7 contains three plots: one, a plot of 10 random data (red) and a query 

point (blue) plotted on axes of Reynolds number and friction factor; two, the 

corresponding probability plot; and three, the cumulative distribution plot (CDF). The 

CDF shows that there is less than a 18% probability that the friction factor is less than 

0.01, a 78 % chance that the friction factor is between 0.01 and 0.02, and a less than 4% 

chance of the friction to be greater than 0.02. With more data, the probability is more 

peaked about the correct value of the friction factor.  

Figure 3.8 illustrates this phenomenon for 50 randomly selected points. The 

location of the calculated mean probability is essentially equal to the friction for the 

query point illustrating the case that more data provide more information to construct a 

more accurate estimate of friction. 

Now that we have seen how well EPH can predict the surface of the manifold 

described by several dimensions that correspond to the input variables, information is 

needed to provide the optimum number of data. Figure 3.9 is a plot of the Root Mean 

Square Deviation versus the number of known data points. Since the input data is 

randomly selected, each query point was predicted twenty times with different random 

sets of known data points. The mean RMSD between the actual data and mean 

probability calculated from the density produced by EPH was plotted and it can be seen 

that approximately 90 known points gives the same RMSD value between the data and 

the prediction as the models presented earlier. 
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Figure 3.7 a) Plot of Ten Known Data Points (red) and Query (blue) b) Plot of 

Probability Density (green), Mean Probability (red), and Actual Value of Query (blue) c) 

Cumulative Density Function. 
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Figure 3.8 a) Plot of One Hundred Twenty Five Known Data Points (red) and Query 

(blue) b) Plot of Probability Density (green), Mean Probability (red), and Actual Value 

of Query (blue) c) Cumulative Density Function. 
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A more intriguing result and the focal point of the proposed method is when we 

combine dimension reduction techniques such as random projections or those similar to 

the method proposed by Lafon with the predictive power of EPH. This approach would 

allow for faster predictive computations and allow EPH to be utilized for much higher 

dimension problems. Figure 3.9 also shows the RMSD versus number of known data 

points for 2 reduced variables using the embedding technique of Lafon. Although it 

takes more known data points, 400 vs. 90, than using the actual data, the accuracy 

approaches that of the other methods. Thus, for high dimension problems, the decrease 

in computation time would warrant using the diffusion coordinates or random 

projections as the input to the EPH. 

Figure 3.9 RMSD versus Number of Known Data for All Variables and for 3 Embedded 

Coordinates. 
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3.4. Critical Heat Flux 

Critical Heat Flux, or CHF, is the phenomenon that describes a change in the 

boiling regime resulting in reduced heat transfer and serves as the upper limit of safe 

operation for heat transfer equipment. For heat flux controlled systems like nuclear 

fission and electrical heated systems, the CHF condition results in a drastic rise in wall 

temperature as the heat transfer coefficient is drastically reduced due to vapor blanketing 

whereas the CHF condition in temperature controlled systems results in a dramatic 

decrease in heat flux. Due to the importance of this limiting condition, a significant 

amount of research has been carried out to understand this phenomenon including the 

development of predictive correlations. An excellent overview of critical heat flux 

research can be found in the work of Kandlikar,93 Thompson,94 Hall and Mudawar,95,96

and Groeneveld.97 There have been several variables that affect the CHF. Six are most 

commonly identified,98 which include: 

• Pressure – The pressure of the working fluid has a relatively weak influence 

on the CHF with a gradual rise in CHF with a decrease in pressure for certain 

ranges.98,99  

• Local liquid subcooling - The level of subcooling, sometimes referred to as 

the mixed mean temperature, requires a higher heat flux to initiate and sustain 

boiling leading to an increase in the critical heat flux. Again, Bergles98

provides information regarding the effect of subcooling with similar plots 

from Sakurai and Shiotsu.100  
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• Mass Flux – except at high quality, mass flux is strongly correlated with 

critical heat flux with a near linear relationship.101 The higher velocity leads 

to increased turbulence enhancing heat transfer. This effect has led 

researchers such as Inasaka and Nariai102 to classify the CHF into high heat 

flux and low heat flux regions with mass flux as a parameter.   

• Length and Diameter – These provide dimensional information and are 

typically combined in regression models as the ratio of the length over the 

diameter. The length to diameter ratio has a number of competing effects. 

The length affects the development of the flow regime. Nariai103 and Inasaka 

and Nariai102 conducted experiments to study the effect of tube diameter, tube 

length and mass flux on CHF.  Others evaluating the effect of L/D ratio on 

CHF include Boyd,104 Bergles,98 Ornatskiy,105 and Cheng.106 Many 

researchers have treated the diameter effects independent of other 

variables.107,108,109   

Understandably, there have been many approaches developed to predict 

CHF.93,96,97 These include phenomenological and pure statistical methods. From a 

predictive standpoint, the current state-of-the-art approaches include the method by 

Celata110 and Liu.111 Celata and Liu utilize a liquid sublayer model with minor 

differences. For Celata’s model, about 91% of data points are predicted within +/-30% 

with a root mean squared error of 17.2%. Liu’s approach predicts 98% of the data within 

+/- 35% with a root mean squared error of 13.4%. Current Neural network approaches 
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predict approximately 77% of the data within +/-30% with a root mean squared error of 

42.3%.112   

Since flow boiling is a very complex phenomenon, the accuracies of classical 

methods for CHF are usually out of the 10% error band.113 This is further exacerbated by 

the difficulty in obtaining high quality data. Several approaches claim to have high 

accuracy but are limited to a small range of operating conditions. The approaches listed 

above utilize a large number of data from varied sources. Unfortunately, other than a 

thermal evaluation of the data such as that performed by Mudawar,95 no statistical tests 

on the different populations have been performed. Thus, it is difficult to compare models 

that do not have a large amount of data or cover a wide range of operation due to the fact 

that precision of the data can be quite different than for current large data sets. This is 

shown clearly in the work by Deng114 where he compares the critical heat flux measured 

experimentally versus his predictive model for various datasets. Based on the figures 

provided in the paper and the calculated root mean square error, it is quite clear that 

there is a distribution in the precision of measurement in the various datasets.  

Determining the critical heat flux for a given set of conditions is of utmost 

importance to a number of industries. This is demonstrated by the myriad of models and 

lookup tables available.97,115,116 This problem is well suited for the Experimental 

Probabilistic Hypersurface (EPH). Essentially, there are seven parameters corresponding 

to length, diameter, inlet quality, outlet quality, mass flux, pressure, and whether the 

channel is horizontal or vertical. These input variables along with the corresponding 

critical heat flux value are used as the database used to construct the EPH for a given set  
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Table 3.4 Range of Values from Critical Heat Flux Database  
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Reference 
# of Data 

Low 1.034 9.9 1.016 25.4 -0.64 -0.28 0.11 [94] 

High 111.4 18580 37.47 3657 0.14 1.577 24.41 1746 

Low 30 179 3.9 1000 -2.39 -0.38 0.5 [117] 

High 200 8111 25 4996 -0.02 1.1 4.949 625 

Low 
70 

1961 9 840 -0.26 0 0.99 [118] 

High 4173 12 3657 -0.01 0.47 4.31 235 

Low 
140 

687 
10 1.83 

-0.46 0.19 0.96 [119] 

High 1763 -0.03 0.52 4.08 25 

Low 34 637 6.2 0.6 -0.86 -0.19 1.4 [120] 

High 103 18577 37.5 1.97 -0.03 0.59 8.11 400 

Low 3 1440 
15.8 2.44 

-0.33 -0.07 0.32 [115,121] 

High 10 8110 -0.11 1 4.88 50 

Low 10.13 5000 
2 40 

-0.95 -0.93 0.2 [122] 

High 162 30000 0.072 0.264 120 392 

Low 1 3060 
4 250 

-0.4 -0.07 5.2 [123] 

High 31.2 27000 0.05 0.411 61.1 149 

Low 1.1 10.8 
9.7 43.54 

-0.21 0.09 1.495 [124] 

High 12 301.4 0.023 0.807 7.572 55 

Low 6.27 2417 4.4 110 -0.19 -0.05 7.37 [98,125] 

High 12.84 4567 6.16 154 -0.13 0.003 15.18 16 

Low 101.3 491.7 
10 

250 -3.52 0 0.582 [126] 

High 202.6 5542 2100 6.659 0.431 4.931 292 

Low 19 776 
1 

239 -0.68 0.66 0.285 [127] 

High 72 2736 975 0 0.99 2.363 83 

Low 7.403 11240
2.5 241.5 

-0.54 -0.18 12.11 [128] 

High 38.27 36044 -0.2 0.056 59.14 70 

Low 4.38 1111 
12 22000

-0.68 -0.27 0.138 [129] 

High 15.73 2529 -0.1 0.718 0.464 181 

Low 39.24 550 
8 

100 -0.11 0.012 0.19 [130] 

High 98.1 6445 666 -0 1.314 9.71 66 
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of conditions. The dataset used in the following example consists of 4385 unique data 

points from various researchers listed in Table 3.4. The range of data for each parameter 

is also provided.  

All the data provides a large amount of information for constructing probability 

densities for queries of CHF conditions. The data found in Table 3.4 are not uniformly or 

normally distributed, which is expected when the data are difficult to acquire and the 

database is from multiple authors. Also, many of the variables in the dataset are 

correlated such as the inlet and outlet thermodynamic quality. This fact demonstratesthat 

the hypersurface that describes the function resides in a subspace of the overall 7 

dimensional space. In order to gauge the accuracy of the methodology, the root mean 

square deviation is calculated using a leave one out approach. All of the data except one 

are considered known while the one data point is used for the query. First, the EPH is 

constructed using only the data itself and this will be compared with the construction 

using the embedding coordinates.   

Based on experience from the previous section on friction factor estimation, only 

a few hundred points were needed for the methodology. Figure 3.10 is a plot of the 

RMSD versus the number of known points used in the construction of EPH with and 

without embedding coordinates. Over 200 randomly selected points are all that is needed 

to accurately predict new points with an RMSD of less than 1% using data randomly 

selected from the database. For new points within the range of the existing variables, the 

entire 5055 points could be used but it would be much faster to repeatedly calculate the 

predicted critical heat flux using subsets of 200 points and then selecting the mean of the 
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resulting distribution of predicted values. This approach provides a highly accurate 

method for predicting the critical heat flux that does not require multivariate regression.  

When calculating the RMSD values shown in Figure 3.10, the known data used 

in constructing the EPH are randomly selected. An interesting question arises regarding 

the ability to predict points outside the range of input variables. For example, the data 

shown in Table 3.4 is partitioned into two groups. The first group is all the points with a 

diameter greater than 4.4 mm which will be used as our known database of critical heat 

flux values. The second group with diameters less than or equal to 4.4 mm will be used 

to test the accuracy of the methodology for predicting points outside our known range. 

This is somewhat akin to extrapolating to new points. 
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Figure 3.10 RMSD Values versus Number of Known Points for All Six Input Variables 

and for Three Embedding Coordinates. 
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4. MCNP  

Computer codes are increasingly used to make predictions of complex systems. 

These codes may contain hundreds of input parameters that may be a mixture of 

continuous numeric, categorical numeric, and categorical text. The different types of 

variables along with the type of algorithm (deterministic or stochastic) provide a 

challenging problem to the proposed methodology. Further, the prediction codes are 

commonly used to predict that some phenomenon does not occur such as reaching the 

melt temperature in a nuclear fuel rod. Building on the local probability distributions 

shown in the previous section, the ability to create a global probability distribution is 

shown for real world problems. Thus, with a limited amount of computer processing one 

can provide important information regarding the probability of a specific phenomenon 

occurring.  

4.1.  Predicting MCNP Results with New Methodology 

A Monte Carlo method is a computational algorithm that relies on repeated 

sampling of random inputs to compute results. This approach tends to be used when it is 

infeasible or impossible to compute an exact result with a deterministic algorithm 

(particle transport, Brownian motion, etc.). Also, the large number of computations 

needed to produce an accurate result requires a significant amount of computing time 

requiring high fidelity problems to be solved on high end computing resources. The 

Monte Carlo N-Particle transport (MCNP) code developed at Los Alamos National 
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Laboratory is an important tool in the design and evaluation of nuclear systems. Monte 

Carlo simulations are a useful tool to perform searches for critical configurations as well 

as shielding and other radiation effects analysis.131 The interesting aspect of criticality 

searches is that it is typically whether a configuration or set of configurations is critical 

or not. The ability to determine the global probability from a small number of 

measurements for a complex system would greatly decrease the computational costs and 

allow more configurations to be quickly evaluated. 

A simple MCNP model based on examples for a square lattice of plutonium 

nitrate filled cylinders found in the MCNP Criticality Primer was developed and is 

shown below in Figure 4.1.132 The input variables correspond to the liquid level, cylinder 

pitch, cylinder diameter, and cylinder wall thickness, which are continuous and whether 

a cylinder is present in the 3 x 2 square array. Stated more clearly, each cylinder location 

is assigned a variable whose value is zero or one depending whether the location has a 

cylinder or not. The material cards for the plutonium nitrate solution and the cylinder 

walls were not changed for the example but could be adjusted to provide more input 

variables. Since some of the variables are continuous, an infinite number of input 

configurations are possible. The table on page 98 presents the values for the input 

variables used for the case presented, the multiplication factor was calculated for seven 

liquid levels, four cylinder diameters, five cylinder pitches, and three wall thicknesses. 

These were used as inputs along with varying the number and location of cylinders in the 

array. The number of possible configurations is infinite due to the continuous variables 

but considering that a finite set of input variables were used, the number of possible 
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configurations is 6720 (7x4x5x3x2x2x2x2). The average computer time for each run 

was in excess of 11 minutes so calculating this drastic reduction in potential states still 

produces a significant computational task of over 51 days. 

Similar to the calculations done for the friction factor, the multiplication factor, 

k, was predicted using the methodology. The results are shown below in Figures 4.2 and 

4.3. Figure 4.2 is a plot of the probability of possible values of keff along with the actual 

values of the query point and the mean of the probability distribution for 40 randomly 

selected known data points. The probability distribution is quite peaked and the 
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Figure 4.1 Schematic of System Modeled in MCNP. 
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corresponding mean of the distribution closely matches the actual value of the query. 

This is indicative that a number of known points are nearby; thus, we have a higher 

confidence in the result. Figure 4.3 is a second calculation for query value farther from 

known points. The probability distribution is more uniform and one has less confidence 

in the resulting mean probability. This is shown as a greater difference between the 

actual and the value based on the mean probability. The selection of 40 points was

Figure 4.2 Plot of Probability Distribution (green), Mean of Probability Distribution 

(red), and the actual Value of Query (blue) for 40 Randomly Selected Known Data 

Points with Query Closer to Known Data. 
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Figure 4.3 Plot of Probability Distribution (green), Mean of Probability Distribution 

(red), and the actual Value of Query (blue) for 40 Randomly Selected Known Data 

Points with Query Far from Known Points. 

arbitrary. The dependence of the RMSD for all points in the database on the number of 

known data points is shown in Figure 4.4. Based on the RMSD error values shown in 

Figure 4.4, give the expected accuracy of using 40 known points to predict the 

multiplication factor to within 0.18 which is quite coarse for criticality work. One would 

need to use more points or only make queries close to known values of the multiplication 

factor to improve results. This is shown in Figure 4.5 where the probability distribution 
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is constructed using 600 known points. The number of known points needed to predict 

the multiplication factor to within 0.05 is approximately 600 which is less than 9% of the 

possible combinations. 

Figure 4.4 Plot of RMSD versus Number of Known Points for All Variables (blue) and 

for 3 Embedded Coordinates (red). 

Similar to the results shown in the previous section, the methodology does quite 

well in predicting the actual result. The point of interest is that this methodology works 

well in predicting a stochastic calculation that includes categorical and continuous data. 

However, criticality engineers are interested in the potential for a system to achieve a 

critical or supercritical configuration where the multiplication factor is greater than or 

equal to 1. For the model presented above, a criticality analysis would determine the 
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multiplication factor for a specific solution level, cylinder diameter, wall thickness, and 

cylinder pitch. Typically, an MCNP model would be developed and executed to 

determine the multiplication factor. The model would then be altered and executed again 

to evaluate the multiplication factor with different values for the input variables. An 

alternative analysis may look at the maximum solution level that remains subcritical. 

Each of these approaches provides information for a single calculation point and  

Figure 4.5 Plot of Probability Distribution (green), Mean of Probability Distribution 

(red), and the actual Value of Query (blue) for 600 Randomly Selected Known Data 

Points with Query Far from Known Points. 
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previous results are not directly used.The methodology outlined earlier produces 

information for all possible configurations using past results. Thus, one can calculate the 

probability of achieving criticality (or any other condition) for a range of configurations 

in one calculation using existing MCNP output. 

Table 4.1 Values Used in the Input Deck for the MCNP Model Shown in Figure 4.1. 

Parameter Range 
Pin Diameter (cm.) 5,10,20,25 

Pin Pitch (cm.) 2,5,10,15,20 
Pin Wall Thickness (cm) 0.01,0.1,1 

Solution Level (cm) 2,10,20,30,50,60,75 
Pin 1 Present 1 - Missing 2 
Pin 2 Present 1 - Missing 2 
Pin 3 Present 1 - Missing 2 
Pin 4 Present 1 - Missing 2 
Pin 5 Present 1 - Missing 2 
Pin 6 Present 1 - Missing 2 

Note: Always 2 pins present for any calculation 



99

Figure 4.6 Histograms of MCNP Input Deck Variables and Resulting Values of keff. 

To determine the probability that one could achieve criticality based on the range 

of configurations listed in Table 4.1, hundreds of MCNP calculations were carried out to 

produce a database of multiplication factors for random input parameters. The values of 

the input parameters are shown in Table 4.1 and were uniformly sampled as shown in 

Figure 4.6. For the 1022 conditions evaluated, there were 385 points that had a 

multiplication factor greater than or equal to1. Since the points are uniformly sampled, 

the expected probability of k being greater than 1 for all configurations should be close 

to385/1022 or 0.3767.The global probability was calculated for the system described 

above and is demonstrated below. Figure 4.7 is a plot of the probability as a function of 
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the number of known data points for any configuration of parameters listed in Table 4.1 

that would result in a) a multiplication factor greater than 1.5 or b) a multiplication 

factor greater than 0. To calculate this global probability, the approach used by 

Zeydina33 is followed. As expected, this value is nearly zero for points above 1.5 since 

we have no information that any configuration can achieve a multiplication factor 

greater than 1.5 and since the multiplication factor must be nonnegative, the probability 

that keff is greater than 0 is nearly 1. 

An interesting aspect of these two lines in Figure 4.7 is the relatively small 

amount of information (less than 150 points) needed to provide accurate information 

regarding the global probability. This represents a significant improvement in 

computational time. 

As mentioned previously, criticality analysis is interested in the probability that a 

system could achieve a critical configuration. This is somewhat of a misnomer since 

most of the time an analysis involves a high fidelity calculation of the exact system that 

produces a specific result. How does one take advantage of the extensive modeling and 

computation effort that has taken place previously? Using the methodology, one can 

make accurate predictions using a minimum number of previous results. The following 

example illustrate this. 
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Figure 4.7 Probability Plot of Mean Global Probability versus the Number of Known 

Data Points for keff > 1.5 (blue) and for keff > 0 (red). 

  

Figure 4.8 is a plot of the global probability that any configuration outlined in 

Table 4.1 results in a multiplication factor greater than 1. The global probability versus 

the number of known data points is plotted along with the ratio of critical or supercritical 

configurations over all calculated configurations. The global probability approaches the 

ratio indicating that approximately 100 known points/previous calculations are needed to 

describe the whole configuration space.  
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Figure 4.8 Plot of the Mean Global Probability for keff > 1 versus the Number of Known 

Data Points (blue) and the Fraction of Values of keff for All Runs Performed. 
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5. HIGH DIMENSIONAL DATA 

 The previous sections demonstrated the power of the methodology with simple, 

low dimensional examples. The following section now applies the methodology to high 

dimensional data sources. The five to ten variables needed to describe pipe friction or a 

criticality problem in previous sections may not seem daunting but consider the 

grayscale image shown in Figure 5.1 that consists of 640 x 480 pixels. These images are 

used in the determination of flow regime for co-current two-phase flow. Each image is a 

data point in ������ or each data point has a possible 640 480256 x   configurations.  

However, observation of the images indicate that there is some underlying structure 

commonly referred to as a regime that indicate the data lie on a manifold of lower 

dimension than the original space of ������. Methods to extract this manifold for use 

in prediction would eliminate the subjective manner flow regimes are identified. The 

focus of this section is to apply the methodology described in Section 2 and 

demonstrated on the relatively simple problems in Sections 3 and 4 to more challenging 

problems with thousands to millions of variables more commonly found today.  
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Figure 5.1 Image of Microgravity Two-Phase Flow. 

5.1.  Space Shuttle Rotation 

 A video taken from the International Space Station (ISS) of the space shuttle 

performing a pitch maneuver during STS-114 is used as the data source to demonstrate 

the ability to perform regressions using visual data. The pitch maneuver is performed to 

allow the visual inspection of the thermal protection tiles to determine if there has been 

damage during takeoff. The video consisting of 121 frames was taken as part of an 

inspection program to examine the protective thermal tiles and involves the orbiter 
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performing a rotation of 60 degrees at a relative constant rate. Part of the inspection 

process requires knowledge of the exact angle to properly analyze the imagery.  

This video provides a challenging example to feature recognition algorithms due 

to the changing background associated with the movement of orbiter about the earth. A 

sequence of images corresponding to the range of angles is shown in Figure 5.2. 

Identifying the pixels that best describe the orbiter pitch angle is very difficult due to the 

small number of test cases, the large number of total pixels, and the low signal-to-noise 

ratio produced from the changing background. These high dimensional, low sample size 

examples are increasingly found in engineering due to advances in digital technology.

Figure 5.2 A Selection of Four Frames from the Entire Range of the STS-114 Pitch 

Video. 
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The known images are dimensionally reduced using random projections with a 

normally distributed random matrix. The resulting vectors are much smaller in size and 

serve as input into the EPH. A query image is also dimensionally reduced using the same 

matrix. The discritization of angle is ~0.25 and the most probably angle is the discritized 

location closest to the mean of the probability distribution. The original images in the 

video are 240 x 320 pixels which correspond to 76800 parameters or variables. As a rule 

of thumb, this space can be collapsed to � � log��������, where C is a constant of 4 to 

8.35 Figure 5.3 is a plot of the accuracy of the technique for various sizes of random 

projections and number of known images in the database. The accuracy increases with 

more known information and 30 random projections provide enough information to 

make accurately predictions. This corresponds to C = 6 which corresponds to the values 

found in literature.  

The effective size of the dimension reduction matrix in Figure 5.3 where the 

error between the actual angle and the predicted angle versus the number of known 

images in the database for several dimensions of the collapsed image is shown. Figure 

5.4 is a plot of the average RMSD error of the orbiter angle versus the number of known 

images in the database. The plot indicates that 64 known images yields an accuracy of 

approximately 1.5 +/- 1 degrees. 
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Figure 5.3 Error in Predicting Orbiter Angle versus Number of Known Images in 

Database for Various Size of Random Projections. 
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Figure 5.4 Average RMSD Error versus Number of Known Images in Database Using 

30 Random Projections. 

  

Looking further, the random projected images can be embedded into a new space 

using techniques described earlier. This transformation can further reduce dimension and 

orients the images for accurate prediction. Figure 5.5 shows the results using the first 2 

embedded coordinates as inputs into the EPH. The 30 random projections are produced 

using the normally distributed random matrix discussed in Section 2. The accuracy is 

essentially the same as using only the random projections.  
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Figure 5.5 Average RMSD Error versus Number of Known Images in Database Using 2 

Embedding Coordinates from 30 Random Projections. 

    

As discussed previously, other matrices can be used to project the image onto a 

lower dimensional space. Using a discrete sine transform (DST) similar to the one 

described by Amador42, the images were projected onto a space with size 1x30. The 

average error was again calculated similar to what was done for Figure 5.5. According to 

Amador,42 the DST is better able to pack information into the projections and the 

resulting embedding more accurately reflects the rotation of the orbiter. The result is 
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shown in Figure 5.6 where the error for 64 known images is 0.7 +/- 0.3 degrees. The 

DST projections produce a better result requiring fewer known images in the database. 

Figure 5.6 Average RMSD Error versus Number of Known Images in Database Using 2 

Embedding Coordinates from 30 DST Projections. 

Using the results from Figure 5.6, a prediction of orbiter angle is made using 20 

known images and projecting them and the query image using a discrete sine transform 

matrix onto a vector of 30 elements. These vectors are then embedded using the first two 

diffusion coordinates. The prediction is based on the mean probability produced by the 

EPH using the 2 diffusion coordinates as inputs. Figure 5.7 consists of the query image, 



111

the probability plot of possible angles with the mean probability and the actual value of 

the query, and the resulting image based on the mean probability.  

Figure 5.7 a) Query Image, b) Guess Image Based on Mean of Probability Distribution, 

c) Probability Distribution (green), Mean of Probability Distribution (red), and Actual 

Angle (blue). 

Figure 5.7 indicates that the methodology can accurately predict the orbiter angle 

given enough information. To see what points were selected, plots of the embedding 

coordinates are shown in Figure 5.8 for both the known and query images. The first plot 

in Figure 5.8 is the two diffusion coordinates that are used as inputs to the EPH. One can 

see an ordering of the 20 randomly selected known images and their relation to the query 

image. The query is located near similar images, which is further shown in the second 
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plot. The second plot is first coordinate, ϴ1, versus the rotation angle of the orbiter in 

degrees. One can see the query image is located at the correct angle nearest the similar 

images corresponding angles.  

The shuttle rotation example illustrates the methodology’s ability to reduce 

dimension and embed high dimensional data and use this information to make accurate 

predictions when provided with new data. The implications of this are threefold: 1) The 

reduction in dimension allows for faster calculation, 2) embedding random projections 

identifies key features in a noisy image, and 3) EPH provides a method for adding new 

data to the embedding and making accurate predictions using given information.

Figure 5.8 a) Plot of the First Two Diffusion Coordinates for the Known and Query 

Images b) Plot of the First Diffusion Coordinate versus the Orbiter Angle for the Known 

and Query Images. 



113

5.2.  Spectrum Data 

Gene expression or protein charge data are a classic candidates for dimension 

reduction. Typical mass spectrometry datasets consist of thousands of parameters. 

Recent tests performed at Texas A&M investigated a novel perfusion system to examine 

the effects of radiation on model respiratory tissue.12 The data consists of three sets of 

three samples of intensity readings for 10399 channels that correspond to in-vivo 

unirradiated, ex-vivo unirradiated, and ex-vivo irradiated classes. The 10399 channels 

correspond to approximately 9028 gene probes with the difference in channel number 

corresponding to bacterial transcripts and other pads. The nine samples were randomly 

compressed and embedded into a diffusion space which is shown in Figure 5.9. The 

result is three clusters that correspond to the different classes. 

Figure 5.9 Spectrum Data Plotted in First Three Embedding Coordinates. 
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Based on the results above, a similar approach was used with spectrum data 

(SELDI-TOF data) to detect the presence of ovarian cancer. The spectrum data has 

15154 channels or parameters corresponding to size and net electrical charge of proteins. 

A typical spectrum from the dataset by Lanclet133 is shown in Figure 5.10. The 

discriminating pattern formed by a small key subset of proteins or peptides is buried 

among the entire ensemble of thousands of proteins represented in the sample 

spectrum.133 Only specific mass/charge (M/Z) positions/channels/parameters along the 

spectrum horizontal axis are used for the discrimination of ovarian cancer. Identification 

of these parameters forms a significant research area and typically requires an extensive 

amount of training data.134,135,136  

Each spectrum of the training dataset similar to the one represented in Figure 

5.10 is randomly projected onto a lower dimensional space using either a matrix of 

normally distributed random entries, a matrix used for discrete sine transforms, or a 

matrix used for noiselet transforms. A small number of dimensions are then embedded 

into a diffusion space. An example is shown in Figure 5.11 where the original spectrum 

of 15154 channels is projected onto a 256 element vector using a random matrix. The 

resulting embedded data shows relatively nice separation between the cancer and control 

data. This is for the first three diffusion coordinates, all that can be shown in a 3D figure. 

Further separation of the two groups occurs as more diffusion coordinates are included. 

Using the diffusion coordinates as inputs to the EPH, one can then project whether each 

spectrum (patient) belongs to the cancer or non-cancerous group. The accuracy of the  
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Figure 5.10 Sample Spectrum of SELDI-TOF Data. 

results is shown in Figure 5.12. The plot shown in Figure 5.12 relates the accuracy of 

predicting cancer versus the number of diffusion coordinates for various size random 

projections. It is clear that the amount of information contained in the projected vector 

increases with increasing size and that approximately 20 diffusion coordinates are all 

that is needed to produce the maximum accuracy. Thus, the original 15154 element 

spectrum can be projected onto a space of 128 and embedded into 20 coordinates to 

produce an accuracy of greater than 99% for detecting cancer. 



116

Figure 5.11 The First 3 Diffusion Coordinates of SELDI-TOF Data Randomly Projected 

Onto a Vector of 256 Elements. 

As shown in the orbiter video in the previous section, other matrices can be used 

to project the original data. The spectrum data is projected using a discrete sine 

transform matrix resulting in a more accurate prediction with fewer number of diffusion 

coordinates from a smaller input vector. Figure 5.13 is a plot of the first three diffusion 

coordinates for data that has been projected onto a vector of 256 elements using a 

discrete sine transform matrix. The DST matrix is able to capture more information 

about the spectrum than the random matrix resulting in faster determination of the 

presence of Ovarian cancer which is shown in Figure 5.14 with the high prediction 

accuracy. The dimension reduction of the large original signal indicates that cancer 
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information resides in a subspace of much smaller dimension that may only require a 

few channels compared to the total recorded. 

Figure 5.12 Cancer Prediction Accuracy as a Function of Number of Diffusion 

Coordinates for Various Size Random Projections. 

A noiselet transform is another matrix of special interest due to the fact that (1) 

they are incoherent with systems providing sparse representations of image data and 

other types of data, and (2) they come with very fast algorithms; the noiselet transform 

runs in O(n) time, and just like the Fourier transform, the noiselet matrix does not need  
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Figure 5.13 The First 3 Diffusion Coordinates of SELDI-TOF Data Projected Using a 

DST Matrix Onto a Vector of 256 Elements. 

  

to be stored to be applied to a vector.137 Figure 5.15 is a plot of the first three diffusion 

coordinates for both the cancer and non-cancer data. Again, as in Figures 5.11 and 5.13 a 

separation of cancer and non-cancer data is shown with just three diffusion coordinates. 

Figure 5.16 is the resulting plot of accuracy versus the number of diffusion coordinates. 

Only 15 diffusion coordinates are needed to predict cancer with greater than 99% 

accuracy. In fact, both the DST and noiselet basis produce 100% correct identification of 

cancer using 30 diffusion coordinates produced from projection vectors that are 256 

elements long. No clustering algorithm such as k-means is used. The diffusion 

coordinates are used as inputs to construct the Experimental Probabilistic 
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Figure 5.14 Cancer Prediction Accuracy as a Function of Number of Diffusion 

Coordinates for Various Size DST Projections. 

Hypersurface. The total number of known data is 255 for each query with corresponding 

output values assigned 1 or 2 according to no cancer or cancer respectively. For each 

query, the resulting probability distribution was computed from the EPH and the mean 

taken producing an assignment to either non-cancer or cancer based on how close the 

mean probability is to 1 or 2 respectively. A sample probability plot is shown in Figure 

5.17. 
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Figure 5.15 The First 3 Diffusion Coordinates of SELDI-TOF Data Projected Using a 

Noiselet Matrix Onto a Vector of 256 Elements. 

The probability plot shown in Figure 5.17 shows the peak located over the cancer 

category along with the corresponding mean of the distribution which matches the actual 

label for the data. The discritization of the possible values is 0.33 and the range is 0.66 to 

2.33. Thus, the probability is jagged since values are only calculated at 0.66, 0.99, 1.32, 

1.65, 1.97, and 2.30. This results in the peak for cancer being located at 1.97 rather than 

2 but this has no effect on the resulting classification. This approach is quite fascinating; 

not only does the accuracy rival the latest methods for prediction without false positives 

but it can provide an actual probability value rather than a binary yes/no result. 
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Figure 5.16 Cancer Prediction Accuracy as a Function of Number of Diffusion 

Coordinates for Various Size Noiselet Projections. 
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Figure 5.17 Example Output of Methodology for Ovarain Cancer Data. Probability 

(green), Actual Result if Cancer is Present (blue), and Mean Probability (red). 

5.3. Video Analysis 

Our visual capability is quite powerful; therefore, video is commonly used to 

record processes that can be viewed and critical phenomena identified. Analysis of video 

becomes more difficult; first, by sheer size of the data and second, by the complexity of 

the millions of pixels that describe the imagery through time. A rich community of 

machine learning has produced amazing results for tasks associated with feature 

recognition such as fingerprint identification and genomic signal clustering but these 

typically require specialized algorithms that are customized to the problem at hand. The 

ability to quickly analyze this high dimensional data using a generic methodology would 

be highly sought after. 

The example shown in Section 1 is presented here in more detail. High Video is 

speed video of a flow boiling system recorded at different heat flux levels.13 The video 
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was recorded at 3500 frames per second at a resolution of 640 x 800. The video was 

cropped to 456 x 800 pixels and shrunk to 141 x 400 pixels and consisted of 340 frames 

or slightly less than 0.1 seconds. Even with the cropping of pixels and reduction in 

recording time, the total number of variables is 19,176,000. This corresponds to 

approximately 20MB of storage for a grayscale movie. Although the video presents a 

highly complex process of vapor and liquid boiling two-phase flow, observation 

indicates features that seem to correspond with heat flux such as the number of bubbles. 

These features should lie on a manifold of lower dimension that can be identified and 

used to identify class or magnitude such as the applied heat flux used to generate the 

vapor in the flowing fluid. 

Nine videos were used in the analysis corresponding to five values of heat flux. 

Figure 5.18 consists of a selection of image frames from the videos illustrating the 

movement of bubbles. The larger values of heat flux are shown to have a larger number 

of bubbles due to the higher amount of energy being transferred to the working fluid. 

Due to the complexity of the boiling process the number or size of bubbles is not linear 

and although one can roughly estimate location by eye, an exact prediction is only a 

guess. 
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Figure 5.18 Selected Frames From High Speed Video of Flow Boiling. 

Using the methodology, two videos at heat fluxes of 80 kW/m2, 120 kW/m2, 140 

kW/m2, and 160 kW/m2, were used as the known inputs and the heat flux was predicted for 

the 100 kW/m2 video. Each image in the 340 frames of the video corresponds to 141 x 

400 pixels resulting in 19,176,000 elements or variables to evaluate per movie. Each 

image is randomly compressed from 56,400 pixels to 16 variables. The 340 frames of 16 

variables or 5440 are randomly projected down to 64 elements that are embedded into a 
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two dimensional diffusion space. These two element vectors are used to predict the heat 

flux. The two diffusion coordinates for the eight known videos are used to construct a 

probability density shown in Figure 5.19 with the resulting density mean of 106 kW/m2. 

Thus, one can predict the actual heat flux to within 10%. The tremendous amount of data 

in each video is compressed into 64 meta-variables that are embedded into a two 

dimensional map that accurately reflects the actual heat flux. That each observation of 

boiling resulted in over 19 million variables that can be accurately described through 

dimensional reduction by two values is an amazing feat. Thus, the utilization of visual or 

other high dimensional data has been greatly enhanced and leads us to the final section 

of the dissertation where we will apply the methodology to the identification of two-

phase flow regimes. 
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Figure 5.19 a) Plot of First 2 Diffusion Coordinates with Known Data (blue) and Query 

(red) and b) Plot of Probability Distribution (blue), Actual Heat Flux (green), and Mean 

Probability (red). 
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6. FLOW REGIME IDENTIFICATION 

Two phase flow regime classification is typically performed by the investigator 

through observation of still images, high speed imagery, or statistical properties of two 

phase flow parameters.138,139,140,141 The regimes are classified based on the spatial 

orientation of gas and liquid; however, there is not a clear set of identified regimes142

and many times the investigator must make a decision. This leads to bias and 

nonstandard regime identification.  

The previous sections demonstrated the power of the new modeling approach for 

high dimensional data including image data. There are several problems in fluid 

dynamics that can benefit from the analysis technique presented. One is the 

identification of flow regimes for multiphase flow. The spatial orientation of two fluids 

moving in a conduit can assume a finite number of characteristic configurations/patterns, 

which are termed flow regimes. Flow regimes are of prime importance to the 

understanding of thermal-hydraulic behavior such as pressure drop, heat transfer, critical 

flows, and other phenomena. The flow patterns cannot be predicted from the 

independent variables of the system such as the phase flow rates and their physical 

properties in a straightforward manner.139   
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Figure 6.1 Example Flow Regimes for 1g Vertical Flow Used in the Analysis. 

A visual representation of two-phase flow regimes is shown in Figure 6.1. The 

four images in Figure 6.1 are taken from high speed imagery at 1000 frames per second 

of vertical up flow of air and water. Although several flow regimes are reported in 

various studies,138,143 a consistent set of identified regimes have not been put 

forward.This is probably due to the fact that the classic identification method is 

visualization of the flows. This has led to a multitude of flow regime maps which are 

plots of independent system variables with regions. The use of completely visual 

observations for determining flow patterns has the disadvantage of being subjective. 

Differences in interpretation of visual observations are no doubt a major reason for 

experimenters having recorded different flow patterns under essentially similar flow 

conditions.144  A further complication is the different proposed flow regimes used by 
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various authors. Bi145  presents a table, shown in Table 6.1, which illustrates the different 

sets of flow regimes authors’ use. 

Table 6.1 Table of Flow Regime Labels for 1g Horizontal and Vertical Flow.145

Baker138 developed one of the first two-phase flow regime maps with air-water 

and air-oil data in large tubes, which uses scaling factors for the horizontal and vertical 

axis corresponding to the superficial mass flux times a fluid property scaling factor for 

liquid and gas respectively. A simpler map, first popularized by Mandhane,146 uses only 

the superficial velocities and a derivative is shown in Figure 6.2. Another version of the 

flow regime for vertical two-phase flow is shown in Figure 6.3. 
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Most flow regime maps provide sharp transition lines between regimes. The 

subjective identification of regimes, the different identified regimes used to create 

predictions, and lack a physical basis for many of the models have led to a large number 

of flow regime models and maps. There have been innumerable classifications 

suggested.147 Many of the published flow regime maps are shown in the following Table 

6.2.148,149 The lack of a consistent set of variables has made it difficult to identify the 

correct flow regime. This poses a problem when attempting to develop pressure drop, 

void fraction, and heat transfer models that incorporate all flow regimes without having 

discontinuities at the boundaries.150 A more physical, correct prediction model would 

Figure 6.2 Example of a Baker Map.138
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Figure 6.3
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3 Example of Map by Hewitt from Collier.142
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Table 6.2 Listing of Published Coordinate Parameters for Flow Regime Mapping.148

Several objective approaches have been developed based on signals analysis of 

statistical moments,151,152,153 spectral techniques,154 and fractal dimension.155,156 A recent 

approach relies on a limited number of capacitance measurements coupled with Fuzzy 

Set Method139,157 utilizes some statistical moments (mean and variance) and a few 

wavelet transform coefficients of pixel intensity data. Sunde’s visual analysis approach 

is quite interesting due to the fact that he has included a form of pattern recognition. 

Using this method, the bubbly and annular flows are correctly identified but it was more 

difficult to identify the slug and churn regimes. The objective approaches indicate that 

one can identify flow regimes with some accuracy. However, many of these approaches 

require specialized instrumentation and it is difficult to compare results between authors. 



133

Since the flow regimes are described by their spatial orientation, an approach that 

utilizes imagery would be expected to produce accurate results.  

6.1.  Flow Regime Imaging 

 The previous section showed how images from the shuttle pitch maneuver 

images and flow boiling video could be embedded into a low dimensional space that 

could be used for organizing, clustering, or prediction. The first flow regime video is 

from NASA high speed archive of reduced gravity two-phase flow. An example frame 

capture is shown in Figure 6.4. Three flow regimes were used for identification; bubbly, 

slug, and annular. Ten high speed videos were used in the preliminary analysis. The 

videos consist of 150 frames of grayscale images that are 231 pixels wide by 191 pixels 

tall. Taking each individual pixel of each frame as a variable, the dimensionality of the 

videos is ������ ���!or approximately 6.5 million. Since the video is highly correlated 

with time, several pixels would have similar values. For example, the background and 

tube walls are fixed and should not change significantly. Also, since the flow is in one 

direction, downstream pixels will be correlated with upstream pixels. Thus, the data 

should reside in a low dimensional subspace and the pixel intensity data can be projected 

onto this smaller subspace. 
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Figure 6.4 Frame Capture from High Speed Imagery of Microgravity Two-Phase Flow. 

  

With over 44000 pixels per image and 150 images per movie, random projections 

are needed to provide more manageable data that allows the calculation of the Euclidean 

distance without a significant time or memory constraint. Each image is randomly 

projected using a 100 x 44121 matrix comprised of values that are normally distributed 

with a mean of 0 and a standard deviation of 1. Each column of the matrix is normalized 

prior to being multiplied by each frame of the movies. In order to compress in the time 

domain, a second random matrix is constructed that is 40 x 150. This matrix is then 

multiplied by the transpose of the random projected movie matrix. The resulting vector 
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consists of 4000 terms that are used to produce an embedding of the 10 high speed 

recordings. The first two embedding coordinates from the diffusion map are shown in 

Figure 6.5. It is quite clear that only two coordinates are needed to correctly classify the 

three flow regime. Similar data could be randomly projected using the same matrices for 

this data and then a new embedding could be performed. However, it is difficult to 

produce similar test conditions for imaging. What is typically done is tests with the same 

flow conditions. Using the embedding coordinates as the output and the flow rates as the 

input to constructing the EPH, one could quickly and accurately identify the flow 

regimes. 

Figure 6.5 Plot of the First Two Diffusion Coordinates of Annular (red), Blue (bubbly), 

and Slug (green) Flow Regimes of Microgravity Two-Phase Flow. 
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6.2.  1g Two-Phase Flow 

 A database of high-speed flow regime videos was recorded using a test facility 

that had a 3/8 inch inner diameter acrylic tube connected to a piping system that was 

able to produce well characterized two-phase flow. One thousand frames of video were 

recorded for 1 second at a resolution of 116 x 256 pixels. Sixty-four videos were 

recorded and are presented in the montage shown in Figure 6.6. The montage consists of 

several frame captures from the 64 videos staring with bubbly flow at the top and ending 

with churn/annular flow at the bottom. Each video was played back at 30 frames per 

second and flow regime identification was carried out visually using five different 

regimes; annular, bubbly, bubbly-slug, slug, and churn. For each movie, the regime was 

identified on a superficial velocity map shown in Figure 6.7. The transition lines for the 

flow regime map shown in Figure 6.7 are misleading in that they appear to shown sharp 

transitions between each regime. Actual transitions are difficult to determine and this is 

described in the paper by Taitel and Dukler147 and shown in the visual observations 

where a bubbly-slug regime is plotted due to the uncertainty of which regime exists.  
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Figure 6.6 Montage of Frame Captures from Flow Regime Video Database. 

Figure 6.7 Superficial Velocity Map of 1g Vertical Air-Water Flow with Corresponding 

Regimes and Transition Lines Described by Taitel-Dukler147. 
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Flow regimes are typically presented as a simple picture or cartoon that neglects 

both the subtle spatial and temporal features of the flow. Since these are constructs of the 

investigator, several regime definitions exists as shown in Table 6.1 and are not 

consistent. Further, the taxonomy is created prior to testing and is typically kept to a 

small number for simplicity. An approach that does not require a priori information 

would be extremely useful and would allow classification without subjective bias. 

Figure 6.8 Plot of the First 30 Eigenvalues for Distance Matrix of Randomly Projected 

Images Shown in Figure 6.6. 

The images shown in Figure 6.6 were projected using a random matrix to 

produce a vector of length 256. The vector for each image is embedded into a diffusion 

space and the first 30 eigenvalues are shown in Figure 6.8, which correspond to the 
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underlying dimension of the data. The first eigenvalue is neglected27  resulting in an 

approximate dimension of one or two. If one thinks of the eigenvalues as the principal 

components in PCA, the first two principal components provide most of the information.  

Figure 6.9 Embedding of Images in Figure 6.6 on the First 2 Diffusion 

Coordinates. 

The images are arranged according to the first two diffusion coordinates and 

plotted. The resulting plot is shown in Figure 6.9 with the 189 pictures from 64 different 

flow conditions plotted using the corresponding diffusion coordinates. The embedding 

does quite well in organizing the flow regimes with a continuous curve starting with 
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bubbly regimes and moving through slug and churn regimes. Unfortunately, the nature 

phase flow requires observation through time to understand the intricacies

Video analysis is quite difficult due to the extremely large amount of data. In 

order to reduce the dimension of the video data, both the spatial variables represented by 

each frame of the video and the spatial variables represented by each pixels val

through time must be reduced. Performing the dimension reduction and embedding to 

was successfully shown in section 6.1 for microgravity two

flow. A graphical representation of the dimension reduction is shown in Figure 6.10.

Graphical Representation of the Dimension Reduction Process Used by the 

Methodology for Video Data. 
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Once the movie data has been reduced, a method of identifying the proper 

number of regimes must be determined. The meta-variables produced from the 

dimension reduction process or the embedding coordinates can be used to determine the 

appropriate number of clusters. Both approaches should produce the same number of 

clusters as well as produce similar flow regime maps. Several methods to determine 

clusters have been developed as well as validity measures to determine the optimal 

number of clusters.30 To determine the number of flow regimes or clusters, several 

approaches are employed. The first is a graphical based approach that utilizes a 

dendrogram to illustrate the arrangement of data based on the Euclidean distance 

between the first two embedding coordinates. This hierarchical clustering approach 

constructs a tree with nodes corresponding to each video and the branches connecting 

the nodes reflecting the distance between each node and every other node. The 

arrangement of the nodes depends on a weighting function and a method of adding 

nodes or groups of nodes to the tree. The Euclidean distance between the meta-variables 

for each video is used as the weighting function and Ward’s algorithm to link the nodes 

together. The clustering is performed by cutting the tree at a certain level with the 

resulting sub-trees corresponding to the flow regimes. Cutting the tree at a lower level 

will result in more clusters which introduce the problem of identifying the best cutting 

location and resulting number of clusters. K-means clustering also suffers from a similar 

problem in that one must specify a number of clusters prior to performing the clustering. 

Thus, the clustering process is an iterative approach. 
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To determine the number of needed embedding coordinates, one needs to 

evaluate the corresponding eigenvalues for each coordinate. A plot of the eignevalues is 

shown in Figure 6.11. Since the eignevalues are monotonic decreasing and the 

magnitude quickly decreases to near zero, only the first 12 are shown in Figure 6.11. It is 

quite apparent that only two embedding coordinates are needed. Thus, for the purposes 

of clustering, only two coordinates are utilized. Figure 6.12 is a plot of the first two 

embedding coordinates. The plot shows three clusters that have been color coded and 

labeled ‘Bubbly’, ’Slug’, and ‘Churn’. The labeling is determined both from hierarchical 

clustering and from a k-means clustering algorithm. Using the two embedding 

coordinates a dendrogram was produced which is shown in Figure 6.13. The tree nodes 

are labeled with the superficial velocities and observed flow regime for each test point 

and three clusters are color coded to match the coloring of Figure 6.12.  The organization 

of the data shows that the embedding coordinates based on the reduced dimension meta-

variables produce an accurate clustering of similar regimes.  

To evaluate the choice for the number of clusters, a number of tests were 

performed as outlined in the reference by Balasko.158 The first two are the Partition 

Coefficient and Classification Entropy which were calculated for several clusters. The 

Partition Coefficient and the Classification Entropy are shown in Figure 6.14. Since one 

is looking for a small number of clusters or flow regimes and that the Partition 

Coefficient should be monotonic decreasing and the Classification Entropy should be 

monotonic increasing, three clusters were chosen. As shown in Figure 6.14 by the local 

minima and maxima respectively. A stronger measure is the Dunn Index which is the  
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Figure 6.11 Magnitude of Eigenvalues for Each Embedding Coordinates. 

Figure 6.12 Plot of the First Two Embeding Coordinates for Flow Regime Video Data. 



144

Figure 6.13 Dendrogram of Movie Data. 
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Figure 6.14 Plot of a) Partition Coefficient and b) Classification Entropy. 

Figure 6.15 Plot of the a) Dunn Index and b) Alternative Dunn Index. 
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ratio between the minimal intracluster distance to maximal intercluster distance. The 

Dunn Index is shown along with the Alternative Dunn Index in Figure 6.15. Figure 6.15 

shows a local minima at a value of three clusters. Based on the validity measures shown 

in Figures 6.14 and 6.15, three clusters were chosen based on the embedding of the 

meta-variables for each movie. The clusters closely match the observed data as well as 

the flow regimes predicted using the Taitel-Dukler map as shown in Figure 6.16. The 

flow regimes identified objectively from video data through the random projection-

diffusion embedding process match the prediction map quite well. The major differences 

between the objectively clustered and the flow regime map can be found at the higher 

liquid superficial velocities where slug points can be found in the churn region and at 

lower superficial velocities where churn points are found in slug region. Further, the 

annular and dispersed bubbly flow regimes are not identified using the method. This is 

due to the fact that no dispersed bubbly data was recorded during testing and very few 

annular points were collected. Interestingly, another flow regime map159 shown in Figure 

6.17 has a slug region separating the dispersed bubbly and churn regions. The two plots 

illustrate the difficulty of evaluating two-phase flow regime experiments. As mentioned 

previously, the preponderance of different identification maps, number and type of 

regimes, and the subjective nature of human identification produce an inconsistent set of 

tools for analysis. The benefit of the methodology is the complete objective nature of the 

regime identification and the ability to utilize existing data to make projections of new 

test conditions. 
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Figure 6.16 Flow Regime Map of Clustered Data. 

Figure 6.17 Alternative Flow Regime Map of Clustered Data. 

  



148

To predict the flow regime for a new set of superficial velocities, one may utilize 

the meta-variables, embedded coordinates, the superficial velocities, or the volumetric 

flow rates for the new case. An example is shown in Figure 6.18 where 10,000 points 

were predicted given only the test data shown as black points and the corresponding 

flow regimes determined above. The color coding corresponds to the color coding in the 

previous plots; blue – bubbly, green – slug, and red – churn. The predicted flow regimes 

are based on the mean probability determined from the Experimental Probabilistic 

Hypersurface where the known input information was the superficial velocity pairs and 

their corresponding embedded diffusion coordinates. Queries are made for a number of 

gas and liquid superficial velocities. The predicted values match the flow regime map 

quite well as demonstrated by the similarity of the predicted bubbly-slug transition line 

with the flow regime map transition. Not only does prediction match the transition line 

close to test points, it fits well beyond the range tested flow conditions indicating an 

extrapolation capability. Further, using the superficial velocity data along with the 

clustering from the embedded meta-variables allow predictions to be made without the 

computational expense of the dimension reduction and embedding used for the raw 

video data. This may be useful when releasing the original data is not acceptable. 
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Figure 6.18 Predicted Flow Regime Map Using Information from Video Data. 

 The preceding analysis was carried out using video recorded at one thousand 

frames per second. Only 500 frames of the video were used yielding a actual frame rate 

of 500 frames per second. The resolution is 116 x 256 pixels and as mentioned 

previously, sixty-four videos were recorded as shown in the montage in Figure 6.6. 

Determining the size of the random projection matrices to reduce the video data was 

carried out iteratively 
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7. CONCLUSIONS AND RECOMMENDATIONS 

 A new approach to predicting engineering phenomena has been developed. The 

new approach is especially useful for problems that have a large number of variables and 

a low sample size that reduce the possibility of using classical statistical based modeling 

techniques. The application of this methodology is limitless: 

• Prediction/Regression – The ability to utilize a small number of high 

dimensional data to predict a new set of conditions. The prediction not only 

provides the most likely result but an accompanying probability distribution that 

provides the information regarding how much one knows about the region of 

interest. Further, new data can be easily added to provide a more accurate 

probability distribution and resulting prediction. 

• Classification - The labeling of sets of data that reside in a high dimensional 

space is an application with a number of areas of interest ranging from 

mechanics to physiology. The ability to take high dimensional diagnostic data 

and map the information to a few embedding coordinates that can be visualized 

graphically. These coordinates can then be labeled if known or groupings 

determined using classical statistical techniques. This low dimensional labeled 

data can then be used for new queries. 

• Extrapolation – Due to the nature of high dimensional data, the methodology has 

shown a capability to extrapolate outside the range of known data. This 

capability is enhanced over typical approaches due to the probability 
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distribution, which provides information regarding how sure one is regarding the 

prediction. 

These features which have been demonstrated through the application to various 

problems found in engineering provide a new, unique approach to solving high 

dimension problems in a quick, accurate manner.  

Section 2 introduced the methodology and described the process by which high 

dimension data can be reduced to a lower dimension while maintaining critical 

information describing the phenomena of interest. The reduced dimension data can then 

be embedded into a new coordinate system that is used as input to construct a probability 

distribution for a new query. Section 3 demonstrated the utility and accuracy of this 

approach to simple low dimension data sets that are well understood. Both the friction 

factor and critical heat flux prediction using the methodology rival current techniques 

and the results provide confidence to apply the methodology to more complex problems. 

Section 4 dealt with the application of the methodology to predicting the most common 

result of a stochastic process. A criticality problem was predicted to reasonable success 

demonstrating the methodology’s ability to deal with both continuous and categorical 

data as well as methods to make predictions over the entire domain of the manifold i.e. 

the probability of any configuration achieving a critical configuration. The last section, 

Section 5, applied the methodology to high dimension data; first, to perform a regression 

to predict the space shuttle pitch angle based on a small set of known images, second, 

the analysis of spectrum data for the prediction of cell irradiation and for the presence of 

Ovarian cancer, and third, the determination of heat flux in a flow boiling experiment 
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where a limited number of videos are labeled. Section 6 used the methodology to 

objectively classify flow regimes using video data 

7.1.  Addition to the State-of-the-Art 

A number of additions to the current state-of-the-art in machine learning have 

been presented herein. First, coupling modern dimension reduction techniques with the 

predictive power of the Experimental Probabilistic Hypersurface is new. Second, the 

embedding of random projections into a diffusion space allows the method to be applied 

to non-linear problems and helps deal with the problems of using the Euclidean distance 

with high dimensional data. In regard to engineering, this approach provides a new 

correlation driven approach that utilizes existing data to make prognostications for new 

conditions. Rather than providing a singular result, the method produces a probability 

density that can be interpreted accordingly. This approach allows for prediction outside 

the range of known data, extrapolation, with a built in diagnostic, the probability density, 

to indicate whether there is enough information to trust the result. As demonstrated in a 

number of examples throughout this work, the data driven method produces an accurate 

result with relatively few known data. This should be contrasted with classic correlation 

approaches that continue to be developed over years/decades of work with significantly 

larger datasets.  

7.2. Predicting High Dimensional Data 

Originally, the purpose of this work was to objectively identify flow regimes and 

provide a method for integrating data from multiple test conditions, fluids, etc. Several 
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measurement techniques have been put forward but it was decided to utilize video 

imagery similar to what is done when evaluating flow regimes subjectively. The 

problems of dealing with an large number of variables required a method that had a 

dimension reduction component. The use of embedding the coordinates in a diffusion 

space arose from the non-linearity of the data and the requirement to develop a 

diagnostic for determining the number of coordinates to use for prediction. Finally, a 

probabilistic prediction tool was desired that would reflect the uncertainty found when 

discerning flow regime transitions. The resulting methodology was found to be quite 

useful for predicting flow regimes as well as a number of other problems ranging from 

predicting thermal-hydraulic phenomena to the analysis of protein serum data in the 

prediction of ovarian cancer. 

7.2.1. Images 

Image analysis was carried out through the arrangement of facial data and the 

prediction of facial pose using a corrupted image. The unique approach of this classic 

machine learning problem was the use of random projections to reduce the dimension of 

the image data while maintaining the Euclidean distance between images. The random 

projections of each image were embedded into a diffusion space where they were 

arranged according to rotation of the face. Thus, the random projections are able to 

capture a significant amount of important facial features in an unsupervised manner. 

Determining the rotation of the corrupted image was a simple operation of finding the 

facial pose with the closest embedding coordinates.
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A more challenging approach was to utilize shuttle imagery to determine the 

pitch angle of the orbiter in relation to the International Space Station. By randomly 

projecting each image and embedding them into a diffusion space, a few embedding 

coordinates could be used for prediction of orbiter pitch angle. It was shown that only a 

few tens of randomly selected images could provide enough information to predict the 

pitch angle to within two degrees. Thus, one can use the embedding coordinates as 

inputs into the Experimental Probabilistic Hypersurface to accurately predict the result 

of a new query condition. The use of a few diffusion coordinates rapidly increases the 

speed of computation making this method feasible for a host of problems including 

video data. 

7.2.2. Spectrum Data 

Spectrum data is quite common in engineering and science. A number of 

applications where the methodology could be applied is the field nuclear forensics, 

thermal analysis, and health physics. The methodology was used to cluster the spectrum 

data which corresponded to phenomena of interest. The first was the identification of 

cell irradiation and the second was the classification of cancer or no cancer. A large 

amount of literature is devoted to identifying the exact channels which correspond to 

proteins or other unique identifiers. The interesting aspect of utilizing the methodology 

is that all channels are utilized and though dimension reduction and embedding, can be 

queried repeatedly to identify several phenomena of interest. Thus, one test can provide 

answers to multiple queries without performing individual tests for each. Also, previous 
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clustering approaches relied on statistical methods and a priori information regarding the 

number of clusters. The methodology presented here is able to identify clusters 

objectively in an unsupervised fashion and rather than complicated clustering rules that 

minimize false positives, the methodology provides a probability density that allows the 

professional to interpret membership in the appropriate cluster (e.g. cancer or not). 

Rather than making a false positive, a follow up test can be carried out.  

7.2.3. Video Data 

The most challenging problems dealt with the video data that first generated the 

idea for this dissertation. The prediction of applied heat flux based on the observation of 

high speed flow boiling video was an interesting problem. Qualitatively, one can observe 

the presence and size of vapor bubbles and relate that observation to the known heat 

flux. However, the ability to accurately predict the heat flux for conditions not observed 

is challenging due to the non-linear nature of bubble size and frequency in relation to he 

applied heat flux. The simple approach of randomly projecting both the images in space 

and in time worked quite well. The first two embedding coordinates provided enough 

information to perform an accurate regression based on the known heat fluxes for each 

of the known movies. The two coordinates for the query video provide the input and the 

resulting mean of the probability density is the most likely heat flux.  

Initial flow regime identification worked very well for the few microgravity 

videos used. These flow conditions were near ideal flow regimes and were accurately 

clustered regardless of the noise of the video recording. The vertical earth gravity tests 
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provided a stronger challenge. First, the number of identified regimes was in dispute as 

well as the flow regime map to be used for comparison. The methodology was applied 

and the resulting diffusion coordinates were clustered based on two different approaches. 

The validity of the clusters was tested resulting in three clusters representing bubbly, 

slug, and churn. Using the superficial velocities as inputs and either the corresponding 

embedding coordinates or cluster number as the known data, queries over a large space 

of superficial velocities was performed that matched well with previous published flow 

regime maps. The unique thing about this result was that it was performed objectively 

using video data only. This approach can be extended to include other parameters of 

interest such as gravity level, tube inclination, fluid type, tube diameter, etc. 

7.3. Recommendations for Further Work 

The methodology outlined in this dissertation opens up a number of avenues for 

further research. First, an area of research can be directed toward finding and proving a 

basis for the selection of the minimum number of projections and number of embedding 

coordinates. The number of projections is loosely based on the Johnson-Lindenstrauss 

lemma and the work in the area of compressed sensing where the dimension of the 

reduced vector scales with the logarithm of the dimension of the original data. This 

needs to be further analyzed for the coupling of projections that are carried out in the 

reduction of video data. A further area of work is to merge the embedding coordinates 

with other data as a form of data fusion. For flow regime identification, the flow rate 
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information could be added to the embedded coordinates for flow regime prediction and 

this data fusion could be potentially used for more accurate results.  

The number of diffusion or embedding coordinates is typically evaluated based 

on the eigenvalues associated with each coordinate. However, these values are 

dependent on the radial basis function used. In the method put forward by Lafon,6 the 

Gaussian window is set by a parameter that describes the width or the scaling of the 

distance measurement which is dependent on the number of known data used in 

performing the embedding. Another area of research should be directed toward the 

normalization and transformation of data used to produce the Experimental Probabilistic 

Hypersurface. Since the EPH requires the calculation of Euclidean distance, the scaling 

of the input data is critical to the accuracy of the method. Typically, common transforms 

were used such as taking the logarithm of the data and rescaling such that the data 

ranged between zero and one. This is common in statistics and has a strong foundation 

mathematically but how this effects the construction of the probability density is not 

clearly understood. 

The work here indicates that this methodology can be utilized on a wide range of 

problems. Today’s requirements that analysis techniques be fast and easily applied to 

new problems where the underlying physics is not well understood and that the number 

of variables exceed the number of measurements. Contrast this to some of the problems 

outlined in previous sections. The prediction of friction factor has been carried out over 

hundreds of years, the prediction of critical heat flux and flow regimes decades. This 

new approach was able to match the state-of-the-art methods quickly without 
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complicated one-of-a-kind modeling approaches. Using the methodology with datasets 

similar to those used in the literature, prediction of thermal-hydraulic phenomena was 

carried out with results matching the best of the most current published correlations. 

What sets this apart from previous modeling approaches is the ability to produce a 

probability density that allows the investigator to evaluate the confidence in the 

prediction and potentially feed that information along with the most likely value. This is 

similar to the confidence intervals for other regressions but with the caveat that other 

regressions do not scale well with the number of variables. The resulting confidence 

intervals for a high dimension correlation would likely be unreasonable for a small 

number of data. 

The use of visual observation has been an important part of experiments and 

modeling. The ability to cognitively evaluate results simplifies the development of 

predictive models. In fact, one’s intuition is commonly used to project the results based 

on previous experience. The methodology presented here is the machine equivalent to 

this intuition. The method uses past data to make projections of future events. Since it is 

a machine driven process, the number of dimensions can be dramatically increased 

beyond the capability of human observers allowing a new type of modeling and of 

collecting data. The implication of this is tremendous and provides a fruitful area of 

research in applying this methodology to a wide array of problems across disciplines. 
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