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ABSTRACT 

 

Study of Gene Silencing in Rice: A Root-Preferential Gene RCg2. (May 2009) 

 Xiangyu Shi, B.S., Shandong University 

Chair of Advisory Committee: Dr. Timothy C. Hall 

 

 The RCg2 promoter was identified in a search for root-specific genes to combat 

the rice water weevil (RWW) but expressed at low frequency (~10%). Spatial expression 

of RCg2 was investigated using two reporter constructs YXA (RCg2-gus-ocs) and YXB 

(RCg2-gus-RCg2) that included 1.6 kb of the RCg2 5' sequence fused to the β-

glucuronidase (gus) coding region. YXB plants were generated via Agrobacterium-

mediated transformation but only 8 of 158 plants analyzed showed strong GUS activity 

despite the presence of an intact construct. Reactivation of RCg2 gene in rice was 

investigated by treatment of R0 and R1 of YXB transgenic plants with 5-azacytidine. 

Reactivation of RCg2-gus was observed in some transgenic plants indicating different 

mechanisms involved in the gene silencing of the YXB lines. DNA methylation analysis, 

northern blotting, RT-PCR and small RNA analysis supported the conclusion that PTGS 

and TGS are present in the silenced plants. Promoter analysis in silico and using 

promoter deletion assays predicted that the RCg2 promoter contains a complex region 

that includes miRNA homologs, MITEs and repetitive sequences. The high frequency of 

promoter-related silencing suggests functional interactions of these elements of the 

transgene and the homologous endogenous gene. To identify key elements contributing 
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to the root-preferential expression of RCg2 and the high frequency of silencing observed 

in transgenic (YXB) lines, several RCg2 promoter deletion constructs were designed. 

These include 5' deletions MC1, MC2, MC4, MC7 and MC8 and internal deletions 

MC5, MC11, MC12 and MC13. The frequency with which silencing was encountered in 

populations of the deletion mutants was used to characterize the effects of various 

promoter elements. Deletion of the region from -406 to -208 (compared MC11 to YXB, 

and MC13 to MC1) revealed that region contains a negative element. Among 36 

independent transformants, 33% with MC11 expressed GUS and 85% with MC13 

showed GUS expression. Comparing MC7 transgenic plants to MC1 revealed that the 

region –888 to –729 is another negative regulatory element, and comparing MC11 to 

MC12, the proportion of expression of transgenic plants indicated the region –729 to –

406 is a positive regulatory element. 
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CHAPTER I 

INTRODUCTION 

 

Rice (Oryza. Sativa L) is not only a very important food resource on a global 

basis, including both developed and developing countries, but also an excellent monocot 

crop plant for genomic sequence and analysis (Shimamoto, 1995). Rice is a monocot 

diploid plant (2n=24), which bears a haploid nuclear DNA content of about 415-463 x 

106 bp (0.86-0.96 pg/2C) (Arumuganathan and Earle, 1991) (Xu, dissertation 1995). The 

size of the nuclear genome of Arabidopsis thaliana is 145 x 106 bp/C or 0.3 pg/2C, 

which let it become the smallest known nuclear DNA content among flowering plants. 

However, rice genome is about three times larger than the Arabidopsis genome.  In 

2002, the International Rice Genome Sequencing Project (IRGSP) announced 

completing the Japanese rice variety Nipponbare genome sequence which will accelerate 

efforts to feed the hungry by improving the world's most important food (International et 

al., 2005). 

 

 
 
 
 
 
____________ 
This dissertation follows the style of The Plant Cell. 
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 Although Conventional breeding has successfully improved the rice 

development, mainly in a remarkable raise of production in the last decade (Khush, 

1997),  the genetic engineering technology has gained focus for a long time as a way to 

supplement these efforts. Many areas of research have been reported, which include 

resistance against disease and environment, such as, pests, pathogens, salinity and 

drought, and also improvement of the nutritional quality of rice (Tyagi et al., 1999). In 

fact, rice is the easiest cereal plant to transform genetically. This and the fact that it 

possesses the smallest genome among the major cereal crops (400-430 Mb) have 

identified rice as the model cereal (Shimamoto, 1995). 

 However, genetic transformation techniques met a strong obstacle in the 

unpredicted phenomenon of gene silencing, since variability or instability of transgene 

expression is not desirable for future commercialization of a genetically engineered crop. 

But it is irrefutable that genetic engineering techniques have opened a large range of 

opportunities to study various fundamental problems in plant biology and to elucidate 

various principles of gene regulation in monocots in general. Regulation of expression is 

modulated by factor interactions, epigenetic events, and chromatin structure and in many 

other ways and can determine when, where and how a specific gene is to be expressed in 

the plant. The study of gene silencing triggered by the introduction of alien genes to a 

given genome offers an excellent approach to survey the inner mechanisms of plant gene 

regulation. 

 Although early reports on gene silencing dealt with dicotyledonous plants, it is 

apparent that transgenes in monocots are equally susceptible to silencing processes. This 
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topic has been reviewed by our group (Iyer and Hall, 2000; Iyer et al., 2000) and several 

questions, such as the susceptibility of different genomes to silencing, the influence of 

the transformation strategy or specific transgenes in triggering silencing, and the 

stochastic nature of silencing and its inheritance in progeny, were addressed. 

Understanding the molecular basis for tissue-specific gene expression is of 

fundamental importance to life science and also has broader applications such as crop 

improvement. The larval stages of the rice water weevil (RWW, an insect pest 

worldwide and the worst in Texas) develop over a period of 1 month, during which they 

devour the roots, typically causing severe loss in grain yield (Stout et al., 2001). Since 

the root system is an indispensable part of plant, understanding root development and 

regulation of root specific gene expression is of great significance in crop improvement 

through biotechnology approaches (Xu et al., 1995). To successfully use recombinant 

DNA technology for agronomic improvement of rice, molecular mechanisms for 

regulation of gene expression in normal as well as in transgenic rice plants need to be 

well understood. 

The graminaceous monocots, which include such major food crops as wheat, 

maize, and rice, were not routinely suitable to gene transfer using Agrobacterium. It took 

a long time to overcome the difficulty of gene transfer using Agrobacterium. Molecular 

transformation for the delivery of foreign genes into rice calli induced from scutellar and 

mature embryo and immature embryo has become routine since 1995 (Hiei et al., 1994; 

Dong et al., 1996; Hiei and Komari, 2008). 
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The RCg2 gene was isolated in the Hall’ laboratory in a search for promoters that 

would target insecticidal protein production to root tissues (Xu et al., 1995). In some rice 

lines transformed with construct YXB (RCg2/GUS/RCg2: Figure 3.1A), GUS reporter 

expression driven by RCg2 can be strong and has a characteristic pattern (Figure 3. 1A). 

However, expression in the vast majority of independent transformants (79/93) is absent 

or very weak. That the gene insert is capable of expression has been confirmed for many 

lines by exposing the roots to 5-azacytidine (5-azaC) (Figure 3. 6). This frequency of 

promoter silencing is, to our knowledge, unique and the purpose of this project is to 

elucidate the mechanisms or mechanisms involved.  

 

Gene Silencing 

 
Plant genetic engineering has been used as a research tool for regenerating 

transgenic plants, which held favorite characteristics for several decades. However, the 

unexpected and unpredicted gene silencing effects have slow down the crop 

improvement through transformation. Gene silencing is initially classified as two 

classes: transcriptional gene silencing (TGS) which has been often associated with 

cytosine methylation of promoter regions (Jones et al., 1998; Meyer, 2000; Habu et al., 

2001; Kloti et al., 2002); Posttranscriptional gene silencing (PTGS) which was 

discovered in transgenic Petunia as loss of expression of both a transgene and its 

homologous endogenous genes (Napoli et al., 1990; Brodersen and Voinnet, 2006). It 

occurs through mRNA degradation and has been correlated with cytosine methylation in 

coding regions in some cases (Ingelbrecht et al., 1999; Kovarik et al., 2000; Morel et al., 
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2000). Both transgenes and endogenous genes are subjected to these two processes. 

Despite these differences between TGS and PTGS, these two silencing pathways are 

mechanistically related. Recent studies revealed that there is an intriguing relationship 

between DNA methylation, histone methylation, chromatin remodeling and RNA 

interference (RNAi) (Tariq and Paszkowski, 2004). For example, double-stranded RNA 

(dsRNA), an intermediate product in PTGS processes, can be a trigger of TGS (Morel et 

al., 2000). A single transgene locus, 271, can trigger both TGS and PTGS by 

simultaneously producing dsRNA corresponding to both promoter and transcribed 

sequences (Mourrain et al., 2007). Additionally, mutation of Argonaute, a gene that is 

involved in PTGS, can profoundly affect heterochromatin formation (Martienssen et al., 

2005; Kim et al., 2006). Consequently, it is evident that both PTGS and TGS processes 

are intimately involved in the regulation of gene expression (Sijen et al., 2001). 

 

Transcriptional Gene Silencing (TGS) 

 

Transcriptional gene silencing is often related with DNA methylation and protein 

modifications such as histone deacetylation, methylation, and phosporylation (Li et al., 

2002). DNA methylation is an epigenetic process, which has been discovered in both 

prokaryotes and eukaryotes. Methylation has been occurred in eigher CpG dinucleotides 

or CpNpG triplets in plants (Pradhan and Adams, 1995); however, in animals is usually  

confined to cytosines in CpG dinucleotides (Bestor, 2000). Cytosine methylation plays a 

great role in regulating gene expression (Chaudhury et al., 2001), genome defense 
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mechanisms (Matzke et al., 2001; Vaucheret et al., 2001), gene silencing (Kumpatla et 

al., 1997), genomic imprinting (Baroux et al., 2002), X-chromosome inactivation 

(Rakyan et al., 2001), vernalization (Sheldon et al., 2000b) (Sheldon et al., 2000a) and 

sex determination (Siroky et al., 1998). Cytosine methylation not only controls gene 

expression in a developmental stage and tissue dependent manner, but also it is involved 

in transgene repression as well as the regulation of the activity of the endogenous DNA, 

such as transposable elements and retrotransposons (Hirochika et al., 2000; Miura et al., 

2001). 

DNA methylation plays a major role in maintaining genes in a repressive state, 

and is likely carried out by the maintenance DNA methyltransferase, Dnmt1/MET1 

(Vaucheret et al., 2001). The Dnmt1/MET1 enzyme has high affinity for 

hemimethylated DNA and functions during DNA replication (Bestor and Verdine, 1994; 

Vertino et al., 2002). The discovery of several MBPs, MeCP1, MeCP2, MBD1, MBD2, 

MBD3 and MBD4 (Ballestar and Wolffe, 2001; Wade, 2001), that interact with DNA 

MTase and are capable of recruiting repressive complexes and histone deacetylases, 

suggests the existence of additional mechanisms for gene suppression that may act 

through histone deacetylation (Brackertz et al., 2002; Feng et al., 2002). This, together 

with the finding that MBD proteins are associated with distinct histone deacetylase 

(HDAC) complexes, suggests that various MBP/HDAC interactions have different roles 

in gene silencing and may act at different stages of development (Hendrich and Bird, 

1998; Jiang et al., 2002). In addition to histone deacetylation, histone methylation 

processes have been related to DNA methylation by several reports, including the recent 
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evidence demonstrating that MeCP2 can recruit a histone methyltransferase through its 

transcriptional repression domain and lead to a repressive chromatin state (Fuks et al., 

2003). However, the finding in Arabidopsis that MOM1 can modulate silencing in the 

absence of changes in CG methylation status (Scheid et al., 2002), suggests that some 

forms of gene silencing are either methylation-independent or act downstream of 

cytosine methylation. 

 

Posttranscriptional Gene Silencing (RNA Interference Silencing) (PTGS) 

 

PTGS in plants was a mystery finding resulting from transformation that placed a 

sense orientation chalcone synthase (CHS) gene into wild type petunia in which an 

endogenous CHS already existed. The resulting shut down of enzyme activity from both 

copies was initially termed co-suppression (Napoli et al., 1990). Some flowers of co-

suppressed plants are totally white whereas some contain only white sectors. RNA 

analysis revealed that transcription of CHS occurred, but the level of the CHS transcript 

in white sectors of co-suppression plants was much lower than in purples sectors of both 

co-suppressed and wild type plants (Napoli et al., 1990; van der Krol et al., 1990). This 

phenomenon later was defined as posttranscriptional gene silencing in plants, also called 

RNA silencing, and confirmed to share similar features to quelling in fungi (Cogoni and 

Macino, 1999; Pickford et al., 2002), and to RNA interference in C. elegans (Fire et al., 

1998). Thoroughly research revealed that RNA silencing in plants as a mechanism when 

invading nucleic acid, such as transgenes and virus, are silenced through the action of 
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small (20-26nt) homologous RNA molecules (Brodersen and Voinnet, 2006), and 

suggest that PTGS can be divided into three steps: ignition, spreading and maintenance, 

and concluded that small RNA fragments created by enzymes named Dicers and 

Argonautes are the biochemical core of RNA silencing (Brodersen and Voinnet, 2006). 
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CHAPTER II 

STABLE TRANSFORMATION AND MOLECULAR 

CHARACTERIZATION  

OF RCg2 GENE: A PUTATIVE RICE ROOT SPECIFIC GENE  

 

Introduction 

 

The isolation and study of root-specific genes fulfills a basic interest in 

understanding plant root development and the control mechanisms of root-specific 

expression, and a more applied goal, as it is the expression of agronomical important 

transgenes in a root-specific way. The production of insecticidal proteins in rice roots to 

combat the rice water weevil (RWW) in its early stages was one of the research 

objectives of Dr. Hall’s laboratory. In 1995 Xu et al. (Xu et al., 1995) reported the 

isolation of two cDNA clones (RCc2 and RCc3) and one corresponding genomic 

sequence (RCg2) that were highly expressed in a root-specific manner in rice seedlings. 

In order to test the expression pattern of a transgene regulated by the RCg2 

promoter, two different chimeric gus gene constructs were designed, YXA (RCg2pro-

gus-OCSter) (Xu et al., 1995) (Figure 2.1C) and YXB (RCg2pro-gus-RCg2ter) (Hall et 

al., 2001). (Figure 2.1C) 

Transgenic YXA plants were recovered following direct gene transfer (Battraw 

and Hall, 1990); transgenic YXB and YXA plants were recovered following 

Agrobacterium-mediated techniques (Dong et al., 1996). Although strong GUS 
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expression was observed in roots, in a very characteristic pattern, expression was also 

observed in leaves of the same transgenic plants. These findings suggested that some 

other important regions of the gene and not only the 5’ and 3’ sequences might 

additionally determine the RCg2 spatial regulation (Xu et al., 1995). A thorough 

characterization of the transformants and of the RCg2 promoter was subsequently 

conducted. 

We focused our attention in two different objectives: (1) characterization of the 

YXB transformants and the RCg2 silencing phenomenon, and (2) diversification of 

RCg2 promoter to avoid silencing in the expression of transgenes. 
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Materials and Methods 

 

Plant Materials 

The model organism used in this research was rice (Oryza sativa subspecies 

japonica CV. Taipei 309, Gulfmount, Nipponbare, IR-72, and Texas 6). Rice seeds were 

surface sterilized in 25% commercial bleach for 50 minutes, then thoroughly rinsed with 

sterile distilled water until clean. Subsequently, the seeds were germinated on Murashige 

Skoog (MS) medium (Murashige and Skoog, 1962) at 26°C under an 18/6 (light/dark) 

regime for 15 days then transferred to soil and grown in greenhouse at 26ºC with a 14/10 

(light/dark) photoperiod until mature. Leaf and root samples were taken at 15 days after 

germination. Inflorescence and immature embryo, and leaf sample were collected upon 

flowering. Callus was induced from immature embryo and mature seeds and maintained 

on N6 medium (Chu, 1978) for 3-5 weeks and then subjected to Agrobacterium 

mediated transformation, and biolistic transformation. 

 

Plasmid Constructions, Plant Transformation and Regeneration 

 The T-DNA of plasmid pJD4YXB contains an herbicide resistance gene [Maize 

ubiquitin promoter ubi-bar-nos], an antibiotic resistance gene construct (5' 35S-hpt-35S), 

as well as an RCg2 reporter gene construct (5' RCg2-gus-RCg2, YXB) (Figure 2.1A). 

Plasmid pJD4YXB was mobilized into Agrobacterium tumefaciens LBA4404 resulting 

in LBA4404 (pJD4YXB) as described (Bevan, 1984) using a modified tri-parental 

mating method (Dong et al., 1996). The bacterial strain was used to transform callus 
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induced from immature as described in Dong et al. (Dong et al., 1996) or mature 

embryos of Japonica cultivar Taipei 309 (T309).  

 Plasmid YXA used for transformed rice was provided by Xu (Xu et al., 1995). 

To make pJD4YXA 5’ RCg2-gus-ocs-3’ in YXA replaced 5’ 35S-gus-ocs 3’ in pJD4, 

the binary vector of stable transformation used for Agrobacterium-mediated bacterium 

made in our lab {Dong, 2001 #10222). Plasmid pJD4YXA was mobilized into 

Agrobacterium tumefaciens LBA4404 resulting in LBA4404 (pJD4YXA). Plasmid 

LBA4404 (pJD4) (Figure 2.1B), the binary vector for transformed rice served as control. 

 

Genomic DNA Blot Analysis 

 Genomic DNA was prepared from rice tissue by a CTAB (hexadecyl trimethyl 

ammonium bromide) method (Taylor and Powell, 1982; Saghai-Maroof et al., 1984). 

Fresh leaf tissue or 10-14 days seedling was powdered with pestle and mortar in the 

presence of liquid nitrogen and immediately transferred to a centrifugation tube (30 mL). 

The extraction buffer (9mL) [Tris-HCl (100mM, pH 8.0), EDTA (50 mM, pH 8.0), NaCl 

(500 mM), mercaptoethanol (0.2 mL) and CTAB 0.2 g)] was added fine powdered 

tissues (600 mg), and incubated at 65°C for 3 h, with occasional mixing. 

Chloroform/octanol (24:1, 10 mL) was added to the tissue-homogenate to remove the 

chlorophyll, followed by inverting the tube 4-5 times and centrifugation at 8,000xg for 

15 min at 4°C. The supernatant was then transferred to a new tube (50 mL) and the 

chlorophyll removal step with chloroform/octanol was repeated for one more time. An 

equal volume of isopropanol was added to the DNA extract, gently mixed, and DNA 
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was precipitated for 5 min. The white thread of DNA was then removed to a new 

microcentrifuge tube by glass hook or cut-end pipette tip (1 mL) and DNA was collected 

by centrifugation of the supernatant in centrifuge tube (50 mL) at 10,000xg for 10 min at 

4°C. DNA pellets were washed by adding washing buffer I (1mL) [76% ethanol, 

NH4OAC (10 mM)] and shaking vigorously for 20 min. Washing buffer I was removed 

by pipetting and the DNA pellet was further washed with washing buffer II (1 mL) [76% 

ethanol, NH4OAC (10 mM)] for 5 min. The pellet was air-dried, and then dissolved in 

TE buffer (300 µL), depending upon the size of pellet. The DNA was dissolved at 4°C 

overnight and stored at -20°C. 

Total genomic DNA was isolated from mature leaves and seedlings and genomic 

blot analysis was conducted as described in Buchholz et al. (Buchholz et al., 1998). 

Briefly, 2 µg genomic DNA was digested to completion with the indicated restriction 

enzyme, size fractionated by electrophoresis through 1% agarose gels. After 

electrophoretic separation of DNA on 1% agarose gel for 12-15 hours at constant 23 

volts, the DNA was transferred to HybondTM-N+ nylon membrane (Amersham, 

Piscataway, NJ). Genomic DNA blot analysis was as described by Buchholz et al. 

(Buchholz et al., 1998). [32P]dCTP-labeled probes were made using a DECAprimeTM 

II DNA labeling kit (Ambion, Austin, TX). Membranes were washed with 2×SSC 

[1×SSC = 0.15 M sodium chloride /0.015 M sodium citrate (pH7)]/0.1% SDS at 65°C 

for 1 hr (low stringency), or with 0.3×SSC /0.1% SDS at 65°C for 1 hr (moderate 

stringency). The DNA immobilized on membrane was hybridized with random-primed 

32P-labeled DNA probes.  
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Small Scale DNA Extraction from the Young Leaves and Seedling 

The small-scale method for PCR analysis of rice plants is described in section 

3.1.1 (p.401) of Buchholz et al. (Buchholz et al., 1998). This method is suitable for some 

plants, such as rice young leaves and seedlings and can give a sufficient yield to perform 

PCR analysis and DNA analysis. 2 sq. cm leaf or 14 days seedling were harvest into a 

1.5 mL microfuge tube. Liquid nitrogen was added to the collected leaf and seedling 

samples that were then ground into a fine powder with a disposable plastic pellet pestle 

(#749521, Kontes Glass Co., Vineland, NJ. USA).  

 

Bialaphos Dipping, 5’-azacytidene Treatment and GUS Staining 

Assessment of bialaphos resistance by leaf dipping and reactivation of seedlings 

by 5’-Azacytidine (5-azaC) treatment were as described previously (Kumpatla and Hall, 

1998a). For reactivation, calli or seedlings were grown on N6 medium for 14 days, and 

then transferred to N6 medium containing 5-azaC. GUS expression was examined by 

histochemical staining (Jefferson et al., 1987a). Plant tissues (rice root and leaf 

segments) were vacuum infiltrated in a phosphate-buffered solution containing 5-bromo-

4-chloro-3 indolyl glucuronide (X-Gluc; 0.16 mg/mL) and incubated at 37oC for 16 

hours (Jefferson et al., 1987a). Chlorophyll in tissues was bleached out by soaking in 

ethanol (95%) overnight. 
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5-azaC Treatments 

 Reactivation of YXB using an inhibitor of DNA methylation (demethylating 

agent) 5-azacytidine (5-azaC) was conducted by growing rice tillers in nutrient solution 

containing 5-azaC. The tillers were placed in nutrient solution for 8 days to allow new 

roots to grow and then 5-azaC was added to the nutrient solution to a final concentration 

of 50 mg/L. Root samples were collected and assayed for GUS expression after 5 days 

of 5-azaC treatment. Seeds of self-crossed R0 plants were germinated in the presence of 

5-azaC (50 mg/L) and one week or two-week-old seedlings were assayed for GUS 

expression. 

 

Histochemical and Fluorometric Assays for GUS Activity 

Histochemical GUS staining was performed for vegetative tissues (leaves, roots, 

inflorescences) with 5-bromo-4-chloro-3-indoxyl-â-D-glucuronic acid (Xgluc) as a 

substrate (Jefferson et al., 1987b). Samples were stained overnight (16 h) at 37 oC and 

chlorophyll was removed by 95% ethanol after staining (Chandrasekharan et al., 2003). 

Fluorometric assays of GUS activity of leaves and roots were performed as described by 

(Jefferson et al., 1987b). GUS activity was calculated as pmol 4-MU per hour per 

microgram protein and data were analyzed with SPSS 11.0 for Windows software. For 

each construct, three independent assays were performed unless otherwise specified. 

 

 

 



 16

Histochemical Assay (Jefferson et al., 1987a) 

Sections were cut by hand from unfixed stems of plants grown in vitro, 

essentially as described (O'Brien and McCully, 1981), and fixed in 0.3% formaldehyde 

in 10 mM MES, pH 5.6, 0.3 M mannitol for 45 min at room temperature, followed by 

several washes in 50 mM NaH2PO4, pH 7.0. All fixatives and substrate solution were 

introduced into sections with a brief (1 min) vacuum infiltration. Histochemical 

reactions with the indigogenic substrate, X-Gluc were performed with 1 mM substrate in 

50 mM NaH2PO4, pH 7.0 at 37°C for times from 20 min to several hours. After 

staining, sections were rinsed in 70% ethanol for 5 min, and then mounted for 

microscopy. 

 

Fluorometric Assay (Jefferson et al., 1987a) 

The fluorogenic reaction was carried out in 1 mM MUG extraction buffer with a 

reaction volume of 1 ml. The reaction was incubated at 37°C, and 200 ILI aliquots 

removed at zero time and at subsequent times and the reaction terminated with the 

addition of 0.8 ml 0.2 M Na2CO3. The addition of Na2CO3 serve the dual purposes of 

stopping the enzyme reaction and developing the fluorescence of MU, which is about 

seven times as intense at alkaline pH. Fluorescence was then measured with excitation at 

365 nm, emission at 455 nm on a Kontron SFM 25 spectrofluorimeter, with slit widths 

set at 10 nm. The resulting slope of MU fluorescence versus time can addtherefore be 

measured independently of the intrinsic fluorescence of the extract. The fluorimeter was 

calibrated with freshly prepared MU standards of 100 nM and 1 ttM MU in the same 
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buffers. Fluorescence was linear from nearly as low as the machine can measure (usually 

1 nM or less) up to 5-10ItM MU. A convenient and sensitive qualitative assay was done 

by placing the tubes on a long-wave UV light box and observing the blue fluorescence. 

This assay could be scaled down easily to assay very small volumes (reaction volume 50 

d41, terminated with 25 l 1 M Na2CO3 in microtitre dishes or Eppendorf tubes). 

Protein concentrations of plant extracts were determined by the dye-binding 

method of Bradford (1976) with a kit supplied by Bio-Rad Laboratories. DNA 

concentrations in extracts were determined by measuring the fluorescence enhancement 

of Hoechst 33258 dyes as described by Labarca and Paigen (1980), with the calibrations 

performed by addition of lambda DNA standards to the extract to eliminate quenching 

artefacts. 

 

Bialaphos Leaf-Painting Bioassay 

 Transgenic plants were tested for herbicide resistance by dipping a portion of a 

leaf (the apical 8 to10 cm of mature leaves was used) into 0.5% (w/v) solution of a 

commercial herbicide (Kumpatla et al., 1997), containing 20% (w/v) bialaphos, for 4 

min. Herbicide resistance (normal versus yellow and dried appearance) was scored 4 to 5 

days after treatment. 
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Results 

 

Stable Transformation and Regeneration of Transgenic Rice 

To determine the spatial expression of an introduced RCg2 (a root specific gene 

from Xu. et al. (Xu et al., 1995) gene in transgenic plants, chimeric gene constructs 

LBA4404 (pJD4YXA) (Figure 2.1B) were made and transformed into rice immature 

embryo and mature embryo induced calli (Oryza sativa L. cv. Taipei 309) via 

Agrobacterium-mediated transformation. LBA4404 (pJD4) (Dong et al., 1996) and 

LBA4404 (pJD4YXA) were used as controls. As biolistics and other direct DNA 

transfer procedures frequently result in gene silencing in rice (Kumpatla et al., 1997; 

Kumpatla and Hall, 1998a, b), Agrobacterium-mediated transformation was used to 

deliver constructs into plants. Successful transformants were selected on medium 

containing 50mg/L Hygromycin. A total of 158 YXB, 45 YXA and 64 JD4 putative 

transgenic rice plants were regenerated and established in the greenhouse. All plants set 

seeds except YXB69a and YXB49a, and YXB69c produced only 13 seeds. High 

efficiency Agrobacterium-mediated transformation established the primary 

transformants population within few co-cultivation experiments.  
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Figure 2.1. Organization of chimeric reporter gene constructs and genomic DNA analysis of 

transformants.  

(A), (B), (C) The structures of Chimeric constructs pYXB, pJD4, pYXA are shown. 35S: Cauliflower 

mosaic virus 35S promoter; hpt: hygromycin phosphotransferase gene; gus: beta-glucoronidase gene; bar: 

bialaphos resistance gene. The bars under the construct were probes used for DNA analysis.  
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Figure 2.1.  Continued.  

 (D), (E) Genomic DNA analysis of YXB transformants. Partial transformants genomic DNA digested 

with HindIII and electrophoresed in a 1% agarose gel. Expected gus fragment size is 4.1 kb. 

 

 

 



 21

Characterization of Transformants  

Genomic DNA Blot Analysis 

Genomic DNA blot analysis was conducted to determine the genomic 

organization of transgenes. Genomic DNA blots were probed with coding sequence of 

gus to determine the integrity of YXB. For the flanking sequences, hpt coding sequences 

or maize Ubi promoter sequences were used as probes to reveal right or left border 

sequences, which are highlight in Figure 2.1A.  Of the158 transgenic plants analyzed, 93 

independent lines were confirmed and 93 have at least one intact copy of RCg2-gus 

(4.1kb fragments such as in lines: 51, 89, and 91 (Figure 2.1D) and more lines showed in 

Figure 2.1E. We also observed rearrangements as shown in lanes: 49a, 49b, 88, 90, 93 

(Figure 2.1D) and 138, 140, 142, and 143, and incomplete T-DNA transfer such as 

YXB1, 34, 39, 42 and 78 had only the hpt construct and lines YXB67, 105 (Figure 2.1D 

and 1E) and 129 (data did not show here), were found to have only gus and hpt. High 

proportions of single copy and low copy transformants were obtained using 

Agrobactriun-mediated transformation methods. A summary of genomic DNA blot 

analysis of selected YXB plants is presented in Table 2.1. The putative number of copies 

of hpt construct (right border), intact and rearranged YXB construct and bar construct 

(left border), are included.   
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Table 2.1 Genomic blot data for number of copies inserted and organization of 
inserts in some of the YXB plants
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Table 2.1 Genomic blot data for number of copies inserted and organization of 
inserts in some of the YXB plants

LB is left border - bar, RB is right border - hpt, and C is GUS band number on the southern blotting. 1+1 

showed one intact GUS band and one rearranged copy of GUS 

 

GUS and BAR Expression in YXB Plants  

Histochemical staining for GUS expression in roots and leaves of the 

transformants showed GUS expressing lines in approximately 10% of the total 

independent transformants (Table 2.2.) and (Figure 2.2A). There are 21 single copy 

plants (gus/hpt/bar = 1), 2 of them are weak expressors (YXB127, 135) and 8 strong 

expressors (++) (YXB49a, 68, 69a, 91, 92, 93, 98, 138) but 6 of them carried 1 or more 

rearranged YXB sequences (T) (all except YXB91, 92) (Table 2.2). Seven silenced 

plants were recovere. For bar expression but only 1 of them is a single copy, plant 

(YXB19). Truncations on the YXB construct located in the promoter are apparently 
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related to GUS expression. Strong GUS expression was only detected in 8 R0 plants 

YXB15, YXB49a, 68, 69a, 91, 92, 93, 98 and 138. Weak GUS expression was detected 

in R0 YXB56-59, 61, 78-79, 126-128, 130, 135 and147-158 (Table 2.2) (Hall et al., 

2001). Nineteen single copy plants (gus/hpt/bar = 1) are silenced and 2 are weak 

expressors, YXB127 and YXB135.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.2 A summary of transgene expression analysis of YXB plants

Expressing Non-Expressing

GUS Strong [8]

49a, 68, 69a,

91-93, 98, 138

Weak [19]

56-59, 61, 79, 122, 

126-128, 130, 135, 

147, 149, 151, 153, 

156-158 

Gene* present [55]

2, 12, 19, 24, 25, 33, 37, 44, 49b, 51-

52, 54, 55, 60, 62, 63, 65-66, 69b, 71-

73, 75, 80, 82, 84, 88-90, 100-102, 

104, 106, 108-109, 114-115, 119, 

123-125, 131-134, 136-137, 139-141, 

143-146

Absent [11]

1, 32, 50, 

64, 76, 78, 

86, 96, 105, 

121, 129

BAR Resistant [74]

2, 12, 24, 25, 33, 37, 44, 49a, 49b, 51, 

52, 54-61, 63, 66, 68, 69a, 69b, 71-73, 

75, 79, 80, 82, 84, 88-93, 98, 100, 

102, 104, 106, 108, 114, 115, 119, 

121-128, 130, 131, 133, 135, 137-141, 

143-147, 151, 153, 156-158

Gene* present [7]

19, 62, 76, 96, 101, 

136, 149

Absent [12]

1, 32, 50, 64, 65, 78, 

86, 105, 109, 129, 

132, 134

*intact transgene
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Figure 2.2. Independent transformants and GUS expression in transformants. 

(A) Independent experiments and transformants.  

(B)– (G) Histochemical GUS staining of roots and leaves from transgenic plants.  

(B), (C) GUS staining of root and leaf show a strong GUS expression. 

(D), (E) weak expression in the root and leaf.  

(F), (G) GUS staining of root and leaf shows silenced expression. 
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A total of 158 plants were found to be resistant to bialaphos except: YXB1, 19, 

32, 34, 39, 42, 50, 64, 65, 78, 86, 105, 109, 129, 132 and 134 were sensitive to bialaphos 

(table 2.1 and 2.2), and genomic DNA blot analysis showed that 1, 32, 50, 64, 65, 78, 86, 

105, 109, 129, 132 and 134 lacked the Ubi-bar construct. In YXB19, 62a-62c, 76, 96, 

101, 136 and 149, Ubi-bar construct was found to be present and silenced (Table 2.3) 

and (Figure 2.3). 

 

Table 2.3 Bialaphos leaf-painting bioassay 

 

 

 

Resistant Plants

2, 4, 5, 7, 8, 9, 10, 12, 13, 14, 
18, 24, 25, 26, 28, 37, 38, 44,45

Sensitive Plants

19, 62a-62c, 76, 96, 
101, 136, 149

Resistant Plants

2, 4, 5, 7, 8, 9, 10, 12, 13, 14, 
18, 24, 25, 26, 28, 37, 38, 44,45

Sensitive Plants

19, 62a-62c, 76, 96, 
101, 136, 149

Plants transgenic for pYXB were tested for herbicide resistance by dipping an apical portion of a 

leaf into 0.5% (w/v) solution of a commercial herbicide (herbiace), containing 20% (w/v) bialaphos. 

Resistance to the herbicide (normal versus yellow and dried appearance) was scored 4-5 days after 

treatment. 
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Figure 2.3. Bar expression: Bialaphos leaf-painting assay on leaves of rice plants.  

(A) Bialaphos expression in YXB transgenic plants.  

(B) Bioalaphos leaf painting assay on the leaves of YXB. Green color showed bar resistant (bar 

expressing) and brown color showed bar sensitive (bar-silenced). 

 

Characterization of Progenies of the YXB Population 

An initial population of 158 YXB transformants was characterized at the 

molecular level. Genomic DNA analysis were carried out and, after discarding the 

siblings, it was noted that only about 10% of the transgenic lines showed strong GUS 

expression, while about 90% were weak or non-expressors (silent lines) (Figure 2.2A.). 

Moreover, only 10% of these silent lines were sensitive to bialaphos (bar-silenced lines) 

(table 2.3.), indicating that the flanking genes are not silenced at the same rate as the 
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RCg2-regulated gus gene. All the lines with a single-copy integration pattern showed no 

GUS expression. Another curious observation from the YXB population was that 70% of 

the expressing plants contained a truncated copy of the YXB construct along with an 

intact T-DNA copy (Table 2.1.). All these data suggest that we are probably observing a 

phenomenon of gene silencing caused by a promoter especially prone to be suppressed. 

GUS expression was maintained in R1 lines of YXB15, 61, 68, 91-95, 97, 138 

(Figure 2.2), and not of YXB56-59, 78-79, 126-128, 130, 135. GUS expression in R1 

seedlings of selected silenced lines: YXB53, 63, 66, 73, 84 and 120, was assayed 

histochemically, and GUS expression in the form of sporadically blue dot or faint blue 

was observed in lines: YXB53, 63, 73, and 120 between 12-72 hours after germination. 

Seeds from selfed R0 GUS expressing plants were germinated, and root and leaf samples 

were assayed for GUS activity. R1 progeny from R0 plants that have strong expression 

of GUS maintained the expression pattern, and R1 progeny from R0 plants that have 

low-level GUS expression lost the expression in the R1 generation. Histochemical GUS 

staining assay revealed similar YXA and YXB driven reporter expression pattern (Figure 

2.2 B). GUS expression was also observed in leaves of transgenic plants (Figure 2.2C). 

High levels of GUS activity were seen in mature cells and in the elongation and 

maturation zones of roots, and in root caps, but no GUS activity was detected in the root 

meristematic region (Figure 2.2 B). The pattern of GUS expression is not uniform in 

leaves (Figure 2.2C).  

Accordingly, we selected some expressing lines (YXB91, 92, 138) from 

expressing lines: 49a, 68, 69a, 91-93, 98, 138 and some single-copy lines (YXB33, 60, 
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66, 70, and 100) from the transgenic population to perform further analyses (see 

genomic analysis of these lines). Different parameters were evaluated on the expressing 

lines: expression pattern in R1 progenies, possibility of recovering a single-copy 

expressing line after segregation of the T-DNA loci, recovery of a homozygous 

expressing line, and molecular analysis of the truncated T-DNA copy from line 

YXB138. Similarly, the transgene expression pattern in R1 progenies, recovery of 

homozygous R1 lines, and the type of silencing responsible for the lack of expression 

were some of the objectives addressed from the evaluation of single-copy lines. 

 

Expressing Lines: YXB91, 92, 138 

YXB91 originated from callus 1 in the 1st experiment with LBA4404 (faint GUS 

expression on callus) and showed strong expressing in the R0 line. Their integration 

patterns give a probable copy number after HindIII digestion of 1 bands of gus, 3 bands 

of hpt and one additional faint band indicated with an “f” (Figure 2.4A). 10 seedlings 

from YXB91 R0 plant after self- pollination were subjected to Southern blotting and 

histochemical GUS staining. The result showed that 90% of the siblings showed strong 

GUS expression.  

 

 

 

 

 



 29

 

 

 

GUSexp BARexp hpt gus bar
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91-9 - - 0 0 1f (?)
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•90% expressing R1 plants

•No cases of silencing

•The inheritance in the 
transgenic R1 progeny (same 
band pattern than R0 
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Figure 2.4. Genomic DNA analysis of R1 progeny from line YXB91 (HindIII-digested DNA). 

(A) Southern blots of YXB91 progenies with gus, hpt and bar probes. 

(B) Table of summary of Southern analysisand expression of YXB progenies. 

(C) Figure showing root and leaf GUS expression in of progeny plants. 
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No cases of silencing were found in the R1 progeny. Transgene inheritance in the 

R1 progeny (transgenic R1 lines showing the same band pattern as the R0 transformant) 

suggested integration in a single locus. There is a faint band also appearing in some of 

the R1 lines in the hybridization with bar (Figure 2.4A). 

Primary transformant YXB92 originated from callus 1 in 1st experiment with 

LBA4404 and is a strong expressing line. Its integration pattern (probable copy number) 

after HindIII digestion showed 3 bands of gus, 3-4 bands of hpt and 3 bands for bar. 10 

seedlings taken from YXB92 R0 plant after self-crossing were subjected to Southern 

blotting and histochemical GUS staining. The result showed that 30% of the siblings 

showed weak GUS expression (only strong expression during the seedling stage). No 

cases of silencing were found in the R1 progeny. Inheritance pattern in the R1 progeny 

suggests integration in at least two separate loci. There are two single-copy lines, 

YXB92-4 and 92-5, that show weak expression in mature tissues. Line YXB92-4 is a 

homozygous single-copy line (Figure 2.5A). In 20 seedlings of R1 progeny from 

crossing 92 x WT (T309), 11 seedlings express only in the seed coat and 9 are non-

expressing.  
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92 + + 3-4 3 3
92-1 + + 2 2 na
92-2 - - 0 0 0
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92-8 - - 0 0 na
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•40% expressing R1 
plants

•No cases of silencing
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progeny suggests 
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Figure 2.5. Genomic DNA analysis of R1 progeny from line YXB92 (HindIII-digested DNA). 

(A) Southern blots of YXB92 progenies with gus, hpt and bar probes. 

(B) Table of summary of southern and expression of YXB progenies. 

(C) Figure showing GUS expression in root and leaf of progeny plants. 

 

YXB138 originated from callus 4 in second experiment with LBA4404 (faint 

GUS expression on callus) and is one of the strong expressing lines. Its integration 

pattern (probable copy number) after HindIII digestion shows a truncated copy of the 

YXB construct, indicated with a “T” (Figure 2.6B), along with an intact YXB copy, 2 
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hpt bands and 2 bands for bar. In further analysis it was confirmed that this “T” band 

hybridizes with both RCg2pro and RCg2ter (data was not show). In general, the 

truncated bands appearing in blots from expressing lines hybridized with RCg2ter, but 

not with RCg2pro (data not shown). On the contrary, in the case of some non-expressing 

lines also showing truncations of the YXB construct, the truncated band hybridizes with 

RCg2pro but not with RCg2ter. 10 seedlings taken from plant YXB138 R0 after self-

crossing were subjected to Southern blotting and histochemical GUS staining. 50% of 

the siblings showed strong GUS expression. No cases of silencing were found in the R1 

progeny. Transgene inheritance in the R1 progeny (transgenic R1 lines show the same 

band pattern as the R0 transformant) suggests integration in a single locus. Line 

YXB138-7 is a homozygous expressing line (Figure 2.6). In R1 progeny from crossing 

138 x WT (T309), 8 out of 20 seedlings showed strong expression, 2 expressed only in 

the seed coat, and10 were non-expressing (data not shown). 

Homozygous expressing lines YXB 92-4 (coming from an expressing line) and 

YXB138-7 were taken for further investigation. YXB 92-4 showed weaker GUS 

expression than the primary transformant, and totally lost GUS expression after the R2 

generation. YXB138-7 was a homozygous expression line but the plant died after 

transferring to the greenhouse. 100% of the progeny of the 138-9-4, 138-9-2, 138-9-5 

line are GUS expresser; SB was used to verify the homozygozity. The data are not 

shown. 
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138-5138-5 -- -- 00 00 00

138-6138-6 ++ ++ 22 1+1T1+1T 22

138-7138-7 ++ ++ 22 1+1T1+1T 22

138-8138-8 ++ ++ 22 1+1T1+1T 22

138-9138-9 ++ ++ 22 1+1T1+1T nana

138-10138-10 ++ ++ 22 1+1T1+1T nana

•50% expressing R1 plants

•No cases of silencing

•The inheritance in the 
transgenic R1 progeny 
(same band pattern than R0 
transformant) suggests 
integration in a single 
locus.

A

B

C
 

 

 

 

 

 

Figure 2.6. Genomic DNA analysis of R1 progeny from line YXB138 (HindIII-digested DNA).  

(A) Southern blots of YXB138 progenies with gus, hpt and bar probes. 

(B) Table of summary of southern and expression of YXB progenies. 

(C) Figure showing GUS expression in root and leaf of progeny plants. 

 

Other expressing lines YXB68, 69, 88, 93, 98, 147 and148 SB are shown in 

figure 2.7. GUS histochemical staining of R1 seedlings without the truncated band after 

segregation showed weaker expression than the seedling with the truncated band after 
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segregation. This phenomenon indicated the truncated copy is related to an increase in 

the expression of GUS. 
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Figure 2.7. Genomic DNA analysis of R1 progeny from lines YXB68, 69, 88, 93, 98, 147, 148. 

HindIII digested DNA and using the gus probe. 

 

 

 

-8
8-

-8
8-

3

+ 
88

-4

-
68

-7

-8
8-

9

+ 
88

-1
0

-8
8-

12

-
88

-1
1

+ 
93

-1

-9
3-

2

+ 
93

-3

+ 
93

-4

+ 
93

-5

+ 
93

-6

+ 
93

-8

+ 
93

-9

+ 
 9

3-
10

-9
3-

11

-9
3-

12

-8
8-

13

+ 
88

-1
4

+ 
93

-7

+ 
98

-1

-9
8-

2

+ 
98

-31

+ 
98

-4

+ 
98

-5

-9
8-

6

+ 
98

-7

-9
8-

8

+ 
98

-9

+ 
98

-1
0

-9
8-

11

+ 
98

-1
2

+ 
98

-1
3

-1
47

-1

-1
47

-2

+ 
14

7-
3

-1
47

--
4

+1
47

-5

+ 
14

7-
6

+ 
14

7-
8

+ 
14

7-
9

-1
47

-1
0

+ 
14

7-
11

+ 
14

7-
12

+ 
14

7-
7

+ 
14

7-
13

+ 
14

7-
14

+ 
14

7-
15

-1
48

-2

+ 
14

8-
3

-1
48

--
4

+1
48

-5

+ 
14

8-
6

+ 
14

8-
8

+ 
14

8-
9

-1
48

-1
0

+ 
14

8-
11

+ 
14

8-
12

+ 
14

8-
7

-1
48

-1

+ 
14

8-
13

+ 
14

8-
14

+ 
68

-1

+ 
68

-2

+6
8-

3

-6
8-

4

-6
8-

5

+ 
68

-6

+ 
68

-7

-6
8-

8

+ 
68

-9

+ 
68

-1
0

-6
8-

12

+ 
68

-1
1

-6
9-

1

+ 
69

-2

+ 
69

-3

+ 
69

-4

+ 
69

-5

+ 
69

-6

+ 
69

-8

+ 
69

-9

+ 
69

-1
0

-6
9-

11

-6
9-

12

+ 
68

-1

+ 
68

-2

+6
8-

3

-6
8-

4

-6
8-

5

+ 
68

-6

+ 
68

-7

-6
8-

8

+ 
68

-9

+ 
68

-1
0

-6
8-

12

+ 
68

-1
1

-6
9-

1

+ 
69

-2

+ 
69

-3

+ 
69

-4

+ 
69

-5

+ 
69

-6

+ 
69

-8

+ 
69

-9

+ 
69

-1
0

-6
9-

11

-6
9-

12

+ 
68

-1

+ 
68

-2

+6
8-

3

-6
8-

4

-6
8-

5

+ 
68

-6

+ 
68

-7

-6
8-

8

+ 
68

-9

+ 
68

-1
0

-6
8-

12

+ 
68

-1
1

-6
9-

1

+ 
69

-2

+ 
69

-3

+ 
69

-4

+ 
69

-5

+ 
69

-6

+ 
69

-8

+ 
69

-9

+ 
69

-1
0

-6
9-

11

-6
9-

12

-8
8-

-8
8-

3

+ 
88

-4

-
68

-7

-8
8-

9

+ 
88

-1
0

-8
8-

12

-
88

-1
1

+ 
93

-1

-9
3-

2

+ 
93

-3

+ 
93

-4

+ 
93

-5

+ 
93

-6

+ 
93

-8

+ 
93

-9

+ 
 9

3-
10

-9
3-

11

-9
3-

12

-8
8-

13

+ 
88

-1
4

+ 
93

-7

+ 
98

-1

-9
8-

2

+ 
98

-31
--8

8-

-8
8-

3

+ 
88

-4

-
68

-7

-8
8-

9

+ 
88

-1
0

-8
8-

12

-
88

-1
1

+ 
93

-1

-9
3-

2

+ 
93

-3

+ 
93

-4

+ 
93

-5

+ 
93

-6

+ 
93

-8

+ 
93

-9

+ 
 9

3-
10

-9
3-

11

-9
3-

12

-8
8-

13

+ 
88

-1
4

+ 
93

-7

+ 
98

-1

-9
8-

2

+ 
98

-3

88
-

-8
8-

3

+ 
88

-4

-
68

-7

-8
8-

9

+ 
88

-1
0

-8
8-

12

-
88

-1
1

+ 
93

-1

-9
3-

2

+ 
93

-3

+ 
93

-4

+ 
93

-5

+ 
93

-6

+ 
93

-8

+ 
93

-9

+ 
 9

3-
10

-9
3-

11

-9
3-

12

-8
8-

13

+ 
88

-1
4

+ 
93

-7

+ 
98

-1

-9
8-

2

+ 
98

-311

+ 
98

-4

+ 
98

-5

-9
8-

6

+ 
98

-7

-9
8-

8

+ 
98

-9

+ 
98

-1
0

-9
8-

11

+ 
98

-1
2

+ 
98

-1
3

-1
47

-1

-1
47

-2

+ 
14

7-
3

-1
47

--
4

+1
47

-5

+ 
14

7-
6

+ 
14

7-
8

+ 
14

7-
9

-1
47

-1
0

+ 
14

7-
11

+ 
14

7-
12

+ 
14

7-
7

+ 
98

-4

+ 
98

-5

-9
8-

6

+ 
98

-7

-9
8-

8

+ 
98

-9

+ 
98

-1
0

-9
8-

11

+ 
98

-1
2

+ 
98

-1
3

-1
47

-1

-1
47

-2

+ 
14

7-
3

-1
47

--
4

+1
47

-5

+ 
14

7-
6

+ 
14

7-
8

+ 
14

7-
9

-1
47

-1
0

+ 
14

7-
11

+ 
14

7-
12

+ 
14

7-
7

+ 
98

-4

+ 
98

-5

-9
8-

6

+ 
98

-7

-9
8-

8

+ 
98

-9

+ 
98

-1
0

-9
8-

11

+ 
98

-1
2

+ 
98

-1
3

-1
47

-1

-1
47

-2

+ 
14

7-
3

-1
47

--
4

+1
47

-5

+ 
14

7-
6

+ 
14

7-
8

+ 
14

7-
9

-1
47

-1
0

+ 
14

7-
11

+ 
14

7-
12

+ 
14

7-
7

+ 
14

7-
13

+ 
14

7-
14

+ 
14

7-
15

-1
48

-2

+ 
14

8-
3

-1
48

--
4

+1
48

-5

+ 
14

8-
6

+ 
14

8-
8

+ 
14

8-
9

-1
48

-1
0

+ 
14

8-
11

+ 
14

8-
12

+ 
14

8-
7

-1
48

-1

+ 
14

8-
13

+ 
14

8-
14

+ 
14

7-
13

+ 
14

7-
14

+ 
14

7-
15

-1
48

-2

+ 
14

8-
3

-1
48

--
4

+1
48

-5

+ 
14

8-
6

+ 
14

8-
8

+ 
14

8-
9

-1
48

-1
0

+ 
14

8-
11

+ 
14

8-
12

+ 
14

8-
7

-1
48

-1

+ 
14

8-
13

+ 
14

8-
14

+ 
14

7-
13

+ 
14

7-
14

+ 
14

7-
15

-1
48

-2

+ 
14

8-
3

-1
48

--
4

+1
48

-5

+ 
14

8-
6

+ 
14

8-
8

+ 
14

8-
9

-1
48

-1
0

+ 
14

8-
11

+ 
14

8-
12

+ 
14

8-
7

-1
48

-1

+ 
14

8-
13

+ 
14

8-
14



 35

Single-Copy Non-expressing Lines 

YXB33, 60, 66, 70, and 100 from the transgenic population were used for further 

analyses. YXB 60, YXB 66, YXB 70 and YXB 100 originated from callus 5, 10, 12 and 

10 respectively in the 1st experiment with LBA4404 (non-expressing). They are all non-

expressing lines. YXB 66 is a sibling of YXB 67 and YXB 70 is a sibling of YXB 69b.  

YXB 33 originated from previous experiments. YXB 100 originated from callus 2 in the 

1st experiments with LBA4404 (weak-expressing). The integration patterns (probable 

copy number) after HindIII digestion are given in the table below and all showed the 

same pattern. 

hpt gus bar 

1 1 1 

 

For R1 progenies from self-crosses, YXB 60, YXB 66, YXB 70, YXB 33, YXB 

100 and YXB 144, 70%, 80%, 70%, 90%, 85% and 75% respectively expressed gus in 

the young seedlings, but all lines were non expressing after maturity (6-7 leaves). About 

90% showed high expression 90 hours after germination (Table 2.4 and Table 2.5).  This 

loss of expression during plant growth is suggestive of PTGS or perhaps an indication of 

reversion of GUS expression after meiosis. Interestingly, there is a 2.8-kb band 

appearing in many blots from progeny of non-expressing plants. The size is regular in 

blots from different R1 progenies (Figure 2.8). Could it be a recombination event during 

meiosis? YXB 60-2, 70-3, 6 and 33-5 are homozygous single copy silencing lines 

identified for further investigation. 
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Table 2.4 Characterizations of progenies of single copy silenced lines  

 gus (intensity) zygosis  gus (intensity) hpt 

(intensity) 

zygosis 

60-1 1+1* hemi 66-1 0+1* 0+1* - 

60-2 2 homo 66-2 2+1* 2+1* homo 

60-3 1+1* hemi 66-3 0+1* 0+1* - 

60-4 1+1* hemi 66-4 0 0 - 

60-5 1 hemi 66-5 1+1* 1+1* Hemi 

60-6 1 Hemi 66-6 1 1 Hemi 

 gus (intensity) Zygosis  gus (intensity) hpt Zygosis 

70-1 1+1* hemi 144-1 1+1 1+1  

70-2 0+1* - 144-3 1+1 1+0  

70-3 2+1* homo 144-4 2+1 2+1 homo for 

locus1? 

70-4 1+1* hemi 144-5 1 0+1  

70-5 1 hemi 144-6 1 1+1  

70-6 2 homo     

  gus (intensity) zygosis 

33-1 1 hemi 

33-2 1 hemi 

33-3 0 - 

33-5 2+1* homo 

33-6 1 hemi 
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Table 2.5 Histochemical staining single copy seedlings  

 

 

 

 

YXB60 GUSexp 42h 90h 3 leaves 6-8 leaves 

+/- 28/12 16/1 17/7 0/21 

%+ 70 94 71 0 

 

 

 

YXB66 GUSexp 42h 90h 3 leaves 6-8 leaves 

+/- 32/10 16/0 0/16 na 

%+ 76 100 0 na 

 

 

 

YXB70 GUSexp 42h 90h 3 leaves 6-8 leaves 

+/- 28/12 16/1 2/18 0/20 

%+ 70 94 10 0 

 

 

 

 

YXB33 GUSexp 42h 90h 3 leaves 6-8 leaves 

+/- 34/6 13/1 0/17 na 

%+ 85 93 0 na 

 

 

 

YXB100 GUSexp 42h 90h 3 leaves 5 leaves 

+/- 16/22 15/2 11/5 0/18 

%+ 42 88 69 0 

 

 

 

YXB144 GUSexp 42h 90h 3 leaves 5 leaves 

+/- 30/10 16/1 15/3 0/17 

%+ 75 94 83 0 
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Figure 2.8. Genomic DNA analysis of R1 progeny from Single-copy lines YXB33, 60, 66, 70, 100. 

HindIII digested DNA and  gus as a probe. 

 

Inheritance and Integration of Transgenes in YXB Plants 

Studies on progeny (self-crossing) (Table 2.6.) showed that the observed ratio in 

the segregating progeny doesn’t correspond to the 3:1 Mendelian segregation ratio 

expected for a single dominant locus (or even higher for multiple loci), and also showed 

different rates of expression in different lines. Silencing phenomena in the progeny 

seedlings must be altering the ratio. The progenies from the strong expression lines, such 

as YXB138 and YXB91, showed strong expression and higher expression frequency in 

their progeny. The progeny from the weak expression lines, for example YXB 79 had 

the lowest proportion of GUS-expressing progeny.  
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Table 2.6 Inheritance of transgenes in YXB plants  

 

 

 

 

*Studies on progeny (self-crossing) 

Line 
(SE) 

Number of 
seedlings 

Number of GUS 
expressing seedlings 

Line 
(WE) 

Number of 
seedlings 

Number of GUS 
expressing seedlings 

68 19 10 (53%) 58 18 10 (56%) 

69c 6 5 (83%) 61 19 10 (53%) 

91 15 8 (53%) 79 14 1 (7%) 

93 34 23 (68%) 130 10 9 (90%) 

 

*The observed ratio in the segregating progeny doesn’t correspond to the Mendelian segregation 3:1 

expected for a single dominant locus (or even higher for multiple loci). Silencing phenomena in the 

progeny seedlings may be altering the ratio. 

 

Table 2.7 Integration pattern 

 

 

 

 

 

 

Single copy of T-DNA
(YXB intact)

Multiple copies of T-DNA
(only intact copies of
YXB)

Multiple copies of T-DNA
(with truncated copies of
YXB)

21 39 18

Silenced Non-silenced Silenced Non-silenced Silenced Non-silenced

21 0 37 2 12 6

NE WE NE W E NE WE

19 2 25 12 9 3

*up to 6 copies of T-DNA fragments NE: no expression; WE: weak expression 

*truncations and rearrangements of T-DNA   

*all the plants with a single copy of T-DNA are silenced 

*all expressing plants show multiple copies of T-DNA fragments and 6 of them carry a truncated copy of 

YXB construct 
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Interestingly every plant with a single copy of T-DNA is silenced (Table 2.7).  

Even the single copy lines of progeny from the strong expressing line YXB 92 became 

silent after two generations (Figure 2.9). This indicated that copy number also affected 

the expression of gus transgenes driven by the RCg2 promoter. All expressing plants 

show multiple copies of T-DNA fragments and 6 of them carry a truncated copy of the 

YXB construct. After segregation, the progeny lines with a truncated copy of GUS 

showed much stronger expression than the progeny lines without the truncated GUS 

copy. 

 
YXB138-9-4 YXB91-8-8 YXB92

YXB92-4-7 YXB92-4-7-11 YXB70-6-4-20

YXB138-9-4 YXB91-8-8 YXB92

YXB92-4-7 YXB92-4-7-11 YXB70-6-4-20

 

 

 

 

 

 

 

 

 

Figure 2.9. GUS expression pattern in progeny of YXB lines. The order of the tube (L-R): root, 

leaf, inflorescence, and immature seed. 
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Cloning of a Truncated Copy of the YXB Cassette 

Is a truncation of the YXB cassette, present in a 70% of the expressing lines, 

relevant for its expression? A truncated copy of the YXB cassette appears in HindIII-

digested genomic DNA analysis as a band of more than 4.1kb in the pattern of some of 

the expressing lines and after segregation, the lines with this truncated copy of the YXB 

cassette showed stronger GUS expression than the lines that lost this truncated allele. 

These results led us to clone and analyze the function of the truncated copy. The lines 

chosen for this objective were 138 and 69a. The process was as follows: isolation of the 

DNA fragment after cutting the corresponding slice from the agarose gel (at the same 

migration level as the band appearing in the SB). (1) Cloning of the DNA fragments into 

the HindIII site of pPCRscript, or (2) Recircularization by ligation and PCR 

amplification of the whole fragment with primers known to be in the sequence. A clone 

was recovered from YXB138 in the HindIII site of pPCRscript. After sequencing, it was 

observed that unfortunately the cloned fragment was not the one expected, but a piece of 

rice genomic DNA. It did not include any sequence from the gus gene. [NOTE: The 

plasmid pPCRscript hybridizes with all the probes (gus, hpt, ubar) used to confirm the 

clone, which gave confusing results.] No results were obtained from the PCR method, 

since only small fragments could be amplified in very relaxed conditions.  
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Discussion 

 
Transformed Rice with RCg2-gus 

Agrobacterium-mediated transformation of plants generally yields transformation 

events with low copy number insertion of discrete T-DNA. Rearrangement and transfer 

of vector DNA that resides outside T-DNA border sequences are known to occur 

(Kumpatla and Hall, 1998b; Hall et al., 2001). Analysis of 158 YXB rice plants revealed 

93 independent transformants with intact T-DNA insertion and/or partial transfer of the 

T-DNA. The copy number of T-DNA insertion ranged from 1-6 and independent events 

with single copy insertion of intact T-DNA have been found in 22/82. Four lines have 

only the hpt gene construct and 3 lines have YXB and hpt, but not the complete bar 

construct. Transfer of vector DNA outside the T-DNA border sequences into rice 

genome was not detected (Figure 2.10). The vector that we used in Agrobacterium-

mediated transformation of rice is effective in delivering intact and discrete gene 

constructs at a low copy number into the rice genome. The efficiency of transformation 

is very high; co-cultivation experiments produced a large number of transformants and 

established a very effective transformation system. 
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Figure 2.10. Analysis of genomic DNA digested with HindIII and electrophoresed in a 1% 

agarose gel. Plasmid backbone sequence as probe. 

 

Inheritance of Expression in Expressing and Silenced Lines 

Extensive investigation on the inheritance and expression of the gus transgene in 

YXB transgenic plants identified some high expressing R0 lines where expression 

remain stable for many generations after segregation. Also, progeny of several strong 

expressing lines with rearranged gus copies showed stronger expression levels than the 

progeny without the rearranged gus copy.  Once they were homozygous, the expression 

levels remained stable for many generations at the same level. This result revealed that 

the rearrangements affected the expression level of GUS in the transgenic RCg2 rice 

plants. However, the strong expressing YXB92 primary line gradually lost expression 

after the segregation into single copy homozygous progeny YXB92-4 and YXB92-5. 
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Expression was completely eliminated after the R2 generation in YXB92-4-7. The 19 

contained a single copy gus inserted but silenced lines, continued to be silenced for 

many generations in their homozygous progeny. These single copy silenced lines 

together with YXB92-4-7 single copy silenced progeny line indicated that there are 

different silencing mechanisms underlying the silencing phenomena of RCg2 transgenic 

plants, and provided an excellent system to study the mechanisms of transgene silencing. 

 

RCg2-gus Is Silenced at a High Frequency 

Generally, silencing of an introduced gene or/and an endogenous gene is a result 

of genomic modification of the introduced gene via largely uncharacterized or partially 

characterized mechanisms (Kumpatla and Hall, 1998b; Kumpatla and Hall, 1999). The 

gene-silencing phenomenon is found to be more frequently associated with 

transformation events that carry multiple copy insertion or duplicated sequences, such as 

transgenic plant material obtained using direct DNA delivery methods (Kumpatla et al., 

1997). Low copy insertion of T-DNA via an Agrobacterium-mediated DNA delivery 

method reduced the frequency of silencing of introduced genes. The T-DNA in 

pJD4YXB carries three gene constructs: 35S-hpt, RCg2-gus, and mubi-bar. Expression 

of the mubi-bar was assayed using bialaphos painting of leaf segments. Of 82 

independent events, nine are bialaphos sensitive indicating that the frequency of 

silencing of ubi-bar is low, and this may be due to absence of homologous sequence 

between rice genome and mubi-bar. Expression of GUS from RCg2-gus in rice plants 

were found to be silenced in nearly 90%. This high frequency of silencing demonstrated 
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that the 5' RCg2 sequence used in RCg2-gus is prone to silencing and is highly valuable 

for studies on genome modification of introduced gene. Among the GUS-expressing 

lines, low level GUS expression was detected in lines YXB56-59, 61, 78-79, 126-128, 

130, 135, 147-158, initially, and eventually silenced (Table 2.2.). This implies existence 

of different levels of gene silencing mechanisms that affect the silencing of YXB, or 

gradual onset of silencing of YXB might have occurred in the lines that had initial low 

level of GUS. For high-level GUS-expressing lines with a characteristic histochemical 

staining pattern in the root, GUS expression remained active in the R1 generation. The 

uniqueness of high frequency silencing is that it is highly targeted to the YXB DNA 

while the flanking hpt and bar genes are not silenced in most lines. Interestingly, a 

unique and dramatic silencing phenomenon was observed in the YXB population. This 

system could offer an excellent opportunity to study transgene silencing in detail. 
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CHAPTER III 

RCg2 GENE IS A ROOT-PREFERENTIAL GENE, NOT ROOT 

SPECIFIC AND STUDY OF RCg2 GENE SILENCING IN RICE 
 

Introduction 

 

To understand root development, genes that preferentially or specifically express 

in roots have been isolated from crop plants (Miao et al., 1991; Tsay et al., 1993). 

Detailed studies involving root-specific gene expression have been conducted in 

transgenic tobacco (Keller et al., 1989). These studies have shown that several hundred 

base pairs of immediate 5'-flanking sequence are important and sufficient for correct 

spatial expression of heterologous reporter genes (Xu et al., 1995). A few highly 

expressed root-specific genes have been identified in monocots such as barley (Lerner 

and Raikhel, 1989), maize (Held et al., 1993) and rice (Xu et al., 1995). 

The expression pattern directed by the RCg2 promoter was characterized using a 

gus chimeric gene construct (5' RCg2-gus-OCS, YXA) in transgenic rice (Xu et al., 

1995). Transgenic YXA plants were recovered following direct gene transfer (Battraw 

and Hall, 1990) and Agrobacterium-mediated transformation respectively. Transgenic 

YXB rice plants carrying YXB (5' RCg2-gus-RCg2-3’, YXB) (Hall et al., 2001) were 

recovered following Agrobacterium-mediated techniques (Dong et al., 1996). Although 

strong GUS expression was observed in a very characteristic pattern in roots, expression 

was also observed in leaves of the same transgenic plants. These findings suggested that 
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some other important regions of the gene and not only the 5’ and 3’ sequences might 

additionally determine RCg2 spatial regulation. Also there is a possibility that RCg2 

gene is not root specific in its expression.  

Interestingly, a unique and dramatic silencing phenomenon was observed in the 

YXB population. This system could offer an excellent opportunity to study transgene 

silencing in detail. A thorough characterization of the transformants and of the RCg2 

promoter was subsequently conducted. 

A variety of silencing effects have been described in the literature, involving 

single transgene loci (Meyer et al., 1992; Elmayan, 1996; Iglesias et al., 1997), 

interactions between unlinked loci (Hobbs et al., 1993; Meyer and Saedler, 1996), or 

even interactions with or through an endogenous homologous gene (Jorgensen et al., 

1996; Stam et al., 1998). (Trans)gene silencing can occur in a transcriptional (TGS) or a 

posttranscriptional (PTGS) manner, and it seems dependent on a large number of factors. 

Aspects such as insert location (Hobbs et al., 1990), rearrangements, organization (Yang 

et al., 2005a), multiple-copy loci (Waterhouse et al., 1998; Hamilton and Baulcombe, 

1999; Lechtenberg et al., 2003; Mishiba et al., 2005); (Tang et al., 2007), homology to 

an endogenous sequence (reviewed by Meyer P, (Meyer and Saedler, 1996)), excessive 

level of transcription and others cause have been claimed to be the apparent triggers of 

silencing. Transformants containing a single transgene copy are also known to undergo 

silencing (Elmayan, 1996) and the presence of a homologous endogenous sequence may 

explain such gene silencing. Recent studies make it evident that at least some silencing 

mechanisms are part of the gene regulation system during plant growth and development 
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and are also involved in plant defense systems against invasive DNA or RNA sequences 

(virus, transposons) and surveillance processes that check the genome integrity 

(Kumpatla, 1997; Jorgensen et al., 1998; Kumpatla and Hall, 1998b; Matzke and 

Matzke, 1998; Iyer et al., 2000). 

Previous studies in our laboratory focused attention on transgene silencing. 

Biolistics and other direct DNA transfer procedures frequently resulted in gene silencing 

in rice. These studies have been reported in detail (Kumpatla, 1997; Kumpatla and Hall, 

1998a, b). Generally, Agrobacterium-mediated transformation give rise to lower 

transgene copy numbers compared to direct transformation methods. Consequently, the 

Agrobacterium-transformed YXB population may represent an excellent system to study 

silencing events derived from the presence of an endogenous promoter regulating a 

chimeric transgene. We focused our attention on two different objectives: (1) 

characterization of the YXB transformants and the RCg2 silencing phenomenon, and (2) 

diversification of the RCg2 promoter to avoid silencing the expression of transgenes. 

The finding that GUS was also expressed in leaves of YXB transgenic plants also made 

us rethink the expression profile of the endogenous RCg2 gene profile. RT-PCR and 

RNA gel blot were used to detect the expression of RCg2 gene in various wild type 

varieties of rice: Taipei309, Nipponbare, Gulfmont, IR-72 and TX-6 and the YXB 

transgenic rice. 
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Materials and Methods  

 

RNA Isolation and Analysis 

For leaf tissues, 14 day seedling (leaves) growing in a Magenta box 

(PHYTATRAY II, SIGMA CHEMICAL CO, ST. LOUIS, USA) was collected into 1.7 

ml microtubes, and root tissues were collected and the medium washed away with 

distilled water. Roots and leaves were dried with Kimwipes and put into microtubes. The 

collected tissues were frozen with liquid nitrogen; ground with pellet pestles (KONTES 

Glass Company). Two methods were used to isolate total RNA in this research, 

TRIZOL®
 reagent (Invitrogen Inc., Carlsbad, CA) and RNeasy Plant for Mini kit 

(QIAGEN). RNA was extracted according to the manufacturer’s instructions. 

TRIZOL reagent, a mono-phasic solution of phenol and guanidine 

isothiocyanate, was an improvement to the single-step RNA isolation method developed 

by Chomczynski (Chomczynski and Sacchi, 1987). The tissue samples were 

homogenized in TRIZOL reagent (0.5 – 0.8 ml, 1 ml TRIZOL per 100 mg of tissue). 

After incubation of the homogenized samples at room temperature for 5 min to permit 

the complete dissociation of nucleoprotein complexes, 0.2 ml of chloroform was added; 

the tubes were then mixed vigorously and incubated at room temperature for 3 min. The 

mixture was centrifuged at 12,000xg for 15 min at 4°C. Centrifugation separated the 

biphasic mixtures into the lower red, phenol-chloroform phase and the upper colorless, 

aqueous phase. The upper phase was transferred to a new microtube and mixed with an 

equal volume isopropanol. The sample was incubated at room temperature for 10 min 
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and centrifuged at 12,000xg for 10 min at 4°C. The supernatant was discarded and the 

RNA pellet was washed once with cold 75% ethanol (1 ml) and centrifuged at 12,000xg 

for 10 min at 4°C. The washed RNA pellet was air-dried and dissolved in RNase-free 

water. The RNA was quantified by spectroscopic measurement of absorbance at 

wavelength 260nm. The total RNA was precipitated and aliquots kept in -20°C for short-

term use or -80°C for long-term storage. 

 

RNeasy Plant Mini Kit 

The ground plant tissue (about 100 mg) was homogenized in RLC buffer (450 

µL), containing guanidine hydrochloride (GITC), which immediately inactivated 

RNases. RNA was extracted according to the manufacturer’s instructions. Each sample 

was mixed vigorously and then applied to a QIA shredder spin column, sitting in a 

collection tube (2 ml). The sample was centrifuged at 12,000xg for 2 min, which allowed 

the supernatant to pass through the column. The supernatant was transferred to a new 

tube, mixed with 0.5 volume of absolute ethanol, and applied to an RNeasy mini 

column, followed by centrifugation at 12,000xg for 1 min. The RNA sample on the 

column was washed once with RW1 buffer (700 µL) and twice with RPE buffer 

(500µL). The RNeasy column was transferred into a new collection tube and total RNA 

was eluted from column with RNase-free water (20 µL). Total RNA was extracted from 

various generations of YXB transgenic plants and various varieties of wild types of rice 

using Trizol. 
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RNA Blots Analysis 

RNA concentrations were determined using Ribogreen as recommended by the 

supplier (Molecular Probes, Eugene, OR, USA) or by spectrophotometer. RNA blot 

analysis was conducted as described in (Yang et al., 2005a; Yang et al., 2005b). The 

total RNA was electrophoretically separated (5 V/cm) under denaturing conditions in a 

formaldehyde-MOPS, 1% agarose gel supplied with a NorthernMax kit (Ambion), then 

transferred (40 V/cm) in chilled 1 × MOPS buffer for 1 h to a Hybond nylon membrane 

(Amersham Biosciences, Piscataway, NJ, USA) using a BioRad Trans-blot Cell. The 

resulting RNA blot was cross-linked using a UV Stratalinker (Stratagene, La Jolla, CA) 

and labeled DNA probes (the gus coding sequence, RCg2 coding sequence and 3’UTR 

of RCg2, or the EF1-a coding sequence) were prepared using a Decaprime II kit 

(Ambion) and hybridized overnight at 42°C in ULTRAhyb ultrasensitive hybridization 

buffer (Ambion). The membrane was washed twice with 2 × SSC, 0.1% SDS for 5 min 

then twice with 0.1 ×SSC, 0.1% SDS for 15 min. Hybridization signal densities were 

measured using a Fujix 2000 phosphorimager and MacBAS v2.5 software (Fuji Machine 

Manufacturing, Chiryu, Aichi, Japan) (Yang et al., 2005a; Yang et al., 2005b).  

For RNA gel blot analyses, samples loaded on 1% formaldehyde denaturing 

agarose gels were run at 5 V/cm for 2 to 3 h in 13 3-(N-morpholino)- propanesulfonic 

acid buffer. RNA was transferred using a Trans-Blot Cell (Bio-Rad, Hercules, CA) for; 1 

h at 40 V. Probes were made from DNA templates using the DECAprimeII system 

(Ambion, Austin, TX), and hybridization was performed with Ultrahyb buffer (Ambion). 
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Densities of hybridization signals were measured with MacBas software (Fujifilm, 

Tokyo, Japan), and background signals were subtracted from the reading.  

 

Primers and Probes Made by PCR 

Genomic DNA was extracted from seedlings of WT T309 using a CTAB 

(hexadecyl trimethyl ammonium bromide) method (Taylor and Powell, 1982; Saghai-

Maroof et al., 1984). PCR was performed using PCR master mix from Promega 

(Madison, WI, USA).  PCR primers sequence for the internal control Rice EF1-α:  

Forward: 5’-GCCCATGGTTGTGGAGACCTTCTC-3’  

Reverse: 5’-TCATTTCTTCTTGGCGGCAGCCTTG-3’ 

Primers sequence for RCg2 coding region:  

Forward:  5’ –ATGGCTGCTTCCAAGGTCGCTC-3’ Tm 58°C 

Reverse: 5’ TTAGCAGGTGAAGTCGGAGGGG 3’ Tm 59°C 

Primer sequence for RCg2 3’ untranslated region (3' UTR) primers: 

Forward: RCg2 3’UTR F: TAATTGAGCATGGAAAGAGCTCAAAC Tm 57.8°C 

Reverse: RCg2 3’UTR R: CTAACACAAGGGGGGATAATAGCTTATC Tm 

58.4°C 

Primer sequence for Gus coding region:  

Forward:  5’ GGT GGG AAA GCG CGT TAC AAG-3’ Tm 56°C  

Reverse:  5’-GTTTACGCGTTG CTT CCG CCA-3’ Tm 56°C 

Thermocycling conditions were: 94°C for 5 min, followed by 38 cycles of 94°C for 1 

min, various annealing temperature (53°C for EF1-α, 55°C for RCg2 coding region, 
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53°C for 3’ UTR and 51°C for gus) for 1 min and 72°C for 2 min, with a final 

polymerization step of 72°C for 10 min. The products of the amplification were 

subjected to electrophoresis through 1% agarose gel, followed by staining with ethidium 

bromide (100ng/L). The gel was then digitally imaged and was analyzed using semi-

quantitative method Image J. 

 

RCg2 Coding Region, 3’-UTR Region Probes and EF1-α Were Amplified Using PCR 

and Purified with a PCR Purification Kit 

Gus probes were made either from PCR or isolated from plasmid pJD4 digested 

with BamHI and EcoRV. Hpt probe were made from pJD7XbaI plasmid digested with 

BamHI. 

 

Quantitation and Normalization of PCR Signals with Semi-quantitative Method: Image J 

Densitometry of data obtained from Southern blot and ethidium bromide staining 

of PCR products for at least two completely independent experiments was performed 

using ImageJ software (National Institutes of Health). Normalized RCg2 signals were 

obtained by subtraction of the background signal from the experimentally obtained 

value. Normalized EF-1α control signals were determined similarly and, for each 

variety, the signal enrichment for the normalized RCg2 signal was calculated relative to 

the normalized EF-1 α signal. Normalization of PCR product signals and relative 

enrichment (RE) values were derived as described in Ng et al. (Ng et al., 2006). 
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RT-PCR Analysis 

Total RNA samples were treated with DNase I before RT-PCR amplification 

using the QIAGEN One-Step RT-PCR kit (Qiagen, Valencia, CA). Total RNA (1 mg) 

was combined with 10X DNase buffer (1µL) [Tris-HCl (200 mM, pH 8.4), MgCl2 (20 

mM), KCl (500 mM)], and DNase I (1 unit, 1 µL, Invitrogen) in the final volume of 10-

µl. The reaction was carried out at 25oC for 10 min and the enzyme was inactivated at 

65oC for 15 min in the presence of EDTA (2.5 mM). The RNA samples were used 

directly for RT-PCR reaction. 

Total RNA (0.5µg) was isolated from rice leaves and root using Trizol and 

digested with RNase-free DNase I, was subjected to RT-PCR analysis employing the 

Qiagen one-step RT-PCR kit. The DNA free RNA was mixed with dNTP (100 µM 

each), 1X buffer (supplied with the kit), enzyme mix (Omniscript and Sensiscrip reverse 

transcriptase, 2 µL), and forward and reverse gene specific primers (0.6 µM each) in the 

total volume of 50 µL. Before the reaction started, a thermal cycler was heated to 50oC 

then the tube was placed in the machines and reverse transcription reaction was 

performed at 50oC for 30 min, followed by incubating at 95oC for 15 min to inactivated 

reverse transcriptase, denature the cDNA template, and activate HotStar Taq DNA 

polymerase. The PCR amplification was performed for different number of cycles of 

denaturation at 95oC for 1 min, annealing for 1 min and extension at 72oC for 1 min, 

followed by extension at 72oC for 10 min. The annealing temperature (Ta) was the 

melting temperature ™-5oC. The RT-PCR reactions included 0.6µM gene-specific 

primers and 0.08 µM EF1 -specific primer (as an internal control). Primer sequences 
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used in assessing transcript abundance and reaction conditions are provided as 

supplemental material.  

Following RT-PCR, the products were resolved using agarose (1%) gel 

electrophoresis and stained with ethidium bromide (1 g/L). Images of the stained gels 

were captured using a digital camera, and relative densitometry intensity (pixels/mm2), 

normalized relative to EF-1α (internal control), was obtained using MacBAS v2.5 

software (Fuji, Tokyo, Japan). Values shown are for RT-PCR analyses of two entirely 

independent experiments and were within the linear amplification range. For DNA 

contamination controls in RT-PCR, RT enzyme mix was replaced by Taq DNA 

polymerase from Invitrogen. 

 

5-azaC Treatments  

Reactivation of YXB using an inhibitor of DNA methylation (demethylating 

agent) 5-azacytidine (5-azaC) was conducted by growing rice tillers in nutrient solution 

containing 5-azaC. Methods were as described in Chapter II. 

 

Histochemical and Fluorometric Assays for GUS Activity 

Histochemical GUS staining was performed for vegetative tissues (leaves, roots, 

inflorescences) with 5-bromo-4-chloro-3-indoxyl-â-D-glucuronic acid (Xgluc) as a 

substrate (Jefferson et al., 1987b). Samples were stained overnight (16 h) at 37 oC and 

chlorophyll was removed by 95% ethanol after staining (Chandrasekharan et al., 2003). 

Fluorometric assays of GUS activity of leaves and roots were performed as described by 
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(Jefferson et al., 1987b). GUS activity was calculated as pmol 4-MU per hour per 

microgram protein and data were analyzed with SPSS 11.0 for Windows software. For 

each construct, three independent assays were performed unless otherwise specified. 

 

High Molecular Weight RNA Was Separated from Low Molecular Weight RNA by 

Precipitation with 10% PEG8000 in 0.5 M NaCl (Ambion, Austin, TX) 

For smRNA detection (Reinhart and Bartel, 2002), low molecular weight RNA 

present in the supernatant after treatment of the total RNA with 10% PEG8000 in 0.5 M 

NaCl was precipitated by being made to 75% ethanol, dissolved in RNase-free water, 

and subjected to denaturing PAGE (16% acrylamide, 7 M urea: Hamilton and 

Baulcombe, (Hamilton and Baulcombe, 1999). The separated RNAs were 

electrotransferred to Zeta Probe GT membrane (BioRad, Hercules, CA), UV cross-

linked and hybridized with DNA probes prepared using a Decaprime II kit (Ambion) and 

purified on a Biospin 6 column (BioRad). Both digested and undigested probes prepared 

from the gus transgene and RCg2 coding region and 5’ UTR and 3’ UTR were used for 

hybridization. The membrane was hybridized in ULTRAhyb –Oligo buffer (Ambion) at 

42oC overnight. The blot was then washed twice with 2 × SSC, 0.5% SDS at 42oC for 30 

min. 

Two-week-old rice seedlings growing on MS medium with and without 5-azaC 

(25 mg/L) were harvested and ground in liquid nitrogen. Trizol reagent (Invitrogen, 

Carlsbad, CA) (20 mL) was added to 2 g of ground tissue, and RNA was extracted 

according to the manufacturer’s instructions. 
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Low molecular weight RNAs and high molecular weight RNAs were fractionated from 

total RNAs using the method of Hamilton and Baulcombe (Hamilton and Baulcombe, 

1999).  

For smRNA detection, 60 mg of low molecular weight RNAs was separated on a 

17% polyacrylamide gel containing 7 M urea. Gels were transferred onto Hybond+ nylon 

membranes (Amersham, Piscataway, NJ), and hybridization was performed using 

Ultrahyb-Oligo buffer (Ambion) at 42 and 408C. Full-length RCg2 probe and gus, as 

well as synthesized DNA oligonucleotides corresponding to their double-stranded 

regions, were used as probes.  

Total RNA from silenced and expressing YXB lines was extracted with Trizol, 

dissolved in TE buffer, and made to a final conc. of 10% PEG, 1M NaCl, for 2 h. High 

mol. wt RNA was sedimented by centrifugation and small RNAs in the supernatant 

precipitated with ethanol. Northern analysis was used to detect miRNA. RNA was 

separated by 7M urea – 17% PAGE and transferred to a nylon membrane. Six miRNA 

homologs predicted for Oryza from an Arabidopsis miRNA cloning study were used as 

queries against rice EST databases and, based on a maximum number of hits; mir160a 

was selected as a probe for detection of miRNA. The same blot was stripped and re-

probed for detection of siRNA. Analyses were repeated at least twice. Hybridizations 

and washes were carried out at 40ºC. Probes for detection of RCg2-related siRNA were 

based on the RCg2 promoter and/or coding sequence.   
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Genomic DNA Methylation Analysis  

Genomic DNAs extracted from rice lines T309, expression line YXB138 

homologous progeny, YXB92 silenced progeny, silenced lines YXB70 progeny and 

YXB60 were digested using methylation-sensitive restriction enzyme PvuI (CGAT|CG). 

DNA was treated and after electrophoretic separation of DNA on 1% agarose gel for 12-

15 hours at constant 23 volts, the DNA was transferred to HybondTM-N+ nylon 

membrane (Amersham, Piscataway, NJ). Genomic DNA blot analysis was as described 

by Buchholz et al. (Buchholz, 1998 #7800). [32P]dCTP-labeled probes were made using 

a DECAprimeTM II DNA labeling kit (Ambion, Austin, TX). Membranes were washed 

with 2×SSC [1×SSC = 0.15 M sodium chloride /0.015 M sodium citrate (pH7)]/0.1% 

SDS at 65°C for 1 hr (low stringency), or with 0.3×SSC /0.1% SDS at 65°C for 1 hr 

(moderate stringency). 

 

Bisulfite Genomic DNA Methylation Sequencing 

Genomic DNAs extracted from rice lines T309, expression line YXB138 

homologous progeny, YXB92 silenced progeny, and silenced lines YXB72 progeny and 

YXB60 were digested by HindIII and purified with phenol chloroform. DNA was treated 

with bisulfite, which selectively deaminates cytosine but not 5-methylcytosine to uracil. 

This leads to a primary sequence change, as unmethylated cytosines are converted to 

uracil and then thymidine after PCR; however, 5-methylcytosine is not converted by 

bisulfite and remains as a cytosine after PCR. This primary sequence change can be 

quantified using direct sequencing, restriction digestion, or pyrosequencing. In brief, a 
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total of 500 to 750 ng of purified genomic DNA was used for bisulfite treatment for 16 h 

using the EZ DNA methylation kit from Zymo Research (Orange, CA). After elution of 

the treated samples, 2 to 4 mL of elute was used for subsequent PCR amplification with 

AmpliTaq Gold DNA polymerase (Foster City, CA). PCR analyses were performed 

according to the manufacturer’s recipe with an optimized MgCl2 concentration of 4 mM. 

The cycling parameters were as follows: 94ºC for 2 min; four cycles of 94ºC for 1 min, 

53ºC for 2 min, and 72ºC for 4 min; 39 cycles of 94ºC for 45 s, 53ºC for 2 min, and 72ºC 

for 2 min; and 72ºC for 10 min. The primers to amplify the RCg2 promoter top strand 

DNA were 5'-AGAAGGGGYGAGYTAGAGGATTG-3', the reverse primer of 

endogenous RCg2 promoter was 5'-ARCRACCTTRRAARCARCCAT-3'. Reverse 

primer of transgenic RCg2 promoter was 5' -CRATTCARACTRAATRCCCACA -3'. 

PCR products were cloned with the TOPO TA cloning kit (Invitrogen, Carlsbad, CA), 

and plasmids containing inserts of the correct size were sequenced using T7 primer. This 

method was as described in Yang et al. (Yang et al., 2005b).  
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Primers of methylation sequence PCR: 

RcgMS (F): 5’ -AGA AGG GGY GAG YTA GAG GAT TG -3’ 

RcgCMS (Rev): 5’ -ARC RAC CTT RRA ARC ARC CAT- 3’ 

RcgGMS (rev): 5’ - CRA TCC ARA CTR AAT RCC CAC A - 3’ 

 

Nuclear Run-on Transcription Assay  

Isolation of leaf nuclei and run-on transcription were performed essentially as 

described by Ingelbrecht and de Carvalho (Ingelbrecht and de Carvalho, 1992). Slot 

blots were prepared using nitrocellulose membranes (Schleicher and Schuell, Keene, 

NH) containing 1 µg of linearized plasmid DNA (or the fragment isolated from 1 µg of 

plasmid DNA). Hybridization was performed for 2 d and the filters were washed to a 

final stringency of 0.3XSSC and analyzed on a Fujix BAS 2000 Bio-Imaging Analyzer. 
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Results  

 

RNA Gel Blot Analyses Confirmed RCg2 Is a Root-Preferential Gene Rather Than 

Root- Specific Gene 

As histochemical analysis of GUS expression of YXB (in this research) and 

YXA (Xu et al., 1995) showed expression in both roots and leaves, involvement of the 3' 

-downstream sequence of RCg2 gene would not explain the unexpected expression in 

leaf tissue seen in the transgenic plants. These results made us rethink the expression 

profile of the endogenous RCg2 gene.  

RNA gel blots were used to profile the expression of the RCg2 gene in various 

wild type varieties of rice: Taipei309, Nipponbare, Gulfmont, IR-72 and TX-6. The 

result showed that the expression of RCg2 genes did not vary greatly in the same organ 

between varieties, Comparisons among T309 leaf (T309L), Nipponbare leaf (NPL), IR-

72L, Gulfmont leaf (GUFL) and TX-6, showed similar expression, and their root 

samples also showed similar expression level for either the RCg2 coding region as probe 

or the 3’-UTR used as a probe. However, there was a significant difference between 

roots and leaves (Figure 3.1A) with expression in roots 2X as high as in leaves using 

semi-quantitative method Image J (Figure 3.1 B and 3.1C). T309 showed the highest 

expression 137.63 in root, and TX-6 showed the highest expression 85.5 in leaf (no root 

sample here). However, the expression of NIP RCg2 in leaf showed the lowest 

expression. The expression ratio of root to leaf samples differed slightly among the 

varieties. T309 showed the highest ratio, about 2.05, the ratio of Nipponbare was 1.84, 
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but the expression ratio of Gulfmont and IR-72 was almost same (Figure 3.1C).  The 

RNA samples in the blot labeled with RCg2 coding sequence showed much stronger 

signal than those labeled with RCg2 3’-UTR (Figure 3. 1A), so could explain the 

contradiction results with Xu et al. (Xu et al., 1995) where it was stated that RCg2 is 

root-specific gene. 
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Figure 3.1. Northern blotting analysis of RCg2 expression in different varieties.  

(A) 5ug of total RNA was used for the Northern blot using RCg2 coding sequence 450bp, 3’-

UTR 660bp and EF1a 100bp as probes.  

(B) Image J data shows relative expression level of RCg2 in different tissues and varieties.   

(C) The ratio of RCg2 expression in root and leaves. 
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RT-PCR Analysis of RCg2 Expression in Various Varieties and Tissues also Confirmed 

that RCg2 Is a Root-Preferential Gene  

More precisely RT-PCR analysis of RCg2 expression was performed to confirm 

the expression profile of RCg2 in various varieties and tissues.  Total RNA (1 g) was 

isolated from rice leaves and roots using Trizol and digested with RNase-free DNase I, 

was subjected to RT-PCR analysis employing the Qiagen one-step RT-PCR kit. The 

results shown in figure 3.2 reveal that RCg2 expression in T309, NIP and GULF roots 

was stronger than the expression in leaf samples. However the RCg2 expression in IR-72 

and TX-6 root samples was not higher than the expression in the leas samples, and 

actually was a little bit lower than expression in leaf. This probably is due to the RNA 

sample quality and degradation. The ratio of expression in root samples to leaves 

samples in T309 was about 2, consistent with northern blotting data. The ratio of 

expression in root samples to leaf samples in NIP and GULF was 1.3 and 1.7. Although 

the expression of IR-72 and TX-6 in root is not higher than the expression in leaf, we 

still know the expression of GUS in root is 1.5 – 2 times higher than in leaf. The 

expression in the leaf from the RT-PCR also confirmed that RCg2 not only expressed in 

roots but also in leaf, and the expression level is significantly different between root and 

leaf. 
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Figure 3.2.  RT-PCR analysis of RCg2 expression in different varieties and tissues. RT-

PCR using 0.5 ug total RNA as template, 6 µM (50 ng) of each RCg2 primer and 0.08 

µM (30 ng) EF-1 alpha as internal control. PCR run 26 cycles. 
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Figure 3.3. Northern blotting analysis of transgenic YXB. 4 ug of total RNA was used 

for the northern blot using RCg2 coding sequence, gus and EF1-α as probe. 
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Figure 3.4. Northern blot analysis of YXB. RCg2 coding sequence as probe. RNA from 

leaf. 

 

RT-PCR and Northern Blot Analysis of RCg2 Expression and Transgene gus Expression 

in Transgenic Homozygous Lines Progeny also Confirmed that RCg2 is a Root-

Preferential Gene  

Total RNA samples from the YXB homozygous lines progeny were subjected to 

northern blotting analysis. The results showed the endogenous RCg2 existent in all the 

progeny from both homozygous expressing lines YXB 138-9, YXB 92-4 and silenced 

lines YXB70-6 and YXB60-2 (Figure 3.3 and Figure 3.4). The transgene gus only 
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appeared in strong expression line YXB138 and its progeny (Figure 3-4). GUS 

expression was lost after the R2 generation in YXB92-4, which is a segregate from the 

strong expression line, YXB 92. Rice elongation factor EF-1α was used as internal 

control. RT-PCR results also showed similar result for either expressing lines or silenced 

lines for RCg2 endogenous gene (Figure 3.5A). 
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Figure 3.5. RT-PCR analysis of endogenous RCg2 and transgene RCg-GUS.  

(A) RNA was used for reverse transcription using RCg2 primers and amplified by PCR in a one step 

reaction using 28 (optimum) cycles. Silenced lines progeny of YXB 70, 60 and show a reduction in 

expression, and YXB 92 is variable over three generations. The upper band is the endogenous gene-

specific band; the lower band is an internal control (EF1 alpha).  

(B) Similar experiment to that shown in A, but with a GUS-based internal primer. Expression of the 

transgene is only seen in line YXB 138. Lane 2: T309; lane 3: 138-9-4-n (expressing); lane 4: 92-4-n 

(silenced); lane 5: 92-4-7-n (silenced); lane 6: 92-4-3-2-n (silenced); lane 7: 70-6-4-n (silenced); lane 8: 

60-2-4 -n (silenced); Lanes 1 and 10 are 1 kb and 100 bp DNA ladders, respectively; lane 9 is a negative 

control (no RNA). 
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These findings suggest that the 1.65kb of 5' -flanking sequence and 3' -flanking 

sequence of the RCg2 gene probably do not provide sufficient information for precise 

spatial regulation in transgenic rice plants.  

 

5- Azacytidine (azaC) Treatments Reactivated the GUS Expression of Silenced YXB 

Lines 

 The data shown in Table 3.1 and additional studies about of pYXA and pJD4 

transgenic rice plants (not shown) reveal that the RCg2 promoter is silenced at a high 

frequency in transgenic rice. An important control was to show that the integrated 

transgene was capable of expression. This can be accomplished in many cases by 

reactivation with 5-azacytidine or trichostatin A (Kumpatla et al., 1997; Kumpatla and 

Hall, 1998a, b).  

 Methylation is one of the most frequently documented genome modifications of 

introduced and endogenous genes. Methylation inhibitors, such as 5-azaC, can change 

methylation status (Weber et al., 1990). Fresh grown root samples were collected from 

tillers of primary transformants: YXB1, 5, 7, 8, 12 and 38 that had been grown in the 

presence of 5-azaC (50 mg/L) for 5 days. X-gluc staining of the root samples revealed 

patchy blue staining in areas other than root tips of YXB5, 7, 8, 12, 38, 60 and 70. Seeds 

from YXB5, 13, 25, 28, 33, 37, 38, 44, 60, and 70 were germinated in the presence of 50 

mg/l of 5-azaC. Root samples from these plants were taken after one and two weeks and 

stained for GUS activity. Reactivation of GUS was observed in these lines (Table 3.1) 
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(Figure 3.6 and Figure 3.7) indicating that methylation very likely is involved in 

silencing of YXB in these lines.  

 

Table 3.1 Reactivation of GUS expression of YXB plants after 5-azaC treatments 

GUS expression 
 

 

Lines No treatment +5- azaC (50mg/l) 

2 - + 

12 - + 

37 - + 

60 - + 

       R0 Root 

70 - + 

2 - - 

12 - - 

24 - - 

25 - - 

37 - + 

60-2 - + 

70-4 - + 

92-4 + + 

92-5 + + 

 

R1 seedling 

33-5 - + 

60-2n - + 

70-4n - + 

92-4n - + 

92-5n - + 

       R2 seedling 

33-5n - + 
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Figure 3.6. YXB GUS staining pattern after 5- azaC treatment.  
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1 wk 2 wk 1 wk 1 wk 4 wk 2 wk, 1 wk

5AzaC 
(mg/L) 0 0 25 50 50 50, 0
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0 25 50

Figure 3.7. X-Gluc staining of root and leaf tissues of YXB10 R1 seedlings germinated in the 

presence of 5-azaC. 

 

 Seeds from self pollination silenced (GUS) lines: YXB13, 28, 33, 37, 38 and 44 

were germinated in the presence of 5-azaC (50 mg/L) and hygromycin B (50 mg/L) for 

two weeks and transferred to soil. Herbicide resistance was determined 45 days after 

transplanting and bialaphos resistance was found to be maintained for 8/10 (YXB13), 

7/7 (YXB28), 2/3 (YXB33), 9/10 (YXB37), 4/6 (YXB38) and 3/3 (YXB44).  

 Reactivation of GUS expression confirms silencing and DNA methylation related 

silencing. The Agrobacterium-transformed YXB population appears to represent an 

excellent system to study silencing events derived from the presence of an endogenous 

promoter regulating a chimeric transgene.  

Transgene Silencing in YXB Transgenic Plants  
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RT-PCR Analysis of RCg2 Expression and Transgene gus Gxpression Showing 

Reactivation of GUS Expression in Homozygous Progeny of Transgenic Lines 

Confirmed that Transcription is Silenced by DNA Methylation 

Total RNA samples from roots and leaves from the YXB homozygous lines 

YXB 138-9-5 (the expressing line), YXB 92-4-n single copy silenced line (primary 

transformant with strong expression) and YXB 70-6, the single copy silenced line, and 

their seedlings after 5-azac treatment were subjected to RT-PCR analysis (26 cycles). 

The results verified the presence of the endogenous RCg2 in all the progeny from both 

homozygous expressing lines YXB 138-9, YXB 92-4 and silenced line YXB70-6 for 

both non-treated and 5-azac treated samples (Figure 3.8). However, mRNA from the 

transgene gus only appeared in samples from the strong expression line YXB138 and its 

progeny (Figure 3.8). Another primary strong expression line, YXB 92, and its 

homozygous single copy progeny YXB92-4 lost GUS expression after the R2 

generation. The lanes of YXB92-4-n L and YXB92-4-n R showed no transcripts. The 

lanes of YXB YXB92-4-n La and YXB92-4-n Ra (a represents 5 azaC treatment) 

showed amplification of gus mRNA, indicating that the silenced transgene was 

reactivated.  The same results were seen in the single copy silenced line YXB 70-6-n 

(Figure 3.8) and YXB 60-2 (data not shown). Rice elongation factor EF-1α was used as 

an internal control. The stronger expression in most root samples than in leaf was 

consistent with the wild type rice varieties and revealed the RCg2 is root preferential 

gene. 
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Figure 3.8. RT-PCR analysis of RCg2 expression and 5-azaC treatment in homozygous lines of 

transgenic YXB plants. 

 

Genomic DNA Methylation Analysis Shows the YXB Transgenic Silence Is Methylation 

Related 

 Genomic DNAs extracted from rice lines T309, expression line YXB138 

homozygous progeny, YXB92 progeny, silenced lines YXB70 progeny and YXB60 

were digested with methylation-sensitive restriction enzyme PvuI (CGAT|CG) and the 

intensity and its restriction fragments for expressing and silenced lines was compared 

(Figure 3.9). Wt T309 was digested with PvuI (CGAT|CG) as a control. The expected 

size of the RCg2 promoter is 2600 bp and reconstructed samples to provide 5X, 2X, and 

1X copy are shown in the right lanes of the blot (Figure 3.9C). All the samples, either 

expressing lines 138, 92 and 91 or silenced lines 60, 70, 144, and wt T309 showed 
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endogenous RCg2 gene promoter fragment bands of 770 bp and 712 bp. This indicated 

that the endogenous RCg2 promoter showed no methylation at any PvuI site, and that 

most promoter sequences in the sample can be cut by PvuI enzyme to form smaller 

bands. Lighter intensity of bands at 2600 bp and 1747bp from expressing lines YXB138 

and YXB91 provides evidence that methylation is associated with silencing of the RCg2 

promoter. Expressing lines YXB138 and YXB91 lacked the 2600 bp band and had very 

faint 1700 bp bands indicating no methylation at the 6895 bp, 6797 bp and 6086 bp sites 

(Figure 3.9A and 3.9B) and less methylation at site 6042 bp or 6086 bp compared with 

silenced lines.  Silenced line showed some methylation at all the PvuI sites and strong 

methylation at site 6042 bp or 6086 bp. For the line YXB92 a very different pattern 

revealed that this line transgene locus is different than other expressing lines, and might 

explain the lost of expression after 2 generations with self-crossing (Figure 3.6). RCg2 

transgene silence in rice transgenic plants is associated with methylation of the RCg2 

promoter indicating that it is a transcriptional gene silencing is the cause. 
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Figure 3. 9. Methylation analysis of silenced and expressing lines by Southern Blotting. 

(A) Expected fragments sizes after digestion by PvuI in trasgenic RCg2 promoter.  

(B) Expected fragments sizes after digestion by PvuI in endogenous RCg2 proomoter.  

(C) Southern blot result shows methylation is related to gene silencing in transgenic plants. 

 

Methylation Sequence and Silencing of the RCg2 Promoter 

 Genomic DNAs extracted from rice lines T309, expression line YXB138 

homozygous progeny, YXB92 silenced progeny, and silenced lines YXB72 progeny and 

YXB60 were digested by HindIII and purified with phenol chloroform. DNA was treated 

with bisulfite, which selectively deaminates cytosine but not 5-methylcytosine to uracil. 

This leads to a primary sequence change, as unmethylated cytosines are converted to 

uracil and then thymidine after PCR; however, 5-methylcytosine is not converted by 

bisulfite and remains as a cytosine after PCR (Grunau et al., 2001) (Yang et al., 2004).  
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C T G C A G C T G A T C T C A A C A G T T T A T T T T A T A T G A T G G T G T A ACCATCTAAT ATACCATGTT GCTGATAATT TTTAACCAGA GCAATTAATC GG A G C A T G G C C C T A G T G T T G AACAATTTGC

A C T T T C A C A G T C A G G T G T A A C A T T T T G T A C A T T C A G C A T A ATGGTATGCT CTTTGCGCTT TTTCAGCCCT TGTGTAACAC AGCAGGATTT CA A A A A C A C A A G G A T A A A A A AACGTATAAA

T A G A A T A G C A T G C C A C A A C A A A T CA T A C A G G A T T T T T T T A AAGAAATGTT ACAGGAAATG AATCCACTGA ATTTTTTTTT TTAAAAAAAA GT T T G G T A A C A C C A T A G G A G AAGTAAAGGA

A T T A G G A G T C A C G A C T C A T G A T G AA G A G A A A A C A T G A G A T T TAGGCTCAT GTTAATTTTC CTCCAAAATT TGTTGAAATG AGCCATTCCA TA T G A A T T T C A A A G G A T T T T ATATGAGTCA

T T C A T T T G T T C G T A A G G A C A A T A T A G G A A C A T T T T T C A A T GAATTGTAAT CCTCTATAAT TTCTACAGTT CTCCTTTATC CCAAAGGAAT CT T T A C G T A C G C A C A G G T A A AATTGGGACT

C C C A T G A T C C C A T C T T T A C C A G A AG G G G C G A G C T A G A G G A T TGCCGTGCG TAAATTTGCA CGGTGCTAGC TAGCTAGATT TTGAAAGTAG AT G A A C C G A T A T A T A A C A C T TTGGGTTTCA

T A C T T T C A T T A G T C C A C A T G A A C AT C G A A C C C T A G C T T A G ACACGGCATA AATCGATCGA GGCATGGACG CATGTATCAG TATTTGCATG AT T G C T C G A T C G A G A T T A T A TTACCCTCTT

A C A C A T G C A T G C A T G G G G G A A T A AT T C A A C A A C G T C T G A A T GTCTGATTC CTCATGGAAA ATTCCTTGTC ACATCTCTTT CTCTGAGTAC TC T A A C G A A C A A C T G G C C A T GTATGCACAT

G C A C C C C A G A G A C A A C C T A G C T A CG T A C C C T G C A T C T G A C ACCCCCACAT GCACGTACCA TTGCATCTGC TTACTTCGGA TTGATAATAC TT A C A G T G A A C A A C A C G G T C TCTTAAAAAA

T A G C T T T G A T T A C T A T T T C T A T T AT A A T A T A T A T A G A A A T ATTAACAAAT ATATAATTTT ATTAGATCTT AACAAGCATT TCTCCATATT CA T C C C T G A A A G T T G G T T T T TATAGGACGA

G A G G A G T A C A T A T T T T T T A A G A A AA T T A T T T T A T A A A T T A T TTATAATCA AATATTTTAA AATTCGATCT TAATTTTGTC CGAAACAACG AG T A T T A T A A G A G C T T A T T T GGTAGAGCTC

C A A C T C C T A A A T T T A G C T T C A A G AG T T A G A T C T G A A G T A G AGTTATATGA AGCTGCTTAA ACCCAACTTT GCATGTCTAG TTCATTTTGG AG A T A G C T C T A C A C A G C T C A GCTGAAATTG

T T T G G T G A A G C T A G A G C T G T G C C AA A C A G G G C C T C C G T C T GGAGAGAAAG TAGCAACGCA TCCATGCAAA CCACTCTTGC TATAGGCTCG AT C G G C T A T A A A T A C A A G A C GCCATGACAC

C C C A A G C A A A C C A A C C C A A A G C A AC A C A A G C C A T A G C A G C AGAGCCGAGT AGCTGAGCTC ACTGTTCGAT CGATCACTAG CTCGCTAGCT GC A T C C 

G A C G T C G A C T A G A G T T G T C A A A T AA A A T A T A C T A C C A C A T T GGTAGATTA TATGGTACAA CGACTATTAA AAATTGGTCT CGTTAATTAG CC T C G T A C C G G G A T C A C A A C TTGTTAAACG

T G A A A G T G T C A G T C C A C A T T G T A AA A C A T G T A A G T C G T A T T ACCATACGA GAAACGCGAA AAAGTCGGGA ACACATTGTG TCGTCCTAAA GT T T T T G T G T T C C T A T T T T T TTGCATATTT

A T C T T A T C G T A C G G T G T T G T T T A GT A T G T C C T A A A A A A A T T TCTTTACAA TGTCCTTTAC TTAGGTGACT TAAAAAAAAA AATTTTTTTT CA A A C C A T T G T G G T A T C C T C TTCATTTCCT

T A A T C C T C A G T G C T G A G T A C T A C T T C T C T T T T G T A C T C T A AATCCGAGTA CAATTAAAAG GAGGTTTTAA ACAACTTTAC TCGGTAAGGT AT A C T T A A A G T T T C C T A A A A TATACTCAGT

A A G T A A A C A A G C A T T C C T G T T A T AT C C T T G T A A A A A G T T A CTTAACATTA GGAGATATTA AAGATGTCAA GAGGAAATAG GGTTTCCTTA GA A A T G C A T G C G T G T C C A T T TTAACCCTGA

G G G T A C T A G G G T A G A A A T G G T C T T C C C C G C T C G A T C T C C T AACGGCACGC ATTTAAACGT GCCACGATCG ATCGATCTAA AACTTTCATC TA C T T G G C T A T A T A T T G T G A AACCCAAAGT

A T G A A A G T A A T C A G G T G T A C T T G T A G C T T G G G A T C G A A T C T GTGCCGTAT TTAGCTAGCT CCGTACCTGC GTACATAGTC ATAAACGTAC TA A C G A G C T A G C T C T A A T A T AATGGGAGAA

T G T G T A C G T A C G T A C C C C C T T A T T A A G T T G T T G C A G A C T T ACAGACTAAG GAGTACCTTT TAAGGAACAG TGTAGAGAAA GAGACTCATG AG A T T G C T T G T T G A C C G G T A CATACGTGTA

C G T G G G G T C T C T G T T G G A T C G A T GC A T G G G A C G T A G A C T G T GGGGGTGTA CGTGCATGGT AACGTAGACG AATGAAGCCT AACTATTATG AA T G T C A C T T G T T G T G C C A G AGAATTTTTT

A T C G A A A C T A A T G A T A A A G A T A A T A T T A T A T A T A T C T T T A T AATTGTTTA TATATTAAAA TAATCTAGAA TTGTTCGTAA AGAGGTATAA GT A G G G A C T T T C A A C C A A A A ATATCCTGCT

C T C C T C A T G T A T A A A A A A T T C T T T T A A T A A A A T A T T T A A T AAATATTAGT TTATAAAATT TTAAGCTAGA ATTAAAACAG GCTTTGTTGC TC A T A A T A T T C T C G A A T A A A CCATCTCGAG

G T T G A G G A T T T A A A T C G A A G T T C T C A A T C T A G A C T T C A T C T CAATATACT TCGACGAATT TGGGTTGAAA CGTACAGATC AAGTAAAACC TC T A T C G A G A T G T G T C G A G T CGACTTTAAC

A A A C C A C T T C G A T C T C G A C A C G G T T T G T C C C G G A G G C A G A CCTCTCTTTC ATCGTTGCGT AGGTACGTTT GGTGAGAACG ATATCCGAGC TA G C C G A T A T T T A T G T T C T G CGGTACTGTG

G G G T T C G T T T G G T T G G G T T T C G T T G T G T T C G G T A T C G T C G T CTCGGCTCA TCGACTCGAG TGACAAGCTA GCTAGTGATC GAGCGATCGA CG T A G G 

1326 

Figure 3.10. RCg2 promoter sequence and highlight CpG and CNG. CpG highlights with green 

color and CNG highlights with red color. 
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This primary sequence change can be quantitated using direct sequencing, 

restriction digestion, or pyrosequencing. The relationship between silencing, reactivation 

and methylation status was studied in collaborative work with Dr. Yeon-Hee Lee during 

Dr. Lee's visit to Texas A&M in May-July, 2004. Because there are no classical HpaII - 

MspI (CCGG) or SmaI - XmaI (CCCGGG) methylation sensitive restriction enzyme pair 

sites, methylation sequencing (Clark et al., 1994) was undertaken. 11 clones were 

obtained from line YXB70-6-4, 2 clones from 60-2-4, and 6 clones from YXB138-9-4 

and 7 clones from YXB92-4-7. 

  There are 43 CNG sites and 37 CpG sites in the promoter sequence (Figure 

3.10). The size of the PCR fragment of RCg2 promoter generated with the primers used 

is about 1100 bp. Within this part of the RCg2 promoter, there are 30 CpG sites 

dinuceotide and 27 CpNG sites. Of all cytosine positions, 49% were methylated for 

YXB138 progeny (138-9-4), 21% for YXB92 progeny (92-4-7), and 93.6 % for YXB70 

(70-4-3-11) within the promoter fragment of the primer amplicon region (1030 bp. -950 

to +78). Symmetric cytosine positions (CpG and CNP) of these three lines were 54%, 

30% and 94% methylated, respectively. Two amplicon clones were obtained from 

YXB60 progeny, and the sequences are the same as the RCg2 promoter sequence, 

suggesting that the bisulfite treatment of genomic DNA did not work. Improved 

techniques for methylation sequencing are planned for future experiments. The result 

showed the cytosine methylation frequency is much different in transformant lines. It 

showed about 95% methylated cytosine in the single copy silenced line YXB70-2 and 

lower frequency in transgenic expressing lines. However, the switched line YXB90-4-7 
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showed very low methylation. This result also revealed that different mechanisms are 

involved in the RCg2 promoter transgenic silencing in addition to methylation related 

silencing. 

 

Time Course of 5-azacytidine (5-azaC) Treatments Reactivation of the GUS Expression 

of Silenced YXB Lines 

 To optimize the reactivation conditions for GUS expression in transgenic YXB 

lines, the histochemical staining experiment was performed about one week after the 

seeds had germinated on MS medium without 5-azacytidine. Then the seedlings were 

transferred onto medium containing 25 mg/l and 50 mg/l 5-azacytidine respectively. 

GUS expression was initially detected via histochemical staining after 22 h, and 40% of 

seedlings stained in the leaves and roots after 24 h (Figure 3.11). 80% of the seedlings 

gave reactivated GUS expression with 25 mg/L concentration of 5-azaC and 60% of the 

seedlings reactivated with 50 mg/L concentration of 5-azaC. After 42 h, 100 % of 

seedlings were reactivated for GUS expression. This finding indicated that high 5-azaC 

concentration was not essential to reactivation in seedlings. 

In another set of experiments, callus derived from mature embryos of silenced 

lines was exposed to 5-azaC to investigate the reactivation of GUS expression. 

Histochemical staining of callus revealed that GUS started to be reactivated on callus 

following 38 h exposure to 50 mg/L 5-azaC. Uniform GUS expression was observed for 

all treatments after 96 h of exposure to 50 mg/L 5-azaC (Figure 3.11A). No callus was 

reactivated with 25mg/L concentration of 5-azaC. This finding suggests that high 5-azaC 
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concentration and a longer exposure required for reactivation of GUS expression on 

callus.  
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Figure 3.11. Reactivation of GUS expression in seedlings and calli of silenced YXB70-6.  

(A) Reactivation of GUS expression by 5-azacytidine (5-azaC).   

(B) GUS expression was not visible in roots before 24 hr exposure to 25 mg/L 5-azaC.  

(C) And (D) GUS expression was visible in roots or leaves following 24 hr exposure to 25 mg/L 5-azaC.  

(C) And (F) GUS expression was increased in roots or leaves following 38 hr exposure to 25 mg/L 5-azaC.  

(G) GUS expression was not visible in calli after 72 hr exposure to 25 mg/l 5-azaC, and even after a long exposure. 

(H) GUS expression started to show on calli following 40hr exposure to 50 mg/L 5-azaC.  

(I) GUS expression started to show increased on calli following 90 hr exposure to 50 mg/L azaC. 
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Possible Functional Interactions of miRNA, siRNA and MITE Elements of the RCg2 

Promoter 

 

 

 

 

 

 

 

Figure 3.12. Appearance of a 21 nt siRNA is associated with the disappearance of miRNA in a 

silenced line. 

(A) Total RNA for northern analysis was size-fractionated on a 17% polyacrylamide, 7M urea 

gel and separated into low (L) and high (H) mol. wt. RNAs by PEG treatment.  

(B) When hybridized with a mir160a-based probe, the presence of a mir160a homolog was 

evident except in the 92-4-7-n line.  

(C) When the blot shown in panel A was stripped and re-probed with the RCg2 promoter probe, 

21-25 nt siRNAs were detected exclusively in the silenced progeny line 1L (YXB 92-4-7-n). 

 

Initial experiments were undertaken to detect the presence of siRNAs and 

miRNAs in various expressing and silenced lines of YXB at different growth stages. 

Total RNA for northern analysis was size-fractionated on a 17% polyacrylamide, 7M 

urea gel and separated into low (L) and high (H) mol. wt. RNAs by PEG treatment. 

When hybridized with a mir160a-based probe, the presence of a mir160a homolog was 
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evident except in the 92-4-7-n line (Figure 3.12B). When the blot shown in panel B 

(Figure 3.12B) was stripped and re-probed with the RCg2 promoter probe, 21-25 nt 

siRNAs were detected exclusively in the silenced progeny line 1L (YXB 92-4-7-n) 

(Figure 3.12C). Mir160a – microRNA was originally cloned from Arabidopsis Reinhart. 

The sequence of the processed mir160a is UGCCUGGCUCCCUGUAUGCCA. On the 

basis of computational analysis, 3 microRNA homologs 160 a, b and c were predicted to 

be present in rice. Appearance of a 21 nt siRNA is associated with the disappearance of 

miRNA in progeny of silenced line YXB 92-4-7-n. To confirm this result, different 

silenced lines 92-4-7-3-mature plant (silenced line), 70-6-4-n mature plant (silenced 

line), and 92-4-7–n seedling stage (silenced line), 70-6-4-n seedling stage (silenced line), 

60-2-4-n seedling stage (silenced line), and 60-2-4-n mature plant (silenced line) were 

subjected to northern blot analysis (Figure 3.13). SiRNAs only appeared in 92-4-7-n 

seedling stage RNA extracts hybridized with RCg2 promoter probes (Figure 3.13B). 

Other homozygous silenced progeny of lines 70-3 and YXB60-2 showed no 

hybridization with RCg2 promoter probe either in mature plants or in seedlings stage 

(Figure 3.13B). This result indicated that the silenced line YXB 92-4-7 from the primary 

expressing line has a different silencing mechanism than the silenced line YXB 70 and 

YXB 60.  Interestingly in mature plants, all lines showed hybridization with mir160a, so 

further experiments were performed (Figure 3.13C and D). The result provided the first 

experimental evidence for the presence of a miRNA in rice. The mir160a homolog is 

present in seedlings and leaves of mature rice (Oryza sativa T 309) plants (Figure 3.13). 
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Figure 3.13. Northern analysis of total RNA from YXB lines and total RNA from mature YXB lines. 

(A) Hybridization with a mir160a-based probe revealed the presence of a mir160a homolog except in the 

92-4-7-n line. 

(B) Stripping and re-probing with the full-length RCg2 probe (promoter+coding) showed 21-25 nt siRNA 

exclusively in the silenced progeny line YXB 92-4-7-n. Lane 1: 92-4-7-3-mature plant  (silenced line); 

lane 2: 70-6-4-n mature plant (silenced line); lane 3: 92-4-7–n seedling stage (silenced line); lane 4: 70-6-

4-n seedling stage (silenced line); lane 5: 60-2-4-n seedling stage (silenced line); lane 6: 60-2-4-n mature 

plant (silenced line); lane 7: T 309 Seedling stage (wild type); dm: 10 bp decade marker (20 and 30 bp 

shown). 

(C) A mir160a-based probe showed the presence of mir160a homolog in all lines. 

(D) The same blot as A, stripped and re-probed with the RCg2 promoter probe detected 21-25 siRNA 

exclusively in YXB 92-4 progeny. Low levels of siRNA, spread over a 21-30 bp range, were detected. 

Lane 1: 21 nt oligo (size marker); lane 2: - (empty lane); lane 3: 70-6-3-n (silenced line); lane 4: 92-4-7-n 

(silenced line); lane 5: 92-4-3-n (silenced line); lane 6: 138- 9-4-n (expressing line); lane 7: T309 (wild 

type). 
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Discussion 

 
RCg2 Is a Root - Preferential Gene  

Expression of RCg2-gus in leaves of YXA and YXB transgenic plants indicated 

that RCg2 is expression is not limited to roots. This is contrary to the finding reported by 

Xu et al. (Xu et al., 1995) that RCg2 is a root specific gene and in agreement with the 

observation with results discussed earlier for the YXA transformants. Northern blot 

analysis and RT-PCR results for two-week-old wt varieties rice and YXB showed 

existence of RCg2 transcripts in both of the plants and both in leaves and roots. Nuclear 

run-on results for the mature plant also revealed transcripts in YXB transgenic plants 

leaves (Figure 3.14).  The conclusion is that the RCg2 is not root specific in rice but is a 

root preferential gene.  

 

 

 

 

 

 

 

 

*Run-on experiments    
(TGS or PTGS?)

Line GUS transcript

49-1 (SE) +
51 (NE) -
52 (NE) -
68 (SE) +
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Figure 3.14. Nuclei run-on assay on transgenic YXB expressing and silenced lines. a-32P-UTP-labeled run-on 

transcripts prepared from wild type (T309), silenced YXB plants (51, 52) and expressing (49-1, 68) plants were 

hybridized to pYXB (gus coding fragment), pPK1 (RCg2 coding fragment) and pUC18 (plasmid vector). 
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Multiple Silencing Mechanisms Silenced the RCg2-gus 

 Methylation of an introduced gene and the corresponding endogenous gene is 

often associated with gene silencing phenomena. To study the unique and high 

frequency gene silencing in the YXB plants, we selected and demethylated 7 silenced 

YXB lines that have different T-DNA copy numbers (1 or 2) using 5-azaC. Contrary to 

the uniform and high-level reactivation of GUS expression in a 35S-gus transformed 

silenced line (JDV105) (Hall et al., 2001); we only observed partial reactivation in 

YXB38 (Figure 3.6 on page 69) that has 2 copies of the T-DNA (Figure 2.1B on page 

19). This observation suggested existence of more than one gene silencing mechanisms 

towards YXB in that some plants were responsive to the demethylating agent and some 

were not. Demethylation not only reactivates the silenced gene but also affects the 

functional gene. We selected seeds from several self-crossed and bialaphos resistant 

YXB lines; they were germinated in the presence of hygromycin and 5-azaC and 

transferred to soil. After 45 days, herbicide resistence was assayed and some lines 

became sensitive to bialaphos. This finding indicates that demethylation using 5-azaC 

may have positive or negative effect on the introduced gene depending on different 

transformation events. To determine if silencing resulted from transcriptional or 

posttranscriptional inactivation, nuclear run-on transcription assays were carried out on 

nuclei isolated from both YXB expressing (YXB 49-1 and 68) and silenced (51 and 52) 

lines (Figure 3.14). The finding suggested that the silencing in lines 51 and 52 (no 

transcript was detected on run on blot) is transcriptional (Figure 3.14) but is post-

transcriptional in line 92-4-7 progeny (Figure 3.12 on page 79). Nuclear run-on in the 
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mature plant also revealed transcriptional silencing (TGS) in YXB transgenic plants 

(Figure 3.14). This result suggests that the silencing in these plants is occurring at the 

transcriptional level. This is consistent to the results of 5-azaC reactivation experiments 

and DNA genomic analysis with restriction enzymes sensitive-to-methylation [SnaBI 

(TAC|GTA) and PvuI (CGAT|CG)]. Although we do not have any good control plant to 

check the efficiency of these enzymes to cut in (un)methylated recognition sites, we can 

draw from the results that apparent methylation in SnaBI (data not shown) or PvuI sites 

(Figure 3.8 on page 72) within the RCg2 promoter or gus coding sequence (different 

band intensity for expressing and non-expressing lines) is observed. This could be an 

indication that what we are observing in the RCg2 silencing is a TGS phenomenon. 

The silencing observed in the YXB population could be related as well to another 

kind of regulation, in which the chromatin conformation of the promoter sequence is 

involved. If this is the case, the reversion of the expression after meiosis could be 

explained by a temporary loss of this silent conformation state during the first stages of 

plant life (Table 2.5 on page 37). Methylation is apparently involved. The transient 

expression after bombardment to silenced calli could be explained if it is necessary for 

the transgene (or promoter) to be integrated in the genome to adopt the silent 

configuration. The hypothesis that a truncation of the RCg2pro-gus-RCg2ter might be 

implicated in the efficient GUS expression of some YXB lines could also be supported 

by the involvement of a preferential conformation of the RCg2pro-regulated gene. The 

YXB lines would not be able to express the chimeric gene unless the promoter is broken 

and thus not capable of adopting the required configuration. Designing and preparing 
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constructs that contain different truncations of the RCg2 promoter would be useful to test 

this hypothesis. 

 

Possible Functional Interactions of miRNA, siRNA and MITE Elements of the RCg2 

Promoter  

The RCg2 promoter contains a complex region that includes miRNA homologs, 

MITEs and repetitive sequences (Chapter IV). The high frequency of promoter-related 

silencing suggests functional interactions of these elements of the transgene and the 

homologous endogenous gene. Our experiments revealed that appearance of a 21 nt 

siRNA is associated with the disappearance of miRNA in progeny of silenced line YXB 

92-4-7-n (Figure 3.11B and 3.11C on page 78). SiRNAs only appeared in 92-4-7-n at the 

seedling stage with RCg2 promoter probes. Other homozygous silenced lines progenies 

of 70-3 and YXB60-2 showed no RNA hybridization with the RCg2 promoter probe 

either in mature plants or in seedlings stage. This result indicated that the silenced line 

YXB 92-4-7 from the primary expressing line has a different silencing mechanism than 

the silenced line YXB 70 and YXB 60.  Interestingly in mature plants, all lines showed 

hybridization with mir160a. So, further experiments were performed (Figure 3.12 on 

page 79). The results provided the first experimental evidence for the presence of a 

miRNA in rice. The mir160a homolog is present in seedlings and leaves of mature rice 

(Oryza sativa T 309) plants (Figure 3.12 on page 79). 
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CHAPTER IV 

DISSECTION OF A COMPLEX PROMOTER RCG2 TO AVOID 

TRANSGENE SILENCING IN RICE 
 

Introduction  

 

In the previous chapters, it was shown that a high frequency of silencing 

occurred in the initial population of YXB transformants. Less than 10% of the transgenic 

lines showed strong GUS expression, while about 90% were weak or non-expressors 

(silent lines). Moreover, only 10% of these silent lines were sensitive to bialaphos (bar-

silented lines), indicating that the flanking genes are not silenced at the same rate as the 

RCg2-regulated gus gene. The root expression pattern and high frequency silencing 

phenomena attracted us to examine the promoter structure and mechanisms underlying 

regulation of expression. 

Knowledge of regulatory elements in plant promoters is of major interest in 

biotechnology and will provide ability to control gene expression in many research 

areas. PlantCARE is a database of plant cis-acting regulatory elements, enhancers and 

repressors (Rombauts et al., 1999; Lescot et al., 2002), and PLACE is a database of plant 

cis-acting regulatory DNA elements covered only vascular plants (Higo et al., 1997; 

Higo et al., 1999).  
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These sites gather and provide information on many cis-acting regulatory 

elements from both monocotyledonous and dicotyledonous species and some from 

conifers, describing many individual promoters from higher plant genes. Regulatory 

elements are represented by positional matrices, consensus sequence and individual site 

on particular promoter sequences. They also provide links to the EMBL, TRANSFAC 

and MEDLINE databases. These two databases are extracted mainly from previously 

published reports, supplemented with an increasing number of in silico predicted sites. 

They provide an excellent resource for in silico analysis of prospective promoter 

regulatory sequences. 

Given the burgeoning information concerning the involvement of small 

interfering RNAs (siRNAs), micro RNAs (miRNAs) and transposons elements in gene 

silencing events, a reappraisal of the RCg2 promoter sequence was undertaken. In silico 

promoter analysis and promoter deletion analyses were used to provide insight for 

changes that could be made in order to avoid silencing in the expression of transgenes.  
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Materials and Methods  

 

In Silico Analysis of the RCg2 Promoter 

Using BLAST together with MAK, a computer search program developed in this 

laboratory (Yang and Hall, 2003b), we have obtained preliminary evidence for the 

potential presence of many small RNA-encoding elements in the RCg2 promoter. 

Database searches (against Rice genome and EST) also revealed the likely presence of 

many elements in RCg2 promoter region, including miRNAs; miniature inverted repeat 

transposable elements (MITEs) and other repetitive regions (Figure 4.1on page 97). This 

figure eventually formed the basis for subsequent promoter deletion analysis. 

To identify putative regulatory elements, in silico analysis of the full-length the 

RCg2 promoter (-1656) was undertaken using PlantCARE (Rombauts et al., 1999; 

Lescot et al., 2002) and PLACE (Higo et al., 1999) databases. Taking 1656 bp of the 

upstream sequence (promoter) of RCg2 as a query sequence for cis-elements, searches 

were conducted against both the PlantCARE and PLACE databases. The resulting 

reports provide the site names, motif and location, as well as a link to a page with more 

detailed information on the particular element. Each potential motif or regulatory 

elements, identified was addressed by reading the relevant literature identified though 

Pubmed link and GeneBank accession numbers, and then the results of two databases 

compared to gather more information and predict the regulatory elements of RCg2.  

Examples of motifs identified include root-specific elements and positive and negative 

regulatory elements. 
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Deletion and Truncation of Segments of the RCg2 Promoter 

Different constructs were designed from the original promoter sequence, which 

included mainly rough truncations of the whole RCg2 promoter sequence (MC7, MC1, 

MC2, MC42, MC8) and replacement of the 5’ untranslated region or UTR with the UTR 

from brome mosaic virus (MC3, MC6, MC9, MC10). The constructs were derived from 

the pYXB plasmid and were named MC# (or pMC#). MC1, MC2, MC4, MC7, MC8, 

MC10 were made by digesting fragments from pYXB with appropriate restriction 

enzyme or after using PCR primers to create appropriate restriction sites. MC1 and MC7 

removed the fragments from -1578 to -729bp, and -1578 to -888 respectively, which 

include a low repetitive sequence (LRS) –1137/-1088 and the OsMir –979/-958 

sequence of the RCg2 promoter. MC2, MC4 and MC8 had segments removed from  

-1578/-268, -1578/-328 and -1578/-88 respectively. Plasmids pMC1, pMC7 and pMC10 

were modified via PCR to add a HindIII site at the end of the RCg2 terminator.  These 

plasmids were then inserted into a binary vector: the JD4-HindIII fragment without gus. 

And plasmids pJD4-MC1, pJD4-MC7 and pJD4-MC10 in binary vector pJD4 were 

mobilized into Agrobacteria LBA4404 via triparental-mating method. 

To make internal deletion constructs pMC5, pMC11, pMC12 and pMC13; we 

first modified the pYXB to make pYXB-HindIII to serve as an intermediate plasmid 

suitable for site-directed mutagenesis (up to 8kb). Primers were designed to add two 

AflII sites in the pYXB-HindIII plasmid sequence while changing as few nucleotides as 

possible The site-directed mutated plasmids were digested with AflII to delete the 

sequences between two AflII sites, the smaller plasmid was self-ligated and transformed 
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back into E. coli to create pMC5, pMC11, pMC12 and pMC13. Purified HindIII 

digestion products of pMC5, 11 and 12 were then ligated into JD4-HindIII vector to 

make pJD4-MC5, pJD4-MC11, pJD4-MC12 and pJD4-MC13. Triparental matings were 

used mobilize pJD4-MC5, pJD4-MC11, pJD4-MC12 and pJD4-MC13 into 

Agrobacterium strain LBA4404 in order to transform rice calli derived from mature and 

immature embryos and thus create the MJ transformants containing deleted RCg2 

promoters. Transformants resistant to 50 mg/L hygromycin were analyzed by genomic 

DNA blots and histochemical GUS staining. Another set of constructs (MC5, MC4) was 

designed after the finding of a putative ORF of more than 100 aminoacids inside the 

promoter sequence (named RCgX). 

pMC5: primer for deleting pYXB-HINDIII to make pMC5: 711-1544bp=833bp 

Primer1:  5'- GCT CGA TCG AGA TTA TAT TAC CCT CTT AAG CAT GCA TGC 

ATG GGG GAA TAA TTC -3'  

Primer 2   (2341b mut.): 5'- CAC TGT TCG ATC GAT CAC TAG CTC TTA AGC 

TGC ATC CAT GGT CCG TCC TG -3'  

Primer for pMC11 

Primer 3:  for pMC11: deletion (mut. 1883) 1172- 5'- C AAG CAT TTC TCC ATA TTC 

ATC CCC TTA AGT TGG TTT TTA TAG GAC GAG AGG AG -3' 

Primer 4:  for pMC11: 5'- CTG AAG TAG AGT TAT ATG AAG CTG CTT AAG 

CCC AAC TTT GCA TGT CTA GTT C -3' 

Primer for pMC12 
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Primer1:  5'- GCT CGA TCG AGA TTA TAT TAC CCT CTT AAG CAT GCA TGC 

ATG GGG GAA TAA TTC -3'  

Primer 5 :( mut: 2187/2188) 

5'- CT GTG CCA AAC AGG GCC TCC GTC TTA AGA GAA AGT AGC AAC GCA 

TCC ATG  -3' 

Primer design for MC13: 

Forward: 5’ –CGCGGATCCAAGCTTGGGGGAATAATTCAACAACGTCTG- 3’ 

Reverse: 5’ – ACG GAC CAT GGA TGC AGC TAG - 3’ 

 

Transient Expression Using Biolistics-mediated Plant Transformation  

Dehusked mature seeds from rice line T309 were rinsed with 70% ethanol for 1 

min, and then incubated in 50% (v/v) bleach for 45 min with shaking at 120 rpm. The 

seeds were then washed five times with sterile distilled water prior to plating on N6 

medium (Chu et al., 1975), embryo face-up, for two weeks at 28 °C. Induced calli were 

subcultured on N6 medium. After 10 to 14 days culture, actively growing calli were 

selected and precultured on high osmolarity N6 medium supplemented with mannitol 

and sorbitol (0.3 M each) for 4 h prior to bombardment using a Biolistic Particle 

Delivery System model PDS-1000 (E. I. du Pont de Nemours & Co., Wilmington, DE). 

For each experiment, Rice (Oryza sativa L., ssp. Japonica, cv. Taipei 309) (T309) 

immature or mature embryo-derived calli were subjected to particle bombardment (Bio-

Rad PDS 1000/He biolistics system), and the calli were bombarded twice with gold 

particles (1 mg; 1.0 m diameter.) coated with different deletion and truncation constructs 
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at a 5:1 (w/w) ratio on 1 µm (o.d) gold particles (4 µg plasmid/2.4 mg particles) DNA (1 

µg). The day after bombardment, some calli was subjected to GUS staining (Yang et al. 

2005). 

 

Stable Transformation by Agrobacterium-mediated Transformation Was as Described as 

in Chapter II 

 

Tri-parental Mating to Transfer Deletion Constructs into Agrobacteria LBA4404 

Tri-parental mating for transfer of plasmids pTVK291 (containing virogenes) 

was grown on 2XYT agar with 60 µg/mL nalidixic acid and 50 µg/mL kanamycin 

selections for overnight at 37 °C. The E. coli strain, harboring the plasmid of each 

deletion construct, was grown overnight on 2XYT agar containing 10 µg/mL 

gentamycin. E. Coli pRK2013 (helper strain) was grown on 2XYT agar with 50 µg/mL 

kanamycin overnight. The bacteria were scraped off their respective plates and mixed 

well on the medium with no antibiotics. PTVK291, the E. coli strain with the plasmid, 

and E. coli pRK2013 were mixed in the ratio 3:1:1 (v/v).  
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The mixture of three strains was then placed at the center of a 2X YT agar plate 

with no antibiotic selection. Mating was allowed to occur by leaving the plate upside 

down for 6-12 h at 37 °C. The bacteria were scraped off and streaked on a 2X YT plate 

containing 10 µg/mL gentamycin, 100 µg/mL kanamycin and 60 µg/mL nalidixic acid 

for isolation of single colonies. Start culture LBA4404 was grown on AB medium and 

pRK2013 (helper strain) was grown overnight on 2XYT agar with 50 µg/mL kanamycin. 

A single colony from the first mating, LBA4404 and E. coli pRK2013 were mixed in the 

ratio 3:1:1 (v/v). The mixture of three strains was then placed at the center of a 2X YT 

agar plate with no antibiotic selection. Mating was allowed to occur by leaving the plate 

upside down for 10-12 h at 28 °C. The three mixtures were streaked on an AB plate plus 

kanamycin (100 µg/mL) and gentamycin (50 µg/mL). For assurance of isolating single 

colonies, a second AB sucrose plate (kan + gent) was streaked for isolated colonies from 

an isolated colony on the first plate, and then an isolated colony from the second plate 

was checked to be sure the bacteria are Benedict’s positive. Genomic DNA analysis Was 

as described as chapter II. 
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Results 

 

Small RNA Encoding Elements Are Present in the RCg2 Promoter 

Given the current interest in the involvement of small interfering RNAs 

(siRNAs), micro RNAs (miRNAs), miniature inverted repeat transposable elements 

(MITEs) and transposable elements in gene silencing events, we were interested in 

determining if match sequences for any of these elements detected in the RCg2 promoter 

are present in the expressed sequence tags (ESTs) of rice. An initial BLAST search using 

the two EST sequences which are ORF within the RCg2 promoter, as queries resulted in 

>206 hits in the genomic database. Using BLAST together with MAK, a computer 

search program (Yang and Hall, 2003b), we have obtained preliminary evidence for the 

presence of some small RNA-encoding elements in the RCg2 promoter. A comparison of 

GUS spatial distribution and expression levels provided insight to the contributions of 

these elements to promoter activity. Related studies have shown that MITEs can 

positively affect transcription, but also increase the incidence of silencing (Yang and 

Hall, 2003a). 

 

Miniature Inverted Repeats Transposable Elements (MITEs) Are Present in the RCg2 

Promoter 

 In a search for the genomic origin for the two EST sequences, AC123516 from 

68330 to 69726 was found to be the gene for AU075832 and AL731624 from 18552 

to19960 was found to be the gene for EST AA751445. After splicing of the introns from 
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the transcripts, both mJanus elements were retained within the mRNAs. It is widely 

known that Dicer or its homologs can degrade dsRNA or dsRNA regions in a transcript 

and produce small RNAs (siRNA or miRNA) that are able to act as a signal for the 

silencing of homologous regions. Coincidently, MITEs usually assume a stem loop 

structure. A folding of the transcribed mJanus on EST AU075832 indeed showed a stem 

loop structure and the ~30 bp stem region contains two small bulges thus giving it 

potential be the substrate for Dicer homologs in rice. Even more interestingly, the 

homologous region of the RCg2 promoter corresponds to the stem region of the hairpin 

structure of mJanus. Identifying the origin of the region of the RCg2 promoter that is 

homologous to the mJanus stem structure was the next project. It may be a relic of an 

ancient mJanus that had inserted into the locus. When the RCg2 promoter sequence was 

used to align with the mJanus family, the evolutionarily closest member of mJanus 

(AC136447) was identified. When this element and RCg2 promoter were aligned using 

low stringency parameters, a decayed copy of mJanus was identified within the RCg2 

promoter from -276 to -108 with over >70% sequence similarity (7e-21) to the mJanus 

sequence from AC136447. Surprisingly, the ancient mJanus inserted 21 bp upstream of 

the TATA box. Except for the terminal invert repeat (TIR) region on the 5' end, which 

retained 93% identity in 40 bp, the rest of the element is significantly decayed. The 

biological significance of the retention of the 5' TIR region in silencing of the promoter 

remains unknown. 

 Another region on the RCg2 promoter (from -337 to -316) is also repetitive, and 

we were able to identify this region to be the relic sequence of a MITE belonging to 
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another MITE family, we named Helios. This MITE family has a TIR sequence of 

CTCCCTCTTGGTTGATAATACTTGTCGTTTTGG and a TSD sequence of TA, 

making it a member of the “Stowaway” group. Using MAK, we were unable to retrieve 

an anchor element from the current rice genome sequences.  

 Remarkably, database searches (against Rice genome and EST) revealed the 

likely presence of many elements in the RCg2 promoter region, including miRNAs; 

miniature inverted repeat transponsable elements (MITEs) and other repetitive regions 

(Figure 4.1A and 1B). These and other features of the RCg2 promoter are shown in 

Figure 4.1. 
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Figure 4.1. Scale diagram of the RCg2 promoter, conserved motifs and colored keys to their 

location within the RCg2 promoter.  

(A) Conserved motifs and colored keys to their location within the RCg2 promoter.   

(B) Scale diagram of the RCg2 promoter. 
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Diversification of the RCg2 Promoter to Avoid Silencing in the Expression of 

Transgenes  

RCg2 Promoter Deletion Analysis 

Promoter deletion analysis is a useful tool for identifying important regulatory 

regions involved in transcriptional control of gene expression (Buzeli et al., 2002; Chang 

and Sun, 2002; Kluth et al., 2002). To identify key elements contributing to the root-

preferential expression of RCg2 and the high frequency of silencing observed in 

transgenic (YXB) lines, several RCg2 promoter deletion constructs were designed. 

These include 5' deletions MC1, MC2, MC4, MC7 and MC8 and internal deletions 

MC5, MC11, MC12 and MC13. The promoter constructs were fused to the gus reporter 

gene and used for Agrobacterium-mediated transformation of rice. Transformants 

resistant to 50 mg/L hygromycin were analyzed by genomic DNA blots and 

histochemical GUS staining. The frequency with which silencing was encountered in 

populations of the deletion mutants was used to characterize the effects of the various 

promoter elements. The large number (363) of independent transformants studied gave 

credibility to deduce both positive and negative regulatory elements (Figure 4.3C on 

page 103). 

 

5' Deletion Analysis of RCg2 Promoter  

 RCg2 promoter deletion constructs have been made. These include 5' deletions 

MC1, MC2, MC4, MC7 and MC8. The constructs (Figure 4.2) were derived from pYXB 

and are designed to examine the effects of deleting the Low, Medium and High 
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repetitive sequences (LRS, MRS and HRS). MC7 (-888) and MC1 (-729) include a 

putative ORF (-713/-360) within the RCg2 promoter and 2 MITE families, miRNA and 

moderate and high repetitive sequence (Figure 4.1), so their negative regulatory effects 

are not expressed. MC2 (-268) contains the conserved part of Janus (-272/-214) and 

HSA724 miRNA (-272/-214) and one OsMIR 160a sequence. It also contains the highly 

repetitive sequence (-272/-214). MC4 (-328) contains part of Helios (-337/-316), the 

whole MITE Janus (-272/-108) sequence, HSA724 miRNA (-272/-214) and one OsMIR 

160a sequence without ATH493620 miRNA (-387/-367). It contains a highly repetitive 

sequence (-272/-214). MC8 (-88) contains a basal promoter, without a CAAT box. These 

constructs were inserted in the HindIII site (located between the 35S-hpt-35S and mUbi-

bar-Nos gene cassettes) of the transformation binary vector pJD4 (Figure 2.1C on page 

19). The resulting plasmids were introduced into Agrobacterium strain LBA4404 by tri-

parental mating. 

 

Internal Deletion Analysis of RCg2 Promoter 

 In silico promoter analyses revealed the presence of many elements in the RCg2 

promoter region that are likely to have positive or negative effects on transcription. For 

example, our lab has shown that miniature inverted repeat transposable elements 

(MITEs) can positively affect transcription, but also increase the incidence of silencing 

(Yang et al., 2005b). The locations of MITEs Janus and Helios are indicated in (Figure 

4.1), as are those of other repetitive regions. Internal deletion constructs including MC5, 

MC10, MC11, MC12 and MC13 (Figure 4.3A) were made and transferred into rice so 
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that GUS reporter activity could be assessed histochemically. Quantitative 

measurements of GUS activity were also undertaken using fluorometric MUG assays 

(data not shown). MC5 (-1578/-745) and MC4 were designed after the finding of a 

putative ORF (-713/745)(RCgx) encoding more than 100 amino acids inside the RCg2 

promoter sequence. MC11 (-1578 ∆-406/-208) deletion conserved part (-337/-316, -

272/-214) of the two MITE families, MRS, HRS, ATH493620 miRNA (-387/-367) and 

HSA724 miRNA (-272/-214). MC12 (-1578 ∆-745/-88) deletes two MITE families, 

ORF, MRS, HRS and ATH493620 miRNA (-387/-367), HSA724 miRNA (-272/-214), 

OsMIR160a (-706/-687; -196/-178) and the CAAT box. It was made via fusing MC5 (-

1578/-745) and MC8 (-88/+78). MC13 (-729 ∆-406/-208) deleted the low repetitive 

sequence (LRS) (-1137/-1088) and rice MIR160a (OsMIR160a) (-979/-958). It was 

made either from MC1 (-729) by deleting (-729 ∆-406/-208) or from MC11 (-1578 ∆-

406/-208) by deleting (-1578/-729).   In MC10 (-88/-3 + BMV-UTR), the corresponding 

UTR is replaced by MMV-UTR (Figure 4.3).  

 

Transient Expression Using Biolistic-mediated Plant Transformation 

All the constructs were bombarded into wild-type rice callus (T309) to check 

their capability and efficiency to direct GUS expression. The bombardments were done 

generally in the same way, bombarding the plate at least twice with rupture disks at 

1,300 psi, 26 mm Hg vacuum, and room a distance of 6 cm. MC1, MC2, MC7, MC12, 

MC13, MC11 and MC5, MC10 showed GUS expression, MC3, MC4 and MC9 did not 

show expression and the reason is unclear. However, MC5 and MC10 have positive 
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GUS expression. We finally concluded that a basal promoter could be obtained from the 

RCg2 5’ sequence (construct MC8) and that the corresponding UTR could be replaced 

with the BMV-UTR (construct MC10) (see Table 4.1 and Figure 4.2). Plasmid pJD4 

showed strong expression and was used as control. Corresponding MJ transgenic plants 

are shown in the right column in Table 4.1. 

 

Table 4.1 Deletion constructs’ transient expression and their correspondent 

Agrobacteria plasmids  

Construct Bombardment 

Transient GUS expression 

Corresponding construct for 

Agrobacterium transformation 

MC1 + MJ1 

MC2 + MJ2 

MC3 - N/A 

MC4 - MJ4 

MC11 + MJ11 

MC5 - MJ5 

MC12 + MJ12 

MC7 + MJ7 

MC8 + MJ8 

MC9 - N/A 

MC10 + MJ10 

MC13 + MJ13 
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 pJD4 (35S-gus-35S) pYXB (RCg2-gus-RCg2) pMC7 (+)

pMC10 (+)pMC8 (+)pMC13 (+)

pMC2 (+)pMC4 (-)pMC1 (+)

pJD4 (35S-gus-35S) pYXB (RCg2-gus-RCg2) pMC7 (+)

pMC10 (+)pMC8 (+)pMC13 (+)

pMC2 (+)pMC4 (-)pMC1 (+)

 

 

 

 

 

 

 

 

 

Figure 4.2. Bombardment and transient expression assays with deletion constructs and other 

modifications on the RCg2 promoter.  
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Characterization of MJ Transgenic Plants  

Some of the constructs were transferred to the transformation vector pJD4, in the 

HindIII site located between the 35S-hpt-35S and mUbi-bar-NOS gene cassettes, after 

removing the 35S-gus-35S cassette. The resulting plasmids, named pMJ# (Table 4.1), 

were transferred by triparental mating to the Agrobacterium strain LBA4404. The new 

bacteria will be used to obtain stable rice transformants. Experiments will introduce 

MJ2, MJ4, MJ8, MJ10, among others using pJD4 and pJD4-YXB as controls. Another 

set of bacteria was obtained by incorporating the plasmids into Agrobacterium strain 

GV3101 by electroporation. These bacteria will be used for the recovery of stable 

Arabidopsis transformants to investigate the RCg2 transgene in Arabidopsis. No results 

are available at this time. 

A summary of the extensive functional analysis that has been conducted of the 

truncations is shown in Figure 4.2 panel C. A total of 363 independent transformants 

were produced and analyzed by Southern blots and histochemical staining. The large 

number of independent transformants studied gives credibility to the positive and 

negative regulatory elements summarized in panel C of Figure 4.2. The region -272 to -

214 includes elements marked on Figure 4.1B as: highly repetitive sequence (HRS: -

272/-214), Homo sapiens (HSA) miRNA (-235/-214) and the conserved part of the 

MITE mJanus (-272/-214). While the relationship of these elements needs further 

evaluation, the initial results obtained for the MC11 construct and MC13 construct 

compared with YXB confirmed our prediction that this may be a negative regulatory 

region. 
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Figure 4.3. Scale diagram of the RCg2 promoter, deletion constructs and analysis of relative gus 

expression for each construct.  

(A) Various deletion and truncation constructs used in these studies.  

(B) Summary of transgenic plants analysis.  

(C) Negative and positive regulation elements in the RCg2 promoter. 

 

As shown in Figure 4.1B, the region from -406 to -208 is deleted in the MC11 

promoter and, of 36 independent transformants, 33% expressed GUS. In the MC13 

construct, of 63 independent transformants, 85% expressed GUS, and this result showed 

that the region of –406 to 208 is a strong negative regulatory region.  
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 The difference in proportion of expressing transformants for MC4 (-328; no 

expressors) and MC2 (-268; 30% expressors) reveals that the region between -328 and -

268, which corresponds with a medium repetitive sequence (G. Yang, personal 

observation), contains a major negative feature. As for MC11, construct MC12 lacks the 

-406 to -208 regions, but only 6% of 33 independent transformants were expressors 

(Figure 4.2B). This suggests that MC12 lacks positive regulatory regions present in 

MC11. These can be predicted to be present in the -729 to -406 and/or -208 to -88 

regions that are present in MC11 but not in MC12.   

 Evidence for strong positive element(s) between -729 and -406 is derived from 

the finding for MC1 that 55% (of 33 independent transformants) express (Figure 4.4), 

whereas no expressors (of 16 independent transformants) were recovered for MC4. 

Together with the data for MC11 and MC12, this confirms the positive regulatory 

function of the region between -729 and -406. It remains to be determined if regions -

406 to -328 and -268 to -208 have positive, negative or neutral effects and are, therefore, 

marked “?” in Figure 4. 3C. 

 As MC7 has only 7% expressing lines, it appears that another negative regulatory 

element exists between -888 and -729. Interestingly, MJ8 (-88), the shortest promoter 

fragment tested yielded 39% expressing plants (Figure 4.3B). A summary of 

characterization of deletion constructs showed in table 4.2. And expression of GUS 

showed in Figure 4.4.  
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Table 4.2 Characterization of the transgenic plants of RCg2 promoter deletion construct.  
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Figure 4.4. GUS expressions of various RCg2 promoter deletion constructs. SE: strong 

expression; WE: weak expression; and NE: no-expression. MJ# show transgenic plants 

from MC# constructs. 
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Discussion  

 

The RCg2 Promoter Contains Regulatory Elements Related to Gene Silencing 

The RCg2 promoter contains a complex region that includes miRNA homologs, 

MITEs and repetitive sequences. Miniature inverted repeat transposable elements 

(MITEs) can positively affect transcription, but also increase the incidence of silencing 

(Yang et al., 2005b). The locations of MITEs Janus and Helios are indicated in (Figure 

4.1), as are those of other repetitive regions. Deletion constructs that deleted high 

repetitive sequence (HRS: -272/-214), Homo sapiens (HSA) miRNA (-235/-214) and the 

conserved part of the MITE mJanus (-272/-214) showed high proportional expression in 

transgenic rice. The high frequency of promoter-related silencing suggests functional 

interactions of these transgene elements and the homologous endogenous gene.  

 

Effect of MITEs within Plant Promoters 

 The results summarized in Figure 4.1 and 4.2 support the prediction that the 

regions in the RCg2 promoter that have sequence similarity to MITEs Helios and Janus 

can negatively regulate expression shown by comparison of expression from YXB plants 

with that from MC11 plants (that contain and lack these MITE sequences, respectively). 

Quantitative MUG assays will be done on four expressing independent transformants of 

similar copy number for each construct. In separate studies, we have shown that the 

presence of a MITE sequence (Kiddo) in the rice rubi2 promoter has two opposing 

effects (Yang et al., 2005b). One effect is to enhance expression, but the other is to 
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increase the likelihood of silencing. If we can obtain rigorous evidence that MITE 

sequences in the RCg2 promoter also have specific up, down (or both) effects on 

expression, this will be an important addition to knowledge in the field. 

 The region -272 to -214 includes elements with features similar to those of highly 

repetitive sequences, to HSA miRNA from Homo sapiens and the conserved region of 

the MITE mJanus, and was found to be a negative regulatory region. Deletion of the 

region from -406 to -208 (the MC11 promoter) revealed that it also includes a negative 

element, as of 36 independent transformants, 33% expressed GUS. A third, major, 

negative regulatory region was identified: that between -328 and -268, which 

corresponds with a medium repetitive sequence. Evidence for strong positive element(s) 

between -729 and -328 is derived from the finding for MC1 that 55% (of 33 independent 

transformants) express, whereas no expressors (of 16 independent transformants) were 

recovered for MC4. 
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CHAPTER V 

CONCLUSION 

 

GUS expression was observed in leaves and roots for both YXA and YXB 

transformants. A very low percentage of YXB transformants showed stable GUS 

expression over several generations and the expression is stable and inheritable in the R1 

generation and R2, R3 etc. There is a possibility of obtaining a single-copy expressing 

R1 plant by segregation of T-DNA loci, for example YXB92, 92-4 and 92-5. YXB92-4 

is homozygous line. A fragment of the YXB cassette, present in 70% of the expressing 

lines, is relevant for its expression. The lines containing this fragment show stronger 

expression levels than do the lines lacking a fragment. This also applies to their progeny 

after segregation. Nineteen single copy lines can be reactivated by 5-azacytidine 

treatment. Expression can be restored after mitosis. We recovered homozygous R1 lines 

from single copy (SC) transformants for further experiments. They are YXB60-2, 

YXB70-3, 70-6, and YXB33-5 and also have one line from YXB92, YXB92-4. 

Expression of the transgene is only seen in expressing lines YXB138, YXB91, etc. and 

their progeny. But the expressing line YXB92 progeny (single copy) were silenced. RT-

PCR and northern blotting (NB) analysis of the endogenous sequences revealed presence 

on both root and leaf. 

RCg2 promoter is not a root specific gene. Northern blot and RT-PCR analysis of 

RCg2 expression confirmed that RCg2 gene is a root preferential gene. RCg2 can show 

expression in different tissues (leaf and root) of transgenic rice plants. Reactivation 
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confirmed that the transgene insert was capable of expression and was therefore silenced 

in the primary transformants and their progeny. RCg2 transgene silencing is DNA 

methylation related. Reactivation and run on experiment showed that RCg2 transgene 

silencing is transcriptional gene silencing in some lines, and posttranscriptional silencing 

in other. RCg2 promoter was silenced at a high frequency. Expression of GUS from the 

RCg2 promoter was silenced in more than 90% of the lines while the flanking hpt and 

bar genes are not silenced in most lines. This uniqueness of high frequency silencing 

indicated that the RCg2 promoter is valuable for studies on the cause of gene silencing. 

Multiple silencing mechanisms are related to the RCg2-gus silencing. Contrary to the 

uniform and high level reactivation of GUS expression of 35s-gus in JDV92-8 line, there 

are different reactivation frequency in the YXB silenced lines that some plants 

responsive to the demethylating agent and some not. There is another YXB line, 

YXB92, primary transformant showed strong expression, R1 became weak, R2 was 

silenced, especially YXB92-4-7 line, its silencing show related to small RNA. 

Appearance of a 21 nt siRNA is associated with the disappearance of miRNA in a 

silenced line seedling stage of YXB92-4-7, and mir160 and RCg2 siRNA produce in 

mature plants. 

The RCg2 promoter contains a complex region that includes miRNA homologs, 

MITEs and repetitive sequences. The high frequency of promoter-related silencing 

suggests functional interactions of these elements of the transgene and the homologous 

endogenous gene. The frequency of the expression of the transgenes related to different 

regions of the RCg2 promoter. Deletion and truncation of the RCg2 promoter revealed 
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that were useful methods to study the regulatory roles of MIETs, miRNAs and repetitive 

elements individually and in combinations, and also deleted the repress elements can 

restore the high expression frequency of the transgenes in rice. The possibility exists that 

the endogenous RCg2 promoter competes effectively with entering transgenes driven by 

the same promoter. The region from -406 to –208, that includes multiple elements, 

showed very strong negative regulation of RCg2.   

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 



 112

REFERENCES 

 

Arumuganathan, K., and Earle, E. (1991). Estimation of nuclear DNA content of 

plants by flow cytometry. Plant Mol. Bio. Rep. 9, 208-218. 

Ballestar, E., and Wolffe, A.P. (2001). Methyl-CpG-binding proteins: Targeting 

specific gene repression. Eur. J. Biochem 268, 1-6. 

Baroux, C., Spillane, C., and Grossniklaus, U. (2002). Genomic imprinting during 

seed development. Adv. Genet. 46, 165-214. 

Battraw, M.J., and Hall, T.C. (1990). Histochemical analysis of CaMV 35S promoter-

β-Glucuronidase gene expression in transgenic rice plants. Plant Mol. Biol. 15, 

527-538. 

Bestor, T.H. (2000). The DNA methyltransferases of mammals. Hum. Mol. Genet. 9, 

2395-2402. 

Bestor, T.H., and Verdine, G.L. (1994). DNA methyltransferases. Curr. Opin. Cell 

Biol. 6, 380-389. 

Bevan, M. (1984). Binary Agrobacterium vectors for plant transformation. Nucleic 

Acids Res. 12, 8711-8721. 

Brackertz, M., Boeke, J., Zhang, R., and Renkawitz, R. (2002). Two highly related 

p66 proteins comprise a new family of potent transcriptional repressors 

interacting with MBD2 and MBD3. J. Biol. Chem. 277, 40958-40966. 

Brodersen, P., and Voinnet, O. (2006). The diversity of RNA silencing pathways in 

plants. Trends Genet. 22, 268-280. 



 113

Buchholz, W.G., Connell, J.P., Kumpatla, S.P., and Hall, T.C. (1998). Molecular 

analysis of transgenic rice. Methods Mol. Biol. 81, 397-415. 

Buzeli, R.A.A., Cascardo, J.C.M., Rodrigues, L.A.Z., Andrade, M.O., Almeida, 

R.S., Loureiro, M.E., Otoni, W.C., and Fontes, E.P.B. (2002). Tissue-specific 

regulation of BiP genes: a cis-acting regulatory domain is required for BiP 

promoter activity in plant meristems. Plant Mol. Biol. 50, 757-771. 

Chandrasekharan, M.B., Bishop, K.J., and Hall, T.C. (2003). Module-specific 

regulation of the beta-phaseolin promoter during embryogenesis. Plant J. 33, 

853-866. 

Chang, C.W., and Sun, T.P. (2002). Characterization of cis-regulatory regions 

responsible for developmental regulation of the gibberellin biosynthetic gene 

GA1 in Arabidopsis thaliana. Plant Mol. Biol. 49, 579-589. 

Chaudhury, A.M., Koltunow, A., Payne, T., Luo, M., Tucker, M.R., Dennis, E.S., 

and Peacock, W.J. (2001). Control of early seed development. Annu. Rev. of 

Cell and Dev. Biol. 17, 677-699. 

Chomczynski, P., and Sacchi, N. (1987). Single-step method of RNA isolation by acid 

guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 

156-159. 

Chu, C.C., Wang, C.C., Sun, C.S., Hsu, C., Ying, K.C., Chu, C.Y., and Bin, F.Y. 

(1975). Establishment of an efficient medium for another culture of rice through 

comparative experimentation on initrogen sources. Scientia Sinica 18, 659-668. 



 114

Chu, C.-C. (1978). The N6 medium and its applications to anther culture of cereal 

crops. In Proc. Symp. Plant Tissue Culture (Peking: Science Press), pp. 43-50. 

Clark, S.J., Harrison, J., Paul, C.L., and Frommer, M. (1994). High sensitivity 

mapping of methylated cytosines. Nucleic Acids Res. 22, 2990-2997. 

Cogoni, C., and Macino, G. (1999). Gene silencing in Neurospora crassa requires a 

protein homologous to RNA-dependent RNA polymerase. Nature 399, 166-169. 

Dong, J.J., Teng, W.M., Buchholz, W.G., and Hall, T.C. (1996). Agrobacterium-

mediated transformation of javanica rice. Mol. Breeding 2, 267-276. 

Elmayan, T. (1996). Expression of single copies of a strongly expressed 35S transgene 

can be silenced post-transcriptionally. Plant J. 9, 787-797. 

Feng, Q., Cao, R., Xia, L., Erdjument-Bromage, H., Tempst, P., and Zhang, Y. 

(2002). Identification and functional characterization of the p66/p68 components 

of the MeCP1 complex. Mol. Cell. Biol. 22, 536-546. 

Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. 

(1998). Potent and specific genetic interference by double-stranded RNA in 

Caenorhabditis elegans. Nature 391, 806-811. 

Fuks, F., Hurd, P.J., Wolf, D., Nan, X., Bird, A.P., and Kouzarides, T. (2003). The 

methyl-CpG-binding protein MeCP2 links DNA methylation to histone 

methylation. J. Biol. Chem. 278, 4035-4040. 

Grunau, C., Clark, S.J., and Rosenthal, A. (2001). Bisulfite genomic sequencing: 

Systematic investigation of critical experimental parameters. Nucleic Acids Res. 

29, E65-65. 



 115

Habu, Y., Kakutani, T., and Paszkowski, J. (2001). Epigenetic developmental 

mechanisms in plants: Molecules and targets of plant epigenetic regulation. Curr. 

Opin. Gent. Dev. 11, 215-220. 

Hall, T.C., Kumpatla, S.P., Kharb, P., Iyer, L., Cervera, M., Jiang, Y., Wang, T., 

Yang, G., Teerawanichpan, P., Narangajavana, J., and Dong, J. (2001). Gene 

silencing and its reactivation in transgenic rice. In 4th International Rice Genetics 

Symposium (Manila, Philippines), 440-444. 

Hamilton, A.J., and Baulcombe, D.C. (1999). A species of small antisense RNA in 

posttranscriptional gene silencing in plants. Science 286, 950-952. 

Held, B.M., Wang, H., John, I., Wurtele, E.S., and Colbert, J.T. (1993). An mRNA 

putatively coding for an O-methyltransferase accumulates preferentially in maize 

roots and is located predominantly in the region of the endodermis. Plant Physiol. 

102, 1001-1008. 

Hendrich, B., and Bird, A. (1998). Identification and characterization of a family of 

mammalian methyl-CpG binding proteins. Mol. Cell Biol. 18, 6538-6547. 

Hiei, Y., and Komari, T. (2008). Agrobacterium-mediated transformation of rice using 

immature embryos or calli induced from mature seed. Nat. Protoc. 3, 824-834. 

Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994). Efficient transformation of 

rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the 

boundaries of the T-DNA. Plant J. 6, 271-282. 

Higo, K., Ugawa, Y., Iwamoto, M., and Higo, H. (1997). PLACE: A database of plant 

cis-acting regulatory DNA elements. Nucleic Acids Res. 26, 358-359. 



 116

Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T. (1999). Plant cis-acting 

regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27, 297-

300. 

Hirochika, H., Okamoto, H., and Kakutani, T. (2000). Silencing of retrotransposons 

in arabidopsis and reactivation by the ddm1 mutation. Plant Cell 12, 357-369. 

Hobbs, S.L., Warkentin, T.D., and DeLong, C.M. (1993). Transgene copy number can 

be positively or negatively associated with transgene expression. Plant Mol. Biol. 

21, 17-26. 

Hobbs, S.L.A., Kpodar, P., and DeLong, C.M.O. (1990). The effect of T-DNA copy 

number, position and methylation on reporter gene expression in tobacco 

transformants. Plant Mol. Biol. 15, 851-864. 

Iglesias, V.A., Moscone, E.A., Papp, I., Neuhuber, F., Michalowski, S., Phelan, T., 

Spiker, S., Matzke, M., and Matzke, A.J.M. (1997). Molecular and cytogenetic 

analysis of stably and unstably expressed transgene loci in tobacco. Plant Cell 9, 

1251-1264. 

Ingelbrecht, I., and de Carvalho, F. (1992). Isolation of nuclei and in vitro run-off 

transcription. In EMBO Practical Course on Plant Molecular Biology, D. Inzé, D. 

van der Straeten, and v.M. M., eds (Gent,: Laboratorium voor Genetica), pp. 117-

132. 

Ingelbrecht, I.L., Irvine, J.E., and Mirkov, T.E. (1999). Posttranscriptional gene 

silencing in transgenic sugarcane. Dissection of homology-dependent virus 



 117

resistance in a monocot that has a complex polyploid genome. Plant Physiol. 119, 

1187-1198. 

International, Rice, Genome, Sequencing, and Project. (2005). The map-based 

sequence of the rice genome. Nature 436, 793-800. 

Iyer, L.M., and Hall, T.C. (2000). Virus recovery is induced in brome mosaic virus p2 

transgenic plants showing synchronous complementation and RNA-2-specific 

silencing. Mol. Plant Microbe. Interact. 13, 247-258. 

Iyer, L.M., Kumpatla, S.P., Chandrasekharan, M.B., and Hall, T.C. (2000). 

Transgene silencing in monocots. Plant Mol. Biol. 43, 323-346. 

Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987a). GUS fusions: β-

glucuronidase as a sensitive and versatile gene fusion marker in higher plants. 

EMBO J. 6, 3901-3907. 

Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987b). GUS fusions: Beta-

glucuronidase as a sensitive and versatile gene fusion marker in higher plants. 

EMBO J. 6, 3901-3907. 

Jiang, C.L., Jin, S.G., Lee, D.H., Lan, Z.J., Xu, X., O'Connor, T.R., Szabo, P.E., 

Mann, J.R., Cooney, A.J., and Pfeifer, G.P. (2002). MBD3L1 and MBD3L2, 

two new proteins homologous to the methyl-CpG-binding proteins MBD2 and 

MBD3: Characterization of MBD3L1 as a testis-specific transcriptional 

repressor. Genomics 80, 621-629. 



 118

Jones, P.L., Veenstra, G.J., Wade, P.A., Vermaak, D., Kass, S.U., Landsberger, N., 

Strouboulis, J., and Wolffe, A.P. (1998). Methylated DNA and MeCP2 recruit 

histone deacetylase to repress transcription. Nat. Genet. 19, 187-191. 

Jorgensen, R.A., Atkinson, R.G., Forster, R.L., and Lucas, W.J. (1998). An RNA-

based information superhighway in plants. Science 279, 1486-1487. 

Jorgensen, R.A., Cluster, P.D., English, J., Que, Q., and Napoli, C.A. (1996). 

Chalcone synthase cosuppression phenotypes in petunia flowers: Comparison of 

sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. 

Plant Mol. Biol. 31, 957-973. 

Keller, B., Schmid, J., and Lamb, C.J. (1989). Vascular expression of a bean cell wall 

glycine-rich protein -beta- glucuronidase gene fusion in transgenic tobacco. The 

EMBO J. 8, 1309-1314. 

Khush, G.S. (1997). Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 

35, 25-34. 

Kim, D.H., Villeneuve, L.M., Morris, K.V., and Rossi, J.J. (2006). Argonaute-1 

directs siRNA-mediated transcriptional gene silencing in human cells. Nat. 

Struct. Mol. Biol. 13, 793-797. 

Kloti, A., He, X., Potrykus, I., Hohn, T., and Futterer, J. (2002). Tissue-specific 

silencing of a transgene in rice. Proc. Natl. Acad. Sci. USA 99, 10881-10886. 

Kluth, A., Sprunck, S., Becker, D., Lörz, H., and Lütticke, S. (2002). 5' deletion of a 

gbss1 promoter region from wheat leads to changes in tissue and developmental 

specificities. Plant Mol. Biol. 49, 669-682. 



 119

Kovarik, A., Van Houdt, H., Holy, A., and Depicker, A. (2000). Drug-induced 

hypomethylation of a posttranscriptionally silenced transgene locus of tobacco 

leads to partial release of silencing. FEBS Lett. 467, 47-51. 

Kumpatla, S.P. (1997). Transgene integrity, chimerism, silencing and stability in rice. 

In Biology (College Station: Texas A&M University), pp. 176. 

Kumpatla, S.P., and Hall, T.C. (1998a). Longevity of 5-azacytidine-mediated gene 

expression and re- establishment of silencing in transgenic rice. Plant Mol. Biol. 

38, 1113-1122. 

Kumpatla, S.P., and Hall, T.C. (1998b). Recurrent onset of epigenetic silencing in rice 

harboring a multi-copy transgene. Plant J. 14, 129-135. 

Kumpatla, S.P., and Hall, T.C. (1999). Organizational complexity of a rice transgene 

locus susceptible to methylation-based silencing. IUBMB Life 48, 459-467. 

Kumpatla, S.P., Teng, W., Buchholz, W.G., and Hall, T.C. (1997). Epigenetic 

transcriptional silencing and 5-azacytidine-mediated reactivation of a complex 

transgene in rice. Plant Physiol. 115, 361-373. 

Lechtenberg, B., Schubert, D., Forsbach, A., Gils, M., and Shmidt, R. (2003). 

Neither inverted repeat T-DNA configurations nor arrangements of tandemly 

repeated transgenes are sufficient to trigger transgene silencing. Plant J. 34, 507-

517. 

Lerner, D.R., and Raikhel, N.V. (1989). Cloning and characterization of root-specific 

barley lectin. Plant Physiol. 91, 124-129. 



 120

Lescot, M., Dehais, P., Thijs, G., Marcharl, K., Moreau, Y., Van de Peer, Y., Rouze, 

P., and Rombauts, S. (2002). PlantCARE, a database of plant cis-acting 

regulatory elements and a portal to tools for in silico analysis of promoter 

sequences. Nucleic Acids Res. 30, 325-327. 

Li, J., Lin, Q., Yoon, H.G., Huang, Z.Q., Strahl, B.D., Allis, C.D., and Wong, J. 

(2002). Involvement of histone methylation and phosphorylation in regulation of 

transcription by thyroid hormone receptor. Mol. Cell Biol. 22, 5688-5697. 

Martienssen, R.A., Zaratiegui, M., and Goto, D.B. (2005). RNA interference and 

heterochromatin in the fission yeast Schizosaccharomyces pombe. Trends Genet. 

21, 450-456. 

Matzke, A.J., and Matzke, M.A. (1998). Position effects and epigenetic silencing of 

plant transgenes. Curr. Opin. Plant Biol. 1, 142-148. 

Matzke, M., Matzke, A.J., and Kooter, J.M. (2001). RNA: Guiding gene silencing. 

Science 293, 1080-1083. 

Meyer, P. (2000). Transcriptional transgene silencing and chromatin components. Plant 

Mol. Biol. 43, 221-234. 

Meyer, P., and Saedler, H. (1996). Homology-dependent gene silencing in plants. 

Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 23-48. 

Meyer, P., Linn, F., Heidmann, I., Meyer, H., Niedenhof, I., and Saedler, H. (1992). 

Endogenous and environmental factors influence 35S promoter methylation of a 

maize A1 gene construct in transgenic petunia and its colour phenotype. Mol. 

Gen. Genet. 231, 345-352. 



 121

Miao, G.H., Hirel, B., Marsolier, M.C., Ridge, R.W., and Verma, D.P. (1991). 

Ammonia-regulated expression of a soybean gene encoding cytosolic glutamine 

synthetase in transgenic Lotus corniculatus. Plant Cell 3, 11-22. 

Mishiba, K., Nishihara, M., Nakatsuka, T., Abe, Y., Hirano, H., Yokoi, T., Kikuchi, 

A., and Yamamura, S. (2005). Consistent transcriptional silencing of 35S-

driven transgenes in gentian. Plant J. 44, 541-556. 

Miura, A., Yonebayashi, S., Watanabe, K., Toyama, T., Shimada, H., and 

Kakutani, T. (2001). Mobilization of transposons by a mutation abolishing full 

DNA methylation in Arabidopsis. Nature 411, 212-214. 

Morel, J.B., Mourrain, P., Beclin, C., and Vaucheret, H. (2000). DNA methylation 

and chromatin structure affect transcriptional and post- transcriptional transgene 

silencing in Arabidopsis. Curr. Biol. 10, 1591-1594. 

Mourrain, P., van Blokland, R., Kooter, J.M., and Vaucheret, H. (2007). A single 

transgene locus triggers both transcriptional and post-transcriptional silencing 

through double-stranded RNA production. Planta 225, 365-379. 

Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and 

bioassays with tobacco tissue cultures. Physiol. Plant 15, 473-497. 

Napoli, C., Lemieux, C., and Jorgensen, R. (1990). Introduction of a chimeric 

chalcone synthase gene into petunia results in reversible co-suppression of 

homologous genes in trans. Plant Cell 2, 279-289. 



 122

Ng, D.W., Chandrasekharan, M.B., and Hall, T.C. (2006). Ordered histone 

modifications are associated with transcriptional poising and activation of the 

phaseolin promoter. Plant Cell 18, 119-132. 

Pickford, A.S., Catalanotto, C., Cogoni, C., and Macino, G. (2002). Quelling in 

neurospora crassa. Adv. Genet. 46, 277-303. 

Pradhan, S., and Adams, R.L.P. (1995). Distinct CG and CNG DNA 

methyltransferases in Pisum sativum. Plant J. 7, 471-481. 

Rakyan, V.K., Preis, J., Morgan, H.D., and Whitelaw, E. (2001). The marks, 

mechanisms and memory of epigenetic states in mammals. Biochem. J. 356, 1-

10. 

Reinhart, B.J., and Bartel, D.P. (2002). Small RNAs correspond to centromere 

heterochromatic repeats. Science 297, 1831. 

Rombauts, S., Dehais, P., VanMintagu, M., and Rouze, P. (1999). PlantCARE, a 

plant cis-acting regulatory element database. Nucleic Acids Res. 27, 295-296. 

Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., and Allard, R.W. (1984). 

Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, 

chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 81, 

8014-8018. 

Scheid, O.M., Probst, A.V., Afsar, K., and Paszkowski, J. (2002). Two regulatory 

levels of transcriptional gene silencing in Arabidopsis. Proc. Natl. Acad. Sci. 

USA 99, 13659-13662. 



 123

Sheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J., and Dennis, E.S. (2000a). 

The molecular basis of vernalization: The central role of FLOWERING LOCUS 

C (FLC). Proc. Natl. Acad. Sci. USA 97, 3753-3758. 

Sheldon, C.C., Finnegan, E.J., Rouse, D.T., Tadege, M., Bagnall, D.J., Helliwell, 

C.A., Peacock, W.J., and Dennis, E.S. (2000b). The control of flowering by 

vernalization. Curr. Opin. Plant Biol. 3, 418-422. 

Shimamoto, K. (1995). The molecular biology of rice. Science 270, 1772-1773. 

Sijen, T., Vijn, I., Rebocho, A., van Blokland, R., Roelofs, D., Mol, J.N., and Kooter, 

J.M. (2001). Transcriptional and posttranscriptional gene silencing are 

mechanistically related. Curr. Biol. 11, 436-440. 

Siroky, J., Castiglione, M.R., and Vyskot, B. (1998). DNA methylation patterns of 

melandrium album chromosomes. Chromosome Res. 6, 441-446. 

Stam, M., Viterbo, A., Mol, J.N., and Kooter, J.M. (1998). Position-dependent 

methylation and transcriptional silencing of transgenes in inverted T-DNA 

repeats: Implications for posttranscriptional silencing of homologous host genes 

in plants. Mol. Cell Biol. 18, 6165-6177. 

Stout, M.J., Rice, W.C., Linscombe, S.D., and Bollich, P.K. (2001). Identification of 

rice cultivars resistant to Lissorhoptrus oryzophilus (Coleoptera: Curculionidae), 

and their use in an integrated management program. J. Econ. Entomol. 94, 963-

970. 



 124

Tang, W., Newton, R.J., and Weidner, D.A. (2007). Genetic transformation and gene 

silencing mediated by multiple copies of a transgene in eastern white pine. J. 

Exp. Bot. 58, 545-554. 

Tariq, M., and Paszkowski, J. (2004). DNA and histone methylation in plants. Trends 

in Genet. 20, 244-251. 

Taylor, B., and Powell, A. (1982). Isolation of plant DNA and RNA. Focus 4, 4-6. 

Tsay, Y.F., Schroeder, J.I., Feldmann, K.A., and Crawford, N.M. (1993). The 

herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible 

nitrate transporter. Cell 72, 705-713. 

Tyagi, A.K., Mohanty, A., Chaudhury, A., and Maheshwari, S.C. (1999). Transgenic 

rice: a valuable monocot system for crop improvement and gene research. Crit. 

Rev. Biotechnol. 19, 41-79. 

Van der Krol, A.R., Mur, L.A., Beld, M., Mol, J.N.M., and Stuitje, A.R. (1990). 

Flavonoid genes in Petunia:  Addition of a limited number of gene copies may 

lead to a suppression of gene expression. Plant Cell 2, 291-299. 

Vaucheret, H., Beclin, C., and Fagard, M. (2001). Post-transcriptional gene silencing 

in plants. J. Cell Sci. 114, 3083-3091. 

Vertino, P.M., Sekowski, J.A., Coll, J.M., Applegren, N., Han, S., Hickey, R.J., and 

Malkas, L.H. (2002). DNMT1 is a component of a multiprotein DNA replication 

complex. Cell Cycle 1, 416-423. 

Wade, P.A. (2001). Methyl CpG-binding proteins and transcriptional repression. 

Bioessays 23, 1131-1137. 



 125

Waterhouse, P.M., Graham, M.W., and Wang, M.B. (1998). Virus resistance and 

gene silencing in plants can be induced by simultaneous expression of sense and 

antisense RNA. Proc. Natl. Acad. Sci. USA 95, 13959-13964. 

Xu, Y., Buchholz, W.G., DeRose, R.T., and Hall, T.C. (1995). Characterization of a 

rice gene family encoding root-specific proteins. Plant Mol. Biol. 27, 237-248. 

Yang, A.S., Estecio, M.R., Doshi, K., Kondo, Y., Tajara, E.H., and Issa, J.P. (2004). 

A simple method for estimating global DNA methylation using bisulfite PCR of 

repetitive DNA elements. Nucleic Acids Res. 32, e38. 

Yang, G., and Hall, T.C. (2003a). MDM-1 and MDM-2: Two Mutator-derived MITE 

families in rice. J. Mol. Evol. 56, 255-264. 

Yang, G., and Hall, T.C. (2003b). MAK, a computational tool kit for automated MITE 

analysis. Nucleic Acids Res. 31, 3659-3665. 

Yang, G., Lee, Y.H., Jiang, Y., Kumpatla, S.P., and Hall, T.C. (2005a). Organization, 

not duplication, triggers silencing in a complex transgene locus in rice. Plant 

Mol. Biol. 58, 351-366. 

Yang, G., Lee, Y.H., Jiang, Y., Shi, X., Kertbundit, S., and Hall, T.C. (2005b). A 

two-edged role for the transposable element Kiddo in the rice ubiquitin2 

promoter. Plant Cell 17, 1559-1568. 

 

 
 
 
 
 
 



 126

VITA 
 
 
Name:   Xiangyu Shi 

Address:  Department of Biology /BSBW-3155 
   Texas A&M University 
   College Station TX 77843-3155 

Email Address:  xiangyu@idmb.tamu.edu

Education:  B.A., Botany, Shandong University, 1986, Jinan, China 
  Ph.D., Genetics, Texas A&M University, 2009 

Research position held:   

  Graduate Assistant, August 2002-May 2009 
  Department of Biology, Texas A&M University 

                       Research Assistant, August 2000-August 2002 
   Texas A&M University 

   Associate Professor, September 1999-September 2001 
   Laboratory of Biotechnology, Shandong Academy of  
   Agricultural Sciences, Jinan, China 

   Assistant professor, September 1986-August 1999 
   Laboratory of Biotechnology, Shandong Academy of 
   Agricultural Sciences, Jinan, China        

mailto:xiangyu@idmb.tamu.edu

	Major Subject: Genetics
	ABSTRACT
	DEDICATION


	To My Husband and Daughter
	To My Parents
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Gene Silencing


	CHAPTER II



	STABLE TRANSFORMATION AND MOLECULAR CHARACTERIZATION
	OF RCg2 GENE: A PUTATIVE RICE ROOT SPECIFIC GENE
	Materials and Methods

	Expressing Lines: YXB91, 92, 138
	Single-Copy Non-expressing Lines

	gus (intensity)
	gus (intensity)
	gus (intensity)
	gus (intensity)
	gus (intensity)
	42h
	YXB66 GUSexp

	42h
	42h
	42h
	42h
	42h
	Discussion

	CHAPTER III
	RCg2 GENE IS A ROOT-PREFERENTIAL GENE, NOT ROOT SPECIFIC AND
	Materials and Methods
	Results


	Figure 3.2.  RT-PCR analysis of RCg2 expression in different
	Discussion

	CHAPTER IV
	Primer for pMC11
	Results
	Table 4.1 Deletion constructs’ transient expression and thei



	Discussion

