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ABSTRACT

The Asperity-deformation Model Improvements and Its Applications to Velocity

Inversion. (May 2009)

Hoa Quang Bui, B.S., University of Oklahoma; M.S., University of Oklahoma

Chair of Advisory Committee: Dr. Richard L. Gibson Jr.

Quantifying the influence of pressure on the effective elastic rock properties

is important for applications in rock physics and reservoir characterization. Here I

investigate the relationship between effective pressure and seismic velocities by per-

forming inversion on the laboratory-measured data from a suite of clastic, carbonate

and igneous rocks, using different analytic and discrete inversion schemes. I explore

the utility of a physical model that models a natural fracture as supported by as-

perities of varying heights, when an effective pressure deforms the tallest asperities,

bringing the shorter ones into contact while increasing the overall fracture stiffness.

Thus, the model is known as the “asperity-deformation” (ADM) or “bed-of-nails”

(BNM) model. Existing analytic solutions include one that assumes the host rock is

infinitely more rigid than the fractures, and one that takes the host-rock compliance

into account. Inversion results indicate that although both solutions can fit the data

to within first-order approximation, some systematic misfits exist as a result of using

the rigid-host solution, whereas compliant-host inversion returns smaller and random

misfits, yet out-of-range parameter estimates. These problems indicate the effects of

nonlinear elastic deformation whose degree varies from rock to rock. Consequently,

I extend the model to allow for the pressure dependence of the host rock, thereby

physically interpreting the nonlinear behaviors of deformation. Furthermore, I apply

a discrete grid-search inversion scheme that generalizes the distribution of asperity

heights, thus accurately reproduces velocity profiles, significantly improves the fit and
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helps to visualize the distribution of asperities. I compare the analytic and numerical

asperity-deformation models with the existing physical model of elliptical “penny-

shape” cracks with a pore-aspect-ratio (PAR) spectrum in terms of physical meaning

and data-fitting ability. The comparison results provide a link and demonstrate the

consistency between the use of the two physical models, making a better understand-

ing of the microstructure as well as the contact mechanism and physical behaviors of

rocks under pressure. ADM-based solutions, therefore, have the potential to facilitate

modeling and interpretation of applications such as time-lapse seismic investigations

of fractured reservoirs.
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CHAPTER I

INTRODUCTION

1.1 Overview

Reservoir characterization has long been an important topic in the petroleum industry.

It has proved to be an important task in the process of reservoir evaluation and

management, by identifying and quantifying those properties that influence the fluid

mechanics, distribution and migration within the reservoir. The goal is to provide

an adequate description of the physical aspects such as rock properties, porosity

or permeability, etc., which are controlled by variables that change throughout the

geological history of the reservoir. As computing power has become more and more

robust, a reservoir can now be simulated using a computer or physical model (Sheriff,

1991). The simulation methods include quantitative, geostatistical, and stochastic

modeling of field data. Capable of penetrating the reservoir depths and providing

detailed images of the subsurface, seismic waves are often used to map and record

the status of the reservoir at a moment in time. Hence, one challenging question in

characterization is whether the seismic data and attributes can be used to detect or

predict actual changes in the reservoir.

One of the most interesting applications of reservoir characterization is in carbon-

dioxide sequestration. Carbon dioxide (CO2) causes greenhouse effects that warm the

earth, but possibly can be removed from the atmosphere by means of a long-term

storage. One current technology is sequestration of CO2 into geologic formations,

especially known hydrocarbon reservoirs, including fractured reservoirs (Hepple and

Benson, 2005). Thus, geological sequestration may help in both petroleum recovery

and reducing green house effects. However, the risks lie in the fact that CO2 could

leak out of the sequestration site (due to a number of causes) and combine with

water to form carbonic acid (H2CO3) which could react with the surrounding rocks,

causing contamination of ground water as well as the atmosphere (Ha-Duong and

This dissertation follows the style and format of Geophysics.
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Keith, 2003). It is therefore extremely important to understand the ramifications of

sequestration and whether it will stand the test of time. 4D reservoir monitoring or

time-lapse study is an effective way to investigate the effects of CO2 sequestration

using the seismic method.

Once the relationship between seismic attributes and reservoir variables has been

established, time-lapse monitoring has tremendous potential to define the large-scale

targets and therefore it is the best equipment to study a reservoir-scale model (Jack,

1997). Time-lapse or 4D seismic monitoring is the process of repeating 3D seismic

surveys to determine the changes that have occurred over time, which is known as the

fourth dimension (Sheriff, 1991). It allows the users to make 3D images of changes in

reservoir properties as a function of time. With the use of time-lapse study, it is now

possible to characterize, simulate and monitor the effects of geologic CO2 sequestra-

tion at depth using seismic data. This technique is also currently being developed for

major applications in both general and exploration seismology.

While methods of changing the pore pressure have been examined separately

in the literature, current models for the effective seismic velocities of fractured rock

do not consider explicitly the influence of pressure changes, which are known to be

important in time-lapse applications. Therefore in this dissertation, I propose to

tackle this problem by studying a theoretical model that quantitatively models the

effects of pressure, allowing for simple, straightforward and accurate relations between

effective pressure and elastic properties of rocks, which in turn enhances the time-

lapse characterization of fractured reservoirs. The main objective of the research is

to be able to answer the following question:

- How do we effectively quantify the pressure effect for rock-physics applications such

as seismic rock velocity inversion and prediction?

The research will lead to a better physical understanding about the link between the

effects of pressure on the mechanics of fractures to rock properties and seismic reflec-

tions, as well as the possibility to incorporate pressure changes into time-lapse seismic

applications such as the modeling and monitoring of geologic CO2 sequestrations.

1.2 Literature review

Time plays an important role in the description of a reservoir. In a time-lapse seis-

mic study, it is important to understand which reservoir properties change with time
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and which parameters are observable and/or predictable from the seismic. Accord-

ing to Jack (1997), pore (and effective) pressure, pore fluid (including saturation,

viscosity, compressibility and fluid type), and temperature are among the primary

reservoir variables. Other important changes include compaction, porosity, density,

overburden stress, crack opening and closing, and chemical changes. The modeling

and characterization of a fractured reservoir involve investigating the effects induced

on the reservoir rocks by changes in the cracks, i.e. the reservoir variables. For

those variables that describe or involve the mechanical behaviors of fractures such

as pressures, it is necessary to have a physical model that mimics how natural frac-

tures operate. As a result, fractured-reservoir characterization should in general go

hand in hand with the study of rock physics, which include applications from fracture

mechanics.

Fracture mechanics is a branch of physics and material science that deals with

the mechanical performance of cracked structures (Anderson, 1995). In particular, it

models and characterizes the growth and failure of cracks and the material resistance

to fracturing, using analyses of stress versus strain as well as theories of elasticity and

plasticity (Gdoutos, 2005). Furthermore, it uses methods of continuum mechanics, so

the mechanical behaviors of the fractures are described mathematically by differential

and integral equations. Reservoir rocks are certainly within the applicable domain of

fracture mechanics. Once the physical model is established for a fractured reservoir,

changes in the reservoir variables (e.g. pressures or stresses) will transfer into changes

in the mechanical behaviors of the fractures (particularly deformations or strains) via

the model differential and/or integral equations. These changes will then be linked,

first to the fracture compliance (or stiffness), then to fluid and rock properties, and

eventually, to seismic data. As an example, seismic modeling and characterization of

CO2 sequestration follows a similar work flow, starting with a rock-physics fracture

model.

1.2.1 Fracture modeling

Fractures in rocks and in other types of materials have been studied intensively in the

past. However, since natural fracturing is an integrated function of many variables,

usually one or a few simple behaviors are separated and modeled at a time, while

others are kept constant. Several physical models have been proposed and examined,
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in which rock fractures are considered to be thin, planar layers (Walsh, 1965; Gangi,

1978; Hudson, 1980; Fehler, 1982), linear-slip surfaces (Schoenberg, 1980), or aligned

vertical cracks with anisotropic poro-elasticity (Crampin, 1981; Gibson and Toksöz,

1990). The first group simulates natural fractures as planar distributions of “imper-

fect interfacial contacts” (Liu et al., 1996). In contrast, the second group considers

fractures as areas of slip surfaces, which can be incorporated into finite difference

modelling of seismic wave propagation and fluid flow simulation. The last approach

involves ”anisotropic poroelasticity” (APE) which models the orientations of cracks

directly under specific pressure configurations. The most common physical model

currently used in time-lapse seismic is the Walsh (1965) model, generalized for an

effective medium by Hudson (1980), which treats fractures as ellipsoids with aspect

ratios whose concentrations make up the total porosity of the rock.

Though all of these models are accurate descriptions of natural fractures, some

of them are too detailed and complicated for a reservoir-scale quantification model,

which means a computationally expensive cost for reservoir simulation, while others

contain non-unique solutions or a trade-off between simplicity and accuracy. Hence

it is particularly important for reservoir modeling and characterization to have a

simple but accurate model that is applicable to the field scale. Of the many available

models, it appears that the Gangi (1978) asperity-deformation “bed-of-nails” model

(ADM, or BNM) is one that very well suits this purpose. This model is simple and

effective because it allows for direct, straightforward mathematical relations between

effective pressure and seismic rock velocities (of both compressional and shear waves),

so data measurements in the reservoir can be readily and easily inverted for parameter

estimates. Moreover, the existing (analytic) ADM solutions (Gangi, 1981; Carlson

and Gangi, 1985) themselves are relatively simple mathematical formulae, with just

a few meaningful parameters, so the inversion performance can be quite stable and

reliable. Hence, ADM needs to be thoroughly investigated in terms of accuracy in

data fitting and velocity prediction. This motivates my research.

1.2.2 The link between fracture characterization and seismic data

What can be observed on seismic data as a result of reservoir properties changes are

changes in seismic travel time and amplitude attributes. Amplitude variations with

offset (AVO) analysis is the study of seismic amplitudes taken into account the re-
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flectivity that depends on the angles of incidence at the boundary of contrast. AVO

analysis is a powerful tool for predicting the presence of hydrocarbons in petroleum

exploration because it enables the detection and mapping of pore fluids in the subsur-

face. This technique was first employed by Ostrander (1984) as a means to identify a

high-porosity gas sands embedded in shale, which causes an amplitude increase with

offset on the seismic section. Koefoed (1955) proposed a set of rules to relate the

change in reflection coefficient to the change in Poisson’s ratio, which is an indica-

tor of lithology, across the boundary between two media. Further AVO developments

include attempts at approximating the exact reflectivity, given by the Zoeppritz equa-

tions, as a function of angle of incidence (Bortfeld, 1961; Richards and Frasier, 1976;

Aki and Richards, 1980; Shuey, 1985; Smith and Gidlow, 1987), categorizing dif-

ferent sands groups based on AVO characteristics (Rutherford and Williams, 1989;

Castagna et al., 1998), and AVO analysis, crossploting and interpretation (Castagna

and Backus, 1993; Castagna et al., 1998). Nowadays, AVO attributes extracted from

seismic data are being used as direct hydrocarbon indicators (DHIs) in petroleum

exploration.

The importance and effectiveness of AVO analysis are the main reasons why

seismic data is usually used as the measurement of change in reservoir properties.

Thus, time-lapse seismic modeling and analysis have the potential to predict, map

and illuminate the dynamic changes in reservoir properties and enhance reservoir

management, especially for fractured reservoirs. Once having a fracture model, i.e.

a physical representation of natural fractures, the obvious question for the user then

would be: how does one go from this mechanical model to seismic data? Obviously

the answer has to do with the rock or the medium characterized by this fracture

model. Alternatively, what is the link between rock physics and seismic data? The

answer lies in the elastic moduli, of the fracture and of the fractured rock. The elastic

modulus is an indication of stiffness (or its inverse, compliance). And seismic velocities

are proportionally related to the stiffness of the material they travel within. Stiffer

materials tend to conduct seismic waves faster. In a Schlumberger lecture-award

paper, Pyrak-Nolte (1996) demonstrates the link among fracture “specific stiffness”,

fluid flow, and seismic properties. Basically, the seismograms will change if seismic

velocities across the fracture change, and that happens when the fracture stiffness

changes; consequently, anything that brings about a change in the elastic moduli of

the fracture will induce a change in the seismic, of which pressure and fluid are among
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the main cause factors. Thus, the key link between a fracture model and the seismic

is how the fracture elastic moduli are being modeled, over which pressure has a strong

influence.

1.2.3 Seismic modeling of CO2 sequestration in fractured reservoirs

The basic idea in this type of study is to use the time-lapse changes in reservoir

properties as a tool to forward model the change in seismic amplitudes as a result

of the CO2 sequestration model. The simulation of CO2 sequestration begins with

the process of injecting CO2 into the reservoir. Presumably maximum changes in the

reservoir occur during injection, and after that chemical reactions take effect while the

fluid flows into the low-permeability matrix (e.g. Kumar et al., 2008). In reality, the

system takes a long time to reach equilibrium due to pressure relaxation. A reservoir

rock-physics quantification model is necessary to predict and monitor the changes

that happen during and after injection of CO2. This model will relate the change in

the reservoir properties to that in the seismic data. Time-lapse seismic study is used

to investigate the feasibility and performance of the model.

For example, Yuh (2004) used the time-lapse seismic methods to model, sim-

ulate and monitor CO2 sequestration. One important conclusion from his study is

that since the acoustic properties of CO2 are different from those of hydrocarbons

and water, it is possible to image even the saturation of CO2 using time-lapse seis-

mic. Furthermore, a comparison of amplitude changes after injection can differentiate

between supercritical fluid CO2 and liquid CO2. He also demonstrated the practice

of time-lapse seismic monitoring by integrating actual production and petro-physical

data, with rock-physics modeling, seismic wave propagation simulation and AVO

analysis, to interpret the effects of pore pressure on the seismic amplitudes of two

actual field data. In his rock-physics modeling works however, instead of a fracture

model, he used empirical equations from Eberhart-Phillips et al. (1989), Dvorkin and

Nur (1996), and Gardner and Harris (1968), for unconsolidated sandstone reservoirs,

to account for the effects of pressure and porosity, and the Gassmann (1951) equation

for fluid effects.

Recently, Shekhar and Gibson (2005) used the Hudson (1980) fracture model and

applied theoretical solutions set forth by Pointer et al. (2000) to simulate AVO re-

sponse for randomly isotropically fractured reservoirs embedded in a porous medium
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and predict changes in velocity and attenuation for a reservoir-scale model. Differ-

entially tuned, frequency-dependent thin-bed AVO response are incorporated using

equations from Lin and Phair (1993). Their results suggest possible seismic discrim-

ination between fluid types: brine, CO2 , and supercritical CO2-saturated reservoirs.

In a related study, Shekhar et al. (2006) integrated engineering, geochemistry, geology

and geophysics into a time-lapse study of CO2 injection into hydrocarbon reservoirs

and model the change in reservoir rock and fluid properties. Their results not only

show a reduction in bulk modulus and velocity (and thus change in seismic ampli-

tudes with time), but also find that the rate of change is slow after 10 years and thus

difficult to be detected on a noisy data. They conclude that geochemical processes of

CO2 may have negligible effects on seismic data.

These studies, along with many others, justify the use of time-lapse seismic in

modeling and monitoring geologic sequestration of CO2.

1.2.4 The influence of pressure

Although such studies have modeled well the effect of CO2 sequestration on seismic

data, the change in effective pressure for fractured reservoirs has not been a factor of

consideration. Actually, for decades now the effects of pressure on seismic velocities

have been included in empirical equations for rock-physics modeling of sandstone

reservoirs, such as by Eberhart-Phillips et al. (1989), Dvorkin and Nur (1996), Endres

and Knight (1997), Han and Batzle (2006), and usually in combination with some

other factors such as porosity or clay content. Theoretically, the effects of pressure and

stresses on the mechanical and physical properties of rocks, such as elastic moduli and

seismic velocities, have also been modeled extensively (e.g. Gangi, 1978; Mavko and

Nur, 1978; Walsh and Grosenbaugh, 1979; Oda, 1986). Many studies have modeled

the effects of pressure in relation to the shape and geometry of the pores in the rock.

One common practice is the representation of cracks as a “spectrum” of ellipsoidal

pore-aspect ratios (e.g. Cheng and Toksöz, 1979; Xu and White, 1995; Tran et al.,

2008). Originally, Walsh (1965) treated all cracks and pores as ellipses (i.e. “penny-

shaped” cracks) and modeled the applied stress in terms of the small aspect ratio of

the elliptical cracks it closes. Toksöz et al. (1976) extended the work to cover for oblate

spheroidal cracks of all aspect ratios from very thin, linear cracks to very spheroidal

ones. Cheng and Toksöz (1979) used a linearized method to invert for the (discrete)
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spectrum of pore-aspect ratios in rocks, using velocity-versus-pressure data. However,

notwithstanding the successful modeling of pressure influences, the implementation

and incorporation of pressure models in time-lapse seismic applications have been

limited due to computational intensity and a trade-off issue between simplicity and

accuracy.

In reality, pressure plays an extremely important role in anisotropy and fractured

reservoirs at depth. The influence of pressure on rock properties is an essential part in

the study of rock mechanics. Confining pressure has been known to strongly influence

rock properties (e.g. Gangi, 1981; Carlson and Gangi, 1985). Pore pressure effects are

important in many cases (e.g. Crampin and Zatsepin, 1997; Liu et al., 2004; Vlastos

et al., 2006). As CO2 is injected into the formations, the increase in pore pressure

could lead to the opening of some cracks which affects the elastic properties of the

whole rock. Attempts have been made to model the pore-pressure effects on fractured

reservoirs. Recently, Vlastos et al. (2006) modeled the compliance of fractured rocks

due to pore-pressure change and found noticeable changes on the waveform, amplitude

and attenuation of the final seismogram. However, due to the specific set-up of their

model, they concluded that the effect of pore pressure is negligible on the P-wave

signal and only significant on the S- and coda-waves signals. In reality, pressure

changes may cause enough change in the fracture compliance (or stiffness) that leads

to measurable changes in seismic velocities and/or attenuation, and such effects should

be included in the reservoir model. For the special case of sandstone reservoirs, the

aforementioned empirical equations also confirm that reservoir rock properties are

highly sensitive to pressure.

1.3 Research objectives

With the motivation of incorporating the influence of pressure into time-lapse seis-

mic studies of fractured reservoirs, the primary goal of the research is to integrate

and extend some of the innovative works aforementioned to develop a reservoir-scale

model that is capable of describing the general behaviors of previous solutions, while

quantifying the effects of pressure on the fracture modulus, and hence rock proper-

ties, particularly seismic velocities, which are the link to seismic attributes. Starting

with the Gangi (1978) “bed-of-nails” model and its original solutions (Gangi, 1981;

Carlson and Gangi, 1985), I will investigate its applicability in terms of a field-scale
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rock-physics reservoir quantification model. Then I will try to improve the accuracy

of its solution in terms of inversion and data fitting by slight modifications to the

original model. The main novelty in this research is the validation, extension and

improvement of a forward model that

(1) relates the effective pressure to the seismic velocities of the reservoir,

(2) is computationally simple enough for field-scale implementation, and

(3) accurately applicable to all reservoir rock types.

Below I present an outline of the key steps in developing this model.

1.4 Dissertation outline

Beside the introduction, this dissertation will consist of four main chapters and a final

chapter for concluding remarks and suggestions for future work.

1.4.1 Chapter II - Theoretical study of the asperity-deformation model

and its existing analytic solutions

1.4.1.1 Summary

Motivated by the Gangi (1981) and Carlson and Gangi (1985) formulae as simple

and straightforward means to model and predict the effects of pressure on seismic

velocities (and thus, time-lapse seismic), I investigate the accuracy and applicability

of these equations in terms of data fitting and velocity inversion. In lieu of using them

as black-box inversions, it is important to understand the physical model on which

these solutions are based, the asperity-deformation model (ADM) (Gangi, 1978).

More than a mere review of these papers, I first complement and contribute to the

understanding and applicability of this model (which have been discussed briefly so

far in the literature), by showing thorough and complete theoretical and practical

examinations of ADM and its existing solutions. Theoretically, I show a detailed

description of the model, how it operates, its assumptions and physical meanings in

modeling fractures and effects of pressure, regarding rock deformation. Starting with

a representation of natural fractures, the Gangi (1978) “bed-of-nails” model (BNM),

I show that ADM models pressure as proportional to the infinitesimal deformation

volume of contact asperities, while the distribution of contact asperities governs the
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fracture behavior proportionally through induced change in elastic moduli. As a re-

sult, by making different assumptions about the significance of the host rock moduli,

I show mathematical derivations of the existing analytic power-law ADM solutions:

the Gangi (1981) “rigid-host” and Carlson and Gangi (1985) “compliant-host” equa-

tions. I will also discuss and interpret the physical meaning and definition of each

parameter in these solutions as well as the equations relating among them.

1.4.1.2 List of contributions in chapter II

• Provide complete understanding and description of ADM and solutions

• Complement to current literature on theory and practice of ADM by discussing

undiscussed topics, assumptions and implications.

1.4.1.3 Outline

• ADM, BNM and all physical meanings

• Topics regarding the rigid-host solution

• Topics regarding the compliant-host solution

1.4.2 Chapter III - Effects of pressure on seismic velocities of fractured

rocks - Applications of existing power-law asperity-deformation model

solutions in nonlinear inversion of laboratory data

1.4.2.1 Summary

Viewing a rock differently as consisting of fractures and either a rigid or a compliant

host, Gangi (1981) and Carlson and Gangi (1985) respectively delineated ADM-based

velocity-versus-pressure relationships for fractured rocks and illustratively showed

sample applications of those solutions to a few low-porosity, hard, crystalline rocks

taken from a specific site. Recently, Genova (2008) used the Gangi (1981) rigid-host

solution to perform stochastic modeling and linearized inversion, using a method set

forth by Parrish and Gangi (1981), on the velocity and permeability data from a

Wilcox shale (Kwon et al., 2001) and several other rocks previously examined by
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Gangi (1978), Carlson and Gangi (1985), and Gangi and Carlson (1996). His study

mainly focuses on modeling the effects of random noise and of the zero-pressure

measurement on the uncertainty and sensitivity of parameter estimates from the rigid-

host equation. Here, I follow a different path and contribute to the practice of ADM

by carrying a complete study of systematic nonlinear inversion results, applying both

rigid- and compliant-host solutions to the compressional and shear wave velocities

(Vp and Vs) of a broad total of twenty low- and high-porosity rocks of different types

(sandstones, carbonates, and granites) from the published laboratory data sets of

Coyner (1984), King (1966), and Nur and Simmons (1969).

The good quality of the Coyner (1984) measurements allows for a precise study

of the sensitivity of model parameters, the non-uniqueness of results and working

mechanisms of each solution. By studying the sensitivity of each solution parameter

using synthetic and actual laboratory data, I have been able to determine which

parameters can be more accurately and uniquely identified. Altogether, these results

indicate a non-uniqueness in solution parameter estimates, expressed in terms of

uncertainties and trade-off relationships among model parameters. Additionally I

find that random noise effects can be restrained by putting constraints on the possible

outcome values of estimates. To ensure the stability of inversion, I employ different

methods including the Levenberg-Marquardt, Nelder-Mead, Differential Evolution,

Simulated Annealing, and Random Search algorithms, which are built in as options

of Mathematica functions such as NonlinearRegress and NMinimize. My inversion

results in chapter III illustrate that while the rigid-host solution fits reasonably well

with the data from several rocks, systematic misfits exists in other rocks comparatively

larger than the measurement error. In contrast, the compliant-host solution returns

negligible and random errors in all rocks, for both Vp and Vs data. However, the

compliant-host inverted parameter values fall uninterpretably out of their possible

range as constrained by ADM. These results lead to the conclusion that although

ADM-based solutions can be applied to all rocks, modifications are in order to improve

the rigid-host fit and interpret the seemingly unphysical estimates of compliant-host

parameters. ADM-based solutions therefore have the potential to facilitate time-lapse

seismic applications for fractured reservoirs.
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1.4.2.2 List of contributions in chapter III

• Present applications to published data (i.e. inversion results to broad data sets),

proving that although the ADM method is applicable for all rocks, modifications

are necessary.

• Demonstrate solution behaviors and interpretation of results regarding ADM.

1.4.2.3 Outline

• Existing analytic ADM solutions

• Inversion results

• Topic discussions

1.4.3 Chapter IV - Numerical inversion of the distribution of asperity

heights - Model improvements from the rigid-host perspective

1.4.3.1 Summary

An elastic property of a rock is a funciton of the properties of both the inclusion

pores/cracks and that of the host rock. The contribution of the host rock property

to the overall rock property is either significant or negligible depending on how it

compares to that of the fractures. Nevertheless, ADM allows the users to assume

that the host rock is always much more rigid and thus its compliance is negligible

compared to the cracks, equating the rock elastic moduli to those of the fractures and

attributing all natural rock physics to the linear elastic deformation of the asperities as

they come into contact in the “bed-of-nails”. From this perspective, the distribution

of asperity heights dictates rock behaviors while it does not have to obey a simple

power law such as assumed by Gangi (1978) or by the existing ADM solutions. Hence,

I employ a numerical method to generalize and invert for the distribution of asperity

heights in the experimental rocks. I discretize the deformation axis at a number of

sample points using a logarithmic sampling scheme, and invert for the value of the

cumulative distribution function (CDF) of the asperity-height distribution at each of

the sample points by grid-searching over its possible range of values, while linearly

interpolating in between these points. Pressure and velocity are evaluated numerically
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corresponding to the interpolated distribution function and matched with the data

for the best fit in a least-square sense. Similar to a discrete finite element method

(DFEM), the interpolating function affects the result of the numerical asperity-height

inversion (AHI) at any particular point, but does not change the general behavior of

the inverted distribution. As a result, our numerical grid-search inversion does a

better job of fitting the data compared to the rigid-host analytic solution, but at the

expense of using more parameters to describe the distribution function, as well as

much more computation time. The results confirm our initial postulation that from

the rigid-host point of view, the asperity-height distribution varies arbitrary from

rock to rock, and does not have an universal form (such as a simple power-law).

One important motivation for this discretization is to simplify comparisons to

results from a well-known linearized inversion scheme made popular by Cheng and

Toksöz (1979). The concept of a pore-aspect ratio (PAR) has been widely used

in the industry, especially for describing the pore geometry and microstructure of

the rocks as well as specifying an effective medium for time-lapse seismic modeling.

This method inverts for a PAR spectrum from the Vp and Vs pressure profiles of the

rock, assuming the properties of the grain solid are known. The spectrum contains

discrete concentrations of the porosity for different bins of aspect-ratios. An increase

in pressure closes the porosity made up by all elliptical cracks having ratios in between

the bin boundaries. Pressure is related to PAR using the Walsh (1965) formula for

closure stress while velocities are related to PAR using the Kuster and Toksoz (1974)

model. Here I postulate that the distribution of asperities which determines the rock

behaviors will bear some resemblance to the PAR spectrum. The analogy is both in

the indirect relation of pressure and velocity through a third variable (either asperity

height or PAR), and in the physical meaning of that variable. Longer asperities are

first-in-line to be brought into contact and deformed just like the thinner ellipsoidal

cracks with smaller pore-aspect ratio getting closed before the more spherical ones

do. Due to the non-uniqueness of the sampling scheme and of the bin-interpolation

function, it is difficult to come up with two different sampling schemes which will

hopefully display comparable features on both inverted distributions; therefore, I

relate both distributions to effective pressure. Finally, I compare the two methods

in terms of accuracy and computing resource. The comparison results suggest that

two models describe the same physical phenomenon which is the general increase in

contact area due to pressure.
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1.4.3.2 List of contributions in chapter IV

• View every rock as having a rigid-host, generalize and invert for the asperity

distribution (grid-search AHI).

• Comparison with a known, standard method for velocity inversion, pore-aspect

ratio (PAR); relate to rocks’ physical behaviors.

1.4.3.3 Outline

• Rigid-host and power-law assumptions

• Methods and results: numerical implementation of ADM and PAR

• Comparison of the two methods in terms of results and physical meaning

1.4.4 Chapter V - Nonlinear deformation and the pressure dependence

of the host rock - Model extension from the compliant-host per-

spective

1.4.4.1 Summary

In this chapter I look at the experimental rocks from the compliant-host perspective

and provide a theoretical extension of ADM to incorporate the dependence of the

host on pressure variations. First, I postulate that the unphysical parameter estimates

from compliant-host inversion reflect the fact that the compliant-host solution has not

taken into account the pressure dependence of the host rock moduli, which is caused

by the nonlinearity of deformation. I attempt to incorporate the host-rock pressure

dependence into ADM by modifying the original ADM and let the properties of the

asperity material change with the fracture closure according to another power law,

separate from the Gangi (1978) power-law number of asperities in contact. Naturally,

when the host rock depends on pressure, its compliance is negligible at low pressures

(which is why the rigid-host solution works well for all rocks in the low pressure range),

but increases with increasing pressure and becomes significant at high pressures (i.e.

comparable to that of the fractures). In the “bed-of-nails”, since the fracture faces are

considered rigid, I attempt to build the modulus decreasing-with-pressure of the host
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rock into the asperities. In other words, I have the host-rock pressure dependence built

into the “bed-of-nails” by letting the “nails” (or asperities) weaken with increasing

applied pressure.

This extension of ADM leads to the same equation for velocity as a function of

pressure as the compliant-host solution, but with a new, different parameter which

simultaneously accounts for both the linear elastic deformation of contact asperities

and the pressure dependence of the host rock moduli, in contrast with the original

compliant-host solution which accounts for only the linear elastic deformation alone.

The model extension unties the positive constraint on the new parameter, making

negative-valued estimates possible and meaningful, thereby successfully explains the

outcome of inversion. I interpret the negative-valued estimates from compliant-host

inversion such that for these softer rocks, the host material deforms faster than the

original linear-elastic contact asperities. Practically, the applied pressure range of

0-100 MPa is indeed too large for deformation to be approximated as infinitesimal

strain (i.e. linear elastic) in these rocks. As a result, the extended compliant-host rock

model works universally well for all rocks under this pressure range. This is supported

by the evidence that while the rigid-host solution returns larger and larger RMS error

when fitting to data of progressively increasing pressure inputs, the residuals from the

compliant-host inversion remains random and below the measurement error. Because

the noise effect is minimal as the quality of the data is very good, this evidence

supports my original postulation that the rigid-host assumptions become more and

more invalid as the applied pressure increases, while the compliant-host assumptions

remain valid.

Another fact that points towards this model extension is the application to fluid

substitution. Gangi and Carlson (1996) provides the methods and formulae for the

fluid inclusion using an approximation of the ADM contact area. These formulae

use the compliant-host solution per se. Here my hypothesis is that although their

formulae can give a close prediction of the fluid effects, their calculation of contact area

is based solely on the elastic contact asperities without including the deformation of

the host-rock material; therefore, either their predictions are not feasible for negative-

valued compliant-host estimates, or such predictions are systematically off compared

to measured data, in the case of positive estimates. My initial experiments with such

fluid substitution supports this hypothesis.
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1.4.4.2 List of contributions in chapter V

• View every rock as having a compliant host and power-law mechanisms of elastic

contact asperities and host deformation.

• Extend ADM to cover for nonlinear deformation and pressure dependence of the

host, interpret the seemingly unphysical compliant-host parameter estimates

and improve data fitting compared to rigid-host, while statistically applicable

to all rocks.

• Include fluid substitution (Gangi and Carlson, 1996) and interpretation using

this extended model

1.4.4.3 Outline

• Nonlinear deformation and the pressure dependence of the host rock

• Model extension: derivation of equations and corresponding physical meanings

• Supporting evidence

• Fluid substitution (Gangi and Carlson, 1996) and interpretation using the ex-

tended model

1.4.5 Chapter VI - Conclusions and future work

This dissertation investigates two different ways to improve misfits and interpret

laboratory data : (a) non-linear inversion using the analytic compliant-host solution

with a power-law asperity-height distribution, and (b) a generalized inversion using

the rigid-host model with an arbitrary asperity-height distribution. The compliant-

host solution attempts to analytically solve the case when the modulus of the fracture

is comparable to that of the host rock (i.e. the rock frame and the cracks have similar

stiffness). The generalized inversion is a discrete, numerical method that allows for

the discretization and perturbation of the distribution of asperity heights in order

to find one that allows a good match of modeled and measured velocity. Compare

to an existing method of pore-aspect ratio spectrum inversion, the ADM method

is more suitable for ease of implementation as well as accuracy. Finally, I extend

ADM to interpret nonlinear deformation and provide evidence to support the theory.
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The link between the velocity inversion methods of pore-aspect ratio spectrum and

asperity-height distribution can be better established via the relation to the contact

area, which should be proportional to both porosity and the number of asperities in

contact. Thus, any future work can expand on this idea to account for the pressure-

induced increase in contact area and application to fluid substitution.
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CHAPTER II

THEORETICAL STUDY OF THE ASPERITY-DEFORMATION

MODEL AND ITS EXISTING ANALYTIC SOLUTIONS

2.1 Introduction

Quantifying the influence of pressure changes on elastic rock properties is important

for optimal use of time-lapse seismic surveys in fractured-reservoir characterization,

such as applications to carbon-dioxide (CO2) sequestration. Specifically, a valid quan-

tification model should relate changes in the reservoir effective pressure (and/or pore

pressure) to changes in the seismic parameters, and it should be easily applicable

to reservoir-scale simulation models for straightforward use in large seismic studies.

Additionally, simulations of field-scale fluid flow and seismic-reflection data require

a model that is computationally simple enough for fast and easy implementation in

conjunction with reservoir simulation. Although models for seismic velocity variation

with pressure are common for granular media such as sandstone formations, (e.g.

Gardner and Harris, 1968; Eberhart-Phillips et al., 1989; Dvorkin and Nur, 1996;

Endres and Knight, 1997; Han and Batzle, 2006), most recently developed models for

the effective seismic properties of fractured media (ESPFM, popularly used in time-

lapse seismic modeling and characterization of fractured reservoirs) do not include

the influence of pressure (e.g. Pointer et al., 2000; Liu et al., 2000; Chapman, 2003).

While many studies use the ellipsoidal crack model to relate between pressure and

velocities through pore-aspect ratios (e.g. Cheng and Toksöz, 1979; Xu and White,

1995), the method requires the use of the Kuster and Toksöz (1974) model for elastic

moduli, with a differential effective medium (DEM) (e.g. Norris, 1985; Mukerji et

al., 1995) in addition to a “self-consistent” iterative implementation (e.g. Berryman,

1980), which is computationally expensive and difficult to implement on a field scale

(e.g. Keys and Xu, 2002). Other solutions do attempt to include pressure effects

by modeling the closure of fractures depending on their orientation with respect to

stress fields (Zatsepin and Crampin, 1997; Crampin and Zatsepin, 1997; Angerer,

2002). However, all of these approaches tend to require the specification of many

parameters that would be difficult, or even impossible, to constrain on the scale of a
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complete reservoir formation.

Therefore, I investigate the utility of a simpler quantification model that allows a

relatively straightforward calculation of the influence of pressure on seismic velocities

of fractured rocks, developed by Gangi (1978; 1981). Because the primary effects of

pressures and stresses involve the opening and closing of cracks, it is important to

have a physical model that simulates these realistic effects, and/or describes the me-

chanical behaviors of natural fractures under the influence of external forces/stresses.

Here the mechanics of fracture allows the user to select and/or develop the simplest

but most accurate representation. Gangi (1978) described an useful model for this

purpose. Noting that fractures in rocks have complex, irregular surfaces that are

in contact at many asperities, this model reproduces such behavior by representing

the fracture as two ideal planar surfaces, one of which has a set of cylindrical rods

of variable height. Gangi (1978) pictured this as the “bed-of-nails” model. At any

particular value of applied pressure, some of these “asperities” are in contact (with

the fracture faces) and supporting the fracture; but as pressure increases, more as-

perities (rods) come into contact and deform, increasing the stiffness of the fracture.

Thus the model is also known as the “asperity-deformation model”, or ADM (Gangi,

1978; Carlson and Gangi, 1985). The deformation is assumed to be linearly elastic,

i.e. following Hooke’s law, so the rods are spring-like. Furthermore, the original

(pre-pressure) length of the asperities is assumed to follow a certain distribution. De-

pending on this distribution, the number of asperities that come into contact, deform

and change their lengths accumulates as pressure is applied to the system. Elastic

rock properties are related to effective pressure through the change in length of the

asperities in contact as pressure changes. This in turn allows an estimate of how

seismic velocity changes with increasing (and/or decreasing) pressure. A set of an-

alytic solutions has previously been derived for the “bed-of-nails” model: one for a

“rigid-host” rock and one for the “compliant-host” case (Gangi, 1981; Carlson and

Gangi, 1985). Because both solutions assume that the distribution of asperity lengths

(or heights) is a simple power-law, I will use the term “power-law solutions” to refer

to these existing solutions.

2.2 The asperity-deformation model

Gangi (1978) first described and used the “bed-of-nails” model (BNM) to model the
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effect of confining pressure on the permeability of rocks. Later on, it has been called

the “asperity-deformation model” (ADM) (Gangi and Carlson, 1996) after the main

physical phenomenon that the model describes. In this dissertation, I will use these

two names interchangeably to refer to this physical model.

2.2.1 Modeling pressure in terms of deformation - The concept of elastic

asperities in contact and deformation

Figure 2.1 shows the “bed-of-nails” representation of a natural fracture. A natural

fracture is characterized by two ideal planar surfaces which are separated by a number

of asperities of maximum height L at zero pressure. Other asperities of height h <

L, or “shortness” s = L − h > 0, are distributed on one of the fracture surfaces.

Consequently, L is also the maximum aperture of the fracture, and h and s range

from 0 to L. When a pressure P is applied, the two fracture faces move towards each

other a distance x and deforming (linear elastically) the asperities already in contact

while bringing the longer ones into contact during the process. The net effect is that

the fracture faces are now supported by asperities currently of height h = L− x (i.e.

of shortness s = x) but originally taller than or equal L−x (i.e. having shortness less

than or equal to x), and the number of asperities in contact (and deformed) N(h) (or

equivalently, N(s) = N(L − h)) has increased. This increases the overall stiffness of

the rock and, therefore, seismic velocity. Here, the term “asperities in contact” refers

specifically to those deformed asperities that are in contact with the fracture faces

and supporting the fracture under the influence of a particular applied pressure.

2.2.1.1 Mathematical representation

The mechanical behavior of this model is described by an integral equation that

relates the total pressure P acting on the fracture to the closure (or displacement) x

by way of the distribution of asperity heights (or shortnesses) (Gangi, 1978):

P (x) =
EbL

A

∫ x

0

(x− s)n(s)ds =
k

A

∫ x

0

(x− s)dN(s). (2.1)

where s is the shortness of the asperities in contact at pressure P (x), which varies

from 0 to x. All asperities are assumed to be made from the same material with

Young’s modulus E and have the same spring constant k = EbL, where b is an
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Fig. 2.1. The “bed-of-nails” representation of a natural crack

unitless constant, L is the maximum crack aperture at zero pressure (i.e. equal to

the length of the tallest asperities), and A is the surface area of the crack, such as

defined by Gangi (1978). Here EbL/A = k/A is a proportionality constant describing

the maximum possible force per volume (at which the system still maintains linear

elasticity). In other words, this constant can be thought of as a volume-averaged

measure, and is characteristic of the material that makes up the asperities. Note

that since this material is assumed to be linear elastic or spring-like (i.e. following

Hooke’s law), there is only one universal spring constant k for all asperities, and it

stays constant with pressure.

When there is no force acting on it (i.e. at P = 0), the fracture is characterized

by a distribution of asperities whose heights (or shortnesses) vary between 0 and L.

The function n(s) describes the “number density” of asperities having shortness s

and N(s) describes the number of asperities having shortness less than or equal to

s. In other words, n(s) is the number of asperities having shortness between s and

s + ds, while N(s) is the number of asperities with shortness between 0 and s, which

is also the number of asperities that will be in contact when the closure x is equal

to s, i.e. under a pressure P (x) (Gangi, 1978). Notice that both N(s) and n(s)
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are equivalently a representative picture of the internal microstructure of the rock

because the distribution of asperities dictates the rock behaviors according to this

model.

As a result of an applied pressure P (x), all asperities with shortness s smaller or

equal to x are now in contact, therefore s varies from 0 to x in equation (2.1). Note

that although Gangi (1978) assumes for convenient purposes that all asperities have

the same Young’s modulus (Ei = E) and the cross-sectional area of each asperity ai

is proportional to its length li (i.e. ai/li = k/E = bL) so as to have an universal

spring constant k, it is possible to instead make the asperities have the same cross-

sectional area (ai = a) while having their Young’s moduli Ei differ proportionally

to their lengths. As a consequence, the number of asperities in contact N(s) may

also be considered to represent the area of contact in the direction perpendicular to

the measurement direction (if each asperity is to have the same normalized cross-

sectional area). In addition, x − s is the deformed length of the asperity originally

having shortness s and currently in contact due to pressure P (x). Thus, the physical

meaning of equation (2.1) is that pressure is proportional to the deformed volume

(length times area) of asperities in contact (i.e. the change in volume). All natural

physics occurring under the influence of pressure are attributed to the change in

lengths of the asperities as they come into contact.

2.2.1.2 Normalization

Note that although x and s describe length quantities, they can be normalized by the

maximum crack aperture L, such that 0 6 x, s 6 1. Similarly, n(s) and N(s) can

also be normalized by the “total number of asperities” NT , such that 0 6 N(s) 6 1.

Both constants of normalization L and NT can be combined with the proportionality

constant EbL/A to create one single constant P2 describing the maximum possible

pressure (with respect to linear elasticity), such that

P2 =
EbL2NT

A
=

kLNT

A
. (2.2)

The physical meaning of P2 is that it characterizes the asperity material (through the

spring constant) as well as the total number of asperities (NT ). The notation P2 is

conveniently invented to make distinct with the other pressure constants (e.g. P0 and
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P1) defined by Gangi (1978). Equation (2.1) is then equivalent to:

P (x) = P2

∫ x

0

(x−s)n(s)ds = P2

∫ x

0

(x−s)dN(s) = P2

[∫ x

0

N(s)ds− xN(0)

]
, (2.3)

where x and s represent fractional lengths (with respect to the maximum aperture L),

and N(s) represents the fractional number of asperities in contact. The behavior of

the system does not change after the normalization. So now instead of having x vary

from 0 to L in equation (2.1), the variable x in equation (2.3) actually varies from 0

to 1 and becomes an elastic strain measure. P (x) now becomes the pressure-versus-

strain response curve, while the number of asperities is now a fractional number.

Note that it is mathematically safe to assume N(0) = 0 because otherwise we can

make the change in the coordinates system N∗(x) = (N(x)−N(0))/(1−N(0)). This

makes N(s) equal the cumulative distribution function (CDF) of fractional shortness

s (0 6 s 6 1), and thus n(s) is the probability density function (PDF) of the same

distribution: dN(s) = n(s)ds. Beside the advantageous facts that the concepts of

PDF and CDF are widely used in statistics and probability theory and that stress-

versus-strain analyses are an important and well-known part of rock and fracture

mechanics, the goal of normalization is to produce the same constant P2 as can be

deduced from the original Gangi (1981) derivation, which will benefit the inversion

results as will be demonstrated later.

2.2.1.3 Physical meanings

As a consequence of normalization, the integral in equation (2.3) represents the bulk

strain (or volume strain) caused by an applied pressure P which is a function of the

(elastic) strain x in the measurement direction. The physical meaning of equation

(2.3) is that pressure is modeled as the combined effect (product) of the asperity

material property and the deformed volume (i.e. the volume strain corresponding to

the strain x caused by the deformation of the asperities in contact under the influence

of pressure). The former is represented by P2, the pressure required to make the

material (that makes up the asperities) yield (i.e. deform plastically). The latter is

represented by a sum (over the asperities in contact whose shortness s varies from 0 to

x) of the product of the deformed length x−s with the induced change in contact area

dN(s). Note that since the model assumes linear elastic deformation, P2 is treated as a

constant throughout the process of asperity deformation, while the deformed asperity
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volume (i.e. volume strain) depends solely on the distribution of asperity shortnesses.

As a result, the distribution of asperity shortnesses dictates the behaviors of the model

as it controls the volume strain (which is always proportional to the applied pressure),

while the material property is assumed constant as pressure changes. From equation

(2.3), because 0 6 x, s 6 1 and N(s) 6 1, we have P/P2 =
∫ x

0
(x − s)dN(s) 6 1,

indicating that ADM applies (i.e. the fracture behaves linear-elastically) to pressure

values P not greater than P2. An intuitive and logical corollary would be that for

P > P2, all asperities in the rock have been deformed, all fractures have been closed

and the host takes up all the energy applied to the system. Thus P2 should also be

known as the (crack) closure pressure.

Another excellent point about this model that resembles nature is the mech-

anism in which the fracture operates under applied pressure. An applied pressure

simultaneously increases the fracture stiffness and closes the aperture by deforming

(elastically) the asperities in contact. These effects can be seen from equation (2.3)

as it consequently models the fracture elastic modulus M , i.e. the ratio between

infinitesimal stress over strain which is equal to the derivative of pressure P with

respect to closure x, to be:

dP

dx
= M(x) = P2[N(x)−N(0)]. (2.4)

Equation (2.4) relates the stiffness response of the “bed-of-nails” (i.e. the fracture)

to an applied pressure P as proportional to the total increase in number of asperities

in contact N(x) − N(0). Since N(s) is the number of asperities in contact, it is a

monotonic non-decreasing function. Thus, the fracture stiffness will either increase

or stay the same with pressure through the increasing strain x, depending on the

function N(s). This confirms the above remark that in the “bed-of-nails” model, the

distribution of asperity shortnesses dictates the behaviors of the fracture.

2.2.2 Pre-pressure deformation

Taking N(0) = 0, the mathematical representation of ADM is

P (x) = P2

∫ x

0

N(s)ds⇒

 M(x) = P2N(x)

x > 0
(2.5)
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At zero deformation x = 0, P (0) = 0 and M(0) = 0, meaning when there is no force

or pressure acting on it, the fracture is actually two separate pieces with no contact

or connection between them. Thus, it is important to understand the implication

that the asperities may have already been in contact and deformed before pressure is

applied in the recorded experiments. Corresponding to this model behavior may be

physical phenomena such as cementation, grain interlocking, or even plastic damages

of the micro-contacts among cracks if the rock has been previously cycled through

pressure. This pre-pressure deformation xi > 0 can be represented by an “initial”

pre-pressure Pi as such:

P (x) = P2

∫ xi

0

N(s)ds︸ ︷︷ ︸
Pi>0

+

∫ x

xi

N(s)ds

⇒
 M(x) = P2N(x)

x > xi > 0
(2.6)

The start of experimentally applied pressure is marked by the pre-pressure deforma-

tion xi and therefore: 
Papp(x) =

∫ x

xi
N(s)ds

P (x) = Pi + Papp(x) > 0

M(x) > P2N(xi) > 0.

(2.7)

Note that M(x) = 0 ⇔ x = xi = 0 happens only if Pi = 0 or the pre-pressure is

negligible. Thus, pre-pressure deformation is a very important property of ADM.

2.3 From fracture modeling to rock-physics modeling

Since the fracture faces are assumed to be infinitely rigid, this fracture model applies

to a rock whose dry frame is much stiffer than its cracks/porous portion. For a rock

whose fracture modulus is of the same order as that of the host (frame) rock, the iso-

stress Reuss lower-bound average can be used to compute the rock’s effective elastic

modulus Mr as an average of the rock frame/matrix portion and the porous/cracks

portion:
1

Mr

=
φ

Mcrack

+
1− φ

Mmatrix

(2.8)

where φ is the porosity of the rock, and Mmatrix and Mcrack are the total rigidities of

the solid frame matrix and the cracks, respectively. This is similar to the approach by
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Gangi (1981) to average between the cracks and the unfractured portion of the rock.

For “low-porosity hard, crystalline rocks” such as those studied by Gangi (1981) and

Carlson and Gangi (1985), the frame portion (i.e. the frame matrix effective modulus)
Mmatrix

1−φ
is usually much stiffer than the cracks portion (i.e. the fracture effective

modulus) Mcrack

φ
, so its effect is indeed considerably negligible. Gangi (1981) takes

advantage of this fact and makes several other assumptions to derive his rigid-host

solution from the “bed-of-nails” model.

2.4 The rigid-host solution

The original derivation of this solution is described in details by Gangi (1981). Here I

will summarize, discuss and interpret the key results and the underlying assumptions.

The main and final equation that describes the relationship between velocity and

effective pressure in a fracture with an infinitely rigid host rock is, for P 6 100 MPa

(Gangi, 1981),

V (P ) = V0

(
1 +

P

Pi

) (1−m)
2

, (2.9)

where V (P ) is the velocity at effective pressure P , and V0 is the velocity at zero

effective pressure (P = 0). The parameter Pi reflects the deformation of asperities

at zero effective presssure (i.e. pre-stress deformation), as seen in equation (2.6). It

accounts for the asperities already in contact (and deformed) when no experimental

pressure is applied. The rock behaves as if it was under a pressure of Pi when in fact

there is no applied pressure. Hence, Pi may represent the amount of cementation in

the rock. The exponent m (0< m 6 1) depends on and characterizes the power-law

distribution of asperity shortnesses. Its value changes from rock to rock and with

intensity of fracturing. In particular, the power-law asperity-shortness distribution is

represented by either the probability density function (PDF) n(s) or the cumulative

distribution function (CDF) N(s): n(s) = (m−1 − 1)s(m−1−2)

N(s) =
∫ s

z=0
n(z)dz = s(m−1−1)

(2.10)

where s is the normalized (fractional) asperity shortness, as in the description of

the “bed-of-nails” model. Here, n(s) and N(s) have also been normalized by the
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Fig. 2.2. The PDFs and CDFs of power-law distributions

total number of asperities NT (see section 2.2.1.2). The parameter m characterizes

the shape of the power law. The constraint 0< m 6 1 comes from the fact that

N(s) must be monotone non-decreasing. Figure 2.2 shows the power-law distribution

functions n(s) and N(s) for different values of m. Recall that n(s) and N(s) are

actually a representative picture of the microstructure of the rock being modeled, so

the value of m varies from rock to rock.

Here, it is important to note the first assumption, explicit in the derivation of

this solution. For the low-porosity, hard rocks in his study, Gangi (1981) assumes

that the rock frame is much stiffer than the rock fractures, such that its effect on

the whole rock is negligible. Indeed, if the effective host-rock elastic modulus is

infinitely larger than that of the fractures Mmatrix

1−φ
� Mcrack

φ
, then the effective elastic

modulus of the whole rock is in effect equal to that of the cracks portion of the rock,

Mr ≈ Mcrack/φ. Thus, this solution can be descriptively referred to as the “rigid-

host” solution. Note the presence of both porosity φ and the grain matrix modulus

Mmatrix in the assumption.

Another important assumption is that the distribution of asperity heights obeys a

simple power law. Similar to the exponential function, the simple power law is a good

statistical approximation to natural contact deformation (e.g. Dieterich and Kilgore,

1996; Schlueter et al., 1997). The inversion results using the existing power-law

analytic ADM solutions in this research further supports this conclusion. Moreover,
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the power-law is mathematically useful because it conveniently allows for a direct

relation between pressure and velocity (as opposed to an indirect relation via a third

parameter such as the deformation x), as demonstrated below.

Effective pressure P , elastic modulus M , and velocity V are related to (and

controlled by) the power-law distribution of asperity shortnesses. We can re-derive

equation (2.9) by substituting the above power-law N(s) into the “bed-of-nails” (equa-

tion 2.7) as follow:

P + Pi = mP2x
m−1 ⇔ x = [(P + Pi)/(mP2)]

m

Mcrack = dP/dx = P2x
m−1−1

V =
√

Mcrack/(ρφ/3)

Pi = mP2x
m−1

i = P1x
m−1

i

V0 = V (P = 0) = V (x = xi) =
√

(mP2/Pi)mPi/(mρφ/3)

(2.11)

where x is the pressure-induced strain (i.e. the fractional displacement or closure),

xi is the initial pre-pressure deformation and h = 1 − x is the (fractional) crack

aperture. Here ρ is the density of the rock and φ/3 is the linear porosity in the

measured direction, which are both assumed to be constant for a rock of unit length.

Note that as a result of the power-law assumption, V0 is actually a function of m,

Pi and P2, and by comparing equations (2.11) to equation (22) from Carlson and

Gangi (1985), P1 = mP2 is, just like P2, a constant that accounts for the physical

properties of the asperities (e.g. crack strength), which varies from rock to rock. Thus,

P1 is the closure pressure for the rock being modeled in the rigid-host power-law case,

and P1 ≈ Mframe, the modulus of the rock frame (Gangi, 1978). The fracture closes

completely when x = 1, or P + Pi = P1. Again, the pre-pressure Pi is the shifted

pressure corresponding to an initially deformed length xi at P = 0 (note that Pi has

a power-law relation to xi).

To summarize, three assumptions underlie the Gangi (1981) rigid-host solution.

Gangi (1981) assumes that the frame portion of the rock is always much more rigid

than the cracks portion, and that the distribution of asperity shortnesses, which

inherently dictates the behaviors of the “bed-of-nails” model, is a power law. His

rigid-host solution also presumes a non-negative pre-pressure deformation of asperities

which is an intrinsic property of ADM. As noted by Gangi (1981), the rigid-host
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solution works well when the rock is considerably rigid over the applied pressure

range, generally within 100 MPa. As an attempt to improve on the applicability

of this solution (to a higher pressure range), Carlson and Gangi (1985) maintain

the power-law assumption while allowing the rock frame to be accounted for, as an

additional parameter, in their compliant-host solution to the “bed-of-nails” model.

As pressures in the first few kilometers in the crust of the earth (i.e., where

the hydrocarbons are) are well within 100 MPa (Barton, 2006), this model solution

satisfies normal reservoir conditions. In addition, because it directly relates velocity

to effective pressure, straightforward use of the solution is feasible as measured data

is usually available in the form of pressure versus velocity. Moreover, because of its

simplicity as a mathematical equation and as a model with just a few parameters,

this solution is absolutely convenient for inversion purposes and for use in reservoir

simulation. Thus, I will later investigate its accuracy in terms of fitting laboratory

data from a broad variety of rocks.

2.5 The compliant-host solution

The idea about a “bed-of-nails” solution to rocks whose frame compliance is non-

negligible compared to that of the fractures has originally been mentioned (but not

discussed) by Gangi (1981). The details and derivation of this solution is given in

Carlson and Gangi (1985), and the key results are summarized and discussed below.

The basic idea is that for a rock whose fracture modulus is not too much smaller than

that of the host rock, the host is not significantly stiffer than the cracks and so its

compliance is not negligible (e.g. see equation (2.8) for verification).

Generally, the solid matrix rigidity Mmatrix should be much larger than the crack

modulus Mcrack for most rocks, but when normalized by the volume concentrations

(see equation (2.8) and section 2.3) the effective rigidity of the frame portion may

become more or less comparable to that of the cracks portion of the rock. Therefore,

according to Carlson and Gangi (1985), for pressure values that are low enough (6

500 MPa for the low-porosity igneous and metamorphic rocks in their study), small

pressure changes do not significantly affect the modulus of the grain matrix, but will

affect the modulus of the cracks. Thus the rate of change that an applied pressure P

(in the order of less than 500 MPa) brings to the grain matrix is negligible, ∂Mmatrix

∂P
≈

0, so Mmatrix can be treated as a constant as pressure changes. Here, Carlson and
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Gangi (1985) essentially made the argument that the Gangi (1981) solution applies

well only specifically to the cracks portion of the rock Mcrack

φ
but has not accounted

for the frame portion (i.e. the host rock) Mmatrix

1−φ
. So they attempted to account for it

with an additional parameter Vg =
√

Mmatrix/ρ, a constant with pressure, noting that

velocity generally increases with pressure until it asymptotes a value equivalent to the

velocity of seismic waves traveling in the rock frame material only. This velocity is

theoretically equal to the velocity of the grain matrix. Conclusively, the compliant-

host model assumes that applied experimental pressure only has an effect on the

cracks portion of the rock (Mcrack and φ), and not on the grain matrix of the host

rock. It takes into account the compliance of the host rock, but not the dependence

of it on pressure changes.

Specifically, Carlson and Gangi (1985) used the “bed-of-nails” model with a

power-law distribution of asperity heights to relate pressure to velocity in a compliant-

host rock, where the range of values for pressure is extended to P 6 500 MPa:

1

[V (P )]2
=

(
1

V 2
c

− 1

V 2
g

) (
1 +

P

Pi

)(m−1)

+
1

V 2
g

(2.12)

where m and Pi and V0 = 1/
√

(1/V 2
c − 1/V 2

g ) are precisely those parameters from the

Gangi (1981) rigid-host solution, while Vg is the velocity “in the mineral grains”, or

the “solid rock” host material, and Vc is the velocity of the cracks portion of the rock.

The term G2 = 1/V 2
g represents the rigid host which does not comply to pressure,

while the term C2 = 1/

[
V 2

0

(
1 + P

Pi

)(1−m)
]

is the pressure-induced velocity which

represents the pressure-compliant portion. Notice that at very high pressure the rock

velocity V (P ) approaches the velocity of the grains Vg as it describes a rock having

no cracks or porosity.

This solution attempts to account for the rock frame which is not always much

stiffer than the cracks portion as assumed in the Gangi (1981) rigid-host solution.

Nevertheless, it still uses the original “bed-of-nails” and all relations and equations

from the rigid-host solution, while both porosity reduction and the pressure depen-

dence of the host-rock (grains) modulus are considered negligible. Note that this

solution can be thought of as an average between the rigid term G and the compliant

term C, assuming the density, porosity and the rigid term stay constant, while the

compliant term changes under the influence of pressure exactly like in the rigid-host
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case: 
1/[V (P )]2 = 1/[Vcg(P )]2 + 1/V 2

g

Vcg(P ) = V0

(
1 + P

Pi

)(1−m)/2

V 2
0 = 1/

(
1/V 2

c − 1/V 2
g

)
= (mP2/Pi)

mPi/(mρφ/3)

(2.13)

It can thus be stated that the Carlson and Gangi (1985) solution is an extended

version of the Gangi (1981) solution. The same physical “bed-of-nails” model is used

with a power-law aspeirty-height distribution assumption. From the mathematical

point of view, the same parameters (with the same physical meanings) are used (m, V0,

and Pi), whereas one more (Vg) is added to account for a new physic (i.e. the host-rock

compliance) which should make the solution applicable to a larger variety of rocks.

Therefore, it is expected to enhance accuracy in fitting laboratory data. However,

this solution still neglects the pressure dependence of the host-rock compliance, and

hence the pressure dependence of the host-rock velocity. This was mentioned by

Carlson and Gangi (1985), and can be verified by equation (2.12) as Vg is treated as a

constant with respect to pressure changes. Carlson and Gangi (1985) also discussed

that this effect can be included in the asperity-height distribution. However, they

used the same power-law for the asperity-height distribution in their derivation of the

compliant-host solution (as in the rigid-host solution). For the hard, crystalline rocks

in their study, the inversion results are not greatly affected since host-rock velocity

variation with pressure in such rocks had indeed been proven to be very small for

low pressures (Carlson and Gangi, 1985). Yet when the inversion is applied to a

broader data set including softer rocks such as clastics and carbonates, this effect

(i.e. pressure-compliant grain matrix) may become large enough that can cause the

parameter estimates to be largely uninterpretable (i.e. values out of range). In fact,

as the inversion results will show later, the values of the parameter m are negative

for many rocks in the Coyner (1984) data set, as well as the high-porosity sandstones

in King (1966), which violates the constraint 0 < m 6 1 set to guarantee the non-

decreasing behavior of the asperity distribution function N(s).

2.6 Summary

Therefore, there could be a room for improvement in the compliant-host solution that

is the host-rock material, albeit being accounted for (by the grains velocity parameter
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Vg), is assumed to be independent of pressure changes. Taking this into consideration,

I will later postulate that the host does comply to pressure in most rocks, and that

this effect can be large enough to cause false interpretation of parameter estimates

when this solution is used to fit with data from many experimental rocks. As a

result, I will attempt to extend the model in order to account for this effect (i.e.

host-rock pressure compliance), by allowing the asperity spring constant to decrease

with pressure or with the induced deformation. Note that both power-law solutions

assumes a negligible reduction of porosity and density with pressure.



33

CHAPTER III

EFFECTS OF PRESSURE ON SEISMIC VELOCITIES OF

FRACTURED ROCKS - APPLICATIONS OF EXISTING

POWER-LAW ASPERITY-DEFORMATION MODEL SOLUTIONS IN

NONLINEAR INVERSION OF LABORATORY DATA

3.1 Introduction

It is well understood that crustal rocks are greatly fractured due to various causes such

as stress and strain from geological events, e.g. compression and extension, folding

and compaction, uplifts and earthquakes, etc... Fracturing occurs on all scales and

intensity, from micro cracks to normal rock joints to large-scale faults. Natural rock

fractures have been studied extensively in the past, for they have been known to

influence the overall physical, mechanical, and transport properties of the rock, such

as normal and shear stiffnesses (i.e. elastic moduli) (e.g. Goodman, 1976; Brown and

Scholz, 1986; Liu et al., 1996) or permeability and fluid flow (e.g. Gangi, 1978; Brown

and Bruhn, 1998; Walsh et al., 1997). For this reason, many authors have attempted

to characterize and model natural fractures (e.g. Brown, 1995; Xia et al., 2003;

Jiang et al., 2006). Basically, natural rock fractures are composed of surfaces that

are neither planar or smooth, but are rough, mismatched and in contact at discrete

locations (Brown, 1987). Brown and Scholz (1985) described this irregular geometry

of the fracture surfaces, generally known as “surface roughness”, as “a collection of

peaks, summits and valleys,” and showed that in general two rough elastic surfaces

in contact are equivalent to a surface with a “composite topography” being the sum

of heights of both surfaces along the fracture plane.

In addition, it is well established that micro and macro fractures are statistically

similar in behaviors and rock-property influences, thus a single fracture/crack can

represent the whole rock as long as the statistical distribution of fractures is known

(or else, assumed). This has before led to the idea of an effective-media theory (e.g.

Liu et al., 1996; Walsh et al., 1997) to describe the overall effective properties of

fractured rocks, which has been commonly used in time-lapse studies. Inarguably,

the statistical distribution of surface heights (also referred to as surface roughness,
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rough walls, composite tomography, aperture, asperities or asperity heights, etc...)

determines fracture and rock properties. Greenwood and Williamson (1966) first

developed the contact theory for two rough elastic surfaces and showed that the

normal distribution is a good approximation in many cases. Since then, numerous

efforts have been made to characterize realizations of the distribution of asperity

heights. While it can be characterized by the mathematical concept of fractals for

rock joints (e.g. Brown, 1995; Jiang et al., 2006), a common practice is to assume

one of the three probability density functions for the asperity-height distribution:

exponential, Gaussian, or power-law (e.g. Greenwood and Tripp, 1967; Gangi, 1978;

Swan, 1981). Walsh et al. (1997) noted that “roughness profiles of all surfaces can

be expressed with sufficient accuracy as power-law spectral density function,” while

experiments with rock thin sections and images from the scanning electron microscope

(SEM) have also indicated a power law for the contact area and the distribution of

asperity heights (e.g. Hadley, 1976; Schlueter et al., 1997; Zamora-Castro et al.,

2008). Gangi (1978) first used a “bed-of-nails” together with a power-law density

function to model the roughness in rock fractures.

The “bed-of-nails” model (Gangi, 1978) is a simple and accurate representation

of the mechanism in which rock fractures behave under effective pressure influence.

It views natural fractures as rough surfaces that are in contact at many asperities,

and represents that by a “bed of nails” with variable heights, sandwiched by two rigid

fracture faces (Gangi, 1978). At any particular value of effective pressure, some of

these “asperities” are deformed and in contact (with the fracture faces), supporting

the fracture; but as pressure increases, more asperities (rods) come into contact and

deform, increasing the stiffness of the fracture. Thus the model is also known as the

“asperity-deformation model”, or ADM (Gangi, 1978; Carlson and Gangi, 1985). The

deformation is assumed to be linearly elastic, i.e. following Hooke’s law, so the rods

are spring-like. Furthermore, the original (i.e. pre-pressure) “asperity shortness”

(the difference between the maximum length and the length of each rod at zero

pressure) is assumed to follow a certain distribution. Depending on this distribution,

the number of asperities that come into contact, deform and change their lengths

accumulates as pressure is applied to the system. Elastic rock properties are related

to the effective pressure through the change in length of the asperities in contact as

pressure changes. This in turn allows an estimate of how seismic velocity changes

with increasing (and/or decreasing) effective pressure. Existing analytic results from
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the “bed-of-nails” model include the Gangi (1981) rigid-host rock and the Carlson

and Gangi (1985) compliant-host case. Both solutions assume mathematically that

the distribution of asperity heights (or shortnesses) is a power-law.

The above pioneer studies have also demonstrated that the power-law set of

solutions can reproduce velocity data quite well, though they have in general been

tested with data from a few low-porosity, hard, crystalline sample rocks (Gangi, 1981;

Carlson and Gangi, 1985). Following these studies, Genova (2008) performs stochastic

modeling and rigid-host inversion using a linearized method (Parrish and Gangi,

1981) on velocity and permeability data of a Wilcox shale (Kwon et al., 2001) and

several other rocks previously examined by Gangi (1978), Carlson and Gangi (1985),

and Gangi and Carlson (1996). His study mainly focuses on modeling the effect of

random noise and of the zero-pressure measurement on the uncertainty and sensitivity

of parameter estimates from the rigid-host equation. He also experiments with the

extrapolation of synthetic data to check the accuracy of velocity prediction, assuming

that there is no modeling error (i.e. all errors come from random noise artificially

introduced into data).

In my research, I contribute to the practice of ADM by carrying a complete

study of systematic nonlinear inversion results applying both rigid- and compliant-

host power-law solutions to the compressional and shear wave velocities (Vp and Vs)

of a broad total of twenty low- and high-porosity rocks of different types (sandstones,

carbonates, and granites). The results indicate that while the rigid-host solution fits

reasonably well with the data from several rocks, systematic misfits exists in other

rocks comparatively larger than the measurement error. In contrast, the compliant-

host solution returns negligible and random errors in all rocks, for both Vp and Vs,

but with uninterpretably out-of-range parameter estimates. Thus, although ADM-

based solutions can be applied to all rocks, modifications are in order to improve

the rigid-host fit and interpret the seemingly unphysical estimates of compliant-host

parameters. The conclusions drawn from this study act as a guide to help find the

direction in the next phases of the research.

3.2 Data

Applying ADM solutions to sandstone data has not been done in the literature. For

granular media like sandstones, at first it may not make sense to apply ADM, because
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they are generally softer, much more porous, and the microstructure is very different

from that of the low-porosity, hard, crystalline rocks (which have previously been

proved applicable). However, the behavior of the rock is still controlled by a set

of grain-to-grain contacts that play the same role as the asperities, suggesting the

model will be useful. Nevertheless, it would be difficult to classify sandstones as

having a rigid frame and being a linear-elastic material, because they are generally

softer than crystalline rocks, while their high porosity affects total deformation (i.e.

more undeformed asperities). In reality among sandstones, the stiffness and porosity

vary greatly, and so does the pore geometry, as well as grain size, shape, sorting,

and cementation. These factors influence the classification of sandstones using the

“bed-of-nails” model parameters, making the results more widespread and uncertain.

Nevertheless, the flexibility in the model specification of the asperities (see chapter

II) may be able to account for some (if not all) of the differences among different

types of sandstones, allowing ADM to still be valid and applicable. This remark can

be verified by fitting ADM solutions to observed data for sandstones.

In this chapter, I use both existing power-law solutions to perform non-linear

inversion for large sets of compressional- and shear-wave velocity data from a total of

twenty igneous, carbonate and clastic rocks. These data sets are published laboratory

measurements of sonic velocities versus pressure from separate, independent studies

(Coyner, 1984; King, 1966; Nur and Simmons, 1969). The King (1966) data set

contains all high-porosity sandstones, while the Nur and Simmons (1969) data set has

low-porosity granites and low- and medium-porosity carbonates. The measurements

from these two data sets are slightly scattered and of slightly lower quality (e.g.

King (1966) reported a precision of about ±0.3% for velocities) than compared to

the Coyner (1984) data set (±0.2%). The Coyner (1984) data set is particularly

valuable because it contains dense, high-quality measurements on a broad variety of

rock types of various porosity (including four sandstones, two carbonates and three

igneous rocks), and because it has not been widely used in previous investigations

of this type. From this data set, I use only the measurements made for dry rocks,

with the purpose of isolating the effect of pressure (from the combined effect with the

fluids). The measurements are made at constant zero pore pressure and increasing

confining pressure up to 100 MPa. Most of the experimental rocks are well-known,

and their porosity ranges from very low (0.5-1% in granites) to low, medium and

quite high (0.5-10% in carbonates and 12-22% in sandstones). Another important



37

point is that this particular data set is of very high quality. Coyner (1984) reported

in his PhD dissertation that extreme care was taken to make sure the measurements

are performed properly and precisely, and that measurement error is approximately

within ±0.2% which translate to about ±0.01km/s or ±10 m/s (using an average

velocity of 5 km/s) to ±0.015 km/s or ±15 m/s (using a maximum velocity of 7.5

km/s) for velocities. Data of this quality is extremely valuable, because all random

errors are very small and the goodness of the fit will justify the accuracy of the fitting

model.

Effective pressure is modeled such as by Gangi and Carlson (1996) and many

other workers as a function of confining and pore pressures: Pe(Pc, Pp) = Pc − nPp,

where n = n(Pc, Pp) is a factor whose functional form can depend on the precision

of the measurement. This is a good reason for taking n ≈ 1, at least for the high-

quality Coyner (1984) dataset. It has also been commonly accepted that n ≈ 1 for

unconsolidated, high-porosity sandstones (such as those in the King (1966) data set).

Here, velocity measurements of dry rocks are made at zero pore pressure, therefore

the applied confining pressure is also the effective pressure. Anisotropy is assumed to

be negligible, since the stress applied to the samples is uniform in all directions and

will not result in crack alignment.

3.3 Methods

Gangi (1978; 1981) and Carlson and Gangi (1985) theoretically showed that the

“bed-of-nails” model (BNM) is applicable to both fractured and unfractured rocks

because the asperities account for the physical change in the solid component of the

rock only, while the pores and/or cracks make up the void portion (i.e. porosity)

which is assumed unchanged. Note that the BNM assumptions include constant

porosity, rigid host rock, linear elastic deformation, power-law contact regime, and

pre-pressure deformation (i.e. cementation). To certain extents, these are reasonably

valid and good approximations to natural rock behaviors under pressure, thus the

power-law solutions are arguably applicable to all rocks, although the goodness of fit

should differ for a certain rock or rock type, depending on how close the rock is to

these assumptions. For instance, the stiff carbonates may be more suitable as having

a rigid host than compared to sandstones, while the low-porosity, hard, crystalline

rocks may exhibit more linear-elastic behavior than compared to sandstones, or the
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consolidated sandstones are better cemented than the unconsolidated ones, etc...

In other words, although the model assumptions should not statistically limit the

application of ADM, they may affect the ability of its solutions to fit and interpret

observed data. Thus, a broad examination of fitting ADM solutions to laboratory-

measured data will allow us to verify this important remark and make statistical

conclusions about the applicability of ADM. For example, Gangi (1978) showed

that the Hertz-Mindlin “packing of spheres” model for sandstones induces a value

of m ≈ 0.67 for the power-law asperity-height distribution in the rigid-host solution.

His study also suggested that the physical meaning of the parameter Pi (i.e. the

“initial” pre-pressure) is to account for the degree of cementation in the experimental

rock. Thus, it would make sense to apply the power-law rigid- and compliant-host

solutions to consolidated and unconsolidated sandstones to see whether the parameter

estimates agree with such theoretical conclusions which have previously been tested

with a restricted number of crystalline rocks.

Because the power-law ADM solutions (equations (2.9) and (2.12)) are relatively

simple formulae, conventional non-linear inversion methods provide straightforward

estimates of parameter values. Here, I first obtain the data by discretizing the graphs

and tables from the above data sets. I then use the built-in functions NonlinearRegress

and NMinimize from the software package Mathematica to find the solution curves

that best fit the velocity versus pressure data in the least-square sense. I ensure

the stability of the inversion results by trying different techniques for finding the

global minimum, including Levenberg-Marquardt, Simulated Annealing, Differential

Evolution, Nelder-Mead, and Random Search, which are built in as options to the

above functions, until the results from these different algorithms converge to the same

value. The reason for this is because depending on the search algorithm, the initial

guess might cause the engine to search on values that would return a complex value

somewhere in the process, or having too big / too small a step size, etc..., that would

return a false value (e.g. a local minimum) before it actually converges to the global

minimum. My test results have shown that no single initial guess works universally

on all methods and for all data. That also justifies the use of the different methods

to verify and see if they agree on the final inversion result. The initial guesses that

work for each inversion method are found through trial and error. A slight note here

that I have also tried least-squared inversion in the natural logarithm domain. The

results differ slightly when compared to conventional non-linear inversion.
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For both applications of forward modeling and inversion, the objective function

is defined as the root-mean-square (RMS) of the differences between the modeled

velocity and the velocity measurement at each applied pressure. For example, the

rigid-host objective function is a function of the three independent parameters m, P2

and Pi as follow:

f(m, P2, Pi) =

{
1

n

n∑
j=1

[Vmod(Pj, m, P2, Pi)− Vdat(Pj)]
2

}1/2

. (3.1)

For nonlinear inversion problems such as this one, although the inversion algorithm

will perform a search over a range of values for all parameters and return a best-fit

set of parameter estimates that minimizes the value of the objective function, a non-

uniqueness is always associated with the results due to the presence of noise (coherent

and incoherent) in the data. Therefore, the inversion result is always a region from

which although we cannot locate exactly which point corresponds to the “correct”

parameter or set of parameters, we know that statistically there is a large chance

the “correct” point is somewhere within that region. In statistics, this is termed the

confidence region. Thus, my inversion results are statistically shown in the form of a

95% (ellipsoidal) confidence region around the best-fit parameter set, meaning there

is a 95% chance of having the correct set of parameters fall within the specified region.

The confidence region indicates the uncertainties of the inverted parameters; a larger

confidence region means larger uncertainties for parameter estimates and vice versa,

while a smaller confidence region implies less noise effects, assuming no modeling

error.

In all studied cases, the objective function is a well-behaved function with a well-

defined global minimum so the problem is only with constraining the search range

of the parameters. Here let us consider the rigid-host solution for an example, and

address the issue of having a negative (out of range) estimate value for Pi and what it

physically means in terms of constrained inversion. For rigid-host inversion, it is not

necessary to constrain values of m and P2 (i.e. results with and without constraints

are the same) because the rigid-host objective function changes significantly for values

out of range. However, that is not the case with Pi. A close and detailed investigation

with synthetic and laboratory data reveals that while the forward rigid-host model is

insensitive to values of Pi near the minimum, the inverted estimate for Pi is sensitive

to the data measurements at low pressure. Thus, although the physical meaning of
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Pi constrains it to be non-negative (see chapter II), the noise-induced uncertainty

associated with the data might cause the estimate to be negative. In real life, this is

especially feasible at the low-pressure measurements, because the signal-to-noise ratio

for these measurements are usually low. However, taking into account that there is

always a non-uniqueness associated with the inverted solution, and that objective

function is well-behaved in most cases, it is usually possible to constrain the value of

Pi to be non-negative (or effectively and equivalently, V0 no less than some value Vc,

which will automatically apply the constraint Pi > 0 according to equation (2.11) -

i.e., if Pi < 0 then V0 is a complex value). Doing that however will cause the inversion

to return either the global minimum or an estimate exactly equal to the constrained

value (i.e. Pi → 0, or V0 → Vc) due to the monotonic behavior of the objective

function away from the minimum. In the former case it makes no difference whether

to use a constraint, while in the latter case, the outcome estimate of Pi is certain

and predictable and the RMS of the fit residuals will increase although not by much

because of the model insensitivity to values of Pi. Therefore, although it is possible

to eliminate the noise effect on Pi by putting constraints on its estimate value, it is

unnecessary to do so for the inversions.

As an illustration, I show in figure 3.1 example fits of the Berea sandstone from

the Coyner (1984) data set with and without a constraint on the search values of Pi.

On the left panel, Pi is left to vary freely over the real axis, while on the right panel,

Pi is constrained to be non-negative. The rigid-host inversion returns an estimate of

Pi ≈ −2 (i.e., V0 ≈ 2.8+0.8i is a complex value) for the first case, and Pi ≈ 0 (V0 ≈ 0)

for the second case. Recall that we invert for the parameter Pi and the code returns a

real value; however, the corresponding value of V0 can be complex by equation (2.11).

The RMS error increases from 0.021 to 0.084 which slightly worsens the fit, but

the fit residuals remain following a similar systematic pattern. Moreover, rigid-host

inversion returns a larger confidence region for m, from (0.823, 0.838) to (0.758, 0.830),

and for P2, from (3817, 4149) to (3871, 5615), respectively for model without (shown

on the left panel) and with (shown on the right panel) the non-negative Pi constraint.

Estimates for m and P2 also change as a result. Indeed a negative value for Pi

or equivalently, a complex value for V0 is physically unmeaningful. Hence, it is only

possible to identify a “correct” value if we have more measurements near zero pressure.

In fact, it is noticeable that many rocks lacking the measurement near zero pressure

have a negative Pi inversion estimate (e.g. the King (1966) sandstones and a few
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Fig. 3.1. Examples of rigid-host inversion for Berea sandstone (Coyner, 1984) with
(left) and without (right) the constraint Pi > 0 on the search values of Pi.

Coyner (1984) rocks). A previous study by Genova (2008) concludes that the reason

for the uncertainty of Pi is because of the lack of measurements near zero effective

pressure. My inversion results not only agree with such conclusion, but also show

that the lack of measurements near zero pressure can lead to an unphysical estimate

of Pi < 0.

3.4 Results and discussion

Figures 3.2 to 3.22 show my inversion results for all experimental rocks from the

aforementioned data sets. The measurement data points are ploted as dots, while the

best fit analytic solution is plotted as a solid curve (the rigid-host in black and the

compliant-host in green). The panel onsets show associated fit residuals (blue dots)

which also gives a sense of the RMS error of the fit.

3.4.1 Inversion results using the power-law rigid-host solution

Figures 3.2 to 3.11 show the rigid-host best fits with confidence regions (plotted as

ellipses and errorbars) and RMS errors for the Vp and Vs of all twenty rocks.

Figures 3.10 and 3.11 summarize the rigid-host parameter estimates and their

confidence regions (as ellipsoids and error bars) in these rocks. These figures plot
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Fig. 3.2. Rigid-host fitting curve and residuals for Bedford limestone (top), Webatuck
dolomite (middle) and Weber sandstone (bottom) from the Coyner (1984) data set.
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Fig. 3.3. Rigid-host fitting curve and residuals for Navajo (top), Berea (middle) and
Kayenta (bottom) sandstones from the Coyner (1984) data set.



44

0 20 40 60 80 100
Pressure HMPaL

4.6

4.8

5

5.2

5.4

5.6

5.8
V

p
Hkm�sL

P2»261;Pi»0.1;m»0.9;V0»4.2;RMS »0.03

-0.04

-0.02

0

0.02

0.04
Fit Residuals

0 20 40 60 80 100
Pressure HMPaL

2.8

3

3.2

3.4

V
s

Hkm�sL

P2»82;Pi»-0.5;m»0.93;V0»2.9+0.3i;RMS »0.01

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Fit Residuals

0 20 40 60 80 100
Pressure HMPaL

4

4.5

5

5.5

V
p

Hkm�sL

P2»230;Pi»5.5;m»0.71;V0»3.7;RMS »0.04

-0.075

-0.05

-0.025

0

0.025

0.05

0.075
Fit Residuals

0 20 40 60 80 100
Pressure HMPaL

2.8

3

3.2

3.4
V

s
Hkm�sL

P2»65;Pi»8.9;m»0.79;V0»2.7;RMS »0.02

-0.04
-0.03
-0.02
-0.01

0

0.01

0.02

0.03

Fit Residuals

0 20 40 60 80 100
Pressure HMPaL

4

4.5

5

5.5

V
p

Hkm�sL

P2»456;Pi»3.8;m»0.72;V0»3.7;RMS »0.06

-0.1

-0.05

0

0.05

Fit Residuals

0 20 40 60 80 100
Pressure HMPaL

2.5

2.7

2.9

3.1

3.3

3.5

V
s

Hkm�sL

P2»116;Pi»4.3;m»0.75;V0»2.4;RMS »0.03

-0.06

-0.04

-0.02

0

0.02

0.04

Fit Residuals

Fig. 3.4. Rigid-host fitting curve and residuals for Westerly (top), Barre (middle) and
Chelmsford (bottom) granites from the Coyner (1984) data set.
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Fig. 3.5. Rigid-host fitting curve and residuals for Bedford (top), Solenhofen (middle)
limestones and Webatuck dolomite (bottom) from Nur and Simmons (1969).
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Fig. 3.6. Rigid-host fitting curve and residuals for Westerly (top), Casco (middle)
and Troy (bottom) granites from the Nur and Simmons (1969) data set.



47

0 20 40 60 80 100
Pressure HMPaL

3.1

3.2

3.3

3.4

3.5

V
p

Hkm�sL
P2»2311;Pi»-0.4;m»0.94;V0»2.9+0.3i;RMS »0.004

-0.006

-0.004

-0.002

0

0.002

0.004

Fit Residuals

0 20 40 60 80 100
Pressure HMPaL

1.9

2

2.1

V
s

Hkm�sL

P2»807;Pi»-1.3;m»0.95;V0»1.9+0.1i;RMS »0.005

-0.005

0

0.005

Fit Residuals

0 20 40 60 80 100
Pressure HMPaL

3

3.5

4

4.5

5

V
p

Hkm�sL

P2»14073;Pi»-1.8;m»0.71;V0»2.6+1.3i;RMS »0.04

-0.06

-0.04

-0.02

0

0.02

0.04

Fit Residuals

0 20 40 60 80 100
Pressure HMPaL

2

2.2

2.4

2.6

2.8

3

3.2

3.4

V
s

Hkm�sL
P2»3558;Pi»-1.2;m»0.73;V0»1.7+0.8i;RMS »0.02

-0.03

-0.02

-0.01

0

0.01

0.02

Fit Residuals

0 20 40 60 80 100
Pressure HMPaL

3.2

3.4

3.6

3.8

4

4.2

V
p

Hkm�sL

P2»3656;Pi»-2.7;m»0.88;V0»3.2+0.6i;RMS »0.03

-0.04

-0.02

0

0.02

Fit Residuals

0 20 40 60 80 100
Pressure HMPaL2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

V
s

Hkm�sL

P2»1485;Pi»-1.3;m»0.86;V0»2.0+0.4i;RMS »0.02

-0.03

-0.02

-0.01

0

0.01

Fit Residuals

Fig. 3.7. Rigid-host fitting curve and residuals for Boise (top), St.Peter (middle) and
Torpedo (bottom) sandstones from the King (1966) data set.
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Fig. 3.8. Rigid-host fitting curve and residuals for Bandera sandstone, measurement
direction is parallel (top) and perpendicular (bottom) to bedding, from the King
(1966) data set.
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Fig. 3.9. Rigid-host fitting curve and residuals for Berea sandstone, measurement
direction is parallel (top) and perpendicular (bottom) to bedding, from the King
(1966) data set.
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Fig. 3.10. Rigid-host best fit parameter estimates and RMS errors for rocks from the
Coyner (1984) and King (1966) data sets.
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Fig. 3.11. Rigid-host best fit parameter estimates and RMS errors for rocks from the
Nur and Simmons (1969) data set.

the inversion results in terms of the inverted parameters m, P2 and Pi (see equations

(2.9) and (2.11)). Notice that in general for Vp data or Vs data of each data set alone,

a lower estimate value of m is typically associated with a larger confidence interval

(and thus a larger uncertainty). This is an indication of a possible noise which has not

been accounted for in the current rigid-host model (i.e. modeling error, as opposed to

random error). Notice also that for each type of data (Vp or Vs), the estimate value

of P2 for sandstones tend to increase as the m estimate decreases.

The fact that Vs data result in systematically higher m and lower P2 than Vp

data suggests that S-wave velocity is less affected by pressure changes than P-wave

velocity for the same rock. For instance, for the Bandera sandstone in the top panels

of figure 3.8, the change in Vs is about 0.5 km/s for a value near 2 km/s, about 25 %,

whereas for Vp, the change is about 1 km/s compared to a velocity of 3 km/s, about

33 %. The m and P2 estimates are 0.9 and 1121 (MPa) for Vs data, and 0.89 and

3030 (MPa) for Vp data, respectively. Another example is, for the Chelmsford granite

in the bottom panels of figure 3.4, the change in Vs is about 1.2 km/s for V0 near 2.4

km/s, about 50 %, whereas for Vp, the change is about 2.2 km/s near 3.7 km/s, about

59 %. The m and P2 estimates are 0.75 and 116 (MPa) for Vs data, and 0.72 and

456 (MPa) for Vp data, respectively. To explain this in terms of ADM, according to
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equation (2.11), dP/dx = P2x
m−1−1, a lower value of P2 indicates a smaller envelope

for deformation to take place, whereas a higher value of m between 0.5 and 1 indicates

less variation in stiffness (i.e. more flat-lying, horizontal cumulative distribution) for

the same deformation range.

For many rocks, the small confidence regions indicate that parameters can be

reliably estimated using the velocity profile data from these rocks. Other rocks with

large confidence regions have unreliable parameter estimates with large uncertainty.

Note that although I inverted for values of m, P2 and Pi because they are independent

parameters, I have also done the inversion in terms of V0, P1 and Pi (Gangi, 1981)

and converted them via equation (2.11) without change in the outcome.

From these results, several points emerge that draw attention. First, the rigid-

host solution fits very well with the data from a few rocks, especially the Bedford and

Solenhofen limestones (from both Coyner (1984) and Nur and Simmons (1969) data

sets). Good fits can also be seen in stiff rocks such as the Navajo sandstone (which

is listed by Coyner (1984) as having the “stiffest stress-strain relation”), or rocks

that are subject to a smaller range of pressure such as the King (1966) high-porosity

sandstones. Nevertheless, systematic misfits occur in the rest of rocks, comparatively

larger than the measurement error ∆E, which is around 0.01 km/s or 10m/s in the

Coyner (1984) data set. The fact that the fit residuals are lined up in a systematic

pattern again suggests that there could be either modeling error or some coherent

noise that can be modeled and corrected for. In that sense, the solution does a

poorer job in several softer granites and the low-porosity rocks, while the worst fits

are spotted in the Webatuck Dolomite with RMS error one order larger than ∆E.

Note that the Webatuck Dolomite is also a very low-porosity rock (0.9%).

True to its assumption, the rigid-host solution applies well on rocks that are

considerably stiff over the applied pressure range, such that the host rock compliance

is negligible and deformation is approximately linear elastic. The stiffer rocks such as

the limestones, the Westerly granite, or the Navajo sandstone, all have approximately

linear stress-strain relationship over the range of applied pressure. However, the

elastic region can be quiet short for a relatively soft and compliant rock such as can

be seen on the Coyner (1984) graphs for stress-strain relationship for such rocks as

the Weber sandstone or the Berea sandstone or a few other granites. In addition,

the elastic region can also be short for a rock with very low, crack-like porosity such

as the Webatuck Dolomite. This rock has φ = 0.5% and is made up mostly from
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the mineral dolomite which is indeed very stiff, so theoretically it should fit well with

the rigid-host solution as does the other carbonate, Bedford Limestone. However,

because the host is so stiff, the primary effect of pressure is to close the cracks, and

that happens quickly due to the lack of porosity. Thus, presumably when pressure

is increased up to some large enough value (approximately around 30 MPa), the

majority of the cracks in this rock will have been closed, and there is very little

deformation in the rest of the experiment. All responses afterwards are primarily

those of the stiff mineral dolomite, making velocities look very “flat” over the rest of

the applied pressure range. Therefore, depending on the rock, the applied pressure

range is important for the application of the rigid-host solution. Generally, it should

work better for a stiffer rock and a smaller range of pressure.

Because ADM is a 1-D model, either we apply its solutions to an isotropic rock

to get one single set of inverted parameters, or else we will have different sets of

parameters describing the velocity-versus-pressure relationship for different directions

of measurement. Furthermore, because pressure affects Vp and Vs differently, we will

also have two different sets of parameters describing the pressure dependence of Vp and

Vs separately for each direction. Thus, it may be possible to infer for example that the

Berea sandstone from the King (1966) data set is approximately isotropic because the

measurements in two perpendicular directions (parallel and perpendicular to bedding)

result in similar sets of parameter estimates; meanwhile, the Bandera sandstone from

the same data set is anisotropic due to having different sets of inverted parameters

in different measurement directions.

A sensitivity study allows us to assess the uncertainty and non-uniqueness in

parameter estimates. This type of analysis helps determine the relationship between

parameters and which ones are the most uncertain or insensitive to the model. Here I

treat the rigid-host equation as a forward model and evaluate the objective function

at different parameter values (equation (3.1)). It is easy to check that for each rock,

the inverted parameter values (i.e. estimates) make up the global minimum which

minimizes the value of the objective function. Plotting the objective function and its

derivative with respect to a single parameter while keeping the other two at the global

minimum shows that in all experimental rocks, the objective function is well-behaved

with a well-defined global minimum. This means mathematically that the estimates

are unique and the objective function is sensitive to each parameter. However, because

the objective function is data-dependent (equation (3.1)) while the data can be noisy,
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Fig. 3.12. Values of the objective function for the Berea sandstone from the Coyner
(1984) data set showing the trade-off relationship between m and P2 and the insen-
sitivity with Pi.

parameter values near the minimum are also acceptable as inversion results. Thus,

it is the noise (coherent or incoherent) that is responsible for the non-uniqueness of

solution estimates and the insensitivity of the objective function to each parameter.

If the objective function does not change too rapidly for values at and away from the

minimum, we say that it is insensitive (or else, the least sensitive) to that parameter.

Plotting the objective function for two parameters while keeping one at the global

minimum show that while there is a trade-off relationship between values of m and

P2, the forward rigid-host model is the least sensitive to values of Pi near the global

minimum. This is illustrated on figure 3.12 for an example rock. This figure plots the

value of the objective function which is the root-mean-square (RMS) of the differences

between the model velocity prediction and the data values for the Berea sandstone, as

the parameters are allowed to vary within their possible range of values (values above

1 km/s are cut off). As shown on the left panel, fixing Pi at the minimum, the values of

the objective function are comparably similar as P2 decreases and m increases and vice

versa, while shown on the right panel, for a pair of values m and P2 at the minimum,

the objective function is similar for values of Pi near the minimum. My test results

with other rocks and with synthetic data also show similar behaviors, indicating that

these are properties of the rigid-host model solution. It further supports the non-

uniqueness of the inverted solution we have seen as confidence regions.
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3.4.2 Inversion results using the power-law compliant-host solution

Figures 3.13 to 3.20 show the compliant-host best fits and RMS errors for the Vp and

Vs of all twenty rocks. Figures 3.21 and 3.22 summarize the compliant-host parameter

estimates with the error bars showing the confidence regions of solution in terms of

Vg, V0, m, and Pi.

The first important remark is that compliant-host inversion does a much better

job fitting the data in all rocks, compared to rigid-host inversion. The RMS errors

using the compliant-host inversion is around an order better than those from rigid-

host fit. Furthermore, the fit residuals are more random, proving that there is no

coherent noise needed to be corrected for. This suggests that the equation used for

inversion is the “correct” formula, which describes all pertinent physics involved.

However, notice right away that the inverted values for m are negative in many

cases, and also not the same as the estimates from rigid-host inversion. The negative

m values are uninterpretable using the current ADM. Secondly, the extremely large

values of Pi also seem out of range regarding their physical meanings in the “bed-

of-nails”. This in turn suggests that the current ADM is not extensive enough to

physically cover and interpret all real-life data. I postulate here that the reason for

this is because of the initial presumption that the host rock moduli are pressure inde-

pendent. In fact Carlson and Gangi (1985) mentioned that the m estimates are higher

for the rigid-host than for the compliant-host solution because the rigid-host solution

“includes the effect of the grain compressibility in the asperity-height distribution

function” while the compliant-host solution does not, and thus the compliant-host

estimate values for m are affected by the fact that “the grain velocity does not have

an explicit pressure dependence.” In chapter V, I will attempt to correct for this

effect by extending the model to let the host rock depend on pressure.

Notice that in a few cases (e.g. Vs of Solenhofen limestone or Vp of Westerly

Granite), the estimate of Vg is very large, indicating that the grain solid is much

stiffer than the pores/cracks, hence its inverse, compliance, is negligible, and it points

back to the rigid-host solution where we get the exact same set of parameters (m, P2,

and Pi). Thus, the compliant-host solution is indeed more general than the rigid-host

solution, and should therefore be applicable to a broader variety of rocks.



56

0 20 40 60 80 100
Pressure P HMPaL

4.40

4.50

4.60

4.70

4.80

V
el

oc
ity

V
p

Hkm�sL
Vg»5.4;Pi»5.6;m»0.75;Vc»4.3;RMS»0.003

-0.006

-0.004

-0.002

0

0.002

0.004

0.006
Fit Residuals

0 20 40 60 80 100
Pressure P HMPaL

2.55

2.6

2.65

2.7

V
el

oc
ity

V
s

Hkm�sL

Vg»2.7;Pi»55.6;m»-1.27;Vc»2.5;RMS»0.002

-0.004

-0.002

0

0.002

0.004

Fit Residuals

0 20 40 60 80 100
Pressure P HMPaL

4.0

5.0

6.0

7.0

V
el

oc
ity

V
p

Hkm�sL

Vg»6.8;Pi»10.9;m»-0.89;Vc»3.8;RMS»0.03

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Fit Residuals

0 20 40 60 80 100
Pressure P HMPaL

2.5

3

3.5

4

V
el

oc
ity

V
s

Hkm�sL
Vg»3.8;Pi»10.9;m»-0.8;Vc»2.6;RMS»0.01

-0.01

0

0.01

0.02

Fit Residuals

0 20 40 60 80 100
Pressure P HMPaL

2.5

3

3.5

4

4.5

V
el

oc
ity

V
p

Hkm�sL

Vg»4.8;Pi»23.3;m»-1.13;Vc»2.2;RMS»0.008

-0.015

-0.01

-0.005

0

0.005

0.01

Fit Residuals

0 20 40 60 80 100
Pressure P HMPaL

1.8

2

2.2

2.4

2.6

2.8

3

V
el

oc
ity

V
s

Hkm�sL

Vg»3.1;Pi»21.6;m»-0.91;Vc»1.7;RMS»0.006

-0.01

-0.005

0

0.005

0.01

Fit Residuals

Fig. 3.13. Compliant-host fitting curve and residuals for Bedford limestone (top),
Webatuck dolomite (middle) and Weber sandstone (bottom) from the Coyner (1984)
data set.
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Fig. 3.14. Compliant-host fitting curve and residuals for Navajo (top), Berea (middle)
and Kayenta (bottom) sandstones from the Coyner (1984) data set.
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Fig. 3.15. Compliant-host fitting curve and residuals for Westerly (top), Barre (mid-
dle) and Chelmsford (bottom) granites from the Coyner (1984) data set.
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Fig. 3.16. Compliant-host fitting curve and residuals for Bedford (top), Solenhofen
(middle) limestones and Webatuck dolomite (bottom) from the Nur and Simmons
(1969) data set.
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Fig. 3.17. Compliant-host fitting curve and residuals for Westerly (top), Casco (mid-
dle) and Troy (bottom) granites from the Nur and Simmons (1969) data set.
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Fig. 3.18. Compliant-host fitting curve and residuals for Boise (top), St.Peter (middle)
and Torpedo (bottom) sandstones from the King (1966) data set.
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Fig. 3.19. Compliant-host fitting curve and residuals for Bandera sandstone, mea-
surement direction is parallel (top) and perpendicular (bottom) to bedding, from the
King (1966) data set.
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Fig. 3.20. Compliant-host fitting curve and residuals for Berea sandstone, measure-
ment direction is parallel (top) and perpendicular (bottom) to bedding, from the King
(1966) data set.
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Fig. 3.21. Compliant-host best fit parameter estimates for rocks from the Coyner
(1984) (top), King (1966) (middle), and Nur and Simmons (1969) (bottom) data
sets.
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Fig. 3.22. RMS errors of compliant-host fit for rocks from the Coyner (1984) (left),
King (1966) (right), and Nur and Simmons (1969) (bottom) data sets.
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3.4.3 Discussions

It is noticeable that the sandstones, whether of low or high porosity, seem to all have

high estimates of P2 and a broad range of values for estimates of m in the rigid-host

inversion (figure 3.10), while for the compliant-host inversion no such similarity can

be seen (figure 3.21). For the rigid-host results, sandstones generally have estimates

of P2 higher than the carbonates and the granites, while their estimates of m are com-

parable. This is understandable regarding the physical meanings of these parameters.

First, let us examine why the m estimates for almost all rocks are around 0.7 to 0.99.

Note that m characterizes the shape of the power-law asperity-height distribution and

the amount of asperities deformed increases with applied pressure. With intensity of

applied pressure and reduction of fracturing, more and more originally tall asperities

are deformed and brought into contact, and the asperities become more and more

uniform in height (see equation (2.10) and figure 2.2 for the power-law distribution).

Therefore, an inverted value of m closer to 0 means at that particular applied pres-

sure, only a small number of (tall) asperities have been deformed and in contact while

the rock is still dominated by asperities of contrasting heights (tall and short) which

are subject to deformation and contact by pressure. Whereas, an inverted value of m

closer to 1 means at that particular pressure most of the taller asperities have already

been deformed and in contact, while the left-over asperities are all about equal in size

and number. For the examined laboratory data sets, at high pressures (around 100

MPa) any tall isolated asperities will have been broken, so it makes sense that the

estimates are larger than 0.5 and closer to 1.

On the other hand, sandstones have noticeably higher P2 estimates than carbon-

ates and granites (figure 3.10). Recall that in the “bed-of-nails” model, P2 not only

characterizes the asperity material but also the total number of asperities (equation

(2.2)), thus its estimate should contain information about the host material as well

as the maximum amount of possible contact in the studied rock when subjected to

pressure. Hence, the high estimates of P2 suggest that sandstones have more con-

tact potential (i.e., larger NT ) thanks to the higher porosity, although not necessarily

stiffer host-rock material (i.e., mineral composition) than compared to other types of

rocks. From the ADM perspective, P2 is constant in equation (2.1) indicates that the

model assumes there is no deformation in the host, thus the host is rigid and does not

depend on pressure. Because the solution imposes such rigid-host assumption which

granular rocks like sandstones may not strictly follow, estimates for P2 in sandstones
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should also incorporate the host rock rigidity, which differs from more-obeying media

such as igneous or hard carbonate rocks. While it makes sense to assume a constant

value for P2 in low-porosity, hard crystalline rocks (e.g. Gangi, 1981; Carlson and

Gangi, 1985), granular media such as sandstones may not have the same host-rock

rigidity and may be deformed much more easily. As discussed earlier, the large variety

of variable parameters in sandstones (such as grain size, shape and sorting, porosity

type, porosity, consolidation, etc...) greatly influence the variations and uncertainties

in the contact potential and the characterized asperity material. Thus, it may be

more valid to give P2 some flexibility to represent the asperity material in sandstones

(i.e. to let it vary with applied pressure). The bottom line is that the high estimate

values for P2 in sandstones may have been the consequence of an invalid rigid-host

assumption. For the compliant-host solution, no such differentiation between rock

types can be observed and this is believed to be the consequence of a more valid

model.

Nevertheless, the rigid-host model solution has three physical parameters and it

is still a good first-order approximation to laboratory data. The compliant-host model

solution has four parameters and thus is expected to offer a more stable inversion as

well as a much better fit to all rocks. However, we have also seen that the estimate

values for the parameters using this solution, particularly for m and Pi, are not

physically meaningful with respect to the original “bed-of-nails” physical model.

In any event, the estimate for Pi from both inversions has large uncertainties due

to its sensitivity to low-pressure data measurements, agreeing with a previous study

by Genova (2008). He concludes that the reason for the uncertainty of Pi is because of

the lack of measurements near zero effective pressure. From the rigid-host equation

(2.9), it is also deducible that changing the values of Pi affects the lower-pressure

predictions more than it does to the higher-pressures. That means in the inversion,

the low-pressure data points will affect the estimated values for Pi more than the

high-pressure data points, and having a measure at zero pressure is the guarantee

to have the most certain value of Pi, while not having that measure will introduce a

degree of uncertainty into the estimate of Pi, and that degree of uncertainty increases

with fewer low-pressure data points.

Figure 3.23 puts together a comparison between the two power-law inversion

schemes for two example rocks from the Coyner (1984) data set. The onset shows

fit residuals of only the compliant-host inversion, comparable in magnitude to the
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Fig. 3.23. Comparison between rigid-host and compliant-host inversion for two ex-
ample rocks in the Coyner (1984) data set.

measurement error ∆E ≈ 0.01 km/s. For the Navajo sandstone, the rigid-host fits

well to data but the compliant-host improves the fit even more. For the Weber

sandstone, the rigid-host solution does a poor job while the compliant-host inversion

maintains a good fit, with random fit residuals consistently less than ∆E. It is not

coincidental that the Gangi (1981) solution works well in such rocks as the Bedford

limestone and Navajo sandstone. Coyner (1984) graphically demonstrated that the

pressure-versus-volumetric strain relationship is approximately linear in these rocks

over the applied pressure range 0-100 MPa, whereas nonlinear in the rest of the

rocks. Moreover, Navajo sandstone has “well-sorted grains,” “the stiffest stress-strain

relation and lowest crack porosity” (Coyner, 1984). A well-sorted sandstone would be

more resistant to pressure as compared to a poorly sorted sandstone due to the pore

geometry. A poorly sandstone would have more thinner crack-like pores while a well-

sorted sandstone has less thinner cracks. thus deformation (i.e., porosity reduction)

is more or less linear with pressure. Recall that ADM models pressure as directly

proportional to the volumetric strain While the Weber sandstone is more dense (ρ =

2.392 g/cc compared to 2.316 g/cc for Navajo) and more rigid (the bulk modulus of

the grain solid is Kb = 38.5 GPa compared to 36 GPa for Navajo), it is less well-sorted,

and its graphed porosity reduction with pressure is very nonlinear (Coyner, 1984).

I have repeated the same analyses for all nine rocks from the Coyner (1984)data
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set and came to the conclusion that the pore geometry influences pressure-induced

deformation in rocks, predicting and determining the fit with the rigid-host solution

(i.e. purely linear elasticity).

As demonstrated, rigid-host inversion using a power-law distribution of asperity

heights) leads to some systematic and considerable misfits (compared to listed ex-

periment error) for some experimental rocks. This indicates that the misfits are not

random errors but “modeling errors” (Scales et al., 2001). In general, if the model

accurately describes all the involved physics then the random errors should represent

the random noise of the experiments, which is non-systematic and within the range

of measurement error. Normally, every experiment will produce some random noise

which can be large but is always highly variable and “cannot have any consistent

patterns or effects across the data sample” (Trochim, 2000). Thus, the systematic

and significant misfits indicate that these rocks do not match the assumptions of the

rigid-host solution.

In general, the purpose of a theoretical model such as the “bed-of-nails” is to

describe the true, natural physics that happen in real life. However, one physic that

usually cannot be modeled well is the noise. Noise usually comes in two components:

coherent and incoherent. The coherent part, if exist, is systematic and thus can

be modeled and corrected for if we know what causes it. The incoherent part, or

random noise, is what changes with every experiment and therefore non-systematic

and cannot be modeled. Fortunately, it is possible to locate the source of random

noise and thus quantify its limit range. For a laboratory experiment, the source of

random noise is usually the precision of the measurements. The measurement error of

an experiment envelopes the random noise. Thus, the quality of a data set is usually

associated with the measurement error and how much noise is in it. Good-quality

data is acquired when the experiments are precise and the measurement errors are

negligible with no noise correction needed.

Good-quality data such as Coyner (1984) is important because it minimizes the

effect of random noise, allowing the users to justify the usage of a model, i.e. how

well it represents the actual physics, via the process of inversion. From the study of

inverse theory, if the quality of the data is good, then the model accuracy in fitting

data (i.e. the goodness of the fit) and physical interpretation (i.e. the consistency

between physical meaning and interpretation) is what justifies its use (e.g., Scales

et al., 2001). Thus, if the model accurately describes all the involved physics, then



70

the fit residuals should be comparable to the random noise in the data, and the

physical interpretation should be consistent for parameter estimates. If either the

model does not fit well with a good-quality data or there is a lack of consistency in

the interpretation of the fit results, then there is a chance that some certain physics

have been overlooked or underestimated in the model. In this case, it may be possible

and of the user’s interest to identify those physics and modify the model to include or

re-model them. Mathematically, that would be equivalent to adding a new parameter

with a new physical meaning in to the model solution, or changing certain parameters

into variables, etc... So far, we have seen a lack of consistency, either in fit goodness

or interpretation of results using current ADM solutions. In the next chapters, I will

make attempts to modify ADM so as to simultaneously improve the fit as well as

physically interpret inversion results.

3.5 Conclusions

Inversion results from this chapter show that although the rigid-host solution works

well for several rocks fitting the data to within measurement error of 0.015 km/s (e.g.

the RMS error for Bedford limestone is 0.004 km/s for Vp and 0.003 km/s for Vs and for

Navajo sandstone is 0.01 km/s for Vp and 0.006 km/s for Vs), systematic misfits exists

in other rocks, comparatively larger than the measurement error (e.g. in Webatuck

dolomite the RMS error is 0.15 km/s for Vp and 0.06 km/s for Vs and in Weber

sandstone it is 0.07 km/s for Vp and 0.04 km/s for Vs). In contrast, the compliant-

host solution returns negligible and random errors in all rocks, for both Vp and Vs

(e.g. for Webatuck dolomite the RMS error is 0.03 km/s for Vp and 0.01 km/s for Vs,

while in Weber sandstone it is 0.008 km/s for Vp and 0.006 km/s for Vs. However,

the inverted parameters fall uninterpretably out of their range as constrained by their

physical meanings in the “bed-of-nails” model (e.g. negative m values and extremely

large Pi values). Naturally, it poses questions about the applicability of the existing

analytic solutions: Are the solutions not accurate enough to model the data response,

or is it something to do with the model? What causes such misfits and unphysical

values? How can the model be modified so as to be consistent with the inversion

results? The following chapters will suggest an answer to these questions: the applied

pressure range is too large for the rock deformation model either to assume a rigid

host or to ignore the pressure dependence of the host modulus in these rocks.
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Moreover, the results indicate that ADM allows the user to view a rock from two

contrasting perspectives: either having a rigid frame and a flexible asperity-height

distribution which dictates rock behaviors but should deviate from the approximate

simple power-law, or having a compliant host with a power-law distribution of asperity

heights. Using the power-law assumption, the first view leads to the rigid-host solution

which is a good first-order approximation but can presumably be further improved

(due to the systematic misfits). Thus, the power-law is a fit-for-purpose assumption

and should only be used depending on the application. If the application requires

only a simple and effective velocity-pressure relationship without emphasis on misfits

and accuracy, the power-law should be used. However if it is important for the

application to have an accurate prediction of velocity as a function of pressure, say

for a particular rock, we can generalize the distribution of asperity shortnesses as

not having to obey a simple power-law and invert for it from the rock. The second

view allows for the development of the compliant-host solution (but still assuming

a power-law distribution of asperity shortnesses) which improves the fit significantly

compared to the first one, but returns unphysical parameter estimates, suggesting

that the model has not adequately described the data. Here the model needs to

be revised in order to be able to interpret these seemingly false values. Therefore,

although ADM solutions are applicable to all rocks, in either view modifications of

ADM are necessary for better data fitting and interpretation. For this purpose, I

attempt to modify ADM from the rigid-host point of view in chapter IV and from

the compliant-host perspective in chapter V.

As we know from chapter II, the good thing about the parameter P2 is that it is

independent of the distribution of asperity shortnesses. P2 characterizes the asperity

material, or the type of deformation that the asperities undergo. Thus, as long as

it stays constant with pressure, the type of deformation is linear elasticity. So no

matter the distribution (whether a power-law or some other type of distribution) is

used to acquire an ADM-based solution for inversion purposes, the estimate of P2

from inversion is unchanged. As a result, allowing for P2 to change with pressure is

equivalent to describing a nonlinear deformation. Thus, the demonstrated trade-off

relationship between m and P2 as influenced by the data (the objective function is

the RMS of the differences between data and model, while P2 and m are independent

parameters in the model) suggests that P2 is not independent of the distribution of

asperity shortnesses, but instead decreases as pressure increases. The bottom line is
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that the actual deformation occurred in these rocks are nonlinear, and in order to

account for that we need to allow P2 to decrease with pressure. This will be the goal

of chapter V. On the other hand, from the ADM perspective, we can still view the

rock as a “bed-of-nails” with a rigid host, while treating the distribution of asperity

heights as a non-power-law. In chapter IV, I attempt to test this view and invert for

the distribution of asperity shortnesses. Whether the modified model is self-consistent

will verify this preconception.
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CHAPTER IV

NUMERICAL INVERSION OF THE DISTRIBUTION OF ASPERITY

HEIGHTS - MODEL IMPROVEMENTS FROM THE RIGID-HOST

PERSPECTIVE

4.1 Introduction and summary

The (elastic) asperity-deformation bed-of-nails model (ADM, BNM), based on the

idea of “rough surfaces in contact” or “imperfect interfacial contact” (e.g. Green-

wood and Williamson, 1966; Greenwood and Tripp, 1967; Gangi, 1978; Walsh and

Grosenbaugh, 1979; Brown and Scholz, 1985; Liu et al., 1996) is a notably useful

model for describing the mechanical behaviors of fractures under external forces.

The statistical approach of using distributions of asperity heights to describe the

mechanism in which “random surfaces” come in contact has been used extensively in

numerous applications in tribology and material science, to describe friction and wear

(e.g. Kragelskii, 1965; Kotwal and Bhushan, 1996; Berthoud and Baumberger, 1998)

and especially, elasticity theory and contact mechanics of materials (e.g. Pullen and

Williamson, 1972; Bhushan, 1996; Bhushan, 1998; Yu and Polycarpou, 2004). Several

good literature reviews on the history of contact theory and its applications include,

for instance, Buczkowski and Kleiber (2000) and Bahrami et al. (2005). Particularly

for rocks, Gangi (1978) first used BNM to study the effects of confining pressure

on the permeability of rocks. Noting that a rock can be considered as a mixture

of fractures and microfractures that include rough surfaces with contact points and

open spaces, this model characterizes rock properties via “contact asperities.” These

asperities come in contact and deform under pressure, and the amount of deformation

determines rock behaviors. On the other hand, other popular fracture/rock models

tend to describe and categorize pressure dependence and elastic properties in terms

of the void portion of the rock, such as the ellipsoidal crack model with pore-aspect

ratios (PARs) (i.e. the aspect ratio, a fractional number, between the smallest and

largest dimensions of the ellipsoid) representing the pore geometry (e.g. Walsh, 1965;

Kuster and Toksöz, 1974; O’Connell and Budiansky, 1974; Hudson, 1980; Sun and

Goldberg, 1997), where the amount of void space, represented by the concentrations
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of PARs, determines the closure stress as well as rock properties.

Interestingly, the recent development of a new concept called “pore structure

type” (Sun, 2004; Sun et al., 2006) seems to synthesize these two mainstreams.

Sun (2004) combines all effects of pore structure, pore connectivity, grain contact,

cementation, etc... into an universal parameter named “frame flexibility factor” used

to quantify the pore structure effects on the elasticity of porous rocks. However, no

correlation has yet been established between ADM and PAR. So far, ADM has mostly

been applied in a few inversion studies (e.g. Gangi, 1981; Carlson and Gangi, 1985;

Gangi and Carlson, 1996). Recently, Carcione et al. (2007) used ADM to determine

the dilation factor for use in 4D monitoring. Meanwhile, PAR has been widely used

in many topics of investigation, including effective properties of fractured media (e.g.

Hudson et al., 1996; Pointer et al., 2000; Liu et al., 2000) and velocity inversion (e.g.

Cheng and Toksöz, 1979; Burns et al., 1990; Sun and Goldberg, 1997). Effective

medium theories (e.g. Kuster and Toksöz, 1974; O’Connell and Budiansky, 1974;

Bruner, 1976; Hudson, 1980; Xu and White, 1995) and their applications in time-

lapse studies of porous and fractured media tend to prefer the use of ellipsoidal pores

parameterized by aspect ratio to model elastic moduli (and thus, seismic velocities).

Nevertheless, the use of PAR has often led to complications that require trading off

between simplification and accuracy (e.g. Keys and Xu, 2002). Naturally, it poses a

question about how suitable ADM is in such applications. Therefore, in this chapter

I specifically compare ADM with PAR in terms of physical meaning and applicability

in order to see if a link exists between them.

Using existing analytic ADM solutions (Gangi, 1981; Carlson and Gangi, 1985),

I perform nonlinear regression to estimate velocity curves that best fit the laboratory

data measured by Coyner (1984), King (1966), and Nur and Simmons (1969), and

show results in chapter III. I then examine the feasibility of the solutions by ana-

lyzing the inversion statistics such as sensitivity, uncertainty and nonuniqueness of

the parameter estimates. From chapter II, the analytic “rigid-host” solution assumes

that the rock frame is much stiffer than the cracks, while the analytic “compliant-

host” solution assumes that the rigidity of the rock frame is comparable to that of

the fractures. Both solutions assume linear elastic deformation of asperities and a

power-law distribution of asperity shortnesses. My inversion results from chapter III

have shown that the power-law set of solutions can reproduce velocity-versus-pressure

data quite well, though systematic and significant misfits with the rigid-host solution
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are recorded in rocks that exhibit nonlinear behaviors, whereas the compliant-host

solution offers a better fit but with physically uninterpretable parameter values.

Because the rigid-host solution returns systematic and significant misfits in many

experimental rocks, it may be possible to improve on its fit capability as well as the

overall applicability of ADM. Generally in a mathematical solution of a physical

model, each parameter or variable describes an involved physic, while the equations

describe the interactions and/or interrelations between these physical quantities as

the variable is allowed to change while the parameters are held constant. Thus,

from the mathematical point of view, there might be two possible accounts for the

(significant and systematic) rigid-host misfits: either (a) a missing parameter in the

model equation, or (b) certain parameters could (and should) be made variables that

change as pressure increases instead of applying pressure independent values. From

the inverse theory point of view, certain “a priori” assumptions may have limited

the ability of this solution, as a forward model, to describe certain physics in certain

rocks. For instance, while the assumption of rocks having an infinitely rigid host

and a power-law distribution of asperity heights may be true for some rocks, such

assumption may not always be true for all rocks, as the asperity distribution may

differ from one rock to another.

In this chapter, I implement a numerical method similar to the differential ef-

fective medium (DEM) technique (e.g. Cheng and Toksöz, 1979; Tran et al., 2008;

which inverts for a PAR spectrum), but instead I invert for the generalized distribu-

tion of asperity heights. This numerical implementation improves the goodness of fit

at the expense of increasing the number of describing parameters and computation

time. I discretize the deformation axis at a number of sample points and invert for

the value of the cumulative distribution function (CDF) of the asperity-height dis-

tribution at each of the sample points by perturbing its value vertically around the

analytically inverted power law. As a result, our numerical inversion does a better

job of fitting the data compared to the analytic solution, but at the expense of using

more parameters to describe the distribution function, as well as computation time.

However, the results justify our initial postulation of a generalized asperity-height

distribution of arbitrary form. By comparing asperity-height inversion results to a

linearized method for pore-aspect ratio inversion (e.g. Cheng and Toksöz, 1979),

we hope to bring out the link between ADM and PAR, an established standard in

the industry. The comparison indicates that two models describe the same physical
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phenomenon: the general increase in contact area due to pressure, highlighting the

potentials of ADM-based solutions as suitable for ease of implementation.

4.2 Rigid-host rock model without the power-law assumption - Method

and application of numerical generalization and inversion of the asperity-

height distribution

An elastic property of a rock is an average between the property of the inclusion

pores/cracks with that of the host rock. The contribution of the host rock property

to the overall rock property is either significant or negligible depending on how it

compares to that of the fractures. Nevertheless, ADM allows the users to assume

that the host rock is always much more rigid and thus its compliance is negligible

compared to the cracks, equating the rock elastic moduli to those of the fractures and

attributing all natural rock physics to the linear elastic deformation of the asperities

as they come into contact in the “bed-of-nails”. Using ADM as a rock model, we

can view a rock as having a rigid host while the fractures portion is controlled by a

distribution of asperities whose heights may or may not follow a power-law (although

the power-law is a good estimate). Thus, in order to more accurately predict subtle

variations in velocity with pressure, in this chapter I employ a new implementation

to test the idea of allowing the distribution of asperity shortnesses (which supposedly

accounts for all physics involved in the change of pressure) to have an arbitrary shape

that deviates from the simple power-law, and invert for it using the velocity-versus-

pressure data.

From the rigid-host perspective, asperity deformation x is linear elastic, and the

distribution of asperity shortnesses, represented by the CDF N(x), also the number of

asperities in contact (at deformation or shortness x), dictates rock behaviors. While

the distribution of asperity shortnesses does not have to obey a simple power law such

as assumed by Gangi (1978; 1981) and subsequent papers, the power law is indeed

a useful choice for analytic results because not only it allows for a direct relation

between velocity and pressure but it is also a fairly good approximation of natural

behaviors of real rocks. However, as the rock is exposed to large-enough values of

pressure, the power-law is no longer a good approximation (and we have seen examples

of which in chapter III). In order to demonstrate that the power-law is fit-for-purpose



77

0 0.01 0.02 0.03 0.04 0.05 0.06
Asperity shortness x

0.45

0.5

0.55

0.6

0.65

0.7

0.75

N
um

be
r

of
as

pe
rit

ie
s

in
co

nt
ac

tN
HxL

0 0.01 0.02 0.03 0.04 0.05 0.06
Asperity shortness x

0

20

40

60

80

100

P
re

ss
ur

e
HMPaL

Fig. 4.1. Illustrations of a logarithmic sampling scheme of the distribution function
and resulting numerical calculation of pressure. The example rock is the Navajo
sandstone.

from this perspective, I generalize the distribution of asperity shortnesses N(s) in

equation (2.3), allowing it to have an arbitrary form instead of the power-law such as

in equation (2.10), and numerically invert for it from real rock data.

The parameters to be inverted for in a rigid-host ADM would be P2 and the

cumulative distribution function (CDF) N(s). However, because P2 is independent

of the distribution, we can elect to fix the value of P2 as estimated from the power-

law rigid-host fit. Thus, the only parameter left to be inverted for is the distribution

function N(s). Here I employ a numerical method to generalize and invert for the

distribution of asperity heights in each experimental rock. I divide the deformation

axis (x) into bins at a number of samples xi, and invert for the value of the CDF

N(x) of the asperity-height distribution at each sample Ni = N(xi) by searching

over a grid of its possible range of values, while linearly interpolating in between

these points (xi, Ni). For an illustration, on the left panel of figure 4.1, the red

dots indicate such sample points. Pressure and velocity are evaluated numerically

corresponding to the interpolated distribution function N(x) using equations 2.5 and

2.11, and matched with the data for the best fit in a least-square sense. Similar

to velocity changing rapidly at low pressures, the distribution N(x) also has a high
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curvature at x near zero. Using a non-uniform sampling scheme such as logarithmic

sampling helps to catch the rapid changes of the function at small values of x. For

all numerical results in this chapter, I use a logarithmic sampling scheme and a linear

function to interpolate among the sample points.

In figure 4.1, I show an example of the sampling scheme as well as the starting

search model. The rock is the Navajo sandstone from the Coyner (1984) data set.

First, the asperity shortnesses corresponding to the minimum input pressure (0.5

MPa, from the data) and an assigned maximum pressure (115 MPa) are calculated.

Then this range of asperity shortness is converted into logarithmic scale and uniformly

sampled (with 8 samples in this case). Next, shown on the left panel, the power-law

distribution function of the best power-law rigid-host fit N(x) (black curve) is sampled

with the above logarithmic scheme (red dots). Then, a linear interpolation function

is applied (among the red dots) to create the starting distribution function. Again,

note that this starting search model samples the black curve (i.e. the best power-law

rigid-host fit) at the red sample points. Finally, pressure is calculated as proportional

to the numerical integration of the (starting) distribution function. The right panel

of figure 4.1 shows the calculated pressure (in red) in comparison with the power-

law rigid-host pressure calculation (black curve). Note that the red model is not an

analytic curve, but made up of linear segments.

In this method of numerically approximating the distribution function, the non-

uniqueness of the solution is apparent because for instance, the interpolating function

affects the evaluation of related quantities. In addition, the choice of value for the

parameter P2 also has an uncertainty degree of its own, from power-law rigid-host

inversion. Despite this non-uniqueness, however, the overall fluctuating behavior of

the fit solution is constrained by the input velocity profile, and should not change

along with the different choices of parameters. Because our goal is to predict the

subtle changes in the velocity profile in order to test the idea of an arbitrary, non-

power-law distribution function, we want to (discretely) invert for the distribution

function from measured data and see if doing that improves the overall fit, compared

to the power-law solution. The goodness of the numerical fit depends on the number

of samples (i.e., parameters or bins describing the distribution function N(s)) as well

as the fineness of the search grid ∆N . This has an implication on the expense of

computing time: the finer the grid, the better the fit, but also the longer the search.

Fortunately, we have known in advance that the actual distribution function in all
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Fig. 4.2. Comparison of velocity profiles of the initial model (red), numerically in-
verted model (blue), and analytic power-law rigid-host best fit (black). The data is
shown as magenta dots. The example rock is the Navajo sandstone.

rocks more or less follow a power-law, and that knowledge provides good starting

guesses for our numerical inversion. Thus, here I apply the perturbation method

of modifying the values of the pre-inverted power-law distribution function at the

pre-fixed sample points, and grid-search over a large enough range of values at those

samples to find the best match with the data in terms of pressure and velocity.

Despite the apparent non-uniqueness associated with the interpolation function,

this numerical implementation should not change the general behavior of the final

inverted distribution. That means, the inverted CDF N(s) should always show the

predicted fluctuating-while-monotonically-increasing behavior regardless whether a

linear, parabolic, or cubic spline interpolation is used. For the sake of simplicity, I

have used linear interpolation for all of my numerical inversion results. Moreover,

beside such non-uniqueness of solution, another limitation of this method is the indi-

rect relation between pressure and velocity. Both quantities are related through the

deformation x and the distribution function N(s) on the interval [0, x]. This adds to

the cost of computing time for the generalized inversion. Here we can notice again

the advantage of the power-law assumption, as it allows for a direct, straightforward

one-on-one mapping between pressure and velocity.
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Fig. 4.3. Results of a 3-bin (4-point) grid-search inversion for Weber sandstone.

Figure 4.2 shows a plot of data measurements and a comparison of velocity pro-

files for the initial search model, the analytic power-law rigid-host best fit, and the

numerically inverted model. Notice that since the analytic power-law rigid-host best

fit has already fitted so well with the data from this rock, numerical inversion causes

no significant improvement of errors. I have systematically performed numerical in-

version for all rocks from the Coyner (1984) data set, and in the below section I

present results from a few example rocks.

4.3 Results of numerical implementation of the generalized rigid-host

rock model

Figure 4.3 shows the numerical inversion results for an example rock, the Weber

sandstone from the Coyner (1984) data set, whose data originally do not fit well

with the power-law rigid-host solution. On the left panel shows a comparison of

distribution models: the distribution function of the best power-law fit displayed in

black, the numerical models before (displayed in red, which samples the analytic

power-law function at the 4 sample points) and after numerical inversion (displayed
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Fig. 4.4. Results of a 7-bin (8-point) grid-search inversion for Weber sandstone.

in blue). Here I use a 3-bin (4-point) logarithmic sampling scheme to sample the x-

axis and a linear interpolation scheme for the discrete models. The red vertical bars

show the search range at each sample point along which I perturb the distribution

function N(s) and compute the relevant pressure and velocity. I first use a coarse

(vertical) grid of ∆N = 0.05 then later refine the search by reducing it to ∆N = 0.01.

The panel on the right shows the original velocity data (magenta dots) together with

the velocity profiles back-calculated from power-law rigid-host inversion (black curve)

and a 3-bin grid-search inversion result (blue curve). The onset shows the remaining

misfits after the grid-search inversion (i.e. the residuals of the blue curve). The

RMS errors are (approximately) 0.073, 0.076, and 0.058 km/s, respectively for the

best analytic power-law rigid-host fit (black), numerical power-law initial guess with

a linear interpolation (red), and numerical 3-bin grid-search inversion result with a

linear interpolation (blue).

Figure 4.4 shows the results of a 7-bin (8-point) grid-search inversion for the

Weber sandstone, using the same (vertical) grid and (horizontal) logarithmic sam-

pling scheme. Similar to figure 4.3, the left panel shows a comparison of models

for the (cumulative) distribution function N(s): the CDF of the best power-law fit

displayed in black, the numerical models before numerical inversion in red (which
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Fig. 4.5. Results of a 3-bin grid-search inversion from the rigid-host perspective for
Navajo sandstone.

samples the analytic power-law function at the 8 sample points) and after numerical

inversion in blue. Again the vertical red bars show the search range at each sample

point, and discrete models use linear interpolation. The panel on the right shows

the velocity profiles associated with the best power-law fit (in black) and with the

numerical inversion result (in blue). The original velocity input data is also shown as

magenta dots on this panel figure while the onset shows the remaining misfits after

inversion. Velocity RMS errors associated with the black, red, and blue models are

approximately 0.073, 0.073, and 0.038 km/s, respectively. Notice that the final model

(blue) using 7-bin sampling improves fit by ≈50% compared to using only 3 bins.

Thus, increasing the number of sample points (bins) improves fit significantly, but

at the expense of computation time. The actual amount of time difference depends

on the grid being used, the speed of the computer and how much memory is free for

use in the calculation. For an estimate, the 3-bin case is faster by about one order

(10 times). The results show that the numerical implementation indeed improves fit

and velocity prediction in this rock, while the inverted distribution function deviates

slightly from the power-law.

For the Navajo sandstone whose data already fit well with the analytic power-law

rigid-host solution (RMS error of ≈ 0.011km/s with the best power-law fit), a 3-bin
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Fig. 4.6. Results of a 7-bin grid-search inversion from the rigid-host perspective for
Navajo sandstone.

grid-search inversion slightly increases the RMS error (≈ 0.014km/s) due to the coarse

sampling of the deformation axis (see figure 4.5); however, an 7-bin sampling scheme

is dense enough for numerical inversion to improve the velocity RMS error further

(≈ 0.009km/s) compared to the analytic power-law case (see figure 4.6). Figure 4.7

summarizes the RMS errors remain after a 3-bin grid-search inversion for the set of

rocks from the Coyner (1984) experiments. It shows a general improvement of about

20%-50% velocity compared to the analytic power-law best fit. Again, these RMS

errors can be improved further by increasing the number of sample points, or using a

finer grid. However, there is a trade-off between fit improvement and computational

cost. Increasing the number of control points improves the fit (as shown in figure

4.4 for the Weber sandstone) but could also be inefficient as the distribution takes

many parameters to describe, while the computation time increases exponentially. In

order to be computationally efficient, I recommend using a larger search range for the

sample points x near zero and a smaller range for those at large x (because velocity

does not change as rapidly at high pressures or large deformations as compared to

low pressures or small deformations). It is also more efficient to use a coarser grid

at first to find and close in the “proper” search range, then repeat the search with

half the grid, and so on. In any event, numerical inversion results confirm our initial
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postulation that the true distribution of asperity heights is arbitrary depending on

the rock and does not have an universal form (particularly, a simple power-law), but

it does deviate slightly from a simple power-law, and a perturbation of the best fit

power-law can lead to a solution that better predicts velocity data.

4.4 Discussion - Comparison with pore-aspect ratio (PAR) inversion

To justify our work, we compare our inversion results (both analytic and numer-

ical) with a well-known linearized inversion scheme made popular by Cheng and

Toksöz (1979). The concept of a pore-aspect ratio (PAR) has been widely used, es-

pecially in describing the microstructure of the rocks as well as specifying an effective

medium for time-lapse seismic modeling. This method inverts for a PAR spectrum

from the Vp and Vs pressure profiles of the rock, assuming the properties of the grain

solid are known. The spectrum contains discrete concentrations of the porosity for

different bins of aspect-ratios. An increase in pressure closes the porosity made up by

all elliptical cracks having ratios in between the bin boundaries. Pressure is related
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to PAR using the (Walsh, 1965) formula for closure stress while velocities are related

to PAR using the differential effective medium (DEM) model (Kuster and Toksöz,

1974). The inversion can be linearized by applying a “self-consistent” method (e.g.

O’Connell and Budiansky, 1974) to solve an over-determined system of linear equa-

tions, such as shown by Tran et al. (2008).

The complications involved in the concept and applications of PAR have led

to a general awareness about the trade-off between simplification and accuracy in

the practice of PAR methods. For example, the DEM model associated with the

scattering theory by Kuster and Toksöz (1974) has always been considered numerically

intensive. Several authors have attempted to improve on the efficiency of this method,

including Xu and White (1995), Keys and Xu (2002). However, the reason the PAR

method is still used very frequently in the industry is because of its strength in fluid

substitution. Because this model models rock properties via the void portion of the

rock, it is easy to replace such void with any fluid whose properties are known. Once

the model is set and all parameters defined, replacing the fluid content of the rock

can be easily done by just including a fluid term into the equations. Thus, it is

understandable that PAR has been used extensively and a common concept in the

literature.

Intuitively, we postulate that the inverted distribution of asperity heights, which

determines the fracture and rock behaviors according to ADM, will bear some re-

semblance to the PAR spectrum from “linearized inversion” (Cheng and Toksöz,

1979), because they both describe a single physical phenomenon: the pressure-induced

change in contact area among the fractures. As pressure is introduced into the rock,

which otherwise is in equilibrium, some of the thinner cracks are closed, reducing the

total porosity (technically), bringing the stand-alone asperities into contact, generally

increasing the total area of contact among asperities in the rock. Imaginatively as the

pressure increases, longer asperities are brought into contact and deformed before the

shorter ones, while thinner ellipsoidal cracks with smaller pore-aspect ratio are closed

before the more spherical ones. When pressure closes cracks of a certain aspect ratio,

it has also brought a certain number of asperities into contact and deformed those

asperities. Note that although the linearized inversion method (Cheng and Toksöz,

1979) requires that the PAR spectrum be discrete, the nature of this spectrum is that

it is a distribution of PARs (recall that a PAR is a fractional number), thus it should

be continuous. Because of such reasons, the popular concept of a PAR α should be
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analogous and somehow connected to that of the deformation x from the BNM. Thus,

a comparison of inversion results together with their physical meanings is in order to

see if such connection is visible.

Here we postulate that because both methods, ADM and PAR, attempt to de-

scribe the same physics (i.e., the effects of pressure on elastic rock properties, partic-

ularly velocities) by relating both quantities (pressure and velocity) to a responsible

distribution in terms of deformation (i.e., the closure of aspect ratios is also a type of

deformation), the two distributions should look similar. The difference in the models

is that one describes it via compressing elastic springs, the other via stiffening and

closing ellipsoidal pores. Nonetheless, the distribution of asperities which determines

the rock behaviors should bear some resemblance to the PAR spectrum, although not

totally because of their physical meaning, the non-uniqueness of inversion solutions as

well as the method and data used. The comparison can be found in both the indirect

relation of pressure and velocity through a third variable (either asperity height or

PAR), and in the physical meaning of that variable (i.e. deformation). Under the

same pressure influence, longer asperities are first-in-line to be brought into contact

and deformed just like the thinner ellipsoidal cracks with smaller pore-aspect ratio

getting closed before the more spherical ones do. The end result is an increase in

contact area which both models include. Due to the non-uniqueness of the sampling

scheme and of the bin-interpolation function, it is necessary to relate both distri-

butions to the responsible pressure. Here I compare the two methods in terms of

accuracy and computing resource.

Note that the result of the numerical inversion implementation is similar to the

differential effective medium (DEM) technique (e.g. Cheng and Toksöz, 1979; Tran

et al., 2008) of discretely describing a distribution. Both implementations samples

the axis of the independent variable (i.e. deformation x or pore-aspect ratio α) using

non-uniform binning, and invert for the value of the distribution function at the bin

locations. In the case of PAR, it is the pore-aspect ratio spectrum, or the porosity

concentrations as the distribution of aspect ratios. However, much of the rest is

different between the two implementations, and in order to compare them we need to

map from pore-aspect ratio to asperity shortness (or deformation) through pressure.

The difference is in the method used for inversion. Cheng and Toksöz (1979) use a

linearized inversion, solving an over-determined linear system of equations and find an

estimate best fit. This adaptive method makes it a “self-consistent” way to estimate
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a fit to velocity profiles, but it can only reproduce velocities to a maximum of 3%-

5% of the original velocity values (Tran et al., 2008). Examples of results for data

considered in this dissertation suggest that because it combines input data from both

Vp and Vs, the back-calculated velocities are usually “compensated” between Vp and

Vs. PAR inversion often over-predicts the back-calculated Vp while under-predicts Vs

in order to compensate the errors.

Figure 4.8 shows an example of the comparison of the two inverted distributions

on the Berea sandstone. The result for PAR inversion was run from the same code

as was used in the paper by Tran et al. (2008), and provided to me through personal

communication by Tran (2008). We map the observed pressures to pore closure using

the Walsh (1965) formula

α =
4(1− ν)Pc

πE
(4.1)

and the back-calculated effective moduli as inputs. Here α is the aspect ratio that will

be closed at closure pressure Pc, E is the Young’s modulus and ν is the Poisson’s ratio

of the effective material. On this graph of pressure versus closure, we linear interpolate

to find the closure pressure that would close those ratios on the inverted spectrum.

Such closure pressure are displayed on the top of the frames. Using these pressure

values as inputs, we find the corresponding asperity shortness on the back-calculated
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pressure versus asperity shortness, and then map them on to the distribution of

asperity shortnesses. Figuring that each closure pressure would close all the PARs

within one bin, we make the analogy that the same closure pressure would bring

a number of asperities into contact, so the corresponding effect of pressure on the

number of asperities in contact is the difference of two adjacent asperity bins. This

mapping process is illustrated on figure 4.9.

Similar features can be seen on both distributions. The general behavior is that

the influence of pressure (i.e. the change in number of asperities in contact, or the

crack porosity closed) increases with the deformation. Although not displayed here,

similar features and general behavior are also seen on the inverted asperity-height

distribution for Vs. However, when we go to the numerical results (figure 4.10), we

cannot see such features, as the distributions look very different compared to those

in figure 4.9. There is still, however, an agreement between the spectrums for Vp and

Vs.

The interpretation is in the order of match among velocity profiles. Figure 4.11

shows the superposition of Vp (left panel) and Vs (right panel) profiles calculated from

PAR (blue dots), rigid-host (black) and the data (red dots) Note from above that the

numerical inversion result has the best match with the data due to its flexible form of
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the distribution function. The RMS errors of the numerical inverison back-calculated

velocities with the data are around 0.007 km/s. Whereas, both the PAR and rigid-

host back-calculated velocities have around an order larger of mismatch with the

data, 0.07 km/s and 0.06 km/s respectively for Vp and 0.02 km/s and 0.03 km/s

respectively for Vs. Thus, the two distribution are comparable only when they have

the same match with the data. The features associated with the numerical inversion is

more representative of the real microstructures of the rock, however, because it allows

the best match with measured velocities. Note that the tall spike at the beginning of

the asperity-height distribution is due to the gradual change in velocity within the fist

bin. The PAR spectrum does not have the same feature because it assumes constant

velocity within each bin.

4.5 Conclusions

We implement a numerical method similar to the differential effective medium (DEM)

technique (e.g. Cheng and Toksöz, 1979; Tran et al., 2008; which inverts for a PAR

spectrum), but instead we invert for the generalized distribution of asperity heights.

This numerical implementation improves the goodness of fit at the expense of in-

creasing the number of describing parameters and computation time. As a result,

our numerical inversion does a better job of fitting the data compared to the rigid-

host analytic solution, but at the expense of using more parameters to describe the

distribution function, as well as computation time. The results confirms our initial

postulation that from the rigid-host point of view, the asperity-height distribution is

arbitrary from rock to rock, and does not have an universal form (such as a simple

power-law).

By relating both distributions to the closure stress (or pressure), we have been

able to demonstrate the link that exists between two methods of pore-aspect ratio and

asperity deformation, and justify the use of asperity-deformation model by showing a

complete comparison between inversion results as well as their physical meanings. Our

comparison between asperity-height inversion and pore-aspect-ratio inversion suggest

that two models describe the same physical phenomenon, which is the general increase

in contact area due to pressure. While the pore-aspect ratio model is complicated

yet more widely used, with the same goal of inverting velocity to within reasonable

errors, ADM-based solutions is much more suitable for ease of implementation.
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CHAPTER V

NONLINEAR DEFORMATION AND THE PRESSURE

DEPENDENCE OF THE HOST ROCK - MODEL EXTENSION FROM

THE COMPLIANT-HOST PERSPECTIVE

5.1 Introduction and summary

As shown in chapter III, an overall assessment of my inversion results shows that

although the analytic rigid-host solution (with a power-law distribution of asperity

heights) fits the data quite well for several stiff rocks, systematic and considerable

misfits exist in many other rocks. On the contrary, inversion results for the same

laboratory rocks using the analytic compliant-host solution (also with a power-law

distribution of asperity heights) show random and relatively small misfits (compared

to listed measurement error) for all studied rocks. This comparison suggests that

the latter solution has the “correct” mathematical formula. However, the parameter

estimates acquired from inversion fall out of their model-constrained range, indicating

that they are not physically meaningful, or hypothetically, they represent, reflect

or include a physical phenomenon that has not yet been taken into account by the

asperity-deformation model (i.e. ADM). In other words, there exists a chance that the

model may have over-constrained some physics that may actually be negligible in the

model assumptions domain but become significant over a larger application domain.

Particularly in this case, the original ADM assumes that the range of applied stress

(or pressure) is small enough such that strain is infinitesimal and asperity deformation

remains linear elastic; however in real life, such a range of applied pressure as large

as 100 MPa could bring out the nonlinearity of (still elastic) deformation, making the

original assumption fall short.

Although it may seem at first that the parameter estimates from the analytic

power-law compliant-host inversion do not make physical sense (by falling out of

their constrained ranges), that is only true in terms of a purely (linear) elastic “bed-

of-nails” model. Because in reality “most rocks are nonlinear solids” (Coyner, 1984),

it may be possible that those (compliant-host) inversion estimates actually describe

the nonlinear behavior in natural rock deformation while their “unphysical” negative
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values reflect the possibility of such physic not being included in the model. Because

the ADM rigid-host and compliant-host rock models have already been good first-

order approximations to natural rock behaviors under the influence of pressure (as

seen from inversion results), the only physic that has not been and needs to be

accounted for is the pressure dependence of the host-rock compliance. Note that

Carlson and Gangi (1985) mentioned this physical phenomenon without including it

in their (compliant-host) solution, which further supports the hypothesis (from the

model perspective) that the host pressure dependence is responsible for the observed

nonlinear behavior of rock deformation. Following this thought process, I postulate

that such nonlinearity of deformation can be conveniently built into the “bed-of-nails”

model via the asperity material, since the “bed-of-nails” model assumes rigid fracture

faces and constant porosity (i.e. all deformation goes into the asperities). Therefore in

this chapter, I propose an extension of the “bed-of-nails” model that has the potential

to explain the negative values from compliant-host inversion. By letting the material

constant P2 vary as a nonlinear function of the deformation x (and thus, of applied

pressure P ), I modify several equations in the process but derive the exact same final

equation as the compliant-host solution, but with a new parameter representing a new

physic, regarding the original ADM assumptions: nonlinear deformation of asperities.

In terms of a rock model, the new parameter represents the dependence of the host

rock to applied pressure.

In reality, natural rock deformation can indeed be nonlinear, - so it makes sense

that the analytic power-law rigid-host solution returns systematic error in many cases,

especially for such a large applied pressure range as 0-100 MPa. Because the original,

analytic rigid-host solution assumes that linear-elastic asperity deformation and a

power-law distribution of asperity heights govern the behaviors of the fracture (and

thus, of the rock) model, changing the type of asperity deformation (from linear

to nonlinear) while keeping the (asperity-height) distribution intact is one approach

towards improving the model’s ability to fit and interpret laboratory data. The other

approach which involves allowing the distribution to change while maintaining linear-

elastic deformation of asperities has been addressed in chapter IV.
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5.2 Proposed extension of ADM - Theoretical approach

5.2.1 The modified compliant-host “bed-of-nails” model

As seen in chapter III, inversion using the analytic power-law compliant-host solution

(equation (2.12)) results in small and random residual errors but uninterpretable

parameter estimates. Particularly, negative values of m and large estimate values of

Pi are reported for the laboratory data sets from Coyner (1984), King (1966), and Nur

and Simmons (1969). Because a power-law distribution of asperity heights constrains

m to be between 0 and 1 (see equation (2.10)), it may seem that these estimates do

not make physical sense. A possible, hypothetical reason for this can be found in

chapter I, where I have noted that allowing for the pressure dependence of the rock

frame might be able to improve the solution. In their derivation of the compliant-host

solution, Carlson and Gangi (1985) mention correctly that the variation of the host

matrix modulus with pressure is small in single crystals and low-porosity crystalline

rocks, so the variation of velocity with pressure (below 1000 MPa) depends largely

on the linear porosity and modulus of the cracks. However, there are two other

important points that need to be further considered. First, it is not necessary that

this observation can be generalized for other rock types, porosity, and rigidity. Second,

Carlson and Gangi (1985) only consider the rate of change ∂V
∂P

, so the significance of

this assumption depends on how big the range of applied pressure ∆P is. Therefore,

the dependence of the host rock moduli to applied pressure may become significant

over a large deformation, and thus needs to be accounted for in the model.

In the original ADM, the distribution of asperity shortnesses is modeled so as

to account for all physics occurring as effects of pressure, yet the deformation of

the asperities is assumed purely linear elastic. As many stress-versus-strain analyses

from rock mechanics studies reveal, the linearity assumption is only approximately

true for small stages of deformation, but usually not the entire (large-enough) range

of deformation (or applied pressure). For large deformations, the host rock becomes

pressure-dependent, strain no longer infinitesimal, making deformation nonlinear (but

still elastic). Because the “bed-of-nails” model assumes two rigid faces and constant

porosity, and attributes deformation and all changes to the asperities in contact, the

part of deformation resulting from the pressure dependence of the host could (and

should) also be built into the asperity model. Because of the random and small

misfits to data measurements in all of the experimental rocks, I postulate that the
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compliant-host solution has the correct mathematical form, and that the power law is

still a good, natural approximation to pressure-induced contact deformation. Thus,

I attempt to extend the model such that the same equation can be derived, but with

a different parameter (modifying m, which describes the distribution of linear-elastic

asperities) that describes a new physics: the involvement of the pressure dependence

of the host rock.

5.2.2 Mathematical representations

In order for the host rock to comply to and depend on pressure, I choose to build

the pressure dependence of the host into the asperity model (i.e. the “nails”). Note

that the host compliance can be described adequately by a parameter Vg (such as in

the compliant-host solution), while the host pressure dependence is what needs to be

included in the model. Although this dependence can also be built into Vg, I choose

to instead modify the constant P2 (see equations 2.2 and 2.3) which is representative

of the asperity material in the “bed-of-nails” model (see section 2.2.1.2, chapter II),

because it leads to the exact same equation as the compliant-host solution, thus helps

me explain the inversion results (i.e. negative values), as demonstrated below. When

the “bed-of-nails” model is used to represent a rock, because the fracture faces are

considered to be infinitely rigid, the asperity material characterizes the actual rock-

frame material. In the original “bed-of-nails”, P2 is a constant because the asperity

material is modeled as linear elastic. Here I modify P2 by allowing it to change

nonlinearly with pressure (and thus, deformation).

In order to characterize the pressure dependence of the host, I propose that the

asperity material property P2 be decreasing with the elastic strain x as the fracture

closes under the influence of pressure, while simultaneously the asperities deform

elastically according to the distribution of asperity heights. That is, as pressure in-

creases, the asperities in contact remain following the power-law due to their height

distribution, but the strength of the asperity material reduces, i.e. the asperities be-

come weaker during the process (meaning the spring constant decreases). I postulate

that this decrease on the strength of the asperity material is also in the form of a

power-law:

P2 = P2(x) = P3x
−a (5.1)

where x is the elastic deformation (strain) induced by pressure, and a > 0 char-
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acterizes the power-law deformation of the host. When a > 0, the deformation is

nonlinear elastic. When a = 0 the deformation is fully linear elastic. P3 is a constant

that describes the initial pressure at zero strain (i.e. the yield stress of the original

undeformed material).

Just like in the original model, the asperities deform elastically, following a power-

law distribution of heights characterized by the parameter m:

P (x) = P2

∫ x

0

N(s)ds = P3mx−axm−1

= P3mxm−1−a (5.2)

In other words, the model asperities simultaneously undergo a combination of linear

elastic deformation and strain weakening, each process obeying a power-law of its

own. This concept of strain weakening should only be understood abstractly in terms

of the model (i.e. a strain weakening “bed-of-nails” is unrealistic). The other process,

linear elastic deformation of asperities, represents and approximates the true contact

regime in natural rocks. Here, the power-law distribution of asperity shortnesses is:

N(s) = sm−1−1 (5.3)

with the constraint 0 < m 6 1, naturally as in the original “bed-of-nails”.

The elastic modulus is:

M(x) =
dP

dx
= P3(1−ma)xm−1−a−1. (5.4)

The value of M(x) can be positive or negative depending on whether pressure P (x)

increases or decreases with the elastic strain x, and eventually depending on values of

m and a. Here the two mechanisms of deformation work their way opposite of each

other under the effect of pressure. If m−1 > a, contact deformation is dominant, so

it requires an increasing amount of energy ∆P to deform the same strain increment

∆x, so P (x) increases with x and M(x) > 0. If m−1 < a, the host deformation

is dominant, so it requires less and less amount of energy ∆P to deform the same

strain increment ∆x, so P (x) decreases with x and M(x) < 0. When m−1 = a, each

deformation process requires the same amount of energy, so M(x) = 0. so a specific

pressure large enough will automatically deform the whole rock, as the rock has no

resistance to deformation at all. However the stiffness of the rock, being equal to the

magnitude of the elastic modulus, is required to increase with elastic strain, so the

only constraint in this model is m−1 − a − 1 > 0 or b = 1/(m−1 − a) 6 1. Here b is
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the parameter that describes the power-law manner of the total deformation which

is a combination of contact asperity and host deformations.

Now if we go through the same derivations as by Carlson and Gangi (1985) to

account for the asymptotic grain-matrix velocity and porosity reduction, the final

equation relates between pressure and velocity:

1

[V (P )]2
=

(
1

V 2
c

− 1

V 2
g

) (
1 +

P

Pi

)(b−1)

+
1

V 2
g

(5.5)

with the constraint b 6 1 (b can be negative). Note that the mathematics regarding

letting P2 (or equivalently, k, etc..) change with P are similar and lead to identical

final equations. Hence, this extension of ADM has incorporated the pressure de-

pendence of the host rock, which accounts for visco-elasticity and for nonlinear rock

deformation.

5.2.3 Consistency with inversion results

Because the final equation is the same, the extended model returns exactly the same

parameter estimates as with the Carlson and Gangi (1985) compliant-host solution.

With the extended model however, the parameter estimates now make physical sense.

In this model, b is one of the parameter estimates (in lieu of the parameter m as

compared to the Carlson and Gangi (1985) solution), and is consistent with the

inversion results shown in figures 3.21 and 3.22 as the only constraint on its value

is b 6 1. It accounts for the (power-law) shape of the total deformation including

contact asperity and host-rock deformations. While the inverted parameter b only

takes into account the combined effect, there is obviously a trade-off between the two

deformation mechanisms and it is not possible to know the correct value of each.

In addition, Pi = P3mx1−b
i accounts for the total pre-stress deformation (ex-

pressed in terms of the pre-stress elastic deformation xi). Thus, the value of Pi can

be large depending on how much deformation the rock has undergone prior to ex-

perimental pressure application (such as the cycling of rocks in the experiments by

Coyner (1984) to get rid of hysteresis effects - i.e. the pressure cycling must have

permanently deformed some of the asperities).
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5.3 Supporting evidence

In this section I present all supporting evidence that points toward the necessity of

extending ADM as above. My main postulation is that when undergoing a large de-

formation (such as rocks subject to effective pressures as large as 100MPa), the rock

material exhibits nonlinear behaviors. Only when the material can be considered

very stiff over the applied pressure range (i.e. brittle deformation), then the behav-

iors is approximately linear elastic (which is exactly the assumption of the original

ADM). When any material undergoes a small deformation (i.e. low pressures), linear

elasticity is a good approximation, but for a large (enough) deformation (i.e. high

pressures), the process will be nonlinear. In other words, the rigid-host rock model

becomes more and more invalid as the applied pressure increases.

5.3.1 Linearity vs. nonlinearity rock behaviors

Figure 5.1 shows the volumetric strain versus stress curves of the Coyner (1984) rocks

on the left panel and my calculation of the slopes of these curves on the right. The

curves on the stress-strain profile are not actually curves but a linear interpolation of

digitized values taken from separate profiles for different rocks from the dissertation

of Coyner (1984). It explains the blocky slope calculation on the right. Notice the

linearity in the profiles for Bedford limestone and the nonlinearity in curves associated

with other rocks over their experiment range of applied pressure. In fact, there

is a strong agreement between the degree of linearity (i.e. how close slope profile

is to being a constant) and the rigid-host RMS errors seen in figure 3.10. Bedford

limestone, Navajo sandstone and two granites whose data fit quite well with the rigid-

host equation all have stiff and linear (more or less) stress-strain behavior. Meanwhile,

the other rocks show very nonlinear behavior and that agrees with the relatively large

misfits with the rigid-host equation seen in figure 3.10.

5.3.2 Inversion application for progressively increasing pressure inputs

One way to verify our postulation is to see how well the rigid-host solution does with

data of progressively increasing pressure inputs. Generally, inversion results have less

error with fewer data points; however, that should not be the case if the error is mono-

tonically increasing for all rocks with one data point added at a time, which indicates
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Fig. 5.1. Rocks with linear and nonlinear behavior over the applied pressure range.
The left panel shows the stress-strain curve, digitized and reproduced from Coyner
(1984). The right panel shows the slope of strain with respect to stress, calculated
using the data on the left panel.

modeling error instead. Thus, if our postulation is correct, the rigid-host solution

should return larger and larger RMS error when fitting to these data. That is, the

rigid-host solution should work very well (for all rocks) for low-pressure measurements

and return larger and larger error when higher-pressure measurements are included

in the analysis. Note that we can do this only because the data is of good quality and

the noise is considerably small (measurement error is approximately 0.015 km/s or

15 m/s for the Coyner (1984) rocks). Figure 5.2 shows a summary of rigid-host inver-

sion results from this study. For most rocks, RMS error systematically increases with

increasing pressure above 25 MPa and this even begins at zero pressure for several

rocks. Notice that the rigid-host does quiet a good job fitting data less than about 25

MPa for most rocks, indicating that indeed the range of applied pressure should have

something to do with the fit. On the other hand, the compliant-host solution fits well

with all data and RMS errors are mostly within measurement error while the errors

are randomly (i.e. non-systematically) varied (see figure 5.3). Therefore, extending

the model to interpret the compliant-host inversion results is meaningful.

More evidence can be seen when we look at the inverted parameter values from

rigid-host inversion. Figures 5.4 and 5.5 show the inverted parameter values for m
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Fig. 5.2. RMS errors for Vp (left panel) and Vs (right panel) from rigid-host inver-
sion with progressively increasing pressure inputs. The red bar indicates estimated
measurement error.
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stone (right panel) in the Coyner (1984) data set, from rigid-host-host inversion with
progressively increasing pressure inputs.

and P2 from rigid-host inversion with progressively increasing pressure inputs. The

figures suggest the idea of why letting P2 change with P or x in the extended model.

As shown, the inverted values for P2 and m change with pressure in rocks whose

data do not fit well with the rigid-host solution. Thus the deformation should be

described as nonlinear over this pressure range. The value of m increases while the

value of P2 decreases with increasing pressure. Hence, in order to improve misfits

from the rigid-host inversion, we can choose to either fix P2 and let m change or fix

m and let P2 change with P (or x). The former has been addressed by a numerical

implementation in chapter IV, while the latter is the motivation to the extension of

ADM in this chapter.

From chapter III, observe that all rigid-host inverted values of m are between 0.5

and 1. The value of m does not change much for Bedford limestone whose data fits

well with the rigid-host solution, as I include only the low-pressure measurements or

the high-pressure measurements as well (see figure 5.6). My synthetic data test also

confirms the fact that if the data agrees well with the fitting model, the parameter

estimates do not change as we have more or less data. I interpret this as because

Bedford is dominated by equant pores, so the effect of pressure tends to be linearly

proportional to the volumetric strain which fits the description of ADM and the
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rigid-host solution (see equation 2.4). Also, the rock grain solid is stiff so deformation

occurs mostly on the asperity contacts while reducing porosity. However, for a rock

such as the Weber sandstone (whose data the rigid-host solution does not fit well),

the value of m increases from close to 0 to close to 0.6 (see figure 5.6), while the value

of P2 decreases (recall the trade-off relationship between m and P2), as I increase the

pressure inputs. My interpretation of this observation is as follow:

The Bedford limestone has equant-pores while the Weber sandstone has cracks-

like pores. As pressure is increased, it affects the pores in Bedford limestone equally

in all directions, and there is a very small, linear reduction of porosity (Coyner, 1984).

The Weber sandstone is different. As pressure is increased, it closes the crack-like

pores at low-pressure, and going into high pressures most cracks have been closed and

the pores kick in. There is a nonlinear, big reduction of porosity in Weber sandstone

where the curve is the most nonlinear at low pressure range and becomes increasingly

linear (Coyner, 1984). I interpret this as the ranges of applied pressure are high

enough to close most of the cracks. If I include the high-pressure data, the value

of m gets larger and approaches 1 as pressure increases. Thus, there is a transition

from crack-like to pores in Weber sandstone (this also agrees with what Coyner wrote

in his dissertation) which makes the rigid-host solution not fit the data. In other

words, the solution will fit well only if the porosity is dominated by either all cracks

or all pores whereas a transition will increase the value of m but the fit gets poorer

as pressure increases. The conclusion is that for rocks in which transition of pore

geometry occurs under influence of pressure from crack-like to pore-like, or equally,

pore-aspect ratio increasing (i.e. nonlinear deformation), the rigid-host solution does

not apply well. Also, for rocks that are soft the solution does not apply well either

(i.e. host rock compliance). The compliant-host solution however applies well because

the parameter b actually accounts for both deformation in the host as well as in the

pores.

5.3.3 Fluid substitution

Gangi and Carlson (1996) have developed formulae for the substitution of fluid using

ADM:

Mru ≈
1

ρV 2
p

=
φ/3

(1− PpA′
f )Ma(P ) + [1− Af ]Mf (Pp)

+
1− φ/3

Mg

(5.6)
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µru ≈
1

ρV 2
s

=
φ/3

(1− PpA′
f )µa(P )

+
1− φ/3

µg

(5.7)

where

Mru and µru are the elastic moduli of the (undrained) rock, respectively;

Vp and Vs are the P- and S- wave velocity of the rock, respectively;

ρ and φ are the density and porosity of the rock (assumed constant with pressure),

respectively;

Af (P ) = Af (Pc, Pp) is the fractional asperity contact area, which is a function of

the effective pressure P or (equivalent) pressures Pc and Pp, and A′
f is its derivative.

Pp, Pc, Pd and P are the pore, confining, differential and effective pressure,

respectively. These are related via
P = Pc − nPp

n = 1− Af (Pd)

Pd = Pc − Pp

(5.8)

Ma, Mf , Mg are the P-wave moduli of the asperities, fluid and the grain matrix,

respectively. µa, µg are the shear moduli of the asperities and the grain matrix,

respectively. The methods are described more completely in the appendix.

The above formulae are based on the compliant-host solution with the use of

the parameter m representing linear elasticity. The advantage of the compliant-host

solution is easily understood: it allows a better match with the dry data compared

to the rigid-host. However, the calculations only work for values of m between 0 and

1, because for a negative m value the calculated velocities return complex values.

Based on the compliant-host inversion results in chapter III, I have tried the fluid

substitution for several rocks whose inversion returns a positive value of m, and an

example velocity prediction is shown in figure 5.7 for the Navajo sandstone with the

fluid being benzene. The fact that their calculation is off by a pattern indicates that

the change in contact area by asperity deformation has not been correctly estimated

due to the presence of the host-rock deformation parameter a (see equation 5.1).
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Fig. 5.7. Fluid substitution on Navajo sandstone for Vp (left panel) and Vs (right
panel) using Gangi and Carlson (1996) ADM-based formulae. Red dots are the dry
data measurements. The black curve represents the best compliant-host fit. The blue
dots are the predicted values for fluid (benzene) substituted velocity. The green dots
are the measured fluid-saturated data.

5.4 Conclusions

In this chapter I propose to extend the original ADM to account for a new physi-

cal phenomenon, the pressure dependence of the host rock which causes nonlinear

visco-elastic deformation, so that the parameter estimates using the compliant-host

equation make physical sense. This involves allowing the material constant P2 to

change with the elastic deformation x (or pressure P ), which can simultaneously ac-

count for nonlinear visco-elasticity as well as the host rock pressure dependence. The

extended model contains exactly the same final equation as the compliant-host solu-

tion, but with a new parameter b whose only constrain is b 6 1 accounting for the

total rock deformation including contact asperity and host rock deformations. The

pre-pressure Pi also has a new physical meaning, as it accounts for the total pre-stress

deformation which include both elastic and plastic deformation. Since the fit using

the compliant-host equation is exceptionally good (i.e. random and small misfits),

and due to its simple formula and ease of implementation, it has the potential to

become the universal model used for data fitting and interpretation.

Because it is possible to derive the current ADM solutions using the extended
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model, (e.g. fixing P2 constant) it can be concluded that this model is more gener-

alized than the original model. Supported by a list of evidence, the extended model

explains well the “unphysical values” from compliant-host inversion and interpret

all other physical phenomena happen under the influence of pressure, thus has the

potential to become the universal model for use in all rocks.

In comparison to the rigid-host perspective, this model extension is obviously an

equally unrealistic representation of the actual physics that occur under the influence

of pressure, but in terms of fitting data and consistency of interpretation, it is com-

parable to the numerical implementation from the rigid-host perspective in chapter

IV. Its advantage is the ease of implementation as well as the ability to fit and inter-

pret laboratory data. Its limitation, however, is the non-uniqueness in specifying the

contact asperities, so applications involving dimensions other than the measurement

direction, such as the calculation of contact area, are also non-uniquely determined.

This leads to difficulties in the practice of fluid substitution, such as one listed in the

appendix.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

I first describe the “bed-of-nails” model in chapter II and demonstrate its applications

in chapter III by presenting inversion results for the laboratory data sets, using the

power-law solutions, i.e. the power-law rigid-host and compliant-host rock models.

A comparison between the two results reveals systematic and considerable misfits for

many of the studied rocks if only the rigid-host solution is used, whereas a much

better fit with more random residuals, mostly within the range of measurement error,

is obtained in all of the studied rocks when the compliant-host solution is used.

Nevertheless, since the parameter estimates from inversion using the compliant-host

solution do not make physical sense (by falling out of their constrained ranges) in

terms of a linear-elastic “bed-of-nails” model, I propose a non-linear elastic “bed-of-

nails” model that has the potential to explain these values. Because the original,

analytic rigid-host solution assumes that linear-elastic asperity deformation and a

power-law distribution of asperity heights govern the behaviors of the fracture (and

thus, of the rock) model, changing the type of asperity deformation while keeping the

(asperity-height) distribution intact is one approach towards improving the model’s

ability to fit and interpret laboratory data. The second approach involves allowing the

distribution to change while maintaining linear-elastic deformation of asperities. This

asperity-height inversion also shows significant reduction in residual errors. Overall,

both revised model solutions improve fits and help explain the microstructures and

behaviors of the rock, as well as the reason for misfits and unphysical values associated

with the original solutions.

This dissertation investigates two different ways to improve misfits and interpret

laboratory data by undoing some of the initial assumptions made in the rigid-host

solution: (a) non-linear inversion using the analytic compliant-host solution with a

power-law asperity-height distribution, and (b)a generalized inversion using the rigid-

host model with an arbitrary asperity-height distribution. These are step-by-step ef-

forts in order to understand why significant misfits still exist for the rigid-host solution
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even with excellent-quality data. The compliant-host solution attempts to analyti-

cally solve the case when the modulus of the fracture is comparable to that of the

host rock (i.e. the rock frame and the cracks have similar stiffness). Mathematically,

it adds one more parameter to the list of parameters from the Gangi (1981) solu-

tion. The generalized inversion is a discrete, numerical method that allows for the

discretization and perturbation of the distribution of asperity heights in order to find

one that allows a good match of modeled and measured velocity. The method has the

ability to locate the source of error in the original solution and improve the accuracy

of velocity prediction. Compare to an existing method of pore-aspect ratio spectrum

inversion, this method is much more suitable for ease of implementation as well as

accuracy. Finally, I have developed an extension of ADM which explains for nonlinear

deformation, and provide evidence to support the theory.

6.2 Future work

The link between the velocity inversion methods of pore-aspect ratio spectrum and

asperity-height distribution can be better established via the relation to the contact

area, which should be proportional to both porosity and the number of asperities in

contact. Finding these constants of proportionality will thus probably unite all meth-

ods of velocity inversion as well as demonstrate the connection between mechanical

and physical behaviors of the rock. It will also help in fluid substitution applications

which in turn supports a better prediction of the pressure influence on rock properties.

The next stage of the research should focus on trying to update and combine these

ADM-based rock-physics models with the current theoretical solutions (e.g. Pointer

et al., 2000; Liu et al., 2000) and study effects of pressure changes on the time-lapse

seismic of fractured media.
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APPENDIX A

LITERATURE REVIEW AND APPLICATION OF FLUID

SUBSTITUTION USING THE ASPERITY-DEFORMATION MODEL

Fluid substitution by Gangi and Carlson (1996)

Gangi and Carlson (1996) modeled the fluid and pressure effects on seismic ve-

locities of a fractured rock using the Gangi (1978) “bed-of-nails” model as such:

Mru ≈
1

ρV 2
p

=
φ/3

(1− PpA′
f )Ma(P ) + [1− Af ]Mf (Pp)

+
1− φ/3

Mg

(A.1)

µru ≈
1

ρV 2
s

=
φ/3

(1− PpA′
f )µa(P )

+
1− φ/3

µg

(A.2)

where

Mru and µru are the elastic moduli of the (undrained) rock, respectively;

Vp and Vs are the P- and S- wave velocity of the rock, respectively;

ρ and φ are the density and porosity of the rock (assumed constant with pressure),

respectively;

Af (P ) = Af (Pc, Pp) is the fractional asperity contact area, which is a function of

the effective pressure P or (equivalent) pressures Pc and Pp, and A′
f is its derivative.

Pp, Pc, Pd and P are the pore, confining, differential and effective pressure,

respectively. These are related via
P = Pc − nPp

n = 1− Af (Pd)

Pd = Pc − Pp

(A.3)

Ma, Mf , Mg are the P-wave moduli of the asperities, fluid and the grain matrix,

respectively. µa, µg are the shear moduli of the asperities and the grain matrix,

respectively.

Available information

The available information from the Coyner (1984)experiments are:

- The fluid (e.g water, Mf ≈ 2.25GPa, benzen, Mf ≈ 1.21GPa)

- Pore pressure Pp = 10MPa and increasing values of confining pressure Pc.
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- Velocities Vp and Vs vs. differential pressure Pd = Pc− Pp (up to 100 MPa) for

five water-saturated rocks.

- Density ρ and porosity φ of the five rocks.

- Ma and Mg can be estimated from the inversion of the dry-rock data using the

Carlson and Gangi (1985) compliant-host solution as such:

1

[Vdry(P )]2
=

(
1

V 2
c

− 1

V 2
g

) (
1 +

Pc

Pi

)(m−1)

+
1

V 2
g

(A.4)

The inverted parameters in this solution are m, Pi, Vg, and Vc, from which Mg and

Ma can be computed:

Mg =
1

ρV 2
g

(A.5)

Ma(P ) =
1

ρVcrack(P )2
=

(
1

V 2
c

− 1

V 2
g

) (
1 +

P

Pi

)(m−1)

(A.6)

Note a relation among the parameters in this solution:

V 2
0 = 1/

(
1

V 2
c

− 1

V 2
g

)
=

(P1/Pi)
mPi

mρφ/3
(A.7)

where the parameter P1 is related to the “well-known” parameter P2:

P1 = mP2 (A.8)

Unknown quantities

We do not know the effective pressure P , but it can be calculated from the known

Pc and Pp if we also know the fractional asperity contact area Af at that specific

differential pressure Pd = Pc − Pp (see equation 5.8). Hence, the only remaining

unknown quantity is the functional fractional asperity contact area Af (Pd). (Its

derivative A′
f can be inferred from its functional form.)

Calculation of contact area by Gangi and Carlson (1996)

The asperity contact area Ac(h) is related to the distribution of asperities N(l)

and the cross-sectional area of the asperities a(l) in contact as such (Gangi and

Carlson, 1996):

Ac(h) =

∫ L

h

a(l)dN(l). (A.9)
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The “bed-of-nails” model assumes a(l) proportional to l so equation A.9 leads to

(Gangi and Carlson, 1996):

Ac(P ) ≈ A0

m

(
P + Pi

P1

)1−m

. (A.10)

and the fluid contact area is

Af (P ) =
Ac(P )

A0

=
1

m

(
P + Pi

P1

)1−m

. (A.11)

and as a function of the differential pressure:

Af (Pd) =
1

m

(
Pd + Pi

P1

)1−m

. (A.12)

The derivative is:

A′
f (P ) =

1

mP1

(
P + Pi

P1

)m

. (A.13)

From the available Pc and Pp we can use the above equations to try to predict

velocities and compare to the actual measurements. Below are the steps in the recipe

for fluid substitution.

Recipe

Follow the below steps to practice fluid substitution as shown by Gangi and

Carlson (1996):

1- Invert the dry data to estimate values for the parameters m, Pi, Vg, and Vc

using the compliant-host equation A.4.

2- Calculate Mg, V0 and P1 using equations A.5 and A.7.

3- Calculate the effective pressure P at specific pressures Pc and Pp using equa-

tion A.3.

4- For each calculated effective pressure, calculate the fractional asperity contact

area Af (P ) and its derivative A′
f (P ) using equations A.11 and A.13.

5- Plug all available and calculated information into equations A.6, A.1 and A.2

to predict velocities at those confining and pore pressures.

Limitation of the method

At step 1 above, several of the Coyner (1984) rocks result in a negative value for

m. At step 2, the calculation of P1 (using equation A.7) returns a complex number

because m is negative. If instead, we consider the extended model above, these
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inverted values would be for the parameter b, and a negative value of b means the

host deforms faster than the contact asperities. Due to the non-uniqueness (between

m and a) in specifying the physical asperities, we do not yet have a way to estimate

the correct contact area in this case.

In short, the calculation of the fluid-induced modulus involves contact area which

involves the power-law distribution of asperities represented by the parameter m

whose inverted value is either negative (using the compliant-host equation), or cannot

be separated from the combined effect with the host pressure-dependence (using the

extended model).



121

VITA

Hoa Quang Bui was born in Hanoi, Vietnam. After receiving his B.S. (in 2001)

and M.S. (in 2004) degrees in geophysics at the University of Oklahoma, he attended

Texas A&M University to work on his Ph.D. program in exploration geophysics, under

Dr. Richard L. Gibson Jr. His research interests are seismic imaging and interpre-

tation, AVO, rock properties and fracture reservoir characterization. He successfully

defended his Ph.D. thesis in October 2008, and is now working for BP America Inc.

as a geophysicist. His mailing address is: Department of Geology & Geophysics, c/o

Dr. Richard L. Gibson, Texas A&M University, College Station, TX 77843-3115. His

email address is Hoa.Bui@bp.com.

This document was typeset in LATEX by Hoa Quang Bui.


