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ABSTRACT 

Torque and Drag Calculations in Three-Dimensional Wellbores. 

(May 2009) 

Ruktai Ace Prurapark, 

B.Eng., Chulalongkorn University, Bangkok, Thailand; 

M.Eng., Texas A&M University 

Chair of Advisory Committee: Dr. Hans C. Juvkam-Wold 

 

Torque and drag (T&D) modeling is regarded as extremely helpful in well planning 

because it helps to predict and prevent drilling problems that might occur during the 

drilling process. Although T&D software has existed since the 1990s, some confusion 

still exists over the validity of the models that are used to characterize drilling 

operations, especially as we extend the length of modern horizontal wells. 

 

Moreover, it seems that only minimal improvements have been made to the underlying 

mathematical models over the last two decades. For normal planning on extended-reach 

and other challenging wells, T&D modeling provides a guideline for performance. Better 

modeling is especially important in complex three-dimensional wellbores. 

 

To optimize well design, T&D modeling needs to be incorporated into the planning of 

each well. The following factors should be evaluated:



 iv 

 

- Optimizing the well planning design 

- Adapting casing or tubular designs 

- Changing annulus fluids; for example, oil-based mud lubricates are better 

than water-based mud 

- Adjusting operating drilling processes such as reducing sliding distances or 

rotating to the bottom 

 

This project develops software that will give more accurate 3D T&D calculations. 

Moreover, this research is also widely beneficial in handling wellbore tortuosity which is 

explained in detail in the text. The new software will optimize the wellbore path and 

assist significantly in torque and drag calculation in well design. 
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CHAPTER I 

INTRODUCTION 

Excessive torque and drag in the design of a wellbore trajectory and drillstring 

configuration might cause severe damage to a device that turns the drillstring (topdrive) 

capacity, drillpipe strength, and available lifting capacity. It can increase pipe fatigue, 

casing wear, and mechanical borehole problems, such as hole enlargement and can lead 

to an inability to slide. Moreover, a conventional steerable assembly might increase 

frictional forces, which can lead to failures in the tubular from excessive wear, bucking, 

and collapse. 

 

If helical bucking is unavoidable, then torque and drag (T&D) models must be more 

robust if they are to accurately calculate the additional drag created in the post-buckled 

portion of the string. This is essential to predict the loss of weight on a bit, the potential 

for lock-up, and the impact on fatigue (Haduch, Procter, and Samuels 1994). 

 

According to over two decades of petroleum literature that addresses Torque and Drag 

(T&D) software, the basic mathematical model that underlies most T&D software has 

not changed significantly since its original inception. Now is the right time to reflect on 

the state of current models and identify the future requirements because T&D software is 

commonly used during planning processes (Adewuya and Pham 1998). 

                                                 

This dissertation follows the style and format of SPE Drilling and Completion. 
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A new model will help engineers identify feasible well designs and define drilling 

limitations for particular field development options. A reliable mathematical model is 

fundamental to a true understanding of the accuracy and applicability of T&D models. 

Software based on a more accurate T&D mathematical model for each particular well 

design will be highly useful in well planning design processes and will prevent the 

problems caused by T&D. 

 

1.1 Literature Review 

T&D calculations and other information need to be changed in T&D software including 

T&D equations, tortuosity effects, stress concentration factor, and buckling. 

 

1.1.1 T&D equations for three-dimensional wellbore 

Mason and Chen (2007) states that T&D modeling is regarded as an invaluable process 

in well planning for assisting and predicting, as well as preventing, drilling problems. 

Although T&D software has been developed for over 20 years, some confusion still 

exists over the validity of the models. Meanwhile, Exxon production research has 

developed soft string models for T&D equations. The soft string model is so called 

because it ignores any effects of tubular stiffness. This means the drillstring is 

represented as a heavy chain that transmits axial tension and torque caused by drillstring 

friction resulting from normal contact forces between the pipe and the wellbore. The soft 

string will be used in this research for T&D calculations during surveying in three-

dimensional wellbores. Moreover, Mason and Chen (2007) also provide criterion for 

each type of buckling (sinusoidal and helical).
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When discussing T&D calculations in the build section, Wu and Juvkam-Wold (1993) 

included three activities: rotating off bottom, running in the hole, and pulling out of the 

hole. His paper provides analytical solutions for T&D calculations in two-dimensional 

wellbore design. However, it will be most beneficial if we can develop these two-

dimensional equations into three-dimensional equations. This will be of great advantage 

for our next generation of T&D calculations. 

 

Aston, Hearn, and McGhee (1998) discuss techniques for solving present torque and 

drag problems and mention many other techniques that are widely used for reducing 

torque and drag problems. One of the techniques mentioned is to optimize the well 

profile before drilling. This means that before the drilling begins, we have already 

acquired the information concerning optimizing the wellbore profile. As a result, the 

optimization will be greatly useful in facing any difficulties in the drilling process. 

 

1.1.2 Tortuosity effects 

Gaynor, Chen, Stuart, and Comeaux (2001) explain how to quantify tortuosity. Their 

paper discusses “micro-tortuosity,” as well as the primary cause of hole spiraling that 

will cause poor hole quality. Spiraling can be easily eliminated. It is desirable to reduce 

“micro-tortuosity,” and thus it will improve hole quality. From this paper it will be 

useful if T&D software programs also consider reducing this effect. 

 

Gaynor, Halmer, Chen, and Stuart (2002) discuss the information on tortuosity versus 

micro-tortuosity. This information has greatly assisted eliminating excessive tortuosity, 
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which is regarded as a successful factor in solving extended reach drilling operation 

problems. This paper also provides a mathematical model of a spiral hole and gives a 

change in diameter in torque equations which changes the diameter of tool joint (Dtj) to 

the average diameter that has been used in torque equations (Ddrift). 

 

1.1.3 Stress concentration factor 

Tang, Muradov, Chandler, Jellison, Prideco, Gonzalez, and Wu (2006) present the new 

stress concentration factor (SCF) analysis methodology for rotary shouldered 

connections (RSCs) by using a finite element analysis as a primary method to calculate 

SCF. This represents the connecting performance. In fact, this paper has application in 

evaluating drill string connection design. However, it will not affect T&D calculations in 

terms of increasing T&D. 

 

1.1.4 Buckling 

Wu and Juvkam-Wold (1993) discuss helical buckling and sinusoidal buckling of pipes 

in horizontal wells and drilling and completion technologies. It is a highly difficult 

technique when associated with transmitting compressive axial loads to the bit (or the 

packer) on the bottom due to frictional force between pipe and wellbore. This paper 

provides all of the buckling types in the horizontal wellbore that are used in this 

research. 
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Fig. 1.1–Schematic of forces acting on downhole tubular assembly (Aston et al. 1998). 

 

Fig. 1.1 shows a schematic of the downhole forces acting on a tubular sliding and 

rotating in an inclined wellbore. This will help us to choose the torque and drag model 

for calculating torque and drag data. This picture shows all the forces that impact the 

drillstring while the drillstring is downhole. Also, this research will cover more than just 

T&D; the parameters that will be considered from the above figure will be axial load, 

wall force, friction, torque, weight of pipe, and dogleg severity. 

 

1.2 Objectives and Organization 

This research’s objective will start by improving the equations that are normally used in 

T&D software calculations, reflecting on the state of current models and identifying 

future requirements. This research will provide more accurate T&D models that will 

help alleviate helical buckling problems; normally, helical buckling causes the potential 

for lock-up and impacts fatigue. 
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This research’s second objective is to prevent T&D problems while drilling by trying to 

optimize well profiles before drilling begins. Moreover, this research will try to show the 

relation between well planning design and T&D calculation. This will make it easier to 

find out which type of well design is more suitable in each particular area. Additionally, 

this research will help tremendously in the design of long horizontal wellbores. 

 

This research’s third objective is to help field personnel prepare for any unexpected 

trend changes in a timely fashion during the drilling process. They will be able to 

anticipate these changes by just inputting wellbore data and T&D parameters. 

Furthermore, the outcome of the data from the T&D calculation program will be more 

realistic because it will be based on a 3D model. 

 

Chapter II will propose the new equations to be used in torque and drag analysis in 

three-dimensional wellbores. Chapter III will provide the equations that have been used 

in well planning; these are divided into four types of wellbore curves (build type, build 

& hold type, build & hold & drop type, and horizontal wellbore type). Chapter IV will 

explain the effect from tortuosity on torque and drag calculations. Chapter V discusses 

continuing processes on torque and drag analysis of each drillstring connecting joint. 

Chapter VI discusses buckling effects in T&D calculations. Chapter VII will emphasize 

numerical methods in torque and drag. Lastly, Chapter VIII will present conclusions as 

well as recommendations for future work. 
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CHAPTER II 

TORQUE AND DRAG CALCULATIONS IN THREE-DIMENSIONAL 

WELLBORE METHODOLOGY 

2.1 Introduction 

The mathematical model for torque and drag calculations in three-dimensional wellbore 

design is based on wellbore curve design. If we look at well planning just in a vertical 

depth plane, we could derive each type of assumed curve without tortuosity in vertical 

sections. We will divide the wellbore functions and hence the torque and drag 

calculations into three steps: rotation off the bottom, following through running in the 

hole, and pulling out of the hole (Wiggins, Choe, and Juvkam-Wold 1992). Dogleg 

severity (δ) will be considered. The wellbore will be divided into two planes for 

calculation:  the vertical view and the horizontal view. We will start with T&D 

calculations for rotation off the bottom. For rotating on bottom, the calculation will be 

similar to rotation off bottom, however the difference for calculation is force at the bit 

(Fbit). In addition, for sliding drilling, the calculation method is the same as running in 

the hole, however the difference will be Fbit (Juvkam-Wold and Wu 1992). 

 

2.2 Original Concept for Calculating Normal Contact Force 

We start with a simple concept for normally contacting force calculations (N) (AadnØy 

and Anderson 1998) by assuming that no friction (f) exists along the wellbore (rotating 

off bottom). 
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Fig. 2.1–Illustration of forces in build-up section (vertical view). 

 

From Fig. 2.1 neglecting friction (e.g., pipe rotation) will be expressed as follows 

(Johancsik, Friesch, and Dawson 1984): 

 ΣFalong normal:   WsinI – (T+ΔT)sin
2


 - Tsin

2


 - N = 0 (2.1) 

 WsinI – 2Tsin
2


 - ΔTsin

2


 - N = 0 (2.2) 

 N = WsinI – 2Tsin
2


   (assuming ΔTsin

2


  0) (2.3) 

Note: f -  Is the force of two surfaces in contact, or the force of a medium acting on a moving object, lbf 

 W -  In this research, refers to buoyed weight of the string element, lbf/ft 

 I,θ - A deviation or the degree of deviation from the vertical  

 T -  The tension force at the lower end of the string element, lbf  

 Δ -  A normalized estimate of the overall curvature of an actual well path between two consecutive 

survey stations, degrees per 100 ft 

http://en.wikipedia.org/wiki/Force
http://en.wikipedia.org/wiki/Surface


 9 

 

 

Fig. 2.2–Illustration of forces in inclined section (vertical view). 

 

From Fig. 2.2 neglecting friction (e.g., pipe rotation) will be illustrated as follows: 

 N = WsinI (2.4) 

 
 

I

δ/2

δ/2

δ/2

N

T+∆T

T

W

 
Fig. 2.3–Illustration of forces in drop section (vertical view). 
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From Fig. 2.3 neglecting friction (e.g., pipe rotation) will be illustrated as follows: 

 ΣFalong normal:   WsinI + (T+ΔT)sin
2


 + Tsin

2


 - N = 0 (2.5) 

 WsinI + 2Tsin
2


 + ΔTsin

2


 - N = 0 (2.6) 

 N = WsinI + 2Tsin
2


   (Assuming ΔTsin

2


  0) (2.7) 

ø/2

ø/2

ø/2

N

T+∆T

T

 
Fig. 2.4–Illustration of forces while the wellbore turns to the right (horizontal view). 

 

From Fig. 2.4 neglecting friction (e.g., pipe rotation) by using the same calculation as 

drop section; however, W and I will not be considered. 

 Nturn ≈ (T + ΔT)sin
2


 + Tsin

2


 (2.8) 

 Nturn = 2Tsin
2


 (Assuming ΔTsin

2


  0) (2.9) 
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Fig. 2.5–Illustration of forces while the wellbore turns to the left (horizontal view). 

 

From Fig. 2.5 neglecting friction (e.g., pipe rotation) will be illustrated as follows: 

 Nturn ≈ (T + ΔT)sin
2


 + Tsin

2


 (2.10) 

 Nturn = 2Tsin
2


   (Assuming ΔTsin

2


  0) (2.11) 

 

2.3 Soft-string Model for Three-dimensional T&D Calculation 

The original soft-string T&D programs are based on a model developed by Exxon 

Production Research (Mason and Chen 2007). The value of N (normal contact force) 

depends on how the wellbore contacts with the formation and the actual amount of 

normal contact force (Menand, Sellami, Tijani, Stab, Dupuis, and Simon 2006):
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 N total = 22 )sin()sin(  WTT   (2.12) 

Note: T -  The tension force at the lower end of the string element, lbf 

 ΔØ -  The change in azimuth angle over the string element, rad. 

 I,θ -  A deviation or the degree of deviation from the vertical 

 W -  In this research, refers to buoyed weight of the string element, lbf/ft  

If the wellbore turns neither left nor right,  sinT  will equal 0; then using the normal 

contact force equation, the tension and torque change can be calculated from Eq. 2.13 

and Eq. 2.14. 

 NWT   cos  (2.13) 

 NRM   (2.14) 

 

Eq. 2.13 shows that whether it is plus (+) or minus (-) depends on which direction the 

friction will be, as illustrated in Fig. 2.6. The next section will discuss the case of 

lowering the pipe into the hole. 

 

Fig. 2.6–Soft-string T&D model schematic (Mason and Chen 2007). 
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2.4 Lowering the Pipe into the Hole 

This section will show the equations that will be used in three-dimensional wellbore 

designs while lowering the pipe into the hole (Maidla and Wojtanowicz 1987). 

 

2.4.1 Lowering the pipe into the hole in the build section 

 
F(¶/2)

F(0)

O’





F+∆F

F

)]
2

(90[ 0 





Ff

2



W

N

R

X

 
Fig. 2.7–Illustration of forces in build-up section (lowering the pipe into 

the hole, vertical view). 

 

From Fig. 2.7 ΣF along N axis will be illustrated as follows: 

 NRΔα  = (F + ΔF)sin
2


 + Fsin

2


 +  WRΔαsin(90

0
 – (α+

2


)) (2.15) 

From Eq. 2.15 divide by RΔα, thus  

 N = sin
2

R

F
(

2


) + sin





R

F
(

2


) + Wcos(α+

2


) (2.16) 

When (Δα  0), then sin(
2


) will approach close to 0. 

 N = Wcos(α) + 
R

Fc )(
 (2.17) 
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From Fig. 2.7 ΣF along X axis will be illustrated as follows: 

Note: R -  The radius of curvature of the string element while the wellbore is in the build section 

(vertical view), ft  

 Α -  The angle used to calculate the deviation of the wellbore, rad. 

 

 (F + ΔF)cos(
2


) – Fcos(

2


) - F f RΔα + WRΔαcos(90 o - (α + 

2


)) = 0 (2.18) 

 ΔFcos(
2


) - F f RΔα + WR Δαsin(α + 

2


) = 0 (2.19) 

Eq. 2.19 divide by Δα 

 cos


F
(

2


) = F f R – WRsin(α + 

2


) (2.20) 

When Δα  0 
)(

)(





d

dF
 = F f R – WRsin(α); F f = μ|N| (2.21) 

 

α0

α0

α1

α2

α = 900

α1

α2

α = 0

N < 0

N > 0

 
Fig. 2.8–Illustration of differences between positive and negative forces in build-up 

section (lowering the pipe into the hole, vertical view). 
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From Fig. 2.8 for N > 0 

 
)(

)(





d

dF
 = μ{ }]

)(
[]

)(
)cos([ 22

turn

cc

R

F

R

F
w


  R – WRsin(α); (α 1  ≥ α ≥ α 0 ) (2.22) 

*The term 
turn

c

R

F )(
  comes from wellbore turning and will be shown in the next section of 

this chapter. The value will be zero if there is no right or left turn of wellbore; cF means 

if compressive force cF > 0 and if tension force cF  < 0 (Wu and Juvkam-Wold 1991). 

 

From Fig. 2.8 for N < 0  

 
)(

)(





d

dF
 = μ{- }]

)(
[]

)(
)cos([ 22

turn

cc

R

F

R

F
w


  R – WRsin(α); (α 2  ≥ α ≥ α1) (2.23) 

*The term 
turn

c

R

F )(
  comes from wellbore turning and will be shown in the next section of 

this chapter. The value will be zero if there is no right or left turn of wellbore; cF  means 

if compressive force cF > 0 and if tension force cF  < 0. 

 

2.4.2 Lowering the pipe into the hole in the hold section 

 

F
+∆
F

F

I

I

W

N

Ff

 
Fig. 2.9–Illustration of force in hold section (lowering the pipe into the hole, 

vertical view). 
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From Fig. 2.9 ΣF along N axis will be illustrated as follows: 

ΣF along N axis: 

 N = WsinI (2.24) 

 

The value of N depends on how the wellbore contacts with the formation and the actual 

amount of normal contact force: 

 Ntotal = 22

turnNN   (2.25) 

If the wellbore neither turns left nor right, turnN  will equal  0. 

However, if the wellbore’s deviation is towards a left or right turn, turnN  will be: 
R

Fc )(
 

From Fig. 2.9 ΣF along F axis will be illustrated as follows: 

 (F+ΔF) + WcosI = Ff + F (2.26) 

 ΔF = μNtotal – WcosI (2.27) 

 

2.4.3 Lowering the pipe into the hole in the drop section 

 

F(¶/2)

F(0)

O’





F+∆F

F

Ff

2



W

N

α0 = 0

α2 = 900

)]
2

(90[ 0 





R

X

X

 

Fig. 2.10–Illustration of forces in drop section (lowering the pipe into the hole, 

vertical view). 
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From Fig. 2.10 ΣF along N axis will be illustrated as follows: 

 ΣF along N axis:  NRΔα  + (F + ΔF)sin
2


 + Fsin

2


 =  WRΔαsin(α+

2


) (2.28) 

 N = - [ sin
2

R

F
(

2


) + sin





R

F
(

2


)] + Wsin(α+

2


) (2.29) 

When (Δα  0), sin(
2


) will approach close to 0. 

 N = Wsin(α) - 
R

Fc )(
 (2.30) 

 

From Fig. 2.10 ΣF along X axis will be illustrated as follows: 

 (F + ΔF)cos(
2


) – Fcos(

2


) - F f RΔα + WRΔαsin(90 o - (α + 

2


)) = 0 (2.31) 

 ΔFcos(
2


) - F f RΔα + WR Δαcos(α + 

2


) = 0 (2.32) 

Eq. 2.32 Divide by Δα 

 cos


F
(

2


) = F f R – WRcos(α + 

2


) (2.33) 

When Δα  0  

 
)(

)(





d

dF
 = F f R – WRcos(α); F f = μ|N| (2.34) 
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α0

α1

α = 900

α1

α2

α = 0

N < 0

N > 0

∆α

 

Fig. 2.11–Illustration of differences between positive and negative forces in drop section 

(lowering the pipe into the hole, vertical view). 

 

 

From Fig. 2.11 for N > 0 

 
)(

)(





d

dF
 = μ{ }]

)(
[]

)(
)sin([ 22

turn

cc

R

F

R

F
w


  R – WRcos(α); (α2 ≥ α ≥ α1) (2.35) 

*The term 
turnR

Fc )(
  comes from the wellbore turning and will be shown in the next 

section of this chapter. The value will be zero if there is no a right or a left turn; 

cF means if compressive force cF > 0 and if tension force cF  < 0. 

 

For N < 0  

 
)(

)(





d

dF
 = μ{- }]

)(
[]

)(
)sin([ 22

turn

cc

R

F

R

F
w


  R – WRcos(α); (α 1  ≥ α ≥ α0) (2.36) 
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*The term 
turnR

Fc )(
 comes from the wellbore turning and will be shown in the next 

section of this chapter. The value will be zero if there is no right or left turn; cF means if 

compressive force cF > 0 and if tension force cF  < 0. 

 

2.4.4 Lowering the pipe into the hole while the wellbore turns 

This section will discuss drag calculation on the top view; the explanation will cover 

either the wellbore turning right or left in each section. It will be similar to those of the 

vertical calculations; however, the W term will not be shown in each equation, due to it 

is a horizontal view. 

 

F(¶/2)

F(0)

O’





F+∆F

F

Ff

2



N

α0 = 0

α2 = 900

R

 
Fig. 2.12–Illustration of forces when the wellbore turns right (lowering the pipe 

into the hole, horizontal view). 

 

From Fig. 2.12 ΣF along N axis 

 turnN RΔα  + (F + ΔF)sin
2


 + Fsin

2


 = 0 (2.37) 

 turnN  = - [ sin
2

R

F
(

2


) + sin





R

F
(

2


)] (2.38)  
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When (Δα  0), then sin (
2


) will approach close to 0 turnN  = - 

R

Fc )(
 

F(¶/2)

F(0)

O’



F+∆F

F

Ff

2



N

R

X

 

Fig. 2.13–Illustration of forces when the wellbore turns left 

(lowering the pipe into the hole, horizontal view). 

 

From Fig. 2.13 ΣF along N axis will be illustrated as follows: 

 turnN RΔα  = (F + ΔF)sin
2


 + Fsin

2


 (2.39) 

Eq. 2.39 divided by RΔα, thus 

 turnN  = sin
2

R

F
(

2


) + sin





R

F
(

2


) (2.40) 

When (Δα  0), then sin(
2


) will approach close to 0; turnN  = 

R

Fc )(
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2.5 Pulling the Pipe out of the Hole 

This section will show the equations that will be used in three-dimensional wellbore 

designs while pulling the pipe out of the hole. 

 

2.5.1 Pulling the pipe out of the hole in the build section 

F(¶/2)

F(0)

O’




F+∆F

F)]
2

(90[ 0 





Ff

2



W

N

X

 

Fig. 2.14–Illustration of forces in build-up section (pulling the 

pipe out of the hole, vertical view). 

 

From Fig. 2.14 ΣF along N axis will be illustrated as follows: 

 (F + ΔF)sin
2


 + Fsin

2


 + NRΔα – WRΔαsin(90 o - (α+

2


)) = 0 (2.41) 

 

From Eq. 2.41  

 2Fsin( )
2


 + ΔFsin( )

2


+ NRΔα – WRΔαcos(α+

2


) = 0 (2.42) 

 NRΔα = WRΔαcos(α+
2


) - ΔFsin( )

2


 - 2Fsin( )

2


 (2.43) 
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 NΔα = WΔαcos(α+
2


) - 

R

F
 sin( )

2


 - 

R

F2
 sin( )

2


 (2.44) 

 N = Wcos(α+
2


) - 

R

F




sin( )

2


 - 

R

F



2
sin( )

2


 (2.45) 

If Δα  0, then sin(
2


) will approach close to 0 

 N(α) = Wcos(α) - 
R

F )(
 (2.46) 

From Fig. 2.14 ΣF along X axis will be illustrated as follows: 

 {(F + ΔF)cos(
2


) – Fcos(

2


) - F f RΔα - WRΔαcos(90 o - (α + 

2


)} = 0 (2.47) 

 ΔFcos(
2


) - F f RΔα - WR Δαsin(α + 

2


) = 0 (2.48) 

Eq. 2.48 Divide by Δα 

 cos


F
(

2


) = F f R + WRsin(α + 

2


) (2.49) 

Δα  0  

 
)(

)(





d

dF
 = F f R + WRsin(α); F f = μ|N| (2.50)
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α0

α0

α1

α2

α = 900

α1

α2

α = 0

N < 0

N > 0

 

Fig. 2.15–Illustration of differences between positive and negative forces in build-up 

section (pulling the pipe out of the hole, vertical view). 

 

From Fig. 2.15 for N > 0 

 
)(

)(





d

dF
 = μ{ }]

)(
[]

)(
)cos([ 22

turnR

F

R

F
w


  R + WRsin(α); (α 1  ≥ α ≥ α 0 ) (2.51) 

*The term 
turnR

F )(
 comes from the wellbore turning and will be explained in the next 

section of this chapter; the value will be zero if there is no a right or a left turn; F means 

if tension force F > 0 and if compressive force F  < 0. 

For N < 0  

 
)(

)(





d

dF
 = μ{- }]

)(
[]

)(
)cos([ 22

turnR

F

R

F
w


  R + WRsin(α); (α 2  ≥ α ≥ α1) (2.52) 

*The term 
turnR

F )(
 comes from the wellbore turning and will be explained in the next 

section in this chapter. The value will be zero if there is no right or left turn; F means if 

tension force F > 0 and if compressive force F  < 0. 
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2.5.2 Pulling the pipe out of the hole in the hold section 

 

F+∆F

F

I

I

W

N

Ff

 

Fig. 2.16–Illustration of forces in the hold section (pulling the pipe out of the hole, 

vertical view). 

 

From Fig. 2.16 ΣF along N axis 

ΣF along N axis will be 

 N = WsinI (2.53) 

 

The amount of N (normal contacts force) depends on how the wellbore contacts the 

formation, and the actual amount of normal contact force will be illustrated as follows: 

 Ntotal = 22

turnNN   (2.54) 

If neither a left turn nor a right turn is in the wellbore, the turnN  term will equal  0. The 

next section will discuss lowering the pipe into the hole. However, if the wellbore 

deviates toward a left turn or a right turn, turnN  = 
R

Fc )(
 

 

From Fig. 2.17 ΣF along F axis will be illustrated as follows: 

 (F+ΔF) = Ff + F + WcosI (2.55) 
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 ΔF = μNtotal + WcosI (2.56) 

 

2.5.3 Pulling the pipe out of the hole in the drop section 

 

F(¶/2)

F(0)

O’





F+∆F

F

Ff

2



N

α0 = 0

α2 = 900

W

X

)]
2

(90[ 0 





 

Fig. 2.17–Illustration of forces in the drop section (pulling the pipe out of the hole, 

vertical view). 
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From Fig. 2.17 ΣF along N axis will be illustrated as follows: 

 NRΔα  = (F + ΔF)sin
2


 + Fsin

2


 +  WRΔαsin(α+

2


) (2.57) 

 N = sin
2

R

F
(

2


) + sin





R

F
(

2


) + Wsin(α+

2


) (2.58) 

When Δα  0, then sin (
2


) will approach close to 0. 

 N = Wsin(α) + 
R

F )(
 (2.59) 

From Fig. 2.17 ΣF along x axis will be illustrated as follows: 

 (F + ΔF)cos(
2


) – Fcos(

2


) - FfRΔα - WRΔαcos(α + 

2


) = 0 (2.60) 

 ΔFcos(
2


) – FfRΔα - WRΔαcos(α + 

2


) = 0 (2.61) 

Eq. 2.61 divided by Δα 

 


F
cos(

2


) =  FfR + WRcos(α + 

2


) (2.62) 

When Δα  0, cos(0) will approach close to 1. 

 
d

dF
=  FfR + WRcos(α) (2.63) 

 From Ff = μ|N|; (2.64) 
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α0

α1

α = 900

α1

α2

α = 0

N < 0

N > 0

∆α

 

Fig. 2.18–Illustration of differences between positive and negative forces in the drop 

section (pulling the pipe out of the hole, vertical view). 

 

 

For N > 0 (Fig. 2.18) is separate in two cases of N value 

 R
R

F

R

F
W

d

dF

turn

})
)(

()
)(

)sin(({ 22 



 +WRcos(α); (α2 ≥ α ≥ α1) (2.65) 

*The term 
turnR

F )(
 comes from the wellbore turning and will be explained in the next 

section of this chapter. The value will be zero if there is no right or left turn; 

F means if tension force F > 0 and if compressive force F  < 0. 

 

For N < 0  

 R
R

F

R

F
W

d

dF

turn

})
)(

()
)(

)sin(({ 22 



 +WRcos(α); (α 1  ≥ α ≥ α0) (2.66) 
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*The term 
turnR

F )(
 comes from the wellbore turning and will be explained in the next 

section of this chapter. The value will be zero if there is no right or left turn; F means if 

tension force F > 0 and if compressive force F  < 0. 

 

2.5.4 Pulling the pipe out of the hole while the wellbore turns 

This section will discuss mainly drag calculations from the top view while pulling out of 

the hole. The explanation will be covered largely on the wellbore turning either right or 

left in each section. This will be similar to those of the vertical calculations; however, 

the W term will not be considered in each equation, due to it is a horizontal view. 

 

F(¶/2)

F(0)

O’





F+∆F

F

Ff

2



N

α0 = 0

α2 = 900

R

 
Fig. 2.19–Illustration of forces when the wellbore turns right (pulling the pipe out of 

the hole, horizontal view). 
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From Fig. 2.19 ΣF along N axis 

 turnN RΔα  = (F + ΔF)sin
2


 + Fsin

2


 (2.67) 

 turnN  = sin
2

R

F
(

2


) + sin





R

F
(

2


) (2.68) 

When (Δα  0), then sin(
2


) will approach close to 0; turnN  = 

R

F )(
 

F(¶/2)

F(0)

O’



F+∆F

F

Ff

2



N

R

X

 
Fig. 2.20–Illustration of forces when the wellbore turns left (pulling the pipe out of the 

hole, horizontal view). 

 

From Fig. 20 ΣF along N axis will be illustrated as follows: 

 NRΔα  = -(F + ΔF)sin
2


 - Fsin

2


 (2.69) 

From the above equation, divided by RΔα, thus  

 N = - sin
2

R

F
(

2


) - sin





R

F
(

2


) (2.70) 

When (Δα  0), then sin (
2


) will approach close to 0; turnN  = 

R

F )(
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2.6 Conclusion 

This section provides all necessary drag equations for three separate operations in the 

wellbore: rotating at bottom, lowering the pipe into the hole, and pulling the pipe out of 

the hole. This also provides the first order differential equation that will be used in the 

torque and drag calculations by the Visual Basic Application (VBA) program, which 

will provide the numerical solution from the torque and drag equations and the weight 

(W) that represents effective weight We as:  

 We = Wair *(1- )
steel

mud




 (2.71) 

 

The next chapter will discuss torque calculations by considering the tortuosity effect and 

giving recommendations on how to prevent this effect. 
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CHAPTER III 

WELL PLANNING IN THREE-DIMENSIONAL WELLBORE  

3.1 Introduction 

This particular program requires input from field data, starting from the tie-on survey to 

input parameters of MD TVD NC EC I AZ DLS and target directions of MD TVD NC 

EC. The wellbore path has started from the tie-on survey position to the target direction. 

The shape of the wellbore outcome will depend largely on which type of wellbore that 

the user has selected from the beginning. We input the required type of the wellbore data 

that should be used. As a result, we will have the final wellbore path in 3D from the tie-

on survey to the target direction, however if depends on which type of wellbore that we 

chose. The overview project will be separated into 4 sections. Firstly, it will be well-

planning calculations from tie-on surveys to target direction by using Visual Basic 

Application Software in an Excel Program to calculate the well plan. Secondly, it will be 

torque and drag calculations based on 3D equations by using Visual Basic Application. 

Thirdly it will display on wellbore planning in 3D program (by using MATLAB 

program to display wellbore path). Lastly, gathering all of the information in a software 

application program. 

Note: MD - The actual distance traveled along the borehole, ft 

 TVD - The vertical distance between a specific location in a borehole and a horizontal plane 

passing through the surface, ft 

 NC - The distance traveled in the north-south direction in the horizontal plane (north is positive, 

south is negative), ft 
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 EC - The distance traveled in the east-west direction in the horizontal plane (east is positive, 

west is negative), ft 

 I,θ - A deviation or the degree of deviation from the vertical 

  IM - Moment of inertial of pipe, in (Gaynor et al. 2002) 

 AZ - The direction or bearing toward which a sloping surface faces (e.g., a north-facing slope 

has an azimuth angle of 360°; a northeast-facing slope, an azimuth angle of 45°), degrees 

 D - A combination of aerodynamic or hydrodynamic forces which tends to reduce speed, lbf 

 Ddrift - The average diameter that has been used in torque equations, in 

 Dtj - The diameter of tool joint, in 

 

3.2 System Modeling 

This section demonstrates equations of three-dimensional wellbore between the tie-on 

survey at the kick off point (KOP) and target direction, meanwhile demonstrating 

measured depth calculations of each wellbore planning design. 

 

3.2.1 Well-planning and math modeling between surveys 

In this research I will show simple types of wellbore shapes (Build & Hold type in three- 

dimensional wellbore) 

 

 

 

 

 

 

 

Fig. 3.1–Wellbore build & hold type in three-dimensional wellbore 

(Well Planning, 1975). 
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Fig. 3.1 shows the three-dimensional wellbore design from the KOP to the target 

direction. It requires the user to put the tie-on survey data at the KOP and target 

direction. After that the software will calculate wellbore trajectory automatically, 

depending on which type of wellbore the user will select. Fig. 3.1 demonstrates how it 

works, step-by-step as follows: 

 

Calculate Φ 

 Φ = arctan(abs[ECtarget]/abs[NCtarget]) (3.1) 

 

3.2.1.1 Finding minimum curvature (DLS) to intersect target 

Note: Φ,ΔØ – The change in azimuth angle over the string element, rad. 

 

Direction Cosines of the Tangent to the Turn Arc 

 Cos αI; t = Sin(I)*Cos(AZ) (3.2) 

 Cos ß; t = Sin(I)*Sin(AZ) (3.3) 

 Cos γ; t = Cos(I) (3.4) 

 

Direction Cosines of the Line from the KOP to the Target 

 3D Distance from the KOP to the Target = [ΔTVD
2
 + ΔNC

2
+ΔEC

2
]
1/2 

(3.5) 

 Cos αI; target = (NCtarget – NCtie on survey)/3D Distance from the KOP to Target (3.6) 

 Cos ß; target = (ECtarget – ECtie on survey)/3D Distance from the KOP to Target (3.7) 

 Cos γ; target = (TVDtarget – TVDtie on survey)/3D Distance from the KOP to Target (3.8) 

 α = arccos(Cos α; t * Cos α; target + Cos ß; t * Cosß; target + Cos γ; t * Cos γ; target) (3.9) 
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 Maximum radius of turn = 3D Distance from the KOP to the Target /(2α) (3.10) 

 Minimum DLS to minimum target = 18,000/(π*Maximum radius of turn) (3.11) 

 Selected Radius of Turn Arc; R (ft) = 18000/(π *DLS) (3.12) 

Note:  t Tangent section 

 αI   The angle between the distance traveled in the north-south direction and 3D Distance from 

the KOP to Target, rad. 

 ß - The angle between the distance traveled in the east-west direction and 3D Distance from 

the KOP to Target, rad. 

 Γ - The angle used to calculate the deviation of the wellbore in tangent section, rad. 

 Α - The angle used to calculate the deviation of the wellbore, rad. 

 DLS - A normalized estimate (e.g., degrees / 100 feet) of the overall curvature of an actual well 

path between two consecutive survey stations 

 

Length of Selected ARC, S; ft 

 Length e = Selected radius of turn /sin(α) (3.13) 

 Length n = 3D distance from the KOP to target (3.14) 

 Length f = Selected radius of turn /tan(α) (3.15) 

 Length d = ((length n)
2
 + (Select radius of turn arch)

2
 – 2*(length n)* 

 (Select radius of turn arc)*sin(α)) (3.16) 

 Length k = sqrt((length d)
2
 – (Select radius of turn arc)

2
) (3.17) 

 

Finding Position in Three-dimensional Wellbores 

 NCturn = length e * Cos α; target + NCkop (3.18) 

 ECturn = length e * Cos ß; target + ECkop  (3.19) 

 TVDturn = length e * Cosγ; target + TVDkop  (3.20) 
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 NC = length z * - Cos α; t + NCturn  (3.21) 

 EC = length z * - Cos ß; t + ECturn  (3.22) 

 TVD = length z * -Cos γ; t + TVDturn (3.22) 

 λ = Acos(selected radius of turn arc; R, ft / length d) (3.23) 

 B = Acos((selected radius of turn arc
2
 + length d

2
 – length n

2
)/ 

 (2* selected radius of turn arc; r, ft * length d) (3.24) 

 

 γ = B – γ; (f>0) (3.25) 

 γ = 2*π – B – γ; (f<0) (3.26) 

 Cos α = (NC – NCkop )/Selected radius of turn arch (3.27) 

 Cos ß = (EC– ECkop)/Selected radius of turn arch (3.28) 

 Cos γ = (TVD – TVD kop)/Selected radius of turn arch (3.29) 

Note: e,n,z,d,k - Length parameters for mathematical algorithm in each wellbore 

trajectory calculations, ft 

 

 λ,B - angle parameters for mathematical algorithm calculation, rad. 

 Length h; ft = Selected radius of turn arch * Cos (γ) (3.30) 

 Length m; ft = Selected radius of turn arch * Sin (γ) (3.31) 

 NCfinal = N + length h* Cos α; 2-4 + length m * Cos α; t (3.32) 

 ECfinal = E + length h * Cos ß; 2-4 + length m * Cos ß; t (3.33) 

 TVDfinal = TVD + length h * length m + length m * Cos γ; t (3.34) 

 Cos α; k = (NCtarget – NCfinal)/length k (3.35) 

 Cos ß; k = (ECtarget – ECfinal)/length k (3.36) 

 Cos γ; k = (TVDtarget – TVDfinal)/length k (3.37) 

 Δ North/South k; ft = NCtarget – NCfinal (3.38) 

 Δ East/West k; ft = ECtarget – ECfinal (3.39) 
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 Φ = Arctan(abs(Δ East/West) / abs(Δ North/South)) (3.40) 

 

3.2.1.2 Example tie-on surveys and target directions 

 

Table 3.1–Input field data for tie-on surveys and target directions 

a) Target direction 

       

MD TVD NC EC     

6955 5000 -3000 2000    

       

b) Tie-on survey at KOP 

       

MD TVD NC EC  I  AZ DLS 

90 90 -100 -70 57 300 5 

 
Note: h,m – Length parameters for mathematical algorithm in each wellbore trajectory calculations, ft 

 

From Table 3.1, we can calculate the above data and represent into 2D; one will be the 

surface plane, and the other will be the side view plane. After that we bring the data into 

the MATLAB program to represent 3D (Figs. 3-2, 3-3 and 3-4). 
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Horizontal view of wellbore
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Fig. 3.2–Horizontal view of wellbore. 

 

Vertic al view of wellbore
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Fig. 3.3–Vertical view of wellbore. 
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Fig. 3.4–3D wellbore path by MATLAB version 7.4.0. 

 

3.2.2 Well-planning and math modeling for build type 

This section illustrates wellbore in build type wellbore and also provides an equation to 

calculate measured depth (MD) (Fig. 3.5). 
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Fig. 3.5–Build type well design. 
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 MD= Tkop + R * ((П/ 2) -  0) (3.41) 

 

3.2.3 Well-planning and math modeling for build and hold type 

This section illustrates wellbore of build and hold type and also provides an equation to 

calculate measured depth (MD) (Fig. 3.6). 
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Fig. 3.6–Build and hold type well design. 

 

 MD = Tkop + R * ((П / 2) -  0) + Ltan (3.42) 

 

3.2.4 Well-planning and math modeling for build hold and drop type 

This section illustrates wellbore in build and hold type and also provides an equation to 

calculate measured depth (MD) (Fig. 3.7). 
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Fig. 3.7–Build hold and drop type well design. 

 

 MD = Tkop + R * ((П / 2) -  0) + Ltan + Rdrop section * (I -  0,drop) (3.43) 

 

3.2.5 Well-planning and math modeling for horizontal well design type 

This section shows wellbore in horizontal well design type and also provides an equation 

to calculate measured depth (MD) (Fig. 3.8). 
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Fig. 3.8–Horizontal well design. 

 

 MD = Tkop + R * (П / 2) + HL (3.44) 

 

Figs. 3.2 through 3.8 represented in horizontal view plane and R in this chapter is the 

raduis of curvature in vertical view plane. However, for making 3D we need to have 

Rturn (radius of curvature in horizontal view plane which has already been mentioned in 

Chapter II) calculation. 
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CHAPTER IV 

TORTUOSITY IN THREE-DIMENSIONAL WELLBORES AND THE EFFECT 

OF TORTUOSITIES ON TORQUE CALCULATION 

4.1 Introduction 

Tortuosity occurs when a well has a deviation from a straight hole. The most commonly 

known tortuosity is a dogleg severity variation. However the tortuosity that we will 

emphasize pertains to the torque and drag calculation and includes micro-tortuosity in 

which the axial hole is spiraled instead of straight. This occurs when the bottom hole 

assembly uses the mud motor system and can be minimized by using a rotary steerable 

system instead. In this chapter we will consider the tortuosity effect and the effect of the 

equations that will be used in the torque and drag software. Since micro-tortuosity can 

cause poor hole quality, and spiraling is the primary cause of micro-tortuosity, 

eliminating these problems will improve hole quality tremendously. 

 

4.2 Oscillation in the Wellbore 

Total tortuosity of an “as-drilled” well (T) can be calculated as the sum of the planned 

tortuosity (T1), the large-scale tortuosity (T2), and the micro tortuosity (T3): 

 Ttotal  = T1 + T2 + T3 (4.1) 

 

The following will explain the definition of each term. 
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T1 is a planned tortuosity and will represent the summation of the total curvature 

including inclination and azimuth in the planned well trajectory divided by the well 

depth. For example, using degrees/100 feet for a well that builds from the vertical to 60 

degrees inclination and, assuming no change in azimuth angle, will achieve a total 

curvature of 60 degrees. By having a total curvature of 60 degrees and the measured 

depth of the well of 10,000 feet, the planned tortuosity will be 60/(10,0000/100) or 

0.6
o
/100 ft.  

 

Large Scale Tortuosity (T2) is the summation of the total curvature (inclination and 

azimuth changes) when a drilled well is measured by measurement while drilling 

(MWD) survey in dogleg severity and then subtracted by the planned tortuosity 

(T1).These dogleg results can vary from survey to survey and may take 30 to 90 feet, 

depending on which type of survey is being used in the drilling process. The result of 

changing rig activity from sliding to high dogleg rotation can lead to a section of high 

dogleg followed by a section of lower dogleg. Consequently, it will create a condition 

similar to the large scale tortuosity. 

 

Micro-Tortuosity (T3) is defined as the tortuosity that occurs in the wellbore that is 

smaller in comparison to previous tortuosity. This phenomenon is from the spiral effect 

when drilling tools run into the wellbore with the rotary assembly, motor assembly and  

rotary assembly systems. The only ways to measure the micro-tortuosity are by the 

advanced wireline survey techniques, MWD acoustic caliper tools, and the application of 

back calculated friction factor. 
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4.3 Borehole Oscillations 

The presence of borehole rippling, spiraling, and hour-glassing have been known for 

many years in the drilling industry. There have been publications in many papers 

concerning oscillation problems in the borehole due to the micro-tortuosity effect. 

However, this research will largely consider equations that will be used in unpredictable 

situations and in difference shapes of hole spiral. They have to be tested for the borehole 

spiraling effects like bit speed, penetration rate, and rock strength. From these 

experimental situations, general guidelines can be derived on how to select the 

appropriate bit, BHA, and operating parameters, as well as rotary steerable tools. 

 

 
Fig. 4.1–Spiral borehole as shown in 2D (Tracks 1 and 2) and 3D images 

(Gaynor et al. 2002). 
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Fig. 4.1 illustrates spiral borehole images taken from the wireline CAST 

(Circumferential Acoustic Scanning Tool) in a well in South America. The evidence of 

the spiraling hole is represented in the strong diagonal response of the CAST images 

running across the compressed and expanded 2D images as presented in tracks 1 and 2. 

The reverse 3D image is clearly presented in track 3 which indicates the wellbore 

spiraling while drilling. Note that the spiral seems to change its direction from time to 

time and has a pitch length of approximately 2 feet. 

 

 
Fig. 4.2–An MWD survey tool cannot detect a tight spiral (Gaynor et al. 2002). 

 

Fig. 4.2 illustrates that short pitch tortuosity is cancelled over 30 feet (shown by 

centerline 1) because it measures the inclination and drift’s direction (shown by 

centerline 2) instead of the wellbore itself. MWD cannot detect spiral hole because it 

measures the inclination and drift’s direction instead of the wellbore itself. 
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Fig. 4.3–Illustrates the evidence of profound spiraling (Gaynor et al. 2001). 

 

Fig. 4.3 illustrates a spiral hole as detected by a differential caliper tool on a wireline 

density measurement at a well in the Gulf of Mexico. The log indicates that the hole is 

under gauge approximately 1.5” for every 4 feet and rarely over gauge level. This 
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phenomenon is repeated over thousands of feet on this log. This drilling section had a 9-

7/8” bit and 6-3/4” collars. Using the drift equation (new wellbore) calculation, there 

will be 8.31”, a 1.56” (16%) reduction in wellbore OD which is exactly the same 

magnitude measured by the wireline tool. The reduction in the cross section area (drift 

vs. hole size) is calculated to equal 22.32 in
2
 (29%). Compare this to the figure on the 

right, which illustrates a perfectly gauged hole drilled with a new steerable system (a 

matched long gauge bit and positive displacement mud motor) [The entire 12,000 ft 

interval drilling is only 2.7 days with no short trip.] 

 

 
Fig. 4.4–3D CAD model of 12-1/4” borehole (Patusek, Brackin, and Christensen 2003). 

 

Some of the bends in the BHA may be smoothened by drilling a spiraled hole. Fig. 4.4 is 

a 3D CAD model of a 12-1/4” borehole from an offshore site in the Gulf of Mexico 

(GOM) with a model of the BHA that is placed as a spiral to minimize its contact points. 
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When this is animated for pipe rotation, it can be seen that spiraling hole is one way for 

the BHA to relax its preload. 

 

There are at least three key issues to be analyzed and optimized when drilling directional 

wells with motors: tool face control, dogleg severity (DLS), and borehole quality. This 

thesis will focus on hole problems from the well path, not from sloughing, caving, 

erosion, etc. There are several types of oscillations that have been described in the past, 

often with different or conflicting names. 

 

4.4 Model of Borehole Oscillations 

Figs. 4.5 through 4.7 will show the different types of borehole tortuosities that occur in 

the wellbore. 

 
Fig. 4.5–Rippling 2D oscillation (Patusek et al. 2003).
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Fig. 4.6–Spiraling 3D corkscrew (Patusek et al. 2003). 

 

 

 
Fig. 4.7–Hour-glassing cyclic hole enlargement (Patusek et al. 2003). 

 

The above three figures represent borehole rippling, spiraling, and hour-glassing, which 

have been known for many years in the drilling industry. Descriptions of these problems 

have become more precise with improved logging tools, yet the underlying mechanisms 

have not been presented in the past nor have there been any attempts to explain the 

steady state in response to the bottom hole assembly. Little has been published on the 

non-equilibriums or dynamics relating to the system. 
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There are at least three types of oscillations that have been described in the past. They 

are rippling/undulations, helical spiraling/corkscrew, and hour-glassing. The above 

figures represent the exterior of the three most common forms of borehole oscillation. 

 

The oscillation can be solved by the drift equation. This will affect torque equations 

mentioned earlier, which will become more accurate and affect all of the torque 

equations. 

 

4.5 Mathematical Model for Torque Calculations 

                             
Fig. 4.8–Showing the two-dimensional schematic of the drift equation 

(Gaynor et al. 2001). 

 

The collars will act directly to limit the amount of lateral movement of the bit off the 

center line of the hole (Fig. 4.8). Thus the spiral amplitude will be determined by the 

relative size of the bit and collars. This is exactly what was described by determining the 
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maximum wellbore “drift.” Using Lubinski’s calculation for maximum drift creates a 

crooked hole as (Rezmer-Cooper, Chau, Hendricks, Woodfine, Stacey, and Downton 

1999): 

 Ddrift = (Bit Diameter + Collar Diameter)/2 (4.2) 

 

Torque calculations in build and drop sections from Chapter II will use the adapted 

equation by (Maidla and Haci 2004): 

 T(α2) = 



Rd

D
N

drift

24
)(

2

0
  (4.3) 

 

However, the next step of this equation will be separated by the integral theory, thus 

 T(α2) = 



Rd

D
N

drift

24
)(

1

0
  +  




Rd

D
N

drift

24
)(

2

1
  (4.4) 

 

And it will depend on how the drillstring contacts the wellbore. From Eq. 4.4 and N(α) 

from Chapter II, using visual basic application software will give us a numerical method 

to solve torque and drag in the wellbore. 
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CHAPTER V 

STRESS CONCENTRATION WITHIN TOOL JOINT 

5.1 Introduction 

In this section we will mainly consider the stress between drillpipe connections. 

Although this will not affect the torque and drag in the wellbore, this will help the user 

to be aware of the drillpipe failure while working in the borehole. If the torque between 

connections exceeds the recommended torque, it will affect the pulling out of the hole 

phase since the drillstring connection cannot be broken. This might cause the drillpipe to 

buckle while the drillstring is in the wellbore. This chapter will use the back calculation 

to prevent the above-mentioned problem with the tripping process. This will help to 

confirm and warn the rig personnel of any upcoming situation. 

 

5.2 Stress Concentration 

This section will address a new Stress Concentration Factor (SCF) analysis methodology 

for Rotary Shouldered Connections (RSCs) by using Finite Element Analysis (FEA) as a 

primary tool to explore the maximum peak trends in RSCs and calculating SCF to 

represent the connection performance (Ring, Deltombe, York, and Baker 2007). Also in 

this chapter we will cover the SCF analysis methodology and its application in the 

evaluation of drillstring connection designs, advanced rotary shouldered connection 

designs incorporating multiple shoulders, and metal-to-metal seals as well as further 
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adding to the complexity of the stress distribution throughout the connection (Plessis, 

You, and Prideco 2005). 

 

The Stress Concentration Factor (SCF) is an important and useful parameter to evaluate 

the maximum peak stress within the connection in response to an operational pipe’s 

load. 

 

 

Fig. 5.1–Torque-turn curve (Hamilton, Wagg, and Roth 2007). 

 

Torque-turn curve of a premium connection that has passed the vendor make-up 

acceptance criteria and the ultrasonic representation of contact stress along the 

connection’s metal-to-metal seal. 
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Fig. 5.2–Representative torque-turn curve with torque ranges shown 

(Hamilton et al. 2007). 

 

 
Fig. 5.3–Cross-sectional view of a typical premium connection shown 

(Hamilton et al. 2007). 

 

 
Fig. 5.4–A comparison of a premium casing connection and a proprietary 

rotary shouldered connection (Tang et al. 2006).
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Figures 5.1 through 5.4 show that the connection stress forces as well as torque are more 

than normal along the drillpipe. Because of the increasingly aggressive drilling 

conditions and newer applications requiring multiple shoulders and metal-to-metal seals 

in rotary shouldered connections, the need for SCF analysis ensues. This research’s 

results on a number of evaluations suggest further explorations on various aspects of 

SCF analysis to find a logical and conservative approach to evaluate the maximum peak 

stress trend in rotary shouldered connections in response to applied pipe loads. This will 

help to understand RSC fatigue characteristics in newer applications. 

 

5.3 Mathematical Model for the Stress Concentration Factor 

The stress Concentration Factor (SCF) is a concept for well-defined various mechanical 

systems. It is also defined as a ratio of the peak stress (Σ) versus normal stress (σ). Peak 

stress is the highest principal stress at a geometric discontinuity location. 

 SCF = Σ/σapp or Σ = SCF* σapp (5.1) 

 

It is quite simple and straightforward if the mechanical system is at a zero preload 

condition, such as welded offshore structures. In this matter the maximum peak stress 

can be proportionally calculated through the SCF value based on a known applied 

normal stress σapp. But if the mechanical system has a large amount of preload during an 

assembly process like the makeup process in RSCs, the definition of the Stress 

Concentration Factor has to be revised to the following: 

 SCF = (Σ-Σmean) (5.2) 
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Another similar parameter is the Stress Amplification Factor, 

 SAF = (Σ-Σpreload)/(σapp-σpreload) (5.3) 

 

As a result, the only difference between these two equations is the reference stress; the 

SCF equation references any of the operational mean stresses: The SAF equation 

references a specified preload stress, which is referred to as makeup stress. The SCF or 

SAF is associated with a pre-defined reference stress point, either “preload stress” or 

“mean stress.” It involves two components, Σmean or Σpreload and σmean or σpreload. The peak 

stress change (Σ-Σmean) is actually a result of change in the pipe stress (σ-σmean). Then, if 

one needs to know the absolute peak stress level, especially at a geometric discontinuity 

location proportional to an applied load or stress in the pipe body, the formula can be 

used as follows: 

 Σ = Σmean + SCF*Δpipe-stress (5.4) 

 Where Δpipe-stress = σapp – σmean (5.5) 

 

A similar approach for SAF will be: 

 Σ = Σpre-load + SAF*Δpipe stress (5.6) 

 Where Δpipe stress = σapp – σpre-load (5.7) 

 

In this research, a practical analysis approach is recommended to address these three 

concerns with SCF for RSCs being defined as follows: 

 Σmax = Σmax mean + SCF*Δpipe stress (5.8) 

 Where Δpipe  stress = σapp – σmean = (fapp – fmean)/A (5.9) 
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 SCF = (Σmax – Σmax mean)/(σapp – σmean) (5.10) 

 SCF = A*(Σmax – Σmax mean)/(fapp – fmean) (5.11) 

 

Table 5.1–Maximum SCF values and locations in shouldered connections 

(Tang et al. 2006) 

Rotary 
Shouldered 
Connection 

Max. SCF up to 
Pipe Tension 

Capacity 
Max. SCF up to TJ 
Tension Capacity 

Makeup Torque 
(ft-lb) Critical Location 

API NC 38 
(4-7/8-in. OD 

X 2-9/16-in. ID) 

1.18 2.77 12,000 Pin Thread #2 

1st GEN-38 
(4-7/8-in. OD 

X 2-9/16-in. ID) 

1.11 1.13 17,665 Pin Thread #2 

2nd GEN-39 
(4-7/8-in. OD 

X 2-9/16-in. ID) 

0.91 0.91 22,190 Box Thread #1 

API 5-12 FH 
(7-1/4-in. OD 
X 3-12-in. ID) 

0.66 0.92 43,342 Pin Thread #2 

1st GEN-55 
(7-in. OD 
X 4-in. ID) 

1.00 1.03 46,347 Pin Thread #3 

2nd GEN-57 
(7-in. OD 

X 4-1/4-in. ID) 

0.68 0.74 56,600 Box Thread #3 

 

 

Maximum SCF with specified 4-in or 5-1/2-in pipe configuration is shown in Table 5.1; 

if the pipe force between connections (fmean) is more than the calculated data that we 

have from torque and drag software, we will use  

 SCF = (Σmax – Σmax mean)/(σapp – σmean) (5.12) 

 SCF = A*(Σmax – Σmax mean)/(fapp – fmean) (5.13) 

 

Then, finding fapp and using fapp for the force between the connections will be called back 

calculation. As a result, if the pipe force between connections is (f mean) more than the 
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calculated data from torque and drag software, we have to use fmean for torque and drag 

calculation. 
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CHAPTER VI 

BUCKLING 

6.1 Introduction 

Buckling is a very important issue in T&D calculation. The buckling can cause an 

increase in contact force between the string and the wellbore. This means that after the 

drillstring is released from the derrick, the entire drillstring will be supported by 

wellbore friction instead of the bit force. This phenomenon, called “lock-up,” occurs 

when the drillstring weight exceeds the drill string limitation. A lock-up situation can 

occur when working on coiled tubing operations; if this situation happens, it will cost a 

lot of money due to increasing the rig time activities. 

 

Buckling, as presented in this chapter, refers to sinusoidal buckling and helical buckling. 

If the axial compression continues to increase in the string, the buckling will begin when 

there is the string snake phenomenon along the wellbore (sinusoidal buckling as in 

Fig. 6.1). As the axial compression continues to increase, the buckling will change into a 

helix drillstring (also known as helical buckling as shown in Fig. 6.2). 
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Fig. 6.1–Sinusoidal buckling of the pipe in a horizontal wellbore 

(Wu and Juvkam-Wold 1993). 

 

 
Fig. 6.2–Helical buckling of the pipe in a horizontal wellbore 

(Wu and Juvkam-Wold 1993). 

 

6.2 System Modeling for a Deviation Wellbore 

A long pipe in a wellbore will be buckled into a sinusoid along the lower side of the hole 

at an axial compressive force of Wu and Juvkam-Wold’s model (1991)  

 sin2
r

EIw
Fs   (6.1) 
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A helical buckling mode will not occur until the axial force is (Wu, Chen and Cheatham 

model) 

 2HF Fs  (6.2) 

 

Buckling may then be assessed by calculating the friction force and using case selection 

below to define 

 F < Fs       no buckling (6.3) 

 Fs < F < 2 Fs       sinusoidal buckling initiated (6.4) 

 2 Fs < F < (2 2 -1)Fs      helical buckling initiated (6.5) 

 (2 2 -1)Fs < F   helical buckling from Wu and Juvkam-Wold’s (1991) equation (6.6) 

 

In the case of sinusoidal buckling, there is no significant increase in wall force; however, 

in the case of helical buckling, wall force increases, and the drilling engineer will pick 

up the best well design and attempt to avoid the buckling problem. In general for 

sinusoidal buckling, case may be acceptable, but for helical buckling case has to be 

avoided. But if the helical buckling is unavoidable, then T&D models need to be 

improved more; thus, it has to be solved by equations from this research. However in the 

vertical section, buckling calculations will be used differently. 

 

6.3 Buckling in a Vertical Well 

In 1950, researchers derived the following buckling load equation for the initial buckling 

of tubular assembly in vertical wellbores (Rezmer-Cooper et al. 1999): 

 Fs = 1.94*(EIMWe
2
)
1/3

 (6.7) 
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A helical buckling load for weighty tubular assembly in vertical wellbores was derived 

through an energy analysis to predict the occurrence of helical buckling: 

 Fhel,b = 5.55*(EIMWe
2
)
1/3

 (6.8) 

 

The top helical buckling load Fhel,t is calculated by simply subtracting the tubular weight 

of the initial one-pitch of the helically buckled pipe from the helical buckling load Fhel,b. 

 Fhel,t = 0.14*(EIMWe
2
)

1/3
 (6.9) 

 

thel,F
 

bhel,F
 

Fig. 6.3–Helical buckling in vertical wellbores. 

 

Fig. 6.3 shows helical bucking in vertical wellbores when the drilling pipe has 

compressive force. All of the above equations that illustrate this research are to provide 

the information towards users and avoid being buckled while working on well planning 

and drilling processes. The information has already been in T&D software. 
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CHAPTER VII 

NUMERICAL METHOD SOLVING T&D CALCULATION 

7.1 Introduction 

Applying the numerical method solves torque and drag calculations in three-dimensional 

wellbores. This will benefit future work by others to solve T&D calculations. This 

chapter will illustrate the numerical method that can be used to solve the torque and drag 

calculations by using a visual basic application program to solve the equations.  

 

7.2 Euler’s Theory 

From the first order in differential equations in Chapter II, using Euler’s Method in 

Numerical Analysis serves to illustrate the concepts involved in the advanced methods 

(Kaw 2006). It has a limitation in use because there are a lot of errors that accumulate 

during the procedure. However, it is worth studying since the error analysis can be 

understood easily. 

 

7.2.1 Euler’s method 

Let [a,b] be the interval over which we want to find the solution of the well-posed Initial 

Value Problem (I.V.P.) y’ = f(t,y) with y(a) = y0. In actuality, we will not find a 

differentiable function that satisfies the I.V.P. Instead, a set of points ( kt , ky ) is 

generated, and the points are used for an approximation (i.e., y( kt ) ≈ ky ). Then how can 

we proceed to construct a “set of points” that will “satisfy a differential equation 
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approximately”? First, we choose the abscissas for the points, then for being convenient 

we subdivide the interval [a,b] into M equals subintervals and select the mesh points as 

follows: 

 Tk = a + kh for k=0,1, …, M where h = 
M

ab 
 (7.1) 

 

The value h is called the step size. Now we can proceed to solve the equation 

approximately. 

 Y’ = f(t,y) over [t0,tM] with y(t0) = y0 (7.2) 

 

Assuming that y(t), y’(t), and y’’(t) are constantly continuous, then we use Taylor’s 

theorem to expand y(t) roughly t=t0. For each t value there exists a value c1 that lies 

between t0 and t, so that 

 Y(t) = y(t0)+y’(t0)(t- t0) + 
2

))(('' 2

01 ttcy 
 (7.3) 

 

When y’(t0) = f(t0,y(t0)) and h = t1- t0 are substituted in the Eq. 7.3, the result is shown 

below: 

 Y(t1) = y(t0) + hf(t0,y(t0) + y”( c1)
2

2h
 (7.4) 

 

If the chosen step size h is small enough, we can neglect the second-order term 

(involving h2) and have 

 Y1 = y0 + hf(t0,y0) (7.5) 
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This is Euler’s approximation; the process is repeated and generates a sequence of points 

that approximates the solution curve y = y(t). The general step for Euler’s method is 

 Tk+1 = tk+h, yk+1 = yk + hf(tk,yk)  for k=0,1,….., M-1 (7.6) 

 

 
Fig. 7.1–Euler’s approximations yk−1 = yk + h f (tk ,yk ) (John and Fink 2004). 

 

7.2.2 Geometric description 

As can be seen in Fig. 7.1, if you start at the point t0,y0 and compute the value of the 

slope m0 = f(t0,y0) and move the value of h horizontally and vertically hf(t0,y0), then you 

move along the tangent line to y(t) and will end up at the point (t1,y1). Notice that (t1,y1) 

is not on the desired solution curve. But this is the approximation that we are generating. 

Hence we must use (t1,y1) as though it were correct and proceed by computing the slope 

m1 = f(t1,y1) and use it to obtain the next vertical displacement hf(t1,y1) to locate (t2,y2) 

and so on. 
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7.2.3 Step size versus error 

From above, the methods that we introduce for approximating the solution of an initial 

value problem are called difference methods or discrete variable methods. The solution 

is approximated at a set of discrete points called a grid (or mesh) of points. A basic 

single-step method has the formula yk+1 = yk + hØ(tk,yk) for some functions Ø will be 

called increment functions. 

 

In using any discrete variable method to solve an initial value problem approximately, 

there will be two sources of errors: discretization and rounding off. Assuming that 

{(tk,yk)}
M

k 0  is the set of discrete approximations, then y = y(t) is the unique solution to 

the initial value problem. The global discretization error is defined by 

 ek = y(tk) – yk for k= 0,1…….,M (7.7) 

 

There is a difference between the unique solution and the solution obtained by the 

discrete variable method. The local discretization error ek+1 is defined by  

 ek+1 = y(tk+1) – yk - hØ(tk,yk)    for k= 0,1,…..,M-1 (7.8) 

 

It is the error committed in the single step from tk to tk+1. When we obtained Eq. 7.4 for 

Euler’s method, the neglected term for each step was y
2
(ck)(h

2
/2). Then if this was the 

only error at each step, at the end of the interval [a,b] (after M steps have been made) the 

accumulated error would be 

 )(
2

)()(
)(

22
)(

2
)( 1

)2(
)2(

2
)2(

2

1

)2( hOh
cyab

hcy
hMh

cMy
h

Cy
M

k

k 





  (7.9) 
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There could be some more errors, but this estimate predominates. A detailed discussion 

on this topic can be found in advanced texts on numerical methods for differential 

equations. Theorem (Precision of Euler’s Method), assumes that y(t) is the solution to 

the I.V.P. given. If y(t) in C
2
[t0,b] and {(tk,yk)}

M

k 0  is the sequence of approximation 

generated by Euler’s method, then 

 |ek| = |y(tk) - yk| = O(h) (7.10) 

 |ek+1|=|y(tk+1)-yk-hf(tk,yk)| = O(h
2
) (7.11) 

 

The error at the end of the interval is called the final global error (F.G.E.): 

 E(y(b),h)= |y(b) - yM| = O(h) (7.12) 

 

The final global error E{y(b),h}has been used to study the behavior of the error for 

various step sizes. It can be used to give us an idea of how much computing effort must 

be done in order to obtain an accurate approximation. 

 

7.2.4 Example of the step size effect in Euler’s method 

For example, the step size effect uses Euler’s method to solve I.V.P. 

 Y’ = 
2

yt 
 on [0,3] with y(0) = 1 (7.13) 

Compare solutions for h = 1, 
8

1
,

4

1
,

2

1
and . 
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Fig. 7.2–Comparison of Euler solutions with different step sizes (John and Fink 2004). 

 

Fig. 7.2 shows a comparison of Euler solutions with different step sizes for y’= (t-y)/2 

over [0,3] with the initial condition y(0) = 1, presenting four Euler solutions and the 

exact solution curve  

 y(t) = 3e
-t/2

 – 2 +t (7.13) 

 

Using Euler’s method will definitely solve a numerical solution that has been mentioned 

in Chapter II. Note that this method only presents a numerical solution, not an analytical 

solution. 

 

7.2.5 Euler’s method calculated in a three-dimensional wellbore 

A wellbore for a build section (lowering the pipe into the hole) starting from α0 = 0
o 
to  

α1 = 90
o
, assuming no rturn and having all of the parameters is shown below in Table 7.1. 
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Table 7.1–Showing parameters for build section 

Parameters  Values Unit 

Tkop 1,509 Ft 
Teoc 3,308 Ft 
μ 0.1   
We 19.5 lb/ft 
R  1,146 Ft 
α0 0 Degree 
α1 90 degree 
Feoc 10,000(compressive) lb 

 

Wu and Juvkam-Wold’s (1991) equations will be 

 Fc (α) = [Fc(α0) - Asin(α0) + Bcos(α0)]e
μ(α-α0) 

+Asinα – Bcosα (7.14) 

 

Where 

 A = RWe21

2






 (7.15) 

 B = RWe2

2

1

1








  (7.16) 

F(¶/2)

F(0)

O’




F+∆F

F)]
2

(90[ 0 





Ff

2



W

N

R

X

 
Fig. 7.3–Illustrates force in the build-up section (lowering the pipe into the hole, 

vertical view). 
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α0

α0

α1

α2

α = 900

α1

α2

α = 0

N < 0

N > 0

 
Fig. 7.4–Illustrates the differences between positive and negative forces in the build-up 

section (lowering the pipe into the hole). 

 

From Figs. 7.3 and 7.4 for N > 0, 

 
)(

)(





d

dF
 = μ{ }]

)(
[]

)(
)cos([ 22

R

F

R

F
w cc 

  R – WRsin(α); (α 1  ≥ α ≥ α 0 ) (6.17) 

*The term 
R

Fc )(
  comes from the wellbore turning and will be 0 because there is no 

left or right turn; cF means compressive force cF > 0 and tensile force cF  < 0. 

 

Fig. 7.5 shows that for a very small step size (1.25 degree), the result from the numerical 

solution is close to the analytical solution; moreover, this will show force value in every 

1.25 degrees. This means the procedure of the numerical method that has been used to 

solve the first order differential equation is used by a small step size (such as 1.25 

degree). Consequently, the results in this research are close to Wu and Juvkam-Wold’s 

(1991) analytical equation and are realistic. From the equations in this research, in first 

derivative order that uses Euler’s method can solve problems in a three-dimensional 

wellbore. 
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Fig. 7.5–Comparison between Wu and Juvkam-Wold’s (1991) equations and numerical 

methods. 
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CHAPTER VIII 

DISCUSSION OF RESULTS 

8.1 Introduction 

This research developed torque and drag equations to be used in three-dimensional 

wellbore designs based on Wu and Juvkam-Wold’s (1991) equations by using numerical 

methods as well as considering the stress concentration factor (SCF), tortuosity effects, 

and buckling. After going through literature reviews, we have equations for torque and 

drag calculation, in Chapter II shown below, as well as providing some examples. 

 

8.2 Mathematical Models for Three-dimensional Wellbores 

This section shows the equations that are being used in three-dimensional wellbores. 

 

8.2.1 Lowering the pipe into the hole 

 

8.2.1.1 Build section 

For N > 0 

 
)(

)(





d

dF
 = μ{ }]

)(
[]

)(
)cos([ 22

turn

cc

R

F

R

F
w


  R – WRsin(α); (α 1  ≥ α ≥ α 0 ) (8.1) 

* 
turnR

F )(
 is from the wellbore turning (which will be explained in the next section of this 

chapter), and the value will be 0 if there is no turning right or turning left of the 
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wellbore, and if there is tension force, then F will be F > 0, and if there is compressive 

force, then F will be F  < 0. 

 

For N < 0 

 
)(

)(





d

dF
 = μ{- }]

)(
[]

)(
)cos([ 22

turn

cc

R

F

R

F
w


  R – WRsin(α); (α 2  ≥ α ≥ α1) (8.2) 

* 
turnR

F )(
 is from the wellbore turning (which will be explained in the next section of this 

chapter), and the value will be 0 if there is no right or left turn of the wellbore, and if 

there is tension force; F will be F > 0, and if there is compressive force, then F will be 

F  < 0. 

 

8.2.1.2 Drop section 

For N > 0  

 
)(

)(





d

dF
 = μ{ }]

)(
[]

)(
)sin([ 22

turn

cc

R

F

R

F
w


  R – WRcos(α); (α2 ≥ α ≥ α1) (8.3) 

* 
turnR

F )(
 is from the wellbore turning (which will be explained in the next section of this 

chapter), and the value will be 0 if there is no right or left turn of the wellbore, and if 

there is tension force; F will be F > 0, and if there is compressive force, then F will be 

F  < 0. 
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For N < 0 

 
)(

)(





d

dF
 = μ{- }]

)(
[]

)(
)sin([ 22

turn

cc

R

F

R

F
w


  R – WRcos(α);(α 1  ≥ α ≥ α0) (8.4) 

* 
turn

c

R

F )(
 is from the wellbore turning (which will be explained in the next section of this 

chapter), and the value will be 0 if there is no  right or left  turn of the wellbore, and if 

there is tension force; F will be F > 0, and if there is compressive force, then F will be 

F  < 0. 

 

8.2.2 Pulling the pipe out of the hole 

 

8.2.2.1 Build section 

For N > 0 

 
)(

)(





d

dF
 = μ{ }]

)(
[]

)(
)cos([ 22

turnR

F

R

F
w


  R + WRsin(α); (α 1  ≥ α ≥ α 0 ) (8.5) 

* 
turnR

F )(
 is from the wellbore turning (which will be explained in the next section of this 

chapter), and the value will be 0 if there is no right or left  turn of the wellbore, and if 

there is tension force; F will be F > 0, and if there is compressive force, then F will be 

F  < 0. 

 

For N < 0  
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)(

)(





d

dF
 = μ{- }]

)(
[]

)(
)cos([ 22

turnR

F

R

F
w


  R + WRsin(α); (α 2  ≥ α ≥ α1) (8.6) 

* 
turnR

F )(
 is from the wellbore turning (which will be explained in the next section of this 

chapter), and the value will be 0 if there is no  right turn or left turn of the wellbore, and 

if there is tension force; F will be F > 0, and if there is compressive force, then F will 

be F  < 0. 

 

8.2.2.2 Drop section 

For N > 0  

 R
R

F

R

F
W

d

dF

turn

})
)(

()
)(

)sin(({ 22 



 +WRcos(α); (α2 ≥ α ≥ α1) (8.7) 

* 
turnR

F )(
 is from the wellbore turning (which will be explained in the next section of this 

chapter), and the value will be 0 if there is no right or left turn of the wellbore, and if 

there is tension force; F will be F > 0, and if there is compressive force; F will be F < 0. 

 

For N < 0  

 R
R

F

R

F
W

d

dF

turn

})
)(

()
)(

)sin(({ 22 



 +WRcos(α); (α 1  ≥ α ≥ α0) (8.8) 
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* 
turnR

F )(
 is from the wellbore turning (which will be explained in the next section of this 

chapter), and the value will be 0 if there is no right or left turn of the wellbore, and if 

there is tension force; F will be F > 0, and if there is compressive force; F will be F < 0. 

 

In addition, a hold section that has a deviation in either a left or right turn will consider 

Nturn term with 
turnR

F )(
. 

 

All of the above equations cannot be solved by analytical methods; however, they can be 

solved by numerical methods by using an Euler method to solve this first degree 

differential equation. The next section will provide an example that will be used to 

compare Wu and Juvkam-Wold’s (1991) analytical equation with the research method 

using Euler’s numerical methods. 

 

8.3 Soft-string Model for Three-dimensional T&D Calculations 

The original soft-string T&D programs were based on a model developed by Exxon 

Production research (Mason and Chen 2007). The value of N (normal contact force) 

depends on how the pipe contacts the formation and the actual amount of normal contact 

force:  

 N total = 22 )sin()sin(  WTT   (8.9) 
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If the wellbore turns neither left nor right,  sinT   will equal  0; meanwhile, using 

the normal contact force equation to evaluate the tension and torque changes details in 

Eq. 2.13 and Eq. 2.14: 

 NWT   cos  (8.10) 

 NRM   (8.11) 

 

8.4 Example and Comparison in Force Calculations 

The wellbore for the build section (lowering the pipe into the hole) starting from α0 = 0
o 

to α1 = 90
o
, assuming no Rturn, and having all the parameter shown below in Fig. 8.1 and 

Table 8.1, respectively. 

α0

α0

α1

α1

α2

N < 0

N > 0

R

α = 900

α = 00

TVD at Kick-Off 

point

 
Fig. 8.1–Wellbore geometry for this example. 
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Table 8.1–Showing parameters 

Parameters  Values Unit 

Tkop 1,509 ft 

Teoc 3,308 ft 

μ 0.1   

We 19.5 lb/ft 

R  1146 ft 

α0 0 degree 

α1 90 degree 

Feoc 10,000 lb 

Ftop -9,504 lb 

 

 

 

Fig. 8.2–Comparison between Wu and Juvkam-Wold’s (1991) equations and numerical 

methods. 

 

Fig. 8.2 Illustrates a very small step size (1.25 degree) as the result from a numerical 

solution, which is close to an analytical solution. Moreover, this will show a force value 

every 1.25 degrees. This means that the procedure for numerical methods used to solve 

the first degree differential equation is to use a small step size (such as 1.25 degree) and, 
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as revealed in this research, is close to Wu and Juvkam-Wold’s (1991) analytical 

equation and is realistic. Equations from this research in the first derivative degree using 

Euler’s method can solve problems in three-dimensional wellbores. 

 

8.5 Example and Comparison in Torque Calculations 

Torque calculations in the build and drop sections (while rotating off the bottom) from 

Chapter III also consider tortuosity effects and will use the adapted equation by 

 T(α2) = 



Rd

D
N

drift

24
)(

2

0
  (8.12) 

However, the next step of this equation will be separated by the integral theory, thus  

 T(α2) = 



Rd

D
N

drift

24
)(

1

0
  +  




Rd

D
N

drift

24
)(

2

1
  (8.13) 

 

It will depend on how the drillstring contacts the wellbore. From the above equation and 

N(α) for three-dimensional wellbores from Chapter II, using visual basic application 

software will give us a numerical method to solve torque and drag. 

 

8.5.1 Example while rotating off the bottom 

An example of torque calculations when comparing Wu and Juvkam-Wold’s (1991) 

equation with the numerical solutions is shown below: 

 

Rotary Drilling with Feoc = 40,000 lbf (tension) shows the well profile as an Extended 

reach well with final I = 65 deg. BUR = 5.08 deg./100 ft μ = 0.333, Ikop = 0, Tkop = 1,509 

ft Mud wt = 9.6 ppg Pipe wt = 16.6 lb/ft in air and Density of steel = 65.5 ppg  
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 NEOC = 14.17 cos 25 - 40,000/1,128 = - 22.63 lb/ft (upside contact) (8.14) 

 

Axial drag = 0, but 

 F(α2) = F(α0) + Fd - We R (cos α2 - cos α0) (8.15) 

 FKOP = 40,000 + 0 - 15,979 (cos 90
o
 - cos 25

o
) (8.16) 

 FKOP = 54,480 lbf (8.17) 

From Wu and Juvkam-Wold’s (1991) equation 

 






Rd

D

R

F
WWT

tj

ee 
2

0 24

)(
coscos2)( 0

02  (8.18) 

 

From Wu and Juvkam-Wold’s (1991) equation 

 N(α) = 2Wecos α - Wecos α0 - 
R

F )( 0
 (8.19) 

 

Using integrate properties with Wu and Juvkam-Wold’s (1991) equation 

 







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 T(
2


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

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
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F
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ee
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0

2

180

25

  (8.21) 

 Thus, Tkop = 3,760 ft-lbf (8.22) 
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Fig. 8.3–Axial tension plot for this example using Wu and 

Juvkam-Wold’s (1991) method (Juvkam-Wold 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.4–Torque plot for this example using Wu and Juvkam-Wold’s (1991) 

method (Juvkam-Wold 2007). 

 

Figs. 8.3 and 8.4 demonstrate the result from Wu and Juvkam-Wold’s (1991) calculated 

method. The next step will compare the results from the software using the torque 

equations, from this research: 
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For N > 0 

 N = 
22

0 ]
)(

[)]cos()cos([
turn

c

R

F
w


  ; (α 1  ≥ α ≥ α 0 ) (8.23) 

 

For N < 0 

 N = -
22

0 ]
)(

[)]cos()cos([
turn

c

R

F
w


  ; (α 2  ≥ α ≥ α1) (8.24) 

* 
R

F )(
 is from the wellbore turning (which will be explained in the next section of this 

chapter), and the value will be 0 if there is no right or left turn of the wellbore, and if 

there is tension force; F will be F > 0, and if there is compressive force; F will be F < 0. 

For this example, (
turn

c

R

F )(
) will be 0 since the two-dimensional wellbore does not have 

any turning.  

 
)(

)(





d

dF
 = WOB - 22

0 ]
)(

[)]cos()(cos([
turnR

F
w


   * R; (α 1  ≥ α ≥ α 0 )   (8.25) 

 

Using Euler’s method to solve this equation will be shown below. 
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Fig. 8.5–Axial tension plot for this example using numerical method. 

 

Fig. 8.5 shows the axial tension plot for this example. Using torque calculations in the 

build and drop sections from Chapter II will use the adaptive equation 

 T(α2) = 



Rd

D
N

drift

24
)(

2

0
 ;  (α2 = 90

0
 and α0 =25

0
) (8.26) 

 

By Eq. 8.26 and N(α) from Eq. 8.24, using visual basic application software to help us 

will give us a numerical method answer of torque and drag. 
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Fig. 8.6–Torque plot for this example using numerical method. 

 

Fig. 8.6 shows that there will be a very small difference in T&D calculations from Wu 

and Juvkam-Wold’s (1991) equation and T&D from numerical methods. This will prove 

that numerical methods can be used to solve two-dimensional problems; also Wu and 

Juvkam-Wold’s (1991) equation cannot solve problems in three- dimensional wellbores. 

 

Moreover, this thesis can calculate well planning between the tie-on survey at the KOP 

to the target direction by using Visual Basic Application program and MATLAB 

together; the example below will show the results. 

 

8.5.2 Example for survey calculations 

For example, if we have a tie-on survey and a target direction (Table 8.2), we can also 

use numerical method to solve this example. 
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Table 8.2–Input field data for tie-on surveys and target directions 

for 3D wellbore paths 

a) Target direction 

       

MD TVD NC EC     

6955.28 5000 -3000 2000    

       

b) Tie-on survey at KOP 

       

MD TVD NC EC  I  AZ DLS 

90 90 -100 -70 57 300 5 

 

 

 
Fig. 8.7–3D wellbore path by MATLAB version 7.4.0. 
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Fig. 8.8–Normal contact force (lb/ft) versus measured depth (ft). 

 

 

 

Fig. 8.9–Axial force (lb) versus measured depth (ft). 

 

 

More examples and comparison will be provided in the appendices. 

Note: Figs. 8.7, 8.8 and 8.9 are based on Fig. 8.6 geometry. 
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CHAPTER IX 

CONCLUSIONS AND RECOMMENDATIONS 

9.1 Conclusions 

 

This research began by improving the equations that are normally used in T&D software 

calculations, reflecting the state of current models and identifying future requirements. 

This provides more accurate T&D models because this research’s calculations are based 

on 3D calculations that will help alleviate helical bucking problems since normally 

helical bucking causes lock-up and fatigue potential. 

 

This research’s software prevents T&D problems while drilling by trying to optimize 

well profiles before drilling begins. Moreover, this research shows the relationship 

between well planning design and T&D calculations in 3D. This makes it easier to find 

out which type of well design is more suitable in each particular area. Besides, this will 

help in designing of long horizontal wellbores tremendously. From all the above, this 

research helps the user to find how to optimize the wellbore trajectory in each particular 

area based on 3D calculations (in Chapter VIII has already compared between 2D 

calculations and 3D calculations with various examples in the appendices). 

 

This software helps field personnel to prepare for unexpected trend changes in a timely 

fashion during the drilling process. A user is able to anticipate T&D values by only 
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inputting wellbore data and T&D parameters. Consequently, the outcome of the data 

from the T&D calculation program is more realistic because it is based on a 3D model. 

Also a user can adjust the input data if there is more information during the drilling 

process, this will provide even more accurate output. 

 

9.2 Recommendations 

Future work should be to improve the Soft-string assumption for calculating T&D 

models. This means that the T&D software should consider bending stresses. These 

include maximum stress calculations, fatigue limits, and fixed end or free end 

assumptions. If the above-mentioned were included in new T&D programs, this would 

provide more accurate T&D calculations. 
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NOMENCLATURE 

A -  Pipe cross sectional area 

 

AZ -  The direction or bearing toward which a sloping surface faces (e.g., a north-

facing slope has an azimuth angle of 360°; a northeast-facing slope, an 

azimuth angle of 45°), degrees 

 

B -  Angle parameter for mathematical algorithm calculation, rad. 

 

d -  Length parameters for mathematical algorithm in wellbore trajectory 

calculation, ft   

 

D -  A combination of aerodynamic or hydrodynamic forces which tends to 

reduce speed, lbf 

 

Ddrift -  The average diameter that has been used in torque equations, in 

 

Dtj - The diameter of tool joint, in 

 

DLS -  A normalized estimate (e.g., degrees / 100 feet) of the overall curvature of 

an actual well path between two consecutive survey stations. 

 

e -  Length parameters for mathematical algorithm in wellbore trajectory 

calculation, ft   

 

E - Young’s modulus, psi 

 

EC -  The distance traveled in the east-west direction in the horizontal plane (east 

is positive, west is negative), ft 

 

f -  Is the force of two surfaces in contact, or the force of a medium acting on a 

moving object, lbf 

 

F(α) -  Tensile force, lbf 

 

Fc(α) -  Compressive force, lbf 

 

Fhel -  New helical buckling load, lbf 

 

Fs -  Axial compressive load to initiate sinusoidal buckling of pipe, lbf 

 

FEA -  Finite Element Analysis 

 

http://en.wikipedia.org/wiki/Force
http://en.wikipedia.org/wiki/Surface
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h -  Length parameters for mathematical algorithm in wellbore trajectory 

calculation, ft 

 

HL -  Length of wellbore in horizontal section, ft 

 

I,θ -  A deviation or the degree of deviation from the vertical 

 

IM -  Moment of inertial of pipe, in (Gaynor et al. 2002) 

 

k -  Length parameters for mathematical algorithm in wellbore trajectory 

calculation, ft 

 

m -  Length parameters for mathematical algorithm in wellbore trajectory 

calculation, ft 

 

ΔM -  The increment in torque across the string element, ft-lbf 

 

MD -  The actual distance traveled along the borehole, ft 

 

n -  Length parameters for mathematical algorithm in wellbore trajectory 

calculation, ft 

 

N -  The component perpendicular to the surface of contact of the contact force, 

lbf/ft 

 

Nturn -  The normal contact force while the wellbore is turning, lbf/ft 

 

NC -  The distance traveled in the north-south direction in the horizontal plane 

(north is positive, south is negative), ft 

 

R -  The radius of curvature of the string element while the wellbore is in the 

build or the drop section (vertical view), ft 

 

Rturn -  The radius of curvature of the string element while the wellbore is turning 

(horizontal view), ft 

 

RSCs -  Rotary Shouldered Connections 

 

SCF -  Stress Concentration Factor 

 

t -  Tangent section 

 

T -  The tension force at the lower end of the string element, lbf 
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T1 -  The planned tortuosity represent the summation of the total curvature 

including inclination and azimuth in the planned well trajectory divided by 

the well depth 

 

T2 -  The large-scale tortuosity represent the summation of the total curvature 

(inclination and azimuth changes) when a drilled well is measured by 

measurement while drilling (MWD) 

 

T3 -  The micro tortuosity defined as the tortuosity that occurs in the wellbore that 

is smaller in comparison to previous tortuosity 

 

ΔT -  The increment in tension across the string element, lbf 

 

T(α) -  (or often called a moment) can informally be thought of as "rotational force" 

or "angular force" which causes a change in rotational motion. This force is 

defined by linear force multiplied by a radius, ft-lbf 

 

Tkop -  Depth in vertical section (ft) 

 

TD -  The assumed trajectory of the wellbore, ft 

 

TVD -  The vertical distance between a specific location in a borehole and a 

horizontal plane passing through the surface, ft 

 

W, We -  In this research, refers to buoyed weight of the string element (provided by 

Eq. 2.71), lbf/ft 

 

z -  Length parameters for mathematical algorithm in wellbore trajectory 

calculation, ft 

 

αI -  The angle between the distance traveled in the north-south direction and 3D 

distance from the KOP to Target, rad. 

 

α -  The angle used to calculate the deviation of the wellbore, rad. 

 

ß -  The angle between the distance traveled in the east-west direction and 3D 

distance from the KOP to Target, rad. 

 

γ -  The angle used to calculate the deviation of the wellbore in tangent section, 

rad. 

 

σapp -  Applied normal stress in pipe body 

 

σmean -  Average normal stress in pipe body 

 

http://en.wikipedia.org/wiki/Moment_%28physics%29
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Σ -  Local peak stress within connection 

 

Σmax -  Maximum peak stress within connection 

 

Σmax mean -  Average maximum peak stress within connection 

 

Φ,ΔØ -  The change in azimuth angle over the string element, rad. 

 

δ -  A normalized estimate of the overall curvature of an actual well path 

between two consecutive survey stations, degrees per 100 ft 

μ -  The coefficient of friction between the string and the wellbore 

 

λ -  Angle parameter for mathematical algorithm calculation, rad. 

 

ρmud -  Density of drilling fluid (lb/gallon) 
 

ρsteel -  Density of drill pipe (lb/gallon) 
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APPENDIX A 

INTRODUCTION TO THREE-DIMENSIONAL CALCULATION SOFTWARE 

PROGRAM USING NUMERICAL METHOD ANALYSIS 
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This section will guide users in how to use T&D software that has been mentioned in 

this research. This software will be used to calculate three-dimensional wellbore designs 

by using numerical method analysis; this T&D software program also consists of seven 

sections that explain procedures step by step. The first section in this program requires 

users to follow Terms & Agreements, then users have to press this button prior to 

continuing the process. After users click this button, they can choose any type of 

wellbore design to calculate torque and drag data.  

 

 

Fig. A.1–T&D calculations for 3D well planning user form. 
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Fig. A.1 is a user form of this T&D (torque and drag) software program for T&D 

Calculations for 3D Well Planning Designs. This program consists of input data frames 

and result data frames. The input data frame consists of the tie-on survey of the kick off 

point (KOP), the target direction for well planning with the method of calculation 

(rotating off bottom, pulling out of the hole, and running into the hole), and the drilling 

parameters. The right-hand end frame shows the planning picture of input data (user can 

see large picture by clicking on any pictures in 3D software as Fig. A.2).  

 

 

Fig. A.2–Showing enlarge picture application in 3D software. 

 

The result frame provides all torque and drag output calculations. It shows the graph 

from the horizontal view of wellbore trajectory, vertical view of wellbore trajectory, 

normal contact force (lbf/ft) versus measured depth, axial tension/compression force 
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(lbf) versus measured depth, and torque (ft-lbf) versus measured depth. The result will 

depend on which method the user has chosen for method of calculation. Again the user 

can see a large picture of the graph by clicking on the result’s picture. 

 

 

Fig. A.3–Build type user form. 

 

Fig. A.3 is a user form in this T&D software program for T&D calculations in Build 

type well planning designs. This consists of input data frames and result data frames. 

The input data frame consists of the method of calculation (rotating off bottom, pulling 

out of the hole, and running into the hole) and the drilling parameters. The right-hand 



 100 

 

end frame shows the planning picture for input data (user can see large picture by 

clicking on the picture). 

 

The result frame provides all torque and drag output calculations. It shows the graph 

from normal contact force (lbf/ft) versus measured depth, axial tension/compression 

force (lbf) versus measured depth, and torque (ft-lbf) versus measured depth. The result 

will depend on which methods user has chosen the method of calculation. Again for the 

user can see a large picture of the graph by clicking on the result’s picture. 

 

 

Fig. A.4–Build & hold type user form. 
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Fig. A.4 is a user form in this T&D software program for T&D calculations in Build & 

Hold type well planning designs, which consists of input data frames and result data 

frames. The input data frame consists of the method of calculation (rotating off bottom, 

pulling out of the hole, and running into the hole) and the drilling parameters. The right-

hand end frame shows the planning picture for input data (user can see large picture by 

clicking on the picture). 

 

The result frame provides all torque and drag output calculations. It shows the graph 

from normal contact force (lbf/ft) versus measured depth, axial tension/compression 

force (lbf) versus measured depth, and torque (ft-lbf) versus measured depth. The result 

will depend on which methods the user has chosen for method of calculation. Again the 

user can see a large picture of the graph by clicking on the result’s picture. 
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Fig. A.5–Build hold & drop type user form. 

 

Fig. A.5 is a user form in this T&D software program for T&D calculations in Build 

Hold & Drop type well planning designs, which consists of input data frames and result 

data frames. The input data frame consists of method of calculation (rotating off bottom, 

pulling out of the hole, and running into the hole) and the drilling parameters. The right-

hand end frame shows the planning picture for input data (user can see large picture by 

clicking on the picture). 

 

The result frame provides all torque and drag output calculations, which shows the graph 

from normal contact force (lbf/ft) versus measured depth, axial tension/compression 
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force (lbf) versus measured depth, and torque (ft-lbf) versus measured depth. The result 

depends on which method user has chosen the method of calculation. Again for the user 

can see a large picture of the graph by clicking on the result’s picture. 

 

 

Fig. A.6–Horizontal wellbore user form. 

 

Fig. A.6 is a user form in this T&D software program for T&D calculations in horizontal 

wellbore type well planning designs, which consists of input data frames and result data 

frame. The input data frame consists of the method of calculation (rotating off bottom, 

pulling out of the hole, and running into the hole) and the drilling parameters. The right-

hand end frame shows the planning picture for input data (user can see large picture by 

clicking on the picture). 
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The result frame provides all torque and drag output calculations; this shows the graph 

from normal contact force (lbf/ft) versus measured depth, axial tension/compression 

force (lbf) versus measured depth, and torque (ft-lbf) versus measured depth. The result 

will depend on which method the user has chosen for method of calculation. Again the 

user can see a large picture of the graph by clicking on the result’s picture. 

 

 

Fig. A.7–T&D calculation between survey user form. 

 

Fig. A.7 is a user form in this T&D software program for T&D calculations during the 

survey. This section of calculation includes buckling effects and the stress concentration 

factor (SCF), which consists of input data frames and result data frame. The input data 
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frame consists of the method of calculation (rotating off bottom, pulling out of the hole, 

and running into the hole), the drilling parameters, and the survey data in each position. 

The right-hand end frame shows the planning picture for input data (user can see large 

picture by clicking on the picture). 

 

The result frame provides all of the information on torque and drag output calculations. 

It shows the graph from normal contact force (lbf/ft) versus measured depth, axial 

tension/compression force (lbf) versus measured depth, and torque (ft-lbf) versus 

measured depth. The result will depend on which method the user has chosen for method 

of calculation. Again the user can see a large picture of the graph by clicking on the 

result’s picture. 

 

If the user installs 3D software with MATLAP Program Version 7.4.0, he/she can use 

Excel link icon to show 3D wellbore trajectory. 

 

For example (from T&D Calculation for 3D Well Planning User Form), 

Input field data 

a) Target direction 

       

MD TVD NC EC     

6955.28 5000 -3000 2000    

       

b) Tie-on survey at KOP 

       

MD TVD NC EC  I  AZ DLS 

90 90 -100 -70 57 300 5 

 
Note: NC is negative, means the wellbore trajectory moves to south direction 

EC is negative, means the wellbore trajectory moves to west direction 
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Fig. A.8–3D wellbore path by MATLAB version 7.4.0. 
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APPENDIX B 

COMPARISON BETWEEN WU AND JUVKAM-WOLD’S EQUATION AND 

NUMERICAL METHOD WHILE PULLING OUT OF THE HOLE 
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In this appendix will show a comparison between Wu and Juvkam-Wold’s (1991) 

equation and Numerical method while pulling out of the hole with Feoc  = 100,000 lbf 

(tension); Extended reach well with final I = 65 deg, BUR = 5.08 deg./100 ft, μ = 0.333, 

IKOP = 0, TKOP = 1,509 ft; Mud wt = 9.6 ppg, Pipe wt = 16.6 lb/ft in air and Density of 

steel = 65.5 ppg. 

 

 

 

 

 

 

 

 

 

 

Fig. B.1–Wellbore schematic for example in Appendix B (Juvkam-Wold, 2007). 

 

α0 = 25 ¶/180,   α2 = ¶/2, We = 16.6 (1 - 9.6/65.5) = 14.18 lb/ft, R = 18,000/(¶ 5.08) = 

1,128 ft 

From Eq. 2.46,   NEOC = We cos a0 - F(a0)/R 

NEOC = 14.18 cos 25
o
 - 100,000/1,128 

= - 75.8 lbf/ft   (upside contact) 

WeR = 14.18  lb/ft * 1,128 ft= 15,979 lbf  

R = 1,128    ft

1,509

65

65 100,000 lbf
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From Eq. 7.15, A = 9,579 lbf 

From Eq. 7.16, B = -12,789 lbf 

From Eq. 7.14 

FKOP = [100,000 + 9,579 sin25
o
 + 12,789 cos25

o
)exp[0.333 (¶/2-25

o
¶/180)] - 9,579 sin 

90
o
 - 12,789 cos90

o 
 

FKOP = 159,140 lbf 

 

Fig. B.2–Normal contact force (lb/ft) versus measured depth (ft) for this example 

using Wu and Juvkam-Wold’s (1991) method (Juvkam-Wold, 2007). 

 



 110 

 

 

Fig. B.3–Axial tension plot for this example using Wu and Juvkam-Wold’s (1991) 

method (Juvkam-Wold, 2007). 
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In this section will be numerical analysis method. 

 

 

Fig. B.4–User dorm of Appendix B example. 
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Fig. B.5–Result user form of Appendix B example. 
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Fig. B.6–Normal contact force (lb/ft) versus measured depth (ft). 
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Fig. B.7–Axial tension force (lb) versus measured depth (ft) (F > 0 referred 

to tensile force). 
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APPENDIX C 

COMPARISON BETWEEN WU AND JUVKAM-WOLD’S EQUATIONS AND 

NUMERICAL METHODS WHILE PULLING OUT OF THE HOLE 
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In this appendix will show a comparison between Wu and Juvkam-Wold’s (1991) 

equation and numerical method while running into the hole with Feoc  = 17,000 lbf 

(tension); Extended reach well with final  I = 65 deg, BUR = 5.08 deg./100 ft, μ = 0.333, 

IKOP = 0, TKOP = 1,509 ft; Mud wt = 9.6 ppg, Pipe wt = 16.6 lb/ft in air and Density of 

steel = 65.5 ppg  

 

 

 

 

 

 

 

 

 

 

Fig. C.1–Wellbore Schematic for example in Appendix C (Juvkam-Wold, 2007). 

 

α0 = 25 ¶/180,   α2 = ¶/2, We = 16.6 (1 - 9.6/65.5) = 14.18 lb/ft, R = 18,000/(¶ 5.08) = 

1,128 ft 

From Eq. 2.46,   NEOC = We cos a0 - F(a0)/R 

NEOC = = 14.18 cos 25 - 17,000/1,128 

= - 2.23 lbf/ft   (upside contact) 

WeR = 14.18  lb/ft * 1,128 ft= 15,979 lbf  

From Eq. 7.15, A = 9,579 lbf 

From Eq. 7.16, B = -12,789 lbf

R = 1,128    ft

1,509

65

65 17,000 lbf
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From Eq. 7.14 

Fc,KOP = (-17,000 + 9,579sin25
o
 - 12,787cos25

o
) exp(- 0.333 (¶/2 – 25 ¶/180)) - 

9,579sin90
o
 - 12,789cos90

o
  

FKOP = 26,400 lbf   (tension) 

 

 

Fig. C.2–Normal contact force (lb/ft) versus measure depth (ft) for this example 

using Wu and Juvkam-Wold’s (1991) method (Juvkam-Wold, 2007). 
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Fig. C.3–Axial tension plot for this example using Wu and Juvkam-Wold’s (1991) 

method (Juvkam-Wold, 2007). 
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In this section will be numerical analysis method. 

 

 

Fig. C.4–User form of Appendix C example. 
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Fig. C.5–Result user form of Appendix C example. 
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Fig. C.6–Normal contact force (lb/ft) versus measured depth (ft). 
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Fig. C.7–Axial force (lb) versus measured depth (ft) (F < 0 referred to tensile force).  
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APPENDIX D 

COMPARISON BETWEEN WU AND JUVKAM-WOLD’S EQUATIONS AND 

NUMERICAL METHODS WHILE RUNNING INTO THE HOLE WITH 

COMPRESSIVE FORCE 
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In this appendix will show a comparison between Wu and Juvkam-Wold’s (1991) 

equation and numerical method while running into the hole with Feoc  = 3,000 lbf 

(compression). Extended reach well with final  I = 65 deg, BUR = 5.08 deg./100 ft, μ = 

0.333, IKOP = 0, TKOP = 1,509 ft. Mud wt = 9.6 ppg, Pipe wt = 16.6 lb/ft in air and 

Density of steel = 65.5 ppg  

 

 

 

 

 

 

 

 

 

 

 

Fig. D.1–Wellbore schematic for example in Appendix D (Juvkam-Wold, 2007). 

 

α0 = 25 ¶/180,   α2 = ¶/2, We = 16.6 (1 - 9.6/65.5) = 14.18 lb/ft, R = 18,000/(¶ 5.08) = 

1,128 ft 

From Eq. 2.46,   NEOC = We cos a0 - F(a0)/R 

NEOC = 14.17 cos 25 + (+3,000)/1,128 

= 15.50 lbf/ft   (downside contact) 

R = 1,128    ft

1,509

65

65 3,000 lbf
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By trial and error it is found that, when inclination angle = 15.4 deg. (a1 = 74.6
o
) N = 0, 

and contact changes to upside 

WeR = 14.18  lb/ft * 1,128 ft= 15,979 lbf  

From Eq. 7.15, A = 9,579 lbf 

From Eq. 7.16, B = -12,789 lbf 

Using Wu and Juvkam-Wold’s (1991) equation between α0 and α1 (25 to 74.6 deg.): 

Fc(α1) = [Fc (α0) - A sin α0 + B cos α0] exp(μ(α1 - α0)) + A sin α1 - B cos α1         

    Fc(α1) = - 4,230 lbf, 

N(α1) = 14.17 cos 74.6 + (- 4,230)/1,128 = 0.01 lbf 

Now using Wu and Juvkam-Wold’s (1991) equation between α1 and α2 (74.6 and 90 

deg.): 

Fc(α2) = [Fc (α1)+ A sin α1 + B cos α1] exp(-μ(α2 – α1)) + A sin α1 - B cos α1 

Fc(α2) = (- 8,108)     (in compression) 

FKOP =  8,108 lbf       (in tension) 

From Wu and Juvkam-Wold’s (1991) equation  

Fd = Fc(α2) - Fc (α0) - We R(cos α2 - cos α0) 

= - 8,108 - 3,000 - 15,979 (cos 90
o
 - cos 25

o
) 

Fd = 3,373 lbf 
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Fig. D.2–Force table for Appendix D example (Juvkam-Wold, 2007). 
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Fig. D.3–Normal contact force (lb/ft) versus measure depth (ft) from Wu and Juvkam-

Wold’s (1991) equation (Juvkam-Wold, 2007). 
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Fig. D.4–Axial tension plot for this example using Wu and Juvkam-Wold’s (1991) 

method (Juvkam-Wold, 2007). 
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In this section will be numerical analysis method. 

 

 

Fig. D.5–User form of Appendix D example. 
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Fig. D.6–Result user form of Appendix D example. 
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Fig. D.7–Normal contact force (lb/ft) versus measured depth (ft). 
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Fig. D.8–Axial force (lb) versus measured depth (ft) (F < 0 referred to tensile force). 
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APPENDIX E 

COMPARISON RESULT BETWEEN 2D WELLBORE DESIGN AND 3D 

WELLBORE DESIGN WHILE RUNNING INTO THE HOLE WITH 

COMPRESSIVE FORCE 
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In this appendix will show a comparison of Hook load (Fkop) between 2D wellbore 

trajectory and 3D wellbore trajectory with 10 Deg/100 ft (left/right turn) in build section 

while running into the hole. By using the same input values as Appendix D.  

Extended reach well with final I = 65 deg, BUR = 5.08 deg./100 ft, μ = 0.333, IKOP = 0, 

TKOP = 1,509 ft Mud wt = 9.6 ppg, Pipe wt = 16.6 lb/ft in air, Density of steel = 65.5 ppg 

and running into the hole with Feoc  = 3,000 lbf (compression) 

 

 

 

 

 

 

 

 

 

 

 

Fig. E.1–Wellbore schematic for example in Appendix E (Juvkam-Wold, 2007). 

R = 1,128    ft

1,509

65

65 3,000 lbf
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Using T&D software calculation will give the result same as Appendix D, Fkop = 34,170 

lb (tension) 

 

 

Fig. E.2–Result user form with 2D wellbore trajectory (no left/right turn). 
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Fig. E.3–Axial force (lb) versus measured depth (ft) (F < 0 referred to tensile force) 

from 2D wellbore trajectory. 
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Using T&D software calculation with 10 Deg/100 ft (left/right turn) in build section will 

give Fkop = 32,014 lb (tension) 

 

 

Fig. E.4–Result user form with 3D wellbore trajectory (10 deg/100ft left/right turn). 
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Fig. E.5–Axial force (lb) versus measured depth (ft) (F < 0 referred to tensile force) 

from 3D wellbore trajectory. 

 

From all the above mentioned, it showed that it will have the different result between 2D 

wellbore trajectory and 3D wellbore trajectory with 10 Deg/100 ft left/right turn in build 

section approximately 




)
014,32

014,32170,34
(  6.73 % (based on these well planning and drilling parameters) 

It proves that it has a significant different between 2D wellbore trajectory and 3D 

wellbore trajectory regarding T&D issues.
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APPENDIX F 

RECOMMENDATIONS 
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General drilling Recommendations 

Significant progress has been made in the understanding and improvement of tool face 

control with PDC drill bits. Specifically, the recent papers on reducing torque 

fluctuations with PDC bits have had a significant impact on utilization of these bits on 

steerable motor systems. Also field data and early lab tests showed that short aggressive 

gauge bits yield poorer quality boreholes in terms of instantaneous or local dogleg 

severity and caliper measurements, than longer full diameter gauge bits. This has been 

adopted in some areas by some investigators and resisted by others. However, there is a 

current trend to look at hole quality more critically and to recognize that there are bit 

designs and system parameters that affect the results. 

 

These oscillation can significantly affect: 1) torque and drag while drilling, limiting the 

reach of many wells and causing significant tool failures, 2) log quality, particularly 

showing up in high resolution image logs causing to bottom, the caliper log may not 

show a problem but the net drift diameter of the hole over a long section can be less than 

casing diameter. To avoid tortuosity effect we should use rotary steerable system to 

prevent this effect. 

 

Rotary Steerable Tools 

Rotary steerable tools were introduced to the oil and gas industry in the early 1990’s. 

Two basic types emerged; “push-the-bit” and “point-the-bit”. Pushing the bit refers to 

exerting the lateral side force on the bit as it drills ahead. Pointing the bit involves 

bending the assembly so that the bit is pointed toward the intended direction while 
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drilling. Point-the-bit is generally acknowledged as being superior; resulting in smoother 

wellbores with increased dogleg capability (Maidla, Haci, Cluchey, Alexander, and 

Warren 2005). 

 

 

Fig. F.1–Comparison between push-the-bit results and point-the-bit-results (Logging 

While Drilling 2008). 

 

 

Tool development was driven by the engineering opportunity and economic advantages 

that could be obtained by steering the wellbore while continuously rotating the 

drillstring. Operator demand was driven by the need to drill increasingly difficult well 

profiles, some of which would not be possible using conventional steering systems. 

These are some of the advantages to using rotary steerable drilling: 

 

- Eliminates the time spent aligning toolface; the rotary steerable tool controls it 

automatically. 

- 50% increased rate of penetration while using the rotary drilling over the use of sliding 

with a motor. 

- Improves hole cleaning, resulting in more consistent ECD’s than when obtained by 

using the sliding and rotating with a motor. 
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- Drag, which can cause shocks, vibration, and stick-slip, is reduced compared to sliding. 

This results in a more consistent weight-on-bit and reduces stress on drilling 

equipment. 

- There is less chance of the drillstring becoming stuck if it’s moving most of the time. 

- Deviation rates are more consistent as there is no change in mode between steering and 

not steering to produce the required rate. 

- PDC bits with more aggressive cutter angles can be used and optimized for ROP 

performance, rather than a balance between ROP performance and ability to control 

toolface while using a motor. 

- Wellbore profiles are generally smoother, with no transition ledges resulting from 

changes between rotating and sliding modes. 

- Increases and improves quality of LWD data due to continuous rotation. Slide sections 

would have to be reamed back over to obtain the same results. 

- Reduces chance of wet trips and resulting in slower tripping speeds which are 

associated with mud motor draining.
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Bottom Hole Assembly (BHA) Configuration 

 

 

Fig. F.2–The standard BHA configuration (Logging While Drilling 2008). 

 

 

The upper stabilizer, bias unit sleeve, pivot stabilizer and dog sub are all true gauge or 

very close to it. Experience and testing have shown that this is the optimum 

configuration for maximizing directional performance with the tool. The tool is capable 

of generating doglegs of up to 12 degrees/100 ft or more with this setup. At 90 degrees 

inclination, tests have also shown that with zero deflection the tool tends to hold an 

angle or build slightly. Obviously, this is formation dependent and therefore varies to 

some degree from well to well. 

 

To build an angle at 6 degrees/100 ft with the tool with little or no turn, a 0 deg toolface 

and 50–60% deflection should be initially selected (a general guide). Monitor the 

resulting surveys, then adjust the setting accordingly to obtain the required dogleg and 

counteract any turn. Be aware that the formation changes can have a significant impact 

on tool response. The assembly achieves the build by deflecting the bias unit sleeve 

upwards and internal shaft downwards, which in turn pushes the collar above the pivot 



 144 

 

stabilizer downwards. The pivot stabilizer pivots and points the dog sub and bit upwards 

to build an angle. 

 

 

Fig. F.3–Illustrates deflection in the bottom hole assembly (Logging While Drilling 

2008). 

 

 

To drill in any other direction, change the toolface. To generate different doglegs, 

change the deflection. The tool does take some time to react in changing the settings, 

normally only a few minutes (Gaynor et al. 2001). 

 

Techniques for Solving T&D Problems 

This section has pointed out to the readers of what is the advantage for using torque and 

drag 3D calculation for the new technology, especially multilateral wellbore with the 

tables shown a list of generic torque and drag reduction techniques. The first table 

(Table F.1), listing of generic torque and drag reduction technique, and the second table 

(Table F.2) will be advantages/disadvantages of torque and drag reduction techniques.



 

 

1
4
5
 

Table F.1–Listing of generic T&D reduction techniques (Aston et al. 1998) 

Application  

Deployment 

Method  
Typical Performance 
(friction reduction) Cased Hole Open Hole 

Drilling     
DDPs: Rotating YES   Reduces coefficient of friction 0-15% (Based on surface torque) 
DPPs: Non Rotating (NR) YES   Reduces Torque Radius  0-30% (Based on surface torque) 
SUBS: Bearing / Roller 
Tools YES YES 

Single or combined effect of Bearing, 
NR Sleeve or Roller Assembly 0-40% (Based on surface torque) 

          

SUBS: Hole Cleaning YES YES 
Helix Section stirs up cuttings to 
assist hole cleaning 0-25% (Based on surface torque) 

          

Specialized Drillpipe YES YES 
Bladed Pipe assists hole cleaning and 
dynamics Field Data not available/analyzed 

          
Lubricants(Including 
"Cocktail") YES YES Reduces Coefficient of friction 0-50% (Based on surface torque) 
Specialized DP  + Bearing 
Sub + YES YES Combined (See above) 60% (Miller-based on the surface torque) 
Lubricants         
DPPs (NR) + Lubricants YES YES Combined (See above) 27% (Niakuk - based on surface torque) 
CASING AND COMPLETION 
RUNNING         

Centralizers: solid NR YES   
Reduces Torque Radius and 
Improves Standoff 0-30% (Based on rotary Friction Factor) 

Centralizers: Roller Tools YES   As above plus Roller Assembly 0-40% (Based on Torque and Drag per joint) 

Lubricants (Single) YES YES Reduces Coefficient of Friction 
0-15% (Based on axial and rotary Friction 
Factor) 

COILED TUBING ACCESS         
CT Straightener     Reduce drag from residual bend  0-10% (Based on axial Friction Factor) 
Lubricants (Single) YES YES Reduces Coefficient of friction 0-15% (Based on axial Friction Factor) 
Lubricants + CT 
Straightener YES YES Combined (See above) 

35% (Wytch Farm - Based on axial friction 
factor) 
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Table F.2–Advantages and disadvantages of T&D reduction techniques (Aston et al. 1998) 

Techniques  Advantage  Disadvantage 

Rotating Drillpipe Protectors Casing wear reduced. 
If  overstressed, possibility of falling off, getting stuck 
in the BOP 

  
Reduce pipe fatigue by creating a gradual bend around 
sharp ram cavities and plugging surface equipment 

  doglegs. Need to be routinely and correctly inspected 
  Relatively cheap to use. Average lifespan is comparatively low. 

  Easy to handle / install. 
Not  recommended for open hole, thus limiting 
extended bt runs. 

  
Helps reduce differential sticking due to increased stand-
off  

Can increase annular pressure loss, reducing hole 
cleaning  

  and reduced sidewall contact. Efficiency. 

Non-Rotating 
Higher torque reductions and longer wear life than 
rotating  

Can cause drillpipe wear, especially with abrasive 
muds. 

Drillpipe  DPPs. Possible slippage or loss of clamping collars in hole. 
Protectors Possible higher penetration rates due to improved torque Can cause increases in ECD 
  transmission to the bit. Cannot be run in open hole. 
  Reduced casing wear problems. Regular inspection required. 
  Reduced fatigue effects around doglegs   
  Relatively easy to handle and install.   
  Can help with differential sticking problems.   

Subs – Bearing  Higher torque reduction than NRDPPs. 
Some handing issues due to size and weight and 
increased 

based or Roller Tools Can be used in open and cased hole. String length (derrick height). 

  
Can help with differential sticking problems and casing 
wear. 

Can be expensive on a unit basis compared to other 
mechanical 

  Can withstand higher contact loads than NRDPPs. Tools. 
    Requires the correct connections 
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Table F.2–Continued 

Techniques  Techniques  Techniques  

    
Failure of tool could result in costly fishing or 
sidetrack 

    operation. 
    Fatigue or stress histories not logged. 
    Can increase pressure loss in annulus 

Specialized 
Improved hole cleaning leading to faster trips, faster 
casing  Rental can be high. 

Drillpipe (DP) Smoother drilling, reduction in torque variation. 
Failure can lead to expensive milling, fishing or 
sidetrack  

  Reduces casing wear, less wall contact.  Operations 
  Easy to handle on surface.   
  Designed for open hole.   
  Helps reduce differential sticking.   
  Requires minimum maintenance   

Centralizers, Simple design, can be used in open and cased hole More expensive than other types of centralizers. 

Solid Non-Rotating 
Increases stand off reducing the risk of differential 
sticking. 

Many bed into soft, unconsolidated formations or 
 uting beds. 

  
Some designs can improve the quality of the cement job 
by  Limited effectiveness in washed out sections. 

  Creating turbulence.   

  
Some Alloys wear resistant so stand off is maintained 
longer in   

  ERD wells   

Centralizer, Roller Can be used in open and cased hole Roller damage can occur under high impact loads. 

Tools 
Reduced casing running drags particularly in cased hole 
section  Otherwise as for Centralizers Solid, Non-Rotating 

  Shaped roller pods designed to generate swirl   
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Table F.2–Continued 

Techniques  Techniques  Techniques  

Coiled Tubing Straightener 
Reduced drag can extend operating window for CT 
operations. Increased consumption of CT string due to fatigue. 

  
Easier to make up a completion string under the injector 
head. Increase rig height. 

  Simple, low maintenance, easy to use device   

Lubricants 
Can reduce Torque and Drag in both cased and open hole 
for  

Need to be screened for chemical, temperature, 
environmental 

  a wide range of operations. Compatibility and formation damage. 
  Lower risk in terms of implications of failure than some Can be expensive. 
  Mechanical devices. Issues of particle recovery with some solid lubricants. 

  
Combinations of lubricants or “cocktails” can produce 
high   

  levels of torque reduction.   
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