

STRATEGIC SURVEILLANCE SYSTEM DESIGN

FOR PORTS AND WATERWAYS

A Dissertation

by

ELĐF ĐLKE ÇĐMREN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2009

Major Subject: Industrial Engineering

STRATEGIC SURVEILLANCE SYSTEM DESIGN

FOR PORTS AND WATERWAYS

A Dissertation

by

ELĐF ĐLKE ÇĐMREN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Wilbert E. Wilhelm

Committee Members, Donald K. Friesen
 Sergiy Butenko
 Kiavash Kianfar
Head of Department, Brett A. Peters

May 2009

Major Subject: Industrial Engineering

 iii

ABSTRACT

Strategic Surveillance System Design for Ports and Waterways. (May 2009)

Elif Đlke Çimren, B.S., Istanbul Technical University;

 M.S., Sabanci University

Chair of Advisory Committee: Dr. Wilbert E. Wilhelm

The purpose of this dissertation is to synthesize a methodology to prescribe a

strategic design of a surveillance system to provide the required level of surveillance for

ports and waterways. The method of approach to this problem is to formulate a linear

integer programming model to prescribe a strategic surveillance system design (SSD) for

ports or waterways, to devise branch-and-price decomposition (B&P-D) and branch-and-

cut (B&C) methodologies to solve real-size (i.e., large-scale) SSD problems (SSDPs),

and to compare the efficacies of B&P-D and B&C procedures.

The first part of this dissertation formulates SSDP as an integer programming

model. The model represents relevant practical considerations and prescribes the types

of sensors, the number of each type, and the location of each sensor to meet surveillance

requirements while minimizing total cost. The resulting model is a multidimensional

knapsack problem with generalized upper bound constraints (GUBs).

The second part of this dissertation designs a B&P-D to solve SSDP. We

evaluate alternative ways of formulating and implementing B&P-D and identify default

B&P-D, which requires less run time than the others. We use data representing the

 iv

Houston Ship Channel as a test bed to evaluate the efficacy of the default B&P-D,

benchmarking relative to a commercial solver and analyzing the influence of parameters

(i.e., experimantal factors) on run time. Our results show that the default B&P-D

requires less run time than CPLEX B&B and provides strong bounds. Tests also show

that the run time of B&P-D increases with the number of GUBs.

The third part of this dissertation characterizes a family of valid inequalities - α -

cover inequalities - for the knapsack polytope with GUBs (KPG) along with a procedure

to generate them. It presents necessary and sufficient conditions under which these

inequalities are facets of KPG polytope, and demonstrates how they can be lifted

otherwise. Furthermore, it devises a separation procedure to cut off a fractional solution

to the linear relaxation of KPG and presents computational results to evaluate the

efficacy of the α -cover cuts. Computational tests show that α -cover cuts provide

tighter cuts than either surrogate-knapsack or lifted cover cuts and using them to

generate cuts for 0-1 integer problems with multiple constraints requires less run time.

In the last part of the dissertation, using SSDP instances of real size and scope,

we compare the efficacy of B&C, which uses α - cover inequalities as cuts, and B&P-D

approaches. Our results show the B&C method, which detects a violated α -cover

inequality for each knapsack and adds it after modifying it by lifting to be a facial

inequality, is the fastest of the methods. We also analyze the sensitivity of the system

and the cost to important parameters. The sensitivity analysis shows that cost is

relatively insensitive to changes in parameters.

 v

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Professor Wilbert E.

Wilhelm, for introducing the strategic surveillance system design problem to me; for his

constant support; and also for his patience teaching me how to write a paper. Throughout

my Ph.D. studies, he has not only guided or contributed to my life educationally, but also

taught me so many aspects of life. Without his support I could not have completed my

Ph.D. study smoothly.

This dissertation contains three working papers co-authored with Professor

Wilhelm. These working papers are under review for publication. One of these working

papers is accepted by IEEE Transactions on Automation Science and Engineering, but

the others have not been accepted yet. I also would like to thank Professor Wilhelm for

his helpful comments and suggestions that have improved both the content and the

structure of these papers. Much of the wording in this dissertation was taken from these

papers and was composed or edited by Professor Wilhelm.

I owe a special acknowledgement to Major Patrick Walden for his patience and

time answering my endless questions about sensors and security strategies. I wish to

thank Professor Donald K. Friesen, Dr. Sergiy Butenko, and Dr. Kiavash Kianfar for

serving on the committee and for giving helpful suggestions. Further, thanks to Dr. Yu

Ding, Dr. Jung Jin Cho, and Abhishek K. Shrivastava for the valuable discussions and

the exchange of information.

 vi

TABLE OF CONTENTS

CHAPTER Page

 I INTRODUCTION .. 1

 1.1 Background .. 2
 1.2 Motivation .. 6
 1.3 Research objectives .. 8
 1.4 Organization of the dissertation ... 8

 II LITERATURE REVIEW ... 10

 2.1 Multidimensional knapsack problem with GUB constraints ... 10
 2.2 Variants of MKGP ... 11
 2.3 Comparison of bounds ... 15
 2.4 Valid inequalities .. 16
 2.5 Conclusion .. 19

 III PROBLEM FORMULATION ... 21

 3.1 Sensor system design model formulation 21
 3.2 Test instances ... 25

 IV BRANCH-AND-PRICE DECOMPOSITION 38

 4.1 B&P-D formulations .. 39
 4.2 Analysis of bounds ... 46
 4.3 Implementation techniques .. 53
 4.4 Computational evaluation .. 56

 V BRANCH-AND-PRICE DECOMPOSITION
 TO DESIGN A SURVEILLANCE SYSTEM
 FOR PORT AND WATERWAY SECURITY 65

 5.1 B&P-D ... 65
 5.2 Implementation of B&P-D ... 71
 5.3 Computational evaluation .. 79

 vii

CHAPTER Page

 VI KNAPSACK PROBLEM WITH
 GENERALIZED UPPER BOUND CONSTRAINTS:
 A POLYHEDRAL STUDY AND COMPUTATION 88

 6.1 The ≥KPG polytope ... 90

 6.2 Valid inequalities for ≥KPG .. 93

 6.3 Generating α -cover inequalities ... 96

 6.4 Non-dominated inequalities for ≥KPG 107

 6.5 Facets of)(conv X ... 115

 6.6 Lifting procedure .. 119
 6.7 The separation problem .. 127
 6.8 Computational evaluation .. 131

 VII AN APPLICATION: HOUSTON SHIP CHANNEL 137

 7.1 Using a B&C approach to solve SSDP 137
 7.2 Comparison with B&P-D ... 141
 7.3 Surveillance system design for the HSC 141
 7.4 Sensitivity analysis ... 141

 VIII CONCLUSIONS AND FUTURE RESEARCH 146

 8.1 Conclusion and future research on SSDP formulation 146
 8.2 Conclusion and future research on B&P-D 147
 8.3 Conclusion and future research on B&C 149

REFERENCES .. 151

VITA ... 160

 viii

LIST OF FIGURES

FIGURE Page

 1 Houston Ship Channel under the authority of Port of Houston SHG 27

 2 Potential sensor locations ... 29

 3 Points that can be observed using a tower of 20m height 30

 4 Points that can be observed using a tower of 40m height 30

 5 Points that can be observed using a tower of 60m height 31

 6 Total run times required to find
 an optimal integer solution for instances 1-2 ... 62

 7 Total run times required to find
 an optimal integer solution for instances 3-4 ... 62

 8 Construction heuristic .. 73

 9 Improvement heuristic .. 75

 10 Comparison of branching rules B1, B2, and B3 .. 82

 11 Comparison of CH and CIH ... 82

 12 Optimal surveillance system designs for instance 8 142

 13 Optimal surveillance system designs for instance 16 142

 14 Sensitivity analysis for instance 8 .. 143

 15 Sensitivity analysis for instance 16 .. 144

 16 Percentage of change in cost value at different tes values… 144

 ix

LIST OF TABLES

TABLE Page

 1 Notation .. 22

 2 Sensor combinations .. 28

 3 Parameter values selected for calculating
eklsp .. 33

 4 Detection probability requirements
 for critical facilities in categories 1 and 9 .. 36

 5 Description of test cases used for evaluating B&P-D 58

 6 CPLEX results for the test instances used in evaluating B&P-Ds 58

 7 Root node solution times (seconds) for instances 1-4 59

 8 Description of test instances - HSC .. 81

 9 B&P with CIH and B3. .. 84

 10 CPLEX results for HSC instances .. 84

 11 Description of the test instances used in evaluating α -cover inequalities 132

 12 Number of each cut in α -CP ... 134

 13 Benchmarking with S-K and LC cuts .. 135

 14 Solution values and the number of cuts at different iteration of α -CP. 135

 15 Computational results for different cut generating strategies 138

 16 CPLEX results for HSC instances – LC and GUB covers 140

 1

CHAPTER I

INTRODUCTION

Strategic surveillance system design (SSD) prescribes the type of sensors, the

number of each type, and the location of each sensor to achieve the required level of

surveillance. This dissertation synthesizes a methodology to prescribe a SSD to provide

the required level of surveillance for ports and waterways. It fulfills its purpose in three

related parts:

(i) formulation of the strategic SSD problem (SSDP) for ports and waterways;

(ii) a branch-and-price (B&P) decomposition (B&P-D) approach, including

evaluation of alternative B&P-Ds of the multidimensional knapsack problem

with generalized upper bound (GUB) constraints (MKGP) with the goal of

establishing relationships among the bounds these methods provide - both

analytically and computationally;

(iii) a branch-and-cut (B&C) approach to solve large-scale SSDPs.

In the first part of this dissertation we formulate a linear integer programming

model to prescribe a SSD for a port or waterway. The resulting model is in the form of a

MKGP. In previous studies, B&P and B&C procedures have been used successfully for

solving 0-1 integer problems. Motivated by this, the second and third parts of this

dissertation are, respectively, B&P-D and B&C solution procedures to solve the SSDP.

In the second part, we explore various B&P-Ds that might be applied to MKGP

This dissertation follows the style of Operations Research.

 2

with the goal of identifying an effective means of implementing B&P-D for solving

SSDP exactly. As part of our theoretical analysis we compare the bounds available from

B&P-Ds with two alternative relaxations (Lagrangian relaxation, Lagrangian

decomposition) and determine whether incorporating a surrogate constraint can make an

improvement or not. Our computational tests compare alternative ways of implementing

B&P-D to assess the trade-off between the tightness of resulting bounds and the run

times required to obtain them. Then, we use the B&P-D formulation that requires less

run time than the others to solve SSDP instances.

In the third part, we identify valid inequalities (facets) for knapsack problem with

GUBs (KGP), which is a subproblem of MKGP. Then, we use these cuts to solve SSDP

instances of realistic size by B&C.

In this chapter we give a brief overview of the research. Section 1.1 reviews

literature on SSDP, addressing issues important to SSD. Section 1.2 presents our

research motivation. Section 1.3 specifies our research objectives. Finally, Section 1.4

concludes this chapter by presenting the organization of the dissertation.

1.1. Background

Sensor location problems have received considerable attention recently. The

typical research paper focuses on a specific application such as the control of distributed

process systems (e.g., chemical reactors) (Alonso et al. 2004, Bagajewicz and Cabrere

2002), parameter estimation in structural dynamics (Papadimitriou 2005), or

contaminant detection in municipal water networks (Berry et al. 2004). A number of

 3

works have also dealt with selecting the minimal number of sensors to maintain

coverage and connectivity in a network (Akyildiz et al. 2002, Zou and Chakrabarty

2005). Another variant of the problem involves network interdiction, for example,

locating sensors to minimize the probability that a smuggler can travel through a

transportation network undetected (Morton et al. 2007).

Relatively little research has focused on surveillance, especially for the port-and-

waterway environment. Prior work for port-and-waterway surveillance is, by and large,

qualitative (Kharchenko and Vasylyev 2002). In a recent exception, Ben-Zvi and

Nickerson (2007) presented an algorithm to locate sensors that detect underwater threats;

however, it considered a limited set of characteristics of intruders.

The density of wireless sensors airdropped in an area may be important in

applications like seismic analysis and environmental monitoring for agriculture

(Mainwaring et al. 2002), but exact locations are important in surveillance applications

(Clark 2004). One method (Fernandes et al. 2006) prescribes the locations for a

predetermined number of Light Detection and Ranging (LIDAR) stations to maximize

surveillance coverage of a specified area. Visibility is based on the fact that LIDAR

detects smoke plumes. Another algorithm (Pandit and Ferreira 1992) uses a set covering

model, which is NP-hard, to prescribe a minimal number of sensors to provide

surveillance of the edges of all objects (polygons) in an area. Sensor-location algorithms

have been devised to assure observation of the entire surface of 2D (i.e., an area)

(Bottino and Laurentini 2004) and 3D (i.e., a volume) (Bottino and Laurentini 2005)

objects with the minimum number of sensors. These algorithms (Bottino and Laurentini

 4

2004, 2005) were based on the assumption that a given “area” comprises simple

polygons, but ports and waterways take on irregular shapes.

Methods are available to design a surveillance system by locating sensors on a

grid. One approach (Chakrabarty et al. 2002) formulated a linear integer program to

minimize the cost of locating sensors with different ranges to cover all grid points, each

by at least a specified number of sensors. The authors proposed a theoretical framework

and a divide-and-conquer approach to determine the best placement of sensors. Again

employing a grid, Lin and Chiu (2005) formulated a combinatorial optimization model

that minimizes the maximum sensor-to-surveillance-point distance under constraints that

limit total cost and assure complete coverage. The authors devised a simulated annealing

approach to solve the problem. Both Chakrabarty et al. (2002) and Lin and Chiu (2005)

assumed that coverage is complete if the distance between a grid (surveillance) point and

the sensor was within the detection range of the sensor; they ignored the geographical

features of the corresponding area and did not consider sensor characteristics other than

range. Furthermore, these papers employed the simplistic criterion that a surveillance

point is covered if it is observed by a specified number of sensors. In another study, Kim

and Park (2006) assumed that sensor capabilities decrease with distance, but ignored the

effects of environmental conditions on sensor coverage and range. In contrast to

Chakrabarty et al. (2002), Lin and Chiu (2005), and Kim and Park (2006), Park et al.

(2004) focused on covering salient geographical features - such as roads, rivers, and

buildings - rather than seeking complete coverage of the region.

Researchers have devised several approximate methods and heuristics. One

 5

polynomial-time approximation algorithm (Wang and Zhong 2006) seeks a minimum-

cost sensor placement on a bounded, 3D field, which comprises a number of discrete

points that may or may not be grid points. The model deals with different sensor types

characterized by their ranges and costs, and every point in the field must be observed by

at least a specified number of sensors. This algorithm first solves the linear relaxation of

the problem using standard techniques and then converts a fractional solution to an

integer solution in O(n log n) time. A heuristic procedure (Cavalier et al. 2007), based

on Voronoi polygons, seeks to locate a finite number of identical sensors to detect an

event in a given planar region, assumed to be a convex polygon. The objective is to

minimize the maximum probability of non-detection.

Prior work has focused on locating sensors to observe a plane or grid, while ports

and waterways take on irregular shapes, perhaps including long, narrow, and meandering

paths. To our knowledge none of the prior work has considered the set of practicalities

important in designing a surveillance system for port and waterway security:

(1) irregular shapes of ports and waterways;

(2) surveillance requirements; and

(3) the capabilities of each sensor type (e.g., radar; electro optical; infrared camera;

seismic; electromagnetic; laser; sonar; and heat, motion, and radioactivity

detectors), which may depend upon the time of day (e.g., lighting during

morning, day, or night), weather conditions (e.g., rain, fog, snow, bright sun),

unobstructed line of sight, and distance to a surveillance point.

The scope of this dissertation is surface surveillance and it focuses on filling these gaps

 6

left by earlier research. Although the overall methodology in this study is designed for

solving the SSD for a ports or waterway, we expect that it could be adopted to deal with

other applications like border patrol and underwater surveillance.

1.2. Motivation

Ports are installations where vessels can be loaded and unloaded, in particular,

allowing passengers and cargo to enter a country through customs inspection. Specific

examples of ports are Boston MA, New York NY, Miami FL, Houston TX, San Diego

CA, San Francisco CA, and Seattle WA. A waterway is a navigable body of water,

including rivers, bays, and channels. Examples are the Great Lakes, the Panama Canal,

and the Ohio and Mississippi Rivers. Currently, the security of ports and waterways is

the responsibility of the U.S. Coast Guard (USCG).

Immediately after the events of 9/11, the United States become aware of the

destruction that a terrorist attack can cause and the urgency to prevent any reoccurrence

of such an event. Each year, a huge number of ships that could carry destructive devices

pass through U.S. ports; and a number of industries, which store and process both

hazardous and flammable materials, line the shores of U.S. waterways. For example,

according to Port of Houston website (2008), the Houston Ship Channel (HSC) daily

imports over 11,000,000 barrels of petroleum and petroleum products (worth nearly $10

billion) and annually handles 1,000,000 containers. Moreover, a $15 billion

petrochemical center that includes some of the world’s largest plants lines its shore, and

it is very close to populous areas.

 7

The 2002 Maritime Transportation Security Act (Maritime Transportation

Security Act 2008) requires that each large commercial cargo and passenger vessel

install an automatic identification system (AIS) to provide detailed information about its

identity to USCG Marine Safety Units (MSU). Hence, MSU knows the destinations of

large vessels and can monitor them. On the other hand, small vessels, including barges

and towing, fishing, and private recreation boats do not have such a requirement and

none of them install AIS. Therefore, it is difficult to determine their intentions and

monitor them. Due to their sizes, they can easily access critical regions, entering through

a bayou that feeds the channel, launching at numerous locations along the channel or

hiding in the shadow of a large vessel. Also, it is important to note that, since small boats

usually can travel much faster than large vessels, early detection of a suspicious boat is

important. Thus, critical (sensitive) regions along U.S. ports and waterways are

threatened by intruders who can enter using small boats. The terrorist attack on the

U.S.S. Cole on October 12, 2000 is evidence of the threat that a small vessel can cause

(Congressional Research Service Report 2008).

Historically, USCG MSU has used television cameras and radars to monitor the

ship channel, primarily to manage the flow of vessels. However, the current system is

not enough to provide timely response to security threats posed, for example, by

unauthorized small vessels. Because of the importance of this problem, USCG is

interested in developing sensor surveillance systems to assure homeland security in U.S.

ports and waterways. However, since resources are limited, USCG requires the design of

cost-effective surveillance systems.

 8

1.3. Research objectives

This dissertation has five research objectives; achieving them will fulfill the

purpose of this study. The first objective is a linear integer programming model to

prescribe a strategic design capable of providing an acceptable level of surveillance for a

port or waterway. It is important that this model represent practical considerations

important to port and waterway security. The second objective is an effective B&P-D

approach to solve SSDP. Specifically, we explore several B&P-Ds formulations that

might be applied to the MKGP, establishing relationships among the bounds these

methods provide - both analytically and computationally. The third objective is a set of

valid inequalities (facets) for the knapsack problem with GUBs (KGP). Then, we use

these inequalities to solve SSDP by B&C. The fourth objective is a computational

evaluation of B&P-D and B&C approaches and a comparison of them. The fifth

objective is computational experience in solving SSD instances of realistic size and

scope. For this purpose, we will use HSC, which is the sixth largest port in the world, as

a test bed. It represents ports and waterways in general and its proximity allows us to

gather information easily.

1.4. Organization of the dissertation

This dissertation is organized in eight chapters. Chapter II reviews literature

relevant to this research. Chapter III formulates a linear integer programming model to

prescribe a SSD for a port or waterway, addressing the first objective. Chapter IV

identifies an effective B&P-D formulation (i.e., approach) to solve SSDP, addressing the

 9

second objective. Chapter V evaluates the B&P-D formulation that is identified in

Chapter IV in an application that involves designing a surveillance system for port and

waterway security, addressing the fourth objective. Chapter VI devises set of valid

inequalities (facets) for KGP, addressing the third objective. Chapter VII uses the cuts

generated in Chapter VI to solve SSDP by B&C and compares B&C approach with

B&P-D, addressing the fourth and fifth objectives, respectively. In Chapter VIII we

present our conclusions and some recommendations for future research.

 10

CHAPTER II

LITERATURE REVIEW

This chapter reviews the literature related to this research. Since the integer

programming formulation of the SSDP results in the form of MKGP, this chapter

provides a review of MKGP. Section 2.1 presents the existing solution procedures for

MKGP. Section 2.2 introduces problems related to MKGP and their solution

methodologies with a detailed review of multiple-choice multidimensional knapsack

problem (MCMKP) (since MKGP can be transformed to an MCMKP equivalently).

Section 2.3 states the known relationships between the bounds provided by Lagrangian

relaxation, surrogate and composite relaxations, and Lagrangian decomposition for

integer programming problems (IPs). Section 2.4 reviews the literature on the KGP

polytope and others related to it. Finally, Section 2.5 summarizes this entire chapter,

emphasizing the necessity of this dissertation research.

2.1. Multidimensional knapsack problem with GUB constraints

In this dissertation, we consider the MKGP that is given in the following form:

{ }gjJj jGg iJj jij JjGgxGgxIibxacx
gg

∈∈∈∈≤∈≥ ∑∑ ∑ ∈∈ ∈
,}1,0{;1;:min .

MKGP is known to have a number of important applications, including underwater

threat detection (Ben-Zvi and Nickerson 2007), sensor location (Kim and Park 2006),

asset allocation (Li et al. 2004), and strategic surveillance system design (Section 3.1).

Problems that contain multiple knapsack constraints are NP-hard in the strong sense

 11

(Martello and Toth 1990), as is MKGP. To our knowledge, only heuristics have been

proposed for MKGP (Li et al. 2004, Li and Curry 2005, Li 2005). It is important to note

that the MKGP considered in the literature has knapsack constraints in the form of a

less-than-equal-to inequalities ()∑ ∑∈ ∈
≤

Gg iJj jij bxa
g

 i.e., . Although polytopes

associated with knapsacks in the form of less-than-or-equal-to and greater-than-or-equal-

to inequalities are different from each other, they can be transformed to equivalent

forms. Therefore, solution procedures for one of the forms can be used to solve the other

form.

2.2. Variants of MKGP

MKGP is closely related to four other variants of the problem: 0-1 knapsack

(KP), multiple-choice knapsack (MCKP), multidimensional knapsack (MKP) and

MCMKP. Each of the following subsections reviews the literature on these problems.

2.2.1. Knapsack problem

KP, which is given by

{ }gjGg Jj jj JjGgxbxacx
g

∈∈∈≤∑ ∑∈ ∈
,}1,0{;:min ,

is a special case of MKGP. KP can be recast as MKGP by complementing each variable

and forming n ()∑ ∈
=

Gg gJn GUBs by assigning exactly one variable to each GUB

(i.e., 1≤jx). It is well known that KP is NP-hard (Garey and Johnson 1979). However,

since it is not strongly NP-hard, it can be solved in pseudo-polynomial time by dynamic

programming (Dantzig 1957, Martello and Toth 1990). Pseudo-polynomial algorithms,

 12

fully polynomial approximation schemes, search tree procedures and heuristics have also

been proposed to solve KP (Kellerer et al. 2004, Martello et al. 1999).

2.2.2. Multiple-choice knapsack problem

MCKP, which is given by

{ }
gjJj jGg Jj jj JjGgxGgxbxacx

gg

∈∈∈∈=≤ ∑∑ ∑ ∈∈ ∈
,}1,0{;1;:min ,

is a variation of KP in which variables are partitioned into classes and exactly one

variable from each class must be set to 1. MCKP can be transformed into an equivalent

MKGP by setting jjJjj ccc
g

−= ∈ ''max , jjJjj aaa
g

−= ∈ ''max for Gg ∈ , gJj ∈ , and

bab
Gg jJj g

−=∑ ∈ ∈max1 , and by eliminating one of the variables with 0=ja from

each class gJ in order to transform the multiple-choice equality into an inequality

(Kellerer et al. 2004). MCKP was first introduced by Healy (1964) and in 1987

Dudzinski and Walukiewicz showed that it can be solved in pseudo-polynomial time.

Since then many studies have dealt with it (Kellerer et al. 2004, Martello and Toth 1990,

Pisinger 1995). Most of the algorithms for the exact solution of MCKP use B&B (Nauss

1978, Armstrong et al. 1983).

2.2.3. Multidimensional knapsack problem

MKP, which was introduced by Lorie and Savage (1955), involves multiple

knapsack constraints, but no non-trivial GUBs. It is encountered in capital budgeting

(Manne and Markowitz 1957), project selection (Petersen 1967), cutting stock (Gilmore

and Gomory 1966) and loading problems (Shih 1979).

Since MKP is a well known to be NP-hard in the strong sense, finding a fully

 13

polynomial approximation algorithm is NP-hard (Magazine and Chern 1984). Hence, a

number of studies have focused on preprocessing (Fréville and Plateau 1994), greedy

heuristics (Toyoda 1975), metaheuristics (Chu and Beasley 1998, Hanafi and Fréville

1998), and approximate dynamic programming algorithms (Bertsimas and Demir 2002).

A few exact algorithms are available to optimize MKP. They are based on dynamic

programming (Gilmore and Gomory 1966, Weingartner and Ness 1967), branch-and-

bound (B&B) (Shih 1979, Geoffrion 1974), hybrid algorithms combining dynamic

programming and B&B (Marsten and Morin 1977), and implicit enumeration (Soyster et

al. 1978). However, none solve MKP effectively and their applicability is typically

limited to instances with relatively few variables and constraints. Moreover, dynamic

programming can only be used to solve MKPs with small values of ib (Fréville 2004).

We refer the reader to Fréville (2004), Hanafi et al. (1996), Kellerer et al. (2004), Lin

(1998), Stefan et al. (2008) for detailed information on solution approaches to MKP.

2.2.4. Multidimensional multiple-choice knapsack problem

As described by Moser et al. (1997), MCMKP has multiple knapsack constraints.

MKGP can be transformed into an equivalent MCMKP (Kellerer et al. 2004) and the

inverse is also true. To our knowledge, very few studies have focused on MCMKP, and

all of them have proposed heuristic solutions (Akbar et al. 2006, Hifi et al. 2004 and

2006, Khan et al. 2002, Parra-Hernandez and Dimopolous 2005, Moser et al. 1997),

except Sbihi (2007). Moser et al. (1997) designed an approach based upon the concept of

graceful degradation from the most valuable items based on Lagrange multipliers. It has

been observed that Moser et al. (1997) cannot always find a feasible solution when there

 14

is one. Khan et al. (2002) tailored the algorithm introduced by Toyoda (1975) for solving

the MCMKP. Hifi et al. (2004, 2006) presented two different approximate approaches.

The first approach is a guided local-search heuristic in which the trajectories of the

solutions were oriented by including a penalty term in the cost function; it penalizes bad

aspects of previously visited solutions. The second approach is a reactive local search. It

starts with an initial solution, which is improved by an iterative process. The

improvement process includes deblocking and degrading procedures in order to escape

from local optima and to introduce diversification into the search. Parra-Hernandez and

Dimopolous (2005) presents a heuristic that is based on the one given in Pirkul (1987).

The authors first reduced MCMKP to a MKP. They solved the linear relaxation of the

resulting MKGP, and calculated performance values (called pseudo utility values and

resource value coefficients) for each variable. These values were used to find a feasible

solution to MCMKP and to improve it. We refer the reader to Kellerer et al. (2004) for a

detailed review of heuristic solutions to MCMKP.

The only exact algorithm for MCMKP (Sbihi 2007) finds an optimal solution

using B&B. At each B&B node (Sbihi 2007) obtains an upper bound to MCMKP by

solving MCKP, which is formed by aggregating knapsack constraints. The

computational evaluation presented in (Sbihi 2007) showed that this B&B method was

able to solve instances of small and medium sizes with up to 1000 variables, divided into

50 classes (choice constraints) with 20 variables each and up to 7 knapsack constraints.

On the other hand, memory requirements prohibited the B&B method from solving

larger instances. Furthermore, execution time increased with the number of knapsack

 15

constraints. When the number of variables in each class is decreased and the number of

knapsack constraints is increased, run time increases for the same number of classes.

2.3. Comparison of bounds

Linear programming (LP), Lagrangian (Gavish and Pirkul 1985, Magazine and

Oguz, 1984, Volgenant and Zoon 1990), surrogate (Glover 1968, Osorio et al. 2002),

and composite relaxations (Greenberg and Pierskalla 1970) are often used to find lower

(upper) bounds for minimization (maximization) problems. The LP relaxation of an IP

eliminates the integrality requirements. Lagrangian relaxation (LR) relaxes a set of

constraints into the objective function, surrogate relaxation (SR) replaces original

constraints ()bAx ≥ i.e., with a non-negative linear combination of them

()mT RssbsAx +∈≥ for i.e., , and composite relaxation (CR) combines both Lagrangian

and surrogate relaxations.

Greenberg and Pierskalla (1970) gave the first theoretical analysis of the bounds

provided by SR. The most important result of Greenberg and Pierskalla (1970) is that SR

provides tighter bounds than LR. Geoffrion (1974) showed that the LR bound is always

at least as tight as the LP bound. In addition, Glover (1975) developed surrogate duality

theory, which gives strong optimality conditions under which SR has no duality gap; and

Karwan and Rardin (1979) investigated the relationship between LR and SR.

Gavish and Pirkul (1985) identified the theoretical relations between LR, SR, and

CR for MDKP and proposed new algorithms for obtaining surrogate bounds. Crama and

Mazolla (1994) further examined the strength of the bounds obtained through these

 16

relaxations and showed two important results. The first result is that CR gives only

modest improvement over SR and the second is that, although the bounds derived from

LR, SR, or CR are stronger than the bounds obtained from linear relaxation, the

improvement in the bound cannot exceed the magnitude of the largest coefficient in the

objective function, nor can it exceed one-half of the optimal objective-function value of

the linear relaxation. It is important to note that SR provides its most promising results

when the number of constraints is very small (Fréville and Hanafi 2005). A recent paper

(Ralphs and Galati 2006) illustrated the relationship between LR, Dantzig-Wolfe

decomposition (DWD), and cutting plane approaches and presented a framework to

improve bounds by integrating dynamic cut generation with LR and DWD, which is well

known to be dual to LR (Frangioni 2005).

Lagrangian decomposition (LD) (Guignard and Kim 1987a) relaxes an IP by

creating an identical copy of each variable and dualizing the requirement that copies

have identical values. LD bounds dominate LR bounds (Guignard and Kim 1987b).

However, there is no direct comparison between LD and SR. To our knowledge, there is

only one computational study of LD (Guignard et al. 1989); it investigated LD in

application to a bi-dimensional KP. Since the number of the Lagrangian multipliers is

equal to the number of variables, LD leads to excessive run times and has not previously

been shown to be successful in application.

2.4. Valid inequalities

We denote by ≤K (≥K) the knapsack constraint in the form of a less (greater)-

 17

than-or-equal-to inequality. The first subsection reviews the literature on the ≤KPG

polytope and the second summarizes the known valid inequalities for the ≥KPG

polytope.

2.4.1. A related polytope

≤KP has been investigated extensively (Balas 1975, Balas and Zemel 1978, Gu

et al. 1999, Nemhauser and Wolsey 1988, Weistmantel 1997, Zemel 1989). Balas and

Zemel (1978) gave bounds on the lifted coefficients associated with a minimal cover

inequalities. Balas (1975), Balas and Zemel (1978), Hammer et al. (1975), Wolsey

(1975) and Zemel (1978) proposed a simultaneous lifting procedure to obtain facets.

Padberg (1980) introduced (1, k)-configurations (i.e., inequalities) for KP.

Lifted cover inequalities, derived from the 0-1 ≤KP , have been used successfully

for solving 0-1 integer problems by cut-and-branch algorithms (Crowder et al. 1983, Gu

et al. 1998, Johnson et al. 1985, Gabrel and Minoux 2002). In particular, Crowder et al.

(1983) showed that using inequalities for ≤KP as cuts for 0-1 integer problems with

multiple constraints yields significant computational improvements over pure B&B

algorithms.

Several studies (Johnson and Padberg 1981, Nemhauser and Vance 1994,

Wolsey 1990) have identified valid inequalities (facets) of the ≤KPG polytope. By

strengthening valid inequalities for ≤KP , Wolsey (1990) defined GUB cover inequalities

for ≤KPG , and presented specialized implementations of GUB cover inequalities for

solving machine-sequencing, generalized-assignment and variable-upper-bounded-flow

 18

problems with GUB constraints. Nemhauser and Vance (1994) extended the results of

Balas (1975) and Balas and Zemel (1978) and presented a method based on independent

sets to lift cover inequalities, obtaining facet-defining inequalities for ≤KPG . Glover et

al. (1997) devised surrogate-knapsack cuts using a cut-generation method that creates a

non-negative linear combination of a knapsack constraint (≤K) with selected bounding

inequalities of form 1≤jx Jj ∈ . A recent study (Zeng and. Richard 2006) analyzed a

more general case of ≤KPG in which the right-hand-side of each GUB-like constraint is

greater-than-or-equal-to 1. The authors described a lifting procedure for related,

generalized cover inequalities using novel, multidimensional super-additive lifting

functions that approximate the underlying, exact lifting function from below. Also, a few

studies have proposed coefficient reduction methods to tighten the linear relaxation of

≤KP (Johnson et al. 1985, Lougee-Heimer 2001). Our study is different from these in

that we study the polyhedral properties of ≥KPG polytope.

2.4.2. KGP polytope

To our knowledge only Sherali and Lee (1995) have devised a family of valid

inequalities (facets) specifically for ≥KPG polytope. Sherali and Lee (1995) also

developed sequential and simultaneous lifting procedures. We refer to reader to Chapter

VI for detailed summary of the inequalities devised in Sherali and Lee (1995).

A recent paper (Glover and Sherali 2008) introduced a class of second-order-

cover-cuts (SOC) for the polytope described by ≥KP with one additional constraint that

defines an upper bound on the sum of all variables. Then, Sherali and Glover (2008)

 19

extended the work on SOCs by proposing a new class of higher-order cover-cuts (HOC)

for ≥KP with a two-sided bounding constraint on the sum of all variables and a set of

two-sided bounding inequalities, each over a unique subset of variables. Let

∪ Gg gJJ
∈

= . For each non-empty subset of indices JJ ⊆' , an HOC is given by

px
Jj j ≥∑ ∈ '

 (2.1)

where { }Xxxp
Jj j ∈= ∑ ∈

:min
'

. Authors presented relationships that identify which of

two HOCs dominates the other over the unit hypercube (i.e., }10:{ ≤≤ xx). Using

properties of non-dominated HOCs, Sherali and Glover (2008) focused on generating all

non-dominated HOCs by implicitly enumerating all possible JJ ⊆' .

2.5. Conclusion

Prior work focused on using LR, SR, or CR to provide bounds in B&B. To our

knowledge, no prior research has used B&P-D to provide bounds for MKGP. Moreover,

only a few studies have compared bounds provided by LR, SR, or CR computationally

and those that have been published are problem specific.

Our study focuses on the polyhedral properties of ≥KPG polytope. Our research

differs from Sherali and Glover (2008) in that we generate valid inequalities to cut off a

fractional solution to the linear relaxation of ≥KPG . For this purpose, we establish

dominance relationship between inequalities of form (2.1) over the ≥KPG polytope,

present a polynomial-time procedure to generate a non-dominated inequality, describe

the conditions under which non-dominated inequalities are facet-defining, and discuss a

 20

procedure that lifts sequentially with respect to GUBs, but simultaneously computes

lifted coefficients for all variables associated with each GUB.

 21

CHAPTER III

PROBLEM FORMULATION
*

This chapter formulates an integer model of the design problem and provides a

detailed description of the parameters in the model, fulfilling our first research objective.

Section 3.1 formulates the SSDP as a MKGP. Section 3.2 describes the data that reflects

the size and scope of an actual application and deals with the practical considerations

that are important to ports and waterways in general.

3.1. Sensor system design model formulation

Our model relates four important entities: environmental conditions, sensor

combinations, potential sensor locations, and surveillance points. We define an index set

E of environmental conditions under which surveillance must be provided; each Ee ∈

denotes a unique (time of day, weather condition) combination, where, for example, the

former could be day or night; and the latter, clear, heavy rain or fog. It is possible to

install a combination of several types of sensors at the same location; for example, one

tv camera, two tv cameras, or a tv camera and an infrared camera could be installed on

the same tower. For this reason, we assume that an index set K of sensor combinations

can be defined a priori as an input to the model. Each “combination” Kk ∈ involves

either one sensor type or several. To facilitate presentation, we suppress the generic term

*©2008 IEEE. Reprinted, with permission, from “Branch-and-price decomposition to design a
surveillance system for port and waterway security” by W. E. Wilhelm and E. I. Gokce. IEEE

Transactions on Automation Science and Engineering (in press).

 22

“type” in association with a sensor or a sensor combination if ambiguity does not result.

We define index set L of potential sensor locations; each Ll ∈ represents a plot of land

that can be procured as a site at which a tower could be constructed so that sensors can

be installed at appropriate heights. We use klc to denote the present worth cost of

purchasing, installing, and maintaining sensor combination k at location l . We

discretize the area to be observed, defining an index set S of surveillance points, each

Ss ∈ of which must be observed to assure security (see Section 3.2.4). Although we

define each element of notation when we first use it, we summarize frequently used

symbols in Table 1 for reader convenience.

Table 1. Notation.
Index sets:

E : environmental conditions, which are indexed by Ee ∈

K : sensor combinations, which are indexed by Kk ∈

L : potential sensor locations, which are indexed by Ll ∈

S : surveillance points, which are indexed by Ss ∈

+Φ kl : subset of),(se constraints in (3.5) that have positive coefficients for klx

 0
klΦ : subset of),(se constraints in (3.5) that have zero coefficients for klx

Parameters:

klc : present worth cost of purchasing, installing, and maintaining sensor

 combination k at location l

eklsp

: probability that the system, using sensor combination k at location l , will

 detect an intrusion if one occurs at surveillance point s under condition e

eklsp

: probability that the system, using sensor combination k at location l , will fail

 to detect an intrusion if one occurs at surveillance point s under condition e ;

 eklsekls pp −= 1

est : maximum acceptable probability for the system to fail to detect an intrusion at
 surveillance point s under condition e

Decision variables:

klx = 1 if sensor combination k is installed at location l ; 0 otherwise

eklsv : clone of klx corresponding to constraint),(se in (3.5)

 23

We model surveillance capability using eklsp , the probability that the system,

using sensor combination k at sensor location l , will detect an intrusion if one occurs at

surveillance point s under environmental condition e . The probability that the system,

using k at l , will fail to detect an intrusion if one occurs at s under e is given by

eklsekls pp −= 1 . Section 3.2.5 details how
eklsp can be calculated.

The probability that the system would not detect an intrusion at surveillance

point s under environmental condition e , esπ , is the product of the probabilities that the

system using all k at all l to observe s under e would fail to detect an intrusion:

∏ ∏∈ ∈
=

Kk Ll

x

eklses
klp)(π where decision variable 1=klx if k is located at l , 0

otherwise.

In order to provide sufficient surveillance of s under e , esπ should be less than

est , the maximum acceptable probability for the system to fail to detect an intrusion at s

under e ; that is,

esKk Ll

x

eklses tp kl ≤= ∏ ∏∈ ∈
)(π .

M1, the surveillance system design problem, can now be formulated:

∑ ∑∈ ∈
=

Kk Ll klklM xcZ Min *

1 (3.1)

 s.t. esKk Ll

x

ekls tp kl ≤∏ ∏∈ ∈
)(Ee ∈ , Ss ∈ (3.2)

 1≤∑ ∈Kk klx Ll ∈ (3.3)

 { }1,0∈klx Kk ∈ , Ll ∈ . (3.4)

The objective (3.1) is to minimize the total present worth cost of purchasing, installing,

 24

and maintaining all sensors in the system. Inequalities (3.2) assure that the required

level of surveillance is provided to each surveillance point s under each environmental

condition e . Constraints (3.3) allow at most one sensor combination to be installed at

each location l . Finally, (3.4) requires all decision variables to be binary.

M1 is a non-linear program, which we now recast in a linear form by

transforming constraints (3.2) using logarithms. First, we take the logarithm of each side

of constraint (3.2), obtaining

() ()esKk Ll

x

ekls tp kl log)(log ≤∏ ∏∈ ∈
.

Continuing,

() ()∑ ∑∏ ∏ ∈ ∈∈ ∈
=

Kk Ll

x

eklsKk Ll

x

ekls
klkl pp log)(log ,

so that (3.2) can be expressed as

∑ ∑∈ ∈
≤

Kk esLl

x

ekls tp kl)log()log(Ee∈ , Ss ∈ .

Since 10 ≤< eklsp and 10 ≤< est , 0)log(≤est and 0)log(≤eklsp . Letting

0)log(≥−= eklsekls pa and 0)log(≥−= eses tb , constraint (3.2) can be re-expressed as:

esKk Ll klekls bxa ≥∑ ∑∈ ∈
 Ee ∈ , Ss ∈ . (3.5)

So, model (3.1)-(3.4) becomes a linear MKGP:

{ })5.3(and),4.3(),3.3(:min * ∑ ∑∈ ∈
=

Kk klklLlMKGP xcZ .

 From this point on, we use),(se to denote the knapsack constraint in (3.5) associated

with environmental condition e and surveillance point s .

 25

3.2. Test instances

This dissertation focuses on model formulation and solution approach and does

not seek to describe a methodology to estimate parameter values in an actual application.

Due to security restrictions, we do not have access to actual data that describes any

particular port or waterway. However, we generate data that reflects the size and scope

of an actual application and deal with the practical considerations that are important to

ports and waterways in general. This section describes the test instances that we use to

evaluate our solution methods in Chapters IV-VII.

We use the HSC as a test bed. HSC is important because it exemplifies ports and

waterways in general and, as the sixth largest port in the world, it handles the largest

foreign tonnage among all U.S. ports. (Port of Houston 2008) USCG officers stationed

at the Sector Houston-Galveston (SHG) of the Port of Houston provide security through

surveillance and patrol boats, which can be dispatched to interdict intruders. The SHG

has historically employed television cameras and radar to maintain surveillance,

primarily to manage the flow of large commercial vessels.

HSC is vulnerable to a number of security threats, which we describe here only

briefly and in general terms. The channel’s shoreline is home to a huge petro-chemical

complex that includes some of the world’s largest plants. These critical facilities process

and store both hazardous and flammable materials near populous areas. An intruder

might try to gain access to the ship channel in a number of ways, perhaps using a small,

fast boat.

A vessel enters HSC near Galveston Island and travels in a northwest direction

 26

through Galveston Bay. This region is under the authority of an SHG sub-unit based on

Galveston Island, the Galveston Marine Safety Unit (GMSU). Passing through Morgans

Point, the vessel continues into a region that is under the authority of the SHG, entering

a narrower waterway that is oriented in a northwestern direction, then making a 270°

turn at Lynchburg Ferry Crossing, and proceeding into an even narrower waterway that

meanders in a westward direction to the Houston Turning Basin. The subsection from

Morgans Point to Lynchburg Ferry Crossing has no restrictions on boating, so that small

pleasure craft, fishing boats, tugs, barges can use it along with large commercial vessels.

Boating is restricted on the subsection from Lynchburg Ferry Crossing to the Houston

Turning Basin, so that small craft do not have permission to use it.

The ship channel is actually a dredged channel that is (roughly) in the center of

the waterways described. Large vessels must travel in this dredged channel, although

smaller boats are able to navigate the width of the waterway. Nevertheless, the entire

waterway is commonly called HSC without distinguishing the dredged portion.

We do not consider the part of the channel that is under the authority of GMSU

because it involves a large body of water (the Galveston Bay) for which radar is the

primary means of surveillance. Rather, we focus on the portion of the HSC that is under

the authority of Port of Houston SHG. It is 20.84 miles long and its width varies from

0.08 miles to 2.51 miles as depicted by Figure 1. A vulnerable petro-chemical complex

lines the shore and residential areas are nearby, heightening the need for surveillance.

We generated Figure 1 and other aerial views using satellite images available from

Google Earth (Google Earth 2008) and ArcGIS (Esri 2008) software.

 27

 Figure 1. Houston Ship Channel under the authority of Port of Houston SHG.

The following subsections describe factors and how we generate parameters

eklsa , esb , and klc .

3.2.1. Environmental conditions

We consider three environmental conditions (time of day, weather condition) to

represent the broad range of challenges under which surveillance must be assured: (day,

clear), (night, clear), and (day, heavy rain). Since each sensor type provides its mid-

range capability for (day, heavy rain), we choose it as Level 1, so with |E| = 1, E

comprises only (day, heavy rain). A sensor type that provides superior capabilities under

one condition may not be useful at all under others. No single environmental condition

presents a worst case for all sensor types, so the design model must consider all

conditions explicitly. Level 2 of |E| is 3, where E comprises (day, clear), (night, clear),

and (day, heavy rain).

3.2.2. Sensor combinations

 We consider three types of sensors, each of which has two different ranges:

thermal cameras (T) (Thermal Camera 2008) with ranges of 4000m (T1) and 3000m

 28

(T2); image intensification (i.e., night vision) cameras (N) (Night Vision Camera 2008)

with ranges of 3000m (N1) and 2500m (N2); and closed circuit television cameras

(CCTV) (Closed Circuit Television Camera 2008) with ranges of 2500m (CCTV1) and

2000m (CCTV2).

We define 14 sensor combinations (Table 2); each provides a full �360 field of

view and can be installed on a single tower. Combinations that involve two senor types

provide complementary capabilities.

Table 2. Sensor combinations.
k Sensor types

1 T1

2 T2

3 N1

4 N2

5 CCTV1

6 CCTV2

7 T1, CCTV1

8 T1, CCTV2

9 T2, CCTV1

10 T2, CCTV2

11 N1, CCTV1

12 N1, CCTV2

13 N2, CCTV1

14 N2, CCTV2

3.2.3. Potential sensor locations

 To identify potential sensor locations, we studied an aerial view of the ship

channel. We identified 25 unused plots of land (Figure 2) and added the 7 locations

currently used as CCTV locations by SHG, assuming that all 32 plots could be used as

sensor locations, either through lease or purchase.

 29

 Figure 2. Potential sensor locations.

3.2.4. Discretization

To discretize the channel area, we have drawn a “line of surveillance” across

HSC (i.e., perpendicular to the mid-line of the channel) at each 0.5 mile interval and

locate a surveillance point at the center of each line. We assume that any sensor that is

capable of observing the point would also be able to observe the entire line and its

vicinity. This results in |S| = 42 for Level 1 of Factor 3. For Level 2 of |S| (i.e., |S| =

84), we define two surveillance points on each line, one near the shore at each end of

each line, and require that each be observed by sensor(s) located on the same side of the

channel. This enhances the capability of detecting intrusion from the shore and provides

surveillance from both sides of the channel to assure that a small boat cannot evade

detection by hiding behind a large vessel.

3.2.5. Calculating eklsa values

If k cannot provide any surveillance capability under e ; if the line of sight from

l to s is blocked, for example, by a man-made structure or a terrain feature; or if the

straight line distance from l to s , lsd , is beyond the range of k , 1=eklsp and 0=eklsa .

 30

We use ArcGIS to determine the subset of surveillance points SSs l ⊆∈ that

can be seen in a unobstructed line of sight from each potential sensor location Ll ∈ .

The relative height of a tower installed at l is important in determining the points that

can be observed from that location. We consider three alternative heights: 20m, 40m,

and 60m. Figures 3, 4, and 5 show the points (lighter shading) that can be observed in a

direct line of sight from towers of 20m, 40m, or 60m height at the point shown at the

northeast corner of the channel. Towers of 20m height cannot provide sufficient

surveillance capability and towers of 60m are more costly and do not provide

substantially better capabilities than towers of 40m height due to elevations and terrain

features . Therefore, we use towers of 40m height.

 Figure 3. Points that can be observed using a tower of 20m height.

 Figure 4. Points that can be observed using a tower of 40m height.

 31

 Figure 5. Points that can be observed using a tower of 60m height.

Sensor combination k cannot detect an intrusion at surveillance point s under

environmental condition e if no constituent sensor has an unobstructed line of sight, has

the necessary range, has sufficient capability under e , or is able to send a positive signal.

Let us introduce the following notation:

 i : index for sensor type in combination k ; kKi ∈

lsd : straight line distance from sensor combination mounted on a 40m tower at

 location l to surveillance point s .

If sensor type i does not have any electro-mechanical problem, it is operational;

otherwise it is not operational. Let eiW be a random variable that has the value 1 if i is

operational under environmental condition e ; 0 otherwise. The probability that sensor

type i is operational under e is]1Pr[=eiW .]1Pr[1]0Pr[=−== eiei WW is the

probability that sensor type i is not operational. To say that i detects an intrusion at

surveillance point s correctly means that, given that it is operational, it sends a positive

signal whenever an intrusion occurs at s and the system interprets the signal properly,

perhaps including recognition by a human who monitors a display of sensor signals. Let

eilsD denote the random variable that has value 1 if the system using sensor type i at

 32

location l detects intrusion at s correctly under e , given that i is operational; 0

otherwise. The detection probability is given by]1Pr[=eilsD .

The probability eklsp can be determined in the following way. Let kK denote the

set of sensor types i in combination k . Combination k cannot detect an intrusion if

each sensor kKi ∈ is either not operational or does not detect an intrusion correctly,

given that it is operational. We assume that eilsD and eiW are mutually independent and

that sensor types in kK work mutually independently. Considering the possibility that

subset
kekls KK ⊆ˆ at l is planned to observe s under e but is not operational, it can be

shown that eklsp is given by

() ()()[]∑ ∏∏⊆ ∈∈
==−=−=

kekls eklskeklsKK KKi eieilsKi eiekls WDWp ˆ ˆ\ˆ]1Pr[]1Pr[1]1Pr[1 .

 The system detection probability using operational sensor i depends on

environmental condition, sensor capabilities, and distance from a sensor location to a

surveillance point. Detection probability decreases as the distance increases, and can be

calculated using)~1()(i
lsi d

e
ηκ −−− (Cavalier et al. 2007); here iκ and iη are parameters

that represent the decrease in detection probability of sensor type i as lsd increases and

e~ is the Euler’s number (we use e~ since we use e to denote an environmental

condition). Since detection probability,]1Pr[=eilsD , also depends on e and i , we

define parameter eiϑ for sensor type i , which relates the rate of decrease in

)~1()(i
lsi d

e
ηκ −−− to environmental condition e . We use the expression

 33

)~1)(1()(i
lsi d

ei e
ηκϑ

−−−− to calculate]1Pr[=eilsD .

Detection probability decreases rapidly as lsd increases for sensor types N (night

vision) and CCTV (closed circuit television) and slowly for type T (thermal).

Considering this, we determine),(ii ηκ for each i as in Table 3. Also, it is important to

note that a sensor cannot provide surveillance for points that are very close to it, as it

magnifies such a target too highly to allow effective observation.

Thermal contrasts are enhanced by temperature differences that typically occur

several hours after sunset, so T performs best at night (Thermal Imaging 2008). Also,

the thermal contrast between a target and its background is enhanced during rain, so T

performs better in rain than during a clear day. Since using N during daytime or in very

brightly situations is damaging, we assume that N is not used during a clear day

(Thermal Imaging 2008). Also, N performs better at night than on a rainy day (Night

Vision Camera 2008). A CCTV can be used only during the day but its capability

decreases in rain. Based on these considerations we specify the eiϑ values shown in

Table 3. Parameter values selected for calculating
eklsp .

i iκ
iη eiϑ]0Pr[=eiW

Day Night Rain Day Night Rain

T1 3.500 1.000 0.100 0.000 0.050 0.030 0.030 0.045

T2 2.600 1.000 0.100 0.000 0.050 0.030 0.030 0.045

N1 2.000 0.800 1.000 0.000 0.200 0.010 0.010 0.015

N2 1.700 0.750 1.000 0.000 0.200 0.010 0.010 0.015

CCTV1 1.600 0.750 0.000 1.000 0.100 0.010 0.010 0.015

CCTV2 1.350 0.700 0.000 1.000 0.100 0.010 0.010 0.015

 34

Table 3.

We choose failure probabilities,]0Pr[=eiW , based on sensor characteristics as

shown in Table 3. Since high humidity is known to damage sensors, failure probabilities

increase during rain.

3.2.6. Calculating esb values

We calculate est based on the threat level under e and the characteristics of the

critical facilities around s . Since it is more difficult to detect an intruder at night or on a

rainy day than on a clear day, we assume that an intrusion is more likely to occur under

such conditions. On the other hand, the goal of an attack may be to inflict damage not

only on a critical facility, but also to nearby residential areas. Since more people are at

home, a night attack may inflict more damage. Hence, we assume that an intrusion is

more likely to occur at night. We employ this rationale to specify est values. Based on

the characteristics of the critical facilities around s, we first calculate est for night time

(i.e., 2=e), the environmental condition under which the threat level may be the

highest. Then, we calculate est for e =1 and 3.

We consider all critical facilities that are located on the shore of the HSC,

including both refineries and chemical plants. We first classify the refineries and

chemical plants that are located on the shore of the HSC in nine categories, based on

three criteria: flammable/toxic material storage capacities, flammable/toxic material

storage capacities of critical facilities close to them, and closeness to other critical

facilities. Applying the Analytic Hierarchy Process (Saaty 1980), we determine a

 35

normalized weight, jw , to represent the importance of each category { }9...1∈j : 0.215,

0.190, 0.158, 0.119, 0.103, 0.077, 0.057, 0.048 and 0.034. Then, we define the crucial

distance, r , between each category of facilities and a surveillance point relative to each

of five different types of vessels (i.e., threats). Distance is crucial because it is related to

the time required to interdict a threat to a facility once detected at s . We assume that

the maximum speed that a small boat can travel in the HSC is 35 knots (~40 mph) and

that the interdicting force needs to interdict a threat when it is no closer than 4 minutes

from the targeted facility. Therefore, a small-boat (i.e., treat) must be interdicted when it

is at least () 7.260/404 ≈× miles away from the facility, and we assign a higher

detection probability, est , if s is further than 2.7 miles from the facility. Detection

probability est can be reduced if the distance from the facility to s exceeds 3.2 miles

because it may be more difficult to associate a threat specifically with the facility or, if

the distance is less than 2.7 miles, because security forces would not have time to

interdict the threat, even if it is detected. For a large vessel, which travels much slower

than a small boat, the same amount of time could be provided for interdiction by making

the crucial distance from s to the facility smaller.

We assume that the surveillance system should detect an intrusion at each

surveillance point with probability at least 0.95 (on average 0.965). Since providing a

detection probability higher than 0.98 may be costly, we also assume that the maximum

detection probability requirement is 0.98. We specify the detection probability

requirement, st21− , for surveillance points that is within distance r of facilities in

 36

categories 1 and 9 (the most important and the least important categories) as shown in

Table 4.

 Table 4. Detection probability requirements for critical facilities in categories 1 and 9.

Distance Vessel speed (mph) Category 1 Category 9

3.2 ≥ r >2.7 40 0.980 0.960

2.7 ≥ r >2.4 35 0.975 0.957

2.4 ≥ r >2.0 30 0.970 0.955

2.0 ≥ r >1.0 15 0.965 0.953

1.0 ≥ r >0.0 10 0.960 0.950

Let j

rρ denote the detection probability requirement for a surveillance point s that

is within a distance r of some critical facilities in a category { }9...1∈j . We assume that

j

rρ increases linearly with normalized weight of category j and calculate values for

8...2=j using the following equation:

() 








−

−
−+=

91

9919

ww

ww j

rrr

j

r ρρρρ . (3.6)

Equation (3.6) scales the difference between the maximum and minimum required

detection probabilities ()91

rr ρρ − according to the position of jw on the range],[91 ww .

In order to calculate est for 3,1=e , we first determine normalized weights eϖ

3,2,1=e associated with the probability of an intrusion under each environmental

condition using the Analytic Hierarchy Process: 0.271, 0.339 and 0.305, respectively.

The normalized weight is higher if an intrusion is more likely under the associated

environmental condition. Therefore, we assume that the detection probability

 37

requirement of s under e ,)1(est− , is linear with normalized weight and calculate it by

scaling ()st21− according to the ratio ()2ϖϖ e :

() 







−−=

2

211
ϖ

ϖ e

ses tt { }2/Ee ∈ .

3.2.7. Determining klc values

Parameter klc gives the cost of purchasing, installing, and maintaining sensor

combination k at location l : klkkkkl LMIc +++Ρ= , where

kΡ : present worth cost of purchasing sensor combination k

kI : present worth cost of installing sensor combination k

kM : present worth cost of maintaining sensor combination k over its lifetime

 (i.e., 5 years)

klL : present worth cost of the land needed to install sensor combination k

 at location l .

We obtain the cost of purchasing and installing each sensor combination from equipment

manufacturers and adopt the standard practice of using 10% of this cost as an estimate of

the annual maintenance cost. We estimate land costs based on average asking prices for

plots of similar size in the vicinity of each l .

 38

CHAPTER IV

BRANCH-AND-PRICE DECOMPOSITION

For ease of presentation, in this chapter we consider MKGP with the following

structure:

∑ ∈
=

Jj jjMKGP xcZ min* (4.1)

 s.t. iJj jij bxa ≥∑ ∈
 Ii ∈ (4.2)

 1≤∑ ∈ gJj jx Gg ∈ (4.3)

 { }n
x 1,0∈ (4.4)

in which JJ
Gg g =

∈∪ ; ∅=hg JJ ∩ Ghg ∈, and hg ≠ ; Im = and Jn = . Row i

in (4.2) is a knapsack constraint and row g in (4.3) is a GUB. We use nmijaA ×=][to

denote the nm × matrix of coefficients in (4.2) and i
a to denote the vector of

coefficients in row i of A . We require 0,, ≥jiij cba for Ii ∈ and Jj ∈ .

The goal of this chapter is to synthesize an effective solution approach. To that

end, we explore several B&P-Ds both analytically and computationally. We use the term

B&P-D, because it is reflective of Lagrangian Decomposition (Guignard and Kim

1987a, 1987b). As part of our theoretical analysis, we compare the bounds available

from B&P-Ds with three alternative relaxations (LR, LD, and SR), and study whether

incorporating a surrogate constraint can improve bounds or not. Our second objective is

to evaluate a suite of alternatives with the goal of identifying an effective means of

 39

implementing B&P-D for solving MKGP. Our third objective is to compare bounds

from different decompositions and implementation alternatives computationally to

assess the trade-off between the tightness of resulting bounds and the run times required

to obtain them.

This chapter comprises five sections. Section 4.1 formulates alternative

decompositions. Section 4.2 presents our theoretical analysis of bounds. Section 4.3

proposes several alternative techniques to implement decompositions. Finally, Section

4.4 discusses computational results.

4.1. B&P-D formulations

In this section, we introduce an alternative formulation of MKGP and compare

different ways of decomposing MKGP into a master problem (MP) and subproblems

(SPs). We begin by creating m clones of each jx Jj ∈ , one for each constraint (4.2).

Using iy to denote the clone of parent x associated with constraint i of (4.2), (4.1)-

(4.4) may be re-expressed as CMKG:

∑ ∈
=

Jj jjCMKG xcZ min* (4.5)

 s.t. (4.2), (4.3), and (4.4)

 0=− iyx Ii ∈ (4.6)

 ii

i
bya ≥ Ii ∈ (4.7)

 1≤∑ ∈ gJj ijy Ii ∈ , Gg ∈ (4.8)

 n

iy }1,0{∈ Ii ∈ (4.9)

 40

Using equalities (4.6), we can eliminate x , giving formulation YMKG, which

involves only iy clones:

∑ ∈
=

Ii iiYMKG ycZ ˆmin* (4.10)

 s.t. (4.7), (4.8), and (4.9)

 0' =− ii yy { }1\Ii ∈ , 1' −= ii , (4.11)

where iĉ must be defined such that ∑∈
=

Ii i cĉ and (4.8) requires iy for each i I∈ to

satisfy each GUB constraint, Gg ∈ . Note that ***

YMKGCMKGMKGP ZZZ == .

Dealing with the linear relaxation of (4.7)-(4.11), we decompose YMKG into a

MP and SPs in three different ways. Each of the following three subsections presents

one of these B&P-D formulations and studies relationships among the bounds these

formulations provide. In each case, each SP relates to a specific i (i.e.,)(iSP) and each

MP forms a convex combination of the extreme points of the polytope associated with

)(iSP . Note that the subscript on B&P-D, MP, RMP, SP, Z*,)(* iz ,)(iSP and)(iP

denotes the type of B&P-D formulation.

4.1.1. B&P-D1

Although cloning expands the size of the problem appreciably, the block-

diagonal structure of YMKG can be exploited to form a B&P-D by relegating (4.8) and

(4.11) to MP1 :

()
()∑ ∑∈ ∈

=
Ii iPp

p

i

p

ii ycZ
1

ˆmin*

1 λ (4.12)

 s.t.
() ()

0
11 ' '' =−∑∑ ∈∈ iPp

p

i

p

iiPp

p

i

p

i yy λλ { }1\Ii ∈ , 1' −= ii (4.13)

 41

 1
)(1

≤∑ ∑∈ ∈iPp Jj

p

i

p

ij
g

y λ i I∈ , Gg ∈ (4.14)

 1
)(1

=∑ ∈ iPp

p

iλ i I∈ (4.15)

 0≥p
iλ i I∈ ,)(1 iPp ∈ , (4.16)

where *
1Z is the optimal objective function value for MP1;)(1 iP is the (index) set of

extreme points of the polytope associated with SP i , denoted by)(1 iSP ; p
iλ is the

decision variable associated with the thp extreme point)(1 iPp ∈ ; and { }np
iy 1,0∈

denotes the thp extreme point.

We define m SPs, in which)(1 iSP compromises (4.9) and knapsack constraint i

of (4.7). B&P-D1 treats the knapsacks in (4.7) as being independent but ultimately

requires (using (4.11)) all clones of vector x to have the same value. Subproblem i ,

)(1 iSP , is

()[]{ }
i

n

iii

i

Gg Jj ijigijjiij ybyayciz
g

γβαα −∈≥−−+∑ ∑∈ ∈
= }1,0{,:ˆ)('

*

1 min ,

where ' 1i i= − for { }1\Ii ∈ ,

)(*
1 iz : optimal objective function value for)(1 iSP ,

 n
i R∈α : vector of dual variables associated with th

i subset of n constraints (4.13),

G

i R−∈β : vector of dual variables associated with th
i subset of G constraints (4.14),

 Ri ∈γ : dual variable associated with the th
i convexity constraint (4.15).

Since MP1 involves a huge number of columns, B&P-D1 solves a restricted MP1

(RMP1), which comprises only a subset of columns in MP1. Given an optimal solution

 42

to RMP1, associated dual variables are incorporated in the objective function coefficients

of each)(1 iSP , which is then solved to determine if a column can improve the current

RMP1 solution. The solution to)(1 iSP generates an improving column if 0)(*
1 <iz and

the current solution to MP1 is optimal if 0)(*
1 ≥iz for all i I∈ .

Dual variables induce values for clones ijy Jj ∈ for which 0=ija : for such

variables, the solution to)(1 iSP includes

1=ijy if ()() 0ˆ
' <−−+ igijjiijc βαα and 0=ijy otherwise. (4.17)

At each iteration, we include all improving columns identified by solving SPs in

RMP1, which is then re-optimized. We repeat this procedure until no more improving

column can be found.

4.1.2. B&P-D2

The second decomposition assigns GUBs (4.8) both to MP2 and to SP2s (e.g.,

)(2 iSP for Ii ∈). MP2 is the same as MP1, which is given by (4.12)-(4.16), except that

instead of)(1 iP it incorporates)(2 iP , which is the (index) set of extreme points of the

polytope associated with)(2 iSP . The optimal solution value of MP2 is *
2Z .)(2 iSP is

given by

()[]{ }
i

n

iJj ijii

i

Gg Jj ijigijjiij yGgybyayciz
gg

γβαα −∈∈≤≥−−+= ∑∑ ∑ ∈∈ ∈
}1,0{,,1;:ˆ)('

*

2 min ,

where ' 1i i= − for { }1\Ii ∈ .)(2 iSP prescribes values for variables of GUB g (i.e., ijy

gJj ∈) that have 0=ija for each gJj ∈ in knapsack i as follows:

1ˆ =
ji

y for a ()(){ }0ˆ:ˆminargˆ
' <−−+∈∈ igijjiijg cJjj βαα if ∅≠gĴ

 43

and 0=ijy for each gJj ∈ otherwise,

where gg JJ ⊆ˆ such that ()() 0ˆ
' <−−+ igijjiijc βαα for each gJj ˆ∈ .

The rationale underlying B&P-D2 is that, like)(1 iSP ,)(2 iSP can be solved in

pseudo-polynomial time (Kellerer et al. 2004), and the following proposition shows that

including GUBs in SPs provide tighter bounds in comparison with including GUBs in

only MP.

Proposition 4.1. B&P-D2 provides tighter bounds than B&P-D1; i.e., **

2

*

1 MKGPZZZ ≤≤ .

Proof. In order to prove that *
2

*
1 ZZ ≤ , we first show that the optimal solutions of MP1

and MP2 correspond to the intersection of GUB (4.8) polytopes and the convex hulls of

SPs.

Let 1Ω and 2Ω denote the polytopes associated with feasible regions of MP1 and

MP2, respectively. Recall that both MP1 and MP2 are given by (4.12)-(4.16), but differ

in the (index) set of extreme points of the SP polytope(s) that they incorporate.

Now, for each Ii ∈ , define
()∑ ∈

=
iPp

p

i

p

ii yx
1

ˆ λ , in which
()

1
1

=∑ ∈ iPp

p

iλ and

0≥p
iλ , so that ix is a convex combination of the extreme points of)(1 iSP . After

replacing
()∑ ∈ iPp

p

i

p

iy
1

λ with ix̂ in MP1,

∑ ∈
=

Ii ii xcZ ˆˆmin*
1

 s.t. 0ˆˆ
' =− ii xx { }1\Ii ∈ , 1' −= ii (4.18)

 1ˆ ≤∑ ∈ gJj ijx g G∈ , i I∈ (4.19)

 44

 { })(:ˆ
1 iPppConvxi ∈∈ i I∈ (4.20)

 1ˆ0 ≤≤ ix i I∈ . (4.21)

Constraints (4.18) and (4.20) together imply that each feasible solution of MP1 is in the

intersection of the convex hulls of SPs. Hence, after replacing (4.20) with

{ }∩ Ii
iPppConvx

∈
∈∈)(:ˆ

1 , we can drop (4.18) from MP1 (4.18)-(4.21), and the

polytope associated with MPk for k = 1,2

21 kk ΩΩ=Ω ∩ ,

where { }1ˆ0;,1ˆ:1 ≤≤∈≤∈=Ω ∑ ∈+ xGgxRx
gJj j

n and

 { }∩ Ii kk iPppConv
∈

∈=Ω)(:2 . Since { } { })(:Conv)(:Conv 12 iPppiPpp ∈⊆∈

for each Ii ∈ , 12 Ω⊆Ω ; so that, **

2

*

1 MKGPZZZ ≤≤ . ■

4.1.3. B&P-D3

The third decomposition assigns GUBs (4.8) to only SPs. Denoting the (index)

set of extreme points of the polytope associated with subproblem i,)(3 iSP , by)(3 iP ,

MP3 is

{ }(4.16) and (4.15) (4.13),:)ˆ(min
)(

*

3
3

∑ ∑∈ ∈
=

Ii iPp

p

i

p

ii ycZ λ .

Letting ' 1i i= − for { }1\Ii ∈ . Subproblem,)(3 iSP , is given by

[]{ } i

n

iJj ijii

i

Gg Jj ijijjiij yGgybyayciz
gg

γαα −∈∈≤≥−+= ∑∑ ∑ ∈∈ ∈
}1,0{,,1;:)(ˆ)('

*

3 min .

The rationale underlying B&P-D3 is the definition of the MP polytope associated

with each B&P-D. In the proof of the Proposition 4.1, we showed that the feasible

region of each MP comprises the points in the intersection of GUB (4.8) polytopes and

 45

the convex hulls associated with SPs. However, if we assign GUBs to SPs, the extreme

points of SPs, as well as their convex combinations, satisfy GUBs (4.8). Therefore,

B&P-D3 uses GUBs (4.8) to tighten bounds so that including them also in MP does not

provide further tightening. By not incorporating any GUBs in MP3, MP3 becomes

smaller than MP2, facilitating solution. While B&P-D2 and B&P-D3 provide the same

bounds, we study B&P-D2 computationally to determine whether including GUBs in

MP2 leads to dual values that induce the generation of better columns (i.e., SP extreme

points) to facilitate solution.

Proposition 4.2. B&P-D3 provides the same bound as B&P-D2; i.e.,

**

3

*

2

*

1 MKGPZZZZ ≤=≤ .

Proof. Since the feasible regions of MP2 and MP3, are the same, 32 Ω=Ω , *

3

*

2 ZZ = . ■

It is important to note that these three decompositions are not the only

alternatives to decompose YMKG. However, an advantage that each of these B&P-Ds

offers is that their SPs can be solved in pseudo-polynomial time. Other B&P-Ds may

provide tighter bounds than B&P-D3 but would require each SP to incorporate more than

one knapsack and associated GUBs so that solving it would become as hard as solving

MKP. With this motivation, we evaluate these three B&P-D formulations

computationally in section 4.4.

In each of these B&P-Ds each SP comprises single knapsack constraint;

decompositions B&P-D2 and B&P-D3 include GUBs, forming ≥MCKP SPs, and B&P-

D1 does not, forming ≥KP SPs. We modify each SP without GUBs to be a less-than-or-

equal-to knapsack constraint (≤KP) by complementing variables, and then use the

 46

COMBO algorithm (Martello et al. 1999) to solve it. We modify each SP with GUBs to

be a ≤MCKP using a method similar to the one we describe in (Section 5.2.2) and then

employ the Mcknap algorithm (Pisinger 1995) to solve it.

4.2. Analysis of bounds

In the first subsection, we compare the strength of the bounds that can be

obtained from B&P-D with those of Lagrangian methods: LR and LD. In the second

subsection, we study the strength of the lower bound that a surrogate constraint in B&P-

D can provide and state the relationships between the bounds that may be obtained from

B&P-D with those from SR and CR.

4.2.1. Lagrangian methods

We briefly review relaxation methods in order to establish notation.

Linear Relaxation. The LP of MKGP relaxes integrality restriction { }n
x 1,0∈ :

{ }10;1;:min* ≤≤≤≥= ∑ ∈
xxbAxcxZ

gJj jLP
.

Lagrangian Relaxation. LR(r
u), the LR of MKGP with respect to constraints bAx ≥

using a vector of Lagrange multipliers mr Ru +∈ is given by

{ }{ }n

Jj jIi

i

i

r

i

r

LR xGgxxabucxuZ
g

1,0;1:)(min)(∈∈≤−+= ∑∑ ∈∈
.

The problem of maximizing)(r

LR uZ over mr Ru +∈ is called the Lagrangian Dual:

)(max)ˆ(r

LRRu

r

LR uZuZ mr
+∈

= ,

where r
û is the vector of optimal Lagrange multipliers, which yields the tightest

 47

possible bound from LR,)ˆ(r

LR uZ .

Lagrangian Decomposition. Many different LDs of MKGP can be defined. To obtain

SPs that are easier to solve than MKGP, as in B&P-D, we consider each knapsack

constraint (4.7) as a separate SP. Considering CMKG, for a given vector of Lagrange

multipliers nTd

i Ru ∈)(,)LD(du is

{ }{ }n

Jj jIi i

d

i

d

LD xGgxxyucxuZ
g

1,0;1);9.4(),8.4(),7.4(:)(min)(∈∈≤−+= ∑∑ ∈∈
.

Using the vector of optimal Lagrange multipliers,
d

û , the LD dual,)ˆLD(du , is given by

)(max)ˆ(d

LDRu

d

LD uZuZ nmd ×∈
= .

Proposition 4.3 shows that MP3, the master problem of B&P-D3 is the dual of

)ˆLD(du , so that *

3)ˆ(ZuZ
d

LD = .

Proposition 4.3. Master problem of B&P-D3 is the dual of)ˆLD(du .

Proof. Let { }{ } { }{ }1ˆ:1,01:1,0 ≤∈=∈≤∈= ∑ ∈
xxGgxxG

n

Jj j

n

x
g

G .

{ }{ }
(){ }

{ }
(){ } { }{ }
(){ }

.
)(,...1,0:

:min
max

min:minmax

)(9.4),(8.4),(7.4:min

 :min
max

)9.4(),8.4(),7.4(:)(minmax

)(max)ˆ(

3

11

)(3













∈=≤−+

∈−
=

+∈−=













+

∈−
=

−+=

=

∑
∑

∑∑
∑

∑
∑

∈

∈

∈

∈ ∈∈∈

∈

∈

∈

∈∈

∈

×

×

×

×

×

iPpmiyu

Gxxuc

yuGxxuc

iiiyu

Gxxuc

xyucx

uZuZ

p

i

d

iiIi i

xIi

d

i

Ru

Ii

p

i

d

iiPpxIi

d

iRu

Ii i

d

i

xIi

d

i

Ru

Ii i

d

iRu

d

LDRu

d

LD

nmd

nmd

nmd

nmd

nmd

θθ

Since (){ }0;1;1ˆ:min ≥−≥−−≥−−∑ ∈
xxxxuc

Ii i G

 { }0,0,ˆ:max 32

1

3232 ≥≥≤+−−−−= ∑ = ii

m

i

d

iiiii cu θθθθθθ G

 48

by duality, last equality becomes

()

.

)(, 0

; 1

;0

:min

dualityBy
0,0,ˆ

)(,...1,0

:max

3

)(

)(

1

3232

3

1

132

3

3

















∈∈≥

∈=

∈=−

=















≥≥≤+−−

∈=≤−
+−−

∑
∑

∑∑

∈

∈

=

∈

iPpIi

Ii

Iiyx

cx

cu

iPpmiyu

P

i

iPp

p

i

iPp

p

i

p

i

m

i

ii

d

iii

p

i

d

ii

Ii iii

λ

λ

λ

θθθθ

θ
θθθ

G

 ■

Improved bounds facilitate optimizing an IP by allowing more nodes to be

fathomed in the B&B search tree. Lagrangian approaches generally use procedures

based on subgradient optimization to search for the optimal Lagrange multipliers d
û .

These approaches may not find the optimal multipliers - if they exist - and usually stop

with an approximate solution to)ˆ(d

LD uZ . Therefore, Lagrangian methods are not

guaranteed to prescribe an optimal solution to)ˆLD(du . However, B&P-D always

provides a bound that is as tight as possible since it provides an exact (i.e., optimal)

solution to the associated MP. As a result, we have the following corollary.

Corollary 4.4. For nmd
Ru

×∈ , **

3

*

2)ˆ()(MKGP

d

LD

d

LD ZZZuZuZ ≤==≤ .

Since neither a SP that is ≥KP nor ≤MCKP has the integrality property (Wilhelm

2001), each B&P-D yields a lower bound that can be tighter than the linear relaxation of

MKGP. On the other hand, the tightest bound that LR(r
u) can possibly provide (i.e.,

using the optimal Lagrange multipliers) is equal to *
LPZ (Geoffrion 1974), since LR(r

u)

has the integrality property; i.e.,

{ }{ } { }0;1:1,0;1: ≥∈≤∈=∈∈≤∈ ∑∑ ∈+∈+ xGgxRxxGgxRxConv
gg Jj j

nn

Jj j

n
.

 49

The following proposition relates the bounds provided by the methods described in this

subsection.

Proposition 4. 5. **

3

*

2

*

1

*)ˆ()ˆ()(MKGP

d

LD

r

LRLP

r

LR ZZZuZZuZZuZ ≤==≤≤=≤ .

Proof. For proof of)ˆ()(* r

LRLP

r

LR uZZuZ =≤ see Geoffrion (1974).

 For proof of *
1

* ZZ LP ≤ see Guignard and Kim (1987a, 1987b).

**

3

*

2

*

1)ˆ(MKGP

d

LD ZZZuZZ ≤==≤ holds by Proposition 4.1 and Corollary 4.4. ■

4.2.2. Surrogate methods

Using multipliers mTs Ru +∈)(and constraints bAx ≥ , a surrogate constraint

buAxu
ss ≥ can be formed. In this subsection, we consider improving the lower bound

provided from B&P-D by incorporating a surrogate constraint. We use B&P-D3, because

it provides a bound that is tighter than that of B&P-D1 and the same as that of B&P-D2.

However, it has fewer constraints in its MP than do B&P-D1 and B&P-D2. We start by

briefly reviewing SR and CR in order to establish notation.

Surrogate Relaxation. The SR of MKGP with respect to constraints bAx ≥ is given by

{ }n

Jj j

sss

SR xGgxbuAxucxuZ
g

}1,0{;1;:min)(∈∈≤≥= ∑ ∈
.

The problem of maximizing)(s

SR uZ over all mTs Ru +∈)(is called Surrogate Dual, and

defined as

)(max)ˆ(
)(

s

SRRu

s

SR uZuZ mTs
+∈

= ,

where s
û is the optimal vector of multipliers, which yields the tightest possible SR

bound.

 50

Composite Relaxation. The CR of MKGP with respect to constraints bAx ≥ using

vectors of Lagrange mc Ru +∈ and surrogate mTs Ru +∈)(multipliers is given by

{ }n

Jj j

ss

Ii

i

i

c

i

sc

CR xGgxbuAxuxabucxuuZ
g

}1,0{;1;:)(min),(∈∈≤≥−+= ∑∑ ∈∈
.

The following well known result from Fréville and Hanafi (2005) relates bounds

provided by LR, SR and CR.

Proposition 4.6. *)ˆ,ˆ()ˆ()(MKGP

sr

CR

s

SR

r

LR ZuuZuZuZ ≤≤≤ .

To our knowledge, the literature offers no relationship between the bounds

provided by LD and either SR or CR. Also, no prior research has investigated combining

SR with DWD for LPs or B&P for IPs. For a given vector of surrogate multipliers

mTs Ru +∈)(, let *

3SZ be the value of the optimal solution to MP3S, which denotes the

master problem obtained after incorporating surrogate inequality buAxu
ss ≥ in MP3.

The polytope corresponding to the feasible region of MP3s, 3SΩ is given by:

{ }33S ;: Ω∈≥∈=Ω + xbuAxuRx
ssn (By Proposition 4.1).

The following proposition establishes that incorporating buAxu
ss ≥ in MP3

cannot tighten *

3Z .

Proposition 4.7. *

3

*

3 ZZ S = for any mTs Ru +∈)(.

Proof. By definition of the surrogate constraint, for any mTs Ru +∈)(,

{ } { }10;:10;:3 ≤≤≥∈⊆≤≤≥∈⊆Ω ++ xbuAxuRxxbAxRx
ssnn .

For any mTs Ru +∈)(, buAxu
ss ≥ is redundant with respect to MP3S, because

{ } 333S ;: Ω=Ω∈≥∈=Ω + xbuAxuRx
ssn .

 51

Since including the surrogate constraint does not tighten the feasible region, MP3

and MP3S give the same lower bound for any vector of multipliers mTs Ru +∈)(. ■

It can be seen from the proof of Proposition 4.7 that it is not possible to form a

surrogate constraint in any B&P-D that is violated by some fractional points that are

feasible in MP. Therefore, adding a surrogate constraint to MP cannot tighten the

feasible region of any B&P-D.

However, as the following proposition shows, it is possible to improve the B&P-

D bound by including the surrogate as a new SP. Now, using buAxu
ss ≥ , define an

additional SP to B&P-D3, that is)(3

s
uSP . The convex hull of the feasible region of

)(3

s
uSP is given by

{ }n

Jj j

ssns
xGgxbuAxuRxConvu

g

}1,0{,1,:)(3 ∈∈≤≥∈=∆ ∑ ∈+ .

By augmenting)(3

s
uSP to B&P-D3, we obtain B&P-D3(

s
u), which has master

problem MP3(
s

u), and optimal solution value)(*

3

s
uZ .

Proposition 4.8.)(*

3

*

3

s
uZZ ≤ .

Proof. The polytope associated with the feasible region of MP3(
s

u) can be written as

)()(333

ss
uu ∆Ω=Ω ∩ . (By Proposition 4.1)

Since the feasible region of MP3(
s

u) is contained in that of MP3 (i.e., 33)(Ω⊆Ω s
u),

)(*

3

*

3

s
uZZ ≤ . ■

If)(3

s
uSP has the integrality property, incorporating it as a new SP in B&P-D3

cannot yield to a tighter feasible region and, therefore, cannot improve the bound of

 52

B&P-D3. Adding an additional SP to B&P-D3 can improve the bound provided by MP3,

*

3Z , if there exists a surrogate multiplier mTs Ru +∈)(such that the convex hull of

feasible integer solutions to)(3

s
uSP does not contain any optimal solution of MP3.

CR can provide a tighter bound than B&P-D3 if there exists an optimal multiplier

s
û such that)ˆ,ˆ(*

3

sr

CR uuZZ < . Using multiplier s
û in B&P-D3(

s
u), we will get a

bound at least as tight as)ˆ,ˆ(sr

CR uuZ ; that is,)ˆ()ˆ,ˆ(*

3

ssr

CR uZuuZ ≤ . However, as can

also be seen from the following example, such a surrogate multiplier may not exist.

Example 4.1. 4321

* 22min xxxxZ MKGP +++=

 s.t. 5533 4321 ≥+++ xxxx

 4324 4321 ≥+++ xxxx

 121 ≤+ xx

 143 ≤+ xx

 { }1,0,,, 4321 ∈xxxx

For][21
sss uuu = a surrogate constraint is given by

 () () () () ()ssssssssss uuxuuxuuxuuxuu 21421321221121 45325433 +≥+++++++ .

Case 1: 3/1/ 12 ≥ss uu . 142 == xx is feasible to SR and 5.3),ˆ(=sr

CR uuZ .

Case 2: 3/1/ 12 <ss uu . 131 == xx is feasible to SR and 3),ˆ(=sr

CR uuZ .

So, 4)ˆ(),ˆ(3)ˆ(**

3

*

3 ===≤≤= MKGP

ssr

CR

s

SR ZuZZuuZuZ .

On the other hand, if a multiplier s
u exists such that)(*

3

*

3

s
uZZ < , it does not

imply that),ˆ(*

3

sr

CR uuZZ ≤ since there may still be a feasible point in),ˆ(CR sr uu

whose objective function value is less than *

3Z . The following corollary summarizes the

results related in this section. Therefore, we present it without proof.

 53

Corollary 4.9. For a given optimal vector of multipliers r
û and ŝ ,

 i.)ˆ()ˆ,ˆ()ˆ()ˆ(*

3

* ssr

CR

s

SR

r

LRLP uZuuZuZuZZ ≤≤≤= .

 ii. If { }{ } ∅≠∈≤≥≤∈ ∑ ∈
GgxbuAxuZcxx

gJj j

ssn
,1;ˆˆ;:1,0 *

3 , then

)ˆ()ˆ,ˆ()ˆ()ˆ(*

3

*

3

* ssr

CR

s

SR

r

LRLP uZZuuZuZuZZ ≤≤≤≤= .

4.3. Implementation techniques

This section describes several alternative techniques to implement B&P-Ds. Each

of the following three subsections describes one of these three alternatives: cost function,

master problem type and surrogate constraint.

4.3.1. Cost assignment alternatives

We evaluate two ways of specifying îc values: the first is the uniform cost

assignment in which
1

îc c
m

 
=  
 

 for i I∈ , and the second is the null cost assignment in

which 1̂c c= and ˆ 0
i

c = for { }\ 1i I∈ . Although MP has the same optimal solution

value in both cases, they result in different objective function coefficients in SPs. Under

uniform cost assignment, all related clones have the same cost coefficient; but, under

null cost assignment, 1y is assigned the parent cost c in its objective function and each

related clone has a coefficient of 0.

Under null cost assignment, equality constraints (4.6) can be replaced by

inequality constraints,

0' ≤+− ii yy { }1\Ii ∈ , 1' −= ii . (4.6a)

 54

No cost is associated with iy { }1\Ii ∉ and 0≥i
a for all Ii ∈ . Therefore, any

component 11 =jy forces 1=ijy for all { }\ 1i I∈ through the chain of inequality

relationships (4.6a), so that any solution that is optimal satisfies all inequalities (4.6a) at

equality. By substituting inequality constraints, we relax RMP and expect that RMP will

be made easier to optimize.

4.3.2. RMP formulation

We evaluate different ways of formulating equality constraints 0' =− ii yy for

{ }1\Ii ∈ and 1' −= ii . Letting)(ji denote the index of knapsack (4.2) corresponding to

{ }Iiaji ij ∈∈ :maxarg)(, constraint 0' =− ii yy can be re-expressed as

 0)(=− iji yy { })(\ jiIi ∈ . (4.22)

We conjecture that knapsack, which incorporates the largest coefficient ija , tends

to induce jx to be 1 in (4.1)-(4.4) more than other knapsacks. If we use (4.22) in RMP,

the objective function coefficient in ())(jiSP corresponding to jjiy)(includes the dual

variable values corresponding to all clones of parent jx . Hence, by using (4.22) in RMP

we aim to provide dual variable values to ())(jiSP that reflect the impact of other SPs

in which 0>ija .

Constraint 0' =− ii yy can also be recast in quite a different form. Variable
j

x

appears with 0>ija only in some rows of (4.2). Now, for each variable jx Jj ∈ define

II j ⊆+ as the index set of constraints (4.2) in which 0>ija . Also, let += jj III \0 . For

 55

each Jj ∈ , equality constraints 0)(=− ijjji yy corresponding to 0

jIi ∈ can be cast in an

aggregated form:

 00)(

0 =−∑ ∈ jIi ijjjij yyI . (4.23)

By aggregating constraints we reduce the number of rows in RMP with the goal

of reducing the solution time of B&P-D by virtue of dealing with a smaller RMP.

Aggregating constraints does not change the optimal solution value of RMP.

Under null cost assignment, the cost coefficient of each ijy 0

jIi ∈ is zero, so that using

(4.23) for clones ijy 0

jIi ∈ cannot increase the value of the optimal solution. Under

uniform cost assignment, all related clones ijy +∈ jj IIi ∪
0 have the same cost

coefficient. Clones ijy 0

jIi ∈ contribute ()
jjiijj ycI)()'(

0 ˆˆ to the value of objective

function, independent of the values assigned to them. If there exits an optimal solution

to RMP that includes (4.22) for all clones of parent jx , an equal optimal solution value

can be obtained using (4.23) in RMP for clones associated with 0

jIi ∈ instead of (4.22)

for these clones associated with 0

jIi ∈ .

Note that none of these alternatives changes either the feasible region or the

optimal solution value of the RMP. However, we expect that each will result in a

different run time, since each involves a different set of dual variables that are

incorporated in SPs.

4.3.3. Surrogate constraint

We evaluate incorporating a surrogate constraint in RMP. As shown in

 56

Proposition 4.7, this does not improve the bound. However, the formulation that includes

a surrogate leads to a different set of dual variables and could lead to faster convergence.

4.4. Computational evaluation

This section describes our tests, which we design to address the second and third

research objectives: evaluating alternative combinations of decomposition and

implementation techniques; and evaluating the trade off between the bounds that the

decompositions make available and the run times required to obtain them, respectively.

Each of our test cases is a combination of a decomposition (Section 4.1) and an

implemetation technique (Section 4.3). Each level of Factor 1 (F1) designates a

decomposition:

1. B&P-D1 : GUBs in MP + Knapsack SPs (≥KP),

2. B&P-D2 :GUBs in MP + Multiple-choice knapsack SPs (≥MCKP),

3. B&P-D3 : no GUBs in MP + ≥MCKP .

Each implementation technique is defined as a selection of one level of F2, F3 and F4:

Factor 2 (F2) (cost assignments):

1. uniform cost assignment with equality constraints

2. null cost assignment with equality constraints

3. null cost assignment with inequality constraints

Factor 3 (F3) (RMP formulation):

1. using (4.22) for all clones included in both +
jI and 0

jI

2. using (4.6) for all clones included in both +
jI and 0

jI

 57

3. using (4.22) for clones included in +
jI and (4.23) for these identified by 0

jI

4. using (4.6) for clones included in +
jI and (4.23) for these identified by 0

jI

Factor 4 (F4) (surrogate):

1. RMP without any surrogate constraint

2. RMP with surrogate constraint () ∑∑ ∑ ∈

−

∈ ∈

− ≥
Ii iIi Jj jiij bmyam

1
ˆ

1

We conduct our tests on a Dell PC (OptPlex GX620) with 3.20GZH Dual Core

Processor, 2GB RAM, and 160GB hard drive, using CPLEX 11.

The first subsection describes our test instances. The second subsection reports

bounds obtained at the root node of each B&P-D and then details computational results.

4.4.1. Test instances

We perform each of our tests on four instances generated as described in Chapter

III. The size of each instance depends on four factors: number of environmental

conditions E , sensor combinations K , potential sensor locations L , and surveillance

points S . We draw our four instances (Table 5) from that applied problem setting to

provide a basis for evaluation. In Table 5, the first column gives the instance number;

columns 2-5 give E , K , L , and S , respectively; and columns 6-8 give the size of

each instance in terms of the numbers of binary variables (BVs) and knapsack

constraints (KPs), and the number of GUBs (|G|), respectively.

4.4.2. Test results

We begin by describing the content of Tables 6-7. We use the CPLEX B&B

algorithm as a benchmark for our B&P-Ds. Table 6 records measures that describe the

 58

performance of CPLEX on each of the four test instances. The first column in Table 6

gives the instance number, and the next three report CPLEX results: optimal LP solution

value Z(LP); optimal integer solution value Z(IP); and run time (seconds). Each of the

last three columns gives a percentage gap relative to the optimal integer solution value:

for the bound obtained from the linear relaxation of MKGP ()())()()(100 IPZLPZIPZ − , for

the optimal root node solution of our B&P-D with ≥KP ()())()(100 1 IPZRNSIPZ − , and for

the optimal root node solution of our B&P-D with ≥MCKP ()())()(100 2 IPZRNSIPZ − .

Table 5. Description of test cases used for evaluating B&PD.
N |E| |K| |L| |S| BVs SPs |G|

1 1 7 14 42 98 42 14

2 3 7 14 42 98 126 14

3 3 7 21 42 147 126 21

4 3 14 14 42 196 126 14

Table 6. CPLEX results for the test instances used in evaluating B&P-Ds.

N Z(LP) Z(IP)
CPLEX

time (secs))(

)()(

IPZ

LPZIPZ − (%)
)(

)(1

IPZ

RNSIPZ − (%)
)(

)(2

IPZ

RNSIPZ − (%)

1 2978.41 3805 12.92 21.724% 1.932% 0.000%

2 3628.67 4504 90.61 19.435% 14.549% 0.000%

3 3201.20 4102 8858.55 21.960% 0.098% 0.037%

4 3562.47 4242 523.00 16.019% 0.436% 0.000%

The columns of Table 7 are organized in three groups. The first group gives the level for

each factor: F1, F2, and F3. The second and the third groups report the run times at the

root node for levels 1 and 2 of F4, respectively. We set a run time limit of 60×103

seconds for each test. If the run time limit is reached in solving an instance, we mark the

run time columns with “*”.

 59

Table 7. Root node solution times (seconds) for instances 1-4.

Factors F4 = 1 F4 = 2

F1 F2 F3 N = 1 N = 2 N = 3 N = 4 N = 1 N = 2 N = 3 N = 4

1 1 1 56.002 2013.890 * * 51.001 2125.640 * *

1 1 2 28.657 2579.65 * * 36.986 2585.49 * *

1 1 3 39.939 1440.01 * * 30.860 1741.42 * *

1 1 4 29.078 1984.41 * * 21.375 1867.70 * *

1 2 1 126.000 3745.70 * * 138.172 3584.27 * *

1 2 2 73.094 4406.91 * * 108.000 4017.84 * *

1 2 3 55.047 2404.79 * * 84.750 2003.99 * *

1 2 4 68.094 2930.00 * * 76.469 2792.43 * *

1 3 1 189.357 4492.29 * * 193.879 4574.03 * *

1 3 2 251.428 6900.41 * * 256.491 7764.87 * *

1 3 3 152.457 2800.29 * * 170.661 3576.62 * *

1 3 4 199.396 5132.01 * * 181.254 3816.79 * *

2 1 1 3.079 24.546 2156.97 182.986 2.251 27.858 2269.54 186.011

2 1 2 4.079 34.154 2739.15 253.349 3.735 30.311 2892.80 232.953

2 1 3 2.687 25.586 1099.85 68.626 2.563 30.401 1742.12 82.423

2 1 4 3.125 19.625 2245.38 69.485 3.000 22.937 2028.24 94.079

2 2 1 2.844 47.267 3720.47 476.615 3.063 51.264 3067.69 494.816

2 2 2 5.203 58.103 4037.01 672.609 4.062 72.872 3890.65 641.373

2 2 3 2.578 24.428 2099.94 116.075 2.299 25.046 2042.12 121.88

2 2 4 2.828 36.362 2445.90 182.734 2.563 38.176 2427.52 175.079

2 3 1 4.531 111.963 5218.68 730.838 6.516 121.979 6056.34 724.337

2 3 2 9.954 173.086 8492.96 1206.08 10.344 139.369 9795.92 1432.96

2 3 3 4.047 45.513 2855.45 401.561 6.141 49.982 3436.70 486.479

2 3 4 5.063 79.06 2719.08 528.360 8.376 71.231 3077.46 596.796

3 1 1 2.484 22.062 2972.74 199.955 2.844 19.593 2957.76 178.250

3 1 2 3.422 30.093 2297.35 232.261 3.360 25.358 2479.98 250.799

3 1 3 2.515 13.188 1030.81 64.142 2.297 10.952 1394.15 66.282

3 1 4 2.907 17.390 1390.80 69.673 2.234 17.343 1215.68 76.985

3 2 1 2.140 49.812 4016.83 482.517 3.219 36.609 4442.80 526.127

3 2 2 3.453 50.114 3745.56 703.488 4.250 55.362 3771.81 750.439

3 2 3 2.203 18.878 1701.71 106.721 2.969 19.094 2151.76 98.610

3 2 4 3.125 35.906 2447.55 160.735 3.360 29.601 2434.14 154.173

3 3 1 4.844 95.558 5729.30 718.125 4.125 88.762 6350.54 765.141

3 3 2 8.422 114.527 6422.55 1073.97 8.109 126.605 7049.31 1027.31

3 3 3 4.078 40.124 2825.20 365.266 4.469 39.327 2503.09 405.313

3 3 4 5.204 76.763 3117.97 472.734 8.078 82.106 3231.47 499.281
* exceeds the time limit of 60,000 seconds

 60

4.4.3. Analysis of bounds

All three B&P-Ds provide considerably tighter bounds than the linear relaxation

of MKGP (Table 6). Consistent with Proposition 4.1, B&P-Ds with ≥MCKP provide

tighter bounds than those with ≥KP . For 3 of 4 instances, B&P-Ds with ≥MCKP find

the integral solution at the root node. Consistent with Proposition 4.2, including GUBs in

MP does not improve the lower bound; and we get the same lower bound for levels 2

and 3 of F1 (B&P-D formulations), which both employ ≥MCKP . Furthermore, B&P-Ds

with ≥KP , require considerably longer run times than both B&P-Ds with ≥MCKP

(Table 7). Considering all instances, the minimum time required to find an optimal

solution at the root node using the former is at least twice the maximum time required by

the latter. Therefore, we do not report results related to solving CMKG using level 1 of

F1 (i.e., B&P-D1) in the following analysis.

Since the cost assignment (F2) does not change the feasible region of RMP, we

get the same lower bound for both uniform and null cost assignments. Even though

inequality constraint (4.6a) relaxes the feasible region in comparison to equalities (4.6),

if an optimal solution exists, it will satisfy constraints (4.6a) at equality. Therefore, lower

bounds are the same for each of the three levels of F2 (cost assignment) in combination

with the same set of levels of the remaining three factors (implementation techniques).

Each level of F3 (RMP formulation) expresses constraint (4.6) in a different way,

but none of them either tightens or relaxes the feasible region of RMP. Therefore, each

of the levels of F3 provides the same bound. Consistent with Proposition 4.7, which

shows that including a surrogate constraint in RMP does not tighten the feasible region,

 61

each of the two levels of F4 (surrogate) provides the same bound.

4.4.4. Analysis of F1 (decomposition formulations)

This section analyzes the effect of F1 with the goal of determining the influence

each level has on run time. With this goal we compare the run times of the cases that

have the same levels for factors F2, F3 and F4 in application to instances 1-4 (Figures 6-

7). Each of the four instances has 16 cases associated with each level of F1. Table 7

shows that using ≥KP s (level 1 of F1) requires the longest run time. Using ≥KP s leads

to larger B&B search trees; at least 7 B&B nodes must be searched to find an optimal

solution to instances 1-2, but ≥MCKP s (levels 2 and 3 of F1) are able to find an optimal

solution at the root node for each instance. Since level 1 of F1 performs so poorly, we

do not consider it further.

We compare the three levels of F1 by adding the run times of cases associated

with each level. Letting
iϖ denote the sum of the run times of cases with level i of F1

over all test factor combinations, we use () iijij ϖϖϖ −=∆ 100 as a criterion to compare

the run times of levels i and j. 0>∆
ij

 means that level i is %ij∆ faster than level j.

Over all test cases, levels 2 and 3 require approximately the same run time. To

further determine the significance of F1 for run time, we conduct an analysis of variance

(ANOVA) using Minitab 15. The objective of this analysis is to test the hypotheses H0

that a factor has no effect on run time at α = 0.05. Consistent with our analysis, ANOVA

does not reject H0 = F1 (excluding level 1) as its level of significance is 0.919. Thus,

run times of levels 2 and 3 are not statistically significantly different. Thus, in case of

 62

≥MCKP s, including GUBs also in RMP neither reduces runtime nor tightens the feasible

region of RMP. Based on this analysis, we incorporate level 3 of F1 (B&P-D3) in our

default B&P-D implementation.

Figure 6. Total run times required to find an optimal integer solution for instances 1-2.

Figure 7. Total run times required to find an optimal integer solution for instances 3-4.

4.4.5. Analysis of F2 (cost assignment)

This section analyzes the effect of F2 with the goal of determining the influence

each level has on run time. With this goal, we compare the run times of the cases that

have the same set of levels for factors F1, F3 and F4. Each instance has 16 cases

 63

associated with each level of F2.

Over all test cases, level 1 requires less run time than level 2 (36% on average),

and level 2 requires considerably less run time than level 3 (69% on average) (Figures 6-

7). Although re-expressing equality constraints (level 2) as inequalities (level 3) does not

change the optimal solution value, it increases the number of feasible solutions to RMP;

so that level 3 requires longer run times than do levels 1 and 2. While level 2 assigns a

non-zero cost coefficient only to 1y , level 1 assigns the same cost coefficient to each

related clone, providing, we expect, more stabilized dual variable values than level 2.

We find that level 1 generally requires less run time.

To further determine the significance of F2 on run time, we conduct ANOVA.

H0 = F2 is rejected at the 0.000 p-level over all instances, showing that F2 is a significant

factor in determining run time. Based on this analysis, we incorporate level 1 (uniform

cost assignment) in our default B&P-D implementation.

4.4.6. Analysis of F3 (RMP formulation)

This section analyzes the effect of F3 with the goal of determining the influence

each level has on run time. With this goal, we compare the run times of the cases that

have the same set of levels for factors F1, F2 and F4. Each of four instances has 12

cases involving each level of F3.

ANOVA rejects H0 = F3 at p-level 0.000 over all instances, showing that this is a

statistically significant factor on run time. Over all instances and test cases, level 3

requires less run time than level 4 (25% on average); level 4 requires less run time then

level 1 (11% on average); and level 1 requires less run time than level 2 (30% on

 64

average) (Figures 6-7). Since levels 3 and 4 incorporate equality constraints only for

clones with 0>ija , they result in smaller RMPs, making less challenging to solve.

Therefore, levels 3 and 4 are considerably faster than levels 1 and 2. At level 4, two dual

values are associated with each clone and the difference between them is used in

calculating each cost coefficient in the associated SP. However, such differences are

close to each other, especially for the first few RMP iterations, so that columns that are

quite different from the ones in the current basis are not generated. Therefore, level 4

requires longer run time than level 3. Based on this analysis, we incorporate level 3 of

F3 (using equality (4.21) only for clones with 0>ija) in our default B&P-D

implementation.

4.4.7. Analysis of F4 (surrogate constraints)

This section analyzes the effect of F4 with the goal of determining the influence

of including a surrogate constraint in RMP on run time. ANOVA does not reject H0 =

F4, since its p-level is 0.977, showing that F4 has no statistically significant affect on run

time. Moreover, levels 1 and 2 lead to the same number of degenerate iterations and

columns entered. The reason for this result is that surrogate constraints are already

satisfied in SPs, so their surrogate is redundant in RMP. Based on this analysis, we

choose level 1 (no surrogate) in our default B&P-D implementation.

 65

CHAPTER V

BRANCH-AND-PRICE DECOMPOSITION TO DESIGN

A SURVEILLANCE SYSTEM FOR PORT AND WATERWAY SECURITY
*

The goal of this chapter is an effective solution approach, including a

computational evaluation of implementation techniques, for the surveillance system

design problem. This chapter fulfills its objective in three sections. Section 5.1 describes

our B&P-D approach to design a surveillance system for ports and waterways. Section

5.2 presents alternative implementation techniques to facilitate solution, respectively.

Finally, Section 5.3 evaluates alternative B&P-D implementation techniques and

describes our computational evaluation.

5.1. B&P-D

B&P-D uses Dantzig-Wolfe Decomposition (DWD) (Wilhelm 2001) to provide

lower bounds in a B&B framework. In Chapter IV, we studied various B&P-D

formulations that might be applied to MKGP, establishing relationships among the

bounds these methods provide. In this section, we describe the B&P-D formulation that

requires less run time than others considered in Chapter IV. To our knowledge, such

decomposition in conjunction with B&P has not been reported in the literature.

In order to be able to decompose MKGP using DWD, we first transform MKGP

*©2008 IEEE. Reprinted, with permission, from “Branch-and-price decomposition to design a
surveillance system for port and waterway security” by W. E. Wilhelm and E. I. Gokce. IEEE

Transactions on Automation Science and Engineering (in press).

 66

into a block diagonal form by generating clones of parent variables klx Kk ∈ , Ll ∈ .

To exploit the individual knapsack constraints in (3.5), we create |E|×|S| clones of klx ,

one for each),(se knapsack. Using eklsv to denote the clone of parent klx that is

associated with),(se , MKGP may be re-expressed as CMKG:

 ∑ ∑∈ ∈
=

Kk Ll klklCMKG xcZ min *

 s.t. (3.3), (3.4), and

 0=− eklskl vx Ee∈ , Kk ∈ , Ll ∈ , Ss ∈ (5.1)

 esKk Ll eklsekls bva ≥∑ ∑∈ ∈
 Ee∈ , Ss ∈ (5.2)

 1≤∑ ∈Kk eklsv Ee∈ , Ll ∈ , Ss ∈ (5.3)

 { }1,0∈eklsv Ee∈ , Kk ∈ , Ll ∈ , Ss ∈ . (5.4)

Remark 5.1. Consider knapsack constraint),(se and GUB Ll ∈ . If 0=eklsa for all

Kk ∈ , we say that constraint),(se does not contain GUB l ; otherwise, constraint

),(se contains GUB l . If constraint),(se does not contain GUB l , fixing any clone

eklsv Kk ∈ either to 0 or 1 has no effect on the feasibility of a solution with respect to

that),(se . The values of variables klx Kk ∈ in a solution are determined by the values

of clones eklsv associated with knapsack constraints that contain GUB l . To manage the

total number of clones created, we clone variable klx Kk ∈ only with respect to the

knapsack constraints that contain GUB l , creating appropriate eklsv clones. ■

Although cloning expands the size of MKGP significantly, the linear relaxation

of CMKG has a block diagonal structure, so that it is amenable to DWD. In order to

 67

reduce the size of CMKG with the goal of reducing solution run time, we start by

aggregating some of the equality constraints in (5.1) and eliminating klx variables.

Each klx variable appears with a non-zero coefficient, 0>eklsa , in a subset of

),(se constraints (3.5). Now, define ()0

klkl ΦΦ +
 as the index subset of),(se constraints

(3.5) that have 0>eklsa ()0=eklsa associated with variable klx . Constraints (5.1) can be

reformulated as

 0=− eklskl vx Kk ∈ , Ll ∈ , +Φ∈ klse),((5.5)

00

),(0 =Φ−∑ Φ∈ klklse ekls xv
kl

 Kk ∈ , Ll ∈ . (5.6)

In (5.5) we use equality constraints only for clones eklsv with 0>eklsa , and in (5.6) we

aggregate equality constraints corresponding to clones eklsv with 0=eklsa . Replacing

(5.1) with (5.5) and (5.6) does not expand the feasible regions of CMKG or its linear

relaxation, since fixing klx to either 0 or 1 is feasible with respect to 0),(klse Φ∈ .

We can now eliminate klx variables using equalities (5.5) and (5.6), giving a

formulation that involves only eklsv variables. For each Kk ∈ and Ll ∈ , let

()
{ }eklsseklkl ase

kl
+Φ∈

∈
,

maxarg),(, breaking ties by choosing the constraint with the

lexigraphically smallest index. Suppressing subscripts),(klkl se for convenience, we let

klv denote the patriarch of klx , the clone corresponding to knapsack),(klkl se . By

substituting patriarch klv for parent klx in (5.5) and (5.6), we obtain:

0=− eklskl vv Kk ∈ , Ll ∈ , { }),(\),(klklkl sese
+Φ∈ (5.7)

 68

00

),(0 =Φ−∑ Φ∈ klklse ekls vv
kl

 Kk ∈ , Ll ∈ . (5.8)

By replacing constraints (5.1) with equivalents (5.7) and (5.8), CMKG can be re-written

as { })8.5(and),7.5(),4.5(,)3.5(),2.5(:~min * ∑ ∑ ∑ ∑∈ ∈ ∈ ∈
=

Ee Kk Ll Ss eklseklsCMKG vcZ ,

where ∑ ∑∈ ∈
=

Ee Ss eklskl cc ~ .

In Chapter IV we compare three strategies for assigning values to eklsc~ . Tests

described in Chapter IV show that the uniform strategy, which assigns an equal portion

of klc to each clone of parent klx (i.e.,
SE

c
c kl

ekls =~ for Ee∈ , Kk ∈ , Ll ∈ , and Ss ∈),

performs effectively, so we apply it in this section.

B&P-D decomposes CMKG into a MP, which incorporates (5.7)-(5.8), and

|E|×|S| SPs.),(seSP comprises a specific knapsack constraint),(se of (5.2) together

with GUBs of (5.3) associated with),(se . B&P-D treats the knapsacks in (5.2) as being

independent but requires (using (5.7) and (5.8)) all eklsv clones of parent klx to have the

same value.

Let),(seΡ denote the (index) set of all (binary) extreme points of the polytope

associated with),(seSP and let { }1,0∈ρλes be the decision variable in MP associated

with extreme point),(seΡ∈ρ . For Ee∈ , Ss ∈ , and),(seΡ∈ρ , 1=ρ
eklsv if sensor

combination k is installed at location l , 0 otherwise. By relaxing the binary

requirements on ρλes , MP can be expressed as

()
()∑ ∑ ∑ ∑ ∑∈ ∈ ∈ ∈ Ρ∈

=
Ee Kk Ll Ss e,sρ

ρ

es

ρ

eklsekls λvcZ ~min *
 (5.9)

 69

 s.t.
()

0
,

=−∑∑ Ρ∈Ρ∈ se eseklsklkl vv
kl ρ

ρρ

ρ

ρρ λλ

 Kk ∈ , Ll ∈ , { }),(\),(klklkl sese
+Φ∈ (5.10)

()

00),(,

0 =+Φ− ∑ ∑∑ Φ∈ Ρ∈Ρ∈ klkl se se eseklsklklkl vv
ρ

ρρ

ρ

ρρ λλ Kk ∈ , Ll ∈ (5.11)

()

1
,

=∑ Ρ∈ se esρ

ρλ Ee∈ , Ss ∈ (5.12)

 0≥ρλes Ee∈ , Ss ∈ ,),(seΡ∈ρ (5.13)

in which klΡ denotes the index set of extreme points of the polytope associated with

()klkl seSP , , where ρλkl is the decision variable associated with klΡ∈ρ .

In general, MP comprises a huge number of columns. Therefore, we solve a

restricted master problem (RMP), obtained by replacing),(seΡ for Ee∈ and Ss ∈ by

one of its subsets,),(ˆ seΡ .

Three kinds of clones may be defined in),(seSP , based on the types of dual

variables used to calculate the reduced cost associated with each. Given),(se , let esΩ ,

esΘ , and esΨ denote the index set),(lk of clones eklsv whose reduced cost coefficients

are calculated using the dual variables noted below:

esΩ : using the dual variables eklsα and klβ corresponding to (5.10) and (5.11),

 respectively (i.e., eslk Ω∈),(if ()),(, sese klkl =);

esΘ : using the dual variable eklsα corresponding to (5.10)

 (i.e., eslk Θ∈),(if { }),(\),(klklkl sese
+Φ∈);

esΨ : using the dual variable klβ corresponding to (5.11)

 (i.e., eslk Ψ∈),(if 0),(klse Φ∈).

The generic form of),(seSP is

 70

()

() 

















−+

++













Φ+−

+−=

∑

∑ ∑∑

Ψ∈

Ω∈ Θ∈
Φ∈ +

es

es es

klklkl

lk eklsklekls

lk lk eklseklseklseklsklkl

sese

eklsekls

es

*

vc

vcvc
e,sz

),(

),(),(

0

),(\),(

~

~~

min)(

β

αβα
γ

 s.t. esKk Ll eklsekls bva ≥∑ ∑∈ ∈

 1≤∑ ∈Kk eklsv Ll ∈

 { }1,0∈eklsv Kk ∈ , Ll ∈ ,

where esγ is the dual variable corresponding to the associated convexity constraint

(5.12).

Let eklsc
⌢

 denote the objective function coefficient of eklsv in),(seSP . For clones

eklsv with 0=eklsa , 1=eklsv if 0<eklsc
⌢

 and if setting 1=eklsv is feasible with respect to

GUBs of (5.3) associated with),(se ; otherwise 0=eklsv .

We start with a set of columns that form an initial basic feasible solution (Section

5.2.1) and solve RMP using the primal simplex method. Given an optimal solution to

RMP, dual variables eklsα , klβ , and esγ are incorporated in the objective function of

each SP, which is solved in an attempt to identify a column that can improve the current

RMP solution. The solution to),(seSP generates an improving column if 0)(<e,sz* .

At each iteration, we include all improving columns identified by solving all SPs in

RMP, which is then re-optimized. This process is iterated until 0)(≥e,sz* for all),(se ,

indicating that the current RMP solution is optimal. We manage the column pool in

standard ways (Wilhelm 2001).

 71

5.2. Implementation of B&P-D

This section presents alternative techniques to implement B&P-D. The first

subsection devises a heuristic to determine an initial basic feasible solution for the

associated RMP, the second presents an effective method for solving SPs, the third

describes alternative branching rules, and the fourth mentions the criterion we use to

select a node for branching.

5.2.1. Initial basic feasible solution

We now devise a GRASP (greedy randomized adaptive search procedure) (Feo

and Resende 1995, Chardaire et al. 2001) to find a set of columns that form an initial

basic feasible solution for RMP at each B&B node. Our heuristic actually solves MKGP

((3.1), (3.3)-(3.5)) with certain klx variables fixed to either 0 or 1 by the branching rule

at the associated node in the B&B tree. Then, we generate columns for RMP by fixing

all clones of klx to 1(0) if klx is prescribed the value 1(0) in the heuristic solution. The

heuristic has two phases: construction and local search. The construction heuristic (CH)

finds a feasible solution to MKGP, and the improvement heuristic (IH) searches for a

less costly feasible solution.

A feasible solution can be found in polynomial time for the 0-1 multidimensional

knapsack problem or the multi-choice (single) knapsack problem, if one exists. On the

other hand, Moser et al. (1997) mentioned that finding a feasible solution to the

MMCKP (i.e, MKGP) requires testing combinations of variables; in the worst case, each

possible combination must be tested, so that finding a feasible solution is equivalent to

solving MMCKP. The authors did not show that finding a feasible solution to MMCKP

 72

is NP-hard.

Proposition 5.1 shows that finding a feasible solution to MKGP is NP-hard.

Therefore, our CH is not able to guarantee finding a feasible solution, even if one exits.

In such a case, we use phase I of the two-phase simplex method (Bazaraa et al. 1990) to

find an initial basic feasible solution to RMP. Phase I is a linear program in terms of ρλes

and artificial variables in RMP. B&P-D generates a set of columns to prescribe an

optimal phase I solution, and we use these columns to form an initial basic feasible

solution to RMP.

Proposition 5.1. Finding a feasible solution to MKGP is NP-hard.

Proof: Given a solution to MKGP, we can verify whether it is feasible or not in

polynomial time (i.e., O(n(m+|G|)). Consequently, finding a feasible solution to MKGP

is in class NP.

We now reduce the 3-Partition problem (Garey and Johnson 1979) to MKGP. 3-

Partition can be described as follows: given a set { }tqqQ 31 ,...,= of positive integers and

a positive integer T such that 24 TqT h << for all th 31 ≤≤ , and tTq
t

h h =∑ =

3

1
, does

there exist a partition of Q into subsets tQQQ ,...,, 21 such that Tq
uh Qq h =∑ ∈

 for all

tu ≤≤1 ? The solution to 3-Partition is “yes” if and only if MKGP, as given by

{ } 













∈∈∈≤+∈≥

∈≥

∑∑
∑

∈∈

∈

JjxGgxttix

tiTxqcx

gjJj gjGg gi

Gg gig

g

1,0;1};2),...,1{(,3

};,...,1{,:
min ,

has a feasible solution. Thus, finding a feasible solution to MKGP is NP-hard. ■

CH (detailed in Figure 8) comprises two steps ([7c]-[16c] and [18c]-[29c],

 73

respectively). In step 1, we randomly select variables to fix to 1 without violating any

GUB (3.3). If the step 1 solution violates any),(se constraint, step 2 attempts to find a

Figure 8. Construction heuristic.

Input: An MKGP instance and a parameter,δ

Output: A feasible solution for MKGP

 1c //Initialization

 2c ∅←LK ˆˆ , LL ←ˆ and { }SsEeseSE ∈∈← ,:),(ˆˆ , 0num_iter ←

 3c }ˆ,:{ LlKkxC kl ∈∈← and ∅←RC

 4c bb ←ˆ

 5c Calculate utility values klu for each Cxkl ∈

 6c //Step 1: Fix a variable in each GUB

 7c while ∅≠C and ∅≠SE ˆˆ do

 8c Sort C in non-increasing order of u values

 9c Select the first ←m  { }1,max Cδ variables in C ; m
klklkl xxx ..., 21

10c { }m
klklklR xxxC ..., 21←

11c Randomly select Rlk
Cx ∈

12c { }
lk

xLKLK ∪← ˆˆˆˆ

13c { }KkxCC
lk

∈← :/

14c { }lLL /ˆˆ ←

15c Modify esb̂ for all SsEe ∈∈ , and SE ˆˆ

16c Recalculate the utility values klu for each Cxkl ∈

17c //Step 2: Search a feasible solution

18c while ∅≠SE ˆˆ and max_iternum_iter <

19c
()∑ ∈

←
SEse esbR ˆˆ,

ˆ

20c { }esSEse
bse ˆmaxarg)ˆ,ˆ(ˆˆ),(∈

←

21c Randomly select k̂ and l̂ such that LKx
lk

ˆˆ
ˆˆ ∈

22c { }
lk

xLKLK ˆˆ\ˆˆˆˆ ←

23c Modify esb̂ for all SsEe ∈∈ , and SE ˆˆ

24c Calculate infeasibility { }∑ ∈
−←

SEse slekesk abR ˆˆ),(ˆ
ˆ,0max for each }ˆ{\ kKk ∈

25c if { } RRkkKk <∈ '\min then Rk
kKk }ˆ{\

minargˆ
∈

←

26c else
slkeKk ak
ˆˆˆ

maxargˆ
∈←

27c { }
lk

xLKLK ˆˆ
ˆˆˆˆ ∪←

28c Modify esb̂ for all SsEe ∈∈ , and SE ˆˆ and 1num_iternum_iter +←

 74

feasible solution. Let { }LlKkxxLK klkl ∈∈== ,1:ˆˆ be the set of variables fixed to 1 by

CH, { }KkLKxlL kl ∈∉= any for ˆˆ:ˆ be the index set of GUBs in (3.3) that include no

variable fixed to 1 by CH, and { }0ˆ:),(ˆˆ >= esbseSE , in which

0ˆ
ˆˆ >−= ∑ ∈ LKx eklseses

kl

abb , be the index set of),(se constraints in (3.5) for which LK ˆˆ

does not define a feasible solution. Line [2c] initializes by setting ∅=LK ˆˆ , LL =ˆ , and

{ }SsEeseSE ∈∈= ,:),(ˆˆ . Let the set of candidate variables, { }LlKkxC kl
ˆ,: ∈∈= ,

comprise all free variables that can be fixed to 1 (individually) without violating any

GUB (3.3). The selection of the next variable to fix to 1 starts by sorting [8c] variables

in C in non-increasing order of their utility values, { }∑ ∈
=

SEse eseklskl bau ˆˆ),(

ˆ,1min and

then selecting [9c] the first m variables  { }()Cm δ,1max= to form a restricted set of

candidates, RC [10c], where]1,0[∈δ is the GRASP parameter that determines the size

of RC . A variable in RC is selected at random [11c] and fixed to 1. Update LK ˆˆ , C , L̂ ,

esb̂ for Ee∈ , Ss ∈ , and SE ˆˆ ; and klu for Cxkl ∈ , respectively ([12c]-[16c]). Step 1 is

repeated until either C or SE ˆˆ is empty.

Step 2 ([18c]-[29c]) measures the total infeasibility associated with LK ˆˆ using

∑ ∈ SEse esbˆˆ),(

ˆ [19c] and identifies constraint }ˆ{maxarg)ˆ,ˆ(ˆˆ),(esSEse
bse

∈
∈ as the most

violated one, breaking ties arbitrarily. At each iteration of step 2, the most violated

constraint)ˆ,ˆ(se is first determined [20c]; then, LKx
lk

ˆˆ
ˆˆ ∈ is selected randomly [21c].

Variable
lk

x ˆˆ , which was fixed to 1 by step 1, is now fixed to 0 [22c]. If setting a

 75

variable
lk

x ˆ }ˆ{\ kKk ∈ to 1 would reduce the infeasibility of)ˆ,ˆ(se , it is fixed to 1

([23c]-[25c]); otherwise, }{maxarg
ˆˆˆˆ slkeKklk

ax ∈∈ is fixed to 1 [26c]. Then, LK ˆˆ , esb̂ for

Ee ∈ and Ss ∈ , and SE ˆˆ are updated ([27c]-[28c]). This process is repeated until a

feasible solution is found or the maximum number of iterations (i.e., max_iter) is

reached. Then, we use IH (detailed in Figure 9) to improve the feasible solution found.

Figure 9. Improvement heuristic.

 1i LL ˆ\←Η
 2i while ∅≠Η

 3i Randomly select Η∈′l

 4i Select k′ such that LKx lk
ˆˆ∈′′

 5i }{\ˆˆˆˆ
lkxLKLK ′′←

 6i Modify esb̂ for all SsEe ∈∈ , and SE ˆˆ

 7i if ∅=SE ˆˆ then }{ˆˆ lLL ′∪← , LL ˆ\←Η

 8i else kk ′←

 9i for }{\ kKk ′∈ do

10i trueyfeasibilit ←

11i for SEse ˆˆ),(∈∀ do

12i if 0ˆ >− ′slekes ab then falseyfeasibilit ←

13i if (trueyfeasibilit = and
lklk cc
′′ <) then kk ←

14i if kk ′≠ then

15i kk ←′ , ∅←SE ˆˆ

16i () { }lLL ′←Η \ˆ\ , }{ˆˆˆˆ
lkxLKLK ′′∪←

17i else }'{\ lΗ←Η

18i Modify esb̂ for all Ee ∈ and Ss ∈

The set of GUBs (3.3) that include a variable fixed to 1 by CH is LL ˆ\ . We

initialize IH with LL ˆ\=Η [1i]. IH considers each Η∈l in random order [3i]. Let l′

be the index of the randomly selected GUB (3.3) and lkx ′′ be the variable that is fixed to

 76

1 by CH [4i]. If fixing lkx ′′ to 0 does not violate any constraint in (3.5), it is fixed to 0

[5i]-[7i]. Otherwise, the search considers variables lkx ′ }{\ kKk ′∈ ([8i]-[13i]), and if a

less costly variable that does not violate any constraint in (3.5) is found [14i], it is fixed

1, lkx ′′ is fixed to 0 [15i], and Η is updated accordingly }{\)ˆ\(lLL ′=Η [16i];

otherwise, }'{\ lΗ=Η [17i]. This process is repeated until ∅=Η .

At B&B node j , LF j ⊆1 denotes the index set of GUBs (5.3) that include a

variable fixed to 1, and LF j ⊆0 denotes the index set l of GUBs (5.3) in which all

variables are fixed to 0. At each node j of the B&B tree, we generate |||||| 01

jj FFL −−

initial basic feasible solutions.

5.2.2. Subproblem solution

We cast),(seSP as a ≤MCKP for each Ee∈ and Ss ∈ . Although ≤MCKP is

NP-hard, it can be solved in pseudo-polynomial time (Kellerer et al. 2004). We use

Pisinger`s algorithm (Pisinger 1995) to solve each SP. This algorithm first finds an

initial feasible solution to ≤MCKP and then uses a dynamic programming algorithm to

solve ≤MCKP . This algorithm was devised to solve a problem in the form that requires

exactly one item from each GUB to be prescribed, so that profit is maximized while

maintaining feasibility with respect to the capacity (i.e., knapsack) constraint (i.e., a less-

than-or-equal-to constraint). At each node in the B&B tree, we fix the clones in all SPs

that have been fixed to 0 or 1 by the branching rule and put each),(seSP in the ≤MCKP

form as follows in order to use Pisinger`s algorithm. First, we modify each GUB Ll ∈

 77

whose variables (i.e., eklsv Kk ∈) each has a positive cost coefficient in the objective

function of),(seSP . We reformulate each such GUB to be an equality constraint by

adding a dummy variable with a zero coefficient in the constraint),(se and in the

objective function, so that the dummy variable does not affect constraint satisfaction or

the value of)(e,sz* . A dummy variable need not be included in any GUB Ll ∈ that has

at least one variable with non-positive cost coefficient in the objective function of

),(seSP . Assigning the value of 1 to a variable with the most negative cost provides a

better solution than assigning the value of 1 to a dummy variable, since coefficients of

),(se are non-negative and each),(seSP minimizes cost; thus, it is already satisfied as

equality at the optimal solution. Next, we recast the objective to be maximization and

knapsack),(se to be a less-than-or-equal-to constraint as described in Kellerer et al.

(2004). Let eklsc
⌢

 be the reduced cost coefficient of variable eklsv in),(seSP ;

{ }{ } 10,maxmaxmax += ∈ eklsKkels cc
⌢⌢

 and { }eklsKkels aa ∈= maxmax for each Ll ∈ . Coefficients

of the recast),(seSP are as follows:

i. Objective function coefficients: eklselsekls ccc
⌢⌢

−= max for Kk ∈ and Ll ∈ ;

 max
elsc
⌢

 for the dummy variable in GUB Ll ∈ , if one exists

ii. Technological coefficients: eklselsekls aaa −= max for Kk ∈ and Ll ∈ ;

 max
elsa for the dummy variable in GUB Ll ∈ , if one exists

iii. Right-hand-side coefficients: esLl elses bab −=∑ ∈

max .

5.2.3. Branching rule

We evaluate three branching rules. Let x be the optimal (fractional) solution to

 78

RMP at a B&B node. The first rule (B1) branches on the most fractional variable,

∑ ∈
=

''
''''''

lkPp

p

lklklk vx λ such that 5.0minarg'' , −∈ ∈∈ klLlKk xlk . We create two new B&B

nodes (i.e., children): the left child with 0'' =lkx and the right child with 1'' =lkx .

The second rule (B2) branches on the variables 'klx Kk ∈ in the GUB 'l that

includes the most fractional variable. We create 1|| +K child nodes: the th
k child has

1' =klx and other variables that are in GUB 'l equal to 0; the stK)1|(| + child requires

all variables that are in GUB 'l to be 0; i.e., 0' =∑ ∈Kk klx . This branching rule has the

advantage that fixing the variables associated with a GUB reduces the number of free

variables in RMP more than B1 does, with the hope that resulting RMPs will be less

challenging to solve.

The third rule (B3) invokes special order set (SOS) branching. Let KK l ⊆' be

the index set of free variables in GUB 'l that are not fixed to 0 at the current B&B node,

and '' l

f

l KK ⊆ be the index set of free variables in GUB 'l that have fractional values in

the optimal solution of the corresponding RMP. It is important to note that f

ll KK '' \ is

the index set of free variables that have values 0 in the optimal solution of RMP and that

0|| ' =f

lK if the optimal solution of RMP is integral. When 0|| ' >f

lK , B3 involves two

cases (recall that the most fractional variable has indices 'k):

Case 1. 1|| ' =f

lK . The left child requires 0'' =lkx ; and the right child, 1'' =lkx .

Case 2. 2|| ' ≥f

lK . Let

 79

{ }





≥

==+
=

.3|| if ofmedian

",'such that 2|| if2)"'(~

''

''

f

l

f

l

f

l

f

l

KK

kkKKkk
k

Define { }'~ ,
~

: lk KkkkkK ∈≤=≤ and { }'~ ,
~

: lk KkkkkK ∈>=> .

The left child requires 0
~ ' =∑

≤∈ kKk klx ; and the right child, 0
~ ' =∑

>∈ kKk klx .

B3 is the same as B1 under the condition of case 1. Under the condition of case

2, B3 has the advantage that, by fixing more than one variable, we expect that it will

make RMP less challenging to solve than B1. At each level it creates fewer child nodes

than B2.

When branching fixes a variable to 1, other variables in the associated GUB are

fixed to 0. Also, whenever a variable is fixed (i.e., either to 0 or 1), related clones in all

SPs are fixed to the same value.

5.2.4. Node selection

We invoke the best bound criterion to select the next node to explore in the B&B

search. Prior studies have demonstrated that this criterion typically finds an optimal

solution in less time and explores fewer nodes in the B&B tree than does the depth-first

node selection strategy.

5.3. Computational evaluation

This section describes our test results. We conduct our tests on a Dell PC

(OptPlex GX620) with 3.20GZH Dual Core Processor, 2GB RAM, and 160GB hard

drive, using CPLEX 11.

We design our tests to achieve two goals. The first goal is to define a default set

 80

of implementation alternatives to facilitate B&P-D. In order to achieve this goal, we first

compare the performances of the three branching rules (B1, B2, and B3) and select the

branching rule that requires the least run time as our default branching rule. Then, in

order to evaluate the leverage on run time provided by a good initial solution at each

B&B node, we compare the run times required if both CH and IH are used (i.e., CIH)

with those required if only the CH is used. The second goal is to evaluate the

computational efficacy of B&P-D. For this purpose we benchmark our B&P-D with the

B&B routine of CPLEX and analyze the influence of parameters (i.e., experimental

factors) on run time. We now begin by describing test instances.

5.3.1. Test instances

Using the HSC as a test bed, in Chapter III we generate instances considering

sensor characteristics and the practical considerations that are important to ports and

waterways. We perform each of our tests on 16 instances (see Table 8) generated as

described in Chapter III. We design instances that involve four factors: numbers of

environmental conditions |E|, sensor combinations |K|, potential sensor locations |L|, and

surveillance points |S|. Three of these factors each has two Levels (see Table 8); |L| has

four levels. Level 1(2) of |E| is 1(3). Level 1(2) of |K| is 7(14). Level 1(2) of |S| is

42(84). Levels 1-4 of |L| are 14, 21, 26, and 32, respectively. Since the sensor locations

in Level 1 of |L| cannot provide the required level of surveillance to all surveillance

points that constitute Level 2 of |S|, we use Levels 1 and 2 of |L| in combination with

Level 1 of |S| and Levels 3 and 4 of |L| in combination with Level 2 of |S|.

 81

Table 8. Description of test instances - HSC.
Instance

no

Factors
of binary

variables

of knapsack

constraints
of GUBs

|E| |K| |L| |S|

1 1 7 14 42 98 42 14

2 1 7 21 42 147 42 21

3 1 14 14 42 196 42 14

4 1 14 21 42 294 42 21

5 3 7 14 42 98 126 14

6 3 7 21 42 147 126 21

7 3 14 14 42 196 126 14

8 3 14 21 42 294 126 21

9 1 7 26 84 182 84 26

10 1 7 32 84 224 84 32

11 1 14 26 84 364 84 26

12 1 14 32 84 448 84 32

13 3 7 26 84 182 252 26

14 3 7 32 84 224 252 32

15 3 14 26 84 364 252 26

16 3 14 32 84 448 252 32

5.3.2. Branching rules and heuristics

Figures 10 and 11 report computational results using CH or CIH in combination

with branching rules B1, B2, or B3. 50% of the instances are optimized in the root node.

If CH is used with branching rules B1, B2, and B3: on average, B3 is 5.54% faster than

B1, and B1 is 60.77% faster than B2; on average, B3 requires 0.5 fewer nodes than B1,

and B2 searches over more B&B nodes in all instances than either B1 or B3. If CIH is

used with branching rules B1, B2, and B3: on average, B3 is 33.60% faster than B1, and

B1 is 58.63% faster than B2; on average, B3 requires 0.75 fewer nodes than B1, and B2

searches over more B&B nodes in all instances than either B1 or B3.

In general, difference between the number of nodes required by B1 and B3 is

very small, but using B3 can be advantageous in solving large instances. B3 fixes more

 82

than one variable upon branching, resulting in a smaller RMP that requires less

computational effort. The advantage provided by a smaller RMP may be substantial; for

example, on instance 16 (the largest instance) B1 and B3 each require only three B&B

nodes, but B3 runs considerably faster than B1.

 Figure 10. Comparison of branching rules B1, B2, and B3.

Figure 11. Comparison of CH and CIH.

Figure 11 compares CH with CIH. If an optimal solution is found at the root

node, it is same for B1, B2, and B3. Hence, in that case we only report the solution

associated with B3. This comparison shows that IH has a significant effect, reducing run

 83

time in all instances (e.g. on instance 8 CIH requires 2494.44 seconds, and CH requires

33147.5 seconds). Based on these results, we select the CIH in combination with

branching rule B3 as the default combination.

5.3.3. Computational evaluation of B&P-D

In this subsection we evaluate the efficacy of B&P-D. For this purpose we

benchmark our default B&P-D combination (B&P-D with CIH and branching rule B3)

with CPLEX B&B and analyze the effect of experimental factors on run times.

Table 9 reports results from our default combination. The first column in each

table gives the instance number (N) (see Table 8) and the next three report results at the

root node: the heuristic solution value (HSV), optimal solution value (RNS), and the

time required to solve to optimality. The last six columns give results associated with

solving CMKG: number of simplex iterations needed for RMP to reach optimality,

number of degenerate RMP iterations, total number of generated columns entered, total

number of B&B nodes searched, time needed for all RMP simplex iterations, and the

total CPU run time to prescribe an optimal integer solution. First we benchmark these

results with CPLEX.

5.3.4. Benchmarking

To benchmark our default combination of implementation techniques, we

compare it with the B&B routine of CPLEX. Table 10 gives the results. The first

column in Table 10 gives the instance number, and the next six report CPLEX results:

number of simplex iterations needed to reach optimality (or, number of simplex

iterations completed in 60,000 seconds, if CPLEX is terminated because our time limit is

 84

Table 9. B&P with CIH and B3.

N HSV RNS
RNS time

(sec)

of simp.

iter.

of

deg.

iter.

Total # of

cols. ent.

of

nodes

RMP sol.

time (sec)
CPU (sec)

1 3828 3805.000 2.500 16983 129 1222 1 2.359 2.500

2 3217 2989.000 8.781 31396 325 1949 1 8.485 8.781

3 3663 3500.000 14.172 58326 171 2950 1 13.716 14.172

4 3091 2738.500 1170.660 3129801 1217 32105 5 2887.200 2893.990

5 4504 4504.000 13.188 31788 267 3425 1 12.625 13.188

6 4302 4100.499 1030.810 1413847 222 19808 3 1880.260 1882.540

7 4242 4242.000 64.158 80529 111 6155 1 63.535 64.158

8 4113 3810.00 2494.450 794695 203 12006 1 2492.720 2494.440

9 5936 5881.000 1.906 9653 38 918 1 1.638 1.906

10 5755 5732.000 3.688 15892 74 1411 1 3.344 3.688

11 5472 5368.499 7.562 45066 220 4922 3 12.574 13.968

12 5370 5040.999 153.800 483553 754 15848 5 270.161 278.208

13 7657 7556.499 113.737 313833 629 14449 7 208.522 230.049

14 8061 7778.666 292.142 333212 284 10802 3 370.026 373.533

15 7131 6969.125 1850.190 1006215 632 20966 3 2067.870 2074.620

16 6858 6829.990 4182.720 1462211 697 30202 3 5141.250 5151.070

Table 10. CPLEX results for HSC instances.

N
of simp.

iter.

of B&B

nodes
Z(LP) MBB Z(IP)

CPLEX

time (s)
)(

)(

IPZ

MBBIPZ −

(%)

)(

)()(

IPZ

LPZIPZ −

(%)

)(

)(

IPZ

RNSIPZ −

(%)

1 191794 106630 2978.41 3805.00 3805 12.9 0.000 21.724 0.000
2 4699267 2135618 2360.44 2989.00 2989 327.9 0.000 21.029 0.000
3 459297 232269 2871.39 3500.00 3500 36.4 0.000 17.960 0.000
4 13859541

7
59841137 2105.49 2745.00 2745 14039.2 0.000 23.297 0.237

5 1405934 441217 3628.67 4504.00 4504 90.6 0.000 19.435 0.000
6 11471891

8
35050870 3201.20 4102.00 4102 8858.6 0.000 21.960 0.037

7 6347377 1880246 3562.47 4242.00 4242 523.0 0.000 16.019 0.000
8 65092128

7
137266419 3045.26 3570.27 3810 60000.0

2
6.292 20.072 0.000

9 22756694 14294251 4569.67 5881.00 5881 2554.3 0.000 22.298 0.000

10 41869208
7

239891803 4356.43 5612.69 5732 60000.2 2.081 23.998 0.000
11 43991562

1
205864226 4190.08 5155.13 5384 60000.3 4.251 22.175 0.288

12 42464790
0

177343880 3794.84 4561.10 5066 60000.1 9.966 25.092 0.494
13 71659718 133389729 5542.44 7582.00 7582 20571.1 0.000 26.900 0.336
14 40837981

9
132713241 5415.97 6826.11 7782 60000.0 12.283% 30.404 0.043

15 42699815
9

135053281 5250.16 6196.39 6970 60000.0 11.099% 24.675 0.013
16 39708547

6
108500672 4992.27 5845.97 6833 60000.0 14.445% 26.939 0.040

 85

reached), total number of B&B nodes searched, optimal LP solution value (Z(LP)), best

bound obtained at the termination of CPLEX (MBB), optimal (integral) solution value

Z(IP), and run time. The last three columns give the gaps associated with the three

lower bounds, showing how far each lower bound is from the optimal solution: the

percentage of the gap associated with the best bound obtained at the termination of

CPLEX, ()())()(100 IPZMBBIPZ − ; with the bound obtained from the linear relaxation

of MKGP, ()())(()(100 IPZLPZIPZ − ; and with the optimal root node solution of

B&P, ()())()(100 IPZRNSIPZ − . CPLEX exceeds the time limit of 60,000 seconds in 7

of the 16 instances, but our B&P-D prescribes optimal solutions for all 16 instances.

B&P-D is faster than CPLEX on the remaining 9 instances by 90% on average. It is

important to note that, on all instances, solving RMP accounts for 99.9% of the total

CPU time (i.e., SPs require a small portion of run time). MBB values associated with

the instances for which CPLEX exceeds 60,000 seconds are smaller (i.e., weaker) than

the lower bounds found by our B&P-D at the root node of the B&B tree. Our B&P-D

yields a tighter bound than the linear relaxation of MKGP on all instances. Thus, the

lower bound obtained at the root node of B&P-D dominates the lower bound obtained

from the linear relaxation.

5.3.5. Run time vs. parameters

In this section we evaluate the effect of each parameter (i.e., experimental factor)

on run time. Run time to solve CMKG increases as levels of |E|, |K|, and |L| increase (i.e,

Table 9). This is expected, since the number of clones increases with |E|, |K|, and |L|,

leading to more challenging RMPs. The number of SPs also increases with |E|.

 86

Furthermore, the number of variables in MKGP increases with |K| and |L|, requiring

more decisions; thus increasing run time.

As seen from Tables 9-10, the most important effect on run time is |L|; for

example, instances 3 and 4 differ only in their respective values of |L|, but their CPU run

times are quite different. The reason is that increasing |L| provides more opportunities to

locate sensor combinations and increases the number of variables klx common to

different SPs, so the problem becomes more challenging to solve. For example; the

difference between the |L| values of instances 3 and 4 is seven, but each additional sensor

location increases the number of common variables in approximately 24 constraints. It is

important to note that, although the difference between the |L| values of instances 11 and

12 is six, the difference in run time is not as large as that between instances 3 and 4. The

reason is that for |S| = 84, we assume that a sensor only observes surveillance points

located on the same side of the channel, so each of these additional sensor locations

increases the number of common variables in at most 24 constraints.

One might expect that run time always increases with |S|, since both the number

of clones and the number of SPs increase with |S|. If we fix |L| and increase |S|, the

number of feasible solutions may be decrease, perhaps to the point of rendering the

instance infeasible. Therefore, as |S| increases, |L| must be increased in order to satisfy

the detection probability required at each Ss ∈ . However, Table 9 shows that some

instances in which |S| = 84, require less run time than corresponding instances in which

|S| = 42 (i.e, instances 4 and 12; instances 6 and 14). The reason is that there is another

factor affecting run time: |Leks|, the number of potential locations from which k can

 87

provide some capability to observe s under e. As |Leks| decreases, the number of variables

klx common to different SPs and the number of clones corresponding to each parent klx

decrease, so the problem becomes less challenging for B&P-D to solve (i.e., |S| = 84).

Sensors located on either side of the HSC can observe each surveillance point for

instances in which |S| = 42. However, a sensor that observes a surveillance point must be

located on the same side of the channel for instances in which |S| = 84, essentially

decomposing the problem into two independent components, one associated with each

side of the channel. Therefore, for the instances in which |S| = 84, fewer surveillance

points can be observed from each location l than for the instances in which |S| = 42.

Thus, for |S| = 84, the average value of |Leks| and the number of GUBs associated with

each),(seSP are both less than for |S| = 42.

To further determine the significance of the experimental factors on total run

time, we generate 16 more instances defining two new levels for |S| (i.e, |S| = 22 and |S| =

32) and then conduct ANOVA. The objective of this analysis is to test, at an α = 0.05

level, the hypotheses H0 that a factor or an interaction of factors has no affect on run

time versus the alternative HA that it does. Tests H0 = |E| and H0 = |L| are rejected at

0.000 p-level, and H0 = |K| is rejected at 0.001 p-level. However, for H0 = |S|, the p-level

is 0.111, so this hypothesis cannot be rejected. We thus conclude that factors |E|, |K|,

and |L| have significant effects on run time. Furthermore, interactions between these

three factors have a significant effect on run time, since H0 = |E|×|L|, H0 = |E|×|K|, H0 =

|L|×|K|, and H0 = |E|×|K|×|L| are rejected at p-levels 0.00, 0.005, 0.001, and 0.005,

respectively.

 88

CHAPTER VI

KNAPSACK PROBLEM WITH GENERALIZED UPPER BOUND

CONSTRAINTS: A POLYHEDRAL STUDY AND COMPUTATION

Chapter V describes a computational evaluation of a B&P-D approach to design

a surveillance system, employing the HSC as a test bed. B&P-D is more effective than

classical B&B. However, its run time increases with the number of GUBs and the

number of variables in each GUB. With the hope of developing a more effective method

to solve ≥MKPG (i.e., MKPG with greater-than-equal-to knapsack constraint), this

section defines valid inequalities (facets) for the ≥KPG polytope.

We consider the ≥KPG problem, which comprises a knapsack in the form of a

greater-than-equal-to constraint and (disjoint) GUBs:

{ }XxcxZ
KPG

∈=≥ :min* ,

where { }{ }GgxbxaxX
gg Jj jGg Jj jj

n
∈≤≥∈= ∑∑ ∑ ∈∈ ∈

1,:1,0 ,

 ∪ Gg gJJ
∈

= , and ∅="' gg JJ ∩ for Ggg ∈≠ "' .

Each (index) set defined in this section is an (index) subset of either J or G . To

facilitate presentation, we use the expression “variable (GUB) in a set” instead of the

more lengthy, but more accurate, “index of variable (GUB) in a set” if ambiguity will

not result. For Gg ∈ , define index)(gj such that { }
gj Jjagj ∈∈ :maxarg)(. We

invoke three assumptions:

Assumption 6.1. 0≥b and 0≥ja .Jj ∈

 89

Assumption 6.2. ba
Gg gj ≥∑ ∈)(.

Assumption 6.3.)conv(X is a full-dimensional polytope.

Since arbitrarily signed coefficients b and ja Jj ∈ can be transformed into an

equivalent form with 0≥b and 0≥ja Jj ∈ (Johnson and Padberg 1981, Sherali and

Lee 1995), Assumption 6.1 imposes no loss of generality. If Assumption 6.2 does not

hold, X is infeasible. If)conv(X is not full-dimensional, it can be modified so that it is

(Sherali and Lee 1995); hence, Assumption 6.3 introduces no loss of generality.

This chapter has seven objectives. The first objective is a family of valid

inequalities for)conv(X and the second is a polynomial-time procedure to generate

them. The third objective is a set of dominance relationships for these inequalities and

the fourth is the necessary and sufficient conditions for a non-dominated inequality to

define a facet of)conv(X . The fifth objective is a lifting procedure to tighten valid

inequalities that are not facets and the sixth is a separation procedure to generate a valid

inequality to cut off a fractional solution to the linear relaxation of ≥KPG . The seventh

objective is a computational evaluation of a branch-and-cut approach that uses these

inequalities in solving the multidimensional ≥KPG (i.e., ≥MKPG).

The remainder of the chapter is organized as follows. Section 6.1 reviews known

valid inequalities (facets) of)conv(X . Sections 6.2-6.8 address objectives 1-7,

respectively. Section 6.2 derives a family of valid inequalities for)conv(X and Section

6.3 develops a procedure to generate them. Section 6.4 discusses dominance

relationships for these inequalities and Section 6.5 establishes necessary and sufficient

 90

conditions for a non-dominated inequality to define a facet of)conv(X . Section 6.6

presents a lifting procedure to further tighten the valid inequalities. Section 6.7 devises a

separation procedure to generate a valid inequality to separate a fractional optimal

solution to a linear relaxation of ≥KPG . Section 6.8 evaluates the efficacy of our cuts in

application to solve ≥MKPG .

6.1. The ≥≥≥≥KPG polytope

To our knowledge, only Sherali and Lee (1995) has devised a family of facets

specifically for)conv(X . We now summarize the results of Sherali and Lee (1995),

providing a level of detail that is sufficient to allow us to show how our contributions

differ.

Proposition 6.1. dim()conv(X) = |J| - |G0|, where
{ }

{ }baGgG
gGg gj <∈= ∑ ∈ ˆ\)(0 :ˆ .

The following two propositions from Sherali and Lee (1995), state the trivial facets of

)conv(X .

Proposition 6.2. For each Gg ∈ and { })(\ gjJj g∈ , 0≥jx is a facet of)(conv X .

Proposition 6.3. GUB constraints 1≤∑ ∈ gJj jx Gg ∈ are facets of)conv(X .

 Sherali and Lee (1995) defined a generalization of the well-known minimal

cover inequality of Balas (1975) for)conv(X as follows. For some GG ⊆ˆ , let

∪ Gg gJK
ˆ∈

= , KJK \= , and { }KjJjGgG gK ∈∈∈= somefor : . The set K is

called a GUB cover of X if ba
K

Gg gj <∑ ∈)(. A GUB cover is called a minimal GUB

 91

cover of X if () baa gjGgGg gj K
K

≥+ ∈∈∑)()(min . Accordingly, a minimal GUB cover

inequality is written as

∑ ∈
≥

Kj jx 1. (6.1)

For some minimal GUB cover K , let { } max:\' ' jKjj aaKJjR ∈≥∈= . An

extension of the minimal GUB cover, denoted by)(KE , is defined as

()∪∪
RGg gJKKE

∈
=)(and a family of valid inequalities for)conv(X is defined as

 RKEj j Gx +≥∑ ∈
1

)(
. (6.2)

If ∅≠R , inequality (6.2) implies (i.e., dominates) (6.1); that is, if ∅≠R , (6.2)

is tighter than (6.1). Sherali and Lee (1995) defined another strengthening procedure for

minimal covers as follows. If (1K , 2K) is a partition of K (i.e., 21 KKK ∪=) with

∅≠2K such that

baa
KK g Gg gjGg jKJj <+∑∑ ∈∈ ∈)(

2
2

)(max
∩

,

then inequality

 ∑ ∈
≥

1

1
Kj jx , (6.3)

is valid for)conv(X and dominates (6.1). Finally, given a minimal GUB cover K ,

Sherali and Lee (1995) developed a lifting procedure for (6.1), obtaining valid

inequalities of the form

 ∑∑∑∑
++− ∈∈∈∈

+≥++
Kj jKj jjKj jjKj j xxx πππ 1 , (6.4)

where { }
Kgj GgaK ∈=+ :)(, ()+− = KKJK ∪\ , and jπ is the lifted coefficient of jx .

 92

The lifting procedure in Sherali and Lee (1995) computes lifted coefficients of the

variables in each GUB set simultaneously. We now give an example from Sherali and

Lee (1995) to demonstrate the valid inequalities that can be obtained using the

procedures it presents.

Example 6.1.









≤+≤+≤+≤+

≥+++++++∈
=

1,1,1,1

,93355:}1,0{

87654321

87654321

8

1
xxxxxxxx

xxxxxxxxx
X E

.

All possible minimal covers of form (6.1) are: 14321 ≥+++ xxxx ;

 16521 ≥+++ xxxx ;

 18721 ≥+++ xxxx ;

 16543 ≥+++ xxxx ;

 18743 ≥+++ xxxx .

All possible valid inequalities of form (6.2) are: 2874321 ≥+++++ xxxxxx ;

 2654321 ≥+++++ xxxxxx .

The only possible valid inequality of form (6.3) is: 142 ≥+ xx .

Applying the lifting procedures of Sherali and Lee (1995), we obtain valid inequalities

of the form (6.4):

 111111

86887766554321 1 ππππππ ++≥+++++++ xxxxxxxx

 222222

8884477336521 41 ππππππ ++≥+++++++ xxxxxxxx

 333333

64664455338721 1 ππππππ ++≥+++++++ xxxxxxxx

 444444

82882277116543 1 ππππππ ++≥+++++++ xxxxxxxx

 93

 555555

62662255118743 1 ππππππ ++≥+++++++ xxxxxxxx .

We show later in Example 6.3 that the valid inequalities that we propose differ from

these.

6.2. Valid inequalities for ≥≥≥≥KPG

In this section, we derive a set of valid inequalities, called α -cover inequalities,

for)(conv X . Assuming, without loss of generality, that
)()2()1(...

Gjjj aaa ≥≥≥ , we

define

{ }{ }baGk
k

g gj ≥∈= ∑ =1)(

* :...1minargα (6.5)

and let { }1:)(1 == jxjxJ be the index set of variables equal to 1 at feasible point Xx ∈ .

Lemma 6.4. Given JJ ⊆' , { } *

'
:min α≤∈= ∑ ∈

Xxxp
Jj j .

Proof. Let x̂ be a feasible solution with respect to X in which exactly *α variables are

fixed to 1 (i.e., *1)ˆ(α=xJ). By definition of *α , *11)ˆ()(min α==∈ xJxJXx . Hence,

{ } *11

'
')ˆ(')(min:min α≤≤=∈= ∈∈∑ JxJJxJXxxp XxJj j ∩∩ . ■

Definition 6.1. For each integer α such that *1 αα ≤≤ , set JJ ⊆α is an α -cover, if

αα ≥)(1
xJJ ∩ for each Xx ∈ and (6.6)

for each αJj ∈ , an Xx ∈ exists such that)(1 xJj ∈ and αα =)(1
xJJ ∩ . (6.7)

Definition 6.1 justifies the following proposition.

Proposition 6.5. For any α -cover, JJ ⊆α ,

 94

αα ≥∑ ∈Jj jx , (6.8)

is a valid inequality for)(conv X .

Condition (6.6), which requires that α
J contain at least α variables from each)(1

xJ

Xx ∈ , assures that (6.8) is valid for)(conv X . By condition (6.7), for each αJj ∈ , a

feasible point x̂ exists such that { }jJ \α contains the indices of at most 1−α of the

variables that are fixed to 1 at x̂ . Hence, no { } αα JjJ ⊂\ either satisfies (6.6) (on

substituting { }jJ \α for α
J) or yields an inequality that dominates (6.8) (Sherali and

Glover 2008).

We call an inequality of form (6.8) an α -cover inequality. Example 6.2 demonstrates

that α -cover inequalities may yield facets that differ from those that can be generated

using the procedures of Sherali and Lee (1995).

Example 6.2. Consider polytope 1EX of Example 6.1. Note that 2* =α , since setting

142 == xx gives 942 ≥+ aa . Given { }8,6,4,2=αJ and *αα = , we will show that

α
J satisfies conditions (6.6) and (6.7), so that the corresponding inequality

28642 ≥+++ xxxx (6.9)

is an α -cover inequality.

α
J satisfies (6.6), since { } αα ==∈+++=∈ 2:min)(min 18642

1

1 EXx XxxxxxxJJ
E

∩ .

We now show that α
J satisfies (6.7), by showing that for each αJj ∈ , a feasible

solution x exists such that)(1 xJj ∈ and αα =)(1
xJJ ∩ .

 95

Case 1. Consider point 1EXx ∈ in which 142 == xx and 0=jx { }8,7,6,5,3,1∈j (i.e.,

 }4,2{)(1 =xJ). Thus, for }4,2{∈j ,)(1 xJj ∈ and 2)(1 =xJJ ∩
α .

Case 2. Consider 1EXx ∈ in which 1632 === xxx and 0=jx { }8,7,5,4,1∈j (i.e.,

 }6,3,2{)(1 =xJ). Thus, for 6=j ,)(1 xJj ∈ and 2)(1 =xJJ ∩
α .

Case 3. Consider 1EXx ∈ in which 1832 === xxx and 0=jx { }7,6,5,4,1∈j (i.e.,

 }8,3,2{)(1 =xJ). Thus, for 8=j ,)(1 xJj ∈ and 2)(1 =xJJ ∩
α .

By cases 1-3, for each αJj ∈ , an 1EXx ∈ exists such that)(1 xJj ∈ and

αα =)(1
xJJ ∩ .

In fact, (6.9) is a facet of 1EX , since array

 gives eight linearly independent points in 1EX for which (6.9) holds at equality.

Further, (6.9) cannot be generated using the procedures of Sherali and Lee (1995) (see

Example 6.1 in which we list all valid inequalities (facets) that can be generated using

the procedures of Sherali and Lee (1995)).

Note that (6.8) generalizes the GUB cover inequalities described in Sherali and

Lee (1995). The right-hand-side of any GUB cover inequality is 1 and either all

variables associated with a GUB are in a GUB cover or in the complement of the GUB

































=

00100000

01001100

11011000

00100010

11000111

00010000

00111111

10000000

8

7

6

5

4

3

2

1

x

x

x

x

x

x

x

x

M

 96

cover. The α -cover inequality generalizes the GUB cover inequality, because the right-

hand-side of an α -cover inequality (6.8) can be larger than 1 and variables associated

with a GUB can be partitioned into two subsets: one is included in the α -cover; and the

other, in the complement of the α -cover (i.e., α
JJ \).

6.3. Generating αααα -cover inequalities

This section designs a polynomial-time procedure for generating an α -cover

inequality. Later, in Section 6.7, we use this procedure to find the most violated α -cover

inequality.

Notation. We introduce the following notation. Given an index subset JH ⊆ ,

HJH \= is the complement of H ; and the subset of variable indices that are

common to both gJ and H)(H is g
H
g JHJ ∩= ()

g

H

g JHJ ∩= ;

HG (
H

G) is the index set of GUBs, each of which is associated with one or

more variables in H (H).

Note that each GUB can be an element in HG and/or
H

G .

HH
G is the index set of GUBs that have one or more elements in both HG and

H
G .

HN (
H

N) is the index set of GUBs with no associated variables in H ()H ; that

is HNg∈ if ∅=H

gJ ()∅=∈ H

gH
JNg if .

Proofs of the propositions and lemmas that follow deal with the variables with

 97

the largest coefficients in set H

gJ ()H

gJ , so we define notation to denote such variables:

 for each HGg ∈ ,)(gj
H

 is chosen such that { }H

gj Jjagj
H

∈∈ :maxarg)(; (6.10)

 for each
H

Gg ∈ ,)(gj
H

 is chosen such that { }H

gj Jjaj
H

∈∈ :maxarg . (6.11)

For each
HH

Gg ∈ , if 1)(=gj
H

x and is subsequently replaced by 1)(=gjH
x , the

left-hand-side of the
≥KPG knapsack constraint changes in value by

)()()(gjgjgj
HHH

aaa −=
⌣

. (6.12a)

Analogously, since ∅=
HH GG ∩ , for each HGg ∈ , we define

)()(gjgj aa
H

=
⌣

. (6.12b)

Algorithm COVER(D, α) takes a non-empty index set JD ⊆ and parameter α

as inputs, and produces an α -cover. We assume that { } α≥∈∑ ∈
Xxx

Dj j :min ;

otherwise, variables in D do not yield an α -cover inequality that is valid for)(conv X .

Each iteration of COVER(D, α) requires a problem of the following form to be

solved for a given DH ⊆ :

{ }XxxZ
Hj jH ∈= ∑ ∈

:min* . (6.13)

Proposition 6.6 prescribes an optimal solution to Problem (6.13). It states that, if starting

with 0=jx for all Jj ∈ , then fixing the variable with the largest ja value in each

H
Gg∈ to 1 (i.e., 1)(=gj

H

x) satisfies the knapsack constraint in (6.13), 0* =HZ ;

otherwise, we must increase *

HZ by fixing one or more variables in H to 1. The

minimum number of variables in H that must be fixed to 1 can be found by

 98

successively fixing the variable)(gjH
x with the largest)(gjH

a
⌣

value to 1 and, for
H

Gg ∈ ,

the corresponding 0)(=gj
H

x until feasibility is achieved.

Proposition 6.6. Let HGt = . Sort the indices in HG in non-increasing order of their

)(gjH
a
⌣

 values and re-number, so that)()2()1(... tjjj HHH
aaa
⌣⌣⌣

≥≥≥ . Then, with 1)(=gj
H

x

for
H

Gg ∈ ,

{ }{ }∑∑ ∈=
−≥∈=

H HGg gj

k

g gjH abatkZ
H

)(1)(

* :...1minarg
⌣

. (6.14)

Proof. We recast Problem (6.13) as a knapsack problem without GUBs by considering

two cases. In Case 1, we show that an optimal solution to (6.13) exists in which, for

each
H

Gg ∈ , 0=jx for all H

gJj ∈ , except for variable)(gj
H

x . Similarly, in Case 2,

we show that for each HGg ∈ , 0=jx for all H

gJj ∈ , except for variable)(gjH
x . We

arbitrarily break ties while selecting)(gjH
x and)(gj

H

x .

Case 1. Consider
H

Gg ∈ . The objective function coefficient of each jx H

gJj ∈ is 0 in

(6.13) and jgj aa
H

≥)(for each H

gJj ∈ by (6.11). Therefore, we prefer to fix

)(gj
H

x to 1 instead of jx { })(\ g
H

jJj
H

g∈ . Thus, an optimal solution to (6.13)

exists in which 1)(=+∑ ∈ gjJj j
H

H
g

xx for each
H

Gg ∈ and other associated

variables are fixed to 0; i.e., 0=jx for { })(\ g
H

jJj
H

g∈ .

Case 2. Consider HGg ∈ . The objective function coefficient for each jx Hj ∈ is 1 in

(6.13) and jgj aa
H

≥)(for each H

gJj ∈ by (6.10). Hence, we prefer to fix)(gjH
x

 99

to 1 instead of jx { })(\ g
H

jJj
H

g∈ . Thus, in all cases, an optimal solution to

(6.13) exists such that

1)()(=+ gjgj
HH

xx for
HH

Gg ∈ and 1)(≤gjH
x for HNg ∈ .

After fixing 0=jx for { } { }∪∪
H

H
H

H GgGg
gg jjJj

∈∈
∈)()(\\ , and 1)(=gjx for

HNg ∈ , and replacing each GUB
HH

Gg ∈ with an equality constraint, (6.13) becomes

∑ ∈
=

Hj jH xZ min*

 s.t. ∑∑∑ ∈∈∈
−≥+

HHH HHH HH Ng gjGg gjgjGg gjgj abxaxa)()()()()((6.15)

 1)()(=+ gjgj
HH

xx
HH

Gg ∈ (6.16)

 }1,0{)(∈gjH
x HGg ∈

 }1,0{)(∈gj
H

x
HH

Gg ∈ .

We use (6.16) to replace each)(gj
H

x in (6.15) with ()(1 gjH
x−). Then, (6.15) becomes

∑∑∑∑ ∈∈∈∈
−−≥−

HH HHHH
HHH HH Gg gjNg gjGg gjgjGg gjgj aabxaxa)()()()()()(. (6.15a)

Considering
HHHH GNG ∪= and

HHHH
GNG ∪= , (6.15a) can re-expressed as

∑∑∑∑ ∈∈∈∈
−≥−+

H HH
HH HHH

HH
H

HH Gg gjgjGg gjGg gjgjNg gjgj abxaxaxa)()()()()()()(. (6.15b)

Replacing (6.15) with (6.15b), Problem (6.13) becomes

∑ ∈
=

Hj jH xZ min*

 s.t. ∑∑∑ ∈∈∈
−≥−+

H HH
HH HH

H
HH Gg gjgjGg gjgjNg gjgj abxaaxa)()()()()()()(

(6.17)

 }1,0{)(∈gjH
x HGg ∈ .

 100

After invoking (6.12) to set)()(gjgj aa
H

=
⌣

 for
H

Ng ∈ in the first summation in (6.17),

)()()(gjgjgj
HHH

aaa −=
⌣

 for
HH

Gg ∈ in the second summation in (6.17), and recognizing

that
HHHH GNG ∪= , Problem (6.13) becomes

{ }
HgjGg gjGg gjgjHj jH GgxabxaxZ

H
H HH HH

∈∈−≥= ∑∑∑ ∈∈∈
}1,0{;:min)()()()(

* ⌣
.

Now, observe that if GUBs in HG are sorted in non-increasing order of their)(gjH
a
⌣

values and re-numbered, *

HZ is given by the smallest integer tk ≤ for which

∑∑ ∈=
−≥

H HH Gg gj

k

g gj aba)(1)(

⌣
, establishing (6.14). ■

Proposition 6.6 has practical significance. It implies that if the GUBs in HG are

sorted in non-increasing order of their)(gjH
a
⌣

 values, *

HZ can be found in ()GO time.

Algorithm COVER(D, α) begins with DH = such that GUBs in DG (i.e., HG) are

sorted in non-increasing order of their)(gjD
a
⌣

 (i.e.,)(gjH
a
⌣

) values. At each iteration, it

fixes a different
j

x ˆ Hj ∈ˆ to 1 and then determines if () α>jZ H
ˆ* or not, where

() { }1,:minˆ
ˆ

* =∈= ∑ ∈ jHj jH xXxxjZ . (6.18)

Let ĝ be such that gJj ˆ
ˆ ∈ . Since sorting the GUBs each time one variable is fixed may

be time consuming, Corollary 6.7 demonstrates how to determine if () α>jZ H
ˆ* or not in

constant time.

Corollary 6.7. Consider Problem (6.18). Assume that GUBs are sorted in HG in non-

increasing order of their)(gjH
a
⌣

 values and)(gj
H

a is set to 0 if
H

Ng ∈ . Let

 101

 { }α,,1 ...=+
HG

 and






>+−+−

≤+−
=

α

α

αα gaaaaw

gaaw
jb

jgjjjH

jgjH

HHH

H

ˆ if

ˆ if
)ˆ(

ˆ)ˆ()()(

ˆ)ˆ(

 ,

where ∑∑ ++ ∈∈
+=

HH HH H GGg gjGg gjH aaw
\)()(. (6.19)

If)ˆ(jbb > , then () α>jZ H
ˆ* .

Proof. Let x̂ be such that 1ˆ
)(=gjH

x for +∈ HGg , 1ˆ
)(=gj

H

x for +∈ HH GGg \ , and

0ˆ =jx for each remaining variable. The sum of coefficient values (i.e., ja) associated

with x̂ is given by Hw (6.19). Now, suppose that a solution x exists in which 1ˆ =
j

x

and exactly α variables from H are fixed to 1. Then, by Proposition 6.6, an x exists in

which exactly)1(−α variables)(gjH
x with the largest)(gjH

a
⌣

 values are fixed to 1. The

sum of coefficient values associated with x can be calculated based on two cases:

+∈ HGĝ (i.e., α≤ĝ) and +∈ HH GGg \ (i.e., α>ĝ).

Case 1. If α≤ĝ , then x can be obtained from x̂ by replacing 1ˆ
)ˆ(=gjH

x with 1ˆ =
j

x .

Therefore,
jgjHxJj j aawa

H
ˆ)()(1 +−=∑ ∈
.

Case 2. If α>ĝ , then x can obtained from x̂ by replacing 1ˆ
)(=αHj

x with 1ˆ
)(=α

H
jx ;

and 1ˆ
)ˆ(=gj

H

x with 1ˆ =
j

x . Therefore,

jgjjjHxJj j aaaawa
HHH

ˆ)ˆ()()()(1 +−+−=∑ ∈ αα .

By Cases 1 and 2, if)ˆ(jbb ≤ , x is feasible and () α≤jZ H
ˆ* ; otherwise () α>jZ H

ˆ* . ■

After giving a statement of COVER(D, α) in pseudo code, we give an intuitive

 102

description of each step.

COVER(D, α):

 Input : Set D and parameter α

 Output: Set αJ

(1a) DH ← , ∅←'D and compute Hw using (6.19).

(2a) for each
H

Gg ∈ and H

g
Jj ∈ do

(3a) if ()(gjj
H

aa ≤) then }{\ jHH ← and }{'' jDD ∪←

(4a) while D'D ≠

(5a) }{minargˆ
'\ jDHj aj ∈← , select ĝ such that gJj ˆ

ˆ ∈ , }ˆ{'' jDD ∪← and

(6a) if ()ˆ(jbb >)then

(7a) { }jHH ˆ\← , { }jJJ
H

g

H

g
ˆ\ˆˆ ← ,)ˆ(gjprev H

aa
⌣⌣

← , and
jgjgj aaa

H ˆ)ˆ()ˆ(−←
⌣

(8a) if (
H

Gg <ˆ and)1ˆ()ˆ(+< gjgj HH
aa
⌣⌣

) then

(9a) 1ˆ~ +← gg , and H

gprev JJ ˆ←

(10a) while (HGg ≤+ 1~ and)1~()ˆ(+< gjgj HH
aa
⌣⌣

) do 1~~ +← gg

(11a) for 1ˆ +← gg to g~ do

(12a) H

g

H

g JJ ←−1 ,)()1(gjgj HH
aa
⌣⌣

←− and)()1(gjgj
HH

aa ←−

(13a) prev

H

g JJ ←~ ,
jgjgj aaa

H ˆ)ˆ()~(−←
⌣

 and
jgj aa

H
ˆ)~(←

(14a) if (α>ĝ) then)~(gjprevHH H
aaww
⌣⌣

−+←

(15a) else if (α≤ĝ and α>g~) then)(ˆ)~(αHjjgjHH aaaww
⌣

++−←

(16a) else H
gJDD ˆ'' ∪←

(17a) HJ ←α .

Step (1a) initializes the algorithm with DH = and ∅='D , where 'D is the index set of

variables considered during previous iterations. Lemma 6.8 establishes that, if gJj ∈ is

not in α
J , then α

J does not contain the index of any variable ix
g

Ji ∈ whose

coefficient ia is less-than-or-equal-to coefficient ja of jx . Hence, if)(gjj
H

aa ≤ for

H

gJj ∈ , we remove j from H (Steps (2a)-(3a)). If)()(gjgj aa
H

= , we remove all H

gJj ∈

from H . Therefore,)()(gjgj
H

= for the GUBs associated with the remaining

 103

variables in H .

Lemma 6.8. Given ĝ , consider variable
j

x ˆ such that gJj ˆ
ˆ ∈ .

(i) If αJj ∈ˆ , then α
J contains all indices in { }

jigj
aaJiR ˆˆˆ : ≥∈=

≥
; i.e.,

jj
RRJ ˆˆ ≥≥

=∩
α .

(ii) If αJj ∉ˆ , then α
J does not contain any index in { }

jigj
aaJiR ˆˆˆ : ≤∈=

≤
;

i.e., ∅=
≤ j

RJ ˆ∩
α .

Proof. (i) Observe variable 'jx such that α
JJj g \' ˆ∈ . By condition (6.6), each Xx ∈

in which 1' =jx requires at least α additional variables from α
J to be fixed to 1.

Hence, no gJJH ˆ1 \α⊂ exists such that 11 −= αH ; fixing 1' =jx , 1=jx for 1Hj ∈ ,

1)(=gj
H

x for
1

\ HH GGg ∈ , and 0=jx for each remaining variable gives a feasible

solution with respect to X . Thus, for any gJJH ˆ1 \α⊂ such that 11 −= αH ,

{ }
baaa

gGg gjjHj j
H H

<++ ∑∑ ∈∈ ˆ\)('
1 11

. (6.20)

By way of contradiction, suppose that, for αJj ∈ˆ , αJj ∉' exists such that

j
Rj ˆ'

≥
∈ . Condition (6.7) stipulates that an Xx ∈ˆ exists in which 1ˆ =jx and exactly

1−α variables from gJJ ˆ\α are fixed to 1. Define ()
gJJxJH ˆ

1

2 \)ˆ(α
∩= . Since

exactly 1−α variables from gJJ ˆ\α are fixed to 1, 12 −= αH . Furthermore, since

Xx ∈ˆ ,

{ }
baaa

gGg gjjHj j
H H

≥++ ∑∑ ∈∈ ˆ\)(ˆ
2 22

, (6.21)

 104

Since
jj aa ˆ' ≥ , we obtain

{ }
baaa

gGg gjjHj j
H H

≥++ ∑∑ ∈∈ ˆ\)('
2 22

 by replacing
j

a ˆ with

'ja in (6.21); contradicting (6.20). Hence,
jj

RRJ ˆˆ ≥≥
=∩

α .

(ii) A similar argument can be used to prove that ∅=
≤ j

RJ ˆ∩
α . ■

 At each iteration (Steps (5a)-(16a)), we choose
j

x ˆ such that { }
jDHj aj '\minargˆ

∈∈ and

ĝ such that gJj ˆ
ˆ ∈ (Step 5a). We remove ĵ from H if we need to fix at least α

variables from { }jH ˆ\ to 1 in order to satisfy
{ }∑ ∑∈ ∈

−≥
gGg jJj jj abxa

gˆ\ ˆ (Steps (6a)-

(7a)); i.e., () α>jZ H
ˆ* .

In order to determine if () α>jZ H
ˆ* or not in constant time at each iteration, we

must keep GUBs in HG sorted (and re-numbered) in non-increasing order of their)(gjH
a
⌣

values. If HGg =ˆ , the sorted order of the GUBs in HG does not change by removing

ĵ from H . However, if HGg <ˆ , after removing ĵ from H , the value of)ˆ(gjH
a
⌣

 must

be reduced to
jgj aa

H ˆ)ˆ(− (Step (7a)). Therefore, the order of GUBs in HG may change.

In this case, we can utilize the following scheme to update the order of GUBs in HG :

 if
)(ˆ)ˆ(

HHH Gjjgj aaa
⌣

>− , let { }ggaaaGgg gjjgjH HH
ˆ,:maxarg~

)(ˆ)ˆ(≠<−∈∈
⌣

;

 otherwise , let HGg =~ ;

decrease the indices of GUBs in []gg ~,1ˆ + by 1; change the previous index of GUB ĝ to

g~ and update the value of Hw and the attributes of relevant GUBs: H

gJ ,)(gjH
a
⌣

, and

)(gj
H

a , accordingly (Steps (8a)-(15a)).

 105

Lemma 6.8 asserts that if gJj ∈ is in α
J , then α

J contains the index of each

variable ix
g

Ji ∈ whose coefficient (i.e., ia) is greater-than-or-equal-to coefficient ja

of jx . Hence, whenever we do not remove ĵ from H , we keep all gJj ∈ with
jj aa ˆ≥

in H and we do not consider them in subsequent iterations (Step (16a)). We repeat

Steps (5a)-(16a) until all variables have been processed (i.e., D'D =).

The set H obtained at Step (17a) of COVER(D, α) satisfies conditions (6.6) and

(6.7), so that it is an α -cover of X . The set H satisfies (6.6), because Step (6a)

removes index H

gJj ˆ
ˆ ∈ from H only if fixing 1ˆ =

j
x requires at least α additional

variables from α
J to be fixed to 1 (i.e., if () α>jZ H

ˆ*). The set H satisfies (6.7), since

we check each variable in D and remove each ĵ from H if { }() α≥)(ˆ\ 1
xJjH ∩ for all

Xx ∈ (Steps (6a)-(7a)).

We use a numerical example from Sherali and Lee (1995) to demonstrate

COVER(D, α) in application.

Example 6.3 (Sherali and Lee 1995).









≤++≤++≤++

≥++++++++∈
=

1,1,1

,4223:

987654321

987654321

9

2
xxxxxxxxx

xxxxxxxxxBx
X E .

COVER(D={1,…,9}, α =2) requires the following five iterations:

 (1a) { }9...1=H , ∅='D

 First iteration:

(5a) 1ˆ =j , 1ˆ =g , { }1'=D

(7a) bb <= 3)1(

(8a) { }9,...,2=H

 Second iteration:

(5a) 2ˆ =j , 1ˆ =g , { }2,1'=D

(7a) bb <= 3)2(

(8a) { }9,...,3=H

 106

 Third iteration:

(5a) 4ˆ =j , 2ˆ =g

 { }4,2,1'=D

(7a) bb ≥= 4)4(

(15a) { }6,5,4,2,1'=D

Note: { }9,...,3=H

 Fourth iteration:

(5a) 7ˆ =j , 3ˆ =g ,

 { }7,6,5,4,2,1'=D

(7a) bb ≥= 4)7(

(15a) { }9,...,4,2,1'=D

Note: { }9,...,3=H

 Fifth iteration:

(5a) 3ˆ =j , 1ˆ =g ,

 { }9,...,1'=D

(7a) bb ≥= 5)3(

(15a) { }9,...,1'=D

Note: { }9,...,3=H

Since D'D = , STOP. { }9,...,3== HJ α .

Note that Sherali and Lee (1995) show that 29876543 ≥++++++ xxxxxxx is a

facet of 2EX .

Proposition 6.9. Algorithm COVER(D, α) is of complexity)(
2

DGO + .

Proof. Step (1a) requires)(GDO + time. Together, Steps (2a)-(3a) require |)(| DO

time. Each iteration (i.e., Steps (5a)-(16a)), requires)(DO time, (Steps (6a)-(8a) and

Steps (14a)-(15a) each require constant time; Steps (5a), (9a), (10a), and (16a) each - and

Steps (11a)-(13a) collectively - require)(DO time). Since Step (4a) requires repeating

Steps (5a)-(16a) in)(DO times, Steps (4a)-(16a) collectively require)(
2

DO time. Step

(17a) requires)(DO time. Thus, the overall time complexity of COVER(D, α) is

)3(
2

DDGO ++ , which reduces to)(
2

DGO + . ■

Remark 6.1. We assume that Algorithm COVER(D, α) begins with DH = whose

associated GUBs HG (i.e., DG) are ordered in non-increasing order of their)(gjH
a
⌣

values. Consider the case in which GUBs in HG are not sorted in order. By including a

new step before Step (4a), we can order them in |)|log|(| DDO time (Cormen et al.

 107

1990). Therefore, even if COVER(D, α) begins with an un-ordered HG , it requires

)(
2

DGO + time. ■

6.4. Non-dominated inequalities for ≥≥≥≥KPG

In this section we present a polynomial-time procedure to strengthen an α -

cover. Consider a pair of inequalities for non-empty sets JJJ ⊆",' ,

 α ′≥∑ ′J
jx (6.22)

 α ′′≥∑ ′′J
jx . (6.23)

Glover and Sherali (2008) say that (6.22) dominates (6.23) if it implies (6.23). Then,

they assert that (6.22) dominates (6.23) over the unit hypercube (i.e., }10:{ ≤≤ xx) if

either

JJ ′′⊆′ and αα ′′≥′ (with at least one relation strict), (6.24)

or { }jJJ ∪′′=′ for some JJj ′′∈ \ and 1+′′=′ αα . (6.25)

Moreover, they say that, for a given J ′ and α ′ , inequality (6.22) is non-dominated if

1'≥α and if there does not exist another valid inequality that dominates it.

Let (6.22) be a non-dominated, valid inequality for)(conv X . Since (6.22) is

valid for)(conv X , it satisfies condition (6.6). Furthermore, (6.22) satisfies (6.7) by

condition (6.24). Since non-dominated inequality (6.22) satisfies (6.6) and (6.7), it is an

'α -cover inequality by Definition 6.1. Proposition 6.11 shows that an α -cover

inequality is non-dominated if a simple condition is satisfied. We first introduce the

 108

following notation.

Notation. To facilitate presentation, we simplify the notation used in Section 6.3 to

denote the case in which α
JH = . To avoid superscripts on subscripts, we use α (α)

instead of α
J (α

J): αα J
GG =: and αα J

NN =: for α
JH = ;

 αα J
GG =: and αα J

NN =: for α
JH = ;

 αααα JJ
GG =:

 g

J

gg JJJJ ∩
αα α

==: and g

J

gg JJJJ ∩
αα α

==: for Gg ∈ .

We know by Lemma 6.8 that)()(gjgj aa
H

= for α
JH = .

We also eliminate subscripts H (i.e., α
J) and H (i.e., α

J) on)(gj
H

 and)(gjH
a :

)(:)(gjgj
H

= { }()α
gj Jjagj ∈∈ :maxarg)(i.e., for αGg ∈ ;





∈−

∈
=

αα

α

Gaa

Nga
a

gjgj

gj

gj gfor

for

)()(

)(

)(

⌣
.

Let kg be the index of the GUB in αG with the th
k largest)(gja

⌣
 (ties are broken

 arbitrarily), i.e.,)()()(......
1 tk gjgjgj aaa

⌣⌣⌣
≥≥≥≥ , where αGt = .

Finally, we define new notation that we use in Sections 6.4-6.6:

Let { }αα ggG ,...,1=+ be the index set of GUBs with the α largest)(gja
⌣

 values; and

 +− = ααα GGG \ (+− = ααα GGG \) be the subset of αG (αG) that does not contain

any index in +
αG . By the definition of α -cover and Proposition 6.6, setting 1)(=gjx for

+∈ αGg , 1
)(

=
gj

x for −∈ αGg , and 0=jx for each remaining variable gives a feasible

 109

point of X (i.e.,)(conv X). We denote this point using

∑∑ −+ ∈∈
+=

αα

δ
Gg gjGg gj ee

)()(0 ,

where je is the unit vector that has 1 in the row corresponding to variable jx and 0 in

each other row. However, no variable associated with αNg ∈ is in α
J ; therefore, we

assume that 0=
)(gj

e for αNg ∈ . We also use w to denote the summation of the

knapsack coefficients (i.e., ja) corresponding to the variables in)(0

1 δJ ; i.e.,

∑∑ −+ ∈∈
+=

αα Gg gjGg gj aaw
)()(. (6.26)

By Definition 6.1, for each αJj ∈ , an Xx ∈ exists such that)(1 xJj ∈ and

αα =)(1
xJJ ∩ . We now present Lemma 6.10, which shows how such an x can be

obtained from 0δ for each α
gJj ∈ based on: +∈ αGg and −∈ αGg . We use each point

defined in the subsequent propositions.

Lemma 6.10. (i) For +∈ αGg and α
gJj ∈ , the point jgj ee +−=)(0

ˆ δδ , which is

obtained by replacing 1)(=gjx in 0δ with 1=jx , is a feasible point

of X .

 (ii) For −∈ αGg and α
gJj ∈ , the point jgjgjgj eeee +−+−=

)()()(0
ˆ

αα
δδ ,

which is obtained by replacing 1)(=
αgjx with 1

)(
=

αgj
x and

replacing 1)(=gjx with 1=jx in 0δ is a feasible point of X .

Proof. Both (i) and (ii) follow from Definition 6.1 and Proposition 6.6. ■

Proposition 6.11. An α -cover inequality is non-dominated if

 110

baw
gj

≥−
)(

 for each αNg ∈ , (6.27)

 where w is defined as in (6.26).

Proof. Suppose that a given α -cover satisfies (6.27). We show that neither (6.24) nor

(6.25) can hold true; i.e., that we cannot find JJ ⊆' with 'α such that

α
JJ ⊂' and αα ≥' (6.28)

or { }'jJJ ∪
α=′ for some αJj ∈' and 1+=′ αα . (6.29)

First, we show that we cannot find 'J that satisfies (6.28). For any α
JJ ⊂' , we

have, by condition (6.7), that an Xx ∈ exists such that α<)(' 1
xJJ ∩ , so that

1' −≤ αα . Hence, 'J cannot satisfy (6.28).

We now show that we cannot find a 'J that satisfies (6.29). Let '' gJj ∈ . Each

αJj ∈' can be related to one of three disjoint sets: ()+∈ ααα GGg ∩' , ()−∈ ααα GGg ∩' , or

αNg ∈' . Each Cases 1-3, respectively, shows that we cannot obtain 'J that satisfies

(6.29), by including any '' gJj ∈ that is related with +
ααα GG ∩ , −

ααα GG ∩ , or αN to α
J .

Case 1: Consider ()+∈ ααα GGg ∩' and choose a α
'' gJj ∈ . Let { }'jJJ ∪

α=′ . Since 0δ is

in X and αδ =')(0

1 JJ ∩ , { } α≤∈= ∑ ∈
XxxZ

Jj jJ :min
'

*

' . Thus, in Case 1,

αα ≤′ .

Case 2: Consider ()−∈ ααα GGg ∩' and choose a α
'' gJj ∈ . Let { }'jJJ ∪

α=′ . By Lemma

6.10,)'()'()()(0
ˆ

gjgjgjgj eeee +−+−=
αα

δδ is in X . Since αδ =')ˆ(1
JJ ∩ ,

α≤*

'JZ . Thus, in Case 2, αα ≤′ .

 111

Case 3. Consider αNg ∈' and choose a α
'' gJj ∈ . Let { }'jJJ ∪

α=′ . By replacing

1
)(

=
gj

x with 0
)(

=
gj

x in 0δ , we obtain
)'(0

ˆ
gj

e−= δδ . By condition (6.27), δ̂

is in X . Since αδ =')ˆ(1
JJ ∩ , α≤*

'JZ . Hence, in Case 3, αα ≤′ .

By Cases 1-3, for each αJj ∈' , αα ≤′ , so we cannot find a 'J that satisfies (6.29). ■

Intuitively, Proposition 6.11 says that, for each GUB (i.e., αNg ∈) that is not

associated with any variable in α
J , if a feasible solution x exists in which 0=jx for

all gJj ∈ and if the corresponding α -cover inequality is active at x , then the

corresponding α -cover inequality is non-dominated.

Definition 6.2. For a given α -cover, let αNgv ∈ be a GUB that violates (6.27) and

define)()(
vgjv awbgb +−= . Let { })(:)(vjgv gbaJjgR

v
≥∈= be the index set of

variables jx
vgJj ∈ each of which has coefficient ja that is greater-than-or-equal-to

)(vgb . An extension of the α -cover, denoted by)(αE , is defined as

)()(vgRJE ∪
αα = .

Note that ∅≠)(vgR ; otherwise,)(conv X is empty and
≥KPG would have no

feasible solution. Also, note that, since αNg v ∈ , 1)(=
vgjx in 0δ and)()(vv gRgj ∈ .

Proposition 6.12. For a given α -cover, α
J , the inequality defined as

1
)(

+≥∑ ∈
α

αEj jx (6.30)

is an)1(+α -cover inequality. Moreover, (6.30) dominates the α -cover

inequality for which it is an extension.

 112

Proof. By way of contradiction, we first show that (6.30) is valid for)(conv X . Suppose

that Xx ∈ˆ exists such that αα ≤)ˆ()(1 xJE ∩ . In order to show that this is impossible,

we consider two cases: 0ˆ =jx for all)(vgRj ∈ and 1ˆ
)(=

vgjx , where vg and)(vgR are

defined as in Definition 6.2.

Case 1.1. Let 0ˆ =jx for all)(vgRj ∈ . Let XX ⊆α be the set of feasible points x

such that αα =JxJ ∩)(1 . By Proposition 6.6,
)(\)(1

v
vg

gjJxJj j awa −≤∑ ∈
 for

each α
Xx ∈ . Since vg violates (6.27) and)(αgba j < for)(\ vg gRJj

v
∈ ,

baaw jgj v
<+−)(for each)(\ vg gRJj

v
∈ . Hence, baa jJxJj j

vg

<+∑ ∈ '\)(1 for

each α
Xx ∈ and for each)(\' vg gRJj

v
∈ . Thus, there is no Xx ∈ˆ in Case 1.1

such that αα ≤)ˆ()(1 xJE ∩ .

Case 1.2. Let 1ˆ
)(=

vgjx . Suppose that αα ≤)ˆ()(1 xJE ∩ . Since)()(vgRJE ∪
αα =

and 1)ˆ()(1 =xJgR v ∩ , 1)ˆ(1 −≤ αα xJJ ∩ must hold. However, there can be

no such x̂ , since, if there were, { } 1:min −≤∈∑ ∈
αα Xxx

Jj j contradicting the

feasibility of an α -cover inequality. Hence, there is no Xx ∈ˆ in Case 1.2 such

that αα ≤)ˆ()(1 xJE ∩ .

Together, Cases 1.1 and 1.2 show that (6.30) is valid for)(conv X ; consequently,

)(αE satisfies condition (6.6).

 In order to prove that)(αE is an)1(+α -cover, we need to show that it also

 113

satisfies condition (6.7); that is, for each)(ˆ αEj ∈ , an Xx ∈ exists such that)(ˆ 1 xJj ∈

and 1)()(1 += αα xJE ∩ .)(αE consists of two disjoint sets:)(vgR and α
J .

Case 2.1: Let)(ˆ
vgRj ∈ and define

jgj eex
v ˆ)(0

ˆ +−= δ . It follows from)(vj gba ≥ for

)(vgRj ∈ and)()(
vgjv awbgb +−= that baaw jgj v

≥+−)(. Hence,

1)ˆ()(1 += αα xJE ∩ for Xx ∈ˆ .

Case 2.2: Let αJj ∈ˆ . By condition (6.7) and by Definition 6.2, for each αJj ∈ˆ , an

Xx ∈ˆ exists such that αα =)ˆ(1
xJJ ∩ and 1)()(1 =xJgR v ∩ . Thus, Xx ∈ˆ

for which 1)ˆ()()ˆ()ˆ()(111 +=+= αα α
α

xJgRxJJxJE ∩∩∩ .

Cases 2.1 and 2.2 show that)(αE satisfies (6.7). Hence, it is an)1(+α -cover.

In order to prove that (6.30) dominates the associated α -cover inequality, we

need to show that (6.30) implies it. By partitioning)(αE into two disjoint sets,)(vgR

and α
J , (6.30) can be written as ()∑∑ ∈∈

−+≥
)(

1
vgRj jJj j xx αα . Since 1

)(
≤∑ ∈ vgRj jx ,

(6.30) dominates α -cover inequality (6.8). ■

Proposition 6.12 states that, for a given α
J , if a GUB vg that violates condition

(6.27) exists, we obtain an)1(+α -cover by forming the union of)(vgR and α
J . The

resulting)1(+α -cover yields an inequality that dominates the associated α -cover

inequality. Therefore, using the following procedure, we can obtain a non-dominated

inequality.

 114

Step 1. Given an α -cover, α
J . Find a GUB vg that violates condition (6.27).

If there is no such a GUB, terminate; the corresponding α -cover

inequality is non-dominated. Otherwise, go to Step 2.

Step 2. Determine)(vgR . Let)(vgRJJ ∪
αα ← and 1+← αα . Go to Step 1.

Observe that for a given α
J and with the indices of the GUBs in αG are re-numbered in

non-increasing order of their)(gja
⌣

 values, Steps 1 and 2 together require ()JGO time.

Consider an iteration. Defining a set of violated GUBs and determining)(vgR requires

()GO and ()JO time, respectively. After forming the union of)(vgR and α
J (i.e.,

)()(vgRJE ∪
αα =), we need to order the GUBs associated with)(αE in non-

increasing order of their)(gja
⌣

 values. This can be done in ()JO time using a procedure

similar to Steps (8a)-(13a) of COVER(D, α). Thus, each iteration requires ()JO time

and there are ()GO iterations. Note that since GUBs that violate condition (6.27)

depend on the variables in α
J , the non-dominated inequality that we obtain depends on

the sorted order of the violated GUBs considered.

Strong minimal covers for ≤KP are non-dominated extensions of minimal covers

(Balas 1975, Sherali and Lee 1995). Similarly, we define strong α -covers as follows:

Definition 6.3. An α -cover is a strong α -cover

 (i) if *αα = or

 (ii) there exists no 'α -cover that strictly contains α
J and αααα −=− '' GG .

 115

6.5. Facets of)(conv X

In this section, we define the necessary and sufficient conditions for an α -cover

inequality (6.8) to be a facet of)(conv X . First, we need to establish Lemma 6.13,

which shows that αG comprises indices of at least)1(+α GUBs.

Lemma 6.13. 1+≥ ααG .

Proof: By condition (6.6), αα ≥G . Suppose that αα =G . Then, 1=∑ ∈ α
gJj jx for

each αGg ∈ and for each Xx ∈ . By Proposition 6.1, this contradicts Assumption 6.3,

which requires)(conv X to be full dimensional. Thus, αα >G . ■

Proposition 6.14. An α -cover inequality (6.8) is a facet of)(conv X if and only if

 baaw gjgj ≥+−
+)()(1α

⌣
 for each +∈ αGg (6.31)

 baw
gj

≥−
)(

 for each −∈ αGg . (6.32)

Proof: (⇒) We first prove the necessity of condition (6.31). Suppose that (6.8) is a

facet and baaw gjgj <+−
+)()(1α

⌣
 for +∈ αGg . This implies that 1=∑ ∈ gJj jx for each

Xx∈ such that αα =∑ ∈Jj
jx . By Proposition 6.1, this means that X does not contain

J affinely independent points at which (6.8) is tight. This contradicts our assumption

that (6.8) is a facet. The necessity of (6.32) can be proven using a similar argument.

(⇐)We prove that (6.8) is a facet by identifying J affinely independent points in X

for which (6.8) is active; i.e., 0δ , 1
gjδ for −∈ αGg and { })(\ gjJj g

α∈ , 2
gδ for −∈ αGg ,

 116

3
gjδ for −∈ αGg and { })(\ 1+∈ α

α gjJj g
, 4

gjδ for +∈ αGg and α
gJj ∈ , 5

gjδ for +∈ αGg ,

{ })(\ gjJj g

α∈ , and 6
gδ for +∈ αGg . Define points as follows

(i) ∑∑ −+ ∈∈
+=

αα

δ
Gg gjGg gj ee

)()(

0 ,

(ii) jgjgj ee +−=
)(0

1 δδ for each −∈ αGg and { })(\ gjJj g

α∈ ,

(iii)
)(0

2

gjg e−= δδ for each −∈ αGg ,

(iv) jgjgjgjgj eeee +−+−=
)()()(0

3

αα
δδ for each −∈ αGg and { })(\ 1+∈ α

α gjJj g
,

(v))()()(0

4

11 ++
+−+−=

αα
δδ gjgjjgjgj eeee for each +∈ αGg and α

gJj ∈ ,

(vi) jgjgj ee +−=)(0
5 δδ for each +∈ αGg and { })(\ gjJj g

α∈ ,

(vii))()()(0

6

11 ++
+−−=

αα
δδ gjgjgjg eee for each +∈ αGg .

Note that points (ii) and (iii) are feasible by condition (6.32); points (i), (iv) and

(vi), by Lemma 6.10; and points (v) and (vii), by condition (6.31).

To complete the proof we need to show that

{ } { }

{ }
066

)(\

5544

)(\

3322

)(\'

1100

1

=+++

+++

∑∑ ∑∑ ∑

∑ ∑∑∑ ∑

+++

−
+

−−

∈∈ ∈∈ ∈

∈ ∈∈∈ ∈

αα
α

α
α

α α
α

αα
α

δλδλδλ

δλδλδλδλ

Gg ggGg gjJj gjgjGg Jj gjgj

Gg gjJj gjgjGg ggGg gjJj gjgj

gg

gg

and

{ } { }

{ }
06

)(\

54

)(\

32

)(\'

10

1

=+++

+++

∑∑ ∑∑ ∑

∑ ∑∑∑ ∑

+++

−
+

−−

∈∈ ∈∈ ∈

∈ ∈∈∈ ∈

αα
α

α
α

α α
α

αα
α

λλλ

λλλλ

Gg gGg gjJj gjGg Jj gj

Gg gjJj gjGg gGg gjJj gj

gg

gg

requires that all 0λ , 1
gjλ , 2

gλ , 3
gjλ , 4

gjλ , 5
gjλ and 6

gλ values are zero.

Since, for each −∈ αGg and { })(\ gjJj g

α∈ , 1=jx in only one point (i.e., 1
gjδ);

 117

for each −∈ αGg and { })(\ 1+∈ α
α gjJj g

, 1=jx in only one point (i.e., 3
gjδ); for each

+∈ αGg and α
gJj ∈ , 1=jx in only one point (i.e., 4

gjδ); and for each +∈ αGg and

{ })(\ gjJj g

α∈ , 1=jx in only one point (i.e., 5
gjδ), it follows that all 1

gjλ , 3
gjλ , 4

gjλ and

5
gjλ values are 0.

Now, it is enough to consider only the remaining columns:

0662200 =++ ∑∑ +− ∈∈ αα

δλδλδλ
Gg ggGg gg and 0620 =++ ∑∑ +− ∈∈ αα

λλλ
Gg gGg g .

Since, for each +∈ αGg , 0)(=gjx in only one point (i.e., 6
gδ), so that 06 =gλ . In

the remaining columns (corresponding to points of form (i) and (iii)), since, for each

−∈ αGg , 0
)(

=
gj

x in only one point (i.e., 2
gδ), the corresponding 02 =gλ .

Since all 0λ , 1
gjλ , 2

gλ , 3
gjλ , 4

gjλ , 5
gjλ , and 6

gλ values are 0, 00 =λ . Thus, under

conditions (6.31) and (6.32), an α -cover inequality is a facet of)(conv X . ■

Consider an α -cover inequality. Intuitively, Proposition 6.14 says that, for each

GUB Gg ∈ , if an Xx ∈ exists in which 0=jx for gJj ∈ and if the corresponding α -

cover inequality is active at x , then the α -cover inequality is a facet of)(conv X .

Furthermore, Corollary 6.15 states that, in order to establish that a given α -cover

inequality is a facet, it is enough to check condition (6.31) only for the GUB +∈ αGg

with the largest)(gja value and (6.32) only for the GUB −∈ αGg with the largest
)(gj

a

value.

Corollary 6.15. If baaw gjgj ≥+−
+)()'(1α

⌣
 (6.33)

 118

and baw
gj

≥−
")(

, (6.34)

where { }+∈∈ αGgag gj :maxarg')(and { }−∈∈ αGgag
gj

:maxarg"
)(

, then

α -cover inequality (6.8) is a facet of)(conv X .

Proof. By condition (6.33), for each +∈ αGg such that)()'(gjgj aa ≥ ,

)()()()'(11 ++
+−≤+−≤

αα gjgjgjgj aawaawb
⌣⌣

.

Since)'()(gjgj aa ≤ for each +∈ αGg , baaw gjgj ≥+−
+)()'(1α

⌣
 for each +∈ αGg . Using a

similar argument, for each −∈ αGg , it can be shown that baw
gj

≥−
)(

. By Proposition

6.14, an α -cover inequality is a facet of)(conv X . ■

Let +⊆ αGV1 and −⊆ αGV2 be the index subsets of GUBs that violate conditions

(6.31) and (6.32), respectively. Proposition 6.17 states that, if a given α -cover

inequality is not a facet of)(conv X , it is a facet of)(conv))((conv XVX ⊂ , where

21 VVV ∪= ,

{ }



∈

∉
=

1

2

12

2
 if

 if
ˆ

VggV

VgV
V

αα

α

∪

{ }{ }.ˆfor 1,\for 1:)(2)(1 VgxxgVgxXxVX
gjJj jJj j

gg

∈=+∈=∈= ∑∑ ∈∈ αα α .

In)(VX , each GUB Vg ∈ is replaced with an equality constraint. Moreover, 0=jx

for 21

0 \)(MMVXj =∈ , where ∪ Vg gJM
∈

= α
1 and { }22

ˆ:)(VgM gj ∈= .

Lemma 6.16. ()() VVXJdVX −−==)()(convdim 0 .

Proof. This follows from Proposition 6.1. ■

 119

Proposition 6.17. α -cover inequality (6.8) is a facet of))((conv VX .

Proof. Not that α -cover inequality (6.8) is valid for))((conv VX , because (6.8) is valid

for)(conv X and)(conv))((conv XVX ⊂ . By identifying d affinely independent

points in)(VX for which (6.8) is active, we prove that (6.8) is a facet of))((conv VX .

Consider the points defined in the proof of Proposition 6.14:

(i) 0δ ; 1
gjδ for 2\VGg

−∈ α , { })(\ gjJj g

α∈ ;

 2
gδ for 2\VGg

−∈ α ; 5
gjδ for +∈ αGg , { })(\ gjJj g

α∈ ;

(ii) 3
gjδ for −∈ αGg , { })(\ 1+∈ α

α gjJj g
;

(iii) 4
gjδ for 1\ VGg

+∈ α , α
gJj ∈ ; 4

)(αα
δ

gjg
 if 1Vg ∈α ; and 6

gδ for 1\ VGg
+∈ α .

By Proposition 6.14, (i)-(iii) define d affinely independent points in)(VX . ■

Note that Proposition 6.17 is important, because we use it in Section 6.6 to show

that we can obtain facets from α -cover inequalities by a lifting procedure.

6.6. Lifting procedure

We now consider a lifting procedure that lifts a given α -cover inequality (6.8)

that is not already a facet. Sherali and Lee (1995) show that, in order to obtain a facet of

)(conv X using a lifting procedure, all of the variables associated with each GUB must

be lifted simultaneously. Therefore, our lifting procedure lifts sets of variables

1J ,..., gJ ,…, ||GJ sequentially and the variables associated with a GUB (i.e., gJ)

simultaneously. We start by defining some notation related to a given α -cover, α
J .

 120

For Gg ∈ , let

{ }gjJj jg JjxXxx ∈=∈= ∑ ∈
 allfor 0,:min αη (6.35)

and, for Jj ∈' , let

{ }1,:min '}'{\' =∈= ∑ ∈ jjJj jj xXxxαγ . (6.36)

Corollary 6.18. 1' −= αγ j for each α
Jj ∈' ; and αγ =

)(gj
 for each 2V̂g ∈ .

Proof. This follows from Lemma 6.10.

Proposition 6.19. (i) For a given α -cover, α
J ,

() ()αηαγηα −+≥−+∑∑ ∈∈ gJj jjgJJj j
gg

xx ~~
\ ~~

 Gg ∈~ (6.37)

is a family of valid inequalities for)(conv X .

 (ii) Moreover, (6.37) is a facet of ())(conv VX , where { }gVV ~\= .

Proof. (i) Each jx gJj ~∈ is either in
α
gJ ~ or in

α
gJ ~ . We prove that (6.37) is valid under

three cases: 1' =jx for
α
gJj ~'∈ ; 1' =jx for

α
gJj ~'∈ ; and 0=jx for all gJj ~∈ .

Case 1. For some
α
gJj ~'∈ , let 1' =jx . We know by Corollary 6.18, that 1−= αγ j for

α
Jj ∈ . After fixing 1' =jx and 1' −= αγ j in (6.37), we obtain

1
}'{\

−≥∑ ∈
αα

jJj jx . (6.38)

Since an α -cover inequality is valid for)(conv X , (6.38) is valid for)(conv X .

Case 2. For some
α
gJj ~'∈ , let 1' =jx . Then, (6.37) becomes

'\ ~ jJJj j
g

x γα ≥∑ ∈
,

which is valid by (6.36).

 121

Case 3. For all gJj ∈ , let 0=jx . Then, (6.37) becomes

gJJj j
g

x ~
\ ~

ηα ≥∑ ∈
,

which is valid by (6.35).

By Cases 1-3, (6.37) is valid for)(conv X .

(ii) In order to prove that (6.37) is a facet of ())(conv VX , if { }αgVg \~
1∈ ()2

ˆ~ Vg ∈ , we

need to find 1~ ++ α
gJd ()α

gJd ~+ affinely independent points for which (6.37) is active.

We identify affinely independent points based on whether g~ violates condition (6.31) or

(6.32); that is, if either 1
~ Vg ∈ or 2

~ Vg ∈ .

Case 1. Let 1
~ Vg ∈ . Consider the feasible points (i)-(iii) defined in Proposition 6.17.

Points (i) and (iii) satisfy (6.37) at equality, since 1−α variables from gJJ ~\α

and one variable from
α
gJ ~ are fixed to 1 at each of them and 1−= αγ j for

α
gJj ~∈ . If αgg ≠~ , (6.37) is active at points (ii), since)~(gjx and 1−α variables

from gJJ ~\α
 are fixed to 1 at each of them and 1)~(−= αγ gj ; otherwise, (6.37) is

active at (ii), since
)~(gj

x and α variables from gJJ ~\α
 are fixed to 1 at each of

them and αγ =
)~(gj

.

In order to prove that (6.37) is a facet of ())(conv VX , we define

additional points under two cases:

Case 1.1. If αgg ≠~ , we need to define 1~ +α
gJ more affinely independent points.

Let)(
)(

1

1)()~(

07 ~

k

g

k gjk gjgj eee −+−= ∑
+

+=

η

α
δδ

 122

 and)(
)(

1

1)()~(

07

k

j

k gjk gjjgjj eeee −++−= ∑
+

+=

γ

α
δδ for each

α
gJj ~∈ .

Cases 1.2. If αgg =~ , we need to define α
gJ ~ more affinely independent points;

that is, 7δ and 7
jδ for each { })~(\~ gjJj g

α∈ .

Points 7δ and 7
jδ for

α
gJj ~∈ are feasible by (6.35) and (6.36). Point 7δ

satisfies (6.37) at equality, since g~η variables from gJJ ~\α
 are fixed to 1. Each

7
jδ satisfies (6.37) at equality, since jγ variables from gJJ ~\α

 and jx are fixed

to 1. To show that these points are affinely independent, we need to show that

0

~

77771 =++∆ ∑ ∈ α δλδλ
gJj jj

 and 0
~

772 =++∆ ∑ ∈ α λλ
gJj j

,

 where

{ }

{ }

{ }

{ } ∑∑ ∑

∑∑ ∑

∑ ∑∑

∑ ∑

++

+

−
+

−

−

∈∈ ∈

∈∈ ∈

∈ ∈∈

∈ ∈

++

++

++

+=∆

1)(

1
1

12

2

66

)(

55

4

)(

4

)(

44

)(

3322

)(

11001

VGg ggGg gjJj gjgj

gVg gjggjgVGg Jj gjgj

Gg gjJj gjgjVGg gg

VGg gjJj gjgj

g

g

g

g

\\

\

\\

\ \

αα
α

α ααα
α

α α
α

α

α
α

δλδλ

δλδλ

δλδλ

δλδλ

∩

 and

{ }

{ }

{ }

{ } ∑∑ ∑

∑∑ ∑

∑ ∑∑

∑ ∑

++

+

−
+

−

−

∈∈ ∈

∈∈ ∈

∈ ∈∈

∈ ∈

++

++

++

+=∆

1)(

1
1

12

2

6

)(

5

4

)(

4

)(

32

)(

102

VGg gGg gjJj gj

gVg gjgVGg Jj gj

Gg gjJj gjVGg g

VGg gjJj gj

g

g

g

g

\\

\

\\

\ \

αα
α

α αα
α

α α
α

α

α
α

λλ

λλ

λλ

λλ

∩

implies that associated multipliers 0λ , 1
gjλ , 2

gλ , 3
gjλ , 4

gjλ , 5
gjλ , 6

gλ , 7λ , and 7
jλ

are zero.

Since for each Jj ˆ∈ , 1=jx in only one point (i.e., 7
jδ), it follows that

 123

all 07 =jλ . Since 0=jx for all gJj ~∈ in only one point (i.e., 7δ), 07 =λ .

According to Proposition 6.17, multipliers corresponding to remaining columns;

i.e., 0λ , 1
gjλ , 2

gλ , 4
gjλ , 5

gjλ , and 6
gλ , are zero. Hence, if 1

~ Vg ∈ , (6.37) is a facet

of ())(conv VX .

Case 2. Let 2
~ Vg ∈ . Consider the feasible points (i)-(iii) defined in Proposition 6.17.

Inequality (6.37) is active at points (i) and 3
gjδ for { }g~\−∈ αGg ,

{ })(\ 1+∈ α
α gjJj g

, since
)~(gj

x and α variables from gJJ ~\α
 are fixed to 1 at each

of them and αγ =
)~(gj

. Inequality (6.37) is active at
3
~jgδ for { })(\ 1~ +∈ α

α gjJj g
,

since one variable from jx { })(\ 1~ +∈ α
α

gjJj g and 1−α variables from gJJ ~\α

are fixed to 1 at each of them and 1−= αγ j for
α
gJj ~∈ . Inequality (6.37) is also

active at points (iii), since
)~(gj

x and α variables from gJJ ~\α
 are fixed to 1 at

each of them if 1
~

+≠ αgg ; otherwise,)~(gjx and 1−α variables from gJJ ~\α
 are

fixed to 1 at each of them. In order to prove (6.37) is a facet, we need to define

α
gJ ~ more affinely independent points. Let gg ~~ˆ ηη = if the order of g~ is greater-

than g~η ; otherwise, 1ˆ ~~ += gg ηη and, for each α
gJj ∈ . Similarly, let jj γγ =ˆ if

the order of g~ is greater-than 'jγ ; otherwise, 1ˆ += jj γγ . Let

∑ ≠+=

−+−= g

k kkggk gjgjgj eee
η

α
δδ

ˆ

~,1)()()~(

08)(

 ∑ ≠+=
−++−= j

k kkggk gjgjjgjj eeee
γ

α
δδ

ˆ

~,1)()()~(

08)(

 for each { })~(\~ gjJj g

α∈ .

 124

These points are feasible by definitions of g~η and jγ . Inequality (6.37) is active

at 8δ , since g~η variables from gJJ ~\α
 are fixed to 1. (6.37) is active at 8

jδ ,

since jx and jγ variables from gJJ ~\α
 are fixed to 1. Using an argument

similar to that used in Case 1, it can be shown that

 { }
0

)~(\

88881

~
=++∆ ∑ ∈ gjJj jj

g
α δλδλ and { }

0
)~(\

88882

~
=++∆ ∑ ∈ gjJj jj

g
α δλδλ

implies that associated multipliers 0λ , 1
gjλ , 2

gλ , 3
gjλ , 4

gjλ , 5
gjλ , 6

gλ , 8λ , and 8
jλ

are zero. Hence, if 2
~ Vg ∈ , (6.37) is a facet of ())(conv VX .

Since (6.37) is a facet of ())(conv VX in both Cases 1 and 2 (i.e., for 1
~ Vg ∈ and 2

~ Vg ∈),

the proof is complete. ■

Proposition 6.20. Let { }v
ggVV ,...,1

21 =∪ be arbitrarily ordered, where |||| 21 VVv += .

Let { } 21

1,...,)(VVggqV
q

∪⊆= , ∪)(
)(

qVg gJqJ
∈

= for vq ,...,1= , and ∅==)()(qJqV

for 0=q . For }1,...,0{ −∈ vq suppose that

0)()(\
ππα ≥+∑∑ ∈ qJj jjqJJ j xx

is valid for)(conv X and is a facet of ()))(\(conv qVVX . Consider step 1+q and

calculate

{ }11 0,:min)(
)()1(\

++ ∈=∈+= ∑∑ ∈+∈
qq

gjqJj jjqJJj jg
JjxXxxxq πη α ;

and, for each 1' +∈ qg
Jj , compute

{ }1,:min)(')()1(\' =∈+= ∑∑ ∈+∈ jqJj jjqJJj jj xXxxxq πγ α .

Then, inequality

 125

() ()00)()1(\
)()()(1

1
1 πηπγηπα −+≥−++ +

+
+∑∑∑ ∈∈+

qqqxx q
q

g

q
gJj jgqJj jjqJJ j (6.39)

is valid for)(conv X and is a facet of ()))1(\(conv +qVVX .

Proposition 6.20 can be proven by induction from inequality (6.37) and using the

argument in the proof of Proposition 6.19. Proposition 6.20 shows that if a given α -

cover inequality is not a facet for)(conv X , we can obtain a facet from it via the lifting

procedure. Using notation defined in Proposition 6.20, Proposition 6.21 states that, at

step q of the lifting procedure, it is enough to compute jγ for α
q

g
Jj ∈ if 1Vg

q ∈ and jγ

for { })(\ q

g
gjJj q

α∈ if 2V̂g
q ∈ .

Proposition 6.21. Let variables associated with GUB g be the lifted at step 1+q of the

lifting procedure. At step 1+q of the lifting procedure 1)1()(−−= qq qgj ηγ for α
gJj ∈ .

Moreover,)1()(
)(

−= qq qggj
ηγ if 2V̂g ∈ .

Proof. If 0=q , by Corollary 6.18, 1)(−= αγ qj for α
gJj ∈ and αγ =)(

)(
q

gj
 if 2V̂g ∈ .

Let q
g

ˆ be the GUB lifted at each step of { }qQq ,...,1ˆ =∈ . As an induction hypothesis

assume that, for each Qq ∈ˆ ,

1)2ˆ()1ˆ(1ˆ −−=− − qq qgj ηγ for α
q

g
Jj ˆ∈ (6.40)

)2ˆ()1ˆ(1ˆˆ
)(

−=− − qq qq ggj
ηγ if 2

ˆ
V̂g

q ∈ . (6.41)

By the induction hypothesis, lifting coefficients in (6.39) are

1)2ˆ()1ˆ(1ˆˆ +−−−= − qq qq ggj ηηπ for α
q

g
Jj ˆ∈

 126

 and)2ˆ()1ˆ(1ˆˆ −−−= − qq qq ggj ηηπ if 2

ˆ
V̂g

q ∈ .

We re-express)1(−qqg
η in (6.39) as

() () () ααηηηηηη +−++−−−+−−−=− −−−)0(...)3(()2(()2()1()1(1211 gggggg
qqqqq qqqqq .

Thus, 1)()()1(
21

Qqq
gQg gjQg gj +−−=+∑∑ ∈∈

αηππ ,

where },...,{ ||1 Q

Q ggG = , QGGQ ∩
+= α1 , and QGGQ ∩

−= α2 .

We now show that (6.40) and (6.41) are also true for 1ˆ += qq . We investigate g under

three cases: +∈ αGg , −∈ αGg , or αgg = . Since (6.39) is valid for)(conv X , we know

that 1)1()(−−≥ qq qgj ηγ for each α
gJj ∈ and)1()(

)(
−≥ qq qggj

ηγ if 2V̂g ∈ .

Case 1: Consider +∈ αGg . Let }g{11 ∪QQ =+ . By Lemma 6.10, for each α
gJj ∈ ,

jgj ee +−=)(01 δδ is feasible with respect to X . In 1δ , 11 =jδ , 1)(1 =gjδ for

++∈ 1\ QGg α , 1)(1 =gjδ for 1Qg ∈ , 1
)(1

=
gj

δ for 2Qg ∈ , 1
)(1

=
gj

δ for

2\ QGg −∈ α , and the remaining variables are zero. Therefore,

∑∑∑ ∈∈∈

++≤≤−− ++
211

)(1)()(1)(\)(1)(1)1(
Qg gjgjQg gjgjQGg gjjg

qqq δπδπδγη
α

 () () 1)1()1(1 11 −−=+−−+−−= qQqQ qq
gg

ηαηα

Therefore, for each α
gJj ∈ , (6.40) is true if +∈ αGg .

Case 2: Consider −∈ αGg . In Cases 1-2, we show that (6.40) and (6.41), respectively.

Case 2.1: Let α
gJj ∈ . Define jgjgjgj eeee +−+−=

)()()(02 αα
δδ in which 12 =jδ .

By Lemma 6.10, 2δ is feasible for X . Using an argument similar to that

 127

used in Case 1, 1)1()(−−≤ qq qgj ηγ and (6.40) is true if −∈ αGg .

Case 2.2: Consider)(gj . In 0δ , 1
)(0

=
gj

δ and

∑∑∑ ∈∈∈

++≤≤− +
211

)(0)()(0)(\)(0)()1(
Qg gjgjQg gjgjQGg gjjg

qqq δπδπδγη
α

 ())1()1(11 −=+−−+−= qQqQ qq gg
ηαηα .

Hence, (6.41) is satisfied if −∈ αGg .

Case 3: Let αgg = . By Case 1, (6.40) is true if αgg = . We now show that (6.41) is

true for αgg = . Choose a 1ˆ =
j

x such that α
gJj ˆ

ˆ ∈ and −∈ αGĝ and define

jgjgjgj eeee ˆ)ˆ()()(02 +−+−=
αα

δδ . Using an argument similar to previous cases,

(6.41) is satisfied if αgg = . ■

6.7. The separation problem

In this section, we devise a separation heuristic SepH to generate an α -cover

inequality (6.8) to separate a fractional optimal solution to a linear relaxation of ≥KPG ,

x , from)(conv X . Note that we would like to determine an index set α
J and a value of

parameter α for (6.8) that give an optimal solution to















∑ ∈∈≤≤

−
α

αα α
αα Jj

jJ
x

J
minmin *1

, (6.42)

where αJ is the set of all possible α -covers.

At each iteration SepH removes H from J . Then, it generates an α -cover

inequality from H (i.e., HJ \) using Cover(H ,α) for { }∑ ∈
∈=

Hj j Xxx :minα . If

 128

0<−∑ ∈
ααJj jx holds, x violates the α -cover inequality; so that, in order to generate

a violated α -cover inequality, the total sum of fractional values jx Hj ∈ should be

minimized. On the other hand, a non-trivial α -cover inequality can be generated if and

only if ba
H

HGg gj
<∑ ∈)(

 (i.e., 1>α). This follows from the fact that even if we fix

1
)(

=
gjH

a for Hg ∈ , we should set 1=jx for some Hj ∈ in order to get a feasible

solution to X . SepH uses theses facts along with the following ≤KPG , which is

parameterized according to the value of bb < , to determine the set of variables
b

H that

are removed from J .

() { }{ }∑ ∑∑∑∈ ∈∈∈
∈∈≤<=

≤Jj

n

Jj jJj jjjRj j zGgzbzazxbF
gj

1,0,1,:max)(
' ' . (6.43)

Let { }n
z 1,0* ∈ denote an optimal solution to (6.43). If 1* =jz , then Gg ∈ is

chosen such that gJj ∈ . Then, all gJj ∈' such that jj aa ≤' (i.e., all

{ }jjgj aaJjRj ≤∈=∈ ≤ ':') are removed from J . Thus, ∪)(*1 zJj jb
RH

∈ ≤= .

Remember that by Lemma 6.8, if αJj ∉ , then ∅=≤ jRJ ∩
α . Each jR≤ removed from

J decreases the total sum of fractional values by ∑
≤∈ jRj jx

' ' . Hence, for a given b ,
b

H

gives a subset of variables with the maximum total sum of fractional values such that

ba
b

H b
HGg gj <∑ ∈)(.

SepH requires (6.43) to be solved for each bb <≤0 . Therefore, we present a

dynamic program to solve (6.43) iteratively for different values of b . We assume that

 129

variables associated with each GUB are listed in non-increasing order of their indices.

{ }{ }),,(max)(
,...,1,

kbgFbF
gJkGg ∈∈

= (6.44)

0),,0(=kbF for ,...2,1=k

{ }
{ }














=<+−−−

<≤<+−−+

=≥−

<≤≥+

=

∑

∑

≥

≥

∈

∈

gkgRj' j'kg

gkgRj' j'kg

gkg

gkg

J k b ax,ab,gF,,b,gF

Jk b ax,ab,gF,k,bg,F

J k ba,bgF

Jk bak,bg,F

kbgF

kg

kg

andif)11()11(max

1andif)11()1(max

and if)1,1(

1and if)1(

),,(

)()(

)()(

)(

)(

)(

)(

where),,(kbgF is the objective function value in the case that the first g GUBs have

not been investigated so far, the remaining knapsack size is b , and the th
k variable

associated with GUB g is investigated; and)(kg is the index of the th
k variable

associated with GUB g . In the case that ba kg <)(and gJk <≤1 , we investigate)(kgx :

it can be either 0)(=kgx or 1)(=kgx . If 0)(=kgx , then the thk)1(+ variable associated

with GUB g is investigated; otherwise, the knapsack size is decreased by)(kga and the

first variable associated with GUB (1−g) is investigated. In the case that ba kg <)(and

gJ k = , similarly, it can be that either 0)(=kgx or 1)(=kgx . If 0)(=kgx , the first

variable associated with GUB (1−g) is investigated. If 1)(=kgx , b is decreased by

)(kga and the first variable associated with GUB (1−g) is investigated.

We now describe separation heuristic, SepH. It begins by solving)(bF with

0=b and then increases b by 1 at each iteration, with the intent of identifying the most

 130

violated α -cover inequality.

Step 1. Initialize 0=b and ∅=αH for each *1 αα ≤≤ .

Step 2. Compute (6.44) to identify
b

H .

Step 3. Calculate { }∑ ∈
∈=

b
Hj j Xxx :minα and set

b
HH =α .

If bb < , increase b by 1 and go to Step 2; otherwise, go to Step 4.

Step 4. For each *1 αα ≤≤ such that ∅≠αH ,

execute Cover(αH , α) and calculate αξ α −=∑ ∈Jj jx ;

if 0<ξ , record α
J .

Remark 6.2. Consider the case in which bb = and let { }∑ ∈
∈=

bHj j Xxx :minα̂ . A

non-trivial α -cover inequality can be obtained from a subset JJ ⊆' , if 1)(' 1 >xJJ ∩

holds for each Xx ∈ . Therefore, the minimum possible value that ∑ ∈ 'Jj
jx can take

over all subsets JJ ⊆' such that 1)(' 1 ≥xJJ ∩ is ∑ ∈ bHj jx . This implies that for each

αα ˆ1 ≤≤ and for each αα J∈J , ∑∑ ∈∈
≤ αα Jj jJj j xxˆ . Suppose that, for αα ˆ1 ≤≤ ,

∑∑ ∈∈
> αα

Jj jJj j xx
b

. By definition of bH , this means that ba
Gg gj

≥∑ ∈ α
)(

;

contradicting that 1≥α . Hence, α̂
J and the α̂ value give an optimal solution to

{ }∑ ∈∈≤≤
−αα α

αα Jj jJ
xαJ,ˆ1

min . ■

Proposition 6.22. SepH is of complexity)|||)log(|||(2* JJJbO α+ .

Proof. Step 1 requires)(*αO . It is known that (6.44) can be solved in |)(| JO time

 131

(Step 2). Since Step 2 is repeated b times, Step 2 requires |)|(JbO time. Finding α

by Proposition 6.6 requires |))log(||(| GGO time (Step 3). Since Step 2 is repeated b

times, Step 3 requires |)||)log(|||(JbGGbO + time. By Proposition 6.9, executing

Cover(αH , α) requires)|(| 2JO time, and calculating ξ takes |)(| JO time (Step 4).

Since Step 4 is repeated *α times in the worst case, Step 4 takes)||(2* JO α time.

Thus, the overall time complexity of SepH is)|||)log(|||||(2* JGGbJbO α++ ,

which reduces to)|||)log(|||(2* JJJbO α+ . ■

6.8. Computational evaluation

In this section, we report our computational experience. We use CPLEX 11 and

conduct our tests on a Dell PC (OptPlex GX620) with 3.20GZH Dual Core Processor,

2GB RAM, and 160GB hard drive.

The purpose of our tests is to evaluate the strength of inequalities (6.8), (6.30),

and (6.39). The first subsection describes our test instances and the second benchmarks

the strength of cuts devised in this section with that of surrogate-knapsack cuts (S-K

Cuts) devised in Glover et al. (1997).

6.8.1. Test instances

The set of test instances that we use consists of ten 0-1 integer programming

instances taken from MIPLIB (Table 11). We select these particular instances because

they constitute a standard test bed in the field of integer programming and because they

were used previously by Glover et al. (1997) to benchmark the performance of S-K cuts

 132

relative to the performance of LC cuts. Therefore, they enable us to easily benchmark

our cuts with S-K and LC cuts. Columns 2-3 of Table 11 give the size of each instance in

terms of the numbers of binary variables (BVs) and knapsack constraints (KPs),

respectively; and columns 4-5 give the optimal objective function values of the linear

programming relaxation (*
LPZ) and the integer program (*

IPZ), respectively. Note that

most of these instances do not have the MKPG form and GUBs are not necessarily

disjoint. In order to modify them to fit the MKPG form, we treat each variable that is

not associated with any GUB as a member of a trivial GUB and, if a subset of GUBs is

overlapping, we arbitrarily choose one to treat as a GUB and deal with others as

knapsack constraints. Since the resulting test instances do not adhere to the MKPG form

exactly, our cuts may not be as effective as they might be in application to the MKPG.

Table 11. Description of the test instances used in evaluating α -cover inequalities.
Instance BVs KPs *

LPZ *

IPZ

bm23 27 20 20.6 34

lseu 89 28 834.7 1120

mod008 319 6 290.9 307

p0033 33 16 2520.6 3089

p0201 201 134 6875.0 7615

p0282 282 242 176867.5 258411

p0291 291 253 1705.1 5223.7

p0548 548 177 315.3 8691

p2756 2756 756 2688.7 3124

sentoy 60 30 -7839.3 -7772

6.8.2. Benchmarking with S-K cuts

 Glover et al. (1997) noted that the primary purpose of their computational

 133

testing was not to attempt to outperform well-established branch-and-cut codes such as

CPLEX, since these codes owe their performance to a variety of enhanced techniques

other than cutting planes. Rather, their goal was to determine the strength of the S-K

Cuts, independent of the use of other strategies such as preprocessing. Therefore, Glover

et al. (1997) benchmarks the strength of S-K cuts at the root node with that of LC cuts.

Like Glover et al. (1997), we only use our strategies; our aim is to determine the relative

strengths of our cuts : α -cover inequalities (6.8), non-dominated α -cover inequalities

(6.30), and lifted α -cover inequalities (6.39).

We implement the following α -cover process (α -CP) to generate α -cover

inequalities (6.8), non-dominated α -cover inequalities (6.30), and lifted α -cover

inequalities (6.39) as needed at the root node. Each iteration of α -CP is as follows.

Step 1. Solve the linear relaxation of the overall problem to obtain a solution x .

If x is integer, stop. Otherwise, go to Step 2.

Step 2. For each knapsack constraint, execute Steps 2.1 - 2.2

2.1. Invoke SepH to detect a violated α -cover inequality (i.e., (6.8)).

2.2. If an α -cover inequality separates x :

 Use (6.27) to check whether it is non-dominated; and, if it is not,

use the procedure defined in Section 6.4 to modify it to form

a non-dominated α -cover inequality (i.e., (6.30));

 Use (6.31) and (6.32) to check if the non-dominated α -cover inequality

is a facet for the corresponding ≥KPG polytope; if it is not,

 modify it to be a facet (i.e., (6.39)) using Proposition 6.20.

 134

 Add the cut generated to the formulation.

Step 3. If no α -cover inequality is generated that separates x , stop.

 Otherwise, return to Step 1.

Table 12 shows the number of each type of cut generated at the root node for

each instance. Table 13 gives the computational results at the last iteration of α -CP and

for S-K and LC cut generation. In Table 13, columns 2-4 give results obtained by using

α -CP cuts; columns 5-7 give results obtained by using S-K cuts; and columns 8-10 give

results obtained by using classical LC cuts. For each type of cut (i.e., α -CP, S-K, and

LC), Table 13 reports three measures of performance: optimal root node solution value

(*

rootZ); root node solution time (CPU); and the number of cuts (Cuts). Note that results

for S-K and LC are obtained from Glover et al. (1997).

Table 12. Number of each cut in α -CP.

Instance (6.8) (6.30) (6.39)

bm23 11 0 0

lseu 2 13 6

mod008 8 11 3

p0033 1 13 6

p0201 6 0 0

p0282 211 6 2

p0291 64 0 0

p0548 128 8 10

p2756 154 4 2

sentoy 43 0 0

Table 13 illustrates that, within a reasonable computational time, α -CP cuts

provide stronger lower bounds than either S-K or LC cuts. In particular, α -CP cuts

 135

appear to yield a significant, relative advantage for solving the more challenging

instances such as p0548 and p2756. However, more α -CP cuts are added in each

instance than either S-K or LC cuts. Therefore, we analyze the number of α -CP cuts in

more detail (Table 14).

Table 13. Benchmarking with S-K and LC cuts.

 α -CP cuts S-K Cuts LC Cuts

Instance
*

rootZ CPU(sec) Cuts *

rootZ CPU(sec) Cuts *

rootZ CPU(sec) Cuts

bm23 22.7 0.08 11 22.7 0.1 9 22.5 0.1 1

lseu 1012.4 0.05 21 1001.2 0.3 14 999.5 0.2 13

mod008 293.3 0.06 22 291.7 0.6 5 291.3 0.2 5

p0033 2939.1 0.06 20 2902.6 0.1 15 2916.2 0.2 13

p0201 7125.0 0.03 6 7075.0 0.8 3 7075.0 0.9 2

p0282 253813.8 0.19 219 252356.0 2.5 89 180999.7 1.2 58

p0291 5055.8 0.09 64 5009.2 1.0 28 1873.8 1.3 25

p0548 7714.4 0.14 146 3883.7 8.1 158 4052.9 2.5 138

p2756 3114.3 0.69 160 2701.8 16.4 75 2701.7 10.5 68

sentoy -7824.8 2.56 43 -7837.7 0.2 5 -7832.5 0.3 5

Table 14. Solution values and the number of cuts at different iteration of α -CP.
 Iteration 1 Iteration 2 Iteration 3

Instance ZLP Cuts ZLP Cuts ZLP Cuts

bm23 22.7 6 - - - -

lseu 1007.6 9 1010.9 16 - -

mod008 291.7 6 292.2 12 293.2 17

p0033 2896.0 11 2932.8 14 2939.1 19

p0201 7075.0 2 - - - -

p0282 213017.9 43 249384.3 73 252494.4 95

p0291 4926.2 16 5020.5 29 5046.89 46

p0548 5005.4 58 6853.4 117 7575.7 136

p2756 2841.2 66 2953.0 113 3112.6 150

sentoy -7834.78 3 -7828.7 25 -7826.39 31

 136

Table 14 reports computational results after three different α -CP iterations. For

each of these iterations, Table 14 gives the linear relaxation solution value (ZLP) obtained

at Step 1 and the cummulative number of cuts generated through that iteration. α -CP

terminates before the second iteration selected on instaces bm23, lseu, and p0201, so we

use “-” for the absent results. Iteration 1 gives the results at the end of the first iteration

of α -CP. We choose Iterations 2 and 3 in such a way that allows us to compare the

strengths of α -CP, S-K, and LC cuts. Table 14 shows that α -CP provides stronger

bounds than either S-K or LC with fewer cuts. In fact, the first iteration of α -CP yields

a tighter bound for each of 7 of the 10 instances than S-K cuts ultimately provide; α -CP

gives tighter bounds for instances p0033 and p0291 after the second iteration and for

p0282 after the third iteration. Similarly, the first iteration of α -CP yields a tighter

bounds for each of 8 of the 10 instances than LC cuts ultimately provide; α -CP gives

tighter bound for instances p0033 and sentoy after the second iteration. Note also that

Glover et al. (1997) reports that S-K cuts are stronger than LC cuts.

 137

CHAPTER VII

AN APPLICATION: HOUSTON SHIP CHANNEL
*

Using the HSC as a test bed, Chapter III specifies 16 test instances (Table 8).

Using these instances, which are SSDP instances of real size and scope, this chapter

compares the efficacy of B&C, which uses α - cover inequalities as cuts, and B&P-D

approaches. This chapter also explores the sensitivity of the system and the cost to

important parameters. Part of this chapter (Section 7.3) is reprinted with permission of

the IEEE from “Branch-and-Price Decomposition to Design a Surveillance System for

Port and Waterway Security” by W. E. Wilhelm and E. I. Gokce.

The remainder of the chapter is organized as follows. Section 7.1 compares a

branch-and-cut scheme that uses inequalities (6.8), (6.30), and (6.39) as cuts with

branch-and-cut settings of CPLEX 11 that use either classical lifted cover (LC) cuts or

GUB cover cuts. Section 7.2 compares the cuts (i.e., (6.8), (6.30), and (6.39)) with B&P-

D. Section 7.3 presents the suggested surveillance system design for HSC. Finally,

Section 7.4 conducts a sensitivity analysis.

7.1. Using a B&C approach to solve SSDP

We tested three different cut-generation strategies using instances described in

Table 8. The first strategy (S1) involves detecting a violated α -cover inequality for each

*©2008 IEEE. Reprinted, with permission, from “Branch-and-price decomposition to design a
surveillance system for port and waterway security” by W. E. Wilhelm and E. I. Gokce. IEEE

Transactions on Automation Science and Engineering (in press).

 138

≥KPG substructure, and adding each of them without modification (i.e., without

invoking the non-domination check or lifting). The second strategy (S2) detects a

violated α -cover inequality for each ≥KPG substructure and adds it after modifying it

by lifting to be a facial inequality. The third strategy (S3) is the same as S2, except it

adds only the most violated α -cover inequality after lifting it (if necessary) to be a facial

inequality. If no violated inequality is found, we branch on the most fractional variable.

We also apply the best-bound node-selection strategy. Table 15 gives results for three

runs using S1 (columns 2-4), S2 (columns 5-7), and S3 (columns 8-10). For each

strategy (i.e., S1, S2, and S3), Table 15 repeats three measures of performance: the

number of B&B-nodes searched (Node); the total number of cuts added (Cuts); and the

run time required to find the optimal integer solution (CPU).

Table 15. Computational results for different cut generating strategies.

 S1 S2 S3

N Node Cuts CPU(sec) Node Cuts CPU(sec) Node Cuts CPU(sec)

1 11 57 0.03 11 50 0.03 13 54 0.08

2 45 225 0.13 29 119 0.08 21 78 0.16

3 11 55 0.05 5 48 0.03 5 31 0.06

4 33 181 0.20 15 98 0.08 15 64 0.13

5 1 97 0.05 1 91 0.03 1 28 0.08

6 3 152 0.06 3 147 0.05 5 49 0.16

7 5 98 0.06 5 98 0.06 5 23 0.09

8 13 242 0.16 5 166 0.06 3 53 0.20

9 37 109 0.08 25 105 0.05 25 51 0.12

10 21 105 0.06 21 103 0.05 21 58 0.12

11 31 125 0.09 21 123 0.08 19 76 0.23

12 11 139 0.08 11 131 0.06 15 86 0.20

13 47 458 0.24 47 458 0.24 37 71 0.25

14 35 271 0.19 31 244 0.17 61 84 0.39

15 673 1147 3.84 425 731 3.47 176 468 2.23

16 17 273 0.17 17 255 0.14 31 155 0.64

 139

The run times for S1, S2, and S3 are negligible on all instances. Strategy S1

requires 20% more B&B-nodes and adds 15% more cuts than those required by S2. This

illustrates that generating stronger inequalities (facets) helps to close the gap between

*
LPZ and *

IPZ , especially for the instances N = 2, 4, 8, and 15. Also, note that on all

instances, S2 takes less run time S1, so that lifting α -cover inequalities reduces run

time. Strategy S3 requires about the same number of B&B-nodes as S2 (except for

instance 15 in which it requires considerable fewer nodes), but 50% fewer cuts, showing

the strength of the lifted α -cover inequalities (6.39).

To benchmark S1, S2, and S3, we compare them with the B&B routine of

CPLEX using only LC cuts, using only GUB covers, and using no cuts at all. In all runs,

we have turned off the CPLEX pre-processing capability, so that the CPLEX results

would be comparable with those of our procedures. Table 16 gives results. In Table 16,

columns 2-4 give CPLEX results obtained by using LCs; columns 5-7 give results

obtained by using GUB covers; and columns 8-9 give results obtained using CPLEX

with no cuts. For LCs and GUB covers, Table 16 repeats three measures of performance:

the number of B&B-nodes searched (Nodes); the number of cuts added (cuts); and the

run time required to find the optimal integer solution (CPU). For CPLEX B&B, Table 16

reports the number of B&B-nodes needed to reach optimality (or, the number of B&B-

nodes searched within 60,000 seconds, our time limit) and the run time required to find

the optimal integer solution.

Strategies S1 and S2 require less run time than LCs, except for one instance (N =

15) and S3 requires approximately the same run time as LCs. LCs, S1, S2, and S3 are all

 140

faster than GUB covers. On all instances, each of S1, S2, and S3 requires considerably

fewer nodes than either LCs or GUB covers. Both S1 and S2 generate more cuts than

either LCs or GUB covers. This is expected, since both S1 and S2 add a violated α -

cover inequality for each ≥KPG substructure. On the other hand, S3 requires

considerably fewer cuts than LCs, except for two instances (N = 2, 15). GUB covers add

fewer cuts, but they are not stronger than the cuts generated by S3, since the number of

B&B nodes searched is considerable more than for S3. Rather, the most likely reason for

this is that CPLEX cannot find violated GUB cuts to tighten successfully. Note that 99%

of the GUB covers are added at the root node and only a few are added after branching.

Table 16. CPLEX results for HSC instances – LC and GUB covers.

 B&B-LC B&B – GUB Covers B&B B&P-D

N Node Cuts CPU(sec) Node Cuts CPU(sec) Node CPU(sec) Node CPU(sec)

1 165 54 0.19 296 36 0.30 106,630 12.92 1 2.50
2 111 71 0.16 151 50 0.16 2,135,618 327.92 1 8.78
3 210 68 0.25 1141 40 0.95 232,269 36.42 1 14.17
4 650 140 0.70 1087 57 0.94 5,984,1137 14,039.23 5 2893.99
5 1 88 0.03 155 93 0.17 441,217 90.61 1 13.19
6 70 118 0.11 105 105 0.17 35,050,870 8,858.55 3 1882.54
7 15 72 0.05 128 88 0.16 1,880,246 523.00 1 64.16
8 45 98 0.11 158 128 0.22 137,266,419 60,000.02 1 2494.44
9 17 83 0.06 347 76 0.31 14,294,251 2,554.27 1 1.91
10 55 82 0.09 131 81 0.14 239,891,803 60,000.17 1 3.69
11 112 96 0.17 1657 96 1.61 205,864,226 60,000.33 3 13.97
12 615 145 0.80 4017 94 3.59 177,343,880 60,000.09 5 278.21
13 130 172 020 258 151 0.68 133,389,729 20,571.05 7 230.05
14 85 182 0.27 113 182 0.27 132,713,241 60,000.02 3 373.53
15 344 152 0.55 6930 171 7.72 135,053,281 60,000.00 3 2074.62
16 268 243 0.47 624 179 0.77 108,500,672 60,000.00 3 5151.07

 141

7.2. Comparison with B&P-D

This section compares B&P-D with our B&C, which uses the inequalities

derived in Chapter VI. Columns 10-11 of Table 16 give the number of B&B nodes and

the run time, respectively, required by B&P-D to find an integer optimal solution.

On all instances, B&P-D requires significantly less number of nodes than B&C.

B&P-D is able to solve 8 of these 16 instances at the root node and all of them within 7

B&B nodes. It is able to solve these 16 instances faster than CPLEX B&B. However,

when the number of clones increases, run time that B&P-D spent to solve RMP

increases, putting it at a disadvantage. Both LCs and GUB covers improve on its run

times. However, new strategy S2 is the fastest of the methods.

7.3. Surveillance system design for the HSC

This section presents the surveillance system design that our model suggests for

the HSC. In Section 3.2.4, we identify surveillance points under two different

assumptions. Figure 12 displays the design for the first assumption, which assumes that

any sensor that is capable of observing the point would also be able to observe the entire

line and its vicinity. Figure 13 displays the design for the second assumption, which

requires that each surveillance point be observed by sensor(s) located on the same side

of the channel.

7.4. Sensitivity analysis

In this section we evaluate the robustness of the optimal surveillance system

 142

Figure 12. Optimal surveillance system designs for instance 8.

Figure 13. Optimal surveillance system designs for instance 16.

design to detection probability requirements (1-tes), maintenance cost, and land cost. In

Section 3.2.6 (1-tes) values require detection probability of at least 0.95 (0.965 on

average) at each surveillance point. We change the detection probability requirement at

each surveillance point by -2.0%, -1.5%, -1%, -0.5%, 0.5%, 1.0%, 1.5%, and 2.0%.

Figures 14 and 15 display the results of this analysis for instances 8 and 16, respectively.

In Figure 14 (Figure 15) columns 1-21 (1-32) represent sensor locations; columns 22 and

23 (33 and 34) give the optimal number of locations and sensors prescribed. Each row

in Figures 14 and 15 denotes the solution (i.e., sensor combinations) prescribed for the

 143

associated % change of detection probability requirement (1-tes). Note that Figure 15

stops at a 0.8% increase of (1-tes), because instances associated with larger increases

(i.e., as (1-tes) approaches 1.0) are infeasible. The implication is that, in practice, it

becomes very costly to require (1-tes) values that are close to 1.0.

Figures 14-15 show that the optimal system design is relatively insensitive to

changes in (1-tes) until its value approaches to 1.0. If (1- tes) is less than 0.99, changing

(1- tes) values by 0.5% requires modifying sensor combinations at three or four sensor

locations (i.e., 9% of sensor locations) on average. However, in order to increase (1- tes)

to a value close to 1.0, the system must use almost all sensor locations and upgrade

sensor combinations at many locations.

Figure 14. Sensitivity analysis for instance 8.

|E|=3, |K|=14, |L|=21, |S|=42

-2.0%

-1.5%

-1.0%

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Potent ial Sensor Locat ions

A
m

o
u

n
t

o
f

In
cr

ea
se

 i
n

 D
et

ec
ti

o
n

 P
ro

b
ab

il
it

y

R
eq

u
ir

em
en

t

13 13 1 6 2 9 13 13 13 11 13 1 7

13 13 1 6 2 9 11 13 13 11 13 1 7

13 13 1 9 11 13 13 11 13 1 714 13

13 13 1 9 11 13 13 11 13 1 714 13

13 13 1 9 13 10 13 11 13 1 714 13

13 13 1 9 13 10 13 11 2 1 414 13 10

10 13 1 9 13 10 13 11 13 1 44 9 10

1 13 1 9 13 10 13 11 13 11 1414 1 1413

13 4 1 9 13 10 13 11 2 11 1413 2 1494 1

of

Sensors

22

22

24

24

24

24

24

27

28

of

Locat ions

13

13

13

13

13

14

14

15

17

Figure 16 displays the percentage change in the optimal cost value for each

 144

change of (1-tes) for instances 8 and 16. For both instances, optimal cost values increase

with the detection probability requirement, significantly as (1-tes) approaches 1.

 Figure 15. Sensitivity analysis for instance 16.

|E |=3, |K |=14, |L |=32, |S |=84

-2.0%

-1.5%

-1.0%

-0.5%

0.0%

0.5%

1.0%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Pote ntial Se nsor Locations

A
m

o
u

n
t

o
f

In
c

r
e

a
se

 i
n

 D
e

te
c

ti
o

n
 P

r
o

b
a

b
il

it
y

R

e
q

u
ir

e
m

e
n

t

8 10 12 6 9 9 14 13 14 10 10 11 14 13 10 10 2 14 10 8 13

8 10 9 7 7 14 13 14 10 10 2 11 13 10 8 14 1 14 8 104 60.8%

10 12 6 9 9 14 13 14 10 10 11 14 13 10 10 2 14 10 8 138

10 12 6 7 7 14 13 14 10 10 11 14 13 10 10 1 14 10 8 13

8 10 9 7 7 14 13 14 10 10 2 11 13 10 10 2 11 14 8 104

8 10 9 7 7 14 13 14 10 10 2 11 13 10 8 14 11 14 8 104 6

8

10 12 6 9 7 14 13 14 10 10 11 14 13 10 10 1 14 10 8 138

of

Se nsors

of

Locations

21

21

22

21

21

21

22

40

39

41

40

40

40

40

Figure 16. Percentage of change in cost value at different tes values.

-15

-10

-5

0

5

10

15

20

25

30

-2 -1.5 -1 -0.5 0 0.5 0.8 1 1.5 2

% of increase in detection probability requirement

%
 o

f
in

c
re

a
s

e
 i

n
 o

p
ti

m
a

l
c

o
s

t

v
a

lu
e |E|=3, |K|=14, |L|=21, |S|=42

|E|=3, |K|=14, |L|=21, |S|=84

 145

To evaluate the effect of annual maintenance cost on the optimal surveillance

system design, we compare B&P-D-prescribed designs for annual maintenance costs that

are 1%, 5%, 10%, and 20% of purchasing and installing costs. The optimal design is the

same for instances 8 and 16 under these four conditions, indicating that designs are not

sensitive to maintenance cost.

To evaluate the effect of land cost on the optimal surveillance system design, we

change land cost by -10%, -5%, 0%, 5%, 10%, 15%, and 20%. Again, the optimal

design does not change for instances 8 and 16 under these seven conditions.

 146

CHAPTER VIII

CONCLUSIONS AND FUTURE RESEARCH

This dissertation synthesizes a methodology to prescribe a surveillance system

design (SSD) to provide the required level of surveillance for ports and waterways. It

achieves its purpose in three related parts: formulation of the SSD problem (SSDP) for

ports and waterways, branch-and-prince decomposition (B&P-D) and branch-and-cut

(B&C) solution methodologies to solve large-scale SSDPs.

8.1. Conclusion and future research on SSDP formulation

In the first part of this dissertation, we formulate a linear integer programming

model to prescribe a minimum cost surveillance system design for port and waterway

security. Our model represents relevant practical considerations, including the irregular

shapes of ports and waterways (e.g., long, narrow, and meandering paths); the line-of-

sight requirement between a sensor and a surveillance point; and the capabilities of each

sensor type, which depend upon time of day, weather conditions, and distance to a

surveillance point. The form of this model is a multidimensional knapsack problem with

generalized upper bound constraints (i.e., MKGP). Surveillance system obtained by

solving this model generally requires multiple sensors to observe each surveillance

point. In the operation of multiple sensors, we may encounter inconsistent sensor

observations. Our future research will contribute by proposing a decision scheme to

determine the right interpretations of sensor outputs when conflict arises. Another

 147

question is the fault tolerance capability (FTC) of a surveillance system to measure its

robustness to sensor failures and a methodology to determine the number of tolerable

faults. Our future research includes defining FTC and modifying the current model to

consider the possibility of sensor failures. It is important to note that sensitivity analysis

shows that cost is relatively insensitive to changes in detection probability (unless the

requirement approaches to 1.0), maintenance cost, and land cost. In addition, depending

upon the elevations and terrain features in other application areas, it may be of interest to

study tower height as an additional experimental factor. Moreover, the proposed

approach could be adapted/refined for related applications such as border patrol and

underwater surveillance.

8.2. Conclusion and future research on B&P-D

The second part of this dissertation proposes a B&P-D solution procedure to

solve the SSDP. We first present three B&P-Ds and study the theoretical relationships

among the bounds that these formulations provide with the goal of identifying a B&P-D

formulation that provides strong bounds for SSDP. These B&P-Ds have subproblems

(SPs) that can be solved in pseudo-polynomial time. We compare the bounds that can be

obtained from B&P-Ds and Lagrangian methods (i.e., Lagrangian relaxation (LR),

Lagrangian decomposition (LD)). B&P-D provides the same bound as LD, which is

well known to provide tighter bounds than LR. However, Lagrangian approaches

generally use procedures based on subgradient optimization to search for the optimal

Lagrange multipliers. Since these approaches may not find the optimal multipliers - if

 148

they exist - and usually stop with a “near optimal” solution, Lagrangian methods are not

guaranteed to prescribe optimal solutions. B&P-D overcomes the possibility that optimal

Lagrange multipliers may not be found, guaranteeing the best bound possible. Finally,

we consider improving the lower bound by incorporating a surrogate constraint in master

problem (MP). Our results show that incorporating a surrogate constraint in the

corresponding MP does not tighten B&P-D bounds.

With the goal of identifying an effective means of implementing B&P-D, we

computationally evaluate 72 cases, each of which is a combination of a decomposition

and an implementation technique. Computational tests provide considerable insight into

the influence that each factor (B&P-D formulation, cost assignment, restricted MP

(RMP) formulation and surrogate constraint) has on run time. Our results show that

subproblem types (i.e., knapsack problem (KP) or multiple-choice knapsack problem

(MCKP)), cost assignment and RMP formulation have significant affect on run time.

However, including either generalized upper bound constraints (GUBs) or a surrogate

constraint in RMP has no affect on run time. Based on our analysis we define the default

B&P-D implementation technique for solving the surveillance system design problem as

follows:

Level 3 of Factor 1: B&P-D3 = no GUBs in RMP + MCKP.

Level 1 of Factor 2: uniform cost assignment with equality constraints.

Level 3 of Factor 3: using equality constraint (4.22) only for clones with 0>ija ;

 aggregated equality constraint (4.23) for clones with 0=ija .

Level 1 of Factor 4: RMP without any surrogate constraint.

 149

Furthermore, we describe three branching rules (branching on the most fractional

variable (B1); GUBs (B2); and special ordered set (B3)) and two heuristics (construction

heuristic (CH), and construction and improvement heuristic (CIH)) for generating an

initial basic feasible solution at each node of B&B tree. Using default B&P-D

formulation, we test alternative combinations of these branching rules and heuristics.

Our results show that CIH heuristic in combination with branching rule B3 generally

requires less run time than alternatives, and we define these implementation techniques

in our default B&P-D.

Computational tests fulfill our third objective by showing that the default B&P-D

requires significantly less run time than CPLEX branch-and bound (B&B) and providing

considerable insight into the influence that each parameter (i.e., experimental factor) has

on run time. Tests also show that B&P-D provides very strong bounds; but significant

amount of run time is spent for solving RMP. Motivated by these results, our future

research on B&P-D will contribute by incorporating cutting planes to tighten RMPs,

making them less challenging to solve. Also, stabilization methods could be adapted in

order to improve the convergence of the proposed B&P-D approach.

8.3. Conclusion and future research on B&C

The third part of this dissertation proposes a B&C procedure to solve the SSDP.

We first devise a set of valid inequalities, called α -cover inequalities, for)conv(X

along with a polynomial-time procedure to generate such an inequality. Then, we

establish non-dominance relationships between α -cover inequalities and discuss a

 150

procedure to obtain a non-dominated α -cover inequality. Later, we define the necessary

and sufficient conditions for a non dominated α -cover inequality to define a facet of

)conv(X . We develop a lifting procedure (6.39). It lifts variables 1J ,..., ||GJ sequentially

and the variables associated with a GUB (i.e., gJ Gg ∈) simultaneously. Furthermore,

we show that, if an α -cover inequality is not a facet of)conv(X , we can obtain a facet

from it via (6.39). Finally, we present a separation heuristic SepH to generate a violated

α -cover inequality to cut off a fractional solution to the linear relaxation of knapsack

problem with GUBS (≥KPG). Computational tests shows that cuts generated by α -

cover procedure (α -CP) (i.e., α -cover, non-dominated α -cover, and lifted α -cover

inequalities) provide tighter cuts than either surrogate knapsack (S-K) or lifted cover

(LC) cuts and using α -CP to generate cuts for multidimensional ≥KPG (≥MKPG)

solves our integer test instances in less run time. Tests also show that strong inequalities

(i.e., facets) serve well to close the gap between *
LPZ and *

IPZ . Future research could

contribute, for example, by devising a sequence-independent lifting procedure for α -

cover inequalities or generalizing α -cover inequalities directly for the convex hull of

the integer solutions that are feasible with respect to all knapsacks in ≥MKPG . Our

research continues along these lines.

We also compare B&P-D with our B&C, which uses the inequalities derived in

Chapter VI. Our results show that B&C strategy S2, which detects a violated α -cover

inequality for each ≥KPG substructure and adds it after modifying it by lifting to be a

facial inequality, is the fastest of the methods.

 151

REFERENCES

Akbar, M. D. M., M. S. Rahman, M. Keykobad, E. G. Manning, G. C. Shoja. 2006.
Solving the multidimensional multiple-choice knapsack problem by constructing
convex hulls. Computers and Operations Research 33 1259-1273.

Akyildiz, I. F., W. Su, Y. Sankarsubramaniam, E. Cayirci. 2002. Wireless sensor net-

works: A survey. Computer Networks 38 393-422.

Alonso, A. A., C. E. Frouzakis, I. Kevrekidis. 2004. Optimal sensor placement for state

reconstruction of distributed process systems. AICHE Journal 50(7) 1438-1452.

Armstrong, R. D., D. S. Kung, P. Sinha, A. A. Zolterns. 1983. A computational study of

multiple-choice knapsack algorithm. ACM Transactions on Mathematical

Software 9 184-198.

Bagajewicz, M. J., E. Cabrere. 2002. New MILP formulation for instrumentation
network design and upgrade. AICHE Journal 48(10) 2271-2282.

Balas, E. 1975. Facets of the knapsack polytope. Mathematical Programming 8 146-164.

Balas, E., E. Zemel. 1978. Facets of the knapsack polytope from minimal covers. SIAM

Journal of Applied Mathematics 34 119-148.

Bazaraa, M. S., J. J. Jarvis, H. D. Sherali. 1990. Linear Programming and Network

Flows. Wiley-Interscience, New York.

Ben-Zvi, T., J. Nickerson. 2007. Sensor placement learning automata. Proceedings of

INFORMS International Conference, Puerto Rico, 67.

Berry, J., W. E. Hart, C. A. Phillips, J. Uber. 2004. A general integer-programming-
based framework for sensor placement in municipal water networks. Proceedings

of Sixth Annual Symposium on Water Distribution Systems Analysis, Salt Lake
City, Utah, 1-10.

Bertsimas, D., R. Demir. 2002. An approximate dynamic programming approach to
multidimensional knapsack problems. Management Science 48(4) 550-65.

Bottino, A., A. Laurentini. 2004. Optimal positioning of sensors in 2D. Proceedings of

CIARP 2004, Pueblo, Mexico, 53-58.

 152

Bottino, A., A. Laurentini. 2005. Optimal positioning of sensors in 3D. Lecture Notes in

Computer Science 3773 804-812.

Cavalier, T., W. Conner, E. del Castillo, S. Brown. 2007. Heuristic algorithm for

minimax sensor location in the plane. European Journal of Operational Research
183(1) 42-55.

Chakrabarty, K., S. S. Iyengar, H. Qi, E. Cho. 2002. Grid coverage for surveillance and

target location in distributed sensor networks. IEEE Transactions on Computers
51(12) 1448-1453.

Chardaire, P., G. P. McKeown, J. A. Maki. 2001. Application of GRASP to the

multiconstraint knapsack problem. Lecture Notes in Computer Science 2037 30-
39.

Chu, P. C., J. E. Beasley. 1998. A genetic algorithm for the multidimensional knapsack

problem. Journal of Heuristics 4 63-86.

Clark, D. 2004. Low-cost device for monitoring is set for market. Wall Street Journal.
(September 20) B5.

Closed Circuit Television Camera. 2008. Retrieved September 25, 2008,

http://en.wikipedia.org/ wiki/Closed-circuit_television.

Congressional Research Service Report. 2008. Terrorist attack on USS Cole: Backgro-

und and issues for congress. Retrieved September 26, 2008,
http://www.fas.org/irp/crs/RL32058.pdf.

Cormen, T. H., C. E. Leiserson, R. L. Rivest. 1990. Introduction to Algorithms. MIT

Press and McGraw-Hill, Boston.

Crama, Y., J. Mazzola. 1994. On the strength of relaxations of multidimensional

knapsack problems. INFOR 32 219-225.

Crowder, H. P., E. L. Johnson, M. W. Padberg. 1983. Solving large scale zero-one linear

programming problems. Operations Research 31 803-834.

Dantzig, G. 1957. Discrete-variable extremum problems. Operations Research 5 266-

277.

Dudzinski, K., S. Walukiewicz. 1987. Exact methods for the knapsack problem and its

generalization. European Journal of Operational Research 28 3-21.

Esri. 2008. Retrieved September 25, 2008, http://www.esri.com.

 153

Feo, T. A., M. G. C. Resende. 1995. Greedy randomized adaptive search procedures.
Journal of Global Optimization 6(2) 109-133.

Fernandes, A. M. , A. B. Utkin, A. V. Lavrov. 2006. Optimisation of location and

number of lidar apparatuses for early forest fire detection in hilly terrain. Fire

Safety Journal 41(2) 144-154.

Frangioni, A. 2005. About Lagrangian methods in integer optimization. Annals of

Operations Research 139(1) 163-193.

Fréville, A. 2004. The multidimensional 0–1 knapsack problem: An overview.

European Journal of Operational Research 155 1-21.

Fréville, A, S. Hanafi. 2005. The multidimensional 0-1 knapsack problem – bounds and

computational aspects. Annals of Operations Research 139(1) 195-227.

Fréville, A., G. Plateau. 1994. An efficient preprocessing procedure for the multi-

dimensional 0-1 knapsack problem. Discrete Applied Mathematics 49 189-212.

Gabrel, V., M. Minoux. 2002. A scheme for exact separation of extended cover

inequalities and application to multidimensional knapsack problems. Operations

Research Letters 30 252-264.

Garey, M. R., D. S. Johnson. 1979. Computers and Intractability: A Guide to the Theory

of NP-completeness. Freeman, San Francisco, CA.

Gavish, B., H. Pirkul. 1985. Efficient algorithms for solving multi-constraint zero-one

knapsack problems to optimality. Mathematical Programming 31(1) 78-105.

Geoffrion, A. M. 1974. The Lagrangian relaxation and its uses in integer programming.

Mathematical Programming 2 82-114.

Gilmore, P. C., R. E. Gomory. 1966. The theory and computation of knapsack function.

Operations Research 14 1045-1074.

Glover, F. 1968. Surrogate constraints. Operations Research 16(4) 741-749.

Glover, F. 1975. Surrogate constraint duality in mathematical programming. Operations

Research 23(3) 434-451.

Glover, F., H. D. Sherali. 2008. Second-order cover inequalities. Mathematical

Programming Series A 114(2) 207-234.

 154

Glover, F., H. D. Sherali, Y. Lee. 1997. Generating cuts from surrogate constraint
analysis for zero-one and multiple choice programming. Computer Optimization

and Applications 8 151-172.

Google Earth. 2008. Retrieved September 25, 2008, http://earth.google.com.

Greenberg, H. J., W. P. Pierskalla. 1970. Surrogate mathematical programming.

Operations Research 18(5) 924-939.

Gu, Z., G. L. Nemhauser, M. W. P. Savelsbergh. 1998. Cover inequalities for 0-1 linear

programs: Complexity. Informs Journal on Computing 10 427-437.

Gu, Z., G. L. Nemhauser, M. W. P. Savelsbergh. 1999. Cover inequalities for 0-1 linear

programs: Computation. Informs Journal on Computing 11 117-123.

Guignard, M., S. Kim. 1987a. Lagrangean decomposition: A model yielding stronger

lagrangean bounds. Mathematical Programming 39 215-228.

Guignard, M., S. Kim. 1987b. Lagrangean decomposition for integer programming:

Theory and applications. R.A.I.R.O. Recherche Perationelle/Operations
Research 21(4) 307-323.

Guignard, M., G. Plateau, G. Yu. 1989. An application of Lagrangean decomposition to

the 0–1 biknapsack problem. Working paper, Wharton School, Vancouver,
Canada.

Hammer, P. L., E. L. Johnson, U. N. Peled. 1975. Facets of regular 0-1 polytopes.

Mathematical Programming 8 179-206.

Hanafi, S., A. Fréville. 1998. An efficient tabu search approach for the 0-1 multi-
dimensional knapsack problem. European Journal of Operational Research 106
659-675.

Hanafi, S., A. Fréville, A. El Abedellaoui. 1996. Comparison of heuristics for the 0-1

multidimensional knapsack problem. I.H. Osman, J.P. Kelly, ed. Meta-

Heuristics: Theory and Applications. Kluwer, Boston, MA, 449-465.

Healy, W. C. 1964. Multiple choice programming. Operations Research 12 122-138.

Hifi, M., M. Michrafy, A. Sbihi. 2004. Heuristic algorithms for the multiple-choice

multidimensional knapsack problem. Journal of Operational Research Society
55(12) 1323-1332.

 155

Hifi, M., M. Michrafy, A. Sbihi. 2006. A reactive local search-based algorithm for the
multiple-choice multidimensional knapsack problem. Computational

Optimization and Applications 33 271-285.

Johnson, E. L., M. M. Kostreva, U. H. Suhl. 1985. Solving 0-1 integer programming

problems arising from large scale planning models. Operations Research 33(4)
803-819.

Johnson, E. L., M. D. Padberg. 1981. A note on the knapsack problem with special

ordered sets, Operation Research Letters 1(1) 18-22.

Karwan, M. H., R. Rardin. 1979. Some relationships between Lagrangian and surrogate
duality in integer programming. Mathematical Programming 1 320-334.

Kellerer, H., U. Pferschy, D. Pisinger. 2004. Knapsack Problems. Springer, Berlin.

Khan, S., K. F. Li, E. G. Manning, M. D. M. Akbar. 2002. Solving the knapsack for

adaptive multi-media systems. Studia Informatica 2(1) 154-174.

Kharchenko, V., V. Vasylyev. 2002. Application of the intellectual decision making
system for vessel traffic control. Proceedings of the 14th International

Conference on Microwaves, Radar and Wireless Communications, 2 639-642.

Kim, H. S., S. Park. 2006. An Optimal Algorithm for the Sensor Location Problem to
Cover Sensor Networks. KIIE/KORMS 2006 Spring Combined Conference

Proceedings, KAIST, Daejeon, South Korea, 1-8.

Li, V. C. 2005. Tight oscillations tabu search for multidimensional knapsack problems

with generalized upper bound constraints. Computers and Operations Research
32(11) 2843-2852.

Li, V. C., G. L. Curry. 2005. Solving multidimensional knapsack problems with

generalized upper bound constraints using critical event tabu search. Computers

and Operations Research 32(4) 825-848.

Li, V. C., G. L. Curry, E. A. Boyd. 2004. Towards the real time solution of strike force

asset allocation problems. Computers and Operations Research 31(2) 273-291.

Lin, E. Y. H. 1998. A bibliographical survey on some well-known non-standard

knapsack problems. INFOR 36(4) 274-317.

Lin, F. Y. S., P. L. Chiu. 2005. A near-optimal sensor placement algorithm to achieve

complete coverage/discrimination in sensor networks. IEEE Communications

Letters 9(1) 43-45.

 156

Lorie, J., L. J. Savage. 1955. Three problems in capital rationing. Journal of Business
(October).

Lougee-Heimer, R. 2001. A note on coefficient adjustment using SOS constraints.

Operations Research 49(1) 175-177.

Magazine, M. J., M. S. Chern. 1984. A note on approximation schemes for multidi-

mensional knapsack problems. Mathematics of Operations Research 9 244-247.

Magazine, M. J., O. Oguz. 1984. A Heuristic Algorithm for the multidimensional zero-

one knapsack problem. European Journal of Operational Research 16 319-326.

Mainwaring, A., J. Polastre, R. Szewczyk, D. Culler, J. Anderson. 2002. Wireless sensor

networks for habitat monitoring. Proceedings of the 1
st
 ACM International

Workshop on Wireless Sensor Networks and Applications, Atlanta, Georgia, 88-
97.

Manne, A. S., H. M. Markowitz. 1957. On the solution of discrete programming

problems. Econometrica 25 84-110.

Maritime Transportation Security Act. 2008. Retrieved September 25, 2008, http://www.

tsa.gov/assets/pdf/MTSA.pdf.

Marsten, R. E., T. L. Morin. 1977. Optimal solutions found for Senju and Toyoda’0/1

integer programming problems. Management Science 23 1364-1365.

Martello, S., D. Pisinger, P. Toth. 1999. Dynamic programming and strong bounds for

the 0-1 knapsack problem. Management Science 45, 414-424.

Martello, S., P. Toth. 1990. Knapsack Problems. Wiley, New york.

Morton, D. P., F. Pan, K. J. Saeger. 2007. Models for nuclear smuggling interdiction. IIE

Transactions 39(1) 3-14.

Moser, M., D. P. Jokanovic, N. Shiratori. 1997. An algorithm for the multidimensional

multiple-choice knapsack problem. IEECE Transactions Fundament Electron
Devices 80(3) 582-589.

Nauss, R. M. 1978. The 0-1 knapsack problem with multiple choice constraints.

European Journal of Operational Research 2 125-131.

Nemhauser, G. L., P. H. Vance. 1994. Lifted cover facets of the 0-1 knapsack polytope

with GUB constraints. Operations Research Letters 16 225-263.

 157

Nemhauser, G. L., L. A. Wolsey. 1988. Integer and Combinatorial Optimization. Wiley,
New York.

Night Vision Camera. 2008. Retrieved September 25, 2008,

http://www.nightvision.com.

Osorio, M. A., F. Glover, P. Hammer. 2002. Cutting and surrogate constraint analysis

for improved multidimensional knapsack solutions. Annals of Operations

Research 117 71-93.

Padberg, M. 1980. (1, k)-configurations and facets for packing problems. Mathematical

Programming 18 94-99.

Pandit, R., P. M. Ferreira. 1992. Determination of minimum number of sensors and their
locations for an automated facility - an algorithmic approach. European Journal

of Operational Research 63(2) 231-239.

Papadimitriou, C. 2005. Pareto optimal sensor locations for structural identification.

Computer Methods in Applied Mechanics and Engineering 194 1655-1673.

Park, J. H., G. Friedman, M. Jones. 2004. Geographical feature sensitive sensor
placement. Journal of Parallel and Distributed Computing 64 815-825.

Parra-Hernandez, R., N. J. Dimopolous. 2005. A new heuristic for solving the multi-

choice multidimensional knapsack problem. IEEE Transactions on Systems,

Man, and Cybernetics-Part A: Systems and Humans 35(5) 708-717.

Petersen, C. C. 1967. Computational experience with variants of the Balas algorithm

applied to the selection of R&D projects. Management Science 13 736-750.

Pirkul, H. 1987. A heuristic solution procedure for the multicontraint zero-one knapsack

problem. Naval Research Logistics 34 161-172.

Pisinger, D. 1995. A minimal algorithm for the multiple-choice knapsack problem.
European Journal of Operational Research 83 394-410.

Port of Houston. 2008. Retrieved September 25, 2008, http://www.portofhouston.com.

Ralphs, T. K., M. V. Galati. 2006. Decomposition and dynamic cut generation in integer

linear programming. Mathematical Programming 106 261-285.

Saaty, T. L. 1980. The Analytic Hierarchy Process. McGraw Hill, New York.

 158

Sbihi, A. 2007. A best first search exact algorithm for the multiple-choice multi-
dimensional knapsack problem. Journal of Combinatorial Optimization 13 337-
351.

Sherali, H. D., F. Glover. 2008. Higher-order cover cuts from zero-one knapsack

constraints augmented by two-sided bounding inequalities. Discrete Optimization
5 270-289.

Sherali, H. D., Y. Lee. 1995. Sequential and simultaneous liftings of minimal cover

inequalities for GUB constrained knapsack polytopes. SIAM Journal of Discrete

Mathematics 8(1) 133-153.

Shih, W. 1979. Branch and bound method for the multi-constraint zero-one knapsack

problem. Journal of the Operational Research Society 30(4) 369-378.

Soyster, A. L., B. Lev, W. Slivka. 1978. Zero–one programming with many variables

and few constraints. European Journal of Operational Research 2 195-201.

Stefan, B., Y. Nicola, F. Arnaud, A. Rumen. 2008. A dynamic programming based

reduction procedure for the multidimensional 0-1 knapsack problem. European

Journal of Operational 186(1) 63-76.

Thermal Camera. 2008. Retrieved September 25, 2008, http://en.wikipedia.org/wiki/Inf-

rared_camera.

Thermal Imaging. 2008. Retrieved September 25, 2008, http://www.emxinc.com/What-
isThermal Imaging.html.

Toyoda, Y. 1975. A simplified algorithm for obtaining approximate solutions to zero-

one programming problems. Management Science 21(12) 1417-1427.

Volgenant, A., J. A. Zoon. 1990. An improved heuristic for multidimensional 0-1

knapsack problems. Journal of Operational Research Society 41 963-970.

Wang, J., N. Zhong. 2006. Efficient point coverage in wireless sensor networks. Journal

of Combinatorial Optimization 11(3) 291-304.

Weingartner, H. M., D. N. Ness. 1967. Method for the solution for the multidimensional

0–1 knapsack problem. Operations Research 15 83-103.

Weistmental, R. 1997. On the 0-1 knapsack polytope. Mathematical Programming 77

49-68.

 159

Wilhelm, W. E. 2001. A technical review of column generation in integer programming,
Optimization and Engineering 2 159-200.

Wolsey, L. A. 1975. Faces for a linear inequality in 0-1 variables. Mathematical

Programming 8 165-178.

Wolsey, L. A. 1990. Valid inequalities for 0-1 knapsacks and MIPs with generalized

upper bound constraints, Discrete Applied Mathematics 29 251-261.

Zemel, E. 1978. Lifting facets of zero-one polytopes. Mathematical Programming 15

268-277.

Zemel, E. 1989. Easily computable facets of the knapsack polytope. Mathematics of

Operations Research 14 760-765.

Zeng, B., J. P. Richard. 2006. Sequence independent lifting for 0–1 knapsack problems

with disjoint cardinality constraints. Working paper, School of In-dustrial
Engineering, Purdue University, West Lafayette, IN.

Zou, Y., K. Chakrabarty. 2005. A distributed coverage and connectivity centric

technique for selecting active nodes in wireless sensor networks. IEEE

Transactions on Computers 54(8) 978-991.

 160

VITA

Name: Elif Đlke Çimren

Address: Department of Industrial and Systems Engineering
 Texas A&M University
 College Station, TX 77843-3131

Email Address: elifg@tamu.edu

Education: B.S., Istanbul Technical University, Turkey, 2002
 M.S., Sabanci University, Turkey, 2004
 Ph.D., Texas A&M University, TX, 2009

