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ABSTRACT 

 

Strategic Surveillance System Design for Ports and Waterways. (May 2009) 

Elif Đlke Çimren, B.S., Istanbul Technical University;  

            M.S., Sabanci University 

Chair of Advisory Committee: Dr. Wilbert E. Wilhelm 

 

The purpose of this dissertation is to synthesize a methodology to prescribe a 

strategic design of a surveillance system to provide the required level of surveillance for 

ports and waterways. The method of approach to this problem is to formulate a linear 

integer programming model to prescribe a strategic surveillance system design (SSD) for 

ports or waterways, to devise branch-and-price decomposition (B&P-D) and branch-and-

cut (B&C) methodologies to solve real-size (i.e., large-scale) SSD problems (SSDPs), 

and to compare the efficacies of B&P-D and B&C procedures.  

The first part of this dissertation formulates SSDP as an integer programming 

model. The model represents relevant practical considerations and prescribes the types 

of sensors, the number of each type, and the location of each sensor to meet surveillance 

requirements while minimizing total cost. The resulting model is a multidimensional 

knapsack problem with generalized upper bound constraints (GUBs).  

The second part of this dissertation designs a B&P-D to solve SSDP. We 

evaluate alternative ways of formulating and implementing B&P-D and identify default 

B&P-D, which requires less run time than the others. We use data representing the 
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Houston Ship Channel as a test bed to evaluate the efficacy of the default B&P-D, 

benchmarking relative to a commercial solver and analyzing the influence of parameters 

(i.e., experimantal factors) on run time. Our results show that the default B&P-D 

requires less run time than CPLEX B&B and provides strong bounds. Tests also show 

that the run time of B&P-D increases with the number of GUBs.  

The third part of this dissertation characterizes a family of valid inequalities - α - 

cover inequalities - for the knapsack polytope with GUBs (KPG) along with a procedure 

to generate them. It presents necessary and sufficient conditions under which these 

inequalities are facets of KPG polytope, and demonstrates how they can be lifted 

otherwise. Furthermore, it devises a separation procedure to cut off a fractional solution 

to the linear relaxation of KPG and presents computational results to evaluate the 

efficacy of the α -cover cuts. Computational tests show that α -cover cuts provide 

tighter cuts than either surrogate-knapsack or lifted cover cuts and using them to 

generate cuts for 0-1 integer problems with multiple constraints requires less run time.   

In the last part of the dissertation, using SSDP instances of real size and scope, 

we compare the efficacy of B&C, which uses α - cover inequalities as cuts, and B&P-D 

approaches. Our results show the B&C method, which detects a violated α -cover 

inequality for each knapsack and adds it after modifying it by lifting to be a facial 

inequality, is the fastest of the methods. We also analyze the sensitivity of the system 

and the cost to important parameters. The sensitivity analysis shows that cost is 

relatively insensitive to changes in parameters. 
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CHAPTER I 

INTRODUCTION 

 

Strategic surveillance system design (SSD) prescribes the type of sensors, the 

number of each type, and the location of each sensor to achieve the required level of 

surveillance. This dissertation synthesizes a methodology to prescribe a SSD to provide 

the required level of surveillance for ports and waterways. It fulfills its purpose in three 

related parts:  

(i) formulation of the strategic SSD problem (SSDP) for ports and waterways; 

(ii) a branch-and-price (B&P) decomposition (B&P-D) approach, including 

evaluation of alternative B&P-Ds of the multidimensional knapsack problem 

with generalized upper bound (GUB) constraints (MKGP) with the goal of 

establishing relationships among the bounds these methods provide - both 

analytically and computationally; 

(iii) a branch-and-cut (B&C) approach to solve large-scale SSDPs.  

In the first part of this dissertation we formulate a linear integer programming 

model to prescribe a SSD for a port or waterway. The resulting model is in the form of a 

MKGP. In previous studies, B&P and B&C procedures have been used successfully for 

solving 0-1 integer problems. Motivated by this, the second and third parts of this 

dissertation are, respectively, B&P-D and B&C solution procedures to solve the SSDP.  

In the second part, we explore various B&P-Ds that might be applied to MKGP 

____________ 
This dissertation follows the style of Operations Research.  
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with the goal of identifying an effective means of implementing B&P-D for solving 

SSDP exactly. As part of our theoretical analysis we compare the bounds available from 

B&P-Ds with two alternative relaxations (Lagrangian relaxation, Lagrangian 

decomposition) and determine whether incorporating a surrogate constraint can make an 

improvement or not.  Our computational tests compare alternative ways of implementing 

B&P-D to assess the trade-off between the tightness of resulting bounds and the run 

times required to obtain them.  Then, we use the B&P-D formulation that requires less 

run time than the others to solve SSDP instances. 

In the third part, we identify valid inequalities (facets) for knapsack problem with 

GUBs (KGP), which is a subproblem of MKGP. Then, we use these cuts to solve SSDP 

instances of realistic size by B&C. 

In this chapter we give a brief overview of the research. Section 1.1 reviews 

literature on SSDP, addressing issues important to SSD. Section 1.2 presents our 

research motivation. Section 1.3 specifies our research objectives. Finally, Section 1.4 

concludes this chapter by presenting the organization of the dissertation. 

 

1.1. Background 

Sensor location problems have received considerable attention recently.  The 

typical research paper focuses on a specific application such as the control of distributed 

process systems (e.g., chemical reactors) (Alonso et al. 2004, Bagajewicz and Cabrere 

2002), parameter estimation in structural dynamics (Papadimitriou 2005), or 

contaminant detection in municipal water networks (Berry et al. 2004).  A number of 
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works have also dealt with selecting the minimal number of sensors to maintain 

coverage and connectivity in a network (Akyildiz et al. 2002, Zou and Chakrabarty 

2005).  Another variant of the problem involves network interdiction, for example, 

locating sensors to minimize the probability that a smuggler can travel through a 

transportation network undetected (Morton et al. 2007).  

Relatively little research has focused on surveillance, especially for the port-and-

waterway environment.  Prior work for port-and-waterway surveillance is, by and large, 

qualitative (Kharchenko and Vasylyev 2002). In a recent exception, Ben-Zvi and  

Nickerson (2007) presented an algorithm to locate sensors that detect underwater threats; 

however, it considered a limited set of characteristics of intruders. 

The density of wireless sensors airdropped in an area may be important in 

applications like seismic analysis and environmental monitoring for agriculture 

(Mainwaring et al. 2002), but exact locations are important in surveillance applications 

(Clark 2004). One method (Fernandes et al. 2006) prescribes the locations for a 

predetermined number of Light Detection and Ranging (LIDAR) stations to maximize 

surveillance coverage of a specified area. Visibility is based on the fact that LIDAR 

detects smoke plumes. Another algorithm (Pandit and Ferreira 1992) uses a set covering 

model, which is NP-hard, to prescribe a minimal number of sensors to provide 

surveillance of the edges of all objects (polygons) in an area.  Sensor-location algorithms 

have been devised to assure observation of the entire surface of 2D (i.e., an area) 

(Bottino and Laurentini 2004) and 3D (i.e., a volume) (Bottino and Laurentini 2005) 

objects with the minimum number of sensors.  These algorithms (Bottino and Laurentini 
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2004, 2005) were based on the assumption that a given “area” comprises simple 

polygons, but ports and waterways take on irregular shapes.  

Methods are available to design a surveillance system by locating sensors on a 

grid.  One approach (Chakrabarty et al. 2002) formulated a linear integer program to 

minimize the cost of locating sensors with different ranges to cover all grid points, each 

by at least a specified number of sensors.  The authors proposed a theoretical framework 

and a divide-and-conquer approach to determine the best placement of sensors. Again 

employing a grid, Lin and Chiu (2005) formulated a combinatorial optimization model 

that minimizes the maximum sensor-to-surveillance-point distance under constraints that 

limit total cost and assure complete coverage. The authors devised a simulated annealing 

approach to solve the problem.  Both Chakrabarty et al. (2002) and Lin and Chiu (2005) 

assumed that coverage is complete if the distance between a grid (surveillance) point and 

the sensor was within the detection range of the sensor; they ignored the geographical 

features of the corresponding area and did not consider sensor characteristics other than 

range.  Furthermore, these papers employed the simplistic criterion that a surveillance 

point is covered if it is observed by a specified number of sensors. In another study, Kim 

and Park (2006) assumed that sensor capabilities decrease with distance, but ignored the 

effects of environmental conditions on sensor coverage and range.  In contrast to 

Chakrabarty et al. (2002), Lin and Chiu (2005), and Kim and Park (2006), Park et al. 

(2004) focused on covering salient geographical features - such as roads, rivers, and 

buildings - rather than seeking complete coverage of the region.   

Researchers have devised several approximate methods and heuristics.  One 
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polynomial-time approximation algorithm (Wang and Zhong 2006) seeks a minimum-

cost sensor placement on a bounded, 3D field, which comprises a number of discrete 

points that may or may not be grid points.  The model deals with different sensor types 

characterized by their ranges and costs, and every point in the field must be observed by 

at least a specified number of sensors.  This algorithm first solves the linear relaxation of 

the problem using standard techniques and then converts a fractional solution to an 

integer solution in O(n log n) time.  A heuristic procedure (Cavalier et al. 2007), based 

on Voronoi polygons, seeks to locate a finite number of identical sensors to detect an 

event in a given planar region, assumed to be a convex polygon.  The objective is to 

minimize the maximum probability of non-detection.  

Prior work has focused on locating sensors to observe a plane or grid, while ports 

and waterways take on irregular shapes, perhaps including long, narrow, and meandering 

paths.  To our knowledge none of the prior work has considered the set of practicalities 

important in designing a surveillance system for port and waterway security:  

(1) irregular shapes of ports and waterways;  

(2) surveillance requirements; and  

(3) the capabilities of each sensor type (e.g., radar; electro optical; infrared camera; 

seismic; electromagnetic; laser; sonar; and heat, motion, and radioactivity 

detectors), which may depend upon the time of day (e.g., lighting during 

morning, day, or night), weather conditions (e.g., rain, fog, snow, bright sun), 

unobstructed line of sight, and distance to a surveillance point. 

The scope of this dissertation is surface surveillance and it focuses on filling these gaps 
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left by earlier research. Although the overall methodology in this study is designed for 

solving the SSD for a ports or waterway, we expect that it could be adopted to deal with 

other applications like border patrol and underwater surveillance. 

 

1.2. Motivation 

Ports are installations where vessels can be loaded and unloaded, in particular, 

allowing passengers and cargo to enter a country through customs inspection.  Specific 

examples of ports are Boston MA, New York NY, Miami FL, Houston TX, San Diego 

CA, San Francisco CA, and Seattle WA. A waterway is a navigable body of water, 

including rivers, bays, and channels. Examples are the Great Lakes, the Panama Canal, 

and the Ohio and Mississippi Rivers. Currently, the security of ports and waterways is 

the responsibility of the U.S. Coast Guard (USCG). 

Immediately after the events of 9/11, the United States become aware of the 

destruction that a terrorist attack can cause and the urgency to prevent any reoccurrence 

of such an event. Each year, a huge number of ships that could carry destructive devices 

pass through U.S. ports; and a number of industries, which store and process both 

hazardous and flammable materials, line the shores of U.S. waterways. For example, 

according to Port of Houston website (2008), the Houston Ship Channel (HSC) daily 

imports over 11,000,000 barrels of petroleum and petroleum products (worth nearly $10 

billion) and annually handles 1,000,000 containers. Moreover, a $15 billion 

petrochemical center that includes some of the world’s largest plants lines its shore, and 

it is very close to populous areas.  
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The 2002 Maritime Transportation Security Act (Maritime Transportation 

Security Act 2008) requires that each large commercial cargo and passenger vessel 

install an automatic identification system (AIS) to provide detailed information about its 

identity to USCG Marine Safety Units (MSU). Hence, MSU knows the destinations of 

large vessels and can monitor them. On the other hand, small vessels, including barges 

and towing, fishing, and private recreation boats do not have such a requirement and 

none of them install AIS. Therefore, it is difficult to determine their intentions and 

monitor them. Due to their sizes, they can easily access critical regions, entering through 

a bayou that feeds the channel, launching at numerous locations along the channel or 

hiding in the shadow of a large vessel. Also, it is important to note that, since small boats 

usually can travel much faster than large vessels, early detection of a suspicious boat is 

important. Thus, critical (sensitive) regions along U.S. ports and waterways are 

threatened by intruders who can enter using small boats. The terrorist attack on the 

U.S.S. Cole on October 12, 2000 is evidence of the threat that a small vessel can cause 

(Congressional Research Service Report 2008). 

Historically, USCG MSU has used television cameras and radars to monitor the 

ship channel, primarily to manage the flow of vessels. However, the current system is 

not enough to provide timely response to security threats posed, for example, by 

unauthorized small vessels. Because of the importance of this problem, USCG is 

interested in developing sensor surveillance systems to assure homeland security in U.S. 

ports and waterways. However, since resources are limited, USCG requires the design of 

cost-effective surveillance systems.  
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1.3. Research objectives 

This dissertation has five research objectives; achieving them will fulfill the 

purpose of this study. The first objective is a linear integer programming model to 

prescribe a strategic design capable of providing an acceptable level of surveillance for a 

port or waterway. It is important that this model represent practical considerations 

important to port and waterway security. The second objective is an effective B&P-D 

approach to solve SSDP. Specifically, we explore several B&P-Ds formulations that 

might be applied to the MKGP, establishing relationships among the bounds these 

methods provide - both analytically and computationally. The third objective is a set of 

valid inequalities (facets) for the knapsack problem with GUBs (KGP).  Then, we use 

these inequalities to solve SSDP by B&C. The fourth objective is a computational 

evaluation of B&P-D and B&C approaches and a comparison of them. The fifth 

objective is computational experience in solving SSD instances of realistic size and 

scope. For this purpose, we will use HSC, which is the sixth largest port in the world, as 

a test bed. It represents ports and waterways in general and its proximity allows us to 

gather information easily. 

 

1.4. Organization of the dissertation 

This dissertation is organized in eight chapters.  Chapter II reviews literature 

relevant to this research.  Chapter III formulates a linear integer programming model to 

prescribe a SSD for a port or waterway, addressing the first objective.  Chapter IV 

identifies an effective B&P-D formulation (i.e., approach) to solve SSDP, addressing the 
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second objective. Chapter V evaluates the B&P-D formulation that is identified in 

Chapter IV in an application that involves designing a surveillance system for port and 

waterway security, addressing the fourth objective. Chapter VI devises set of valid 

inequalities (facets) for KGP, addressing the third objective.  Chapter VII uses the cuts 

generated in Chapter VI to solve SSDP by B&C and compares B&C approach with 

B&P-D, addressing the fourth and fifth objectives, respectively. In Chapter VIII we 

present our conclusions and some recommendations for future research. 
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CHAPTER II 

LITERATURE REVIEW 

 

This chapter reviews the literature related to this research. Since the integer 

programming formulation of the SSDP results in the form of MKGP, this chapter 

provides a review of MKGP. Section 2.1 presents the existing solution procedures for 

MKGP.  Section 2.2 introduces problems related to MKGP and their solution 

methodologies with a detailed review of multiple-choice multidimensional knapsack 

problem (MCMKP) (since MKGP can be transformed to an MCMKP equivalently). 

Section 2.3 states the known relationships between the bounds provided by Lagrangian 

relaxation, surrogate and composite relaxations, and Lagrangian decomposition for 

integer programming problems (IPs).  Section 2.4 reviews the literature on the KGP 

polytope and others related to it.   Finally, Section 2.5 summarizes this entire chapter, 

emphasizing the necessity of this dissertation research. 

 

2.1. Multidimensional knapsack problem with GUB constraints 

In this dissertation, we consider the MKGP that is given in the following form: 

{ }gjJj jGg iJj jij JjGgxGgxIibxacx
gg

∈∈∈∈≤∈≥ ∑∑ ∑ ∈∈ ∈
,}1,0{;1;:min . 

MKGP is known to have a number of important applications, including underwater 

threat detection (Ben-Zvi and Nickerson 2007), sensor location (Kim and Park 2006), 

asset allocation (Li et al. 2004), and strategic surveillance system design (Section 3.1). 

Problems that contain multiple knapsack constraints are NP-hard in the strong sense 
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(Martello and Toth 1990), as is MKGP. To our knowledge, only heuristics have been 

proposed for MKGP (Li et al. 2004, Li and Curry 2005, Li 2005). It is important to note 

that the MKGP considered in the literature has knapsack constraints in the form of a 

less-than-equal-to inequalities ( )∑ ∑∈ ∈
≤

Gg iJj jij bxa
g

 i.e., . Although polytopes 

associated with knapsacks in the form of less-than-or-equal-to and greater-than-or-equal-

to inequalities are different from each other, they can be transformed to equivalent 

forms. Therefore, solution procedures for one of the forms can be used to solve the other 

form.  

 

2.2. Variants of MKGP 

MKGP is closely related to four other variants of the problem: 0-1 knapsack 

(KP), multiple-choice knapsack (MCKP), multidimensional knapsack (MKP) and 

MCMKP. Each of the following subsections reviews the literature on these problems.  

2.2.1. Knapsack problem 

KP, which is given by  

{ }gjGg Jj jj JjGgxbxacx
g

∈∈∈≤∑ ∑∈ ∈
,}1,0{;:min , 

is a special case of MKGP. KP can be recast as MKGP by complementing each variable 

and forming n  ( )∑ ∈
=

Gg gJn  GUBs by assigning exactly one variable to each GUB 

(i.e., 1≤jx ). It is well known that KP is NP-hard (Garey and Johnson 1979). However, 

since it is not strongly NP-hard, it can be solved in pseudo-polynomial time by dynamic 

programming (Dantzig 1957, Martello and Toth 1990). Pseudo-polynomial algorithms, 
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fully polynomial approximation schemes, search tree procedures and heuristics have also 

been proposed to solve KP (Kellerer et al. 2004, Martello et al. 1999).  

2.2.2. Multiple-choice knapsack problem 

MCKP, which is given by  

{ }
gjJj jGg Jj jj JjGgxGgxbxacx

gg

∈∈∈∈=≤ ∑∑ ∑ ∈∈ ∈
,}1,0{;1;:min , 

is a variation of KP in which variables are partitioned into classes and exactly one 

variable from each class must be set to 1.  MCKP can be transformed into an equivalent 

MKGP by setting jjJjj ccc
g

−= ∈ ''max , jjJjj aaa
g

−= ∈ ''max  for Gg ∈ , gJj ∈ , and 

bab
Gg jJj g

−=∑ ∈ ∈max1 , and by eliminating one of the variables with 0=ja  from 

each class gJ  in order to transform the multiple-choice equality into an inequality 

(Kellerer et al. 2004).  MCKP was first introduced by Healy (1964) and in 1987 

Dudzinski and Walukiewicz showed that it can be solved in pseudo-polynomial time. 

Since then many studies have dealt with it (Kellerer et al. 2004, Martello and Toth 1990, 

Pisinger 1995). Most of the algorithms for the exact solution of MCKP use B&B (Nauss 

1978, Armstrong et al. 1983). 

2.2.3. Multidimensional knapsack problem 

MKP, which was introduced by Lorie and Savage (1955), involves multiple 

knapsack constraints, but no non-trivial GUBs.  It is encountered in capital budgeting 

(Manne and Markowitz 1957), project selection (Petersen 1967), cutting stock (Gilmore 

and Gomory 1966) and loading problems (Shih 1979).   

Since MKP is a well known to be NP-hard in the strong sense, finding a fully 
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polynomial approximation algorithm is NP-hard (Magazine and Chern 1984). Hence, a 

number of studies have focused on preprocessing (Fréville and Plateau 1994), greedy 

heuristics (Toyoda 1975), metaheuristics (Chu and Beasley 1998, Hanafi and Fréville 

1998), and approximate dynamic programming algorithms (Bertsimas and Demir 2002). 

A few exact algorithms are available to optimize MKP.  They are based on dynamic 

programming (Gilmore and Gomory 1966, Weingartner and Ness 1967), branch-and-

bound (B&B) (Shih 1979, Geoffrion 1974), hybrid algorithms combining dynamic 

programming and B&B (Marsten and Morin 1977), and implicit enumeration (Soyster et 

al. 1978).  However, none solve MKP effectively and their applicability is typically 

limited to instances with relatively few variables and constraints.  Moreover, dynamic 

programming can only be used to solve MKPs with small values of ib  (Fréville 2004).  

We refer the reader to Fréville (2004), Hanafi et al. (1996), Kellerer et al. (2004), Lin 

(1998), Stefan et al. (2008) for detailed information on solution approaches to MKP.   

2.2.4. Multidimensional multiple-choice knapsack problem 

As described by Moser et al. (1997), MCMKP has multiple knapsack constraints.  

MKGP can be transformed into an equivalent MCMKP (Kellerer et al. 2004) and the 

inverse is also true. To our knowledge, very few studies have focused on MCMKP, and 

all of them have proposed heuristic solutions (Akbar et al. 2006, Hifi et al. 2004 and 

2006, Khan et al. 2002, Parra-Hernandez and Dimopolous 2005, Moser et al. 1997), 

except Sbihi (2007). Moser et al. (1997) designed an approach based upon the concept of 

graceful degradation from the most valuable items based on Lagrange multipliers. It has 

been observed that Moser et al. (1997) cannot always find a feasible solution when there 
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is one. Khan et al. (2002) tailored the algorithm introduced by Toyoda (1975) for solving 

the MCMKP.  Hifi et al. (2004, 2006) presented two different approximate approaches. 

The first approach is a guided local-search heuristic in which the trajectories of the 

solutions were oriented by including a penalty term in the cost function; it penalizes bad 

aspects of previously visited solutions. The second approach is a reactive local search. It 

starts with an initial solution, which is improved by an iterative process.  The 

improvement process includes deblocking and degrading procedures in order to escape 

from local optima and to introduce diversification into the search. Parra-Hernandez and 

Dimopolous (2005) presents a heuristic that is based on the one given in Pirkul (1987). 

The authors first reduced MCMKP to a MKP. They solved the linear relaxation of the 

resulting MKGP, and calculated performance values (called pseudo utility values and 

resource value coefficients) for each variable. These values were used to find a feasible 

solution to MCMKP and to improve it. We refer the reader to Kellerer et al. (2004) for a 

detailed review of heuristic solutions to MCMKP.  

The only exact algorithm for MCMKP (Sbihi 2007) finds an optimal solution 

using B&B. At each B&B node (Sbihi 2007) obtains an upper bound to MCMKP by 

solving MCKP, which is formed by aggregating knapsack constraints. The 

computational evaluation presented in (Sbihi 2007) showed that this B&B method was 

able to solve instances of small and medium sizes with up to 1000 variables, divided into 

50 classes (choice constraints) with 20 variables each and up to 7 knapsack constraints.  

On the other hand, memory requirements prohibited the B&B method from solving 

larger instances. Furthermore, execution time increased with the number of knapsack 
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constraints.  When the number of variables in each class is decreased and the number of 

knapsack constraints is increased, run time increases for the same number of classes.   

 

2.3. Comparison of bounds 

Linear programming (LP), Lagrangian (Gavish and Pirkul 1985, Magazine and 

Oguz, 1984, Volgenant and Zoon 1990), surrogate (Glover 1968, Osorio et al. 2002), 

and composite relaxations (Greenberg and Pierskalla 1970) are often used to find lower 

(upper) bounds for minimization (maximization) problems. The LP relaxation of an IP 

eliminates the integrality requirements. Lagrangian relaxation (LR) relaxes a set of 

constraints into the objective function, surrogate relaxation (SR) replaces original 

constraints ( )bAx ≥ i.e.,  with a non-negative linear combination of them 

( )mT RssbsAx +∈≥ for  i.e., , and composite relaxation (CR) combines both Lagrangian 

and surrogate relaxations.  

Greenberg and Pierskalla (1970) gave the first theoretical analysis of the bounds 

provided by SR. The most important result of Greenberg and Pierskalla (1970) is that SR 

provides tighter bounds than LR. Geoffrion (1974) showed that the LR bound is always 

at least as tight as the LP bound. In addition, Glover (1975) developed surrogate duality 

theory, which gives strong optimality conditions under which SR has no duality gap; and 

Karwan and Rardin (1979) investigated the relationship between LR and SR.  

Gavish and Pirkul (1985) identified the theoretical relations between LR, SR, and 

CR for MDKP and proposed new algorithms for obtaining surrogate bounds.  Crama and 

Mazolla (1994) further examined the strength of the bounds obtained through these 
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relaxations and showed two important results. The first result is that CR gives only 

modest improvement over SR and the second is that, although the bounds derived from 

LR, SR, or CR are stronger than the bounds obtained from linear relaxation, the 

improvement in the bound cannot exceed the magnitude of the largest coefficient in the 

objective function, nor can it exceed one-half of the optimal objective-function value of 

the linear relaxation.  It is important to note that SR provides its most promising results 

when the number of constraints is very small (Fréville and Hanafi 2005).  A recent paper 

(Ralphs and Galati 2006) illustrated the relationship between LR, Dantzig-Wolfe 

decomposition (DWD), and cutting plane approaches and presented a framework to 

improve bounds by integrating dynamic cut generation with LR and DWD, which is well 

known to be dual to LR (Frangioni 2005). 

Lagrangian decomposition (LD) (Guignard and Kim 1987a) relaxes an IP by 

creating an identical copy of each variable and dualizing the requirement that copies 

have identical values.  LD bounds dominate LR bounds (Guignard and Kim 1987b).  

However, there is no direct comparison between LD and SR. To our knowledge, there is 

only one computational study of LD (Guignard et al. 1989); it investigated LD in 

application to a bi-dimensional KP.  Since the number of the Lagrangian multipliers is 

equal to the number of variables, LD leads to excessive run times and has not previously 

been shown to be successful in application.  

 

2.4. Valid inequalities 

We denote by ≤K ( ≥K ) the knapsack constraint in the form of a less (greater)-
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than-or-equal-to inequality. The first subsection reviews the literature on the ≤KPG  

polytope and the second summarizes the known valid inequalities for the ≥KPG  

polytope. 

2.4.1. A related polytope 

≤KP  has been investigated extensively (Balas 1975, Balas and Zemel 1978, Gu 

et al. 1999, Nemhauser and Wolsey 1988, Weistmantel 1997, Zemel 1989). Balas and 

Zemel (1978) gave bounds on the lifted coefficients associated with a minimal cover 

inequalities. Balas (1975), Balas and Zemel (1978), Hammer et al. (1975), Wolsey 

(1975) and Zemel (1978) proposed a simultaneous lifting procedure to obtain facets. 

Padberg (1980) introduced (1, k)-configurations (i.e., inequalities) for KP. 

Lifted cover inequalities, derived from the 0-1 ≤KP , have been used successfully 

for solving 0-1 integer problems by cut-and-branch algorithms (Crowder et al. 1983, Gu 

et al. 1998, Johnson et al. 1985, Gabrel and Minoux 2002). In particular, Crowder et al. 

(1983) showed that using inequalities for ≤KP  as cuts for 0-1 integer problems with 

multiple constraints yields significant computational improvements over pure B&B 

algorithms. 

Several studies (Johnson and Padberg 1981, Nemhauser and Vance 1994, 

Wolsey 1990) have identified valid inequalities (facets) of the ≤KPG  polytope. By 

strengthening valid inequalities for ≤KP , Wolsey (1990) defined GUB cover inequalities 

for ≤KPG , and presented specialized implementations of GUB cover inequalities for 

solving machine-sequencing, generalized-assignment and variable-upper-bounded-flow 



 18

problems with GUB constraints. Nemhauser and Vance (1994) extended the results of 

Balas (1975) and Balas and Zemel (1978) and presented a method based on independent 

sets to lift cover inequalities, obtaining facet-defining inequalities for ≤KPG . Glover et 

al. (1997) devised surrogate-knapsack cuts using a cut-generation method that creates a 

non-negative linear combination of a knapsack constraint ( ≤K ) with selected bounding 

inequalities of form 1≤jx  Jj ∈ . A recent study (Zeng and. Richard 2006) analyzed a 

more general case of ≤KPG  in which the right-hand-side of each GUB-like constraint is 

greater-than-or-equal-to 1. The authors described a lifting procedure for related, 

generalized cover inequalities using novel, multidimensional super-additive lifting 

functions that approximate the underlying, exact lifting function from below. Also, a few 

studies have proposed coefficient reduction methods to tighten the linear relaxation of 

≤KP  (Johnson et al. 1985, Lougee-Heimer 2001). Our study is different from these in 

that we study the polyhedral properties of ≥KPG  polytope. 

2.4.2. KGP  polytope 

To our knowledge only Sherali and Lee (1995) have devised a family of valid 

inequalities (facets) specifically for ≥KPG  polytope.  Sherali and Lee (1995) also 

developed sequential and simultaneous lifting procedures. We refer to reader to Chapter 

VI for detailed summary of the inequalities devised in Sherali and Lee (1995). 

A recent paper (Glover and Sherali 2008) introduced a class of second-order-

cover-cuts (SOC) for the polytope described by ≥KP  with one additional constraint that 

defines an upper bound on the sum of all variables. Then, Sherali and Glover (2008) 
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extended the work on SOCs by proposing a new class of higher-order cover-cuts (HOC) 

for ≥KP  with a two-sided bounding constraint on the sum of all variables and a set of 

two-sided bounding inequalities, each over a unique subset of variables.  Let 

∪ Gg gJJ
∈

= .  For each non-empty subset of indices JJ ⊆' , an HOC is given by 

px
Jj j ≥∑ ∈ '

       (2.1) 

where { }Xxxp
Jj j ∈= ∑ ∈

:min
'

. Authors presented relationships that identify which of 

two HOCs dominates the other over the unit hypercube (i.e., }10:{ ≤≤ xx ). Using 

properties of non-dominated HOCs, Sherali and Glover (2008) focused on generating all 

non-dominated HOCs by implicitly enumerating all possible JJ ⊆' .   

 

2.5. Conclusion 

Prior work focused on using LR, SR, or CR to provide bounds in B&B. To our 

knowledge, no prior research has used B&P-D to provide bounds for MKGP.  Moreover, 

only a few studies have compared bounds provided by LR, SR, or CR computationally 

and those that have been published are problem specific.  

Our study focuses on the polyhedral properties of ≥KPG  polytope. Our research 

differs from Sherali and Glover (2008) in that we generate valid inequalities to cut off a 

fractional solution to the linear relaxation of ≥KPG .  For this purpose, we establish 

dominance relationship between inequalities of form (2.1) over the ≥KPG  polytope, 

present a polynomial-time procedure to generate a non-dominated inequality, describe 

the conditions under which non-dominated inequalities are facet-defining, and discuss a 
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procedure that lifts sequentially with respect to GUBs, but simultaneously computes 

lifted coefficients for all variables associated with each GUB. 
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CHAPTER III 

PROBLEM FORMULATION
*
 

 

This chapter formulates an integer model of the design problem and provides a 

detailed description of the parameters in the model, fulfilling our first research objective. 

Section 3.1 formulates the SSDP as a MKGP. Section 3.2 describes the data that reflects 

the size and scope of an actual application and deals with the practical considerations 

that are important to ports and waterways in general.   

 

3.1. Sensor system design model formulation 

Our model relates four important entities: environmental conditions, sensor 

combinations, potential sensor locations, and surveillance points.  We define an index set 

E  of environmental conditions under which surveillance must be provided; each Ee ∈  

denotes a unique (time of day, weather condition) combination, where, for example, the 

former could be day or night; and the latter, clear, heavy rain or fog.  It is possible to 

install a combination of several types of sensors at the same location; for example, one 

tv camera, two tv cameras, or a tv camera and an infrared camera could be installed on 

the same tower.   For this reason, we assume that an index set K  of sensor combinations 

can be defined a priori as an input to the model.  Each “combination” Kk ∈  involves 

either one sensor type or several. To facilitate presentation, we suppress the generic term 

____________ 
*©2008 IEEE. Reprinted, with permission, from “Branch-and-price decomposition to design a 
surveillance system for port and waterway security” by W. E. Wilhelm and E. I. Gokce. IEEE 

Transactions on Automation Science and Engineering (in press). 
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“type” in association with a sensor or a sensor combination if ambiguity does not result. 

We define index set L  of potential sensor locations; each Ll ∈  represents a plot of land 

that can be procured as a site at which a tower could be constructed so that sensors can 

be installed at appropriate heights.  We use klc  to denote the present worth cost of 

purchasing, installing, and maintaining sensor combination k  at location l .  We 

discretize the area to be observed, defining an index set S  of surveillance points, each 

Ss ∈  of which must be observed to assure security (see Section 3.2.4). Although we 

define each element of notation when we first use it, we summarize frequently used 

symbols in Table 1 for reader convenience. 

 
 

Table 1. Notation. 
Index sets:            

E  : environmental conditions, which are indexed by Ee ∈  

K  : sensor combinations, which are indexed by Kk ∈  

L  : potential sensor locations, which are indexed by Ll ∈  

S  : surveillance points, which are indexed by Ss ∈  

+Φ kl    : subset of ),( se  constraints in (3.5) that have positive coefficients for klx  

 0
klΦ    : subset of ),( se  constraints in (3.5) that have zero coefficients for klx  

Parameters: 

klc  : present worth cost of purchasing, installing, and maintaining sensor    

  combination k  at location l  

eklsp

 

: probability that the system, using sensor combination k  at location l , will  

  detect an intrusion if  one occurs at surveillance point s  under condition e  

eklsp

 

: probability that the system, using sensor combination k  at location l , will fail  

  to detect an intrusion if one occurs at surveillance point s  under condition e ;    

  eklsekls pp −= 1  

est  : maximum acceptable probability for the system to fail to detect an intrusion at  
  surveillance  point s  under condition e  

Decision variables: 

klx  = 1 if sensor combination k  is installed at location l ;  0 otherwise 

eklsv : clone of klx  corresponding to constraint ),( se  in (3.5) 
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We model surveillance capability using eklsp , the probability that the system, 

using sensor combination k  at sensor location l , will detect an intrusion if one occurs at 

surveillance point s  under environmental condition e .  The probability that the system, 

using k  at l , will fail to detect an intrusion if one occurs at s  under e  is given by 

eklsekls pp −= 1 .   Section 3.2.5 details how 
eklsp  can be calculated. 

The probability that the system would not detect an intrusion at surveillance 

point s  under environmental condition e , esπ , is the product of the probabilities that the 

system using all k  at all l  to observe s  under e  would fail to detect an intrusion:  

∏ ∏∈ ∈
=

Kk Ll

x

eklses
klp )(π where decision variable 1=klx  if k  is located at l , 0 

otherwise. 

In order to provide sufficient surveillance of s  under e , esπ  should be less than 

est , the maximum acceptable probability for the system to fail to detect an intrusion at s  

under e ; that is,  

esKk Ll

x

eklses tp kl ≤= ∏ ∏∈ ∈
)(π . 

M1, the surveillance system design problem, can now be formulated: 

∑ ∑∈ ∈
=

Kk Ll klklM xcZ Min *

1                                  (3.1) 

            s.t.  esKk Ll

x

ekls tp kl ≤∏ ∏∈ ∈
)(                Ee ∈ , Ss ∈                 (3.2) 

                               1≤∑ ∈Kk klx          Ll ∈                              (3.3) 

                                   { }1,0∈klx      Kk ∈ , Ll ∈ .                (3.4)  

The objective (3.1) is to minimize the total present worth cost of purchasing, installing, 
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and maintaining all sensors in the system.  Inequalities (3.2) assure that the required 

level of surveillance is provided to each surveillance point s  under each environmental 

condition e .  Constraints (3.3) allow at most one sensor combination to be installed at 

each location l .  Finally, (3.4) requires all decision variables to be binary.   

M1 is a non-linear program, which we now recast in a linear form by 

transforming constraints (3.2) using logarithms.  First, we take the logarithm of each side 

of constraint (3.2), obtaining  

( ) ( )esKk Ll

x

ekls tp kl log)(log ≤∏ ∏∈ ∈
. 

Continuing,  

( ) ( )∑ ∑∏ ∏ ∈ ∈∈ ∈
=

Kk Ll

x

eklsKk Ll

x

ekls
klkl pp log)(log , 

so that (3.2) can be expressed as  

∑ ∑∈ ∈
≤

Kk esLl

x

ekls tp kl )log()log(               Ee∈ , Ss ∈ . 

Since 10 ≤< eklsp  and 10 ≤< est , 0)log( ≤est  and 0)log( ≤eklsp . Letting 

0)log( ≥−= eklsekls pa  and 0)log( ≥−= eses tb ,  constraint (3.2) can be re-expressed as: 

esKk Ll klekls bxa ≥∑ ∑∈ ∈
  Ee ∈ , Ss ∈ .                 (3.5) 

So, model (3.1)-(3.4) becomes a linear MKGP: 

{ })5.3( and ),4.3(),3.3(:min * ∑ ∑∈ ∈
=

Kk klklLlMKGP xcZ . 

 From this point on, we use ),( se  to denote the knapsack constraint in (3.5) associated 

with environmental condition e  and surveillance point s .  
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3.2. Test instances 

This dissertation focuses on model formulation and solution approach and does 

not seek to describe a methodology to estimate parameter values in an actual application.  

Due to security restrictions, we do not have access to actual data that describes any 

particular port or waterway.  However, we generate data that reflects the size and scope 

of an actual application and deal with the practical considerations that are important to 

ports and waterways in general.  This section describes the test instances that we use to 

evaluate our solution methods in Chapters IV-VII. 

We use the HSC as a test bed.  HSC is important because it exemplifies ports and 

waterways in general and, as the sixth largest port in the world, it handles the largest 

foreign tonnage among all U.S. ports. (Port of Houston 2008)  USCG officers stationed 

at the Sector Houston-Galveston (SHG) of the Port of Houston provide security through 

surveillance and patrol boats, which can be dispatched to interdict intruders.  The SHG 

has historically employed television cameras and radar to maintain surveillance, 

primarily to manage the flow of large commercial vessels. 

HSC is vulnerable to a number of security threats, which we describe here only 

briefly and in general terms.  The channel’s shoreline is home to a huge petro-chemical 

complex that includes some of the world’s largest plants.  These critical facilities process 

and store both hazardous and flammable materials near populous areas.   An intruder 

might try to gain access to the ship channel in a number of ways, perhaps using a small, 

fast boat.  

A vessel enters HSC near Galveston Island and travels in a northwest direction 
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through Galveston Bay.  This region is under the authority of an SHG sub-unit based on 

Galveston Island, the Galveston Marine Safety Unit (GMSU). Passing through Morgans 

Point, the vessel continues into a region that is under the authority of the SHG, entering 

a narrower waterway that is oriented in a northwestern direction, then making a 270° 

turn at Lynchburg Ferry Crossing, and proceeding into an even narrower waterway that 

meanders in a westward direction to the Houston Turning Basin.  The subsection from 

Morgans Point to Lynchburg Ferry Crossing has no restrictions on boating, so that small 

pleasure craft, fishing boats, tugs, barges can use it along with large commercial vessels.  

Boating is restricted on the subsection from Lynchburg Ferry Crossing to the Houston 

Turning Basin, so that small craft do not have permission to use it.  

The ship channel is actually a dredged channel that is (roughly) in the center of 

the waterways described.  Large vessels must travel in this dredged channel, although 

smaller boats are able to navigate the width of the waterway.  Nevertheless, the entire 

waterway is commonly called HSC without distinguishing the dredged portion. 

We do not consider the part of the channel that is under the authority of GMSU 

because it involves a large body of water (the Galveston Bay) for which radar is the 

primary means of surveillance.  Rather, we focus on the portion of the HSC that is under 

the authority of Port of Houston SHG.  It is 20.84 miles long and its width varies from 

0.08 miles to 2.51 miles as depicted by Figure 1.  A vulnerable petro-chemical complex 

lines the shore and residential areas are nearby, heightening the need for surveillance.  

We generated Figure 1 and other aerial views using satellite images available from 

Google Earth (Google Earth 2008) and ArcGIS (Esri 2008) software. 
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     Figure 1. Houston Ship Channel under the authority of Port of Houston SHG. 

 
     

 

 
The following subsections describe factors and how we generate parameters 

eklsa , esb , and klc  . 

3.2.1. Environmental conditions 

We consider three environmental conditions (time of day, weather condition) to 

represent the broad range of challenges under which surveillance must be assured: (day, 

clear), (night, clear), and (day, heavy rain).  Since each sensor type provides its mid-

range capability for (day, heavy rain), we choose it as Level 1, so with |E| = 1, E 

comprises only (day, heavy rain).  A sensor type that provides superior capabilities under 

one condition may not be useful at all under others. No single environmental condition 

presents a worst case for all sensor types, so the design model must consider all 

conditions explicitly.  Level 2 of |E| is 3, where E comprises (day, clear), (night, clear), 

and (day, heavy rain).   

3.2.2. Sensor combinations 

 We consider three types of sensors, each of which has two different ranges: 

thermal cameras (T) (Thermal Camera 2008) with ranges of 4000m (T1) and 3000m 
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(T2); image intensification (i.e., night vision) cameras (N) (Night Vision Camera 2008) 

with ranges of 3000m (N1) and 2500m (N2); and closed circuit television cameras 

(CCTV) (Closed Circuit Television Camera 2008) with ranges of 2500m (CCTV1) and 

2000m (CCTV2).   

We define 14 sensor combinations (Table 2); each provides a full �360  field of 

view and can be installed on a single tower. Combinations that involve two senor types 

provide complementary capabilities. 

 
 

Table 2. Sensor combinations. 
k Sensor types  

1 T1 

2 T2 

3 N1 

4 N2 

5 CCTV1 

6 CCTV2 

7 T1, CCTV1 

8 T1, CCTV2 

9 T2, CCTV1 

10 T2, CCTV2 

11 N1, CCTV1 

12 N1, CCTV2 

13 N2, CCTV1 

14 N2, CCTV2 

        
 
 

3.2.3. Potential sensor locations 

 To identify potential sensor locations, we studied an aerial view of the ship 

channel.  We identified 25 unused plots of land (Figure 2) and added the 7 locations 

currently used as CCTV locations by SHG, assuming that all 32 plots could be used as 

sensor locations, either through lease or purchase. 
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                Figure 2. Potential sensor locations. 

 

 

 

3.2.4. Discretization 

To discretize the channel area, we have drawn a “line of surveillance” across 

HSC (i.e., perpendicular to the mid-line of the channel) at each 0.5 mile interval and 

locate a surveillance point at the center of each line. We assume that any sensor that is 

capable of observing the point would also be able to observe the entire line and its 

vicinity.  This results in |S| = 42 for Level 1 of Factor 3.  For Level 2 of |S|  (i.e., |S| = 

84), we define two surveillance points on each line, one near the shore at each end of 

each line, and require that each be observed by sensor(s) located on the same side of the 

channel.  This enhances the capability of detecting intrusion from the shore and provides 

surveillance from both sides of the channel to assure that a small boat cannot evade 

detection by hiding behind a large vessel.   

3.2.5. Calculating eklsa  values 

If k  cannot provide any surveillance capability under e ; if the line of sight from 

l  to s  is blocked, for example, by a man-made structure or a terrain feature; or if the 

straight line distance from l  to s , lsd , is beyond the range of k , 1=eklsp  and 0=eklsa .   
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We use ArcGIS to determine the subset of surveillance points SSs l ⊆∈  that 

can be seen in a unobstructed line of sight from each potential sensor location Ll ∈ .  

The relative height of a tower installed at l  is important in determining the points that 

can be observed from that location.  We consider three alternative heights: 20m, 40m, 

and 60m.  Figures 3, 4, and 5 show the points (lighter shading) that can be observed in a 

direct line of sight from towers of 20m, 40m, or 60m height at the point shown at the 

northeast corner of the channel. Towers of 20m height cannot provide sufficient 

surveillance capability and towers of 60m are more costly and do not provide 

substantially better capabilities than towers of 40m height due to elevations and terrain 

features .  Therefore, we use towers of 40m height.   

 
 

       Figure 3. Points that can be observed using a tower of 20m height. 

 
 

 

 
       Figure 4. Points that can be observed using a tower of 40m height. 
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       Figure 5. Points that can be observed using a tower of 60m height. 

 
        

 
 

Sensor combination k  cannot detect an intrusion at surveillance point s  under 

environmental condition e  if no constituent sensor has an unobstructed line of sight, has 

the necessary range, has sufficient capability under e , or is able to send a positive signal. 

Let us introduce the following notation: 

  i   :  index for sensor type in combination  k ; kKi ∈  

lsd  : straight line distance from sensor combination mounted on a 40m tower at  

        location l  to surveillance point s . 

If sensor type i  does not have any electro-mechanical problem, it is operational; 

otherwise it is not operational.  Let eiW  be a random variable that has the value 1 if i  is 

operational under environmental condition e ; 0 otherwise.  The probability that sensor 

type i  is operational under e  is ]1Pr[ =eiW . ]1Pr[1]0Pr[ =−== eiei WW  is the 

probability that sensor type i  is not operational.  To say that i  detects an intrusion at 

surveillance point s  correctly means that, given that it is operational, it sends a positive 

signal whenever an intrusion occurs at s  and the system interprets the signal properly, 

perhaps including recognition by a human who monitors a display of sensor signals.  Let 

eilsD  denote the random variable that has value 1 if the system using sensor type i  at 
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location l  detects intrusion at s  correctly under e , given that i  is operational; 0 

otherwise.  The detection probability is given by ]1Pr[ =eilsD . 

The probability eklsp  can be determined in the following way.  Let kK  denote the 

set of sensor types i  in combination k . Combination k  cannot detect an intrusion if 

each sensor kKi ∈  is either not operational or does not detect an intrusion correctly, 

given that it is operational.  We assume that eilsD  and eiW  are mutually independent and 

that sensor types in kK  work mutually independently.  Considering the possibility that 

subset 
kekls KK ⊆ˆ  at l  is planned to observe s  under e  but is not operational, it can be 

shown that eklsp  is given by 

( ) ( )( )[ ]∑ ∏∏⊆ ∈∈
==−=−=

kekls eklskeklsKK KKi eieilsKi eiekls WDWp ˆ ˆ\ˆ ]1Pr[]1Pr[1]1Pr[1 . 

 The system detection probability using operational sensor i  depends on 

environmental condition, sensor capabilities, and distance from a sensor location to a 

surveillance point.  Detection probability decreases as the distance increases, and can be 

calculated using )~1( )( i
lsi d

e
ηκ −−−  (Cavalier et al. 2007); here iκ  and iη  are parameters 

that represent the decrease in detection probability of sensor type i  as lsd  increases and 

e~  is the Euler’s number (we use e~  since we use e  to denote an environmental 

condition).  Since detection probability, ]1Pr[ =eilsD , also depends on e  and i , we 

define parameter eiϑ  for sensor type i , which relates the rate of decrease in 

)~1( )( i
lsi d

e
ηκ −−−  to environmental condition e . We use the expression 
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)~1)(1( )( i
lsi d

ei e
ηκϑ

−−−−  to calculate ]1Pr[ =eilsD . 

Detection probability decreases rapidly as lsd  increases for sensor types N (night 

vision) and CCTV (closed circuit television) and slowly for type T (thermal).  

Considering this, we determine ),( ii ηκ  for each i  as in Table 3.  Also, it is important to 

note that a sensor cannot provide surveillance for points that are very close to it, as it 

magnifies such a target too highly to allow effective observation.  

 

 

 

Thermal contrasts are enhanced by temperature differences that typically occur 

several hours after sunset, so T performs best at night (Thermal Imaging 2008).  Also, 

the thermal contrast between a target and its background is enhanced during rain, so T 

performs better in rain than during a clear day.  Since using N during daytime or in very 

brightly situations is damaging, we assume that N is not used during a clear day 

(Thermal Imaging 2008).  Also, N performs better at night than on a rainy day (Night 

Vision Camera 2008).  A CCTV can be used only during the day but its capability 

decreases in rain.  Based on these considerations we specify the eiϑ  values shown in 

Table 3. Parameter values selected for calculating 
eklsp . 

i  iκ  
iη  eiϑ  ]0Pr[ =eiW  

Day Night Rain Day Night Rain 

T1 3.500 1.000 0.100 0.000 0.050 0.030 0.030 0.045 

T2 2.600 1.000 0.100 0.000 0.050 0.030 0.030 0.045 

N1 2.000 0.800 1.000 0.000 0.200 0.010 0.010 0.015 

N2 1.700 0.750 1.000 0.000 0.200 0.010 0.010 0.015 

CCTV1 1.600 0.750 0.000 1.000 0.100 0.010 0.010 0.015 

CCTV2 1.350 0.700 0.000 1.000 0.100 0.010 0.010 0.015 
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Table 3. 

We choose failure probabilities, ]0Pr[ =eiW , based on sensor characteristics as 

shown in Table 3. Since high humidity is known to damage sensors, failure probabilities 

increase during rain. 

3.2.6. Calculating esb  values 

We calculate est  based on the threat level under e  and the characteristics of the 

critical facilities around s .  Since it is more difficult to detect an intruder at night or on a 

rainy day than on a clear day, we assume that an intrusion is more likely to occur under 

such conditions.  On the other hand, the goal of an attack may be to inflict damage not 

only on a critical facility, but also to nearby residential areas.  Since more people are at 

home, a night attack may inflict more damage. Hence, we assume that an intrusion is 

more likely to occur at night. We employ this rationale to specify est  values.  Based on 

the characteristics of the critical facilities around s, we first calculate est  for night time 

(i.e., 2=e ), the environmental condition under which the threat level may be the 

highest. Then, we calculate est  for e =1 and 3. 

We consider all critical facilities that are located on the shore of the HSC, 

including both refineries and chemical plants. We first classify the refineries and 

chemical plants that are located on the shore of the HSC in nine categories, based on 

three criteria: flammable/toxic material storage capacities, flammable/toxic material 

storage capacities of critical facilities close to them, and closeness to other critical 

facilities. Applying the Analytic Hierarchy Process (Saaty 1980), we determine a 



 35

normalized weight, jw , to represent the importance of each category { }9...1∈j : 0.215, 

0.190, 0.158, 0.119, 0.103, 0.077, 0.057, 0.048 and 0.034.  Then, we define the crucial 

distance, r , between each category of facilities and a surveillance point relative to each 

of five different types of vessels (i.e., threats).   Distance is crucial because it is related to 

the time required to interdict a threat to a facility once detected at s .  We assume that 

the maximum speed that a small boat can travel in the HSC is 35 knots (~40 mph) and 

that the interdicting force needs to interdict a threat when it is no closer than 4 minutes 

from the targeted facility. Therefore, a small-boat (i.e., treat) must be interdicted when it 

is at least ( ) 7.260/404 ≈×  miles away from the facility, and we assign a higher 

detection probability, est , if s  is further than 2.7 miles from the facility. Detection 

probability est  can be reduced if the distance from the facility to s  exceeds 3.2 miles 

because it may be more difficult to associate a threat specifically with the facility or, if 

the distance is less than 2.7 miles, because security forces would not have time to 

interdict the threat, even if it is detected. For a large vessel, which travels much slower 

than a small boat, the same amount of time could be provided for interdiction by making 

the crucial distance from s  to the facility smaller.  

We assume that the surveillance system should detect an intrusion at each 

surveillance point with probability at least 0.95 (on average 0.965). Since providing a 

detection probability higher than 0.98 may be costly, we also assume that the maximum 

detection probability requirement is 0.98. We specify the detection probability 

requirement, st21− , for surveillance points that is within distance r  of  facilities in 
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categories 1 and 9 (the most important and the least important categories) as shown in 

Table 4.   

 
 

 Table 4. Detection probability requirements for critical facilities in categories 1 and 9. 

Distance Vessel speed (mph) Category 1 Category 9 

3.2 ≥ r >2.7 40 0.980 0.960 

2.7 ≥ r >2.4 35 0.975 0.957 

2.4 ≥ r >2.0 30 0.970 0.955 

2.0 ≥ r >1.0 15 0.965 0.953 

1.0 ≥ r >0.0 10 0.960 0.950 

 

 

 

Let j

rρ  denote the detection probability requirement for a surveillance point s that 

is within a distance r  of some critical facilities in a category { }9...1∈j . We assume that 

j

rρ  increases linearly with normalized weight of category j and calculate values for 

8...2=j  using the following equation:  

( ) 








−

−
−+=

91

9919

ww

ww j

rrr

j

r ρρρρ .                                (3.6) 

Equation (3.6) scales the difference between the maximum and minimum required 

detection probabilities ( )91

rr ρρ −  according to the position of jw  on the range ],[ 91 ww .  

In order to calculate est  for 3,1=e , we first determine normalized weights eϖ  

3,2,1=e  associated with the probability of an intrusion under each environmental 

condition using the Analytic Hierarchy Process: 0.271, 0.339 and 0.305, respectively. 

The normalized weight is higher if an intrusion is more likely under the associated 

environmental condition. Therefore, we assume that the detection probability 
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requirement of s  under e , )1( est− , is linear with normalized weight and calculate it by 

scaling ( )st21−  according to the ratio ( )2ϖϖ e : 

( ) 







−−=

2

211
ϖ

ϖ e

ses tt   { }2/Ee ∈ . 

3.2.7. Determining klc  values 

Parameter klc  gives the cost of purchasing, installing, and maintaining sensor 

combination k  at location l : klkkkkl LMIc +++Ρ= , where 

kΡ   : present worth cost of purchasing sensor combination k  

kI   : present worth cost of installing sensor combination k  

kM : present worth cost of maintaining sensor combination k  over its lifetime  

        (i.e., 5 years) 

klL  : present worth cost of the land needed to install sensor combination k   

        at location l . 

We obtain the cost of purchasing and installing each sensor combination from equipment 

manufacturers and adopt the standard practice of using 10% of this cost as an estimate of 

the annual maintenance cost. We estimate land costs based on average asking prices for 

plots of similar size in the vicinity of each l . 
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CHAPTER IV 

BRANCH-AND-PRICE DECOMPOSITION 

 

For ease of presentation, in this chapter we consider MKGP with the following 

structure: 

∑ ∈
=

Jj jjMKGP xcZ min*                              (4.1) 

               s.t.  iJj jij bxa ≥∑ ∈
            Ii ∈                                    (4.2) 

                                  1≤∑ ∈ gJj jx                      Gg ∈                    (4.3) 

                              { }n
x 1,0∈                                  (4.4) 

in which JJ
Gg g =

∈∪ ; ∅=hg JJ ∩  Ghg ∈,  and hg ≠ ; Im =  and Jn = .  Row i  

in (4.2) is a knapsack constraint and row g  in (4.3) is a GUB.  We use nmijaA ×= ][  to 

denote the nm ×  matrix of coefficients in (4.2) and i
a  to denote the vector of 

coefficients in row i  of A .  We require 0,, ≥jiij cba  for Ii ∈  and Jj ∈ .   

The goal of this chapter is to synthesize an effective solution approach. To that 

end, we explore several B&P-Ds both analytically and computationally. We use the term 

B&P-D, because it is reflective of Lagrangian Decomposition (Guignard and Kim 

1987a, 1987b).  As part of our theoretical analysis, we compare the bounds available 

from B&P-Ds with three alternative relaxations (LR, LD, and SR), and study whether 

incorporating a surrogate constraint can improve bounds or not.  Our second objective is 

to evaluate a suite of alternatives with the goal of identifying an effective means of 
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implementing B&P-D for solving MKGP.  Our third objective is to compare bounds 

from different decompositions and implementation alternatives computationally to 

assess the trade-off between the tightness of resulting bounds and the run times required 

to obtain them.  

This chapter comprises five sections. Section 4.1 formulates alternative 

decompositions.  Section 4.2 presents our theoretical analysis of bounds. Section 4.3 

proposes several alternative techniques to implement decompositions.  Finally, Section 

4.4 discusses computational results.   

 

4.1. B&P-D formulations 

In this section, we introduce an alternative formulation of MKGP and compare 

different ways of decomposing MKGP into a master problem (MP) and subproblems 

(SPs). We begin by creating m  clones of each jx  Jj ∈ , one for each constraint (4.2).  

Using iy  to denote the clone of parent x  associated with constraint i  of (4.2), (4.1)-

(4.4) may be re-expressed as CMKG: 

∑ ∈
=

Jj jjCMKG xcZ min*                                                    (4.5) 

               s.t.  (4.2), (4.3), and (4.4) 

                                  0=− iyx                                Ii ∈                                              (4.6) 

                                  ii

i
bya ≥                                  Ii ∈                                              (4.7) 

                                  1≤∑ ∈ gJj ijy                            Ii ∈ , Gg ∈                                  (4.8) 

                                   n

iy }1,0{∈                               Ii ∈                                              (4.9) 
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Using equalities (4.6), we can eliminate x , giving formulation YMKG, which 

involves only iy  clones:   

∑ ∈
=

Ii iiYMKG ycZ ˆmin*                                                   (4.10) 

               s.t.  (4.7), (4.8), and (4.9) 

                                 0' =− ii yy                               { }1\Ii ∈ , 1' −= ii ,                    (4.11) 

where iĉ  must be defined such that ∑∈
=

Ii i cĉ  and (4.8) requires iy  for each i I∈  to 

satisfy each GUB constraint, Gg ∈ . Note that  ***

YMKGCMKGMKGP ZZZ == . 

Dealing with the linear relaxation of (4.7)-(4.11), we decompose YMKG into a 

MP and SPs in three different ways.  Each of the following three subsections presents 

one of these B&P-D formulations and studies relationships among the bounds these 

formulations provide.  In each case, each SP relates to a specific i  (i.e., )(iSP ) and each 

MP forms a convex combination of the extreme points of the polytope associated with 

)(iSP .  Note that the subscript on B&P-D, MP, RMP, SP, Z*, )(* iz , )(iSP  and )(iP  

denotes the type of B&P-D formulation. 

4.1.1. B&P-D1 

Although cloning expands the size of the problem appreciably, the block- 

diagonal structure of  YMKG can be exploited to form a B&P-D by relegating (4.8) and 

(4.11) to MP1 : 

( )
( )∑ ∑∈ ∈

=
Ii iPp

p

i

p

ii ycZ
1

ˆmin*

1 λ                              (4.12) 

         s.t.  
( ) ( )

0
11 ' '' =−∑∑ ∈∈ iPp

p

i

p

iiPp

p

i

p

i yy λλ        { }1\Ii ∈ , 1' −= ii               (4.13) 
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                1
)(1

≤∑ ∑∈ ∈iPp Jj

p

i

p

ij
g

y λ       i I∈ , Gg ∈               (4.14) 

    1
)(1

=∑ ∈ iPp

p

iλ                   i I∈                                      (4.15) 

                                   0≥p
iλ                                          i I∈ , )(1 iPp ∈ ,              (4.16) 

where *
1Z  is the optimal objective function value for MP1; )(1 iP  is the (index) set of 

extreme points of the polytope associated with SP i , denoted by )(1 iSP ; p
iλ  is the 

decision variable associated with the thp  extreme point )(1 iPp ∈ ; and { }np
iy 1,0∈  

denotes the thp  extreme point. 

We define m SPs, in which )(1 iSP  compromises (4.9) and knapsack constraint i 

of (4.7). B&P-D1 treats the knapsacks in (4.7) as being independent but ultimately 

requires (using (4.11)) all clones of vector x  to have the same value. Subproblem i , 

)(1 iSP , is  

( )[ ]{ }
i

n

iii

i

Gg Jj ijigijjiij ybyayciz
g

γβαα −∈≥−−+∑ ∑∈ ∈
= }1,0{,:ˆ)( '

*

1 min , 

where ' 1i i= −  for { }1\Ii ∈ , 

     )(*
1 iz       : optimal objective function value for )(1 iSP , 

     n
i R∈α  : vector of dual variables associated with th

i  subset of n constraints (4.13), 

     
G

i R−∈β : vector of dual variables associated with th
i  subset of G  constraints (4.14), 

     Ri ∈γ    : dual variable associated with the th
i  convexity constraint (4.15). 

Since MP1 involves a huge number of columns, B&P-D1 solves a restricted MP1 

(RMP1), which comprises only a subset of columns in MP1.  Given an optimal solution 
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to RMP1, associated dual variables are incorporated in the objective function coefficients 

of each )(1 iSP , which is then solved to determine if a column can improve the current 

RMP1 solution.  The solution to )(1 iSP  generates an improving column if 0)(*
1 <iz  and 

the current solution to MP1 is optimal if 0)(*
1 ≥iz  for all i I∈ .   

Dual variables induce values for clones ijy  Jj ∈  for which 0=ija : for such 

variables, the solution to )(1 iSP  includes  

1=ijy  if ( )( ) 0ˆ
' <−−+ igijjiijc βαα  and 0=ijy  otherwise.              (4.17) 

At each iteration, we include all improving columns identified by solving SPs in 

RMP1, which is then re-optimized.  We repeat this procedure until no more improving 

column can be found.   

4.1.2. B&P-D2 

The second decomposition assigns GUBs (4.8) both to MP2 and to SP2s (e.g., 

)(2 iSP  for Ii ∈ ).  MP2 is the same as MP1, which is given by (4.12)-(4.16), except that 

instead of )(1 iP  it incorporates )(2 iP , which is the (index) set of extreme points of the 

polytope associated with )(2 iSP .  The optimal solution value of MP2 is *
2Z .  )(2 iSP  is 

given by 

( )[ ]{ }
i

n

iJj ijii

i

Gg Jj ijigijjiij yGgybyayciz
gg

γβαα −∈∈≤≥−−+= ∑∑ ∑ ∈∈ ∈
}1,0{,,1;:ˆ)( '

*

2 min , 

where ' 1i i= −  for { }1\Ii ∈ . )(2 iSP  prescribes values for variables of GUB g  (i.e., ijy  

gJj ∈ ) that have 0=ija  for each gJj ∈  in knapsack i  as follows: 

1ˆ =
ji

y  for a ( )( ){ }0ˆ:ˆminargˆ
' <−−+∈∈ igijjiijg cJjj βαα   if  ∅≠gĴ  
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and 0=ijy  for each gJj ∈  otherwise, 

where  gg JJ ⊆ˆ  such that ( )( ) 0ˆ
' <−−+ igijjiijc βαα  for each gJj ˆ∈ . 

The rationale underlying B&P-D2 is that, like )(1 iSP , )(2 iSP  can be solved in 

pseudo-polynomial time (Kellerer et al. 2004), and the following proposition shows that 

including GUBs in SPs provide tighter bounds in comparison with including GUBs in 

only MP.   

Proposition 4.1. B&P-D2 provides tighter bounds than B&P-D1; i.e.,  **

2

*

1 MKGPZZZ ≤≤ . 

Proof.  In order to prove that *
2

*
1 ZZ ≤ , we first show that the optimal solutions of MP1 

and MP2 correspond to the intersection of GUB (4.8) polytopes and the convex hulls of 

SPs.   

Let 1Ω  and 2Ω  denote the polytopes associated with feasible regions of MP1 and 

MP2, respectively.  Recall that both MP1 and MP2 are given by (4.12)-(4.16), but differ 

in the (index) set of extreme points of the SP polytope(s) that they incorporate. 

Now, for each Ii ∈ , define 
( )∑ ∈

=
iPp

p

i

p

ii yx
1

ˆ λ , in which 
( )

1
1

=∑ ∈ iPp

p

iλ  and 

0≥p
iλ , so that ix  is a convex combination of the extreme points of )(1 iSP .  After 

replacing 
( )∑ ∈ iPp

p

i

p

iy
1

λ  with ix̂  in MP1,  

∑ ∈
=

Ii ii xcZ ˆˆmin*
1                

         s.t.  0ˆˆ
' =− ii xx                                  { }1\Ii ∈ , 1' −= ii                         (4.18) 

                1ˆ ≤∑ ∈ gJj ijx                          g G∈ , i I∈                (4.19) 
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    { })(:ˆ
1 iPppConvxi ∈∈             i I∈                                               (4.20) 

       1ˆ0 ≤≤ ix                 i I∈ .                (4.21) 

Constraints (4.18) and (4.20) together imply that each feasible solution of MP1 is in the 

intersection of the convex hulls of SPs. Hence, after replacing (4.20) with 

{ }∩ Ii
iPppConvx

∈
∈∈ )(:ˆ

1 , we can drop (4.18) from MP1 (4.18)-(4.21),  and the 

polytope associated with MPk for k = 1,2  

21 kk ΩΩ=Ω ∩ , 

where { }1ˆ0;,1ˆ:1 ≤≤∈≤∈=Ω ∑ ∈+ xGgxRx
gJj j

n  and 

           { }∩ Ii kk iPppConv
∈

∈=Ω )(:2 . Since { } { })(:Conv)(:Conv 12 iPppiPpp ∈⊆∈  

for each Ii ∈ , 12 Ω⊆Ω ; so that, **

2

*

1 MKGPZZZ ≤≤ .                                                         ■ 

4.1.3. B&P-D3 

The third decomposition assigns GUBs (4.8) to only SPs. Denoting the (index) 

set of extreme points of the polytope associated with subproblem i, )(3 iSP , by )(3 iP , 

MP3 is 

{ }(4.16) and (4.15) (4.13),:)ˆ(min
)(

*

3
3

∑ ∑∈ ∈
=

Ii iPp

p

i

p

ii ycZ λ . 

Letting ' 1i i= −  for { }1\Ii ∈ . Subproblem, )(3 iSP , is given by   

[ ]{ } i

n

iJj ijii

i

Gg Jj ijijjiij yGgybyayciz
gg

γαα −∈∈≤≥−+= ∑∑ ∑ ∈∈ ∈
}1,0{,,1;:)(ˆ)( '

*

3 min . 

The rationale underlying B&P-D3 is the definition of the MP polytope associated 

with each B&P-D.  In the proof of the Proposition 4.1, we showed that the feasible 

region of each MP comprises the points in the intersection of GUB (4.8) polytopes and 
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the convex hulls associated with SPs.  However, if we assign GUBs to SPs, the extreme 

points of SPs, as well as their convex combinations, satisfy GUBs (4.8). Therefore, 

B&P-D3 uses GUBs (4.8) to tighten bounds so that including them also in MP does not 

provide further tightening. By not incorporating any GUBs in MP3, MP3 becomes 

smaller than MP2, facilitating solution. While B&P-D2 and B&P-D3 provide the same 

bounds, we study B&P-D2 computationally to determine whether including GUBs in 

MP2 leads to dual values that induce the generation of better columns (i.e., SP extreme 

points) to facilitate solution. 

Proposition 4.2. B&P-D3  provides the same bound as B&P-D2;  i.e., 

**

3

*

2

*

1 MKGPZZZZ ≤=≤ . 

Proof. Since the feasible regions of MP2 and MP3, are the same, 32 Ω=Ω , *

3

*

2 ZZ = .    ■ 

It is important to note that these three decompositions are not the only 

alternatives to decompose YMKG.  However, an advantage that each of these B&P-Ds 

offers is that their SPs can be solved in pseudo-polynomial time. Other B&P-Ds may 

provide tighter bounds than B&P-D3 but would require each SP to incorporate more than 

one knapsack and associated GUBs so that solving it would become as hard as solving 

MKP. With this motivation, we evaluate these three B&P-D formulations 

computationally in section 4.4.   

In each of these B&P-Ds each SP comprises single knapsack constraint; 

decompositions B&P-D2 and B&P-D3 include GUBs, forming ≥MCKP  SPs, and B&P-

D1 does not, forming ≥KP  SPs. We modify each SP without GUBs to be a less-than-or-

equal-to knapsack constraint ( ≤KP ) by complementing variables, and then use the 
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COMBO algorithm (Martello et al. 1999) to solve it. We modify each SP with GUBs to 

be a ≤MCKP  using a method similar to the one we describe in (Section 5.2.2) and then 

employ the Mcknap algorithm (Pisinger 1995) to solve it. 

 

4.2. Analysis of bounds 

In the first subsection, we compare the strength of the bounds that can be 

obtained from B&P-D with those of Lagrangian methods: LR and LD.  In the second 

subsection, we study the strength of the lower bound that a surrogate constraint in B&P-

D can provide and state the relationships between the bounds that may be obtained from 

B&P-D with those from SR and CR. 

4.2.1. Lagrangian methods 

We briefly review relaxation methods in order to establish notation. 

Linear Relaxation. The LP of MKGP relaxes integrality restriction { }n
x 1,0∈ : 

{ }10;1;:min* ≤≤≤≥= ∑ ∈
xxbAxcxZ

gJj jLP
. 

Lagrangian Relaxation. LR( r
u ), the LR of MKGP with respect to constraints bAx ≥  

using a vector of Lagrange multipliers mr Ru +∈  is given by  

{ }{ }n

Jj jIi

i

i

r

i

r

LR xGgxxabucxuZ
g

1,0;1:)(min)( ∈∈≤−+= ∑∑ ∈∈
. 

The problem of maximizing )( r

LR uZ  over mr Ru +∈  is called the Lagrangian Dual: 

)(max)ˆ( r

LRRu

r

LR uZuZ mr
+∈

= , 

where r
û  is the vector of optimal Lagrange multipliers, which yields the tightest 
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possible bound from LR, )ˆ( r

LR uZ . 

Lagrangian Decomposition. Many different LDs of MKGP can be defined.  To obtain 

SPs that are easier to solve than MKGP, as in B&P-D, we consider each knapsack 

constraint (4.7) as a separate SP. Considering CMKG, for a given vector of Lagrange 

multipliers nTd

i Ru ∈)( , )LD( du  is 

{ }{ }n

Jj jIi i

d

i

d

LD xGgxxyucxuZ
g

1,0;1);9.4( ),8.4( ),7.4(:)(min)( ∈∈≤−+= ∑∑ ∈∈
. 

Using the vector of optimal Lagrange multipliers, 
d

û , the LD dual, )ˆLD( du , is given by 

)(max)ˆ( d

LDRu

d

LD uZuZ nmd ×∈
= . 

Proposition 4.3 shows that MP3, the master problem of B&P-D3 is the dual of 

)ˆLD( du , so that *

3)ˆ( ZuZ
d

LD = .   

Proposition 4.3.  Master problem of B&P-D3 is the dual of )ˆLD( du . 

Proof. Let { }{ } { }{ }1ˆ:1,01:1,0 ≤∈=∈≤∈= ∑ ∈
xxGgxxG

n

Jj j

n

x
g

G . 

      

{ }{ }
( ){ }

{ }
( ){ } { }{ }
( ){ }

.
)(,...1,0:

:min
max              

min:minmax              

)(9.4),(8.4),(7.4:min

  :min
max              
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3
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Since ( ){ }0;1;1ˆ:min ≥−≥−−≥−−∑ ∈
xxxxuc

Ii i G  

          { }0,0,ˆ:max 32

1
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by duality, last equality becomes 
 

( )

.

)(, 0

;          1

;0

:min

dualityBy 
0,0,ˆ

)(,...1,0

:max 

3

)(

)(

1

3232
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1
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Improved bounds facilitate optimizing an IP by allowing more nodes to be 

fathomed in the B&B search tree. Lagrangian approaches generally use procedures 

based on subgradient optimization to search for the optimal Lagrange multipliers d
û .  

These approaches may not find the optimal multipliers - if they exist - and usually stop 

with an approximate solution to )ˆ( d

LD uZ . Therefore, Lagrangian methods are not 

guaranteed to prescribe an optimal solution to )ˆLD( du . However, B&P-D always 

provides a bound that is as tight as possible since it provides an exact (i.e., optimal) 

solution to the associated MP.  As a result, we have the following corollary. 

Corollary 4.4.  For nmd
Ru

×∈ , **

3

*

2)ˆ()( MKGP

d

LD

d

LD ZZZuZuZ ≤==≤ . 

Since neither a SP that is ≥KP  nor ≤MCKP  has the integrality property (Wilhelm 

2001), each B&P-D yields a lower bound that can be tighter than the linear relaxation of 

MKGP.  On the other hand, the tightest bound that LR( r
u ) can possibly provide (i.e., 

using the optimal Lagrange multipliers) is equal to *
LPZ  (Geoffrion 1974), since LR( r

u ) 

has the integrality property; i.e., 

{ }{ } { }0;1:1,0;1: ≥∈≤∈=∈∈≤∈ ∑∑ ∈+∈+ xGgxRxxGgxRxConv
gg Jj j

nn

Jj j

n
. 
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The following proposition relates the bounds provided by the methods described in this 

subsection.  

Proposition 4. 5.  **

3

*

2

*

1

* )ˆ()ˆ()( MKGP

d

LD

r

LRLP

r

LR ZZZuZZuZZuZ ≤==≤≤=≤ . 

Proof.  For proof of )ˆ()( * r

LRLP

r

LR uZZuZ =≤  see Geoffrion (1974).  

 For proof of *
1

* ZZ LP ≤  see Guignard and Kim (1987a, 1987b).  

**

3

*

2

*

1 )ˆ( MKGP

d

LD ZZZuZZ ≤==≤   holds by Proposition 4.1 and Corollary 4.4.  ■ 

4.2.2. Surrogate methods 

Using multipliers mTs Ru +∈)(  and constraints bAx ≥ , a surrogate constraint 

buAxu
ss ≥  can be formed.  In this subsection, we consider improving the lower bound 

provided from B&P-D by incorporating a surrogate constraint. We use B&P-D3, because 

it provides a bound that is tighter than that of B&P-D1 and the same as that of B&P-D2.  

However, it has fewer constraints in its MP than do B&P-D1 and B&P-D2.  We start by 

briefly reviewing SR and CR in order to establish notation. 

Surrogate Relaxation. The SR of MKGP with respect to constraints bAx ≥  is given by 

{ }n

Jj j

sss

SR xGgxbuAxucxuZ
g

}1,0{;1;:min)( ∈∈≤≥= ∑ ∈
. 

The problem of maximizing )( s

SR uZ  over all mTs Ru +∈)(  is called  Surrogate Dual, and 

defined as 

)(max)ˆ(
)(

s

SRRu

s

SR uZuZ mTs
+∈

= , 

where s
û  is the optimal vector of multipliers, which yields the tightest possible SR 

bound. 
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Composite Relaxation. The CR of MKGP with respect to constraints bAx ≥  using 

vectors of Lagrange mc Ru +∈ and surrogate mTs Ru +∈)(  multipliers is given by 

{ }n

Jj j

ss

Ii

i

i

c

i

sc

CR xGgxbuAxuxabucxuuZ
g

}1,0{;1;:)(min),( ∈∈≤≥−+= ∑∑ ∈∈
. 

The following well known result from Fréville and Hanafi (2005) relates bounds 

provided by LR, SR and CR. 

Proposition 4.6.  *)ˆ,ˆ()ˆ()( MKGP

sr

CR

s

SR

r

LR ZuuZuZuZ ≤≤≤ . 

To our knowledge, the literature offers no relationship between the bounds 

provided by LD and either SR or CR. Also, no prior research has investigated combining 

SR with DWD for LPs or B&P for IPs. For a given vector of surrogate multipliers 

mTs Ru +∈)( , let *

3SZ  be the value of the optimal solution to MP3S, which denotes the 

master problem obtained after incorporating surrogate inequality buAxu
ss ≥  in MP3. 

The polytope corresponding to the feasible region of MP3s, 3SΩ  is given by: 

{ }33S ;: Ω∈≥∈=Ω + xbuAxuRx
ssn        (By Proposition 4.1). 

The following proposition establishes that incorporating buAxu
ss ≥  in MP3 

cannot tighten *

3Z . 

Proposition 4.7.  *

3

*

3 ZZ S =  for any mTs Ru +∈)(  . 

Proof.  By definition of the surrogate constraint, for any mTs Ru +∈)( , 

{ } { }10;:10;:3 ≤≤≥∈⊆≤≤≥∈⊆Ω ++ xbuAxuRxxbAxRx
ssnn . 

For any mTs Ru +∈)( , buAxu
ss ≥  is redundant with respect to MP3S, because  

{ } 333S ;: Ω=Ω∈≥∈=Ω + xbuAxuRx
ssn . 
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Since including the surrogate constraint does not tighten the feasible region, MP3 

and MP3S give the same lower bound for any vector of multipliers mTs Ru +∈)( .             ■ 

It can be seen from the proof of Proposition 4.7 that it is not possible to form a 

surrogate constraint in any B&P-D that is violated by some fractional points that are 

feasible in MP. Therefore, adding a surrogate constraint to MP cannot tighten the 

feasible region of any B&P-D.   

However, as the following proposition shows, it is possible to improve the B&P-

D bound by including the surrogate as a new SP. Now, using buAxu
ss ≥ , define an 

additional SP to B&P-D3, that is )(3

s
uSP .  The convex hull of the feasible region of 

)(3

s
uSP  is given by 

{ }n

Jj j

ssns
xGgxbuAxuRxConvu

g

}1,0{,1,:)(3 ∈∈≤≥∈=∆ ∑ ∈+ . 

By augmenting )(3

s
uSP  to B&P-D3, we obtain B&P-D3(

s
u ), which has master 

problem MP3(
s

u ), and optimal solution value )(*

3

s
uZ . 

Proposition 4.8.  )(*

3

*

3

s
uZZ ≤ . 

Proof.  The polytope associated with the feasible region of MP3(
s

u ) can be written as 

)()( 333

ss
uu ∆Ω=Ω ∩ .   (By Proposition 4.1) 

Since the feasible region of MP3(
s

u ) is contained in that of MP3 (i.e., 33 )( Ω⊆Ω s
u ), 

)(*

3

*

3

s
uZZ ≤ .                                                         ■ 

If )(3

s
uSP  has the integrality property, incorporating it as a new SP in B&P-D3 

cannot yield to a tighter feasible region and, therefore, cannot improve the bound of 
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B&P-D3.  Adding an additional SP to B&P-D3 can improve the bound provided by MP3, 

*

3Z , if there exists a surrogate multiplier mTs Ru +∈)(  such that the convex hull of 

feasible integer solutions to )(3

s
uSP  does not contain any optimal solution of MP3.    

CR can provide a tighter bound than B&P-D3 if there exists an optimal multiplier 

s
û  such that )ˆ,ˆ(*

3

sr

CR uuZZ < . Using multiplier s
û  in B&P-D3(

s
u ), we will get a 

bound at least as tight as )ˆ,ˆ( sr

CR uuZ ; that is, )ˆ()ˆ,ˆ( *

3

ssr

CR uZuuZ ≤ .  However, as can 

also be seen from the following example, such a surrogate multiplier may not exist. 

Example 4.1.  4321

* 22min xxxxZ MKGP +++=  

                 s.t. 5533 4321 ≥+++ xxxx  

              4324 4321 ≥+++ xxxx  

              121 ≤+ xx  

              143 ≤+ xx  

                                 { }1,0,,, 4321 ∈xxxx  

For ][ 21
sss uuu =  a surrogate constraint is given by 

 ( ) ( ) ( ) ( ) ( )ssssssssss uuxuuxuuxuuxuu 21421321221121 45325433 +≥+++++++ . 

Case 1: 3/1/ 12 ≥ss uu . 142 == xx  is feasible to SR and 5.3),ˆ( =sr

CR uuZ . 

Case 2: 3/1/ 12 <ss uu . 131 == xx  is feasible to SR and 3),ˆ( =sr

CR uuZ . 

So, 4)ˆ(),ˆ(3)ˆ( **

3

*

3 ===≤≤= MKGP

ssr

CR

s

SR ZuZZuuZuZ . 

On the other hand, if a multiplier s
u  exists such that )(*

3

*

3

s
uZZ < , it does not 

imply that ),ˆ(*

3

sr

CR uuZZ ≤  since there may still be a feasible point in ),ˆ(CR sr uu  

whose objective function value is less than *

3Z . The following corollary summarizes the 

results related in this section. Therefore, we present it without proof. 
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Corollary 4.9.  For a given optimal vector of multipliers r
û  and ŝ , 

           i. )ˆ()ˆ,ˆ()ˆ()ˆ( *

3

* ssr

CR

s

SR

r

LRLP uZuuZuZuZZ ≤≤≤= . 

          ii. If  { }{ } ∅≠∈≤≥≤∈ ∑ ∈
GgxbuAxuZcxx

gJj j

ssn
,1;ˆˆ;:1,0 *

3 , then 

              )ˆ()ˆ,ˆ()ˆ()ˆ( *

3

*

3

* ssr

CR

s

SR

r

LRLP uZZuuZuZuZZ ≤≤≤≤= . 

 

4.3. Implementation techniques 

This section describes several alternative techniques to implement B&P-Ds. Each 

of the following three subsections describes one of these three alternatives: cost function, 

master problem type and surrogate constraint. 

4.3.1. Cost assignment alternatives 

We evaluate two ways of specifying îc  values: the first is the uniform cost 

assignment in which 
1

îc c
m

 
=  
 

 for i I∈ , and the second is the null cost assignment in 

which 1̂c c=  and  ˆ 0
i

c =  for { }\ 1i I∈ .  Although MP has the same optimal solution 

value in both cases, they result in different objective function coefficients in SPs.  Under 

uniform cost assignment, all related clones have the same cost coefficient; but, under 

null cost assignment, 1y  is assigned the parent cost c  in its objective function and each 

related clone has a coefficient of 0.   

Under null cost assignment, equality constraints (4.6) can be replaced by 

inequality constraints,      

0' ≤+− ii yy        { }1\Ii ∈ , 1' −= ii .                                 (4.6a) 
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No cost is associated with iy  { }1\Ii ∉  and 0≥i
a  for all Ii ∈ . Therefore, any 

component 11 =jy  forces 1=ijy  for all { }\ 1i I∈  through the chain of inequality 

relationships (4.6a), so that any solution that is optimal satisfies all inequalities (4.6a) at 

equality. By substituting inequality constraints, we relax RMP and expect that RMP will 

be made easier to optimize. 

4.3.2. RMP formulation 

We evaluate different ways of formulating equality constraints 0' =− ii yy  for 

{ }1\Ii ∈  and 1' −= ii . Letting )( ji  denote the index of knapsack (4.2) corresponding to 

{ }Iiaji ij ∈∈ :maxarg)( , constraint 0' =− ii yy  can be re-expressed as 

      0)( =− iji yy          { })(\ jiIi ∈ .                          (4.22) 

We conjecture that knapsack, which incorporates the largest coefficient ija , tends 

to induce jx  to be 1 in (4.1)-(4.4) more than other knapsacks.  If we use (4.22) in RMP, 

the objective function coefficient in ( ))( jiSP  corresponding to jjiy )(  includes the dual 

variable values corresponding to all clones of parent jx .  Hence, by using (4.22) in RMP 

we aim to provide dual variable values to ( ))( jiSP  that reflect the impact of other SPs 

in which 0>ija . 

Constraint 0' =− ii yy  can also be recast in quite a different form. Variable 
j

x  

appears with 0>ija  only in some rows of (4.2). Now, for each variable jx  Jj ∈  define 

II j ⊆+  as the index set of constraints (4.2) in which 0>ija . Also, let += jj III \0 . For 
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each Jj ∈ , equality constraints 0)( =− ijjji yy  corresponding to 0

jIi ∈  can be cast in an 

aggregated form: 

                 00)(

0 =−∑ ∈ jIi ijjjij yyI .      (4.23) 

By aggregating constraints we reduce the number of rows in RMP with the goal 

of reducing the solution time of B&P-D by virtue of dealing with a smaller RMP.  

Aggregating constraints does not change the optimal solution value of RMP.  

Under null cost assignment, the cost coefficient of each ijy  0

jIi ∈  is zero, so that using 

(4.23) for clones ijy  0

jIi ∈  cannot increase the value of the optimal solution.  Under 

uniform cost assignment, all related clones ijy  +∈ jj IIi ∪
0  have the same cost 

coefficient. Clones ijy  0

jIi ∈  contribute ( )
jjiijj ycI )()'(

0 ˆˆ  to the value of objective 

function, independent of the values assigned to them.  If there exits an optimal solution 

to RMP that includes (4.22) for all clones of parent jx , an equal optimal solution value 

can be obtained using (4.23) in RMP for clones associated with 0

jIi ∈  instead of (4.22) 

for these clones associated with 0

jIi ∈ .  

Note that none of these alternatives changes either the feasible region or the 

optimal solution value of the RMP.  However, we expect that each will result in a 

different run time, since each involves a different set of dual variables that are 

incorporated in SPs.   

4.3.3. Surrogate constraint  

We evaluate incorporating a surrogate constraint in RMP.  As shown in 
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Proposition 4.7, this does not improve the bound. However, the formulation that includes 

a surrogate leads to a different set of dual variables and could lead to faster convergence.   

 

4.4. Computational evaluation 

This section describes our tests, which we design to address the second and third 

research objectives: evaluating alternative combinations of decomposition and 

implementation techniques; and evaluating the trade off between the bounds that the 

decompositions make available and the run times required to obtain them, respectively.  

Each of our test cases is a combination of a decomposition (Section 4.1) and an 

implemetation technique (Section 4.3). Each level of Factor 1 (F1) designates a 

decomposition: 

1. B&P-D1 : GUBs in MP + Knapsack SPs ( ≥KP ), 

2. B&P-D2 :GUBs in MP + Multiple-choice knapsack SPs ( ≥MCKP ), 

3. B&P-D3 : no GUBs in MP + ≥MCKP . 

Each implementation technique is defined as a selection of one level of F2, F3 and F4:   

Factor 2 (F2) (cost assignments):  

1. uniform cost assignment with equality constraints 

2. null cost assignment with equality constraints 

3. null cost assignment with inequality constraints 

Factor 3 (F3) (RMP formulation):  

1. using (4.22) for all clones included in both +
jI  and 0

jI  

2. using (4.6) for all clones included in both  +
jI  and 0

jI  
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3. using (4.22) for clones included in +
jI  and (4.23) for these identified by 0

jI  

4. using (4.6) for clones included in +
jI  and (4.23) for these identified by 0

jI  

Factor 4 (F4) (surrogate): 

1. RMP without any surrogate constraint  

2. RMP with surrogate constraint  ( ) ∑∑ ∑ ∈

−

∈ ∈

− ≥
Ii iIi Jj jiij bmyam

1
ˆ

1  

We conduct our tests on a Dell PC (OptPlex GX620) with 3.20GZH Dual Core 

Processor, 2GB RAM, and 160GB hard drive, using CPLEX 11.  

The first subsection describes our test instances. The second subsection reports 

bounds obtained at the root node of each B&P-D and then details computational results.  

4.4.1. Test instances  

We perform each of our tests on four instances generated as described in Chapter 

III. The size of each instance depends on four factors: number of environmental 

conditions E , sensor combinations K , potential sensor locations L , and surveillance 

points S . We draw our four instances (Table 5) from that applied problem setting to 

provide a basis for evaluation. In Table 5, the first column gives the instance number; 

columns 2-5 give E , K , L , and S , respectively; and columns 6-8 give the size of 

each instance in terms of the numbers of binary variables (BVs) and  knapsack 

constraints (KPs), and the number of GUBs (|G|), respectively. 

4.4.2. Test results 

We begin by describing the content of Tables 6-7. We use the CPLEX B&B 

algorithm as a benchmark for our B&P-Ds. Table 6 records measures that describe the 
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performance of CPLEX on each of the four test instances.  The first column in Table 6 

gives the instance number, and the next three report CPLEX results: optimal LP solution 

value Z(LP); optimal integer solution value Z(IP); and run time (seconds).  Each of the 

last three columns gives a percentage gap relative to the optimal integer solution value: 

for the bound obtained from the linear relaxation of MKGP ( )( ))()()(100 IPZLPZIPZ − , for 

the optimal root node solution of our B&P-D with ≥KP  ( )( ))()(100 1 IPZRNSIPZ − , and for 

the optimal root node solution of our B&P-D with ≥MCKP  ( )( ))()(100 2 IPZRNSIPZ − . 

 

Table 5. Description of test cases used for evaluating B&PD. 
N |E| |K| |L| |S| BVs SPs |G| 

1 1 7 14 42 98 42 14 

2 3 7 14 42 98 126 14 

3 3 7 21 42 147 126 21 

4 3 14 14 42 196 126 14 

 
 

Table 6. CPLEX results for the test instances used in evaluating B&P-Ds. 

N Z(LP) Z(IP) 
CPLEX 

time (secs) )(

)()(

IPZ

LPZIPZ − (%)
)(

)( 1

IPZ

RNSIPZ −  (%)
)(

)( 2

IPZ

RNSIPZ −  (%)

1 2978.41 3805 12.92 21.724% 1.932% 0.000%

2 3628.67 4504 90.61 19.435% 14.549% 0.000%

3 3201.20 4102 8858.55 21.960% 0.098% 0.037%

4 3562.47 4242 523.00 16.019% 0.436% 0.000%

 
 

The columns of Table 7 are organized in three groups.  The first group gives the level for 

each factor: F1, F2, and F3.  The second and the third groups report the run times at the 

root node for levels 1 and 2 of F4, respectively. We set a run time limit of 60×103 

seconds for each test.  If the run time limit is reached in solving an instance, we mark the 

run time columns with “*”. 
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Table 7. Root node solution times (seconds) for instances 1-4. 

Factors F4 = 1 F4 = 2 

F1 F2 F3 N =  1 N = 2 N = 3 N = 4 N =  1 N = 2 N = 3 N = 4 

1 1 1 56.002 2013.890 * * 51.001 2125.640 * * 

1 1 2 28.657 2579.65 * * 36.986 2585.49 * * 

1 1 3 39.939 1440.01 * * 30.860 1741.42 * * 

1 1 4 29.078 1984.41 * * 21.375 1867.70 * * 

1 2 1 126.000 3745.70 * * 138.172 3584.27 * * 

1 2 2 73.094 4406.91 * * 108.000 4017.84 * * 

1 2 3 55.047 2404.79 * * 84.750 2003.99 * * 

1 2 4 68.094 2930.00 * * 76.469 2792.43 * * 

1 3 1 189.357 4492.29 * * 193.879 4574.03 * * 

1 3 2 251.428 6900.41 * * 256.491 7764.87 * * 

1 3 3 152.457 2800.29 * * 170.661 3576.62 * * 

1 3 4 199.396 5132.01 * * 181.254 3816.79 * * 
           

2 1 1 3.079 24.546 2156.97 182.986 2.251 27.858 2269.54 186.011 

2 1 2 4.079 34.154 2739.15 253.349 3.735 30.311 2892.80 232.953 

2 1 3 2.687 25.586 1099.85 68.626 2.563 30.401 1742.12 82.423 

2 1 4 3.125 19.625 2245.38 69.485 3.000 22.937 2028.24 94.079 

2 2 1 2.844 47.267 3720.47 476.615 3.063 51.264 3067.69 494.816 

2 2 2 5.203 58.103 4037.01 672.609 4.062 72.872 3890.65 641.373 

2 2 3 2.578 24.428 2099.94 116.075 2.299 25.046 2042.12 121.88 

2 2 4 2.828 36.362 2445.90 182.734 2.563 38.176 2427.52 175.079 

2 3 1 4.531 111.963 5218.68 730.838 6.516 121.979 6056.34 724.337 

2 3 2 9.954 173.086 8492.96 1206.08 10.344 139.369 9795.92 1432.96 

2 3 3 4.047 45.513 2855.45 401.561 6.141 49.982 3436.70 486.479 

2 3 4 5.063 79.06 2719.08 528.360 8.376 71.231 3077.46 596.796 
           

3 1 1 2.484 22.062 2972.74 199.955 2.844 19.593 2957.76 178.250 

3 1 2 3.422 30.093 2297.35 232.261 3.360 25.358 2479.98 250.799 

3 1 3 2.515 13.188 1030.81 64.142 2.297 10.952 1394.15 66.282 

3 1 4 2.907 17.390 1390.80 69.673 2.234 17.343 1215.68 76.985 

3 2 1 2.140 49.812 4016.83 482.517 3.219 36.609 4442.80 526.127 

3 2 2 3.453 50.114 3745.56 703.488 4.250 55.362 3771.81 750.439 

3 2 3 2.203 18.878 1701.71 106.721 2.969 19.094 2151.76 98.610 

3 2 4 3.125 35.906 2447.55 160.735 3.360 29.601 2434.14 154.173 

3 3 1 4.844 95.558 5729.30 718.125 4.125 88.762 6350.54 765.141 

3 3 2 8.422 114.527 6422.55 1073.97 8.109 126.605 7049.31 1027.31 

3 3 3 4.078 40.124 2825.20 365.266 4.469 39.327 2503.09 405.313 

3 3 4 5.204 76.763 3117.97 472.734 8.078 82.106 3231.47 499.281 
* exceeds the time limit of 60,000 seconds 
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4.4.3. Analysis of bounds 

All three B&P-Ds provide considerably tighter bounds than the linear relaxation 

of MKGP (Table 6).  Consistent with Proposition 4.1, B&P-Ds with ≥MCKP  provide 

tighter bounds than those with ≥KP . For 3 of 4 instances, B&P-Ds with ≥MCKP  find 

the integral solution at the root node. Consistent with Proposition 4.2, including GUBs in 

MP does not improve the lower bound; and we get the same lower bound for levels 2 

and 3 of F1 (B&P-D formulations), which both employ ≥MCKP . Furthermore, B&P-Ds 

with ≥KP , require considerably longer run times than both B&P-Ds with ≥MCKP  

(Table 7).  Considering all instances, the minimum time required to find an optimal 

solution at the root node using the former is at least twice the maximum time required by 

the latter.  Therefore, we do not report results related to solving CMKG using level 1 of 

F1 (i.e., B&P-D1) in the following analysis.  

Since the cost assignment (F2) does not change the feasible region of RMP, we 

get the same lower bound for both uniform and null cost assignments. Even though 

inequality constraint (4.6a) relaxes the feasible region in comparison to equalities (4.6), 

if an optimal solution exists, it will satisfy constraints (4.6a) at equality. Therefore, lower 

bounds are the same for each of the three levels of F2 (cost assignment) in combination 

with the same set of levels of the remaining three factors (implementation techniques).  

Each level of F3 (RMP formulation) expresses constraint (4.6) in a different way, 

but none of them either tightens or relaxes the feasible region of RMP.  Therefore, each 

of the levels of F3 provides the same bound.  Consistent with Proposition 4.7, which 

shows that including a surrogate constraint in RMP does not tighten the feasible region, 
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each of the two levels of F4 (surrogate) provides the same bound. 

4.4.4. Analysis of F1 (decomposition formulations) 

This section analyzes the effect of F1 with the goal of determining the influence 

each level has on run time.  With this goal we compare the run times of the cases that 

have the same levels for factors F2, F3 and F4 in application to instances 1-4 (Figures 6-

7).  Each of the four instances has 16 cases associated with each level of F1.  Table 7 

shows that using ≥KP s (level 1 of F1) requires the longest run time.  Using ≥KP s leads 

to larger B&B search trees; at least 7 B&B nodes must be searched to find an optimal 

solution to instances 1-2, but ≥MCKP s (levels 2 and 3 of F1) are able to find an optimal 

solution at the root node for each instance.  Since level 1 of F1 performs so poorly, we 

do not consider it further.  

We compare the three levels of F1 by adding the run times of cases associated 

with each level.  Letting 
iϖ  denote the sum of the run times of cases with level i of F1 

over all test factor combinations, we use ( ) iijij ϖϖϖ −=∆ 100  as a criterion to compare 

the run times of levels i and j.  0>∆
ij

 means that level i is %ij∆  faster than level j.  

Over all test cases, levels 2 and 3 require approximately the same run time.  To 

further determine the significance of F1 for run time, we conduct an analysis of variance 

(ANOVA) using Minitab 15.  The objective of this analysis is to test the hypotheses H0 

that a factor has no effect on run time at α = 0.05. Consistent with our analysis, ANOVA 

does not reject H0  = F1 (excluding level 1) as its level of significance is 0.919.  Thus, 

run times of levels 2 and 3 are not statistically significantly different.  Thus, in case of 
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≥MCKP s, including GUBs also in RMP neither reduces runtime nor tightens the feasible 

region of RMP.  Based on this analysis, we incorporate level 3 of F1 (B&P-D3) in our 

default B&P-D implementation. 

 
 

Figure 6. Total run times required to find an optimal integer solution for instances 1-2. 

 
 

 
 

Figure 7. Total run times required to find an optimal integer solution for instances 3-4. 

 
 
 
 
4.4.5. Analysis of F2 (cost assignment) 

This section analyzes the effect of F2 with the goal of determining the influence 

each level has on run time.  With this goal, we compare the run times of the cases that 

have the same set of levels for factors F1, F3 and F4.  Each instance has 16 cases 



 63

associated with each level of F2.   

Over all test cases, level 1 requires less run time than level 2 (36% on average), 

and level 2 requires considerably less run time than level 3 (69% on average) (Figures 6-

7). Although re-expressing equality constraints (level 2) as inequalities (level 3) does not 

change the optimal solution value, it increases the number of feasible solutions to RMP; 

so that level 3 requires longer run times than do levels 1 and 2.  While level 2 assigns a 

non-zero cost coefficient only to 1y , level 1 assigns the same cost coefficient to each 

related clone, providing, we expect, more stabilized dual variable values than level 2.  

We find that level 1 generally requires less run time.   

To further determine the significance of F2 on run time, we conduct ANOVA.  

H0 = F2 is rejected at the 0.000 p-level over all instances, showing that F2 is a significant 

factor in determining run time. Based on this analysis, we incorporate level 1 (uniform 

cost assignment) in our default B&P-D implementation. 

4.4.6. Analysis of F3 (RMP formulation) 

This section analyzes the effect of F3 with the goal of determining the influence 

each level has on run time. With this goal, we compare the run times of the cases that 

have the same set of levels for factors F1, F2 and F4.  Each of four instances has 12 

cases involving each level of F3.  

ANOVA rejects H0 = F3 at p-level 0.000 over all instances, showing that this is a 

statistically significant factor on run time. Over all instances and test cases, level 3 

requires less run time than level 4 (25% on average); level 4 requires less run time then 

level 1 (11% on average); and level 1 requires less run time than level 2 (30% on 
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average) (Figures 6-7).  Since levels 3 and 4 incorporate equality constraints only for 

clones with 0>ija , they result in smaller RMPs, making less challenging to solve.  

Therefore, levels 3 and 4 are considerably faster than levels 1 and 2. At level 4, two dual 

values are associated with each clone and the difference between them is used in 

calculating each cost coefficient in the associated SP.  However, such differences are 

close to each other, especially for the first few RMP iterations, so that columns that are 

quite different from the ones in the current basis are not generated. Therefore, level 4 

requires longer run time than level 3.  Based on this analysis, we incorporate level 3 of 

F3 (using equality (4.21) only for clones with 0>ija ) in our default B&P-D 

implementation. 

4.4.7. Analysis of F4 (surrogate constraints) 

This section analyzes the effect of F4 with the goal of determining the influence 

of including a surrogate constraint in RMP on run time.  ANOVA does not reject H0 = 

F4, since its p-level is 0.977, showing that F4 has no statistically significant affect on run 

time. Moreover, levels 1 and 2 lead to the same number of degenerate iterations and 

columns entered. The reason for this result is that surrogate constraints are already 

satisfied in SPs, so their surrogate is redundant in RMP. Based on this analysis, we 

choose level 1 (no surrogate) in our default B&P-D implementation. 
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CHAPTER V 

BRANCH-AND-PRICE DECOMPOSITION TO DESIGN  

A SURVEILLANCE SYSTEM FOR PORT AND WATERWAY SECURITY
* 

 

The goal of this chapter is an effective solution approach, including a 

computational evaluation of implementation techniques, for the surveillance system 

design problem. This chapter fulfills its objective in three sections. Section 5.1 describes 

our B&P-D approach to design a surveillance system for ports and waterways. Section 

5.2 presents alternative implementation techniques to facilitate solution, respectively.  

Finally, Section 5.3 evaluates alternative B&P-D implementation techniques and 

describes our computational evaluation.   

 

5.1.  B&P-D 

B&P-D uses Dantzig-Wolfe Decomposition (DWD) (Wilhelm 2001) to provide 

lower bounds in a B&B framework. In Chapter IV, we studied various B&P-D 

formulations that might be applied to MKGP, establishing relationships among the 

bounds these methods provide.  In this section, we describe the B&P-D formulation that 

requires less run time than others considered in Chapter IV. To our knowledge, such 

decomposition in conjunction with B&P has not been reported in the literature.  

In order to be able to decompose MKGP using DWD, we first transform MKGP  

____________ 
*©2008 IEEE. Reprinted, with permission, from “Branch-and-price decomposition to design a 
surveillance system for port and waterway security” by W. E. Wilhelm and E. I. Gokce. IEEE 

Transactions on Automation Science and Engineering (in press). 
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into a block diagonal form by generating clones of parent variables klx  Kk ∈ , Ll ∈ .  

To exploit the individual knapsack constraints in (3.5), we create |E|×|S| clones of klx , 

one for each ),( se  knapsack.  Using eklsv  to denote the clone of parent klx  that is 

associated with ),( se , MKGP may be re-expressed as CMKG: 

 ∑ ∑∈ ∈
=

Kk Ll klklCMKG xcZ min *  

                 s.t.  (3.3), (3.4), and   

     0=− eklskl vx                    Ee∈ , Kk ∈ , Ll ∈ , Ss ∈              (5.1) 

     esKk Ll eklsekls bva ≥∑ ∑∈ ∈
      Ee∈ , Ss ∈                             (5.2) 

     1≤∑ ∈Kk eklsv        Ee∈ , Ll ∈ , Ss ∈                 (5.3) 

       { }1,0∈eklsv             Ee∈ , Kk ∈ , Ll ∈ , Ss ∈ .    (5.4) 

Remark 5.1. Consider knapsack constraint ),( se  and GUB Ll ∈ . If  0=eklsa  for all 

Kk ∈ , we say that constraint ),( se  does not contain GUB l ; otherwise, constraint 

),( se  contains GUB l .  If constraint ),( se  does not contain GUB l , fixing any clone 

eklsv  Kk ∈  either to 0 or 1 has no effect on the feasibility of a solution with respect to 

that ),( se . The values of variables klx  Kk ∈  in a solution are determined by the values 

of clones eklsv  associated with knapsack constraints that contain GUB l . To manage the 

total number of clones created, we clone variable klx  Kk ∈  only with respect to the 

knapsack constraints that contain GUB l , creating appropriate eklsv  clones.                  ■ 

Although cloning expands the size of MKGP significantly, the linear relaxation 

of CMKG has a block diagonal structure, so that it is amenable to DWD. In order to 
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reduce the size of CMKG with the goal of reducing solution run time, we start by 

aggregating some of the equality constraints in (5.1) and eliminating klx  variables.  

Each klx  variable appears with a non-zero coefficient, 0>eklsa , in a subset of 

),( se  constraints (3.5).  Now, define ( )0

klkl ΦΦ +
 as the index subset of ),( se  constraints 

(3.5) that have 0>eklsa ( )0=eklsa  associated with variable klx .  Constraints (5.1) can be 

reformulated as  

  0=− eklskl vx                      Kk ∈ , Ll ∈ , +Φ∈ klse ),(     (5.5) 

00

),( 0 =Φ−∑ Φ∈ klklse ekls xv
kl

        Kk ∈ , Ll ∈ .              (5.6) 

In (5.5) we use equality constraints only for clones eklsv  with 0>eklsa , and in (5.6) we 

aggregate equality constraints corresponding to clones eklsv  with 0=eklsa . Replacing 

(5.1) with (5.5) and (5.6) does not expand the feasible regions of CMKG or its linear 

relaxation, since fixing klx  to either 0 or 1 is feasible with respect to 0),( klse Φ∈ .  

We can now eliminate klx  variables using equalities (5.5) and (5.6), giving a 

formulation that involves only eklsv  variables. For each Kk ∈  and Ll ∈ , let 

( )
{ }eklsseklkl ase

kl
+Φ∈

∈
,

maxarg),( , breaking ties by choosing the constraint with the 

lexigraphically smallest index. Suppressing subscripts ),( klkl se  for convenience, we let 

klv  denote the patriarch of klx , the clone corresponding to knapsack ),( klkl se . By 

substituting patriarch klv  for parent klx  in (5.5) and (5.6), we obtain: 

0=− eklskl vv               Kk ∈ , Ll ∈ , { }),(\),( klklkl sese
+Φ∈      (5.7) 
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00

),( 0 =Φ−∑ Φ∈ klklse ekls vv
kl

             Kk ∈ , Ll ∈ .                            (5.8) 

By replacing constraints (5.1) with equivalents (5.7) and (5.8), CMKG can be re-written 

as    { })8.5( and ),7.5( ),4.5( , )3.5( ),2.5(:~min * ∑ ∑ ∑ ∑∈ ∈ ∈ ∈
=

Ee Kk Ll Ss eklseklsCMKG vcZ , 

where ∑ ∑∈ ∈
=

Ee Ss eklskl cc ~ . 

In Chapter IV we compare three strategies for assigning values to eklsc~ .  Tests 

described in Chapter IV show that the uniform strategy, which assigns an equal portion 

of klc  to each clone of parent klx  (i.e., 
SE

c
c kl

ekls =~  for Ee∈ , Kk ∈ , Ll ∈ , and Ss ∈ ), 

performs effectively, so we apply it in this section.   

B&P-D decomposes CMKG into a MP, which incorporates (5.7)-(5.8), and 

|E|×|S| SPs.  ),( seSP  comprises a specific knapsack constraint ),( se  of (5.2) together 

with GUBs of (5.3) associated with ),( se .  B&P-D treats the knapsacks in (5.2) as being 

independent but requires (using (5.7) and (5.8)) all eklsv  clones of parent klx  to have the 

same value.  

Let ),( seΡ  denote the (index) set of all (binary) extreme points of the polytope 

associated with ),( seSP  and let { }1,0∈ρλes  be the decision variable in MP associated 

with extreme point ),( seΡ∈ρ .  For Ee∈ , Ss ∈ , and ),( seΡ∈ρ , 1=ρ
eklsv  if sensor 

combination k  is installed at location l , 0 otherwise.  By relaxing the binary 

requirements on ρλes  , MP can be expressed as 

( )
( )∑ ∑ ∑ ∑ ∑∈ ∈ ∈ ∈ Ρ∈

=
Ee Kk Ll Ss e,sρ

ρ

es

ρ

eklsekls λvcZ ~min *
                            (5.9)  
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                               s.t. 
( )

0
,

=−∑∑ Ρ∈Ρ∈ se eseklsklkl vv
kl ρ

ρρ

ρ

ρρ λλ  

  Kk ∈ , Ll ∈ , { }),(\),( klklkl sese
+Φ∈     (5.10)  

    
( )

00),( ,

0 =+Φ− ∑ ∑∑ Φ∈ Ρ∈Ρ∈ klkl se se eseklsklklkl vv
ρ

ρρ

ρ

ρρ λλ     Kk ∈ , Ll ∈   (5.11) 

      
( )

1
,

=∑ Ρ∈ se esρ

ρλ                           Ee∈ , Ss ∈     (5.12) 

            0≥ρλes                  Ee∈ , Ss ∈ , ),( seΡ∈ρ     (5.13) 

in which klΡ  denotes the index set of extreme points of the polytope associated with 

( )klkl seSP , , where ρλkl  is the decision variable associated with klΡ∈ρ .  

In general, MP comprises a huge number of columns. Therefore, we solve a 

restricted master problem (RMP), obtained by replacing ),( seΡ  for Ee∈  and Ss ∈  by 

one of its subsets, ),(ˆ seΡ . 

Three kinds of clones may be defined in ),( seSP , based on the types of dual 

variables used to calculate the reduced cost associated with each. Given ),( se , let esΩ , 

esΘ , and esΨ  denote the index set ),( lk  of clones eklsv  whose reduced cost coefficients 

are calculated using the dual variables noted below: 

esΩ  : using the dual variables eklsα  and  klβ  corresponding to (5.10) and (5.11),  

          respectively  (i.e., eslk Ω∈),(  if ( ) ),(, sese klkl = );  

 

esΘ  : using the dual variable eklsα  corresponding to (5.10)      

          (i.e., eslk Θ∈),(  if  { }),(\),( klklkl sese
+Φ∈ );  

 

esΨ  : using the dual variable klβ  corresponding to (5.11)       

         (i.e., eslk Ψ∈),(  if 0),( klse Φ∈ ).   

 

The generic form of  ),( seSP  is  
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( )

( ) 

















−+

++













Φ+−

+−=

∑

∑ ∑∑

Ψ∈

Ω∈ Θ∈
Φ∈ +

es

es es

klklkl

lk eklsklekls

lk lk eklseklseklseklsklkl

sese

eklsekls

es

*

vc

vcvc
e,sz

),(

),( ),(

0

),(\),(

~

~~

min)(

β

αβα
γ  

                              s.t.  esKk Ll eklsekls bva ≥∑ ∑∈ ∈
 

                                     1≤∑ ∈Kk eklsv      Ll ∈  

                                         { }1,0∈eklsv                  Kk ∈ , Ll ∈ , 

where esγ  is the dual variable corresponding to the associated convexity constraint 

(5.12). 

Let eklsc
⌢

 denote the objective function coefficient of eklsv  in ),( seSP .  For clones 

eklsv  with 0=eklsa , 1=eklsv  if 0<eklsc
⌢

 and if setting 1=eklsv  is feasible with respect to 

GUBs of (5.3) associated with ),( se ; otherwise 0=eklsv .  

We start with a set of columns that form an initial basic feasible solution (Section 

5.2.1) and solve RMP using the primal simplex method.  Given an optimal solution to 

RMP, dual variables eklsα , klβ , and esγ  are incorporated in the objective function of 

each SP, which is solved in an attempt to identify a column that can improve the current 

RMP solution.  The solution to ),( seSP  generates an improving column if 0)( <e,sz* .  

At each iteration, we include all improving columns identified by solving all SPs in 

RMP, which is then re-optimized.  This process is iterated until 0)( ≥e,sz*  for all ),( se , 

indicating that the current RMP solution is optimal. We manage the column pool in 

standard ways (Wilhelm 2001). 
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5.2. Implementation of B&P-D 

This section presents alternative techniques to implement B&P-D. The first 

subsection devises a heuristic to determine an initial basic feasible solution for the 

associated RMP, the second presents an effective method for solving SPs, the third 

describes alternative branching rules, and the fourth mentions the criterion we use to 

select a node for branching. 

5.2.1. Initial basic feasible solution 

We now devise a GRASP (greedy randomized adaptive search procedure) (Feo 

and Resende 1995, Chardaire et al. 2001) to find a set of columns that form an initial 

basic feasible solution for RMP at each B&B node.  Our heuristic actually solves MKGP 

((3.1), (3.3)-(3.5)) with certain klx  variables fixed to either 0 or 1 by the branching rule 

at the associated node in the B&B tree.  Then, we generate columns for RMP by fixing 

all clones of klx  to 1(0) if klx  is prescribed the value 1(0) in the heuristic solution.  The 

heuristic has two phases: construction and local search. The construction heuristic (CH) 

finds a feasible solution to MKGP, and the improvement heuristic (IH) searches for a 

less costly feasible solution. 

A feasible solution can be found in polynomial time for the 0-1 multidimensional 

knapsack problem or the multi-choice (single) knapsack problem, if one exists. On the 

other hand, Moser et al. (1997) mentioned that finding a feasible solution to the 

MMCKP (i.e, MKGP) requires testing combinations of variables; in the worst case, each 

possible combination must be tested, so that finding a feasible solution is equivalent to 

solving MMCKP. The authors did not show that finding a feasible solution to MMCKP 
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is NP-hard.   

Proposition 5.1 shows that finding a feasible solution to MKGP is NP-hard.  

Therefore, our CH is not able to guarantee finding a feasible solution, even if one exits.  

In such a case, we use phase I of the two-phase simplex method (Bazaraa et al. 1990) to 

find an initial basic feasible solution to RMP. Phase I is a linear program in terms of ρλes  

and artificial variables in RMP. B&P-D generates a set of columns to prescribe an 

optimal phase I solution, and we use these columns to form an initial basic feasible 

solution to RMP. 

Proposition 5.1. Finding a feasible solution to MKGP is NP-hard. 

Proof: Given a solution to MKGP, we can verify whether it is feasible or not in 

polynomial time (i.e., O(n(m+|G|) ). Consequently, finding a feasible solution to MKGP 

is in class NP. 

We now reduce the 3-Partition problem (Garey and Johnson 1979) to MKGP. 3-

Partition can be described as follows: given a set { }tqqQ 31 ,...,=  of positive integers and 

a positive integer T  such that 24 TqT h <<  for all th 31 ≤≤ , and tTq
t

h h =∑ =

3

1
, does 

there exist a partition  of Q  into subsets tQQQ ,...,, 21  such that Tq
uh Qq h =∑ ∈

 for all 

tu ≤≤1 ?  The solution to 3-Partition is “yes” if and only if MKGP, as given by 

{ } 













∈∈∈≤+∈≥

∈≥

∑∑
∑

∈∈

∈

JjxGgxttix

tiTxqcx

gjJj gjGg gi

Gg gig

g

1,0;1};2),...,1{(,3

};,...,1{,:
min , 

has a feasible solution. Thus, finding a feasible solution to MKGP is NP-hard.               ■ 

CH (detailed in Figure 8) comprises two steps ([7c]-[16c] and [18c]-[29c], 
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respectively).  In step 1, we randomly select variables to fix to 1 without violating any 

GUB (3.3).  If the step 1 solution violates any ),( se  constraint, step 2 attempts to find a 

 

 
Figure 8. Construction heuristic. 

Input: An MKGP instance and a parameter,δ  

Output: A feasible solution for MKGP 

 
  1c      //Initialization 

  2c    ∅←LK ˆˆ , LL ←ˆ  and { }SsEeseSE ∈∈← ,:),(ˆˆ , 0num_iter ←  

  3c    }ˆ,:{ LlKkxC kl ∈∈←  and ∅←RC  

  4c     bb ←ˆ  

  5c     Calculate utility values klu  for each Cxkl ∈  

  6c      //Step 1: Fix a variable in each GUB 

  7c      while  ∅≠C  and ∅≠SE ˆˆ   do 

  8c                  Sort C  in non-increasing order of u  values 

  9c                  Select the first ←m  { }1,max Cδ  variables in C ; m
klklkl xxx ..., 21  

10c                 { }m
klklklR xxxC ..., 21←  

11c                  Randomly select Rlk
Cx ∈  

12c                     { }
lk

xLKLK ∪← ˆˆˆˆ  

13c                     { }KkxCC
lk

∈← :/  

14c                     { }lLL /ˆˆ ←  

15c                Modify esb̂  for all SsEe ∈∈ ,  and SE ˆˆ  

16c               Recalculate the utility values klu  for each Cxkl ∈  

17c      //Step 2: Search a  feasible solution 

18c      while  ∅≠SE ˆˆ  and max_iternum_iter <  

19c                 
( )∑ ∈

←
SEse esbR ˆˆ,

ˆ  

20c                  { }esSEse
bse ˆmaxarg)ˆ,ˆ( ˆˆ),( ∈

←  

21c                   Randomly select k̂  and  l̂ such that LKx
lk

ˆˆ
ˆˆ ∈  

22c                   { }
lk

xLKLK ˆˆ\ˆˆˆˆ ←  

23c                    Modify esb̂  for all SsEe ∈∈ ,  and SE ˆˆ  

24c                    Calculate infeasibility { }∑ ∈
−←

SEse slekesk abR ˆˆ),( ˆ
ˆ,0max  for each }ˆ{\ kKk ∈  

25c                   if { } RRkkKk <∈ '\min  then Rk
kKk }ˆ{\

minargˆ
∈

←  

26c                   else  
slkeKk ak
ˆˆˆ

maxargˆ
∈←  

27c                  { }
lk

xLKLK ˆˆ
ˆˆˆˆ ∪←  

28c                   Modify esb̂  for all SsEe ∈∈ ,  and SE ˆˆ  and 1num_iternum_iter +←  
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feasible solution.  Let { }LlKkxxLK klkl ∈∈== ,1:ˆˆ  be the set of variables fixed to 1 by 

CH, { }KkLKxlL kl ∈∉= any for  ˆˆ:ˆ  be the index set of GUBs in (3.3) that include no 

variable fixed to 1 by CH, and { }0ˆ:),(ˆˆ >= esbseSE , in which 

0ˆ
ˆˆ >−= ∑ ∈ LKx eklseses

kl

abb , be the index set of ),( se  constraints in (3.5) for which LK ˆˆ  

does not define a feasible solution.  Line [2c] initializes by setting ∅=LK ˆˆ , LL =ˆ , and 

{ }SsEeseSE ∈∈= ,:),(ˆˆ . Let the set of candidate variables, { }LlKkxC kl
ˆ,: ∈∈= , 

comprise all free variables that can be fixed to 1 (individually) without violating any 

GUB (3.3).  The selection of the next variable to fix to 1 starts by sorting [8c] variables 

in C  in non-increasing order of their utility values, { }∑ ∈
=

SEse eseklskl bau ˆˆ),(

ˆ,1min  and 

then selecting [9c] the first m  variables  { }( )Cm δ,1max=  to form a restricted set of 

candidates, RC  [10c], where ]1,0[∈δ  is the GRASP parameter that determines the size 

of RC .  A variable in RC  is selected at random [11c] and fixed to 1. Update LK ˆˆ , C , L̂ , 

esb̂  for Ee∈ , Ss ∈ , and SE ˆˆ ; and klu  for Cxkl ∈ , respectively ([12c]-[16c]).  Step 1 is 

repeated until either C  or SE ˆˆ  is empty. 

Step 2 ([18c]-[29c]) measures the total infeasibility associated with LK ˆˆ  using 

∑ ∈ SEse esbˆˆ),(

ˆ  [19c] and identifies constraint }ˆ{maxarg)ˆ,ˆ( ˆˆ),( esSEse
bse

∈
∈  as the most 

violated one, breaking ties arbitrarily.  At each iteration of step 2, the most violated 

constraint )ˆ,ˆ( se  is first determined [20c]; then, LKx
lk

ˆˆ
ˆˆ ∈  is selected randomly [21c].  

Variable 
lk

x ˆˆ , which was fixed to 1 by step 1, is now fixed to 0 [22c].  If setting a 
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variable 
lk

x ˆ  }ˆ{\ kKk ∈  to 1 would reduce the infeasibility of )ˆ,ˆ( se , it is fixed to 1 

([23c]-[25c]); otherwise, }{maxarg
ˆˆˆˆ slkeKklk

ax ∈∈  is fixed to 1 [26c].  Then, LK ˆˆ , esb̂  for 

Ee ∈  and Ss ∈ , and SE ˆˆ  are updated ([27c]-[28c]). This process is repeated until a 

feasible solution is found or the maximum number of iterations (i.e., max_iter) is 

reached. Then, we use IH (detailed in Figure 9) to improve the feasible solution found. 

 
 

Figure 9. Improvement heuristic. 

  1i    LL ˆ\←Η  
  2i    while ∅≠Η  

  3i              Randomly select Η∈′l  

  4i              Select k′  such that LKx lk
ˆˆ∈′′  

  5i              }{\ˆˆˆˆ
lkxLKLK ′′←  

  6i               Modify esb̂  for all SsEe ∈∈ ,  and SE ˆˆ  

  7i               if ∅=SE ˆˆ  then }{ˆˆ lLL ′∪← , LL ˆ\←Η  

  8i               else kk ′←  

  9i                       for }{\ kKk ′∈  do 

10i                              trueyfeasibilit ←  

11i                               for SEse ˆˆ),( ∈∀  do 

12i                                      if 0ˆ >− ′slekes ab  then falseyfeasibilit ←  

13i                               if  ( trueyfeasibilit =  and 
lklk cc
′′ < ) then kk ←  

14i                       if  kk ′≠  then   

15i                            kk ←′ , ∅←SE ˆˆ  

16i                            ( ) { }lLL ′←Η \ˆ\ , }{ˆˆˆˆ
lkxLKLK ′′∪←  

17i                       else }'{\ lΗ←Η  

18i                       Modify esb̂  for all Ee ∈  and  Ss ∈  

 
 
 

The set of GUBs (3.3) that include a variable fixed to 1 by CH is LL ˆ\ .  We 

initialize IH with LL ˆ\=Η  [1i].  IH considers each Η∈l  in random order [3i].  Let  l′  

be the index of the randomly selected GUB (3.3) and lkx ′′  be the variable that is fixed to 
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1 by CH [4i].  If fixing lkx ′′  to 0 does not violate any constraint in (3.5), it is fixed to 0 

[5i]-[7i].  Otherwise, the search considers variables lkx ′  }{\ kKk ′∈  ([8i]-[13i]), and if a 

less costly variable that does not violate any constraint in (3.5) is found [14i], it is fixed 

1, lkx ′′  is fixed to 0 [15i], and Η  is updated accordingly }{\)ˆ\( lLL ′=Η  [16i]; 

otherwise, }'{\ lΗ=Η  [17i].  This process is repeated until ∅=Η .  

At B&B node j , LF j ⊆1  denotes the index set of GUBs (5.3) that include a 

variable fixed to 1, and LF j ⊆0  denotes the index set l  of GUBs (5.3) in which all 

variables are fixed to 0. At each node j  of the B&B tree, we generate  |||||| 01

jj FFL −−  

initial basic feasible solutions.  

5.2.2. Subproblem solution 

We cast ),( seSP  as a ≤MCKP  for each Ee∈  and Ss ∈ . Although ≤MCKP  is 

NP-hard, it can be solved in pseudo-polynomial time (Kellerer et al. 2004). We use 

Pisinger`s algorithm (Pisinger 1995) to solve each SP. This algorithm first finds an 

initial feasible solution to ≤MCKP  and then uses a dynamic programming algorithm to 

solve ≤MCKP . This algorithm was devised to solve a problem in the form that requires 

exactly one item from each GUB to be prescribed, so that profit is maximized while 

maintaining feasibility with respect to the capacity (i.e., knapsack) constraint (i.e., a less-

than-or-equal-to constraint).  At each node in the B&B tree, we fix the clones in all SPs 

that have been fixed to 0 or 1 by the branching rule and put each ),( seSP  in the ≤MCKP  

form as follows in order to use Pisinger`s algorithm.  First, we modify each GUB Ll ∈  
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whose variables (i.e., eklsv  Kk ∈ ) each has a positive cost coefficient in the objective 

function of ),( seSP . We reformulate each such GUB to be an equality constraint by 

adding a dummy variable with a zero coefficient in the constraint ),( se  and in the 

objective function, so that the dummy variable does not affect constraint satisfaction or 

the value of )(e,sz* . A dummy variable need not be included in any GUB Ll ∈  that has 

at least one variable with non-positive cost coefficient in the objective function of 

),( seSP . Assigning the value of 1 to a variable with the most negative cost provides a 

better solution than assigning the value of 1 to a dummy variable, since coefficients of 

),( se  are non-negative and each ),( seSP  minimizes cost; thus, it is already satisfied as 

equality at the optimal solution.  Next, we recast the objective to be maximization and 

knapsack ),( se  to be a less-than-or-equal-to constraint as described in Kellerer et al. 

(2004).  Let eklsc
⌢

 be the reduced cost coefficient of variable eklsv  in ),( seSP ; 

{ }{ } 10,maxmaxmax += ∈ eklsKkels cc
⌢⌢

 and { }eklsKkels aa ∈= maxmax  for each  Ll ∈ .  Coefficients 

of the recast ),( seSP  are as follows:  

i. Objective function coefficients: eklselsekls ccc
⌢⌢

−= max   for Kk ∈  and  Ll ∈ ; 

       max
elsc
⌢

 for the dummy variable in GUB Ll ∈ , if one exists 

ii. Technological coefficients: eklselsekls aaa −= max   for Kk ∈  and Ll ∈ ; 

  max
elsa   for the dummy variable in GUB Ll ∈ , if one exists 

iii. Right-hand-side coefficients: esLl elses bab −=∑ ∈

max . 

5.2.3. Branching rule 

We evaluate three branching rules. Let x  be the optimal (fractional) solution to 
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RMP at a B&B node. The first rule (B1) branches on the most fractional variable, 

∑ ∈
=

''
''''''

lkPp

p

lklklk vx λ  such that 5.0minarg'' , −∈ ∈∈ klLlKk xlk .  We create two new B&B 

nodes (i.e., children): the left child with 0'' =lkx  and the right child with 1'' =lkx .  

The second rule (B2) branches on the variables 'klx  Kk ∈  in the GUB 'l  that 

includes the most fractional variable.  We create 1|| +K  child nodes: the th
k  child has 

1' =klx  and other variables that are in GUB 'l  equal to 0; the stK )1|(| + child requires 

all variables that are in GUB 'l  to be 0; i.e., 0' =∑ ∈Kk klx .  This branching rule has the 

advantage that fixing the variables associated with a GUB reduces the number of free 

variables in RMP more than B1 does, with the hope that resulting RMPs will be less 

challenging to solve.  

The third rule (B3) invokes special order set (SOS) branching.  Let KK l ⊆'  be 

the index set of free variables in GUB 'l  that are not fixed to 0 at the current B&B node, 

and '' l

f

l KK ⊆  be the index set of free variables in GUB 'l  that have fractional values in 

the optimal solution of the corresponding RMP.  It is important to note that f

ll KK '' \  is 

the index set of free variables that have values 0 in the optimal solution of RMP and that 

0|| ' =f

lK  if the optimal solution of RMP is integral. When 0|| ' >f

lK , B3 involves two 

cases (recall that the most fractional variable has indices 'k ): 

Case 1. 1|| ' =f

lK . The left child requires 0'' =lkx ; and the right child, 1'' =lkx . 

Case 2. 2|| ' ≥f

lK . Let 
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{ }





≥

==+
=

.3|| if ofmedian 

",'such that  2|| if2)"'(~

''

''

f

l

f

l

f

l

f

l

KK

kkKKkk
k  

Define { }'~ ,
~

: lk KkkkkK ∈≤=≤  and { }'~ ,
~

: lk KkkkkK ∈>=> . 

The left child requires 0
~ ' =∑

≤∈ kKk klx ; and the right child, 0
~ ' =∑

>∈ kKk klx . 

B3 is the same as B1 under the condition of case 1.  Under the condition of case 

2, B3 has the advantage that, by fixing more than one variable, we expect that it will 

make RMP less challenging to solve than B1.  At each level it creates fewer child nodes 

than B2. 

When branching fixes a variable to 1, other variables in the associated GUB are 

fixed to 0.  Also, whenever a variable is fixed (i.e., either to 0 or 1), related clones in all 

SPs are fixed to the same value.  

5.2.4. Node selection 

We invoke the best bound criterion to select the next node to explore in the B&B 

search.  Prior studies have demonstrated that this criterion typically finds an optimal 

solution in less time and explores fewer nodes in the B&B tree than does the depth-first 

node selection strategy. 

 

5.3. Computational evaluation 

This section describes our test results. We conduct our tests on a Dell PC 

(OptPlex GX620) with 3.20GZH Dual Core Processor, 2GB RAM, and 160GB hard 

drive, using CPLEX 11.  

We design our tests to achieve two goals. The first goal is to define a default set 
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of implementation alternatives to facilitate B&P-D. In order to achieve this goal, we first 

compare the performances of the three branching rules (B1, B2, and B3) and select the 

branching rule that requires the least run time as our default branching rule. Then, in 

order to evaluate the leverage on run time provided by a good initial solution at each 

B&B node, we compare the run times required if both CH and IH are used (i.e., CIH) 

with those required if only the CH is used. The second goal is to evaluate the 

computational efficacy of B&P-D.  For this purpose we benchmark our B&P-D with the 

B&B routine of CPLEX and analyze the influence of parameters (i.e., experimental 

factors) on run time. We now begin by describing test instances. 

5.3.1. Test instances 

Using the HSC as a test bed, in Chapter III we generate instances considering 

sensor characteristics and the practical considerations that are important to ports and 

waterways. We perform each of our tests on 16 instances (see Table 8) generated as 

described in Chapter III. We design instances that involve four factors: numbers of 

environmental conditions |E|, sensor combinations |K|, potential sensor locations |L|, and 

surveillance points |S|.  Three of these factors each has two Levels (see Table 8); |L| has 

four levels.  Level 1(2) of |E| is 1(3).  Level 1(2) of |K| is 7(14). Level 1(2) of |S| is 

42(84). Levels 1-4 of |L| are 14, 21, 26, and 32, respectively.  Since the sensor locations 

in Level 1 of |L| cannot provide the required level of surveillance to all surveillance 

points that constitute Level 2 of |S|, we use Levels 1 and 2 of |L| in combination with 

Level 1 of |S| and Levels 3 and 4 of |L| in combination with Level 2 of |S|.   
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Table 8. Description of test instances - HSC. 
Instance 

no 

Factors 
# of binary 

variables 

# of knapsack 

constraints 
# of GUBs 

|E| |K| |L| |S| 

1 1 7 14 42 98 42 14 

2 1 7 21 42 147 42 21 

3 1 14 14 42 196 42 14 

4 1 14 21 42 294 42 21 

5 3 7 14 42 98 126 14 

6 3 7 21 42 147 126 21 

7 3 14 14 42 196 126 14 

8 3 14 21 42 294 126 21 

9 1 7 26 84 182 84 26 

10 1 7 32 84 224 84 32 

11 1 14 26 84 364 84 26 

12 1 14 32 84 448 84 32 

13 3 7 26 84 182 252 26 

14 3 7 32 84 224 252 32 

15 3 14 26 84 364 252 26 

16 3 14 32 84 448 252 32 

 

 

 

5.3.2. Branching rules and heuristics 

Figures 10 and 11 report computational results using CH or CIH in combination 

with branching rules B1, B2, or B3.  50% of the instances are optimized in the root node. 

If CH is used with branching rules B1, B2, and B3: on average, B3 is 5.54% faster than 

B1, and B1 is 60.77% faster than B2;  on average, B3 requires 0.5 fewer nodes than B1, 

and B2 searches over more B&B nodes in all instances than either B1 or B3.  If CIH is 

used with branching rules B1, B2, and B3: on average, B3 is 33.60% faster than B1, and 

B1 is 58.63% faster than B2;  on average, B3 requires 0.75 fewer nodes than B1, and B2 

searches over more B&B nodes in all instances than either B1 or B3.  

In general, difference between the number of nodes required by B1 and B3 is 

very small, but using B3 can be advantageous in solving large instances.  B3 fixes more 
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than one variable upon branching, resulting in a smaller RMP that requires less 

computational effort. The advantage provided by a smaller RMP may be substantial; for 

example, on instance 16 (the largest instance) B1 and B3 each require only three B&B 

nodes, but B3 runs considerably faster than B1. 

 
 

           Figure 10. Comparison of branching rules B1, B2, and B3. 

 
             

 

 

Figure 11. Comparison of CH and CIH. 

 
 

 

 

Figure 11 compares CH with CIH.  If an optimal solution is found at the root 

node, it is same for B1, B2, and B3. Hence, in that case we only report the solution 

associated with B3. This comparison shows that IH has a significant effect, reducing run 
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time in all instances (e.g. on instance 8 CIH requires 2494.44 seconds, and CH requires 

33147.5 seconds). Based on these results, we select the CIH in combination with 

branching rule B3 as the default combination.  

5.3.3. Computational evaluation of B&P-D 

In this subsection we evaluate the efficacy of B&P-D. For this purpose we 

benchmark our default B&P-D combination (B&P-D with CIH and branching rule B3) 

with CPLEX B&B and analyze the effect of experimental factors on run times. 

Table 9 reports results from our default combination. The first column in each 

table gives the instance number (N) (see Table 8) and the next three report results at the 

root node: the heuristic solution value (HSV), optimal solution value (RNS), and the 

time required to solve to optimality.  The last six columns give results associated with 

solving CMKG: number of simplex iterations needed for RMP to reach optimality, 

number of degenerate RMP iterations, total number of generated columns entered, total 

number of B&B nodes searched, time needed for all RMP simplex iterations, and the 

total CPU run time to prescribe an optimal integer solution. First we benchmark these 

results with CPLEX. 

5.3.4. Benchmarking  

To benchmark our default combination of implementation techniques, we 

compare it with the B&B routine of CPLEX.  Table 10 gives the results.  The first 

column in Table 10 gives the instance number, and the next six report CPLEX results: 

number of simplex iterations needed to reach optimality (or, number of simplex 

iterations completed in 60,000 seconds, if CPLEX is terminated because our time limit is  
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Table 9. B&P with CIH and B3. 

N HSV RNS 
RNS time 

(sec) 

# of simp. 

iter. 

# of 

deg. 

iter. 

Total # of 

cols. ent. 

# of 

nodes 

RMP sol. 

time (sec) 
CPU (sec) 

1 3828 3805.000 2.500 16983 129 1222 1 2.359 2.500

2 3217 2989.000 8.781 31396 325 1949 1 8.485 8.781

3 3663 3500.000 14.172 58326 171 2950 1 13.716 14.172

4 3091 2738.500 1170.660 3129801 1217 32105 5 2887.200 2893.990

5 4504 4504.000 13.188 31788 267 3425 1 12.625 13.188

6 4302 4100.499 1030.810 1413847 222 19808 3 1880.260 1882.540

7 4242 4242.000 64.158 80529 111 6155 1 63.535 64.158

8 4113 3810.00 2494.450 794695 203 12006 1 2492.720 2494.440
     

9 5936 5881.000 1.906 9653 38 918 1 1.638 1.906

10 5755 5732.000 3.688 15892 74 1411 1 3.344 3.688

11 5472 5368.499 7.562 45066 220 4922 3 12.574 13.968

12 5370 5040.999 153.800 483553 754 15848 5 270.161 278.208

13 7657 7556.499 113.737 313833 629 14449 7 208.522 230.049

14 8061 7778.666 292.142 333212 284 10802 3 370.026 373.533

15 7131 6969.125 1850.190 1006215 632 20966 3 2067.870 2074.620

16 6858 6829.990 4182.720 1462211 697 30202 3 5141.250 5151.070

  

 

 

 

Table 10. CPLEX results for HSC instances. 

N 
# of simp. 

iter. 

# of B&B 

nodes 
Z(LP) MBB Z(IP) 

CPLEX 

time (s) 
)(

)(

IPZ

MBBIPZ −    

(%) 

)(

)()(

IPZ

LPZIPZ −  

(%) 

)(

)(

IPZ

RNSIPZ −  

(%) 

1 191794 106630 2978.41 3805.00 3805 12.9 0.000 21.724 0.000 
2 4699267 2135618 2360.44 2989.00 2989 327.9 0.000 21.029 0.000 
3 459297 232269 2871.39 3500.00 3500 36.4 0.000 17.960 0.000 
4 13859541

7
59841137 2105.49 2745.00 2745 14039.2 0.000 23.297 0.237 

5 1405934 441217 3628.67 4504.00 4504 90.6 0.000 19.435 0.000 
6 11471891

8
35050870 3201.20 4102.00 4102 8858.6 0.000 21.960 0.037 

7 6347377 1880246 3562.47 4242.00 4242 523.0 0.000 16.019 0.000 
8 65092128

7
137266419 3045.26 3570.27 3810 60000.0

2 
6.292 20.072 0.000 

         
9 22756694 14294251 4569.67 5881.00 5881 2554.3 0.000 22.298 0.000 

10 41869208
7

239891803 4356.43 5612.69 5732 60000.2 2.081 23.998 0.000 
11 43991562

1
205864226 4190.08 5155.13 5384 60000.3 4.251 22.175 0.288 

12 42464790
0

177343880 3794.84 4561.10 5066 60000.1 9.966 25.092 0.494 
13 71659718 133389729 5542.44 7582.00 7582 20571.1 0.000 26.900 0.336 
14 40837981

9
132713241 5415.97 6826.11 7782 60000.0 12.283% 30.404 0.043 

15 42699815
9

135053281 5250.16 6196.39 6970 60000.0 11.099% 24.675 0.013 
16 39708547

6
108500672 4992.27 5845.97 6833 60000.0 14.445% 26.939 0.040 
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reached), total number of  B&B nodes searched, optimal  LP solution value (Z(LP)), best 

bound obtained  at  the termination of CPLEX (MBB), optimal (integral) solution value 

Z(IP), and run time.  The last three columns give the gaps associated with the three 

lower bounds, showing how far each lower bound is from the optimal solution: the 

percentage of the gap associated with the best bound obtained at the termination of 

CPLEX, ( )( ))()(100 IPZMBBIPZ − ; with the bound obtained from the linear relaxation 

of MKGP, ( )( ))(()(100 IPZLPZIPZ − ; and with the optimal root node solution of 

B&P, ( )( ))()(100 IPZRNSIPZ − . CPLEX exceeds the time limit of 60,000 seconds in 7 

of the 16 instances, but our B&P-D prescribes optimal solutions for all 16 instances.  

B&P-D is faster than CPLEX on the remaining 9 instances by 90% on average.  It is 

important to note that, on all instances, solving RMP accounts for 99.9% of the total 

CPU time (i.e., SPs require a small portion of run time).  MBB values associated with 

the instances for which CPLEX exceeds 60,000 seconds are smaller (i.e., weaker) than 

the lower bounds found by our B&P-D at the root node of the B&B tree.  Our B&P-D 

yields a tighter bound than the linear relaxation of MKGP on all instances. Thus, the 

lower bound obtained at the root node of B&P-D dominates the lower bound obtained 

from the linear relaxation.   

5.3.5. Run time vs. parameters 

In this section we evaluate the effect of each parameter (i.e., experimental factor) 

on run time. Run time to solve CMKG increases as levels of |E|, |K|, and |L| increase (i.e, 

Table 9).  This is expected, since the number of clones increases with |E|, |K|, and |L|, 

leading to more challenging RMPs. The number of SPs also increases with |E|. 
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Furthermore, the number of variables in MKGP increases with |K| and |L|, requiring 

more decisions; thus increasing run time.  

As seen from Tables 9-10, the most important effect on run time is |L|; for 

example, instances 3 and 4 differ only in their respective values of |L|, but their CPU run 

times are quite different. The reason is that increasing |L| provides more opportunities to 

locate sensor combinations and increases the number of variables klx  common to 

different SPs, so the problem becomes more challenging to solve. For example; the 

difference between the |L| values of instances 3 and 4 is seven, but each additional sensor 

location increases the number of common variables in approximately 24 constraints. It is 

important to note that, although the difference between the |L| values of instances 11 and 

12 is six, the difference in run time is not as large as that between instances 3 and 4. The 

reason is that for |S| = 84, we assume that a sensor only observes surveillance points 

located on the same side of the channel, so each of these additional sensor locations 

increases the number of common variables in at most 24 constraints. 

One might expect that run time always increases with |S|, since both the number 

of clones and the number of SPs increase with |S|.  If we fix |L| and increase |S|, the 

number of feasible solutions may be decrease, perhaps to the point of rendering the 

instance infeasible.  Therefore, as |S| increases, |L| must be increased in order to satisfy 

the detection probability required at each Ss ∈ .  However, Table 9 shows that some 

instances in which |S| = 84, require less run time than corresponding instances in which 

|S| = 42 (i.e, instances 4 and 12; instances 6 and 14).  The reason is that there is another 

factor affecting run time: |Leks|, the number of potential locations from which k can 
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provide some capability to observe s under e. As |Leks| decreases, the number of variables 

klx  common to different SPs and the number of clones corresponding to each parent klx  

decrease, so the problem becomes less challenging for B&P-D to solve (i.e., |S| = 84).  

Sensors located on either side of the HSC can observe each surveillance point for 

instances in which |S| = 42. However, a sensor that observes a surveillance point must be 

located on the same side of the channel for instances in which |S| = 84, essentially 

decomposing the problem into two independent components, one associated with each 

side of the channel.  Therefore, for the instances in which |S| = 84, fewer surveillance 

points can be observed from each location l than for the instances in which |S| = 42.  

Thus, for |S| = 84, the average value of |Leks|  and the number of GUBs associated with 

each ),( seSP  are both less than for |S| = 42.  

To further determine the significance of the experimental factors on total run 

time, we generate 16 more instances defining two new levels for |S| (i.e, |S| = 22 and |S| = 

32) and then conduct ANOVA.  The objective of this analysis is to test, at an α = 0.05 

level, the hypotheses H0 that a factor or an interaction of factors has no affect on run 

time versus the alternative HA that it does.  Tests H0 = |E| and H0 = |L| are rejected at 

0.000 p-level, and H0 = |K| is rejected at 0.001 p-level.  However, for H0 = |S|, the p-level 

is 0.111, so this hypothesis cannot be rejected.  We thus conclude that factors |E|, |K|, 

and |L| have significant effects on run time.  Furthermore, interactions between these 

three factors have a significant effect on run time, since H0 = |E|×|L|, H0 = |E|×|K|, H0 = 

|L|×|K|, and H0 = |E|×|K|×|L| are rejected at p-levels 0.00, 0.005, 0.001, and 0.005, 

respectively.   
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CHAPTER VI 

KNAPSACK PROBLEM WITH GENERALIZED UPPER BOUND 

CONSTRAINTS: A POLYHEDRAL STUDY AND COMPUTATION 

 

Chapter V describes a computational evaluation of a B&P-D approach to design 

a surveillance system, employing the HSC as a test bed. B&P-D is more effective than 

classical B&B. However, its run time increases with the number of GUBs and the 

number of variables in each GUB. With the hope of developing a more effective method 

to solve ≥MKPG  (i.e., MKPG with greater-than-equal-to knapsack constraint), this 

section defines valid inequalities (facets) for the ≥KPG  polytope. 

We consider the ≥KPG  problem, which comprises a knapsack in the form of a 

greater-than-equal-to constraint and (disjoint) GUBs: 

{ }XxcxZ
KPG

∈=≥ :min* , 

where  { }{ }GgxbxaxX
gg Jj jGg Jj jj

n
∈≤≥∈= ∑∑ ∑ ∈∈ ∈

1,:1,0 , 

      ∪ Gg gJJ
∈

= , and ∅="' gg JJ ∩  for Ggg ∈≠ "' .  

Each (index) set defined in this section is an (index) subset of either J  or G .  To 

facilitate presentation, we use the expression   “variable (GUB) in a set” instead of the 

more lengthy, but more accurate, “index of variable (GUB) in a set” if ambiguity will 

not result.  For Gg ∈ ,  define index )(gj  such that { }
gj Jjagj ∈∈ :maxarg)( . We 

invoke three assumptions: 

Assumption 6.1. 0≥b  and 0≥ja  .Jj ∈  



 89

Assumption 6.2. ba
Gg gj ≥∑ ∈ )( . 

Assumption 6.3. )conv(X  is a full-dimensional polytope. 

Since arbitrarily signed coefficients b  and ja  Jj ∈  can be transformed into an 

equivalent form with 0≥b  and 0≥ja  Jj ∈  (Johnson and Padberg 1981, Sherali and 

Lee 1995), Assumption 6.1 imposes no loss of generality. If Assumption 6.2 does not 

hold, X  is infeasible. If )conv(X  is not full-dimensional, it can be modified so that it is 

(Sherali and Lee 1995); hence, Assumption 6.3 introduces no loss of generality. 

This chapter has seven objectives. The first objective is a family of valid 

inequalities for )conv(X  and the second is a polynomial-time procedure to generate 

them. The third objective is a set of dominance relationships for these inequalities and 

the fourth is the necessary and sufficient conditions for a non-dominated inequality to 

define a facet of )conv(X . The fifth objective is a lifting procedure to tighten valid 

inequalities that are not facets and the sixth is a separation procedure to generate a valid 

inequality to cut off a fractional solution to the linear relaxation of ≥KPG . The seventh 

objective is a computational evaluation of a branch-and-cut approach that uses these 

inequalities in solving the multidimensional ≥KPG  (i.e., ≥MKPG ). 

The remainder of the chapter is organized as follows.  Section 6.1 reviews known 

valid inequalities (facets) of )conv(X . Sections 6.2-6.8 address objectives 1-7, 

respectively. Section 6.2 derives a family of valid inequalities for )conv(X  and Section 

6.3 develops a procedure to generate them. Section 6.4 discusses dominance 

relationships for these inequalities and Section 6.5 establishes necessary and sufficient 
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conditions for a non-dominated inequality to define a facet of )conv(X . Section 6.6 

presents a lifting procedure to further tighten the valid inequalities.  Section 6.7 devises a 

separation procedure to generate a valid inequality to separate a fractional optimal 

solution to a linear relaxation of ≥KPG . Section 6.8 evaluates the efficacy of our cuts in 

application to solve ≥MKPG .  

 

6.1.  The ≥≥≥≥KPG  polytope  

To our knowledge, only Sherali and Lee (1995) has devised a family of facets 

specifically for )conv(X . We now summarize the results of Sherali and Lee (1995), 

providing a level of detail that is sufficient to allow us to show how our contributions 

differ. 

Proposition 6.1. dim( )conv(X ) = |J| - |G0|, where 
{ }

{ }baGgG
gGg gj <∈= ∑ ∈ ˆ\ )(0 :ˆ . 

The following two propositions from Sherali and Lee (1995), state the trivial facets of 

)conv(X . 

Proposition 6.2.  For each Gg ∈  and { })(\ gjJj g∈ , 0≥jx  is a facet of )(conv X .   

Proposition 6.3.  GUB constraints 1≤∑ ∈ gJj jx  Gg ∈  are facets of )conv(X . 

 Sherali and Lee (1995) defined a generalization of the well-known minimal 

cover inequality of Balas (1975) for )conv(X  as follows.  For some GG ⊆ˆ , let 

∪ Gg gJK
ˆ∈

= , KJK \= ,  and { }KjJjGgG gK ∈∈∈=  somefor  : .  The set K  is 

called a GUB cover of X  if ba
K

Gg gj <∑ ∈ )( .  A GUB cover is called a minimal GUB 
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cover of X  if ( ) baa gjGgGg gj K
K

≥+ ∈∈∑ )()( min . Accordingly, a minimal GUB cover 

inequality is written as 

∑ ∈
≥

Kj jx 1.        (6.1) 

For some minimal GUB cover K , let { } max:\' ' jKjj aaKJjR ∈≥∈= .  An 

extension of the minimal GUB cover, denoted by )(KE , is defined as 

( )∪∪
RGg gJKKE

∈
=)(  and a family of valid inequalities for )conv(X  is defined as  

                 RKEj j Gx +≥∑ ∈
1

)(
.                  (6.2) 

If ∅≠R , inequality (6.2) implies (i.e., dominates) (6.1); that is, if ∅≠R , (6.2) 

is tighter than (6.1). Sherali and Lee (1995) defined another strengthening procedure for 

minimal covers as follows. If ( 1K , 2K ) is a partition of K  (i.e., 21 KKK ∪= )  with 

∅≠2K  such that 

baa
KK g Gg gjGg jKJj <+∑∑ ∈∈ ∈ )(

2
2

)(max
∩

, 

then inequality 

                                             ∑ ∈
≥

1

1
Kj jx ,          (6.3) 

is valid for )conv(X  and dominates (6.1).  Finally, given a minimal GUB cover K , 

Sherali and Lee (1995)  developed a lifting procedure for (6.1), obtaining valid 

inequalities of the form 

      ∑∑∑∑
++− ∈∈∈∈

+≥++
Kj jKj jjKj jjKj j xxx πππ 1 ,                 (6.4) 

where { }
Kgj GgaK ∈=+ :)( , ( )+− = KKJK ∪\ , and jπ  is the lifted coefficient of jx .  
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The lifting procedure in Sherali and Lee (1995) computes lifted coefficients of the 

variables in each GUB set simultaneously. We now give an example from Sherali and 

Lee (1995) to demonstrate the valid inequalities that can be obtained using the 

procedures it presents. 

Example 6.1.  









≤+≤+≤+≤+

≥+++++++∈
=

1,1,1,1

,93355:}1,0{

87654321

87654321

8

1
xxxxxxxx

xxxxxxxxx
X E

. 

All possible minimal covers of form (6.1) are:  14321 ≥+++ xxxx ;  

    16521 ≥+++ xxxx ; 

                                                                18721 ≥+++ xxxx ;  

    16543 ≥+++ xxxx ; 

                                                                18743 ≥+++ xxxx . 

All possible valid inequalities of form (6.2) are: 2874321 ≥+++++ xxxxxx ;                       

                                                                  2654321 ≥+++++ xxxxxx . 

The only possible valid inequality of form (6.3) is: 142 ≥+ xx . 

Applying the lifting procedures of Sherali and Lee (1995), we obtain valid inequalities 

of the form (6.4): 

        111111

86887766554321 1 ππππππ ++≥+++++++ xxxxxxxx  

        222222

8884477336521 41 ππππππ ++≥+++++++ xxxxxxxx  

        333333

64664455338721 1 ππππππ ++≥+++++++ xxxxxxxx  

        444444

82882277116543 1 ππππππ ++≥+++++++ xxxxxxxx  
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        555555

62662255118743 1 ππππππ ++≥+++++++ xxxxxxxx . 

We show later in Example 6.3 that the valid inequalities that we propose differ from 

these. 

 

6.2. Valid inequalities for ≥≥≥≥KPG  

In this section, we derive a set of valid inequalities, called α -cover inequalities, 

for )(conv X .  Assuming, without loss of generality, that 
)()2()1( ...

Gjjj aaa ≥≥≥ , we 

define  

{ }{ }baGk
k

g gj ≥∈= ∑ =1 )(

* :...1minargα                                   (6.5) 

and let { }1:)(1 == jxjxJ  be the index set of variables equal to 1 at feasible point Xx ∈ .  

Lemma 6.4.  Given JJ ⊆' , { } *

'
:min α≤∈= ∑ ∈

Xxxp
Jj j .  

Proof. Let x̂  be a feasible solution with respect to X  in which exactly *α  variables are 

fixed to 1 (i.e., *1 )ˆ( α=xJ ).  By definition of *α , *11 )ˆ()(min α==∈ xJxJXx . Hence, 

{ } *11

'
')ˆ(')(min:min α≤≤=∈= ∈∈∑ JxJJxJXxxp XxJj j ∩∩ .                ■ 

Definition 6.1. For each integer α  such that *1 αα ≤≤ ,  set JJ ⊆α  is an α -cover, if  

αα ≥)(1
xJJ ∩  for each Xx ∈  and        (6.6) 

for each αJj ∈ , an Xx ∈  exists such that )(1 xJj ∈  and αα =)(1
xJJ ∩ .   (6.7) 

Definition 6.1 justifies the following proposition. 

Proposition 6.5.  For any α -cover, JJ ⊆α ,  
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αα ≥∑ ∈Jj jx ,              (6.8) 

is a valid inequality for )(conv X .  

Condition (6.6), which requires that α
J  contain at least α  variables from each )(1

xJ  

Xx ∈ , assures that (6.8) is valid for )(conv X .  By condition (6.7), for each αJj ∈ , a 

feasible point x̂  exists such that { }jJ \α  contains the indices of at most 1−α  of the 

variables that are fixed to 1 at x̂ . Hence, no { } αα JjJ ⊂\  either satisfies (6.6) (on 

substituting  { }jJ \α  for α
J ) or yields an inequality that dominates (6.8) (Sherali and 

Glover 2008).   

We call an inequality of form (6.8) an α -cover inequality. Example 6.2 demonstrates 

that α -cover inequalities may yield facets that differ from those that can be generated 

using the procedures of Sherali and Lee (1995).  

Example 6.2. Consider polytope 1EX  of Example 6.1. Note that 2* =α , since setting 

142 == xx  gives 942 ≥+ aa .  Given { }8,6,4,2=αJ  and *αα = , we will show that 

α
J  satisfies conditions (6.6) and (6.7), so that the corresponding inequality 

28642 ≥+++ xxxx                                             (6.9) 

is an α -cover inequality. 

α
J  satisfies (6.6), since { } αα ==∈+++=∈ 2:min)(min 18642

1

1 EXx XxxxxxxJJ
E

∩ . 

We now show that α
J  satisfies (6.7), by showing that for each αJj ∈ , a feasible 

solution x  exists such that )(1 xJj ∈  and αα =)(1
xJJ ∩ .    
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Case 1. Consider point 1EXx ∈  in which 142 == xx  and 0=jx  { }8,7,6,5,3,1∈j  (i.e.,  

              }4,2{)(1 =xJ ).  Thus, for }4,2{∈j , )(1 xJj ∈  and 2)(1 =xJJ ∩
α . 

Case 2. Consider 1EXx ∈  in which 1632 === xxx  and 0=jx  { }8,7,5,4,1∈j  (i.e.,  

             }6,3,2{)(1 =xJ ).  Thus, for 6=j , )(1 xJj ∈  and 2)(1 =xJJ ∩
α .  

Case 3. Consider 1EXx ∈  in which 1832 === xxx  and 0=jx  { }7,6,5,4,1∈j  (i.e.,  

             }8,3,2{)(1 =xJ ).  Thus, for 8=j , )(1 xJj ∈  and 2)(1 =xJJ ∩
α .  

By cases 1-3, for each αJj ∈ , an 1EXx ∈  exists such that )(1 xJj ∈  and 

αα =)(1
xJJ ∩ .    

In fact, (6.9) is a facet of 1EX , since array  

 

 

 

 

 gives eight linearly independent points in 1EX  for which (6.9) holds at equality. 

Further, (6.9) cannot be generated using the procedures of Sherali and Lee (1995) (see 

Example 6.1 in which we list all valid inequalities (facets) that can be generated using 

the procedures of Sherali and Lee (1995)). 

Note that (6.8) generalizes the GUB cover inequalities described in Sherali and 

Lee (1995).  The right-hand-side of any GUB cover inequality is 1 and either all 

variables associated with a GUB are in a GUB cover or in the complement of the GUB 


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cover. The α -cover inequality generalizes the GUB cover inequality, because the right-

hand-side of an α -cover inequality (6.8) can be larger than 1 and variables associated 

with a GUB can be partitioned into two subsets: one is included in the α -cover; and the 

other, in the complement of the α -cover (i.e., α
JJ \ ). 

 

6.3. Generating αααα -cover inequalities 

This section designs a polynomial-time procedure for generating an α -cover 

inequality. Later, in Section 6.7, we use this procedure to find the most violated α -cover 

inequality.  

Notation.  We introduce the following notation.  Given an index subset JH ⊆ ,  

HJH \=  is the complement of H ; and the subset of variable indices that are 

common to both gJ  and H )(H  is g
H
g JHJ ∩=  ( )

g

H

g JHJ ∩= ;  

HG  (
H

G ) is the index set of GUBs, each of which is associated with one or 

more variables in H ( H ).  

Note that each GUB can be an element in HG  and/or 
H

G . 

HH
G  is the index set of GUBs that have one or more elements in both HG  and 

H
G .   

HN  (
H

N ) is the index set of GUBs with no associated variables in H ( )H ; that 

is HNg∈  if ∅=H

gJ  ( )∅=∈ H

gH
JNg  if . 

Proofs of the propositions and lemmas that follow deal with the variables with 
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the largest coefficients in set H

gJ ( )H

gJ  , so we define notation to denote such variables: 

          for each HGg ∈ , )(gj
H

 is chosen such that { }H

gj Jjagj
H

∈∈ :maxarg)( ; (6.10) 

          for each 
H

Gg ∈ , )(gj
H

 is chosen such that { }H

gj Jjaj
H

∈∈ :maxarg .       (6.11) 

For each 
HH

Gg ∈ , if 1)( =gj
H

x  and is subsequently replaced by 1)( =gjH
x , the 

left-hand-side of  the 
≥KPG  knapsack constraint changes in value by  

)()()( gjgjgj
HHH

aaa −=
⌣

.                (6.12a) 

Analogously, since ∅=
HH GG ∩ , for each HGg ∈ , we define 

)()( gjgj aa
H

=
⌣

.                    (6.12b) 

Algorithm COVER(D, α) takes a non-empty index set JD ⊆  and parameter α  

as inputs, and produces an α -cover. We assume that { } α≥∈∑ ∈
Xxx

Dj j :min ; 

otherwise, variables in D  do not yield an α -cover inequality that is valid for )(conv X . 

Each iteration of COVER(D, α) requires a problem of the following form to be 

solved for a given DH ⊆ : 

{ }XxxZ
Hj jH ∈= ∑ ∈

:min* .         (6.13) 

Proposition 6.6 prescribes an optimal solution to Problem (6.13).  It states that, if starting 

with 0=jx  for all Jj ∈ , then fixing the variable with the largest ja  value in each 

H
Gg∈  to 1 (i.e., 1)( =gj

H

x ) satisfies the knapsack constraint in (6.13), 0* =HZ ; 

otherwise, we must increase *

HZ  by fixing one or more variables in H  to 1.  The 

minimum number of variables in H  that must be fixed to 1 can be found by 
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successively fixing the variable )( gjH
x  with the largest  )( gjH

a
⌣

value to 1 and, for 
H

Gg ∈ , 

the corresponding 0)( =gj
H

x  until feasibility is achieved. 

Proposition 6.6.  Let HGt = . Sort the indices in HG  in non-increasing order of their 

)( gjH
a
⌣

 values and re-number, so that )()2()1( ... tjjj HHH
aaa
⌣⌣⌣

≥≥≥ .  Then, with 1)( =gj
H

x  

for 
H

Gg ∈ , 

{ }{ }∑∑ ∈=
−≥∈=

H HGg gj

k

g gjH abatkZ
H

)(1 )(

* :...1minarg
⌣

.           (6.14) 

Proof.  We recast Problem (6.13) as a knapsack problem without GUBs by considering 

two cases.  In Case 1, we show that an optimal solution to (6.13) exists in which, for 

each 
H

Gg ∈ , 0=jx  for all H

gJj ∈ , except for variable )( gj
H

x .  Similarly, in Case 2, 

we show that for each HGg ∈ , 0=jx  for all H

gJj ∈ , except for variable )( gjH
x . We 

arbitrarily break ties while selecting )( gjH
x  and )( gj

H

x . 

Case 1.  Consider 
H

Gg ∈ .  The objective function coefficient of each jx  H

gJj ∈  is 0 in 

(6.13) and jgj aa
H

≥)(  for each H

gJj ∈  by (6.11).  Therefore, we prefer to fix 

)( gj
H

x  to 1 instead of jx  { })(\ g
H

jJj
H

g∈ . Thus, an optimal solution to (6.13) 

exists in which 1)( =+∑ ∈ gjJj j
H

H
g

xx  for each 
H

Gg ∈  and other associated 

variables are fixed to 0; i.e., 0=jx  for { })(\ g
H

jJj
H

g∈ .  

Case 2.  Consider HGg ∈ .  The objective function coefficient for each jx  Hj ∈  is 1 in 

(6.13) and jgj aa
H

≥)(  for each H

gJj ∈  by (6.10).  Hence, we prefer to fix )( gjH
x  
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to 1 instead of jx  { })(\ g
H

jJj
H

g∈ .  Thus, in all cases, an optimal solution to 

(6.13) exists such that  

1)()( =+ gjgj
HH

xx  for 
HH

Gg ∈        and    1)( ≤gjH
x  for HNg ∈ . 

After fixing 0=jx  for { } { }∪∪
H

H
H

H GgGg
gg jjJj

∈∈
∈ )()( \\ , and 1)( =gjx  for 

HNg ∈ , and replacing each GUB 
HH

Gg ∈  with an equality constraint,  (6.13) becomes  

∑ ∈
=

Hj jH xZ min*  

          s.t.  ∑∑∑ ∈∈∈
−≥+

HHH HHH HH Ng gjGg gjgjGg gjgj abxaxa )()()()()(            (6.15) 

                 1)()( =+ gjgj
HH

xx                     
HH

Gg ∈                                         (6.16) 

                }1,0{)( ∈gjH
x                             HGg ∈       

                 }1,0{)( ∈gj
H

x                             
HH

Gg ∈ .                    

We use (6.16) to replace each )( gj
H

x  in (6.15) with ( )(1 gjH
x− ).  Then, (6.15) becomes 

∑∑∑∑ ∈∈∈∈
−−≥−

HH HHHH
HHH HH Gg gjNg gjGg gjgjGg gjgj aabxaxa )()()()()()( .   (6.15a) 

Considering 
HHHH GNG ∪=     and  

HHHH
GNG ∪= , (6.15a) can re-expressed as 

∑∑∑∑ ∈∈∈∈
−≥−+

H HH
HH HHH

HH
H

HH Gg gjgjGg gjGg gjgjNg gjgj abxaxaxa )()()()()()()( . (6.15b) 

Replacing (6.15) with (6.15b), Problem (6.13) becomes 

∑ ∈
=

Hj jH xZ min*   

                   s.t.  ∑∑∑ ∈∈∈
−≥−+

H HH
HH HH

H
HH Gg gjgjGg gjgjNg gjgj abxaaxa )()()()()()( )(  

(6.17) 

                             }1,0{)( ∈gjH
x                              HGg ∈ .                                                           
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After invoking (6.12) to set )()( gjgj aa
H

=
⌣

 for 
H

Ng ∈  in the first summation in (6.17), 

)()()( gjgjgj
HHH

aaa −=
⌣

 for 
HH

Gg ∈  in the second summation in (6.17), and recognizing 

that 
HHHH GNG ∪= , Problem (6.13) becomes 

{ }
HgjGg gjGg gjgjHj jH GgxabxaxZ

H
H HH HH

∈∈−≥= ∑∑∑ ∈∈∈
}1,0{;:min )()()()(

* ⌣
. 

Now, observe that if GUBs in HG  are sorted in non-increasing order of their )( gjH
a
⌣

 

values and re-numbered, *

HZ  is given by the smallest integer tk ≤  for which  

∑∑ ∈=
−≥

H HH Gg gj

k

g gj aba )(1 )(

⌣
, establishing (6.14).                  ■ 

Proposition 6.6 has practical significance.  It implies that if the GUBs in HG  are 

sorted in non-increasing order of their )( gjH
a
⌣

 values, *

HZ  can be found in ( )GO time.  

Algorithm COVER(D, α) begins with DH =  such that GUBs in DG  (i.e., HG ) are 

sorted in non-increasing order of their )(gjD
a
⌣

 (i.e., )( gjH
a
⌣

) values.  At each iteration, it 

fixes a different 
j

x ˆ  Hj ∈ˆ  to 1 and then determines if ( ) α>jZ H
ˆ*  or not, where 

( ) { }1,:minˆ
ˆ

* =∈= ∑ ∈ jHj jH xXxxjZ .             (6.18) 

Let ĝ  be such that gJj ˆ
ˆ ∈ .  Since sorting the GUBs each time one variable is fixed may 

be time consuming, Corollary 6.7 demonstrates how to determine if ( ) α>jZ H
ˆ*  or not in 

constant time. 

Corollary 6.7.  Consider Problem (6.18).  Assume that GUBs are sorted in HG  in non-

increasing order of their )( gjH
a
⌣

 values and )(gj
H

a is set to 0 if 
H

Ng ∈ .  Let  
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    { }α,,1 ...=+
HG  

 and                     






>+−+−

≤+−
=

α

α

αα gaaaaw

gaaw
jb

jgjjjH

jgjH

HHH

H

ˆ if

ˆ if
)ˆ(

ˆ)ˆ()()(

ˆ)ˆ(

 , 

where                  ∑∑ ++ ∈∈
+=

HH HH H GGg gjGg gjH aaw
\ )()( .                                            (6.19) 

If  )ˆ( jbb > , then ( ) α>jZ H
ˆ* .  

Proof. Let x̂  be such that 1ˆ
)( =gjH

x  for +∈ HGg , 1ˆ
)( =gj

H

x  for +∈ HH GGg \ , and 

0ˆ =jx  for each remaining variable. The sum of coefficient values (i.e., ja ) associated 

with x̂  is given by Hw  (6.19).  Now, suppose that a solution x  exists in which 1ˆ =
j

x  

and exactly α  variables from H   are fixed to 1. Then, by Proposition 6.6, an x  exists in 

which exactly )1( −α  variables )( gjH
x  with the largest )( gjH

a
⌣

 values are fixed to 1. The 

sum of coefficient values associated with x  can be calculated based on two cases: 

+∈ HGĝ  (i.e., α≤ĝ ) and +∈ HH GGg \  (i.e., α>ĝ ). 

Case 1. If α≤ĝ , then x  can be obtained from x̂  by replacing 1ˆ
)ˆ( =gjH

x  with 1ˆ =
j

x .  

Therefore, 
jgjHxJj j aawa

H
ˆ)()(1 +−=∑ ∈
.  

Case 2. If α>ĝ , then x  can obtained from x̂  by replacing 1ˆ
)( =αHj

x  with 1ˆ
)( =α

H
jx ; 

and 1ˆ
)ˆ( =gj

H

x  with 1ˆ =
j

x .  Therefore, 

jgjjjHxJj j aaaawa
HHH

ˆ)ˆ()()()(1 +−+−=∑ ∈ αα . 

By Cases 1 and 2, if )ˆ( jbb ≤ , x  is feasible and ( ) α≤jZ H
ˆ* ; otherwise ( ) α>jZ H

ˆ* .       ■ 

After giving a statement of COVER(D, α) in pseudo code, we give an intuitive 
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description of each step. 

COVER(D, α):  

         Input   : Set D  and parameter α  

         Output: Set αJ   

(1a)  DH ← , ∅←'D  and compute Hw  using (6.19). 

(2a)  for each 
H

Gg ∈  and H

g
Jj ∈  do  

(3a)        if ( )(gjj
H

aa ≤ ) then }{\ jHH ←  and }{'' jDD ∪←  

(4a)  while D'D ≠  

(5a) }{minargˆ
'\ jDHj aj ∈← , select ĝ such that gJj ˆ

ˆ ∈ , }ˆ{'' jDD ∪←  and  

(6a) if  ( )ˆ( jbb > )then 

(7a)               { }jHH ˆ\← , { }jJJ
H

g

H

g
ˆ\ˆˆ ← , )ˆ( gjprev H

aa
⌣⌣

← , and 
jgjgj aaa

H ˆ)ˆ()ˆ( −←
⌣

  

(8a)               if (
H

Gg <ˆ  and )1ˆ()ˆ( +< gjgj HH
aa
⌣⌣

) then 

(9a)                   1ˆ~ +← gg , and H

gprev JJ ˆ←  

(10a)                    while ( HGg ≤+ 1~  and )1~()ˆ( +< gjgj HH
aa
⌣⌣

) do 1~~ +← gg   

(11a)                     for 1ˆ +← gg  to g~  do   

(12a)                           H

g

H

g JJ ←−1 , )()1( gjgj HH
aa
⌣⌣

←−   and )()1( gjgj
HH

aa ←−  

(13a)                     prev

H

g JJ ←~ , 
jgjgj aaa

H ˆ)ˆ()~( −←
⌣

 and 
jgj aa

H
ˆ)~( ←           

(14a)             if ( α>ĝ ) then )~(gjprevHH H
aaww
⌣⌣

−+←  

(15a)             else if ( α≤ĝ  and α>g~ ) then )(ˆ)~( αHjjgjHH aaaww
⌣

++−←  

(16a) else  H
gJDD ˆ'' ∪←  

(17a)    HJ ←α . 

 

Step (1a) initializes the algorithm with DH =  and ∅='D , where 'D  is the index set of 

variables considered during previous iterations.  Lemma 6.8 establishes that, if gJj ∈  is 

not in α
J , then α

J  does not contain the index of any variable ix  
g

Ji ∈  whose 

coefficient ia  is less-than-or-equal-to coefficient ja  of jx .  Hence, if )( gjj
H

aa ≤  for 

H

gJj ∈ , we remove j  from H (Steps (2a)-(3a)). If )()( gjgj aa
H

= , we remove all H

gJj ∈  

from H .  Therefore,  )()( gjgj
H

=  for the GUBs associated with the remaining 
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variables in H . 

Lemma 6.8.  Given ĝ , consider variable 
j

x ˆ  such that gJj ˆ
ˆ ∈ .  

(i) If αJj ∈ˆ , then α
J  contains all indices in { }

jigj
aaJiR ˆˆˆ : ≥∈=

≥
; i.e., 

jj
RRJ ˆˆ ≥≥

=∩
α .  

(ii) If αJj ∉ˆ , then α
J  does not contain any index in { }

jigj
aaJiR ˆˆˆ : ≤∈=

≤
; 

i.e., ∅=
≤ j

RJ ˆ∩
α . 

Proof. (i) Observe variable 'jx  such that α
JJj g \' ˆ∈ .  By condition (6.6), each  Xx ∈  

in which 1' =jx  requires at least α  additional variables from α
J  to be fixed to 1.  

Hence, no gJJH ˆ1 \α⊂  exists such that 11 −= αH ; fixing 1' =jx , 1=jx  for 1Hj ∈ , 

1)( =gj
H

x  for 
1

\ HH GGg ∈ , and 0=jx  for each remaining variable gives a feasible 

solution with respect to X .  Thus, for any gJJH ˆ1 \α⊂  such that 11 −= αH , 

{ }
baaa

gGg gjjHj j
H H

<++ ∑∑ ∈∈ ˆ\ )('
1 11

.           (6.20) 

By way of contradiction, suppose that, for αJj ∈ˆ ,  αJj ∉'  exists such that 

j
Rj ˆ'

≥
∈ . Condition (6.7) stipulates that an Xx ∈ˆ  exists in which 1ˆ =jx  and exactly 

1−α  variables from gJJ ˆ\α  are fixed to 1. Define ( )
gJJxJH ˆ

1

2 \)ˆ( α
∩= .  Since 

exactly 1−α  variables from gJJ ˆ\α  are fixed to 1, 12 −= αH . Furthermore, since  

Xx ∈ˆ , 

{ }
baaa

gGg gjjHj j
H H

≥++ ∑∑ ∈∈ ˆ\ )(ˆ
2 22

,              (6.21) 
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Since 
jj aa ˆ' ≥ , we obtain 

{ }
baaa

gGg gjjHj j
H H

≥++ ∑∑ ∈∈ ˆ\ )('
2 22

 by replacing 
j

a ˆ  with  

'ja  in (6.21); contradicting (6.20). Hence,  
jj

RRJ ˆˆ ≥≥
=∩

α . 

(ii) A similar argument can be used to prove that ∅=
≤ j

RJ ˆ∩
α .                         ■ 

  At each iteration (Steps (5a)-(16a)), we choose 
j

x ˆ  such that { }
jDHj aj '\minargˆ

∈∈  and 

ĝ  such that gJj ˆ
ˆ ∈  (Step 5a).  We remove ĵ  from H  if we need to fix at least α  

variables from { }jH ˆ\  to 1 in order to satisfy 
{ }∑ ∑∈ ∈

−≥
gGg jJj jj abxa

gˆ\ ˆ  (Steps (6a)-

(7a)); i.e., ( ) α>jZ H
ˆ* .   

In order to determine if ( ) α>jZ H
ˆ*  or not in constant time at each iteration, we 

must keep GUBs in HG  sorted (and re-numbered) in non-increasing order of their )( gjH
a
⌣

 

values.  If HGg =ˆ , the sorted order of the GUBs in HG  does not change by removing 

ĵ  from H .  However, if HGg <ˆ , after removing ĵ  from H , the value of )ˆ( gjH
a
⌣

 must 

be reduced to 
jgj aa

H ˆ)ˆ( −  (Step (7a)).  Therefore, the order of GUBs in HG  may change.  

In this case, we can utilize the following scheme to update the order of GUBs in HG :  

  if 
)(ˆ)ˆ(

HHH Gjjgj aaa
⌣

>− , let { }ggaaaGgg gjjgjH HH
ˆ,:maxarg~

)(ˆ)ˆ( ≠<−∈∈
⌣

;  

        otherwise , let HGg =~ ;  

decrease the indices of GUBs in [ ]gg ~,1ˆ +  by 1; change the previous index of GUB ĝ  to 

g~  and update the value of Hw  and the attributes of relevant GUBs: H

gJ , )( gjH
a
⌣

, and 

)( gj
H

a ,  accordingly (Steps (8a)-(15a)).  
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Lemma 6.8 asserts that if gJj ∈  is in α
J , then α

J  contains the index of each 

variable ix  
g

Ji ∈  whose coefficient (i.e., ia ) is greater-than-or-equal-to coefficient ja  

of jx .  Hence, whenever we do not remove ĵ  from H , we keep all gJj ∈  with 
jj aa ˆ≥  

in H  and we do not consider them in subsequent iterations (Step (16a)).  We repeat 

Steps (5a)-(16a) until all variables have been processed (i.e., D'D = ). 

The set H  obtained at Step (17a) of COVER(D, α) satisfies conditions (6.6) and 

(6.7), so that it is an α -cover of X .  The set H  satisfies (6.6), because Step (6a) 

removes index H

gJj ˆ
ˆ ∈   from H  only if fixing 1ˆ =

j
x  requires at least α  additional 

variables from α
J  to be fixed to 1 (i.e., if ( ) α>jZ H

ˆ* ). The set H  satisfies (6.7), since 

we check each variable in D  and remove each ĵ  from H  if { }( ) α≥)(ˆ\ 1
xJjH ∩  for all 

Xx ∈  (Steps (6a)-(7a)).   

We use a numerical example from Sherali and Lee (1995) to demonstrate 

COVER(D, α) in application. 

Example 6.3 (Sherali and Lee 1995). 









≤++≤++≤++

≥++++++++∈
=

1,1,1

,4223:

987654321

987654321

9

2
xxxxxxxxx

xxxxxxxxxBx
X E . 

COVER(D={1,…,9}, α =2) requires the following five iterations: 

 (1a) { }9...1=H , ∅='D  

        First iteration: 

(5a) 1ˆ =j , 1ˆ =g , { }1'=D  

(7a) bb <= 3)1(  

(8a)        { }9,...,2=H  

       Second iteration: 

(5a) 2ˆ =j , 1ˆ =g , { }2,1'=D  

(7a) bb <= 3)2(  

(8a)         { }9,...,3=H  
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        Third iteration: 

(5a) 4ˆ =j , 2ˆ =g    

       { }4,2,1'=D  

(7a) bb ≥= 4)4(  

(15a)        { }6,5,4,2,1'=D  

Note: { }9,...,3=H  

       Fourth iteration: 

(5a) 7ˆ =j , 3ˆ =g ,       

       { }7,6,5,4,2,1'=D   

(7a) bb ≥= 4)7(  

(15a)        { }9,...,4,2,1'=D  

Note: { }9,...,3=H  

       Fifth iteration: 

(5a) 3ˆ =j , 1ˆ =g ,      

         { }9,...,1'=D  

(7a) bb ≥= 5)3(  

(15a)        { }9,...,1'=D  

Note: { }9,...,3=H  

 

Since D'D = , STOP.  { }9,...,3== HJ α .   

Note that Sherali and Lee (1995)  show that 29876543 ≥++++++ xxxxxxx  is a 

facet of 2EX .  

Proposition 6.9.  Algorithm COVER(D, α) is of complexity )(
2

DGO + . 

Proof. Step (1a) requires )( GDO +  time. Together, Steps (2a)-(3a) require |)(| DO  

time. Each iteration (i.e., Steps (5a)-(16a)), requires )( DO  time, (Steps (6a)-(8a) and 

Steps (14a)-(15a) each require constant time; Steps (5a), (9a), (10a), and (16a) each - and 

Steps (11a)-(13a) collectively - require )( DO  time). Since Step (4a) requires repeating 

Steps (5a)-(16a) in )( DO  times, Steps (4a)-(16a) collectively require )(
2

DO  time. Step 

(17a) requires )( DO  time. Thus, the overall time complexity of COVER(D, α) is 

)3(
2

DDGO ++ , which reduces to )(
2

DGO + .                                                         ■ 

Remark 6.1. We assume that Algorithm COVER(D, α) begins with DH =  whose 

associated GUBs HG   (i.e., DG ) are ordered in non-increasing order of their )( gjH
a
⌣

 

values.  Consider the case in which GUBs in HG  are not sorted in order. By including a 

new step before Step (4a), we can order them in |)|log|(| DDO  time (Cormen et al. 
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1990). Therefore, even if COVER(D, α) begins with an un-ordered HG , it requires  

)(
2

DGO +  time.                                                                                                              ■ 

 

6.4. Non-dominated inequalities for ≥≥≥≥KPG  

In this section we present a polynomial-time procedure to strengthen an α -

cover. Consider a pair of inequalities for non-empty sets JJJ ⊆",' ,  

      α ′≥∑ ′J
jx          (6.22) 

                       α ′′≥∑ ′′J
jx .          (6.23) 

Glover and Sherali (2008) say that (6.22) dominates (6.23) if it implies (6.23).  Then, 

they assert that (6.22) dominates (6.23) over the unit hypercube (i.e., }10:{ ≤≤ xx ) if 

either 

JJ ′′⊆′  and αα ′′≥′  (with at least one relation strict),   (6.24) 

or                    { }jJJ ∪′′=′  for some JJj ′′∈ \  and 1+′′=′ αα .               (6.25) 

Moreover, they say that, for a given J ′  and α ′ , inequality (6.22) is non-dominated if 

1'≥α  and if there does not exist another valid inequality that dominates it.  

Let (6.22) be a non-dominated, valid inequality for )(conv X . Since (6.22) is 

valid for )(conv X , it satisfies condition (6.6).  Furthermore, (6.22) satisfies (6.7) by 

condition (6.24). Since non-dominated inequality (6.22) satisfies (6.6) and (6.7), it is an 

'α -cover inequality by Definition 6.1.  Proposition 6.11 shows that an α -cover 

inequality is non-dominated if a simple condition is satisfied.  We first introduce the 
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following notation.  

Notation.  To facilitate presentation, we simplify the notation used in Section 6.3 to 

denote the case in which α
JH = . To avoid superscripts on subscripts, we use α (α ) 

instead of α
J ( α

J ):  αα J
GG =:  and αα J

NN =:  for α
JH = ; 

                 αα J
GG =:  and αα J

NN =:  for α
JH = ; 

                      αααα JJ
GG =:  

                            g

J

gg JJJJ ∩
αα α

==:  and g

J

gg JJJJ ∩
αα α

==:  for Gg ∈  . 

We know by Lemma 6.8 that )()( gjgj aa
H

=  for α
JH = . 

We also eliminate subscripts H (i.e., α
J ) and H (i.e., α

J ) on )(gj
H

 and )( gjH
a : 

                 )(:)( gjgj
H

=  { }( )α
gj Jjagj ∈∈ :maxarg)( i.e.,  for αGg ∈ ; 

                  




∈−

∈
=

αα

α

Gaa

Nga
a

gjgj

gj

gj gfor  

for  

)()(

)(

)(

⌣
. 

Let kg  be the index of the GUB in αG  with the th
k  largest )( gja

⌣
 (ties are broken  

                   arbitrarily), i.e., )()()( ......
1 tk gjgjgj aaa

⌣⌣⌣
≥≥≥≥ , where αGt = . 

Finally, we define new notation that we use in Sections 6.4-6.6: 

Let { }αα ggG ,...,1=+  be the index set of GUBs with the α  largest )( gja
⌣

 values; and 

             +− = ααα GGG \ ( +− = ααα GGG \ ) be the subset of αG ( αG ) that does not contain 

any index in +
αG . By the definition of α -cover and Proposition 6.6, setting 1)( =gjx  for 

+∈ αGg , 1
)(

=
gj

x  for −∈ αGg , and 0=jx  for each remaining variable gives a feasible 
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point of X  (i.e., )(conv X ).  We denote this point using  

∑∑ −+ ∈∈
+=

αα

δ
Gg gjGg gj ee

)()(0 , 

where   je  is the unit vector that has 1 in the row corresponding to variable jx  and 0 in 

each other row. However, no variable associated with αNg ∈  is in α
J ;  therefore, we 

assume that 0=
)( gj

e  for αNg ∈ .  We also use w  to denote the summation of the 

knapsack coefficients (i.e., ja ) corresponding to the variables in )( 0

1 δJ ; i.e.,  

∑∑ −+ ∈∈
+=

αα Gg gjGg gj aaw
)()(  .                                        (6.26) 

By Definition 6.1, for each αJj ∈ , an Xx ∈  exists such that )(1 xJj ∈  and 

αα =)(1
xJJ ∩ .  We now present Lemma 6.10, which shows how such an x  can be 

obtained from 0δ  for each α
gJj ∈  based on: +∈ αGg  and −∈ αGg . We use each point 

defined in the subsequent propositions.  

Lemma 6.10. (i) For +∈ αGg  and α
gJj ∈ , the point jgj ee +−= )(0

ˆ δδ , which is 

obtained by replacing 1)( =gjx  in 0δ  with 1=jx , is a feasible point 

of X . 

                         (ii) For −∈ αGg  and α
gJj ∈ , the point jgjgjgj eeee +−+−=

)()()(0
ˆ

αα
δδ , 

which is obtained by replacing 1)( =
αgjx  with 1

)(
=

αgj
x  and 

replacing 1)( =gjx  with 1=jx  in 0δ  is a feasible point of X . 

Proof.  Both (i) and (ii) follow from Definition 6.1 and Proposition 6.6.          ■ 

Proposition 6.11.  An α -cover inequality is non-dominated if  
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baw
gj

≥−
)(

  for each αNg ∈ ,                             (6.27) 

      where w  is defined as in (6.26). 

Proof.  Suppose that a given α -cover satisfies (6.27). We show that neither (6.24) nor 

(6.25) can hold true; i.e., that we cannot find JJ ⊆'  with 'α  such that 

α
JJ ⊂'  and αα ≥'           (6.28) 

or                                  { }'jJJ ∪
α=′  for some αJj ∈'  and 1+=′ αα .              (6.29) 

First, we show that we cannot find 'J  that satisfies (6.28). For any α
JJ ⊂' , we 

have, by condition (6.7), that an Xx ∈  exists such that α<)(' 1
xJJ ∩ , so that  

1' −≤ αα .  Hence, 'J  cannot satisfy (6.28). 

We now show that we cannot find a 'J  that satisfies (6.29).  Let '' gJj ∈ .  Each 

αJj ∈'  can be related to one of three disjoint sets: ( )+∈ ααα GGg ∩' , ( )−∈ ααα GGg ∩' , or 

αNg ∈' .  Each Cases 1-3, respectively, shows that we cannot obtain 'J  that satisfies 

(6.29), by including any '' gJj ∈  that is related with +
ααα GG ∩ , −

ααα GG ∩ , or αN  to α
J . 

Case 1: Consider ( )+∈ ααα GGg ∩'  and choose a α
'' gJj ∈ .  Let { }'jJJ ∪

α=′ .  Since 0δ  is 

in X  and αδ =')( 0

1 JJ ∩ , { } α≤∈= ∑ ∈
XxxZ

Jj jJ :min
'

*

' .  Thus, in Case 1, 

αα ≤′ .  

Case 2: Consider ( )−∈ ααα GGg ∩'  and choose a α
'' gJj ∈ .  Let { }'jJJ ∪

α=′ .  By Lemma 

6.10, )'()'()()(0
ˆ

gjgjgjgj eeee +−+−=
αα

δδ  is in X .  Since αδ =')ˆ(1
JJ ∩ , 

α≤*

'JZ .  Thus, in Case 2, αα ≤′ .  
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Case 3. Consider αNg ∈'  and choose a α
'' gJj ∈ .  Let { }'jJJ ∪

α=′ .  By replacing 

1
)(

=
gj

x  with 0
)(

=
gj

x  in 0δ , we obtain 
)'(0

ˆ
gj

e−= δδ .  By condition (6.27), δ̂  

is in X .  Since αδ =')ˆ(1
JJ ∩ , α≤*

'JZ .  Hence, in Case 3, αα ≤′ . 

By Cases 1-3, for each αJj ∈' , αα ≤′ , so we cannot find a 'J  that satisfies (6.29).      ■ 

Intuitively, Proposition 6.11 says that, for each GUB (i.e., αNg ∈ ) that is not 

associated with any variable in α
J , if a feasible solution x  exists in which 0=jx  for 

all gJj ∈  and if the corresponding α -cover inequality is active at x , then the 

corresponding α -cover inequality is non-dominated.  

Definition 6.2. For a given α -cover, let αNgv ∈  be a GUB that violates (6.27) and 

define )()(
vgjv awbgb +−= . Let { })(:)( vjgv gbaJjgR

v
≥∈=  be the index set of 

variables jx  
vgJj ∈  each of which has coefficient ja  that is greater-than-or-equal-to 

)( vgb . An extension of the α -cover, denoted by )(αE , is defined as  

)()( vgRJE ∪
αα = .   

Note that ∅≠)( vgR ; otherwise, )(conv X  is empty and 
≥KPG  would have no 

feasible solution.  Also, note that, since αNg v ∈ ,  1)( =
vgjx  in  0δ  and )()( vv gRgj ∈ .   

Proposition 6.12.  For a given α -cover, α
J , the inequality defined as 

1
)(

+≥∑ ∈
α

αEj jx                      (6.30) 

is an )1( +α -cover inequality. Moreover, (6.30) dominates the α -cover 

inequality for which it is an extension. 
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Proof. By way of contradiction, we first show that (6.30) is valid for )(conv X .  Suppose 

that Xx ∈ˆ  exists such that αα ≤)ˆ()( 1 xJE ∩ .  In order to show that this is impossible, 

we consider two cases: 0ˆ =jx  for all )( vgRj ∈  and 1ˆ
)( =

vgjx , where vg  and )( vgR  are 

defined as in Definition 6.2.  

Case 1.1. Let 0ˆ =jx  for all )( vgRj ∈ .  Let XX ⊆α  be the set of feasible points x  

such that αα =JxJ ∩)(1 .  By Proposition 6.6, 
)(\)(1

v
vg

gjJxJj j awa −≤∑ ∈
 for 

each α
Xx ∈ . Since vg  violates (6.27) and )( αgba j <  for )(\ vg gRJj

v
∈ , 

baaw jgj v
<+− )(  for each )(\ vg gRJj

v
∈ . Hence, baa jJxJj j

vg

<+∑ ∈ '\)(1  for 

each α
Xx ∈  and for each )(\' vg gRJj

v
∈ .  Thus, there is no Xx ∈ˆ  in Case 1.1 

such that αα ≤)ˆ()( 1 xJE ∩ . 

Case 1.2. Let 1ˆ
)( =

vgjx .  Suppose that αα ≤)ˆ()( 1 xJE ∩ .  Since )()( vgRJE ∪
αα =  

and 1)ˆ()( 1 =xJgR v ∩ , 1)ˆ(1 −≤ αα xJJ ∩  must hold.  However, there can be 

no such x̂ , since, if there were, { } 1:min −≤∈∑ ∈
αα Xxx

Jj j  contradicting the 

feasibility of an α -cover inequality.  Hence, there is no Xx ∈ˆ  in Case 1.2 such 

that αα ≤)ˆ()( 1 xJE ∩ . 

Together, Cases 1.1 and 1.2 show that (6.30) is valid for )(conv X ; consequently, 

)(αE  satisfies condition (6.6).  

 In order to prove that )(αE  is an )1( +α -cover, we need to show that it also 
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satisfies condition (6.7); that is, for each )(ˆ αEj ∈ , an Xx ∈  exists such that )(ˆ 1 xJj ∈  

and 1)()( 1 += αα xJE ∩ . )(αE  consists of two disjoint sets: )( vgR  and α
J . 

Case 2.1: Let )(ˆ
vgRj ∈  and define 

jgj eex
v ˆ)(0

ˆ +−= δ .  It follows from )( vj gba ≥  for 

)( vgRj ∈  and )()(
vgjv awbgb +−=  that baaw jgj v

≥+− )( . Hence, 

1)ˆ()( 1 += αα xJE ∩  for Xx ∈ˆ .  

Case 2.2: Let αJj ∈ˆ . By condition (6.7) and by Definition 6.2, for each αJj ∈ˆ , an 

Xx ∈ˆ  exists such that αα =)ˆ(1
xJJ ∩  and 1)()( 1 =xJgR v ∩ .   Thus, Xx ∈ˆ  

for which 1)ˆ()()ˆ()ˆ()( 111 +=+= αα α
α

xJgRxJJxJE ∩∩∩ . 

Cases 2.1 and 2.2 show that )(αE  satisfies (6.7). Hence, it is an )1( +α -cover. 

In order to prove that (6.30) dominates the associated α -cover inequality, we 

need to show that (6.30) implies it.  By partitioning )(αE  into two disjoint sets, )( vgR  

and α
J ,  (6.30) can be written as ( )∑∑ ∈∈

−+≥
)(

1
vgRj jJj j xx αα .  Since 1

)(
≤∑ ∈ vgRj jx , 

(6.30) dominates α -cover inequality (6.8).                                                                       ■ 

Proposition 6.12 states that, for a given α
J , if a GUB vg  that violates condition 

(6.27) exists, we obtain an )1( +α -cover by forming the union of )( vgR  and α
J .  The 

resulting )1( +α -cover yields an inequality that dominates the associated α -cover 

inequality.  Therefore, using the following procedure, we can obtain a non-dominated 

inequality. 
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Step 1. Given an α -cover, α
J .  Find a GUB vg  that violates condition (6.27).  

If there is no such a GUB, terminate; the corresponding α -cover 

inequality is non-dominated. Otherwise, go to Step 2. 

Step 2. Determine )( vgR .  Let )( vgRJJ ∪
αα ←  and 1+← αα . Go to Step 1.  

Observe that for a given α
J  and with the indices of the GUBs in αG  are re-numbered in 

non-increasing order of their )( gja
⌣

 values, Steps 1 and 2 together require ( )JGO  time.  

Consider an iteration. Defining a set of violated GUBs and determining )( vgR  requires 

( )GO  and ( )JO  time, respectively. After forming the union of )( vgR  and α
J  (i.e., 

)()( vgRJE ∪
αα = ), we need to order the GUBs associated with )(αE  in non-

increasing order of their )( gja
⌣

 values.  This can be done in ( )JO  time using a procedure 

similar to Steps (8a)-(13a) of COVER(D, α).  Thus, each iteration requires ( )JO  time 

and there are ( )GO  iterations.  Note that since GUBs that violate condition (6.27) 

depend on the variables in α
J , the non-dominated inequality that we obtain depends on 

the sorted order of the violated GUBs considered.   

Strong minimal covers for ≤KP  are non-dominated extensions of minimal covers 

(Balas 1975, Sherali and Lee 1995).  Similarly, we define strong α -covers as follows: 

Definition 6.3. An α -cover is a strong α -cover  

                   (i)  if *αα =  or 

                 (ii)  there exists no 'α -cover that strictly contains α
J  and αααα −=− '' GG . 
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6.5. Facets of )(conv X  

In this section, we define the necessary and sufficient conditions for an α -cover 

inequality (6.8) to be a facet of )(conv X .  First, we need to establish Lemma 6.13, 

which shows that αG  comprises indices of at least )1( +α  GUBs. 

Lemma 6.13. 1+≥ ααG . 

Proof: By condition (6.6), αα ≥G .  Suppose that αα =G .  Then,  1=∑ ∈ α
gJj jx  for 

each αGg ∈  and for each Xx ∈ .  By Proposition 6.1, this contradicts Assumption 6.3, 

which requires )(conv X  to be full dimensional. Thus, αα >G .                                     ■ 

Proposition 6.14. An α -cover inequality (6.8) is a facet of )(conv X  if and only if  

                   baaw gjgj ≥+−
+ )()( 1α

⌣
                for each +∈ αGg                       (6.31) 

                   baw
gj

≥−
)(

                for each −∈ αGg .                    (6.32) 

Proof: (⇒ ) We first prove the necessity of condition (6.31).  Suppose that (6.8) is a 

facet and baaw gjgj <+−
+ )()( 1α

⌣
 for +∈ αGg .  This implies that 1=∑ ∈ gJj jx  for each 

Xx∈  such that αα =∑ ∈Jj
jx .  By Proposition 6.1, this means that X  does not contain 

J  affinely independent points at which (6.8) is tight. This contradicts our assumption 

that (6.8) is a facet.  The necessity of (6.32) can be proven using a similar argument. 

( ⇐ )We prove that (6.8) is a facet by identifying J  affinely independent points in X  

for which (6.8) is active; i.e., 0δ , 1
gjδ  for −∈ αGg  and { })(\ gjJj g

α∈ , 2
gδ  for −∈ αGg , 
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3
gjδ  for −∈ αGg  and { })(\ 1+∈ α

α gjJj g
, 4

gjδ  for +∈ αGg  and α
gJj ∈ , 5

gjδ  for +∈ αGg , 

{ })(\ gjJj g

α∈ , and 6
gδ  for +∈ αGg .  Define points as follows 

(i) ∑∑ −+ ∈∈
+=

αα

δ
Gg gjGg gj ee

)()(

0 , 

(ii) jgjgj ee +−=
)(0

1 δδ                            for each −∈ αGg  and { })(\ gjJj g

α∈ , 

(iii)
)(0

2

gjg e−= δδ                                        for each −∈ αGg , 

(iv) jgjgjgjgj eeee +−+−=
)()()(0

3

αα
δδ        for each −∈ αGg  and { })(\ 1+∈ α

α gjJj g
, 

(v) )()()(0

4

11 ++
+−+−=

αα
δδ gjgjjgjgj eeee    for each +∈ αGg    and α

gJj ∈ , 

(vi) jgjgj ee +−= )(0
5 δδ                               for each +∈ αGg  and { })(\ gjJj g

α∈ , 

(vii) )()()(0

6

11 ++
+−−=

αα
δδ gjgjgjg eee          for each +∈ αGg . 

Note that points (ii) and (iii) are feasible by condition (6.32); points (i), (iv) and 

(vi), by Lemma 6.10; and points (v) and (vii), by condition (6.31). 

To complete the proof we need to show that 
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and 

{ } { }

{ }
06

)(\

54

)(\

32

)(\'

10

1

=+++

+++

∑∑ ∑∑ ∑

∑ ∑∑∑ ∑

+++

−
+

−−

∈∈ ∈∈ ∈

∈ ∈∈∈ ∈

αα
α

α
α

α α
α

αα
α

λλλ

λλλλ

Gg gGg gjJj gjGg Jj gj

Gg gjJj gjGg gGg gjJj gj

gg

gg

 

requires that all 0λ , 1
gjλ , 2

gλ , 3
gjλ , 4

gjλ , 5
gjλ  and 6

gλ  values are zero. 

Since, for each −∈ αGg  and { })(\ gjJj g

α∈ , 1=jx  in only one point (i.e., 1
gjδ ); 



 117

for each −∈ αGg  and { })(\ 1+∈ α
α gjJj g

, 1=jx  in only one point (i.e., 3
gjδ ); for each  

+∈ αGg  and α
gJj ∈ , 1=jx  in only one point (i.e., 4

gjδ ); and for each +∈ αGg  and 

{ })(\ gjJj g

α∈ , 1=jx  in only one point (i.e., 5
gjδ ), it follows that all 1

gjλ , 3
gjλ , 4

gjλ  and 

5
gjλ  values are 0.  

Now, it is enough to consider only the remaining columns: 

0662200 =++ ∑∑ +− ∈∈ αα

δλδλδλ
Gg ggGg gg     and   0620 =++ ∑∑ +− ∈∈ αα

λλλ
Gg gGg g . 

Since, for each +∈ αGg , 0)( =gjx  in only one point (i.e., 6
gδ ), so that 06 =gλ . In 

the remaining columns (corresponding to points of form (i) and (iii)), since, for each 

−∈ αGg , 0
)(

=
gj

x  in only one point (i.e., 2
gδ ), the corresponding 02 =gλ . 

Since all 0λ , 1
gjλ , 2

gλ , 3
gjλ , 4

gjλ , 5
gjλ , and 6

gλ  values are 0, 00 =λ . Thus, under 

conditions (6.31) and (6.32), an α -cover inequality is a facet of )(conv X .            ■ 

Consider an α -cover inequality.  Intuitively, Proposition 6.14 says that, for each 

GUB Gg ∈ , if an Xx ∈  exists in which 0=jx  for gJj ∈  and if the corresponding α -

cover inequality is active at x , then the α -cover inequality is a facet of )(conv X .  

Furthermore, Corollary 6.15 states that, in order to establish that a given α -cover 

inequality is a facet, it is enough to check condition (6.31) only for the GUB +∈ αGg  

with the largest )(gja  value and (6.32) only for the GUB −∈ αGg  with the largest 
)( gj

a  

value. 

Corollary 6.15.  If  baaw gjgj ≥+−
+ )()'( 1α

⌣
                             (6.33) 
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and                           baw
gj

≥−
")(

,                                                                             (6.34)                    

where { }+∈∈ αGgag gj :maxarg' )(  and { }−∈∈ αGgag
gj

:maxarg"
)(

, then 

α -cover inequality (6.8) is a facet of  )(conv X . 

Proof.  By condition (6.33), for each +∈ αGg  such that )()'( gjgj aa ≥ ,  

)()()()'( 11 ++
+−≤+−≤

αα gjgjgjgj aawaawb
⌣⌣

. 

Since )'()( gjgj aa ≤  for each +∈ αGg ,  baaw gjgj ≥+−
+ )()'( 1α

⌣
  for each +∈ αGg .  Using a 

similar argument, for each −∈ αGg , it can be shown that baw
gj

≥−
)(

.  By Proposition 

6.14, an α -cover inequality is a facet of  )(conv X .                                   ■ 

Let +⊆ αGV1  and −⊆ αGV2  be the index subsets of GUBs that violate conditions 

(6.31) and (6.32), respectively.  Proposition 6.17 states that, if a given α -cover 

inequality is not a facet of )(conv X , it is a facet of )(conv))((conv XVX ⊂ , where               

21 VVV ∪= ,  

{ }



∈

∉
=

1

2

12

2
 if

 if
ˆ

VggV

VgV
V

αα

α

∪
 

{ }{ }.ˆfor  1,\for  1:)( 2)(1 VgxxgVgxXxVX
gjJj jJj j

gg

∈=+∈=∈= ∑∑ ∈∈ αα α . 

In )(VX , each GUB Vg ∈  is replaced with an equality constraint.  Moreover, 0=jx  

for 21

0 \)( MMVXj =∈ , where ∪ Vg gJM
∈

= α
1  and { }22

ˆ:)( VgM gj ∈= .  

Lemma 6.16. ( )( ) VVXJdVX −−== )()(convdim 0 . 

Proof.  This follows from Proposition 6.1.                                                       ■ 
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Proposition 6.17.   α -cover inequality (6.8) is a facet of ))((conv VX . 

Proof.  Not that α -cover inequality (6.8) is valid for ))((conv VX , because (6.8) is valid 

for )(conv X  and )(conv))((conv XVX ⊂ .  By identifying d  affinely independent 

points in )(VX  for which (6.8) is active, we prove that (6.8) is a facet of ))((conv VX . 

Consider the points defined in the proof of Proposition 6.14:  

(i)    0δ ; 1
gjδ  for 2\VGg

−∈ α , { })(\ gjJj g

α∈ ;  

        2
gδ  for 2\VGg

−∈ α ; 5
gjδ  for +∈ αGg , { })(\ gjJj g

α∈ ;  

(ii)   3
gjδ  for −∈ αGg , { })(\ 1+∈ α

α gjJj g
; 

(iii) 4
gjδ  for 1\ VGg

+∈ α , α
gJj ∈ ;  4

)( αα
δ

gjg
 if  1Vg ∈α ; and 6

gδ  for 1\ VGg
+∈ α . 

By Proposition 6.14, (i)-(iii) define  d  affinely independent points in )(VX .         ■ 

Note that Proposition 6.17 is important, because we use it in Section 6.6 to show 

that we can obtain facets from α -cover inequalities by a lifting procedure. 

 

6.6. Lifting procedure 

We now consider a lifting procedure that lifts a given α -cover inequality (6.8) 

that is not already a facet. Sherali and Lee (1995) show that, in order to obtain a facet of 

)(conv X  using a lifting procedure, all of the variables associated with each GUB must 

be lifted simultaneously. Therefore, our lifting procedure lifts sets of variables 

1J ,..., gJ ,…, ||GJ  sequentially and the variables associated with a GUB (i.e., gJ ) 

simultaneously.  We start by defining some notation related to a given α -cover, α
J .  



 120

For Gg ∈ , let  

{ }gjJj jg JjxXxx ∈=∈= ∑ ∈
 allfor  0,:min αη                    (6.35) 

and, for Jj ∈' , let 

{ }1,:min '}'{\' =∈= ∑ ∈ jjJj jj xXxxαγ .              (6.36) 

Corollary 6.18. 1' −= αγ j  for each α
Jj ∈' ; and  αγ =

)(gj
 for each 2V̂g ∈ .  

Proof.  This follows from Lemma 6.10. 

Proposition 6.19.  (i) For a given α -cover, α
J ,  

( ) ( )αηαγηα −+≥−+∑∑ ∈∈ gJj jjgJJj j
gg

xx ~~
\ ~~

     Gg ∈~      (6.37) 

is a family of  valid inequalities for )(conv X . 

            (ii) Moreover, (6.37) is a facet of ( ))(conv VX , where { }gVV ~\= . 

Proof. (i) Each jx  gJj ~∈  is either in 
α
gJ ~  or in 

α
gJ ~ .  We prove that (6.37) is valid under 

three cases: 1' =jx  for 
α
gJj ~'∈  ; 1' =jx  for 

α
gJj ~'∈ ; and 0=jx  for all gJj ~∈ . 

Case 1. For some 
α
gJj ~'∈ , let 1' =jx .  We know by Corollary 6.18, that 1−= αγ j  for 

α
Jj ∈ .  After fixing 1' =jx  and 1' −= αγ j  in (6.37),  we obtain  

1
}'{\

−≥∑ ∈
αα

jJj jx .              (6.38) 

Since an α -cover inequality is valid for )(conv X , (6.38) is valid for )(conv X . 

Case 2. For some 
α
gJj ~'∈ , let 1' =jx .   Then,  (6.37) becomes 

'\ ~ jJJj j
g

x γα ≥∑ ∈
, 

which is valid by (6.36). 
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Case 3. For all gJj ∈ , let 0=jx .  Then, (6.37) becomes 

gJJj j
g

x ~
\ ~

ηα ≥∑ ∈
, 

which is valid by (6.35). 

By Cases 1-3, (6.37) is valid for )(conv X .    

(ii) In order to prove that (6.37) is a facet of ( ))(conv VX , if { }αgVg \~
1∈ ( )2

ˆ~ Vg ∈ , we 

need to find 1~ ++ α
gJd ( )α

gJd ~+  affinely independent points for which (6.37) is active.  

We identify affinely independent points based on whether g~  violates condition (6.31) or 

(6.32); that is, if either 1
~ Vg ∈  or 2

~ Vg ∈ . 

Case 1. Let 1
~ Vg ∈ .  Consider the feasible points (i)-(iii) defined in Proposition 6.17.  

Points (i) and (iii) satisfy (6.37) at equality, since 1−α  variables from gJJ ~\α
 

and one variable from 
α
gJ ~  are fixed to 1 at each of them and 1−= αγ j  for 

α
gJj ~∈ .  If αgg ≠~ , (6.37) is active at points (ii), since )~( gjx  and 1−α  variables 

from gJJ ~\α
 are fixed to 1 at each of them and 1)~( −= αγ gj ; otherwise, (6.37) is 

active at (ii), since 
)~( gj

x  and α  variables from gJJ ~\α
 are fixed to 1 at each of 

them and αγ =
)~(gj

.   

In order to prove that (6.37) is a facet of ( ))(conv VX , we define 

additional points under two cases: 

Case 1.1. If αgg ≠~ , we need to define 1~ +α
gJ  more affinely independent points.   

Let            )(
)(

1

1 )()~(

07 ~

k

g

k gjk gjgj eee −+−= ∑
+

+=

η

α
δδ  
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                  and            )(
)(

1

1 )()~(

07

k

j

k gjk gjjgjj eeee −++−= ∑
+

+=

γ

α
δδ  for each 

α
gJj ~∈ . 

Cases 1.2. If αgg =~ , we need to define α
gJ ~  more affinely independent points; 

that is, 7δ  and 7
jδ  for each { })~(\~ gjJj g

α∈ .  

Points 7δ  and 7
jδ  for 

α
gJj ~∈  are feasible by (6.35) and (6.36).  Point 7δ  

satisfies (6.37) at equality, since g~η  variables from gJJ ~\α
 are fixed to 1.  Each 

7
jδ  satisfies (6.37) at equality, since jγ   variables from gJJ ~\α

 and jx  are fixed 

to 1. To show that these points are affinely independent, we need to show that 

                       
0

~

77771 =++∆ ∑ ∈ α δλδλ
gJj jj

 and 0
~

772 =++∆ ∑ ∈ α λλ
gJj j

, 

            where  

                                

{ }

{ }

{ }

{ } ∑∑ ∑

∑∑ ∑

∑ ∑∑

∑ ∑

++

+

−
+

−

−

∈∈ ∈

∈∈ ∈

∈ ∈∈

∈ ∈

++

++

++

+=∆

1)(

1
1

12

2

66

)(

55

4

)(

4

)(

44

)(

3322

)(

11001

VGg ggGg gjJj gjgj

gVg gjggjgVGg Jj gjgj

Gg gjJj gjgjVGg gg

VGg gjJj gjgj

g

g

g

g

\\

\

\\

\ \

       

       

       

αα
α

α ααα
α

α α
α

α

α
α

δλδλ

δλδλ

δλδλ

δλδλ

∩

 

      and 

                          

{ }

{ }

{ }

{ } ∑∑ ∑

∑∑ ∑

∑ ∑∑

∑ ∑

++

+

−
+

−

−

∈∈ ∈

∈∈ ∈

∈ ∈∈

∈ ∈

++

++

++

+=∆

1)(

1
1

12

2

6

)(

5

4

)(

4

)(

32

)(

102

VGg gGg gjJj gj

gVg gjgVGg Jj gj

Gg gjJj gjVGg g

VGg gjJj gj

g

g

g

g

\\

\

\\

\ \

       

       

       

αα
α

α αα
α

α α
α

α

α
α

λλ

λλ

λλ

λλ

∩

 

implies that associated multipliers 0λ , 1
gjλ , 2

gλ , 3
gjλ , 4

gjλ , 5
gjλ , 6

gλ , 7λ , and 7
jλ  

are zero. 

Since for each Jj ˆ∈ , 1=jx  in only one point (i.e., 7
jδ ), it follows that 
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all 07 =jλ . Since 0=jx  for all gJj ~∈  in only one point (i.e., 7δ ), 07 =λ .  

According to Proposition 6.17, multipliers corresponding to remaining columns; 

i.e., 0λ , 1
gjλ , 2

gλ , 4
gjλ , 5

gjλ , and  6
gλ , are zero.  Hence, if 1

~ Vg ∈ , (6.37) is a facet 

of ( ))(conv VX . 

Case 2. Let 2
~ Vg ∈ . Consider the feasible points (i)-(iii) defined in Proposition 6.17. 

Inequality (6.37) is active at points (i) and  3
gjδ  for { }g~\−∈ αGg , 

{ })(\ 1+∈ α
α gjJj g

, since 
)~( gj

x  and α  variables from gJJ ~\α
 are fixed to 1 at each 

of them and αγ =
)~(gj

. Inequality (6.37) is active at 
3
~jgδ  for { })(\ 1~ +∈ α

α gjJj g
, 

since one variable from jx  { })(\ 1~ +∈ α
α

gjJj g  and 1−α  variables from gJJ ~\α
 

are fixed to 1 at each of them and 1−= αγ j  for 
α
gJj ~∈ .  Inequality (6.37) is also 

active at points (iii), since 
)~( gj

x  and α  variables from gJJ ~\α
 are fixed to 1 at 

each of them if 1
~

+≠ αgg ; otherwise, )~( gjx  and 1−α  variables from gJJ ~\α
  are 

fixed to 1 at each of them.  In order to prove (6.37) is a facet, we need to define 

α
gJ ~  more affinely independent points. Let  gg ~~ˆ ηη =  if the order of g~  is greater-

than g~η ; otherwise, 1ˆ ~~ += gg ηη  and, for each α
gJj ∈ . Similarly, let jj γγ =ˆ  if 

the order of g~  is greater-than 'jγ ; otherwise, 1ˆ += jj γγ .  Let 

                         
∑ ≠+=

−+−= g

k kkggk gjgjgj eee
η

α
δδ

ˆ

~,1 )()()~(

08 )(  

                         ∑ ≠+=
−++−= j

k kkggk gjgjjgjj eeee
γ

α
δδ

ˆ

~,1 )()()~(

08 )(
 
 for each { })~(\~ gjJj g

α∈ . 
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These points are feasible by definitions of g~η  and jγ . Inequality (6.37) is active 

at 8δ , since g~η  variables from gJJ ~\α
 are fixed to 1. (6.37) is active at 8

jδ , 

since jx  and jγ  variables from gJJ ~\α
 are fixed to 1.  Using an argument 

similar to that used in Case 1, it can be shown that   

        { }
0

)~(\

88881

~
=++∆ ∑ ∈ gjJj jj

g
α δλδλ  and { }

0
)~(\

88882

~
=++∆ ∑ ∈ gjJj jj

g
α δλδλ  

implies that associated multipliers 0λ , 1
gjλ , 2

gλ , 3
gjλ , 4

gjλ , 5
gjλ , 6

gλ , 8λ , and 8
jλ  

are zero. Hence, if 2
~ Vg ∈ , (6.37) is a facet of ( ))(conv VX . 

Since (6.37) is a facet of ( ))(conv VX  in both Cases 1 and 2 (i.e., for 1
~ Vg ∈  and 2

~ Vg ∈ ), 

the proof is complete.                                       ■ 

Proposition 6.20.  Let { }v
ggVV ,...,1

21 =∪  be arbitrarily ordered, where |||| 21 VVv += . 

Let { } 21

1,...,)( VVggqV
q

∪⊆= , ∪ )(
)(

qVg gJqJ
∈

=  for vq ,...,1= , and ∅== )()( qJqV  

for 0=q .  For }1,...,0{ −∈ vq  suppose that  

0)()(\
ππα ≥+∑∑ ∈ qJj jjqJJ j xx  

is valid for )(conv X  and is a facet of ( )))(\(conv qVVX .  Consider step 1+q  and 

calculate 

{ }11 0,:min)(
)()1(\

++ ∈=∈+= ∑∑ ∈+∈
qq

gjqJj jjqJJj jg
JjxXxxxq πη α ; 

and, for each 1' +∈ qg
Jj , compute 

{ }1,:min)( ')()1(\' =∈+= ∑∑ ∈+∈ jqJj jjqJJj jj xXxxxq πγ α . 

Then, inequality 
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( ) ( )00)()1(\
)()()( 1

1
1 πηπγηπα −+≥−++ +

+
+∑∑∑ ∈∈+

qqqxx q
q

g

q
gJj jgqJj jjqJJ j       (6.39) 

is valid for )(conv X  and is a facet of ( )))1(\(conv +qVVX .       

Proposition 6.20 can be proven by induction from inequality (6.37) and using the 

argument in the proof of Proposition 6.19.  Proposition 6.20 shows that if a given α -

cover inequality is not a facet for )(conv X , we can obtain a facet from it via the lifting 

procedure. Using notation defined in Proposition 6.20, Proposition 6.21 states that, at 

step q  of the lifting procedure, it is enough to compute jγ  for α
q

g
Jj ∈  if 1Vg

q ∈  and jγ  

for { })(\ q

g
gjJj q

α∈  if 2V̂g
q ∈ . 

Proposition 6.21.  Let variables associated with GUB g  be the lifted at step 1+q  of the 

lifting procedure. At step 1+q  of the lifting procedure 1)1()( −−= qq qgj ηγ  for α
gJj ∈ .  

Moreover, )1()(
)(

−= qq qggj
ηγ  if 2V̂g ∈ .  

Proof. If 0=q , by Corollary 6.18, 1)( −= αγ qj  for α
gJj ∈  and αγ =)(

)(
q

gj
 if 2V̂g ∈ . 

Let q
g

ˆ  be the GUB lifted at each step of { }qQq ,...,1ˆ =∈ . As an induction hypothesis 

assume that, for each Qq ∈ˆ ,  

1)2ˆ()1ˆ( 1ˆ −−=− − qq qgj ηγ               for α
q

g
Jj ˆ∈                         (6.40) 

)2ˆ()1ˆ( 1ˆˆ
)(

−=− − qq qq ggj
ηγ                    if 2

ˆ
V̂g

q ∈ .                        (6.41)    

By the induction hypothesis, lifting coefficients in (6.39) are  

1)2ˆ()1ˆ( 1ˆˆ +−−−= − qq qq ggj ηηπ           for α
q

g
Jj ˆ∈  
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 and                            )2ˆ()1ˆ( 1ˆˆ −−−= − qq qq ggj ηηπ                if 2

ˆ
V̂g

q ∈ .   

We re-express )1( −qqg
η  in (6.39) as  

( ) ( ) ( ) ααηηηηηη +−++−−−+−−−=− −−− )0(...)3(()2(()2()1()1( 1211 gggggg
qqqqq qqqqq . 

Thus,                   1)()( )1(
21

Qqq
gQg gjQg gj +−−=+∑∑ ∈∈

αηππ , 

where             },...,{ ||1 Q

Q ggG = ,    QGGQ ∩
+= α1 ,    and    QGGQ ∩

−= α2 . 

We now show that (6.40) and (6.41) are also true for 1ˆ += qq .  We investigate g  under 

three cases: +∈ αGg , −∈ αGg , or αgg = .  Since (6.39) is valid for )(conv X , we know 

that 1)1()( −−≥ qq qgj ηγ  for each α
gJj ∈  and )1()(

)(
−≥ qq qggj

ηγ  if 2V̂g ∈ .   

Case 1: Consider +∈ αGg . Let }g{11 ∪QQ =+ . By Lemma 6.10, for each α
gJj ∈ , 

jgj ee +−= )(01 δδ  is feasible with respect to X .  In 1δ , 11 =jδ , 1)(1 =gjδ  for 

++∈ 1\ QGg α , 1)(1 =gjδ   for 1Qg ∈ , 1
)(1

=
gj

δ   for 2Qg ∈ ,  1
)(1

=
gj

δ  for 

2\ QGg −∈ α , and the remaining variables are zero.  Therefore,  

               
∑∑∑ ∈∈∈

++≤≤−− ++
211

)(1)()(1)(\ )(1)(1)1(
Qg gjgjQg gjgjQGg gjjg

qqq δπδπδγη
α

 

                                                  ( ) ( ) 1)1()1(1 11 −−=+−−+−−= qQqQ qq
gg

ηαηα  

Therefore, for each α
gJj ∈ , (6.40) is true if +∈ αGg . 

Case 2: Consider −∈ αGg . In Cases 1-2, we show that (6.40) and (6.41), respectively. 

Case 2.1: Let α
gJj ∈ . Define jgjgjgj eeee +−+−=

)()()(02 αα
δδ  in which 12 =jδ .  

By Lemma 6.10, 2δ  is feasible for X .  Using an argument similar to that 
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used in Case 1, 1)1()( −−≤ qq qgj ηγ  and (6.40) is true if −∈ αGg . 

Case 2.2: Consider )(gj . In 0δ , 1
)(0

=
gj

δ  and  

                    
∑∑∑ ∈∈∈

++≤≤− +
211

)(0)()(0)(\ )(0)()1(
Qg gjgjQg gjgjQGg gjjg

qqq δπδπδγη
α

 

                                   ( ) )1()1( 11 −=+−−+−= qQqQ qq gg
ηαηα . 

Hence, (6.41) is satisfied if −∈ αGg .  

Case 3: Let αgg = .  By Case 1, (6.40) is true if αgg = .  We now show that (6.41) is 

true for αgg = . Choose a 1ˆ =
j

x  such that α
gJj ˆ

ˆ ∈  and −∈ αGĝ  and define 

jgjgjgj eeee ˆ)ˆ()()(02 +−+−=
αα

δδ .  Using an argument similar to previous cases, 

(6.41) is satisfied if αgg = .                                                                                   ■ 

 

6.7. The separation problem 

In this section, we devise a separation heuristic SepH to generate an α -cover 

inequality (6.8) to separate a fractional optimal solution to a linear relaxation of ≥KPG , 

x , from )(conv X .  Note that we would like to determine an index set α
J  and a value of 

parameter α  for (6.8) that give an optimal solution to 















∑ ∈∈≤≤

−
α

αα α
αα Jj

jJ
x

J
minmin *1

,                   (6.42) 

where αJ  is the set of all possible α -covers.   

At each iteration SepH removes H  from J .  Then, it generates an α -cover 

inequality from H  (i.e., HJ \ ) using Cover( H ,α ) for { }∑ ∈
∈=

Hj j Xxx :minα .  If 
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0<−∑ ∈
ααJj jx  holds,  x  violates the α -cover inequality; so that, in order to generate 

a violated α -cover inequality, the total sum of fractional values jx  Hj ∈  should be 

minimized.  On the other hand, a non-trivial α -cover inequality can be generated if and 

only if  ba
H

HGg gj
<∑ ∈ )(

 (i.e., 1>α ).  This follows from the fact that even if we fix 

1
)(

=
gjH

a  for Hg ∈ , we should set 1=jx  for some Hj ∈  in order to get a feasible 

solution to X .  SepH uses theses facts along with the following ≤KPG , which is 

parameterized according to the value of bb < , to determine the set of variables 
b

H  that 

are removed from J .  

( ) { }{ }∑ ∑∑∑∈ ∈∈∈
∈∈≤<=

≤Jj

n

Jj jJj jjjRj j zGgzbzazxbF
gj

1,0,1,:max)(
' ' .  (6.43) 

Let { }n
z 1,0* ∈  denote an optimal solution to (6.43).  If 1* =jz , then Gg ∈  is 

chosen such that gJj ∈ . Then, all gJj ∈'  such that jj aa ≤'  (i.e., all  

{ }jjgj aaJjRj ≤∈=∈ ≤ ':' ) are removed from J . Thus, ∪ )( *1 zJj jb
RH

∈ ≤= .  

Remember that by Lemma 6.8, if αJj ∉ , then ∅=≤ jRJ ∩
α .  Each jR≤  removed from 

J  decreases the total sum of fractional values by ∑
≤∈ jRj jx

' ' .  Hence, for a given b , 
b

H  

gives a subset of variables with the maximum total sum of fractional values such that 

ba
b

H b
HGg gj <∑ ∈ )( .   

SepH requires (6.43) to be solved for each bb <≤0 . Therefore, we present a 

dynamic program to solve (6.43) iteratively for different values of b .  We assume that 



 129

variables associated with each GUB are listed in non-increasing order of their indices.  

{ }{ }),,(max)(
,...,1,

kbgFbF
gJkGg ∈∈

=                                   (6.44) 

0),,0( =kbF  for ,...2,1=k  

{ }
{ }














=<+−−−

<≤<+−−+

=≥−

<≤≥+

=

∑

∑

≥

≥

∈

∈

gkgRj' j'kg

gkgRj' j'kg

gkg

gkg

J   k b ax,ab,gF,,b,gF

Jk    b ax,ab,gF,k,bg,F

J   k ba,bgF

Jk  bak,bg,F

kbgF

kg

kg

andif)11()11(max

1andif)11()1(max

and if)1,1(

1and if)1(

),,(

)()(

)()(

)(

)(

)(

)(

 

where ),,( kbgF  is the objective function value in the case that the first g  GUBs have 

not been investigated so far,  the remaining knapsack size is b , and the th
k  variable 

associated with GUB g  is investigated; and )(kg  is the index of the th
k  variable 

associated with GUB g . In the case that ba kg <)(  and gJk <≤1 , we investigate )(kgx : 

it can be either 0)( =kgx  or 1)( =kgx .  If 0)( =kgx , then the thk )1( +  variable associated 

with GUB g is investigated; otherwise, the knapsack size is decreased by )(kga  and the  

first variable associated with GUB ( 1−g ) is investigated.  In the case that ba kg <)(  and 

gJ k = , similarly, it can be that either 0)( =kgx  or 1)( =kgx .  If 0)( =kgx , the first 

variable associated with GUB ( 1−g ) is investigated.  If 1)( =kgx , b  is decreased by 

)(kga  and the  first variable associated with GUB ( 1−g ) is investigated.  

We now describe separation heuristic, SepH. It begins by solving )(bF  with 

0=b  and then increases b  by 1 at each iteration, with the intent of identifying the most 
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violated α -cover inequality.  

Step 1. Initialize 0=b  and ∅=αH  for each *1 αα ≤≤ . 

Step 2. Compute (6.44) to identify 
b

H . 

Step 3. Calculate { }∑ ∈
∈=

b
Hj j Xxx :minα  and set 

b
HH =α .   

If bb < , increase b  by 1 and go to Step 2; otherwise, go to Step 4.  

Step 4. For each *1 αα ≤≤  such that ∅≠αH , 

execute Cover( αH , α )  and  calculate αξ α −=∑ ∈Jj jx ;  

if 0<ξ , record  α
J .   

Remark 6.2. Consider the case in which bb =  and let { }∑ ∈
∈=

bHj j Xxx :minα̂ .  A 

non-trivial α -cover inequality can be obtained from a subset JJ ⊆' , if 1)(' 1 >xJJ ∩  

holds for each Xx ∈ .  Therefore, the minimum possible value that ∑ ∈ 'Jj
jx  can take 

over all subsets JJ ⊆'  such that 1)(' 1 ≥xJJ ∩  is ∑ ∈ bHj jx . This implies that for each 

αα ˆ1 ≤≤  and for each αα J∈J , ∑∑ ∈∈
≤ αα Jj jJj j xxˆ . Suppose that, for αα ˆ1 ≤≤ , 

∑∑ ∈∈
> αα

Jj jJj j xx
b

.  By definition of bH , this means that ba
Gg gj

≥∑ ∈ α
)(

; 

contradicting that 1≥α .  Hence, α̂
J  and the α̂  value give an optimal solution to 

{ }∑ ∈∈≤≤
−αα α

αα Jj jJ
xαJ,ˆ1

min .                                                                                             ■ 

Proposition 6.22.  SepH is of complexity )|||)log(|||( 2* JJJbO α+ . 

Proof. Step 1 requires )( *αO . It is known that (6.44) can be solved in |)(| JO  time 
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(Step 2).  Since Step 2 is repeated b  times, Step 2 requires |)|( JbO  time. Finding α  

by Proposition 6.6 requires |))log(||(| GGO  time (Step 3).  Since Step 2 is repeated b  

times, Step 3 requires |)||)log(|||( JbGGbO +  time. By Proposition 6.9, executing 

Cover( αH , α ) requires )|(| 2JO time, and calculating ξ  takes |)(| JO  time (Step 4). 

Since Step 4 is repeated *α  times in the worst case, Step 4 takes )||( 2* JO α  time. 

Thus, the overall time complexity of SepH   is )|||)log(|||||( 2* JGGbJbO α++ , 

which reduces to )|||)log(|||( 2* JJJbO α+ .                                                                 ■ 

 

6.8. Computational evaluation 

In this section, we report our computational experience. We use CPLEX 11 and 

conduct our tests on a Dell PC (OptPlex GX620) with 3.20GZH Dual Core Processor, 

2GB RAM, and 160GB hard drive.  

The purpose of our tests is to evaluate the strength of inequalities (6.8), (6.30), 

and (6.39).  The first subsection describes our test instances and the second benchmarks 

the strength of cuts devised in this section with that of surrogate-knapsack cuts (S-K 

Cuts) devised in Glover et al. (1997). 

6.8.1. Test instances 

The set of test instances that we use consists of ten 0-1 integer programming 

instances taken from MIPLIB (Table 11). We select these particular instances because 

they constitute a standard test bed in the field of integer programming and because they 

were used previously by Glover et al. (1997) to benchmark the performance of S-K cuts 
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relative to the performance of LC cuts. Therefore, they enable us to easily benchmark 

our cuts with S-K and LC cuts. Columns 2-3 of Table 11 give the size of each instance in 

terms of the numbers of binary variables (BVs) and  knapsack constraints (KPs), 

respectively; and columns 4-5 give the optimal objective function values of the linear 

programming relaxation ( *
LPZ ) and the integer program ( *

IPZ ), respectively. Note that 

most of these instances do not have the MKPG form and GUBs are not necessarily 

disjoint.  In order to modify them to fit the MKPG form, we treat each variable that is 

not associated with any GUB as a member of a trivial GUB and, if a subset of GUBs is 

overlapping, we arbitrarily choose one to treat as a GUB and deal with others as 

knapsack constraints. Since the resulting test instances do not adhere to the MKPG form 

exactly, our cuts may not be as effective as they might be in application to the MKPG.    

 

Table 11. Description of the test instances used in evaluating α -cover inequalities. 
Instance BVs KPs *

LPZ  *

IPZ

bm23 27 20 20.6 34 

lseu 89 28 834.7 1120

mod008 319 6 290.9 307

p0033 33 16 2520.6 3089

p0201 201 134 6875.0 7615

p0282 282 242 176867.5 258411

p0291 291 253 1705.1 5223.7

p0548 548 177 315.3 8691

p2756 2756 756 2688.7 3124

sentoy 60 30 -7839.3 -7772

     

 

 

6.8.2. Benchmarking with S-K cuts 

 Glover et al. (1997) noted that the primary purpose of their computational 
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testing was not to attempt to outperform well-established branch-and-cut codes such as 

CPLEX, since these codes owe their performance to a variety of enhanced techniques 

other than cutting planes. Rather, their goal was to determine the strength of the S-K 

Cuts, independent of the use of other strategies such as preprocessing. Therefore, Glover 

et al. (1997) benchmarks the strength of S-K cuts at the root node with that of LC cuts. 

Like Glover et al. (1997), we only use our strategies; our aim is to determine the relative 

strengths of our cuts : α -cover inequalities (6.8), non-dominated α -cover inequalities 

(6.30), and lifted α -cover  inequalities (6.39).   

We implement the following α -cover process (α -CP) to generate α -cover 

inequalities (6.8), non-dominated α -cover inequalities (6.30), and lifted α -cover  

inequalities (6.39) as needed at the root node.  Each iteration of α -CP is as follows.  

Step 1. Solve the linear relaxation of the overall problem to obtain a solution x .   

If  x is integer, stop. Otherwise, go to Step 2. 

Step 2. For each knapsack constraint, execute Steps 2.1 - 2.2  

2.1. Invoke SepH to detect a violated α -cover inequality (i.e., (6.8)).  

2.2. If an α -cover inequality separates x : 

   Use (6.27) to check whether it is non-dominated; and, if it is not,  

use the procedure defined in  Section 6.4 to modify it to form  

a non-dominated α -cover inequality (i.e., (6.30));         

         Use (6.31) and (6.32) to check if the non-dominated α -cover inequality  

is a facet for the corresponding ≥KPG  polytope; if it is not,  

             modify it to be a facet (i.e., (6.39)) using Proposition 6.20.  
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        Add the cut generated to the formulation. 

Step 3. If no α -cover inequality is generated that separates x , stop.  

                   Otherwise, return to Step 1.   

Table 12 shows the number of each type of cut generated at the root node for 

each instance.  Table 13 gives the computational results at the last iteration of α -CP and 

for S-K and LC cut generation. In Table 13, columns 2-4 give results obtained by using 

α -CP cuts; columns 5-7 give results obtained by using S-K cuts; and columns 8-10 give 

results obtained by using classical LC cuts. For each type of cut (i.e., α -CP, S-K, and 

LC), Table 13 reports three measures of performance: optimal root node solution value 

( *

rootZ ); root node solution time (CPU); and the number of cuts (Cuts).  Note that results 

for S-K and LC are obtained from Glover et al. (1997). 

 

Table 12. Number of each cut in α -CP.  

Instance (6.8) (6.30) (6.39) 

bm23 11 0 0 

lseu 2 13 6 

mod008 8 11 3 

p0033 1 13 6 

p0201 6 0 0 

p0282 211 6 2 

p0291 64 0 0 

p0548 128 8 10 

p2756 154 4 2 

sentoy 43 0 0 

 
 

Table 13 illustrates that, within a reasonable computational time, α -CP cuts 

provide stronger lower bounds than either S-K or LC cuts.  In particular, α -CP cuts 



 135

appear to yield a significant, relative advantage for solving the more challenging 

instances such as p0548 and p2756. However, more α -CP cuts are added in each 

instance than either S-K or LC cuts.  Therefore, we analyze the number of α -CP cuts in 

more detail (Table 14).   

 

Table 13. Benchmarking with S-K and LC cuts. 

 α -CP cuts   S-K Cuts  LC Cuts 

Instance 
*

rootZ  CPU(sec) Cuts  *

rootZ  CPU(sec) Cuts  *

rootZ  CPU(sec) Cuts

bm23 22.7 0.08 11 22.7 0.1 9 22.5 0.1 1

lseu 1012.4 0.05 21 1001.2 0.3 14 999.5 0.2 13

mod008 293.3 0.06 22 291.7 0.6 5 291.3 0.2 5

p0033 2939.1 0.06 20 2902.6 0.1 15 2916.2 0.2 13

p0201 7125.0 0.03 6 7075.0 0.8 3 7075.0 0.9 2

p0282 253813.8 0.19 219 252356.0 2.5 89 180999.7 1.2 58

p0291 5055.8 0.09 64 5009.2 1.0 28 1873.8 1.3 25

p0548 7714.4 0.14 146 3883.7 8.1 158 4052.9 2.5 138

p2756 3114.3 0.69 160 2701.8 16.4 75 2701.7 10.5 68

sentoy -7824.8 2.56 43 -7837.7 0.2 5 -7832.5 0.3 5

 
 
 

Table 14. Solution values and the number of cuts at different iteration of α -CP.  
 Iteration 1  Iteration  2  Iteration 3 

Instance ZLP Cuts  ZLP Cuts  ZLP Cuts 

bm23 22.7 6 - - - - 

lseu 1007.6 9 1010.9 16 - - 

mod008 291.7 6 292.2 12 293.2 17 

p0033 2896.0 11 2932.8 14 2939.1 19 

p0201 7075.0 2 - -  - - 

p0282 213017.9 43 249384.3 73 252494.4 95 

p0291 4926.2 16 5020.5 29 5046.89 46 

p0548 5005.4 58 6853.4 117 7575.7 136 

p2756 2841.2 66 2953.0 113 3112.6 150 

sentoy -7834.78 3 -7828.7 25 -7826.39 31 
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Table 14 reports computational results after three different α -CP iterations. For  

each of these iterations, Table 14 gives the linear relaxation solution value (ZLP) obtained 

at Step 1 and the cummulative number of cuts generated through that iteration.  α -CP 

terminates before the second iteration selected on instaces bm23, lseu, and p0201, so we 

use “-” for the absent results.  Iteration 1 gives the results at the end of the first iteration 

of α -CP.  We choose Iterations 2 and 3 in such a way that allows us to compare the 

strengths of α -CP, S-K, and LC cuts. Table 14 shows that α -CP provides stronger 

bounds than either S-K or LC with fewer cuts.  In fact, the first iteration of α -CP yields 

a tighter bound for each of 7 of the 10 instances than S-K cuts ultimately provide; α -CP 

gives tighter bounds for instances p0033 and p0291 after the second iteration and for 

p0282 after the third iteration.  Similarly, the first iteration of α -CP yields a tighter 

bounds for each of  8 of the 10 instances than LC cuts ultimately provide; α -CP gives 

tighter bound for instances p0033 and sentoy after the second iteration.  Note also that 

Glover et al. (1997) reports that S-K cuts are stronger than LC cuts. 
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CHAPTER VII 

AN APPLICATION: HOUSTON SHIP CHANNEL
*
  

 

Using the HSC as a test bed, Chapter III specifies 16 test instances (Table 8). 

Using these instances, which are SSDP instances of real size and scope, this chapter 

compares the efficacy of B&C, which uses α - cover inequalities as cuts, and B&P-D 

approaches. This chapter also explores the sensitivity of the system and the cost to 

important parameters. Part of this chapter (Section 7.3) is reprinted with permission of 

the IEEE from “Branch-and-Price Decomposition to Design a Surveillance System for 

Port and Waterway Security” by W. E. Wilhelm and E. I. Gokce. 

The remainder of the chapter is organized as follows.  Section 7.1 compares a 

branch-and-cut scheme that uses inequalities (6.8), (6.30), and (6.39) as cuts with 

branch-and-cut settings of CPLEX 11 that use either classical lifted cover (LC) cuts or 

GUB cover cuts. Section 7.2 compares the cuts (i.e., (6.8), (6.30), and (6.39)) with B&P-

D. Section 7.3 presents the suggested surveillance system design for HSC. Finally, 

Section 7.4 conducts a sensitivity analysis.   

 

7.1. Using a B&C approach to solve SSDP 

We tested three different cut-generation strategies using instances described in 

Table 8. The first strategy (S1) involves detecting a violated α -cover inequality for each 

____________ 
*©2008 IEEE. Reprinted, with permission, from “Branch-and-price decomposition to design a 
surveillance system for port and waterway security” by W. E. Wilhelm and E. I. Gokce. IEEE 

Transactions on Automation Science and Engineering (in press). 
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≥KPG  substructure, and adding each of them without modification (i.e., without 

invoking the non-domination check or lifting). The second strategy (S2) detects a 

violated α -cover inequality for each ≥KPG  substructure and adds it after modifying it 

by lifting to be a facial inequality. The third strategy (S3) is the same as S2, except it 

adds only the most violated α -cover inequality after lifting it (if necessary) to be a facial 

inequality.  If no violated inequality is found, we branch on the most fractional variable.  

We also apply the best-bound node-selection strategy. Table 15 gives results for three 

runs using S1 (columns 2-4), S2 (columns 5-7), and S3 (columns 8-10).  For each 

strategy (i.e., S1, S2, and S3), Table 15 repeats three measures of performance: the 

number of B&B-nodes searched (Node); the total number of cuts added (Cuts); and the 

run time required to find the optimal integer solution (CPU). 

 

Table 15. Computational results for different cut generating strategies. 

 S1 S2  S3 

N Node Cuts CPU(sec)  Node Cuts CPU(sec)  Node Cuts CPU(sec) 

1 11 57 0.03  11 50 0.03  13 54 0.08 

2 45 225 0.13  29 119 0.08  21 78 0.16 

3 11 55 0.05  5 48 0.03  5 31 0.06 

4 33 181 0.20  15 98 0.08  15 64 0.13 

5 1 97 0.05  1 91 0.03  1 28 0.08 

6 3 152 0.06  3 147 0.05  5 49 0.16 

7 5 98 0.06  5 98 0.06  5 23 0.09 

8 13 242 0.16  5 166 0.06  3 53 0.20 

9 37 109 0.08  25 105 0.05  25 51 0.12 

10 21 105 0.06  21 103 0.05  21 58 0.12 

11 31 125 0.09  21 123 0.08  19 76 0.23 

12 11 139 0.08  11 131 0.06  15 86 0.20 

13 47 458 0.24  47 458 0.24  37 71 0.25 

14 35 271 0.19  31 244 0.17  61 84 0.39 

15 673 1147 3.84  425 731 3.47  176 468 2.23 

16 17 273 0.17  17 255 0.14  31 155 0.64 
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The run times for S1, S2, and S3 are negligible on all instances. Strategy S1 

requires 20% more B&B-nodes and adds 15% more cuts than those required by S2.  This 

illustrates that generating stronger inequalities (facets) helps to close the gap between 

*
LPZ   and *

IPZ  , especially for the instances N = 2, 4, 8, and 15. Also, note that on all 

instances, S2 takes less run time S1, so that lifting α -cover inequalities reduces run 

time. Strategy S3 requires about the same number of B&B-nodes as S2 (except for 

instance 15 in which it requires considerable fewer nodes), but 50% fewer cuts, showing 

the strength of the lifted α -cover inequalities (6.39).   

To benchmark S1, S2, and S3, we compare them with the B&B routine of 

CPLEX using only LC cuts, using only GUB covers, and using no cuts at all. In all runs, 

we have turned off the CPLEX pre-processing capability, so that the CPLEX results 

would be comparable with those of our procedures. Table 16 gives results. In Table 16, 

columns 2-4 give CPLEX results obtained by using LCs; columns 5-7 give results 

obtained by using GUB covers; and columns 8-9 give results obtained using CPLEX 

with no cuts. For LCs and GUB covers, Table 16 repeats three measures of performance: 

the number of B&B-nodes searched (Nodes); the number of cuts added (cuts); and the 

run time required to find the optimal integer solution (CPU). For CPLEX B&B, Table 16 

reports the number of B&B-nodes needed to reach optimality (or, the number of B&B-

nodes searched within 60,000 seconds, our time limit) and the run time required to find 

the optimal integer solution.  

Strategies S1 and S2 require less run time than LCs, except for one instance (N = 

15) and S3 requires approximately the same run time as LCs. LCs, S1, S2, and S3 are all 
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faster than GUB covers. On all instances, each of S1, S2, and S3 requires considerably 

fewer nodes than either LCs or GUB covers.  Both S1 and S2 generate more cuts than 

either LCs or GUB covers. This is expected, since both S1 and S2 add a violated α -

cover inequality for each ≥KPG  substructure. On the other hand, S3 requires 

considerably fewer cuts than LCs, except for two instances (N = 2, 15).  GUB covers add 

fewer cuts, but they are not stronger than the cuts generated by S3, since the number of 

B&B nodes searched is considerable more than for S3. Rather, the most likely reason for 

this is that CPLEX cannot find violated GUB cuts to tighten successfully. Note that 99% 

of the GUB covers are added at the root node and only a few are added after branching. 

 

Table 16. CPLEX  results for HSC instances – LC and GUB covers. 

 B&B-LC B&B – GUB Covers  B&B  B&P-D 

N Node Cuts CPU(sec)  Node Cuts CPU(sec)  Node CPU(sec)  Node CPU(sec) 

1 165 54 0.19  296 36 0.30  106,630 12.92 1 2.50
2 111 71 0.16  151 50 0.16  2,135,618 327.92 1 8.78
3 210 68 0.25  1141 40 0.95  232,269 36.42 1 14.17
4 650 140 0.70  1087 57 0.94  5,984,1137 14,039.23 5 2893.99
5 1 88 0.03  155 93 0.17  441,217 90.61 1 13.19
6 70 118 0.11  105 105 0.17  35,050,870 8,858.55 3 1882.54
7 15 72 0.05  128 88 0.16  1,880,246 523.00 1 64.16
8 45 98 0.11  158 128 0.22  137,266,419 60,000.02 1 2494.44
9 17 83 0.06  347 76 0.31  14,294,251 2,554.27 1 1.91
10 55 82 0.09  131 81 0.14  239,891,803 60,000.17 1 3.69
11 112 96 0.17  1657 96 1.61  205,864,226 60,000.33 3 13.97
12 615 145 0.80  4017 94 3.59  177,343,880 60,000.09 5 278.21
13 130 172 020  258 151 0.68  133,389,729 20,571.05 7 230.05
14 85 182 0.27  113 182 0.27  132,713,241 60,000.02 3 373.53
15 344 152 0.55  6930 171 7.72  135,053,281 60,000.00 3 2074.62
16 268 243 0.47  624 179 0.77  108,500,672 60,000.00 3 5151.07
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7.2. Comparison with B&P-D 

This section compares B&P-D with our B&C, which uses the inequalities 

derived in Chapter VI.  Columns 10-11 of Table 16 give the number of B&B nodes and 

the run time, respectively, required by B&P-D to find an integer optimal solution.   

On all instances, B&P-D requires significantly less number of nodes than B&C. 

B&P-D is able to solve 8 of these 16 instances at the root node and all of them within 7 

B&B nodes.  It is able to solve these 16 instances faster than CPLEX B&B.  However, 

when the number of clones increases, run time that B&P-D spent to solve RMP 

increases, putting it at a disadvantage.  Both LCs and GUB covers improve on its run 

times.  However, new strategy S2 is the fastest of the methods.   

 

7.3. Surveillance system design for the HSC 

This section presents the surveillance system design that our model suggests for 

the HSC.  In Section 3.2.4, we identify surveillance points under two different 

assumptions. Figure 12 displays the design for the first assumption, which assumes that 

any sensor that is capable of observing the point would also be able to observe the entire 

line and its vicinity.  Figure 13 displays the design for the second assumption, which 

requires that each surveillance point be observed by sensor(s) located on the same side 

of the channel.   

 

7.4. Sensitivity analysis 

In this section we evaluate the robustness of the optimal surveillance system  
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Figure 12. Optimal surveillance system designs for instance 8. 

 
 
 
 
Figure 13. Optimal surveillance system designs for instance 16. 

 
 
 
 
design to detection probability requirements (1-tes), maintenance cost, and land cost. In 

Section 3.2.6 (1-tes) values require detection probability of at least 0.95 (0.965 on 

average) at each surveillance point.  We change the detection probability requirement at 

each surveillance point by -2.0%, -1.5%, -1%, -0.5%, 0.5%, 1.0%, 1.5%, and 2.0%.  

Figures 14 and 15 display the results of this analysis for instances 8 and 16, respectively.  

In Figure 14 (Figure 15) columns 1-21 (1-32) represent sensor locations; columns 22 and 

23 (33 and 34) give the optimal number of locations and sensors prescribed.  Each row 

in Figures 14 and 15 denotes the solution (i.e., sensor combinations) prescribed for the 
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associated % change of detection probability requirement (1-tes). Note that Figure 15 

stops at a 0.8% increase of (1-tes), because instances associated with larger increases 

(i.e., as (1-tes) approaches 1.0) are infeasible. The implication is that, in practice, it 

becomes very costly to require (1-tes) values that are close to 1.0. 

Figures 14-15 show that the optimal system design is relatively insensitive to 

changes in (1-tes) until its value approaches to 1.0.  If (1- tes) is less than 0.99, changing 

(1- tes) values by 0.5% requires modifying sensor combinations at three or four sensor 

locations (i.e., 9% of sensor locations) on average.  However, in order to increase (1- tes) 

to a value close to 1.0, the system must use almost all sensor locations and upgrade 

sensor combinations at many locations.  

 
 
Figure 14. Sensitivity analysis for instance 8. 
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Figure 16 displays the percentage change in the optimal cost value for each 
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change of (1-tes) for instances 8 and 16.  For both instances, optimal cost values increase 

with the detection probability requirement, significantly as (1-tes) approaches 1.   

 
 
 Figure 15. Sensitivity analysis for instance 16. 
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Figure 16. Percentage of change in cost value at different tes values. 
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To evaluate the effect of annual maintenance cost on the optimal surveillance 

system design, we compare B&P-D-prescribed designs for annual maintenance costs that 

are 1%, 5%, 10%, and 20% of purchasing and installing costs.  The optimal design is the 

same for instances 8 and 16 under these four conditions, indicating that designs are not 

sensitive to maintenance cost.  

To evaluate the effect of land cost on the optimal surveillance system design, we 

change land cost by -10%, -5%, 0%, 5%, 10%, 15%, and 20%.  Again, the optimal 

design does not change for instances 8 and 16 under these seven conditions. 
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CHAPTER VIII 

CONCLUSIONS AND FUTURE RESEARCH 

 

This dissertation synthesizes a methodology to prescribe a surveillance system 

design (SSD) to provide the required level of surveillance for ports and waterways. It 

achieves its purpose in three related parts: formulation of the SSD problem (SSDP) for 

ports and waterways, branch-and-prince decomposition (B&P-D) and branch-and-cut 

(B&C) solution methodologies to solve large-scale SSDPs.  

 

8.1. Conclusion and future research on SSDP formulation  

In the first part of this dissertation, we formulate a linear integer programming 

model to prescribe a minimum cost surveillance system design for port and waterway 

security. Our model represents relevant practical considerations, including the irregular 

shapes of ports and waterways (e.g., long, narrow, and meandering paths); the line-of-

sight requirement between a sensor and a surveillance point; and the capabilities of each 

sensor type, which depend upon time of day, weather conditions, and distance to a 

surveillance point.  The form of this model is a multidimensional knapsack problem with 

generalized upper bound constraints (i.e., MKGP). Surveillance system obtained by 

solving this model generally requires multiple sensors to observe each surveillance 

point. In the operation of multiple sensors, we may encounter inconsistent sensor 

observations. Our future research will contribute by proposing a decision scheme to 

determine the right interpretations of sensor outputs when conflict arises. Another 
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question is the fault tolerance capability (FTC) of a surveillance system to measure its 

robustness to sensor failures and a methodology to determine the number of tolerable 

faults. Our future research includes defining FTC and modifying the current model to 

consider the possibility of sensor failures. It is important to note that sensitivity analysis 

shows that cost is relatively insensitive to changes in detection probability (unless the 

requirement approaches to 1.0), maintenance cost, and land cost.  In addition, depending 

upon the elevations and terrain features in other application areas, it may be of interest to 

study tower height as an additional experimental factor. Moreover, the proposed 

approach could be adapted/refined for related applications such as border patrol and 

underwater surveillance. 

 

8.2. Conclusion and future research on B&P-D  

The second part of this dissertation proposes a B&P-D solution procedure to 

solve the SSDP. We first present three B&P-Ds and study the theoretical relationships 

among the bounds that these formulations provide with the goal of identifying a B&P-D 

formulation that provides strong bounds for SSDP. These B&P-Ds have subproblems 

(SPs) that can be solved in pseudo-polynomial time. We compare the bounds that can be 

obtained from B&P-Ds and Lagrangian methods (i.e., Lagrangian relaxation (LR), 

Lagrangian decomposition (LD)).  B&P-D provides the same bound as LD, which is 

well known to provide tighter bounds than LR. However, Lagrangian approaches 

generally use procedures based on subgradient optimization to search for the optimal 

Lagrange multipliers. Since these approaches may not find the optimal multipliers - if 
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they exist - and usually stop with a “near optimal” solution, Lagrangian methods are not 

guaranteed to prescribe optimal solutions. B&P-D overcomes the possibility that optimal 

Lagrange multipliers may not be found, guaranteeing the best bound possible. Finally, 

we consider improving the lower bound by incorporating a surrogate constraint in master 

problem (MP). Our results show that incorporating a surrogate constraint in the 

corresponding MP does not tighten B&P-D bounds.  

With the goal of identifying an effective means of implementing B&P-D, we 

computationally evaluate 72 cases, each of which is a combination of a decomposition 

and an implementation technique. Computational tests provide considerable insight into 

the influence that each factor (B&P-D formulation, cost assignment, restricted MP 

(RMP) formulation and surrogate constraint) has on run time.  Our results show that 

subproblem types (i.e., knapsack problem (KP) or multiple-choice knapsack problem 

(MCKP)), cost assignment and RMP formulation have significant affect on run time. 

However, including either generalized upper bound constraints (GUBs) or a surrogate 

constraint in RMP has no affect on run time. Based on our analysis we define the default 

B&P-D implementation technique for solving the surveillance system design problem as 

follows: 

Level 3 of Factor 1: B&P-D3 = no GUBs in RMP + MCKP. 

Level 1 of Factor 2: uniform cost assignment with equality constraints. 

Level 3 of Factor 3: using equality constraint (4.22) only for clones with 0>ija ;            

                                 aggregated equality constraint (4.23) for clones with 0=ija .  

Level 1 of Factor 4: RMP without any surrogate constraint. 
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Furthermore, we describe three branching rules (branching on the most fractional 

variable (B1); GUBs (B2); and special ordered set (B3)) and two heuristics (construction 

heuristic (CH),  and  construction and improvement heuristic (CIH)) for generating an 

initial basic feasible solution at each node of B&B tree. Using default B&P-D 

formulation, we test alternative combinations of these branching rules and heuristics. 

Our results show that CIH heuristic in combination with branching rule B3 generally 

requires less run time than alternatives, and we define these implementation techniques 

in our default B&P-D.  

Computational tests fulfill our third objective by showing that the default B&P-D 

requires significantly less run time than CPLEX branch-and bound (B&B) and providing 

considerable insight into the influence that each parameter (i.e., experimental factor) has 

on run time. Tests also show that B&P-D provides very strong bounds; but significant 

amount of run time is spent for solving RMP. Motivated by these results, our future 

research on B&P-D will contribute by incorporating cutting planes to tighten RMPs, 

making them less challenging to solve.  Also, stabilization methods could be adapted in 

order to improve the convergence of the proposed B&P-D approach.   

 

8.3. Conclusion and future research on B&C  

The third part of this dissertation proposes a B&C procedure to solve the SSDP. 

We first devise a set of valid inequalities, called α -cover inequalities, for )conv(X  

along with a polynomial-time procedure to generate such an inequality. Then, we 

establish non-dominance relationships between α -cover inequalities and discuss a 
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procedure to obtain a non-dominated α -cover inequality. Later, we define the necessary 

and sufficient conditions for a non dominated α -cover inequality to define a facet of 

)conv(X . We develop a lifting procedure (6.39).  It lifts variables 1J ,..., ||GJ  sequentially 

and the variables associated with a GUB (i.e., gJ  Gg ∈ ) simultaneously.  Furthermore, 

we show that, if an α -cover inequality is not a facet of )conv(X , we can obtain a facet 

from it via (6.39). Finally, we present a separation heuristic SepH to generate a violated 

α -cover inequality to cut off a fractional solution to the linear relaxation of knapsack 

problem with GUBS ( ≥KPG ).  Computational tests shows that cuts generated by α -

cover procedure (α -CP) (i.e., α -cover, non-dominated α -cover, and lifted α -cover 

inequalities) provide tighter cuts than either surrogate knapsack (S-K) or lifted cover 

(LC) cuts and using α -CP to generate cuts for multidimensional ≥KPG  ( ≥MKPG )  

solves our integer test instances in less run time.  Tests also show that strong inequalities 

(i.e., facets) serve well to close the gap between *
LPZ  and *

IPZ . Future research could 

contribute, for example, by devising a sequence-independent lifting procedure for α -

cover inequalities or generalizing α -cover inequalities directly for the convex hull of 

the integer solutions that are feasible with respect to all knapsacks in ≥MKPG . Our 

research continues along these lines. 

We also compare B&P-D with our B&C, which uses the inequalities derived in 

Chapter VI.  Our results show that B&C strategy S2, which detects a violated α -cover 

inequality for each ≥KPG  substructure and adds it after modifying it by lifting to be a 

facial inequality, is the fastest of the methods.   
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