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ABSTRACT

Rate Transient Analysis in Shale Gas Reservoirs with Transient Linear Behavior.
(May 2009)
Rasheed Olusehun Bello, B.Sc., University of Lagos, Nigeria;
M.Sc., University of Saskatchewan, Canada

Chair of Advisory Committee: Dr. Robert Wattenbarger

Many hydraulically fractured shale gas horizontal wells in the Barnett shale have been
observed to exhibit transient linear behavior. This transient linear behavior is
characterized by a one-half slope on a log-log plot of rate against time. This transient
linear flow regime is believed to be caused by transient drainage of low permeability
matrix blocks into adjoining fractures. This transient flow regime is the only flow regime
available for analysis in many wells.

The hydraulically fractured shale gas reservoir system was described in this work
by a linear dual porosity model. This consisted of a bounded rectangular reservoir with
slab matrix blocks draining into adjoining fractures and subsequently to a horizontal well
in the centre. The horizontal well fully penetrates the rectangular reservoir. Convergence
skin is incorporated into the linear model to account for the presence of the horizontal
wellbore.

Five flow regions were identified with this model. Region 1 is due to transient
flow only in the fractures. Region 2 is bilinear flow and occurs when the matrix drainage

begins simultaneously with the transient flow in the fractures. Region 3 is the response
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for a homogeneous reservoir. Region 4 is dominated by transient matrix drainage and is
the transient flow regime of interest. Region 5 is the boundary dominated transient
response. New working equations were developed and presented for analysis of Regions
1 to 4. No equation was presented for Region 5 as it requires a combination of material
balance and productivity index equations beyond the scope of this work.

It is concluded that the transient linear region observed in field data occurs in
Region 4 — drainage of the matrix. A procedure is presented for analysis. The only
parameter that can be determined with available data is the matrix drainage area, A.,.

It was also demonstrated in this work that the effect of skin under constant rate
and constant bottomhole pressure conditions is not similar for a linear reservoir. The
constant rate case is the usual parallel lines with an offset but the constant bottomhole
pressure shows a gradual diminishing effect of skin. A new analytical equation was
presented to describe the constant bottomhole pressure effect of skin in a linear
reservoir.

It was also demonstrated that different shape factor formulations (Warren and
Root, Zimmerman and Kazemi) result in similar Region 4 transient linear response
provided that the appropriate f{s) modifications consistent with A4, calculations are
conducted. It was also demonstrated that different matrix geometry exhibit the same

Region 4 transient linear response when the area-volume ratios are similar.
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CHAPTER I

INTRODUCTION

Natural gas demand in the United States is expected to increase from 23 tcf/yr currently
to 30-34 tcf/yr by the year 2025." United States natural gas production is also expected to
increase from 19.5 tcf/yr in 2004 to more than 25 tcf/yr by the year 2020 in order to
satisfy this demand as shown in Fig. 1.1. Conventional gas sources (sandstone
reservoirs) will not be able to satisfy this demand and unconventional gas sources (tight
gas, shale gas and coalbed methane) are thus expected to be a major component of this
production (Fig. 1.1).

Unconventional reservoirs are defined as reservoirs that cannot be produced at
economic flowrates or that do not produce economic volumes of oil and gas without
assistance from massive stimulation treatments or special recovery processes, such as
steam injection.” Unconventional reservoirs are normally described as basin-centered
continuous accumulations. The hydrocarbons are distributed throughout a large area.
These accumulations do not have well-defined hydrocarbon-water contacts and are
usually abnormally pressured.3

Shales are fissile rocks composed of layers of fine-grained sediments. Shale

reservoirs are normally regarded as the source rocks for the petroleum system according

This dissertation follows the style of Society of Petroleum Engineers Journal.



Figure 1. Matural Gas Production, 1990-2020
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Decembear 19949), reference case.

Fig. 1.1 — United States Natural Gas Production, 1990-2020.*

to the organic theory. The hydrocarbon is generated in the source rock (shale) and
migrates to a reservoir rock (e.g. sandstone). However, the unconventional shale gas
reservoir which is the focus of this study are self-sourcing reservoirs. The shale acts as
both a source rock and reservoir.

A map of the major shale basins in the United States is shown in Fig. 1.2. The
Gas Technology Institute estimates that organic shale reservoirs in the United States
contain up to 780 tcf of gas. The Barnett Shale in the Fort Worth Basin is by far the most
active shale gas play in the United States. The reservoir ranges from 100 ft to more than

1000 ft in gross thickness and holds from 50 to 200 bcf of gas per square mile.
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Fig. 1.2 - Map of the Major United States Shale Basins.’

Shales can be classified” based on hydrocarbon (gas) generation mechanism as
thermogenic (organic matter is transformed into hydrocarbons under the influence of
temperature) or biogenic (water which contains microorganisms migrates into the rock
and transforms the organic matter).

Shales can be also be classified as:* (i) Shales having very fine sand and silt
laminae and beds; gas is thermogenic (similar to tight sand e.g. Ohio Shale, Lewis
shale); (i) Dark organic-rich shales having water-filled fractures and must be
depressurized (like coalbed reservoirs; gas reservoirs may be biogenic or thermogenic
e.g. Antrim shale); and (iii) Mixed — Shales that have characteristics of the above,

depending on location in basin e.g. New Albany Shale.



In general, shale gas reservoirs are characterized® by low production rates (20 to 500
Mscf per day), long production lives (up to 30 yrs), low decline rates (typically 2 to 3%
per yr), ability to be thick (up to 1,500 ft) and large gas reserves (5 bcf to 50 bef per
section). Shale gas reservoirs are also typically organically rich.

In shales, natural fractures provide permeability and the matrix provides storage
of most of the gas. They are thus also referred to as a Nelson Type II Fractured
Reservoir.” Shale matrix permeabilities can be as low as 10” md.” Matrix porosities
range from 1 to 6%.% The gas is stored either by compression (as free gas) or by
adsorption on the surfaces of the solid material (either organic matter or minerals).

The adsorption (desorption) behavior of shale gas reservoirs have typically been
modeled by the Langmuir isotherm.’ It has been shown®'? that in the Barnett shale, at
higher pressures (above 1000 psia), gas storage occurs as free gas in the matrix porosity.
Below 1000 psia, desorption is important and adsorbed gas may account for 50 to 60%
of total gas stored.

Shale gas reservoirs were traditionally ignored because of the low matrix
permeability and the costs thus associated with production. The Section 29 tax credit
(1980-2002) was one of the factors which revived interest in these reservoirs. It allowed
a credit of $3 per barrel of oil equivalent for production from unconventional sources. It
was amended in 2003 by the Energy Policy Act Section 1345."" Other factors were
technological improvements and include horizontal wells and hydraulic fracturing. The

use of water-based or nitrogen foam fracturing fluids along with proppants in hydraulic



fracturing have aided production from these reservoirs. In recent times, high oil and gas

prices have renewed interest in shale gas reservoir exploitation.

1.1 Problem Description

Horizontal wells producing gas in the Barnett shale are typically multi-stage
hydraulically fractured. Typical micro-seismic data used to monitor the hydraulic
fractures is shown in Fig. 1.3. The different hydraulic fracture stages are indicated by the
different clusters.

Shale gas production data from a sample well in the Barnett shale is plotted
against time on a log-log plot as shown in Fig. 1.4. A half-slope is obtained on the plot.
This indicates a transient linear regime analogous to Regime 4 described by Ozkan et
al.'? for dual porosity behavior in a radial reservoir. The transient linear behavior shown
in Fig. 1.4 occurs for a duration of almost two log cycles. The transient linear behavior
shown in Fig. 1.4 has been observed in several shale gas wells and is the only flow
regime available for analysis in numerous cases. The question thus arises of how to
conduct proper analysis of this flow regime and what parameters can be determined.

Wattenbarger'” identified different causes for transient linear flow including
hydraulic fracture draining a square geometry, high permeability layers draining adjacent
tight layers and early-time constant pressure drainage from different matrix geometry. A
possible cause for the transient linear regime identified in Fig. 1.4 is the drainage from
the matrix blocks into high permeability surrounding fractures (as demonstrated in

Appendix A). These high permeability fractures thus have negligible pressure drop and
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transient linear flow occurs. This description is consistent with the dual porosity concept
for shale gas reservoirs.

Mayerhofer et al* present a model for hydraulically fractured shale gas
reservoirs. Their model represents the hydraulic fracture as an interconnected network of
fractures. Their paper indicates that drainage does not occur far beyond the stimulated
region because of the low matrix permeability. This observation was also stated by
Carlson and Mercer."

In the current work, the hydraulically fractured horizontal shale gas well will be
modeled as a horizontal well draining a rectangular geometry containing a network of
fractures separated by matrix blocks (dual-porosity system) as suggested by Fig. 1.3. The
solutions presented by El-Banbi'® for a linear dual porosity model will be extended and
applied to this system. The effects of desorption and diffusion will be assumed
negligible in this paper since they will not be important at reservoir pressures of interest

in the Barnett shale as previously described.

1.2 Objectives
The objectives of this research are
® To develop mathematical models to analyze these multi-stage hydraulically
fractured horizontal wells
e To develop a rate transient analysis procedure for analyzing these wells to

enable the determination of reservoir characteristics, drainage



volume/original gas-in-place (OGIP), fracture network characteristics and

assessment of the effectiveness of different hydraulic fracture treatments.

1.3 Organization of This Dissertation
The study is divided into eight chapters. The outline and organization of this dissertation
are as follows:

Chapter I presents an overview of shale gas. The research problem is described
and the project objectives are presented.

Chapter II presents an extensive literature review. The dual porosity model and
its applications to liquids and gas are reviewed. Horizontal well applications are also
reviewed.

Chapter III describes the linear model to be used in this work. Validation of the
linear model is also presented.

Chapter IV presents new analysis equations developed using the linear model.

Chapter V discusses the transient linear regime in detail and discusses the effects
of shape factors and area-volume ratio.

Chapter VI describes the constant bottomhole pressure effect of skin in linear
reservoirs

Chapter VII presents development of new type curves with application to sample
field data.

Chapter VIII presents conclusions and recommendations.



CHAPTERII

LITERATURE REVIEW

2.1 Introduction

Initial studies of fractured reservoirs were concerned with applications to well test
analysis of reservoir flow of liquids (constant rate, pressure buildup and drawdown).
Subsequent research considered production data analysis (constant bottomhole pressure)
and extension of existing models to gas flow. Most of the literature is devoted to radial
reservoir models. In this chapter, review of literature will be conducted in three sections.
The first section discusses the dual porosity model and its application to flow of slightly
compressible fluids. The second section discusses the application of the dual porosity
model to gas flow. The final section discusses the application of the dual porosity model

to analysis of naturally fractured reservoirs with horizontal wells.

2.2 Dual Porosity Model (Slightly Compressible Fluids)

Naturally fractured reservoirs (tight gas, shale gas and coal gas) have been described by
the dual porosity model. The dual porosity model was first formulated by Barenblatt et
al.'” and later extended to well test analysis by Warren and Root.'® The Warren and Root
model forms the basis of modern day analysis of naturally fractured reservoirs. In the
Warren and Root model, the naturally fractured reservoir is modeled by uniform
homogeneous matrix blocks separated by fractures as shown in Fig. 2.1. The matrix

blocks provide storage of the fluid to be produced while the fractures provide the
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permeability. When a producing well is present, the fluid flows from the matrix to the
fractures and to the well. There have been two types of approach in applying the dual
porosity model based on how flow of the fluid from the matrix to the fractures is

modeled — pseudosteady state and transient.

Lol
|
I L
VUGS MATRIX FRACTURE MATRIX FRACTURES
ACTUAL RESERVOQIR MODEL RESERVOIR

Fig. 2.1 - Dual Porosity Model."®

2.2.1 Pseudosteadystate Matrix-Fracture Transfer Models
An equation for interporosity flow from the matrix to the fractures at a mathematical
point under pseudosteadystate (quasisteadystate or semisteadystate) conditions was

presented by Warren and Root."®
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q= G—’”(pm —pf)

Where q is the drainage rate per unit volume, o is the Warren and Root shape factor, p,,
is the matrix pressure at a mathematical point.

Two new parameters which are used to characterize naturally fractured reservoirs
were presented by Warren and Root'® - the interporosity flow parameter, A (a measure of
the flow capacity of the system) and the storativity, @ (a measure of the storage capacity
of the fractures). Warren and Root'® were the first to apply Laplace transformation to
obtain “f(s)” and solve for the dimensionless pressure distribution. A method of
analyzing pressure buildup data for the infinite radial reservoir case was presented.
Buildup plots were found to exhibit parallel lines on a semilog plot separated by an S-
shaped transition period. The first line represents flow in the fracture system only while
the second line represents flow in the total system (matrix and fractures).

Kazemi er al.” investigated the suitability of applying the Warren and Root
model to interpret interference results. They presented a model which extends the
Warren and Root model to interference testing. They applied the Laplace transformation
to obtain “f(s)” and solve for the dimensionless pressure distribution. They also
numerically solved the model equations by finite-difference methods and included
vertical pressure gradients. It was concluded that an equivalent homogeneous model was
not appropriate at early times but could be used at later times. It was also concluded that
the Warren and Root model yielded similar results as their numerical solution and was

thus appropriate for analyzing naturally fractured reservoirs.
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Odeh™ developed an infinite radial reservoir model for the behavior of naturally
fractured reservoir. The model incorporates some limiting assumptions. The Laplace
transformation is also utilized. Two parallel straight lines were not observed on a
semilog plot contrary to Warren and Root’s results. It was concluded that buildup and
drawdown plots of naturally fractured reservoir transient responses are similar to those
of homogeneous reservoirs.

Mavor and Cinco—Ley21 present solutions for the constant rate case in an infinite
radial reservoir with and without wellbore storage and skin; and a bounded radial
reservoir. Solutions are also presented for the first time for a constant pressure inner
boundary with skin in an infinite radial reservoir.

Da Prat et al.” extended the Warren and Root'® solutions to constant pressure
inner boundary conditions and bounded outer boundary cases for the radial reservoir.
They also present type curves for analysis. The results do not appear to represent
realistic field cases.

Bui et al® present type curves for transient pressure analysis of partially
penetrating wells in naturally fractured reservoirs by combining the Warren and Root

model with the solution for these wells in homogeneous reservoirs.

2.2.2 Transient Matrix-Fracture Transfer Models
Kazemi®* used a slab matrix model with horizontal fractures and unsteady state matrix-
fracture flow to represent single-phase flow in the fractured reservoir. The assumptions

include homogeneous behavior and isotropic matrix and fracture properties. The well is
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centrally located in a bounded radial reservoir. A numerical reservoir simulator was
used. It was concluded that the results were similar to the Warren and Root model when
applied to a drawdown test in which the boundaries have not been detected. Two parallel
straight lines were obtained on a semilog plot. The first straight line may be obscured by
wellbore storage effects and the second straight line may lead to overestimating @ when
boundary effects have been detected.

De Swaan® presented a model which approximates the matrix blocks by regular
solids (slab and spheres) and utilizes heat flow theory to describe the pressure
distribution. It was assumed that the pressure in the fractures around the matrix blocks is
variable and the source term is described through a convolution term. Approximate line-
source solutions for early and late time are presented. The late time solutions are similar
to those for early time except that modified hydraulic diffusivity terms dependent on
fracture and matrix properties are included. The results are two parallel lines
representing the early and late time approximations. The late time solution matches
Kazemi®* for the slab case. De Swaan’s model does not properly represent the transition
period.

Najurieta®® presented a transient model for analyzing pressure transient data
based on De Swaan’s> theory. Two types of fractured reservoir were studied- stratum
(slabs) and blocks (approximated by spheres). The model predicted results similar to
Kazemi.**

Serra er al.”’ present methods for analyzing pressure transient data. The slab

model used is similar to De Swaan> and Najurieta.”® The model considers unsteady state
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matrix fracture transfer and is for an infinite reservoir. Three flow regimes were
identified. Flow Regime 1 and 3 are the Warren and Root'® early and late time semilog
lines. A new flow Regime 2 was also identified with half the slope of the late time
semilog line.

Chen et al.”® present methods for analyzing drawdown and buildup data for a
constant rate producing well centrally located in a closed radial reservoir. The slab
model similar to De Swaan® and Kazemi®* is used. Five flow regimes are presented.
Flow regimes 1, 2 and 3 are associated with an infinite reservoir and are described in
Serra ef al.”’ Flow regime 1 occurs when there is a transient only in the fracture system.
Flow regime 2 occurs when the transient occurs in the matrix and fractures. Flow regime
3 is a combination of transient flow in the fractures and “pseudosteady state” in the
matrix. Pseudosteadystate in the matrix occurs when the no-flow boundary represented
by the symmetry center line in the matrix affects the response. Two new flow regimes
associated with a bounded reservoir are also presented. Flow regime 4 reflects unsteady
linear flow in the matrix system and pseudosteadystate in the fractures.. Flow Regime 5
occurs when the response is affected by all the boundaries (pseudosteady-state).

Streltsova® applied a “gradient model” (transient matrix-fracture transfer flow)
with slab-shaped matrix blocks to an infinite reservoir. The model predicted results
which differ from the Warren and Root model in early time but converge to similar
values in late time. The model also predicted a linear transitional response on a semi-log

plot between the early and late time pressure responses which has a slope equal to half
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that of the early and late time lines. This linear transitional response was also shown to
differ from the S-shaped inflection predicted by the Warren and Root model.

Cinco Ley and Samanieg030 utilize models similar to De Swaan® and Naljurietal26
and present solutions for slab and sphere matrix cases. They utilize new dimensionless
variables — dimensionless matrix hydraulic diffusivity, and dimensionless fracture area.
They describe three flow regimes observed on a semilog plot — fracture storage
dominated flow, “matrix transient linear” dominated flow and a matrix
pseudosteadystate flow. The “matrix transient linear” dominated flow period is observed

272 1t should be noted that the

as a line with one-half the slopes of the other two lines.
“matrix transient linear” period yields a straight line on a semilog plot indicating radial
flow and might be a misnomer. The fracture storage dominated flow is due to fluid
expansion in the fractures. The “matrix transient linear” period is due to fluid expansion
in the matrix. The matrix pseudosteadystate period occurs when the matrix is under
pseudosteadystate flow and the reservoir pressure is dominated by the total storativity of
the system (matrix + fractures). It was concluded that matrix geometry might be
identified with their methods provided the pressure data is smooth.

Lai et al.’' utilize a one-sixth of a cube matrix geometry transient model to
develop well test equations for finite and infinite cases including wellbore storage and
skin. Their model was verified with a numerical simulator employing the Multiple
Interacting Continua (MINC) method.

Ozkan er al."* present analysis of flow regimes associated with flow of a well at

constant pressure in a closed radial reservoir. The rectangular slab model similar to De
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Swaan® and Kazemi®® is used. Five flow regimes are presented. Flow regimes 1, 2 and 3
are described in Serra et al.”’ Two new regimes are presented- Flow regime 4 reflects
unsteady linear flow in the matrix system and occurs when the outer boundary influences
the well response and the matrix boundary has no influence. Flow Regime 5 occurs
when the response is affected by all the boundaries.

Houze et al.* present type curves for analysis of pressure transient response in
an infinite naturally fractured reservoir with an infinite conductivity vertical fracture.

Stewart and Ascharsobbi™ present an equation for interporosity skin which can
be introduced into the pseudosteadystate and transient models. The effect of
interporosity skin is to delay flow from the matrix to the fractures. This equation is given

by

where k,,; is the intrinsic matrix permeability, A, is the thickness of the interporosity skin
layer, h,, is the matrix block dimension and k; is the permeability of the interporosity
skin layer.

It should be noted that all the transient models previously described were
developed for the radial reservoir cases (infinite or bounded).

El-Banbi'® was the first to present transient dual porosity solutions for the linear
reservoir case. New solutions were presented for a naturally fractured reservoir using a
dual porosity, linear reservoir model. Solutions are presented for a combination of

different inner boundary (constant pressure, constant rate, with or without skin and
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wellbore storage) and outer boundary conditions (infinite, closed, constant pressure).

This model will be used in this work.

2.3 Dual Porosity Model (Gas)

Kucuk and Salwyer3 435

presented a model for transient matrix-fracture transfer for the gas
case. Previous work had been concerned mainly with modeling slightly compressible
(liquid) flow. They considered cylindrical and spherical matrix blocks cases. They also
incorporate the pseudopressure definitions for gases. Techniques for analyzing buildup
data are also presented for shale gas reservoirs. Their model results plotted on a
dimensionless basis matched Warren and Root" and Kazemi** for very large matrix
blocks at early time but differ at later times. They also conclude from their tests that
naturally fractured reservoirs do not always exhibit the Warren and Root behavior (two
parallel lines).

Carlson and Mercer" coupled Fick’s law for diffusion within the matrix and
desorption in their transient radial reservoir model for shale gas. Modifications include
use of the pressure-squared forms valid for gas at low pressures to linearize the
diffusivity equation. They provide a Laplace space equation for the gas cumulative
production from their model and use it to history match a sample well. They also show
that semi-infinite behavior (portions of the matrix remain at initial pressure and is
unaffected by production from the fractures) occurs in shale gas reservoirs regardless of

matrix geometry. They present an equation for predicting the end of this semi-infinite

behavior.
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Gatens ef al.*® analyzed production data from about 898 Devonian shale wells in
four areas. They present three methods of analyzing production data — type curves,
analytical model and empirical equations. The empirical equation correlates cumulative
production data at a certain time with cumulative production at other times. This avoids
the need to determine reservoir properties. Reasonable matches with actual data were
presented. The analytical model is used along with an automatic history matching
algorithm and a model selection procedure to determine statistically the best fit with
actual data.

Watson er al’’ present a procedure that involves selection of the most
appropriate production model from a list of models including the dual porosity model
using statistics. The analytical slab matrix model presented by Serra er al.”’ is utilized.
Reservoir parameters are estimated through a history matching procedure that involves
minimizing an objective function comparing measured and estimated cumulative
production. They incorporate the use of a normalized time in the analytical model to
account for changing gas properties with pressure. Reasonable history matches were
obtained with sample field cases but forecast was slightly underestimated.

Spivey and Semmelbeck®® present an iterative method for predicting production
from dewatered coal and fractured gas shale reservoirs. The model used is a well
producing at constant bottomhole pressure centered in a closed radial reservoir. A slab
matrix is incorporated into these solutions. These solutions are extended to the gas case
by using an adjusted time and adjusted pressure. Their method also uses a total

compressibility term accounting for desorption.
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2.4 Horizontal Wells in Naturally Fractured Reservoirs

There have been different traditional approaches to modeling horizontal wells in
homogeneous reservoirs. Horizontal wells are normally modeled as infinite conductivity
(pressure is uniform along the wellbore). It is not practical, as Gringarten et al¥
demonstrated with infinite conductivity fractures, to compute the wellbore pressure from
the infinite-conductivity model because of the computational work involved. Gringarten
et al.” suggested computing the pressure drop from the uniform flux model (flowrate is
the same for each individual segment along a wellbore) at a value of xp = 0.732. This
value was the point at which the uniform flux model yields the same results as the
infinite conductivity model. This computation has also been incorporated into horizontal
well models.***°

The mathematical problem to be solved for the anisotropic case is usually given

by

82p 82p 82p
k. 2 +ky ayz +k, 972 = Quc,

a

Several authors have used a model of a line source well in a semi-infinite**” or
infinite reservoir.****#3% Others*'***! have used a line source well in a closed
rectangular reservoir. The infinite model has no-flow boundaries at the top and bottom.

The semi-infinite reservoir model has three no-flow boundaries (top, bottom and left).

The closed reservoir model has all four no-flow boundaries.
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It should be noted that in these models, the well is usually not completely
penetrating but the models by Ozkan 414 and Odeh and Babu’! provide this possibility
once the appropriate well and reservoir dimensions are specified.

The differential equation and boundary conditions have been mostly solved by

the Newman product method and source functions.*”*

These concepts for the
homogeneous reservoir case have been extended to model horizontal wells in naturally
fractured reservoirs.

Ozkan*'™** presents Laplace space solutions for horizontal wells in a reservoir for
infinite and closed rectangular boundary cases in terms of f{s). The line source approach
previously described is utilized. As demonstrated by Ozkan, there is a possibility of
applying this to the naturally fractured reservoir by substituting the appropriate f{s) for a
selected matrix geometry.

Carvalho and Rosa™ present solutions for an infinite conductivity horizontal well
in a semi-infinite reservoir. The reservoir is homogeneous and isotropic. The horizontal
well is modeled as a line source. The solutions for the homogeneous case were then
extended to the dual porosity case by substituting s*f{(s) for s in Laplace space for the
pressure derivative (homogeneous). Wellbore storage and skin are incorporated into their
model using Laplace space.

Aguilera and Ng53 present analytical equations for pressure transient analysis.
Their model is a horizontal well in a semi-infinite, anisotropic, naturally fractured

reservoir. Transient and pseudosteadystate interporosity flow is considered. Six flow

periods are identified —First radial flow (at early times, from fractures), Transition
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period, Second radial flow in vertical plane, First linear flow, Pseudoradial flow and
Late linear - with expressions for determining skin provided.

Ng and Aguilera54 present analytical solutions using a line source and then
compute pressure drop on a point away from the well axis to account for the radius of
the actual well. A method for determining the numerical Laplace transform is presented.
This method was then used to compute the dual porosity response (pseudosteady state).
Their solutions were compared to other solutions.

Thompson et al.”

present an algorithm for computing horizontal well response in
a bounded dual porosity reservoir. Their model is a horizontal well in a closed
rectangular reservoir. Their procedure involves converting a known analytic solution to
Laplace space numerically point by point and then inverting using the Stehfest
algorithm.56 This is similar to the procedure presented by Ohaeri and Vo*® who use a
numerical Laplace space allgorithm57 but also present alternative equations determined
by parameter ranges which result in computational efficiency.

Du and Stewart’® describe situations which can yield linear flow behavior — a
multi-layered reservoir (one layer has a very high permeability relative to the other);
naturally fractured reservoir (flow from matrix into horizontal well intersecting
fractures); and areal anisotropy (vertical fractures aligned predominantly in one
direction). Their model is that of a horizontal well in a homogeneous, infinite acting
reservoir. Three flow regimes are identified — radial vertical flow, linear flow opposite

completed section and pseudoradial flow at late time. A bilinear flow behavior was also

identified.
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The model presented in this work has the advantage of being simpler than the
horizontal well models. The model will be presented in Chapter III. It also allows the
direct use of Laplace space techniques not easily seen with these horizontal well models.
Review of literature also shows that the transient linear flow regime has not been

investigated in the manner presented in this work.
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CHAPTER III

MATHEMATICAL MODEL

3.1 Introduction

A schematic of the model to be used in this work is shown in Fig. 3.1. A rectangular grid
is imposed on the microseismic results as shown in Fig. 3.1. The model is shown in
detail with representative cube matrix blocks in Fig. 3.2. The features of the model to be
used in this work are described below.

e A closed rectangular geometry reservoir containing a network of natural and
hydraulic fractures (as in Mayerhofer et al.'*). The fractures do not drain beyond
the boundaries of this rectangular geometry.

e The perforated length of the well , x, is the same as the width of the reservoir.

¢ Flow is towards the well at the centre of the rectangular geometry

e Itis adual porosity system consisting of matrix blocks and fractures

e The transient dual porosity solutions presented for a linear model by El-Banbi'®
are applied and extended to this system. Modifications will be made to this linear
model to include the convergence skin accounting for flow towards an actual
horizontal well.

The slab matrix model is more commonly used in the literature. This model will
be similarly adopted and is shown in Fig. 3.3. The mathematical details of this linear

dual porosity model (slab matrix) are given in Appendix B.
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Fig. 3.1 — Hydraulically Fractured Horizontal Well in Shale Gas Reservoir.
Rectangular grid superimposed on system to represent our model.
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Fig. 3.2 — Schematic of Cube Matrix Linear Model of Hydraulically Fractured
Well. Cross-sectional area at well face, A.,, =2x.h.
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Fig. 3.3 — Schematic of Slab Matrix Linear Model of Hydraulically Fractured Well.
Cross-sectional area at well face, A.,, =2x.h.
3.2 Matrix (Slab) Equations

The diffusivity equations for the matrix along with the initial and boundary conditions

are given by Egs. B-4 to B-6 in Appendix B.

azPDL 3 o
9 Ppim _ 2 (1_)%PDm s (3.1)
ah Ape ( )atDAc
12 k, . . .
where 4, = o A, 1is the Warren and Root interporosity flow parameter
f

Initial condition: p, (z,.0)=0

Inner boundary:
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Outer boundary: |p,,,,

=l Pors

The dimensionless time and pressure variables are given for the slightly compressible

fluid by
T B 2 e O (3.2)
(e, ) om Acw 141.2¢Bu

and for the gas case by

D00t kAl =i, ),
(1,) 1y A DL 14229 T

Ipac

ks 1s defined as the bulk fracture permeability of the dual porosity models.

3.3 Fracture Equations
The diffusivity equations for the fracture and the initial and boundary conditions are
given by Eq. B-12 in Appendix B. The second term on the right side of the equation

represents the source term from the matrix.

2
d Pory _ wapDLf B @ 9P pLm
5 Otpse 3 ‘ 9zp ‘ZD:

Initial condition: p,, (y,.0)=0

Inner boundary: oy =2 (constant rate)
ayD yp=0

Outer boundary: %oy [ V - J _o (no-flow boundary)
ayD Acw ' ‘
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3.4 Constant Pressure Inner Boundary Solution
The solution to the system presented in Eqgs. 3.1 and 3.3 in Laplace space is given by Eq.

B-23 in Appendix B

p = 2” 1+ei2 S/( )‘D oooooooooooooooooooooooooooooo
LT S5 (5) | 1= o2 Wi

Where yp, = e
De

In Laplace space, the constant p,,; case at the wellbore can be found from the solution for
the constant rate case given by Eq. 3.4 using the Van Everdingen and Hurst relation™

given by Eq 3.5

Eq. 3.5 thus becomes for the constant p,,r case

1= oA )i

1w [“‘32 “f(“')y”"] .............................. (3.6)

Eq. 3.6 can then be inverted to obtain the solutions as a function of time using suitable

Laplace numerical inversion algorithms such as Stehfest’s inversion algorithm.™

3.5 Convergence Skin
The convergence skin accounts for distortion of the flow from linear to radial around the

wellbore and is given by Lichtenberger® as

s, =—1n[”;W (H\/I’C‘I}m[”‘; j] .............................. 3.7)
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where d; is the distance to the nearest horizontal boundary and ky and kg are horizontal
and vertical permeabilities respectively.

The effect of including the convergence skin into the linear model is illustrated in
Fig. 3.4. This accounts for flow towards an actual horizontal well present in the center of

the rectangular reservoir distinct from flow towards a plane in the El-Banbi model.'®

X

<
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—
o _
—

<

Fig. 3.4 — Side View of Linear Model (Rectangular Reservoir) with and without
Convergence Skin. In the figure on the left, linear flow occurs towards a plane. In
the figure on the right, the inclusion of the convergence skin accounts for the
distortion of the flowlines from linear to radial around the horizontal wellbore.

Equations for the beginning of the stabilization of the convergence skin in linear flow

were derived in Appendix I, and are given by Egs. I-15 and I-20 for the constant rate and

constant p,,r cases respectively as

for = _h constant rate i (3.8)
‘ 87[l'w
P h constant p,r L 3.9
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3.6 Validation of Model

In this section, a set of runs will be performed to compare the linear model previously
described to Fekete (WellTest32 Module version 7.0.0.2), the numerical simulator
ECLIPSE version 2007.1. and Ozkan’s Laplace space solution*' for horizontal well in a
bounded rectangular reservoir. More extensive tests are described in Appendix E.

The problem is to determine the constant rate transient response of a fully
penetrating horizontal well in the center of a bounded rectangular reservoir as in Fig. 3.3.
The data for the problem set is given in Table 3.1. For simplicity, the reservoir will be
assumed to be homogeneous and the fluid slightly compressible.

Ozkan’s Laplace space solution (too lengthy to be reproduced here) is given by
Eq. 2.6.42 in his dissertation.”! This is inverted from Laplace space to yield the

41,42

dimensionless pressure, ppozxan- An equation for the pseudoskin factor given below is

added to ppozkan to yield the horizontal well response.

1 V.4 T
s=————In{4sin —(ZZW +r,, }Sin(_rwz j} .............................. (3.10)
2L, \Jk/k, { {2 o+ ) 2P

Ozkan’s dimensionless pressure and time variables are defined as

kh\p. — )
_ (p,—pwf) P £ 0.00633— K where L,, is the length of the

P pozkan 141.2¢Bu ’ DOzkan ouc, ( L /2)2

horizontal well.

The following is input into Ozkan’s model to adapt it to our test case.

Xep= 2, y.p = 1 (rectangular reservoir dimensions), Lp= 33.33, x,,p =1,y,,p = 0.5, 2,p=0.5

(location of well in rectangular reservoir). The response is computed at xp=0.732, yp =

0.5, zp=0.778. These dimensionless variables are those defined by Ozkan.*!



It is assumed above that k,=k,=k,

where , _2x [k = _2y iz _zgp Lk
T PR PR A T

vzD

Table 3.1 — Dataset for Model Validation Runs.

T 0.25 ft

h 30 ft

@ 0.1

k I md

pi 5,000 psi
Ly, (xe) 2,000 ft
Ye 500 ft

q 100 stb/d
B 1 rb/stb
y lcp

C; 3x10° psi'1

against the analytical solution given by Eq. 2.6.59 in his dissertation.*' It can be seen

r,

h

k.
k,

The results from programming Ozkan’s Laplace space solution is checked

30

from Fig. 3.5 that our results obtained from using Ozkan’s Laplace solution appears to

be comparable to the analytical solution.
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Fig. 3.5 - Verification of Ozkan’s Laplace Solution for Horizontal Well in a
Rectangular Reservoir. The half-slope linear and pseudoradial regions are shown.
The Laplace solution appears to be comparable to the analytical solution.

Our linear model (constant rate) solution is given by Eq. 3.4. with f{s) =1 for the

homogeneous case. The convergence skin is computed as 2.95 from Eq. 3.7.

7(0.25) 1] . (#(5)
s, = —ln[T (1 + Ij sm(Tj] =295

This convergence skin is then converted to linear variables using

VAcw =205 """ 120,000 =0.51

Seae =S T 2000

W

This value is added to the dimensionless pressure using Eq. 3.11

Pupt = PpL 2 eae (3.11)
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The 27 in the definition for skin was given by El-Banbi'® and will be adopted in the
current work.

The dimensionless linear model variables given in Eq. 3.2 is used to convert the
results to pressure and time.

The results from the runs are given in Fig. 3.6. It can be observed from Fig 3.6
that the linear model (with convergence skin) matches Fekete and ECLIPSE but differs
from Ozkan’s solutions. It is believed that the Ozkan solution differs because of his
equation for pseudoskin factor which might not properly account for the convergence
skin.

It can thus be concluded that our linear model with the inclusion of the
convergence skin is valid for the purposes of this work.

The beginning of the stabilization of the convergence skin can be computed for

this example from Eq. 3.8 as

h 30
= = —0.000597 (3.12)
one 8aL, 8(7)(2,000)

The time of intersection of the radial and linear flow periods is determined from the
derivative in Fig. 3.6 as 0.00314 days. This time yields a dimensionless time of

0.00633(1)(0.00314)

= =0.000552 e (3.13)
P27 (0.1)(1)(3x107 )120,000)

where A, =2(2,000)(30) = 120,000 f¢*
The dimensionless time computed in Eq. 3.13 is similar to that computed from Eq. 3.12.

It can thus be concluded that Eq. 3.8 is appropriate.
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Fig. 3.6 — Comparison of Linear model (homogeneous, zero skin, closed) with
Fekete, ECLIPSE and Ozkan Laplace solution. The convergence skin has been
added on to the linear model. The Linear model matches Fekete and ECLIPSE but

differs from Ozkan’s solution.
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CHAPTER IV

DEVELOPMENT OF ANALYSIS EQUATIONS

4.1 Introduction
The model used to represent the multi-stage hydraulically fractured shale gas well has
been described in Chapter III. It should be noted that the slab matrix geometry (shown in
Fig. 3.3) is used in this work since it is most commonly used in the literature.
Applications to the other matrix geometry types (two-dimensional: cylinder, columns;
three-dimensional: sphere, cubes) will be demonstrated in Chapter V. The linear dual
porosity model given in El-Banbi'® will be used as a basis for the work in this chapter.
The mathematical details of this linear dual porosity model are given in Appendix B.
From Eq. 3.6 and B-25, the Laplace space solution for the constant pressure inner

boundary, closed outer boundary reservoir (slab matrix) is given by

=2sf (s)yp.
1 _ 2 {He } ................................. 4.1)
4oL

J5r ()| 1= e 27 G

where dimensionless variables are defined as

L — k-/ m[m(p‘) _m(pw.‘/ )]’ Ype = Ye (42)

9dpL 1422qu V Acy

0.00633k 1

where s is the Laplace space variable and the inverse is ¢, :(¢)—A
IUCZ f+m*iew
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Additionally for the slab matrix case,

f(s)=a)+\/’;/*v(1_w)tanh\/3(l_w)s ................................. 4.3)
S ‘Ac
. . 12 k (¢e,)
The dual porosity parameters are givenby 1, =—-"A_, and o=——7+——
p yp g y A ? kf (¢Cr)f+(¢cr)m

A parametric study conducted with the linear model given by Eq. 4.1 is summarized in
Figs. 4.1 and 4.2. Figs. 4.1 and 4.2 show results for reservoir sizes yp, = 1 and 100 for

ranges of 60(10'3 and 10'7) and Ay, (10'3 ,107 and 10'7). The homogeneous case (@w=1) is

also added to the plot.
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| i | | | | | | | | | |
l | | | | | | | | | | |
1'E+007 7777777777 1 B ) [l B IS SR S R
| | | | | ——A=10"3 (w=10"-3)
1.E-01 ”"*i’.::;‘? LN ———A=10%5 (w = 10"-3)
8 A |
| |

! N \ » Homogeneous (w =1)
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Fig. 4.1 — Effect of @and A4 on Linear Model Response (yp, = 1). A4, =107, 107,107

for values of @ = 107 and 10”. There is no effect of won the late time transient
linear response for a fixed A4..
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It can be observed from Fig. 4.1 that the homogeneous response is above the dual
porosity response. It can also be observed that for w= 1073, all the responses for Ay =
10"3, 107 ,10'7 converge to the same initial half-slope (indicative of linear flow in the
fractures) at early times and different half slopes at later times. The half slope at later
times is indicative of linear flow in the matrix. As @ decreases to 107 (dotted lines), the
common initial half slope disappears and the responses show only the late time half
slopes. The late time responses for each of the A4 is similar for @= 107 and 107, Tt can
thus be concluded that there is no effect of @won the late time transient response for a
particular A4.. It can also be concluded that the initial half slope region preceding the

later time half slope region is only evident as A4, and @increases.
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Fig. 4.2 — Effect of wand A4 on Linear Model Response (yp, = 100). A4, =10, 107,

107 for values of @= 10" and 107 The parameters @ and A4 affect the transient
response significantly.
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The parameters in Fig. 4.2 are similar to Fig. 4.1 except that yp, has increased
from 1 to 100. Similar to Fig. 4.1, the homogeneous response is above the dual porosity
response. It can be observed from Fig. 4.2 that the w= 10~ cases also indicate the
common initial half-slope and then progressively indicate a quarter slope (bilinear flow
caused by simultaneous linear flow in the matrix and fractures). The /IAL:IO'5 , @ =103
and Ay = 10'7, ® =107 cases indicate a bilinear flow followed by linear flow (half-
slope). As @ decreases to 107 (dotted lines) , the early linear flow disappears and the
only transient responses are bilinear (Z,AC:IO'3 , @ :10'7) and bilinear followed by linear
(A4=10", @=10" and A,4=10", @=10").

It appears that relatively large A4 and @result only in the bilinear transient flow.
As A4 and @ decrease, bilinear followed by an increasing transient linear regime is
observed.

It can be concluded from Figs. 4.1 and 4.2 that relatively smaller yp, reservoirs
exhibit long periods of late-time transient linear flow only as shown in Fig. 4.1 and
bilinear flow occurs with large reservoirs.

There are thus five flow regions identified and equations are subsequently
presented for each region. All the equations are derived beginning with Eq. 4.1. The

details of the development are shown in Appendix C. The flow regimes are illustrated in

Fig. 4.3.
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Fig. 4.3 — Illustration of the Five Flow Regions. This is the same case as in Fig. 4.2
for (ype = 100). A4 =107, 10, 107 for values of =10,

4.2 Region 1

This represents early transient linear flow in the fracture system only. There is negligible
drainage from the matrix. This occurs at early times as shown in Fig 4.3. As shown in
Eq. C-11 in Appendix C-1, the equation is given by

1

S 4.4
oo 27[‘VmDAC /a) ( )

and the approximate valid range is given by Eq. C-17

2
yDea)

O<ip <222 4.5)
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Applying the dimensionless pressure and time definitions given in Eq. 4.2 to convert Eq.

4.4 to usual variables yields

Jer A 16 L (4.6)

« \' (0(¢,ucz )f+m r7l1

lm(p)—m(p,)]
dg

Where 7 is the slope obtained from a plot of against +/t

If Region 1 is observed, Eq. 4.6 may be used to determine the fracture permeability if

the other parameters are known.

4.3 Region 2
This represents bilinear flow caused by simultaneous transient flow in the fracture
system and matrix. It is indicated by a one-quarter slope on a log-log plot as shown in

Fig. 4.3. As shown in Eq. C-27 in Appendix C-2, the equation is given by

o= Mo, 4.7)
Pt 10.133 19

DAc

This region has been found occur only when y,, >./3/4,, . Otherwise it bends down to

Region 4 as shown in Fig. 4.3. This region is valid approximately when 1,,. <% or
Ac

4
when 1, <(y§fj % ................................. 4.8)

as shown in the derivations given in Appendix C ( Eq. C-36)
Applying the dimensionless pressure and time definitions given in Eq. 4.2 to

convert Eq. 4.7 to usual variables yields
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4064T 1
k Acw = PN 49
Vs lakm((/)ﬂct )f+mJ0.25 i, (4.9)

Im(p))—m(p,)]
dy

Where M, is the slope obtained from a plot of against %

If Region 2 is observed, Eq. 4.9 may be used to determine the fracture permeability and

the shape factor, o, if the other parameters are known.

4.4 Region 3

This represents the homogeneous reservoir case response (An equation for the complete
analytical homogeneous reservoir transient response is given in Appendix D). This is
also indicated by a one-half slope on a log-log plot as shown in Fig. 4.3. As shown in
Appendix C-3, the equation is given by Eq. C-44

L (4.10)

9pin = —
27[ mDAch

Where 1 =k\/Afw[m(p,~)—m(P.ﬁ | = 0.00633k and k is the homogeneous reservoir
o 14229,T " (gue A,

permeability.
This region has been found occur only when y,, >./30/4,, .

2

This region is valid approximately when ¢,,, < yge ................................. 4.11)

as shown in the derivations given in Appendix C ( Eq. C-50)
Applying the dimensionless pressure and time definitions given in Eq. 4.2 to

convert Eq. 4.10 to usual variables yields
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Jea = 12020 L, (4.12)

(¢tucz )f+m ny

Im(p))—m(p,p)]
dg

where 7713 is the slope obtained from a plot of against +/t

If Region 3 is observed, Eq. 4.12 may be used to determine the bulk reservoir

permeability if the other parameters are known.

4.5 Region 4

This represents the transient linear case when the transient response is primarily from
drainage of the matrix from the outer edges towards the matrix block centers. This is
also indicated by a one-half slope on a log-log plot as shown in Fig. 4.3. As shown in

Appendix C-4, the equation is given by Eq. C-61

Aac (4.13)

— y
27\ Mpse V3 >

qdpL =

and the approximate valid range is given by Eq. C-73

4
& yDe <t
3 (05 bac

1
< —_—
32‘AC
Applying the dimensionless pressure and time definitions given in Eq. 4.2 to convert Eq.

4.13 to usual variables along with Eqgs. 4.15 and 4.16 (for the slab matrix case) yields

Eq. 4.17
12 k
=R 4.1
ﬂ’Acw L2 kf Acw ( 5)
A =LA (4.16)

2y,
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lm(Pi) - m(ow )J
4

where 7, is the slope obtained from a plot of against 7 . It is also

assumed that (guc ) =~(guc,) ~If Region 4 is observed, Eq. 4.17 may be used to

fm m
determine the matrix drainage area, A, if the other parameters are known.

It should be noted that Eq. 4.13 can be written as

G ——— e, (4.18)
Zﬂ-VmDAcm
where 1 _ kA, [m(P[)-m(ow )] oy, _0.00633k,r 4nd kn, 1s the reservoir matrix
Dot 14224, T (guc,), A,
permeability.

Eq. 4.18 can easily be converted to Eq. 4.17.
This implies that Region 4 depends only on matrix properties k,, and A, and is not

affected by fracture flow properties.

4.6 Region 5

This represents the period when the reservoir boundary begins to influence the transient
response as shown in Fig. 4.3. The transient response in the matrix blocks have reached
their central inner no-flow symmetry lines. No equation is presented for this region in
this study. Unlike the slightly compressible fluid case (liquid), the use of pseudopressure
relations for gas to linearize and solve the diffusivity equation will only be accurate for
the transient regions (Regions 1 to 4). The boundary dominated Region 5 requires the

use of the following equations simultaneously.
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g, =Jcp lm(;)— m(ow )J

................................. (4.18)
where Jcp is the productivity index for the constant pressure case.

and

5 (5 G

P2 [ﬁJ {1-—"} ................................. (4.19)
Z z), G

Which is the material balance equation for a closed gas reservoir.

All the derived equations are summarized in Tables 4.1. A summary of the

equivalent equations for the constant rate inner boundary case is also presented in Table
4.2.
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Table 4.1 — Summary of Analysis Equations for the Constant p, Inner Boundary

Case (Slab Matrix).

Region

Equation

Analysis Equation

nlp)-mlp,) o

94

1 — Early linear (fracture)

1

dpL =~ —
o 277 pp. | @

Jir A = 12627 1
fHBew T 7~ ~
‘M)(QUC,).H_M m

2 — Bilinear A0 * a4 o 4070T 1
dp = S T— Few = l Jo.zs N
10.133 2% ok, (puc, ) ., 2
3 — Homogeneous 1 12627 1
g dpiy = — 77— \/EAL‘W = o
27[ ﬂIDAch (¢/uct) m3

4 — Matrix transient linear

dp, = ¥,/ A y
" 27[ V ml)Ac 3 o

or

5 — Boundary-dominated

* This case is the M vs 47 plot

95
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Table 4.2 — Summary of Analysis Equations for the Constant Rate Inner Boundary

Case (Slab Matrix).

Region

Equation

Analysis Equation

wlp)-nlp,)

9

1 — Early linear (fracture)

Pwpr =4 pac /@

803.2T 1

" Jlowe,),,

k f Az?w

2 — Bilinear

t0.25
3 DAc

Pwpr =9-12
22

* 3664T 1
kf Acw = l 25 ~
o-km (¢luct )f+’n mz

3 — Homogeneous

Pworn = 4\ pac

4 — Matrix transient linear

3 1
Pwor =4, | VA pac

ﬂ’Ac y De

Or

Pwprm = 4\/ 7 pacm

5 — Boundary-dominated

* This case is the M vs 47 plot

95
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The effect of yp. on Region 4 response is shown in Figs. 4.4 to 4.7. The slab matrix dual

porosity linear reservoir transient response is compared with the equations for Region 3

[4,, =———1 and Region 4 [y, :1\/7/4(-%’] in Figs. 4.4 and 4.5 to show the
2717 s, 2wy, V37
effect of small (yp, = 1) and relatively larger (yp, = 10° ) reservoirs. It can be observed
that for the small reservoir in Fig. 4.4, the slab matrix response matches the equation for
Region 4. For the larger reservoir in Fig. 4.5, the slab matrix response indicates a
bilinear region at early times and matches the equation for Region 3 at later times.

The slab matrix dual porosity transient response is shown in Figs. 4.6 and 4.7 for

several values of yp,. It can be observed from Fig. 4.6 and 4.7 that the transient response

for Region 4 curves downwards when y  <,3w/4, and is not evident when

Y De 2\/3//1& .

4.7 Summary

Five flow regions have been identified with the linear dual porosity model and derived
equations were presented for four of the regions. Analysis equations were also presented
for the region along with the criteria for existence of each of these regions. It has been
shown that the dimensionless reservoir size, yp. has an important effect on Region 4

transient response.
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Fig. 4.4 — Effect of Small Reservoir Size on Region 4 (yp, = 1, A4 =10'4, W= 10'5).
The half slope region on the slab matrix (dual porosity, constant p,s closed)

response matches the equation shown previously for Region 4.
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Fig. 4.5 — Effect of Large Reservoir Size on Region 4 (yp, = IOS,AAC =10 , D= 10'5).
The half slope region on the slab matrix (dual porosity, constant p,s closed)
response matches the equation shown previously for Region 3 (homogeneous) and
not that for Region 4 as shown in Fig. 4.4.
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Fig. 4.6 — Effect of yp, (Case A - slab matrix dual porosity, constant p,, closed).

The usual half slope (Region 4) initially curves down only when y  <./30/4, .
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Fig. 4.7 — Effect of yp. (Case B - slab matrix dual porosity, constant p,, closed).
There is no evident half slope (Region 4) when y,  >./3/1, but a bilinear region

(Region 2).



49

CHAPTER V

TRANSIENT LINEAR FLOW REGIME (REGION 4)

5.1 Introduction

The transient linear regime is the regime in which the response is dominated by matrix
drainage and was described as Region 4 in Chapter IV. Matrix block drainage of
different geometries have been shown in detail to exhibit the transient linear drainage in
Appendix A. This chapter deals with Region 4 in detail and summarizes the effects of
shape factors and area-volume ratios. A preliminary procedure is presented for analyzing

field data with zero skin and is illustrated with a synthetic case.

5.2 Effect of Shape Factors

The term shape factor as used in this work refers to the parameter first presented by
Warren and Root'® to describe matrix geometry and utilized in their pseudosteady-state
matrix-transfer equation. Several authors®® have investigated and shown their values
for these shape factors. The Warren and Root shape factors have been factored into the
commonly used transient dual porosity models (illustrated in Appendix B). It will be
shown that other shape factors can be factored into the transient dual porosity models
with consistent appropriate modifications. In this work, the shape factors given by

Warren and Root, Kazemi and Zimmerman will be used for comparison.
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As previously mentioned, the Warren and Root shape factor formulation for the
slab matrix geometry (/ 2/L?%) is inherent in f{s) as shown in Appendix B. The Kazemi
and Zimmerman relations for the shape factor can be similarly substituted into the
transient dual porosity model as was shown in Appendix B. This is summarized in Table

5.1.

Table 5.1 - Summary of f(s) Formulations for the Slab Matrix
Case.
Author Shape Factor f(s)
Warren and Root 2 Fis) = w0+ \/ A (1 — ) tanh \/3(1— w)s
LZ 3s ﬂ,
1
Kazemi i f&) =+ \/i (1- @) tanh \/7(1 - o)s
L2 N ﬂ,
1
Zimmerman 7[_2 Foy= oL 21— o) tanh | % (1- w)s
L2 V2 4 A
1

The generalized test run procedure is illustrated for the slab matrix, rectangular
geometry reservoir case with the Warren and Root shape factor case. It was previously
illustrated for the radial geometry case.’”” The dataset is given in Table 5.2.

a) Select a shape factor formulation (e.g. Warren and Root)

12

=48x107°
50)*

b) Compute a value for the shape factor (e.g. slab matrix) ¢ =

¢) Computeh :4, =o~ma  (s8x107) o) (8105 )=3.84x107*

k (100)




51

d) Ensure appropriate f{s) from Table 5.1 (in this case, Warren and Root) is
programmed in transient dual porosity model.

e) Run program with computed A4, and given @.

Table 5.2 — Shape Factor Example Calculation Dataset.
Xe 2000 ft
Ye 500 ft
h 200 ft
L 50 ft
k¢ 100 md
ki 10° md
) 107
Computed Values
YDe 0.559
o (slab case) 0.0012 ft?
Ase (slab case) 3.84x10™
Aew 8x10° ft°

The results from the runs are compared in Fig. 5.1. It can be observed from Fig.
5.1 that the different shape factor formulations — Warren and Root, Kazemi and
Zimmerman - result in the same transient linear response. It can thus be concluded that
any shape factor formulation can be utilized as long as the appropriate f{s) formulation is
used along with the consistent A4 equation and calculations. More importantly,
programs that have the Warren and Root formulation correctly programmed can be

utilized. This conclusion has also been verified for the cylinder and sphere geometries.
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1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

tDAc

Fig. 5.1 - Effect of Shape Factors on Transient Linear Response (slab matrix case;
®=107; W&R : A, =3.84x10"*; Kazemi : As, =1.28x10*; Zimmerman

: A4 =3.16x10"). The shape factors result in the same transient linear response
once the corresponding f{(s) changes are made consistent with the A4, definition.

5.3 Effect of Area-Volume Ratio
In this section, the transient dual porosity response of different matrix geometry (slab,
cylinder and sphere) will be compared. Two cases are presented.

Case 1 is one in which the different matrix geometry transient dual porosity
models are run with the same Ay, (3.84x10"4). The dataset is the same as in Table 5.2.
The Warren and Root shape factors were used for the three matrix geometries. Slab:
12/I?, Cylinder: 32/D°, Sphere : 60/D°. The results are presented in Figs. 5.2 and 5.3. It

can be observed that the transient linear responses are different for all the geometries.
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Case 2 is one in which the area-volume ratios for all the three matrix geometry
are made equivalent. The dataset is given in Table 5.3. The area-volume ratios are given

thus:

Slab (One-dimensional) %

Cylinder/Column (Two-dimensional) 4 or 4
D L,

Sphere/Cube (Three-dimensional) or

6 s
D L
It is noticed that the area-volume ratios for the two-dimensional case, 4/D and 4/L, will
be the same if the fracture spacings D and L, are equivalent. This observation also
applies to the three-dimensional cases if D and L; are equivalent. This allows the use of
transient dual porosity models with the cylinder and sphere as good approximations for
the two-dimensional and three-dimensional cases (since the transient dual porosity
models are actually developed and programmed with simpler cylinder and sphere
geometries instead of the more realistic column and cube geometries).

Dimensions for the slab, cylinder and sphere were selected as 50, 100 and 150 ft
respectively to ensure similar area/volume ratios of 0.04. The parameter, A is computed
for each geometry and then run in the transient dual porosity model. The results are

presented in Figs. 5.4 and 5.5. It can be observed that the initial transient linear

responses are similar for all the geometries before the effect of the boundary.



Table 5.3 — Case 2 Calculation Dataset.
Xe 2000 ft
Ve 500 ft
h 200 ft
L 50 ft
D, 100 ft
Dy 150 ft
k¢ 100 md
kom 10° md
) 107
Computed Values
YDe 0559
A 8x10° ft”
1.E+00
1.E-01 1
LE02 £ o -
1.E-03
1.E-04 !
| LE05 | r
ERETR :# ——SLAB
LE07 & - - N ARRTERN CYLINDER | ___ N\ ____
| —-—-SPHERE :
BEO8 - - m b -
1‘E»o9~~ffﬂiﬂf”””””””fﬂﬂi 77777777777777777 v - -
LE10 +------ P A \I:F -
1.E-11 : T T : T T
1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04

tDAc

1.E+05
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Fig. 5.2 - Log-log Plot of gp;, against #p4¢ - Effect of Matrix Geometry on Transient

Response Case 1. Similar A4, (a)=10'3; Adc =3.84x10'4). The three geometries result

in different transient linear responses.
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8,000 -

1/0pL

6,000 -

4,000 -

2,000 -

05
toac

Fig. 5.3 — Specialized Plot of 1/qp; against tp,.” - Effect of Matrix Geometry on
Transient Response Case 1. Similar A4, (@=10"; A4 =3.84x10™%). The three
geometries result in different transient linear responses.

1.E+00

1.E-01

1.E-02

1.E-03 4

1.E-04

1.E-05

dpL

1.E-06

1.E-07 4

1.E-08

1.E-09

1.E-10 4

LE-11 T T T t T T
1.E-02 1.E-01 LE+00 1.E+01 1.LE+02 1L.E+03 1L.E+04 L.LE+05

thac

Fig. 5.4 — Log-log Plot of gp;, against #p4. - Effect of Matrix Geometry on Transient
Response Case 2. Area-volume ratio is 0.04 for all geometries. (slab : A4, = 3.84x10
4. L=50 ft; cylinder: A4, = 2.56x10™, D =100 ft; sphere: A, = 2.13x10™, D=150 ft).
The three geometries result in similar initial transient linear responses.
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12,000

10,000 -

8,000

1/doL

6,000

4,000 +

2,000

Fig. 5.5 — Specialized Plot of 1/gp; against tDACM - Effect of Matrix Geometry on
Transient Response Case 2. Area-volume ratio is 0.04 for all geometries. (slab : A4,
= 3.84x10™; L=50 ft; cylinder: A, = 2.56x10™, D=100 ft; sphere: A, = 2.13x10*,
D=150 ft). The three geometries result in similar initial transient linear responses.

The results from these cases illustrate the importance of the area-volume ratio in
obtaining similar transient linear response from any matrix geometry. This significant
result ensures that we can develop a method for analysis of the transient linear regime
for geometry that incorporates the area-volume ratio.

It can be concluded that the matrix drainage area, A, has to be the same for all
matrix geometries in order to achieve the same transient linear response.

It can also be concluded that for the same reservoir, the fracture spacings for the
one, two and three-dimensional matrix geometries have to be in the ratio of 1:2:3 in
order to achieve the same transient linear response. These results and conclusions have

also been verified using the other shape factor formulations- Zimmerman and Kazemi.
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5.4 Data Analysis Procedure

Results from the previously described sections are combined to develop a preliminary

practical method of analyzing field data. The following procedure for determining the

fracture spacing is presented.

a)

b)

d)

€)

Obtain field production rate data.

Check for half slope on log-log plot of rate against time indicating the transient
linear flow regime. Also check for a straight line on a plot of [m(p;)-m(p.s)]/q,
against./r .

Determine ,/k, A, from

JoA, =220 L (5.1)

ﬂ(¢ﬂct)f+m my

If matrix permeability is known, determine A, from fk A,

If A. and y, are known (A, may be estimated from product of well length and net
thickness; y,is estimated from well spacing);

Assuming  one-dimensional slab matrix determine fracture spacing,

from p - 2y, A, (5.2)
A

cm

Assuming two-dimensional matrix geometry determine fracture spacing

cw

from 1, :%A ................................. (5.3)

cm

Assuming three-dimensional matrix geometry determine fracture spacing

from - Zye A (5.4)

cm
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5.5 Application of Procedure to Synthetic Case

In this section, the field analysis procedure is demonstrated with synthetic data generated
using the transient dual porosity model (rectangular geometry, slab matrix blocks)
analytical solutions. Data used for this illustration is given in Table 5.4. Calculated

parameters are also shown in Table 5.4.

5.5.1 Problem Formulation
Since we know the data in Table 5.4, we can calculate certain values for our synthetic
case.

The cross-sectional area is computed from A =2x & =2(2,000)(200) = 8x10° f*

The matrix drainage area is computed from Aw _2 (area-volume relation for the slab)
bm

and with v, =A vy A, = 2y, 4 _ 2(500)

i i 8x10%) =1.6x107 f+*
an = Ao 0 ( ) 1t

The interporosity flow parameter is computed as
-5
Ay = 13 " A, = 122 10 (8x10°) = 3.84*10™*
Lk (50)* | 100

The transient dual porosity model is then run with A4, = 3.84x10'4, ®=107 and
Ype=ye NAew = 0.559. The following equations for dimensionless pressure and time are

then used to convert to rate and time values used to plot Fig. 5.6.

1 :kf\/Acw[m(p,»)—m(pwf)] ‘ 0.00633kt .

> 'Dac
4dpL 1422’Qg T A (¢,UCt )f+m A('w




Table 5.4 — Synthetic Case Calculation

Dataset.

Xe 2000 ft

Ye 500 ft

h 200 ft

L 50 ft

Bm+p) 0.15

Ci 304.02x10° psi’

k¢ 100 md

K 10° md

Di 3000 psi

Dwf 500 psi

T 660 °R (200°F)

% 0.8

B, 0.00531 rcf/scf

7 0.0224 cp
Corresponding Values

YDe 0.559

m(p:) 5.902x10° psi*/cp

m(pwy) 2x10’ psiz/cp

o (slab case) 0.0012 ft?

Aac (slab case) 3.84x10™

) 107

Aom 1.6x107 ft*

Ao 8x10° ft’

59
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100,000

10,000

1,000

100 ~

Rate (Mscf/day)

,000 10,000
Time (days)

Fig. 5.6 — Log-log Plot of Rate against Time - Synthetic Case. Data was generated
using the transient dual porosity model (rectangular geometry, linear flow, slab
matrix).

5.5.2 Application

The data indicates a half-slope as shown in Fig. 5.6. The next step is to make a plot of

[m(pi)-m(pwy)]/q, against; as shown in Fig. 5.7 using the synthetic data generated in

Fig. 5.6. As previously stated, it will be assumed that (guc,) , ~(the total system - matrix

f+

and fractures) is approximately the same as (guc,) for the matrix only. The parameter

m

(@uc,), 1s also computed using properties at initial reservoir pressure of the gas equations.
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The slope, 7, is determined from Fig. 5.7 as 16,250 psiZ/Cprscf/day

And, (k, A, = 12627 — = 1262(660) =5.07x10"md " fi*
J(Wc, ) o4 J(o. 15)(0.0224)(304.02 #107%)(16,250)

If we can estimate the matrix permeability (k,=10" md for this synthetic case) then we

can calculate

_5.07x10"
107

A

cm

=1.6x10" f*

This computed A, value is the same as the expected value given in Section 5.5.1.
Assuming one-dimensional (slab) matrix geometry;

2y, 2(500)
Acw = 7
A 1.6x10

cm

The fracture spacing is determined from Eq. 5.2 as L= (8x10°) =50 f¢

This fracture spacing value is similar to the expected value given in Section 5.5.1.

The calculations for our synthetic case were done for our slab matrix block case
since this was used to generate the data. If we did not know that this was a slab matrix
geometry case and assumed that it was a two-dimensional (column) case, then we can

4
y*’A _4(500)

calculate the fracture spacing from Eq. 5.3 as L, = =
1.6x10’

(8x10°) =100 ft

If we assume that it was a three-dimensional (cube) matrix geometry, then we can
similarly calculate the fracture spacing from Eq. 5.4 as

6(500)

=—¢A =—"""_(8x10°)=1501t
A" (1.6x107)( ) °
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Fig. 5.7 — Specialized Plot of [m(p;)-m(p.;)]/q, against {*> - Synthetic Case. Data was
generated using the transient dual porosity model (rectangular geometry, linear
flow, slab matrix).

It has been shown that the matrix drainage area, A., and (effective) fracture
spacings (L;, Ly, and Lj3) can be calculated using our procedure, if &, can be estimated.
However, there is no way to determine whether the slab, column, or cube case actually
applies to a particular well. But it has been shown that the values of (L;, Ly, and L;3) are
in the ratios 1:2:3. In addition to production rate, these calculated values may be useful
in determining the effectiveness of the hydraulic fracture treatments. Smaller fracture
spacings result in higher gas rates and recovery factors as shown by Mayerhofer ez al.'*

These calculated values may be used to compare the effectiveness of the fractured

systems of different wells. It should be remembered that (s.,) should be calculated at

initial pressure for all equations, as is always done for the gas equations.
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It should be noted that the skin effect has been assumed to be zero in all that has been

presented in this chapter. The effect of skin will be discussed in detail in Chapter VI.

5.6 Summary

The transient linear flow regime (Region 4) was studied in detail. Different shape factor
formulations were shown to result in similar Region 4 response when appropriate f{s)
modifications consistent with A4 computations are made. A preliminary procedure for
analyzing field data was presented. This was illustrated with a synthetic case. The

parameter A, can be obtained with available limited data.
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CHAPTER VI
CONSTANT BOTTOMHOLE PRESSURE EFFECT OF SKIN IN

LINEAR GEOMETRY

6.1 Introduction
Skin is normally defined as a dimensionless pressure for the slightly compressible fluid

case given for the radial case by’

khAp
S T T A 6.1
141.2qBu
Where the skin is an additional dimensionless pressure
PuwbD T PD T S e (62)

s 18 the skin for the radial case and pp is the solution without skin
The Laplace space solution solution for an infinite homogeneous radial reservoir with

skin and zero wellbore storage (constant rate inner boundary) is given by

_ K5, s 5)
DD s\/zKl (\/;) ......................................

The corresponding Laplace space solution for the constant p,y inner boundary can be

obtained by the Van Everdingen and Hurst™ relation given by

1
Pom == (6.4)

S 4prw
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The solution is thus obtained from Eq. 6.4 as

U sl W) s, ok, Ws )
qpre V5K, (\/;) ......................................

The constant rate solution from Eq. 6.3 is inverted from Laplace space and plotted for s,,
=0 and s,,, =10 on a semilog plot in Fig. 6.1. It can be observed from Fig. 6.1 that the
two responses are parallel and there is a constant offset of 10 from the s,,, = O case.

The constant p,,r solution from Eq. 6.5 is inverted from Laplace space and plotted
for s,,, = 0 and s,,, =10 on a semilog plot in Fig. 6.2. It can be observed from Fig. 6.1 that
the two responses are parallel and there is a constant offset of 10 from the s,,, = 0 case.

Both the constant rate and constant p,y cases are plotted in Fig. 6.3. It can be
observed that the responses are similar for constant rate and constant p,. It can thus be
concluded that the effect of skin on constant rate and constant p,r for the radial reservoir
are similar. The constant rate p,; effect has also been confirmed with simulation as

shown in Appendix E.

6.2 Effect of Skin in Linear Reservoir
The Laplace space solution for an infinite homogeneous linear reservoir with skin and

zero wellbore storage (constant rate inner boundary) is given by16

2
P =1 hesoVs] (6.6)

where s4.;, s the skin and s is the Laplace space variable.

Eq. 6.6 will also govern the response of the closed linear reservoir at early times.
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20 1

Sw=10

1.E+05 1.E+07 1.E+09 1.E+11 1.E+13 1.E+15

1.E+01 1.E+03

Fig. 6.1- Effect of Skin on Radial Reservoir Model (Constant rate, homogeneous,
infinite) for s,, = 0 and 10. Semilog plot. The two responses are parallel and there is

a constant offset of 10 from the s,, =0 case.
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1.E+01 1.E+03 1.E+05 1.E+07 1.E+09 1.E+11 1.E+13 1.E+15
torw
Fig. 6.2 — Effect of Skin on Radial Reservoir Model (Constant p,;, homogeneous,
infinite) for s,, = 0 and 10. Semilog plot. The two responses are parallel and there

is a constant offset of 10 from the s,,, =0 case.
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30
25 | T
20 Constant Rate and Pressure (s, =10) _,_—/"/
z 7
a -
g e
= 15 T
g -
o -
o o
Constant Rate and Pressure (s ,, =0)
10 A
— Constant Rate: srw = 0
----- Constant Rate: srw = 10
5 —— Constant Pressure : srw =0
—-—-Constant Pressure : srw = 10
0 T T T T T T
1.E+01 1.E+03 1.E+05 1.E+07 1.E+09 1.E+11 1.E+13 1.E+15

torw

Fig. 6.3 — Effect of Skin on Radial Reservoir Model (Comparing constant rate and
Dwf» homogeneous, infinite) for s,, = 0 and 10. Semilog plot. It can be observed that
the responses are similar for constant rate and pressure.

It can be observed from Eq. 6.6 that

— 27 27,
= S0 pZTA (6.7)
DPwprn s P
Inverting from Laplace space
! pae
Pupiy = 272 |22 4 275 =AM F 2T, e (6.8)
p/4

_kyA, [n(p)—m(p,,)] S = 0.00633k7 and k is the homogeneous reservoir

Where »
WoL 1422,T (guc, A,

permeability.
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From Eq. 6.8, the first term on the right hand side is the curve through the origin and the
second term is the skin term. This is illustrated in Fig. 6.4 where the s, = 10 case is
parallel to the s4., = 0 case with a constant offset of 2754.,. The skin effect was defined

as 275, for the linear model by El-Banbi.'¢

1000

900 4

800 4

700 4

600 -

500 4

PoLh

400 4
300 4
200 4

100 4 -

0 20 40 60 80 100 120 140 160 180 200

05
toach

Fig. 6.4 — Effect of Skin on Linear Reservoir Model (Constant rate, homogeneous,
infinite) for s4., = 0 and 10. The two responses are parallel and there is a constant
offset of 27(10) from the s4.;, = 0 case.
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Fig. 6.5 — Effect of Skin on Linear Reservoir Model (Constant p,,;, homogeneous,
infinite) for s4., = 0 and 10. The s4., = 10 case is not parallel to the ss., = 0 case.
The difference between the two curves diminish with time.
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PoLn, 1/dbLn

----- Constant Rate: sAch = 10
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0 2‘0 4‘0 6;0 8‘0 1(;0 1é0 14‘10 1(;0 150 200

'DAchD.s
Fig. 6.6 — Effect of Skin on Linear Reservoir Model (Constant p,;, homogeneous,
infinite) for s4., = 0 and 10. The constant rate case is different from the constant
pressure case. Note that the constant rate case with s,, = 0 and 10 are parallel
whereas the constant p,,case with s,,,=10 converges to s,,=0 case at later times.
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The Laplace space solution for an infinite homogeneous linear reservoir with

skin and zero wellbore storage for the constant pressure inner boundary using Eq. 6.6 is

given by
L2 Il e, (6.9)
4 prn \/E

where s4.;, s the skin (homogeneous case) and s is the Laplace space variable.

Details of the derivation of the skin effect for the constant pressure case are provided in

Appendix F.
From Eq. 6.9
1

= . PN (6.10)
9pLn 27[\/;[14_ 5. \/;J
Solving by partial fractions , Eq. 6.10 can be expressed as

l — SAch 2

= + e (6.11)

Do =50 05 145, s

Inverting from Laplace space, from Eq. F-10,

__ L []erﬂ{@] ...................................... (6.12)

dpin = ) e

Ach sAch

Eq. 6.12 gives the transient response for an infinite homogeneous, constant
pressure inner boundary reservoir with a skin effect, s4., present. This is not the same as
the constant rate case as illustrated in Figs. 6.5 and 6.6. For the constant pressure case,
the skin effect diminishes with time. These results from the linear reservoir case are
different from previous observations for the radial case. Eq. 6.12 is confirmed by

comparing with the Laplace space inversion of Eq. 6.9 in Fig. 6.7.
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It can be observed from Eq. 6.12 that at small times as ¢,,,, =0

L, (6.13)
27

9pin =
Ach

It can also be observed from Eq. 6.12 that at large times as #,,, =,

Using the first term in the asymptotic expansion for erfc(x) for large x

2

erfe(x)= e;/x; ...................................... (6.14)
Eq. 6.12 becomes
L (6.15)

dprn =
2z N pach

These results explain observations in Fig. 6.6 where the constant pressure

response for ss., =10 ranges from the reciprocal of % at approximately zero time
VA

Ach

until it approaches the reciprocal of 1 at late times.
2” 7 DAch

The following empirical equation has also been found to fit the constant p,r

response shown in Fig. 6.5

25, e (6.16)
=27\, F————

9pLn 1+ 0.8y/1p4

SAch

. . o 4%..)
An expression for the square root of time derivative given by /\quLfor
dt

identification of the linear region is derived in Appendix G. The derivative is shown for

the sac, = 10 case in Fig. 6.8. This derivative is flat for the linear region.
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Fig. 6.7 — Validation of Analytical Solution (Linear model, homogeneous, constant
Dwy) for s, =10. The analytical solution is similar to the Laplace space solution.
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Fig. 6.8 — Rate and Linear Derivative (Linear model, homogeneous, constant p,)

for sscn =10. The transient linear region is flat on the derivative while the
convergence skin region gradually increases.
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6.3 Dual Porosity Reservoir

The solutions'® for the closed linear dual porosity reservoir (slab matrix) for the constant

rate and constant pressure inner boundary with a skin, ss. are given by Egs. 6.17 and

6.18 respectively.

S Plﬂmvsf(s))exp(-z WD)+ 1+ 51047 (S))} ..................... (6.17)
wpL stf(s) 1- exp(— ZJsf(s)yDe)

1 _ {(stf (ool 247 (e 1+ 50l (s))} ........................ (6.18)

dpL Jsf(s) 1—exp(— stf(S)YDe)

f(s)=w+ Aae (1-0) tanh 3= a)s for the slab matrix case.
3s /IAC /lAc

These equations are inverted from Laplace space for the constant rate and
constant p,, case as shown in Figs. 6.9 and 6.10. The constant rate case in Fig. 6.9

shows similar results to the homogeneous case — there are two parallel lines with an

offset of 2754,
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Fig. 6.9 — Effect of Skin on Linear Reservoir Model (Constant rate, Dual porosity,
slab matrix, infinite) for s4. = 0 and 10. Similar to the homogeneous case, the two

responses are parallel and there is a constant offset of 2(10) from the s4. =0 case.
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Fig. 6.10 — Effect of Skin on Linear Reservoir Model (Constant p,;, Dual porosity,
slab matrix, closed) for s,. = 0, 10 and 100. For the s4,. =100 case, the skin effect
diminishes with time as was observed with the homogeneous case.
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For the constant p,r case shown in Fig. 6.10 the skin effect diminishes with time
as was observed with the homogeneous case eventually approaching the linear transient
response. This is also shown in Fig. 6.11. It can be observed from Fig. 6.11 that as the
skin, s4., increases, the flatter initial response increases and the linear transient response

of the reservoir is delayed.
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tpac OF tppcm

Fig. 6.11 — Log-log plot: Effect of Skin on Linear Reservoir Model (Constant p,,
Dual porosity, slab matrix, closed) for s4. = 0, 10 and 100 (1. = 3.84* 10™, @ =107,
ype = 0.559). As skin increases, the flatter initial response increases and the linear
transient response of the reservoir is delayed.

An equation similar to Eq. 6.12 (for the homogeneous case) is derived in

Appendix G for the slab matrix dual porosity case. From Eq. G-22,

1 Aae 3| 3T 1on 3
qDngyDe,/%Z{e%) e,fc(?/_tm(,ﬂ .......................... (6.19)



76

Ape Ape
Where A= g‘ Ve +5 a0 %3)’&;

Eq. 6.19 is confirmed by comparison with the inverted Laplace space solution given in
Eq. 6.18 as shown in Figs. 6.12 and 6.13 for s4. = 10 and 100 respectively. It can be
observed from Fig. 6.12 that the analytical solution matches the Laplace space solutions
at very early and late times. The slight difference noticed on the graph might be as a
result of the assumptions made in the derivations of Eq. 6.19.

A better match with the Laplace space solutions is obtained for the s4. = 100 case
in Fig. 6.13. It can thus be concluded that Eq. 6.19 is appropriate for cases with

relatively higher skin, sx..

1.E+00

Analytical solution

= = = Linear model Laplace space solution

T
|
|
|
|
1EO01 - — — — — — — — — A -
|
|
|
L |
1.E-02 |
|
|
|
|
1.E-03 I
|
|
|
|
|

1.E-04 1

1.E-05 1

-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04

toac

Fig. 6.12 — Validation of Analytical Solution (Linear model, slab matrix, constant
Dy closed) for s4. =10 (4. = 3.84%10™, =107, ¥pe = 0.559). The analytical solution
matches the Laplace space solutions at very early and late times.
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And ytical solution

= = Linear model Lapace space solution

1E-02

1.E-03 1

9oL
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1.E-05

1.E-06 t T t T t t t t T
1.E-06 1.E05 1.E04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1E+03 1.E+ 04

tor

Fig. 6.13 — Validation of Analytical Solution (Linear model, slab matrix, constant
Dwp> closed) for ss. =100 (A4 = 3.84*10™, @ =107, ype = 0.559). The analytical
solution matches more closely with the Laplace space solution compared to the s4.
=10 case in Fig. 6.12.

An empirical equation analogous to that for the homogeneous case previously
described in Eq. 6.16 has also been found to fit the constant p, response for the dual

porosity reservoir (slab matrix) shown in Fig. 6.10.

...................................... 2
227[ mDAcm + zmACm (6 O)
QDLm 1+08 tDAcm
SAcm
where 1 _ kA, [m(p,-)—m(pw, )] St _0.00633k,r and kn, 1s the reservoir matrix
Dot 14224, T (guc,), A,

permeability.
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6.4 Summary

It has been shown that the effect of skin (constant p, case) on the transient response is
different for radial and linear reservoirs. The effect of skin on the linear reservoir
response diminishes gradually with time as demonstrated with s4. = 0 and s4. = 10 cases
in Fig. 6.5. The effect of skin for the radial reservoir is the usual constant offset between
parallel lines on a semilog plot. A new equation was presented to model the effect of
skin on the linear reservoir. The limiting forms of the equations for homogeneous and

the dual porosity (slab matrix) are compared in Table 6.1.



Table 6.1 — Comparison of the Limiting Forms of the Transient Linear

Response (Constant p,).

Period Homogeneous Dual Porosity (Slab Matrix)
(Region 3) (Region 4)
Zero Time 1 1 or 1 3
9pun = 7, 4oL 27, dpL =7 o+ 350
Or
1
CIDLm 2mAcm
Late Times 1

dpin =
270\ 70 pach

- 1 MAC y
DL — De
27\ pac V3

Or

_ 1

qDLm - [
272- mDACm
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CHAPTER VII

APPLICATION TO SAMPLE FIELD DATA CASES

7.1 Introduction

It is necessary to predict field data with a skin effect behavior. A synthetic case is
developed to represent field behavior using data given in Table 7.1. The linear model
(slab matrix, constant p,y, closed, linear) is used to generate the transient response in
dimensionless variables, gp;, and #ps.. The generated results are then converted to rate

and time using Eq. 7.1.

kA ) - mip, )] o = e, (7.1)
. 14224, T (Buc,) ;A

The results are then plotted as Figs. 7.1 and 7.2 for the s4 .= 0 and s4.= 10 cases.
The dimensionless time for the end of the convergence skin period is computed

as 8.06 x 10™ using Eq. 7.2 (previously shown as Eq. 3.8). This is equivalent to a time of

0.74 days.
e, (7.2)
Fouc 27°L

w

The results in Figs. 7.1 and 7.2 indicate that the half-slope transient linear period

(Region 4) dominates the response. Actual field data is thus expected to lie in Region 4.



Table 7.1 — Synthetic Case Dataset.

L, 2,000 ft

Ye 250 ft

h 100 ft

Ty 0.3 ft

Dm+p) 0.08

Cii 1.185x10™ psi”

k¢ 0.015 md

K 2.5x10” md

Di 4300 psi

DPwf 500 pSi

T 600 °R (140°F)

% 0.57

B, 0.6702 RB/Mscf

7 0.02308 cp
Corresponding Values

YDe 0.395

m(p:) 1.1x10” psi*/cp

mM(Pyy) 1.99x10" psi*/cp

Auc (slab case) 3.20x10™

w 10°

Acw 4x10° ft”

81
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Time (days)

Fig. 7.1 — Log-log Plot of Rate against Time (Synthetic Case :s4. = 0 and 10). Arrow
indicates that the convergence skin stabilizes after 0.74 days. Response is expected
to be primarily in Region 4.
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Fig. 7.2 — Specialized Plot of [m(p;)-m(p.s)]/q, against *? (Synthetic Case :s4. = 0

and 10). Arrow indicates that the convergence skin stabilizes after 0.74 days.

Response is expected to be primarily in Region 4.
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A preliminary procedure was presented in Chapter V for data analysis. This was
for the zero skin case. The only parameter that could be determined from the [m(pi)-
m(pwf)]/qq vs 2 plot was essentially the matrix drainage area, A.,,. But the techniques
previously presented also apply to the case where the data points are on a straight line
through the origin on the [m(pi)-m(pwf)]/qs Vs 2 plot. It is necessary to develop
techniques for the case where the data points indicate an “intercept” on the [m(pi)-
m(pwf)]/q, vs 2 plot as expected with the presence of skin (this was demonstrated on a
dimensionless plot basis in Chapter VI). In this chapter, a procedure incorporating the
effect of skin will be described and the procedures will be applied to two sample field

cases (Wells A and B).

7.2 Effect of Skin Plots

Fig. 7.3 shows a series of curves generated from the linear dual porosity model (slab

matrix (A4 = 10, @=107, 54, = 0, 1, 10, 100; yp, = 0.5, 1). This also shown as a square

root time plot in Fig. 7.4. It can be observed from Fig. 7.3 that the curves for a particular

ype indicate the expected initial flat portion and converge to the transient linear regime.
The plot in Fig. 7.5 clearly indicates that the Region 3 (homogeneous) equation

cannot be applied for transient linear analysis since there is no half slope evident in the

presence of skin.

The initial gp; value of the curves in Fig. 7.3 at time zero obeys Eq. 6.12

1

4oL Zm ...................................... (7.3)
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Fig. 7.3 — Log-log Plot of gp; against tps. for the Linear Dual Porosity Reservoir,
Slab Matrix Case (14, = 10*, =107, 54, = 0, 1, 10, 100; yp, = 0.5, 1). The curves
converge to the same initial point for a fixed ss.. The curves also converge to the
same Region 4 half-slope line for a fixed yp,.
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Fig. 7.4 — Specialized Plot of 1/gp; against fps. for the Linear Dual Porosity
Reservoir, Slab Matrix Case (L. = 10, ®=107, 54, =0, 1, 10, 100; yp, = 0.5, 1). The
curves converge to the same initial point for a fixed ss, and asymptotically
approach the s4. = 0 line at late times.
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Fig. 7.5 — Log-log Plot of gp; against #p,. for the Linear Dual Porosity Reservoir,
Slab Matrix Case (A4 = 10™, @=107, 54, = 1, 10, 100; yp, = 0.5, 1) — Fig. 7.3 - with
Homogeneous Case. This plot clearly indicates that the Region 3 (homogeneous)
cannot be applied to the transient linear analysis — there is no half slope evident in
the presence of skin.

The following empirical equation for the effect of skin on the dual porosity transient

response (Region 4) was previously presented as Eq. 6.20

...................................... 7.4
L = 27[ mDAcm + ﬁ ( )
QDLm 1+ 08 tDAcm
SAcm
where 1 _ kA, [m(P;)-m(PW/)] St ZM and k,, is the reservoir matrix
qDLm 1422qu (¢ﬂct )m Acm

permeability.



Eq. 7.4 can be expressed as

............................. (7.5)
kA Im(p) —mp )] [ 000633k,1 ™,
1422¢,T (puc,), A, 0.8 |0-00633k,¢
' A
o Vloke), A,
S sem

where [[m(l?)-m(l?/)]] is the intercept obtained from a plot of Mw\ﬁ
9, 0 qg

with _ koA, (o) =mp, O] Eq. 7.5 becomes
Pu =y q, .

koA, [[m(m—m(m, )]]

kAL Im(p) = m(p,)] o | 000633k, 14221 q,
142241 (uc,), A, 08 \/0.00633/{,,;
1

(guc,), A

+
1 kmm [ [m(pi) - m(pu_-f )]]
0

27 14227 q,

where [[m(l?)-m(l?/)]] is the intercept obtained from a plot of Mw\ﬁ
9, 0 qg

koA [[m(p,.) —m(pu,»)]}
kmm[m(p,»)—m(pwf)]_zﬂ 000633k, 14227 q, ,
14224,T (uc,), A, s \/M
(fuc,), A, 27z(1422T)
0

9,

1+

kA ([m(p,.) —m(p,, )]}
0

kA [m(p) —m(p,,)] g \/ﬂooow . 1422T q,
1422¢.T A .
B i ) A [[m(p)m(pf)]J JGue,) &, A, +0.8,0.00633)27(1422T Wr
0

g

9
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k,, r[[m(p) (P, )]] {[m(p) m(p,,)]

J(pue A,
kA Im(p) = m(p,)] P 0 00633k L, 14227 q, q, j RS
1422¢,T "
% (). Ao [[m(p)m(p)]] Juc), Jk, A, +0.8(0.00633)27(1422T W1

................................ (7.9)
Multiplying Eq. 7.9 by klm“j%
[m(pi)—m(p“f)] 12627+t [[m(l’ : qm(p /)]J Jlouc )k A
% A flgu), {[m(” )= mlpy )]] Jouc)), \Jk, A, +569T+
................................ (7.10)

The expression given by Eq. 7.10 represents an equation that can be used to fit data on a

plot of m(p,)=mlp, ) usy7- The term .k, A, can be determined from the equation
4

previously presented for Region 4 in Chapter IV.

Joan =20 L (7.11)
(¢/uct )f+m m4

m, 1s the slope of a line drawn through the origin passing through the linear half-slope
data points.

Eq. 7.10 can be reproduced on a log-log plot using Eq. 7.12.

Wp%mwnq

F 2 flue,), kA,

12627+t N [ 4 owr

Ve, A louc,), [[’"(1’)‘”1(1”/)]} Joue), i, A, + 56971
0

g

g, =lm(p) - m(p,)]
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The procedure previously given in Chapter V can be summarized and modified thus:

a)

b)

c)

d)

€)

Obtain field production rate data.

Check for half slope on log-log plot of rate against time indicating the transient
linear flow regime. Also check for a straight line on a plot of [m(p;)-m(p.s)]/qe
against .

Draw a line through the origin passing through the linear half-slope data points.

Determine the slope of this line and use as m, in Eq. 7.11 to determine \/k_ A

m*“em *®

If matrix permeability, k,, is known then calculate matrix drainage area A.,, from

VA,

Use Jk, A and the intercept {[m(P;)-m(ow)]} in Eq. 7.10 to fit the given field

m cm
4,

data

Reproduce the equivalent to the fit from step e) on the log-log plot using Eq.

7.12.

7.3 Application of Procedure to Field Data

In this section, the methods previously presented will be applied to actual field cases.

Two examples are presented (Wells A and B). The gas rate and flowing tubing pressure

data are shown for Wells A and B in Figs. 7.6 and 7.7 respectively. The reservoir and

fluid properties data are shown in Table 7.2. Other computed parameters are given in

Table 7.3. The length of the wells are shown in Table 7.4 A log-log plot of the rate
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against time and specialized plot of [m(p;)-m(p.s)]/q, against *? is shown for Well A in
Figs. 7.8 and 7.9. These plots are shown for Well B in Figs. 7.10 and 7.11. These plots
indicate the transient linear flow (half-slope on log-log plot). The log-log plot also
indicates the constant p,, effect of skin previously described. An initial curve
corresponding to the convergence skin effect is noticed at early times. The transient

linear is noticed at later times.
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Fig. 7.6 — Field Rate and Pressure Data for Well A.
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Fig. 7.7 — Field Rate and Pressure Data for Well B.

Table 7.2 - Reservoir and Fluid Properties Data for Wells A
and B Analysis.

h 140 ft

Ko 1.5x10™ md

Di 3000 psi

@ 0.034

T 175°F (635°R)

Y% 0.65

90



Table 7.3 - Other Fluid Data for Wells A and B

Analysis.
m(p;) 5.98x10° psi*/cp
By, 0.00535 rcf/sct
Coi 3.03x10™ psi”’
)7 0.0199 cp

91

Table 7.4 Completion Parameters of Horizontal Wells A and B.

Xe Acw (:erh)
A 3417 ft 9.57*10° ft°
B 3000 ft 8.4%10° ft*
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Fig. 7.8 — Log-log Plot of Rate against Time with Data Fit for Well A. Line drawn
on plot indicates half slope.
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Fig. 7.9 — Specialized Plot of [m(p;)-m(p.s)]/q; against "’ with Zero Skin Fit for
Well A. Line shown is drawn through origin and fitted to data. Data appear to
indicate an initial curve corresponding to the convergence skin effect and linear
transient at later times. This appears to match theory discussed in Chapter VI.
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Fig. 7.10 — Log-log Plot of Rate against Time with Data Fit for Well B. Line drawn
on plot indicates half slope.
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Fig. 7.11 - Specialized Plot of [m(p;)-m(p.y)]/q, against *? with Zero Skin Fit for
Well B Line shown is drawn through origin and fitted to data. Data appear to
indicate an initial curve corresponding to the convergence skin effect and linear
transient at later times. This appears to match theory discussed in Chapter VI.
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Fig. 7.12 - Specialized Plot of [m(p;)-m(p,;)]/q, against *? with Eq. 7.10 Fit for Well
A. Line shown is drawn through origin and fitted to data. Eq. 7.10 is also fitted to
data as shown. A better fit can be obtained by choosing a lower intercept.
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Fig. 7.13 — Log-log Plot Representation of Fig.7.12 Fit for Well A. Eq. 7.12 is also
fitted to data as shown.
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7.4 Discussion
A sample calculation for the matrix drainage area, A, using the techniques described in
Chapter V is described for Well A. The slope is determined from Fig. 7.9 and 7.12 as
35,874 respectively. It should be noted that the slope computed is that of a line drawn
through the origin as shown in Fig. 7.9 and 7.12. The intercept on the y-axis is
determined approximately as 116,875.

Eq. 7.10 is fitted to that data and shown in Fig 7.12. The plot from Fig. 7.12 is

reproduced on a log-log plot using Eq. 7.12 and shown in Fig. 7.13.
The parameter \/E A, can be calculated using Eq. 7.11.

\/» _ 1262T 1262(635)

= =4.93x10*md ** fi*
J@uc,) ., m, /(0.034)(0.0199)(3.03%107*)(36,040)

AndA—1

1
" Jk, \15x107

A 1s computed similarly for Well B as 7.54x10° 2. Well B has a larger A, value than

=4.03x10° ft*

Well A. This indicates that Well B has a larger matrix area contacted by the frac job.

Other information is required to determine the fracture spacing from A, as
demonstrated in Chapter V. Computed spacing for the slab matrix case can then be used
to determine the corresponding values for other column and cube matrix geometries as
described in Chapter V. The fracture spacings will be in the ratios 1:2:3 for the same
matrix drainage area, A,,.

In conclusion, a procedure has been presented for analyzing field data in which
transient linear flow has been observed. This procedure is dependent on the linear model

presented in this paper with its underlying assumptions and ability to reasonably
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determine fluid and reservoir properties. The well has also been assumed to be located in
the center of the reservoir.
It 1s concluded that field data obtain exhibit Region 4 only (drainage primarily

from the matrix). The only parameter than can be determined from available data is

kA

The effects of adsorption have been neglected for reasons mentioned in Chapter
I. As pressures approach 1000 psia in the Barnett shale, these effects will become more
prominent.

The effect of water production has also been neglected. These are areas of further

research.



97

CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The major conclusions of this work can be summarized as follows:

1.

A linear dual porosity model can be utilized to represent multi-fractured
horizontal wells in shale gas reservoirs.

It has been shown extensively that matrix drainage of any geometry at
constant pressure boundary conditions results in transient linear flow.

Five flow regions were identified using this linear model. Region 1 is the
early transient linear response in the fracture system. Region 2 is the bilinear
flow regime and occurs when there is a transient linear in the fracture and
matrix simultaneously. Region 3 is the response for a homogeneous reservoir
case. Region 4 is primarily drainage of the matrix (our regime of interest).
Region 5 occurs when all the boundaries start to influence the transient
response.

New analysis equations were presented for Regions 1 to 4.

The effect of skin on the response for the constant rate case is different from
that for the constant p,s case. The effect of skin shows up as parallel lines
with a constant offset for the constant rate case while it diminishes with time

for the constant p,,r case.
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6. A new analytical equation was presented to model the constant p,r effect of
skin in a linear reservoir.

7. Different shape factor formulations result in similar Region 4 response when
appropriate f{s) modifications consistent with 44, computations are made.

8. Different matrix geometry exhibit the same Region 4 response when the area-

volume ratios are made equivalent.

8.2 Recommendations for Future Work

The following recommendations are listed:
1. Investigation of the effect of water production on the results.
2. Investigation of the effects of adsorption and desorption

3. Investigation of the effects of anisotropy and varying well location.



NOMENCLATURE

A = total matrix surface area draining into fracture system, ft?
A, = well-face cross-sectional area to flow, ft>

B = liquid formation volume factor, rB/STB

B,; = formation volume factor at initial reservoir pressure, rcf/sct
c;= liquid total compressibility, psi'1

¢ = total compressibility at initial reservoir pressure, psi'1

d, = well position in reservoir , dimensionless

D = diameter, fracture spacing, ft

f(s) = relation used in Laplace space to distinguish matrix geometry types
h = reservoir thickness, ft

1,(x) = modified Bessel function of first kind, zero order

I;(x) = modified Bessel function of first kind, first order

Jo(x) = Bessel function of first kind, zero order

k = homogeneous reservoir permeability, md

ks = bulk fracture permeability of dual porosity models, md

k,, = matrix permeability, md

ky = vertical permeability, md

ky = horizontal permeability, md

[ =half of fracture spacing, ft

¢~" = Inverse Laplace space operator

L = general fracture spacing, ft
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L,, = horizontal well length, ft

L; = fracture spacing (one-dimensional, slab), ft

L, = fracture spacing (two-dimensional, column), ft
L3 = fracture spacing (three-dimensional, cube), ft

mp, = dimensionless pressure (rectangular geometry, gas)

m = slope of regions 1 to 5 defined in Chapter IV

m(p) = pseudopressure (gas), psi2/cp

pi = initial reservoir pressure, psi

pwr = wellbore flowing pressure, psi

ppr = dimensionless pressure based on ACW0'5 and kr (rectangular geometry, liquid,
dual porosity)

Pprw = dimensionless pressure based on radial definition (formation thickness, h)

ppu = dimensionless pressure based on horizontal well length, L,

ppm = dimensionless pressure in the matrix

ppr = dimensionless pressure in the fracture

pr = fracture pressure, psi

pi = initial pressure, psi

pwpr = dimensionless pressure based on ACWO'5 and ks (rectangular geometry, liquid,
dual porosity)

pwprr = dimensionless pressure based on An”’ and k (rectangular geometry, liquid,
homogeneous)

. ) . 0.5
PwpLm = dimensionless pressure based on matrix A, ~ and k,, (rectangular geometry,
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liquid)

gp = dimensionless rate (transient dual porosity model)

gpr. = dimensionless rate based on ACW0'5 and ks (rectangular
geometry, liquid, dual porosity)

gprn, = dimensionless rate based on ACW0'5 and k (rectangular geometry, liquid,
homogeneous)

gprm = dimensionless rate based on matrix Acm0'5 and k,, (rectangular geometry,
liquid

q, = gas rate, Mscf/day

Q = cumulative production, STB

r = radial geometry coordinate

rme = radius of cylinder matrix, ft

rms = radius of sphere matrix, ft

r, = wellbore radius , ft

s = Laplace space variable

sac = skin definition for linear model (dual porosity) based on krand ACWO'5

Sach = skin definition for linear model (homogenenous) based on k and Acw0'5

Sacm = skin definition for linear model based on k&, and matrix area Acmo'5

s. = convergence skin

sy = skin definition based on horizontal well length

s = skin definition based on wellbore radius

t = time, days



tp = dimensionless time coordinate

tpac =dimensionless time based on A, and k; (rectangular geometry, dual porosity)
pach =dimensionless time based on A, and k (rectangular geometry, homogeneous)
pacm =dimensionless time based on matrix A, and k,, (rectangular geometry)

tpry =dimensionless time (radial definition) based on wellbore radius

T = absolute temperature, °R

Vim = total matrix bulk volume, ft>

Vpm = matrix pore volume, ft°

x. = drainage area width (rectangular geometry), ft

y. = drainage area half-length (rectangular geometry), ft

yp. = dimensionless reservoir length (rectangular geometry)

z = coordinate, z-direction (matrix)

zp = dimensionless coordinate, z-direction

Greek symbols

o =hydraulic diffusivity term defined in Appendix A
o, = ny, zero of Bessel function, J, used in Eqgs. 3.4, 3.5
¥ = specific gravity

A = dimensionless interporosity parameter

M = Viscosity, cp

o = dimensionless storativity ratio

@ = porosity
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o = shape factor, ft

Subscript

Ac = cross-sectional area to flow
i =initial

f=fracture system

g =gas

m =matrix

f+m =total system (fracture+matrix)
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APPENDIX A
SINGLE MATRIX BLOCK DRAINAGE

AT CONSTANT PRESSURE

A-1 Overview

As previously described, the dual porosity model of a naturally fractured
reservoir is composed of matrix blocks draining into surrounding fractures at constant
pressure (the most widely used boundary condition in the literature). It was mentioned in
Chapter I that the drainage of these matrix blocks is the cause of the transient linear
regime observed in the shale gas wells. In this section, drainage of single matrix blocks
will be investigated. Three methods will be used to illustrate and compare constant
pressure drainage of matrix blocks of different geometries — slab, cylinder and sphere.
The cylinder and sphere geometries have been used in the literature as approximations to
the ideal two-dimensional (column) and three-dimensional (cube) geometries. This will
be demonstrated for the slightly compressible fluid case. The results are expected to be
applicable to the compressible gas case. These methods are numerical simulation,
analytical solution and Laplace space solutions. The development of the equations for
the analytical and Laplace space solutions are shown only for the slab case in Section A-

2. Data common to three matrix geometries is shown in Table A-1
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A-10 SLAB MATRIX
Data specific to the slab case is shown in Table A-2. A schematic of the slab matrix is

shown in Fig. A-1. The three methods will subsequently be presented.

A-10.1 Numerical Simulation

The simulation was conducted using two numerical simulators — GASSIM and ECLIPSE
version 2007.1 (Schlumberger). A 101 x 1 x 1 grid system was utilized in both
simulators with Ax = 0.5 ft, 4y = 1000 ft and Az = 10 ft. The 101" grid contains the well
(constant bottomhole pressure of 100 psi) and was assigned a small porosity of 10”® and
high permeability of 10'' md to model the constant pressure condition at the boundary of
the slab. It was found by comparing with the analytical solution that maximum timestep

sizes of 0.05 (GASSIM) and 0.001(ECLIPSE) were required to give accurate results.

Table A-1 — Data for the Slab, Cylinder and Sphere
Matrix.

ki 0.1 md

@ 0.065

U 1cp

¢ 15x 10° psi™

B 1 RB/STB




Table A-2 — Data for the Slab Matrix Case.

[ (half of fracture spacing) 50 ft

Py 100 psi
Di 1000 psi
v, 32,500 ft’
a (one dimension on fracture face) 1000 ft

b (other dimension on fracture face) 10 ft
Am(=axbh) 10,000 ft*

Fig. A-1 — Schematic of Slab Matrix.
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A-10.2 Analytical Solution
The development of the equations for the slab matrix case is illustrated in Appendix A-2.

The two equations used are :

[ alenn1f 2
477

(Method I) ................... (A-1)

a(2n+1) %

q=—0.00633%%(}7f ~p)>(1)"e { o ]sin[(znﬂ)ﬂ

(Method IT) .........cceven e (A-2)
Where «is the hydraulic diffusivity defined in Appendix A as

0.00633k,,
o=—-"
Puc,

A-10.3 Laplace Space Solution
The development of the equation for the slab matrix case is illustrated in Appendix A-2.

The equation is given by

dz

k, A d
g =—0.00633 mem ;=1 {%} ................................. (A-3)
H < z:%
dp,, 2 Py—Pi - . .
where :Z\/E L _"!ltanhys  and is inverted numerically using a Laplace
S

space inversion algorithm and substituted into Eq. A.3.

The results from all the tests are shown in Fig. A-2. It can be observed from Fig. A-2

that the results from all the methods are similar and exhibit an initial transient linear
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response (one-half slope on a log-log plot) and a boundary-dominated response at later

times.
1.E+04
1.E+03 A
= 1.E+02 1
]
ked
b
2
[
T
T 1.E+01 I
— Numerical Simulation (GASSIM)
— Numerical Simulation (ECLIPSE)
----- Analytical (Method 1)
Analytical (Method II)
Laplace Space
1E+00 - - -----~~t--—-—-—~——-—-—-—5-"-——-—-—-—--—-— 7 il o
| | |
| | |
| | |
| | |
| | |
1.E-01 : : i ‘
1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

Time (days)

Fig. A-2 — Comparison of Slab Matrix Drainage Results. All methods exhibit
similar initial transient linear response and later boundary dominated response.

A-11 CYLINDER MATRIX
Data specific to the cylinder case is shown in Table A-3. The three methods will

subsequently be presented.

A-11.1 Numerical Simulation
The simulation was conducted using two numerical simulators — GASSIM and ECLIPSE
version 2007.1 (Schlumberger). A 101 x 1 radial grid system (4r = 1 ft, Az = 1 ft) was

utilized in GASSIM while a 201 x 1 radial grid (4r =0.5 ft, 4z = 1 ft was utilized in
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ECLIPSE. The 101* and 201" grid in GASSIM and ECLIPSE respectively contain the
well (constant bottomhole pressure of 100 psi) and was assigned a small porosity of 10
and high permeability of 10° md to model the constant pressure condition at the
boundary of the slab. It was found by comparing with the analytical solution that
maximum timestep sizes of 0.05 (GASSIM) and 0.01(ECLIPSE) were required to give

accurate results.

Table A-3 — Data for the Cylinder Matrix Case.
Tme 100 ft

Py 100 psi

Di 1000 psi

Viom 2,042 ft°

h 1 ft

Acm 628 ft’

A-11.2 Analytical Solution

The two equations developed using methods similar to the slab matrix case are:

o

g :meTf’Cr alp,—p, )3 e (Method I) ............. (A-4)
Time n=1

C n

2 e (Method ID) ........... (A-5)
p

mc  p=]

k A
g= —0.00633% P

Where «is the hydraulic diffusivity defined in Appendix A as
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0.00633k,,
o=—-™"
Puc,

and a;, is the ny, zero of the Bessel function J,
A-11.3 Laplace Space Solution

The equation developed using methods similar to the slab matrix case is given by

K,y A dp,,
g = —0.00633 mZem p=1 {%} ................................. (A-6)
yZ r
d_ —pi |\l .. . .
where |[“£m = Js Py 7P ‘—\/E and is inverted numerically using a Laplace
dr e s ]0\/;

space inversion algorithm and substituted into Eq. A-6.

1,, I; are modified Bessel functions.

The results from all the tests are shown in Fig. A-3. It can be observed from Fig. A-3
that the results from all the methods are similar and exhibit an initial transient linear
response (one-half slope on a log-log plot) and a boundary-dominated response at later

times.
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Fig. A-3 — Comparison of Cylinder Matrix Drainage Results. All methods exhibit
similar initial transient linear response and later boundary dominated response

A-12 SPHERE MATRIX

Data specific to the sphere case is shown in Table A-4. The three methods will

subsequently be presented.

A-12.1 Numerical Simulation

There is no available simulator for the sphere case. An attempt will be made to simulate

the sphere matrix case using the numerical simulator GASSIM. The cylinder case will be

adapted to simulate the sphere case by using fictitious transmissibilities and porosity.

Our equation for the required pore volume (grid) of a sphere is given by

me 2%71'(7'23 _rl3y’¢
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Where ¢ =0.065 as given in Table A-1
r; and r; are inner and outer radial grid dimensions

The equation for the pore volume (grid) of a cylinder is thus given by
Voo=zlZ =2 o, e, (A-8)

@, is a fictitious porosity that will be input into the simulator (cylinder case) to yield the
required sphere pore volume.

The transmissibility of the sphere (grid) is given by

T -000633 2 (A-9)
The transmissibility of the cylinder (grid) is thus given by

hk
T, =(0.00633)27)——— (A-10)

m(%) .................................

ks 1s a fictitious permeability that will be input into the simulator (cylinder case) to
behave like the sphere.

A 101 x 1 radial grid system (4r =1 ft, Az = 10 ft) was utilized.
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Table A-4 — Data for the Sphere Matrix Case.

Fims 100 ft
Py 100 psi

Di 1000 psi
Vom 272,271 ft’
Acm 125,664 ft*

A-12.2 Analytical Solution

The two equations developed using methods similar to the slab matrix case are

th¢ct aﬂzﬂ mz” T
=TT : _pf z—e (MethOd I) ............. (A‘ll)
g =—0.00633 Knfen (, ) 2n ﬂ(cosm e (Method 1) ............. (A-12)
H n=1 'ms n

A-12.3 Laplace Space Solution

The equation developed using methods similar to the slab matrix case are

k A e
g =—0.00633 mZem ;-1 {ddﬁ} ................................. (A-13)
u z |

rm.\'

d
where  |[£2m
.

:L(u)[\/?coth(\/? ) 1] and is inverted numerically using a

B Vins N
I=lns

Laplace space inversion algorithm and substituted into Eq. A-13.
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The results from all the tests are shown in Fig. A-4. It can be observed from Fig. A-4
that the results from Analytical methods and Laplace exhibit similar initial transient
linear response. Numerical simulation is not similar to the other methods. It is possible
that a match with the other methods might be obtained with a smaller maximum timestep

(0.05 days was used in this work) and smaller grids.

1.E+07

1.E+06

1.E+05 ~

1.E+04

1.E+03 ~

Numerical Simulation (GASSIM)

Rate (scf/day)

B e Analytical (Method 1) T T NN
| Analytical (Method 1) | |
1.E+01 - - - — — + — — — {—— Laplace Space i st B it w il St
| | | | | | |
| | | | | | |
| | | | | | |
RSt e H e B T T T
| | | | | | |
| | | | | | |
1.E01 +-—-—-~— e iy == === == === [ e i I
| | | | | | | |
| | | | | | | |
1.E-02 ; ; ; ; ; ; ; ;
1E07 1E-06 1E05 1.E04 1E03 1E02 1.E01 1E+00 1.E+01  1.E+02

Time (days)

Fig. A-4 — Comparison of Sphere Matrix Drainage Results. Analytical and Laplace
space solutions exhibit similar response. Numerical simulation is different probably
due to approximations.
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Summary

Matrix drainage at constant pressure was investigated using different methods. It can be
concluded from Figs. A-2 to A-4 that drainage of matrix blocks of any geometry at
constant pressure boundary condition results in transient linear flow (one-half slope on a
log-log plot). This is one of the possible causes of the observed transient linear flow

regime in the shale gas wells as discussed in Chapter 1.

A-2 Derivation of Equations for Slab Matrix Case

In this section, the development of an equation for one —dimensional slab geometry
matrix drainage at constant pressure is shown using analogy with heat flow principles
from Carslaw and Jaeger'>
The underlying assumptions are stated thus:

¢ Incompressible fluid

¢ Constant fluid properties

e The slab is initially at the same initial pressure

® One boundary is at constant pressure

A-20 Analytical solution (Method I)
Half of the slab is modeled. The length of which is given by

[==
2

The following expression can be written for the pressure distribution

— (2n+1)2 7%

—Di =£Z T TP (A-14)
pf pi 7 (n+1)




where pyis the constant pressure boundary condition, ; is the average pressure and

p;i 1s the initial pressure

0.00633k,,
Puc,

From Eq. A-14,

and g =

The fluid content at any time is given by

_ me@t;
="

differentiating Eq. A-16

40 V., dp
dt B dt

Differentiating Eq. A-15

@_ —(X(2n+1)2ﬂ'2 (p L, )ii | Jz(Znle)l;ﬂt
di 4 1 (o 1)

o _a(2n+1)2752t

dp 2 p
dif:_li?(pf _Pi)nzz(;e o

Substituting Eq. A-18 in Eq. A-17
w _al2n+1) 7

dQ _ Vi, 2
7?= “ch’lff(pf—pf)ze o

And thus rate (scf/day) is given by
Y
1 dt

w _al2n+1) 7’

ot i
n=0

A-21 Analytical solution (Method II)

The following expression can also be written for the pressure distribution

p—p 45 (1) —alnf o (2n+1
— Vi -1- - 472 n
B — E { } cos[ 5 Pns

Pr—D; s 2n+1
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4 o —a(2n+1) 7% (2n+1)
=(p, i a2 A
P (pf ~ P zznz_:;[znﬂ} COS[ 21 m}rp’
.............................. (A-22)
Differentiating Eq. A-22
- —a(2n+1)* 7%t
p_@n+l)z iz wsin[(2n+1)ﬂx}
ox 21 f V4 2n+1 21
.............................. (A-23)
- —a(2n+1)* 7%t
| _Cnrtr 4 Z[ }412 Sin[(2n+1) jd}
x|, 21 m | 2n+1 21
.............................. (A-24)

5 ) o —a(2n+1)? 7 z
p n 2 .

P y = (pf -p; )n_o (-1)"e sm{(Zn + 1)3} .............................. (A-25)
EE—— 00633]‘—'”{8—} .............................. (A-26)
cm lu a'x x=I

Thus rate is given by

K o —a(2n+1) 7
g =-0.00633 X Aen 2 Py —p; Z ar? sm[(2n+1)£}
H n=0 2
.............................. (A-27)

A-22 Laplace Space Solution
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This method utilizes a form of the matrix-fracture source term normally utilized in the

dual porosity equations.

The following dimensionless variable definitions are used.

kh(p; - p) kot Z
il Yot S =0.00633 ——__ == . A-28
o 7 e
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The diffusivity equations for the matrix and fracture and the boundary conditions are

stated below:

Matrix
°p, _ [WCJ W (A-29)
9z’ k ), ot
Initial condition: , (;0)=p,
Inner boundary: at ,_ aaL =0 (line of symmetry)
Z

Outer boundary: at ,_ L , _ P,
2 m

Converting Eq. A-29 to dimensionless variables
azpo _ apo

oz oty
The Initial condition in Eq. A-29 becomes in dimensionless variables
Ponl2p0)=0 (A-30)

The Inner boundary condition in Eq. A-29 becomes in dimensionless variables
Pou| o (A-31)

°)
<p 2p=0

The outer boundary condition in Eq. A-29 becomes in dimensionless variables

‘po el = pr .............................. (A‘32)
Transforming Eqs. A-29, A-30, A-31 and A-32 into Laplace space

Coom [ o] e, (A-33)

2
dZD

initial condition: 5, ~(;, 0)=0

inner boundary:  |dpp.| _ 0
dz, | -
outer boundary: ‘E‘ =Py

zp=!

The general solution is given by
Pom=Acoshyszp +Bsinhvszy e (A-34)

and A and B are determined as

A= Ppy

- cosh \/;
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B=0
and Eq. A-34 b oo coshszy A-35
q- €Comes py,, = pyy Tohde e ( )
COS S
Transforming Eq. A-35;
coshx/gi
;:&+[”f' ”"J L2, (A-36)
s s cosh\/z
— sinh\/;i
dp,, _2 [ pep L2 A-37
A s( - J vy G ( )
Aol 2 P TP s e, (A-38)
dz _L/ L S
=72

Eq. A-38 is inverted using the Stehfest algorithm. It should be noted that the inverse of
the Laplace variable, s is the dimensionless variable #p;. This is then converted to time, ¢

using the dimensionless variable definitions in Eq. A-28.

kA 9
g =—0.00633M[ﬁ

u 0z LL/2
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APPENDIX B

LINEAR DUAL POROSITY MODEL

Derivations for the linear dual porosity model (slab matrix, constant rate, bounded
rectangular reservoir) are shown in this section. The assumptions relevant to the model
are stated:

Naturally fractured reservoir is made up of matrix and fractures (dual-porosity)

Both porous media are homogeneous and isotropic

Matrix acts as a uniformly distributed source for the fractures

Fluid flows through the fractures to the wellbore

Flow of a slightly compressible fluid of constant viscosity

Reservoir is a bounded rectangular reservoir with a well at the centre producing at
constant rate

The following dimensionless variables are defined

0.00633k ;1

Dimensionless time: ;= ] ]
‘ ¢Cr m + ¢Ct f cw

kA (- p)

Dimensionless pressure: =
Por 141.2¢Bu

Storativity:  ,_ loe. 1,
lc,], +loc, ],

Interporosity flow parameter: ,; _ &

Dimensionless length coordinate: =L e, (B-1)
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The diffusivity equations for the matrix and fracture along with the boundary conditions

are stated below:

Matrix
921%:[4”#9] W (B-2)
072 k ), ot

Initial condition:  p (z,0)=p,

Inner boundary: At , - 0,% =0 (line of symmetry)
Z

L

Outer boundary: At ,_~ Pu =D,
2 m

Fractures
Ipr  guc, pr  k,

ko A

P
az

=
The additional term on the right-hand side is the source term from the matrix.

Initial condition: , (y,0)= p,

Inner boundary: ,__Kr [apf] (constant rate)
mo\y ),
Outer boundary: At y= 1y , P, -0 (no-flow boundary)

A, dy

oW

Converting Eq. B-2 to dimensionless variables with definitions in Eq. B-1

a2PDLm _ (1_0))1;2kifi P pLm
azé 4 km Acw atDAC

and

2
O Poin - 3 (1_p)%on (B-4)
9zp Ape CI

12 k,, . . .
where 4, = ?k_ A, 1s the Warren and Root interporosity flow parameter
¢



133

The Initial condition in Eq. B-2 becomes in dimensionless variables
Po(2:0)=0 (B-5)

The Inner boundary condition in Eq. B-2 becomes in dimensionless variables
Pow| _o e, (B-6)

9z,

zp=0

The outer boundary condition in Eqn. B-2 becomes in dimensionless variables

|p1)Lm | S Pprr e B-7)

zp=l

Transforming Egs. B-4, B-5, B-6 and B-7 into Laplace space

2 p—
d P12)Lm _ 3(1 w) [SPDLm - DPoim (ZD,O)] .............................. (B-S)
dZD ﬂ’Ac

initial condition: ,_ (z,.0)=0

inner boundary: APon|  _ 0
dz, | -
outer boundary: ‘ Powl = Pois
zp=l X

Applying the initial condition to Eq. B-8 yields

dZm;Lm @), (B-9)
dZ,D /1146. m

the general solution is given by

pDLm:ACOSh 3(1_w)sZD+BSinh MZD .............................. (B—IO)
ﬂ'Ac ﬂ‘AC

A and B are determined as

B=0

Ppry

cosh 73(1 - a))s

Ac

and Eq. B-10 becomes

Cen P (B-11)

Ac
Ppim = Ppry
31 - o,
cosh u

Ac




Converting the equation for the fractures in Eqn. B-3 into dimensionless variables

Frow _ oy Ao (B-12)
ay%) atDAC 3 aZD 2=l
Initial condition: p,,.(y,.0)=0
Inner boundary: apiDLf -7
Wp |,
Outer boundary: %oy (y,/ . |_,
p \/“Tc pie
Transforming Eqn. B-12 into Laplace space
d* ppiy A ldpos,
=wlsp . — | (B-13)
@% @S Ppry pDU(yD ﬂ 3 dzp .
Differentiating and substituting Eqn. B-11 into B-13
P ppy [ A |— [0 (-
G e T
d*poy — (4, 3(1-w)s
a0y — T Ppy S\ @+ Py ?f;(l_w) tanh\/Ac =0
Which can be represented as
dzpnu E—
I () =0 (B-14)
where ¢ (g) = w+\/1m- (1- @) tanh \/3(1“")5
3s Ay
Eq. B-12 thus becomes in Laplace space
d*p,,. S
prf S OPpy =0 e (B-15)
dy;, ‘

Initial condition: p,, (y,,0)=0

Inner boundary: |ap,,,

dyy,

_ 2z

s
¥p=0
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Outer boundary: dpoiy e o
dyp \/Z h
Thus, the general solution to Eq. B-15 is

E=Acosh( sf(s)yD)+Bsinh( sf(s)yD) .

A and B are determined as

-2

70 .

cosh{m 7 \/A7]
Substituting into Eqn. B-16 yields

2z COSh[my \/X ] ( : ) r . ( . )
) coshly/sf(s)yp )— 70 sinhly/sf (s)yp,
sinh[m y\/z‘TJ

Ppir =

Substituting yp = 0 (at the well) into Eq B-18 yields

2
PwpL =
i )

Cor [Ty AT
PwpL S\/Sf(s) ¢

o )voe _ = (s)ye

Where vy, = e
VAL'W
)y 1
. | € AT
TSI ) | O ]

ol n
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207 62 3f(5)yne +1
PubL == == | B-22
bL Ky ’Sf(S) [62 3f(s)yDe -1 ( )

dividing by ¢? of ()ype

20 1+e 2sf (s)yp
PwpoL = S‘JT(?) 1_672 sf(s)_vw ..............................

In Laplace space, the constant pressure case at the wellbore can be found from the

solution for the constant rate case given by Eq. B-23 using Eq. B-24.

Eq. B-23 thus becomes for the constant pressure case

L: 27 1+€72 ~\'f(»“)YDe (B_25)
a \/Sf(s) l_e_2 Sf(S)yDE ..............................

Eq. B-25 can then be inverted to obtain the solutions as a function of time using suitable

Laplace numerical inversion algorithms such as Stehfest’s inversion algorithm.
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APPENDIX C

DEVELOPMENT OF ANALYSIS EQUATIONS

In this section, the analysis equations for the linear model are derived.

C-1 Region1
This region represents early linear flow in the fracture system only. The Laplace space
solution for the constant pressure inner boundary, closed outer boundary reservoir (slab

matrix) is given from Eq. B-25 by

L 2 [L+e™ | where y/
QDL V Sf(s) l_e_z o ()3 e P VACW

This can be shown to be the same as

1 27s
1 comliFan ) (C-1)
—= 5 W ©r.)

2x
using Coth(x) = eZX +i .............................. (C-2)
o2 —

Approximately for x >3, Coth(x)=1
Therefore Coth( sf(s)yDg):l when /sf(s)yp, >3 cvviriiiii (C-3)
Eq. C-1 becomes

1 278
T = T/ teeesessessestsstestsssessanne (C‘4)
dp.  \Sf(s)
For slab matrix, f(s)=w+ \/%(l_w) tanh[ \/3(1“")‘} .............................. (C-5)

K Ac
Assume @ >>>>> % (1- ) tanh( 3(1-0)s ] .............................. (C-6)
S Ac

Therefore f(s)=w



Eq. C-4 becomes

w1

4dpL \/;\/5

o dp=——va
DL 27[\/;

Inverting from Laplace space

1
do =~V
o 2z mDAC

1

dpL = —
o 2707 pac | @
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From the assumptions in Egs. C-3 and C-6 we can derive approximate equations for the

approximate range where Eq. C-11 is valid

From Eq.C-3, sf(s)yp, >3
Applying Eq. C-7

Thus  Vswy,, >3

And 5> 0

2
yDea)

Multiplying by Lz
N

Inverting from Laplace space

1>tpa, —

yDea)
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2
And 1), <2 09“’ .............................. (C-15)

From Eq. C-6, w>>>>> \//1i (1- ) tanh[ \/ 3(1/1_ @)s } implies that

3s Ac

\/& (1-o) tanh{ \/@J S0, (C-16)

3s Ac

This implies that s is large (very small times, p4.)

We can thus give an approximate range for Region 1 as

2
yDea)

0<tpy < o e (C-17)

C-2 Region 2
This represents bilinear flow caused by simultaneous depletion in the fracture system
and matrix. The Laplace space solution for the constant pressure inner boundary, closed

outer boundary reservoir (slab matrix) is given from Eq. B-25 by

24 sf ($)Ype
1 _ 25 |l+e : where :/
qDL V Sf(s) 1 - 672 sf ($)¥pe ¢ V Az:w

From Eq. C-1,
1 27Ts
= Cothl\Jsf(s)y,,] e (C-18)
—-—== WS )
For slab matrix,
f(s)=m+ \/’?i (1-w) tanh[ \/Mj .............................. (C-19)
3s Aae
Assume @<<<< \/ e (1- ) tanh(\/ 3(1-)s J .............................. (C-20)
s Ac

and 1-w=1



Approximately for For x >3, Tanh(x)=~1

Assume tanh( 3(1_—/1(())”?} =]

S>3

Thus i,

c

Therefore Eq. C-19 becomes

_ [ fac
f(s)= 3s

Approximately For x>3 Coth(x) =1

Therefore In Eq. C-18
Coth( sf(s)yDe)zl when /sf(s)yp, >3

And Eq. C-18 becomes

27

1
do. ()

Substituting Eq. C-23 in C-25

3025 }_ (27[) (30.25 )S0.75

— 0.25 27025 | 0.25
4dpL 577 Aae A4

0.25
— /IAC 1

and dpL = (27[) (30_25 ' {075

Inverting from Laplace space

025 ~0.25
A4 I pAc

P or 150 T0.75)

where I'() is the gamma function.
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/10.25 t—0.25
q — Ac DAc
PE (o) (392 ) 1.22542
ﬂO.?S
dpL = .

10.13317 133
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From the assumptions in Egs. C-22 and C-24 we can derive approximate equations for

the approximate range where Eq. C-26 is valid

3
From Eq. C-22, = >3
ﬂ“Ac
3s
And ——>9
Ac

Multiplying by Lz
N

S /IA(. Ky

Inverting from Laplace space
3
ﬁAC

>tpacd

1
And tp,, <—
DAc 3 /»{A

c

From Eq. C-24, /sf(s)yp, >3

Applying Eq. C-23 to Eq. C-32

0.25 7025
s AL

3025 Ype >3

4
And s>( 3 ) 3
Y De /IAC
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Multiplying by Lz
N

l>i( 3 ] S (C-35)

2
s N Y De ﬂAc

Inverting from Laplace space

4
i == | = e, (C-36)
Y De /IAC

4
/IAC

3

And 1, <(Y§ej

It thus appears that an approximate criteria for Region 2 is
fppe <——
DAc 3 /IA(-

4
ﬂA(.

and 1, < ( Y g ] .................................. (C-37)

3

C-3 Region3
This region represents the homogeneous reservoir case. The Laplace space solution for
the constant pressure inner boundary, closed outer boundary reservoir (slab matrix) is

given from Eq. B-25 by

;: 275 | 14 2O where y,, = V
i NI [1-e A
From Eq. C-1,
1 =277"‘9C0,h( sf(s)ym) .................................. (C-38)

o S

Approximately for x >3, Coth(x)~1

Therefore Coth( sf (s)yDe)zl when \Jsf(s)yp, >3 cereiiiiiiin. (C-39)
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Eq. (C-38) becomes

1 278
B (C_40)
qpL st (s)
For the homogeneous case, f(s)=1 ....oooiiiiiiiiiiiiiiiiiininnn, (C-41)
and
1 _ 27
dpun sf(s)
Eq. C-40 becomes
LA (C-42)
dprn \/;
1
or U (C-43)
9prn o \/;
Inverting from Laplace space
-, (C-44)

9prn
2z N pach

Where 1 _ kA, lmp)-mp,] = 0.00633kt and k is the homogeneous reservoir
o 14224,T (uc,)A,,,

permeability.

From the assumptions in Egs. C-39 and C-41 we can derive approximate equations for

the approximate range where Eq. C-44 is valid

From Eq.C-39, sf(s)yp, >3

Applying Eq. C-41

Thus  Vsyp, >3 (C-45)
And s>, (C-46)

Y De
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Multiplying by Lz
N

R (C-47)

2 .2
s S Ype

Inverting from Laplace space

1> 'pac T e (C—48)
Y De
2
And 1, < yge .................................. (C-49)
We can thus give an approximate criteria for Region 3 as
2
dbe e, (C-50)

tDAC < 9

C-4 Region 4
This represents the transient linear case when the transient response is primarily from
drainage of the matrix. The Laplace space solution for the constant pressure inner

boundary, closed outer boundary reservoir (slab matrix) is given from Eq. B-25 by

1 275 | 14 e VYO
L where y, = V_
qDL ’Sf(s) [1 _ e—2 SF($)Ype Ac‘w

From Eq. C-1,
U 28 (o ) C-51)
—- Cothlsf (5)y,, (
dp. () ( )
For slab matrix,
f(s) =+ \/’?i (1-w) tanh[ J3(1_—”’)sj .................................. (C-52)
3s Aae

Assume @ <<<< \/&(1_@) tanh[ \/3(1“")SJ .................................. (C-53)

N



145

and 1l-w=1

Approximately for For x >3, Tanh(x)=~1

Assume | PUT@S o0 (C-54)
A,
Thus |—— >3 (C-55)
ﬂ’Ac

Therefore Eq. C-52 becomes

fo=y2e (C-56)
3s

Taylor’s series expansion of

3 5
Coth(x) = 1 w2y 2% o (C-57)
x 3 45 945
Taking first term of series  Corh(x) = L, (C-58)
X
Thus, In Eq. C-51,
assuming Coth( Sf(S)yDe)z; ................................ (C-59)
V Sf(s)yDe
Eq. C-51 becomes _1 __ 2% !
. NSF(8) \Jsf($)yp,
and _2m L, (C-60)

1
qp () V.

Substituting Eq. C-56 in C-60
1 / 3s 1 3 1
= =4I |— = 27[\/E P —
qDL ﬂ'Ac yl)e ZAC yD('
— 1 //1
and = - | ZAc
qpL 27[\/; 3 Y pe
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Inverting from Laplace space

L e ) (C-61)
27[ mDAC 3

dpL

From the assumptions in Egs. C-55 and C-59 we can derive approximate equations for

the approximate range where Eq. C-61 is valid

3s

From Eq. C-55, >3
/’i’Ac
3s

And  ——>9 e, (C-62)

ﬂ'Ac
Multiplying by —

S

1 3 1
; /1AC > s—29 ................................ (C—63)

Inverting from Laplace space

Y, (C-64)
/IAC
1
Al’ld tDAL' < % ................................ (C‘65)
1
From Eq. C-59, com( Sf(s)yDe)z —_—
sf($)Yp.
Since Corh(x)= L When approximately x <0.5 ... ... (C-66)
X
This implies that /sf(s)yp, <0.5 e (C-67)
Applying Eq. C-56
0.25
(%j Yo <05 (C-68)
And

<3 ( 0.5 J ................................ (C-69)

/IAC Y De
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Multiplying by Lz
N

13
S2 JAL'

( 0.5 J ................................ (C-70)

1
—<
s Y De

Inverting from Laplace space

4
<ty i( 0.5 ] ................................ (C-71)
Ac yDe
A y ¢
-t (0_05] ................................ (C-72)

We can thus give an approximate range from Eq. C-65 and C-72 for Region 4 as

1 4
Zhc | Ve <Ipac <; ................................
3 005 344
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APPENDIX D

HOMOGENEOUS LINEAR RESERVOIR RESPONSE

In this section, the derivations of the equations for the homogeneous, constant pressure
inner boundary, bounded rectangular reservoir are shown. This equation is derived

beginning with Eq. B-25 for the linear model.

L_ Q7S 1+e—2 sf ()Y pe
9o NSf(s) 1—e 2
As shown in Appendix C, this is the same as

_ 27ms

1
do ()

For the homogeneous case, f{s) = I, and

Cothls7 (5)y,.)

1 27s
= Coth\\/sf (s)y .,
4dpin \/Sf(s) ( )
thus
L B conlsy,) e, (D-1)
9prn \/;
Or
dor = ﬁnmh(\/} Vo) e (D-2)
27s

Tanh(x)=1+ 2i (S e™™ (D-3)
n=1
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Applying Eq. D-3 to D-2

qpin = 2£ [1 - 23_2\/}“’9 + 26_4\/;‘"” 2 6Vsyo, F o ] ......................... (D-4)
/A
1 —2+/sy —4+/sy —6+/sy
\ - 1_ 2€ YDe + 26 Ype __ 2€ Ype L A (D‘S)
4oL 27[\/;[ ]

Inverting from Laplace space

Vo) g )y ) ] ......................... (D-6)

1 1’
dprn = {1_ 2e [
27[ mDAch

272’- 74 DAch

2oy =] [1 23 (—1)”e{n /]] ................................ (D-7)

Eq. D-7 is the exact analytical solution for Eq. B-25 for the homogeneous case.
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APPENDIX E

EFFECT OF SKIN

Skin is normally defined as a dimensionless pressure for the slightly compressible fluid

. 71
case given by

khAp
Ky = -
w1 M2gBy e (E-1)
Where the skin is an additional dimensionless pressure
DuwD = PD S (E-2)

There have been different definitions for the dimensionless pressure used in pressure
. . . . 42,48,54,55 1 o
transient horizontal wells. One set of investigators define

kh
Pom =——P— (E-3)
141.2qBu

While Kuchuk® and Lichtenberger® define

kL A
Ppy = T and thus Sy = M ................................... (E-4)
141.2qBu 141.2qBu

For the linear model we will define

_ kVACWApS

= which represents the skin defined in El-Banbi'®.
141.24Bu

TTS Ac

In this section, an investigation will be conducted using different software to
determine how their skin is defined or represented. The test model is the constant rate,

horizontal well, homogeneous rectangular bounded reservoir case. The software to be
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used in this exercise are Kappa Ecrin v4.02.02 (Saphir module), Fekete (WellTest32
Module version 7.0.0.2) and the numerical simulator ECLIPSE version 2007.1. The
results will be compared with our linear model given in Appendix B (homogeneous case,
f(s) =1). The dataset is given in Table E-1. Two cases will be presented. Case 1 is one in
which skin = zero and Case 2 is one in which skin =10. Skin = 0 and Skin = 10 means

that 0 and 10 will be input into each software for the required case.

Table E-1 - Dataset for Effect of Skin Runs.
I 0.25 ft

h 30 ft

@ 0.1

k 1 md

Di 5,000 psi
L, (x.) 2,000 ft

Ye 500 ft

q 100 stb/d
B 1 rb/stb

y lcp

¢ 3x10° psi”’

The results from Case 1 are shown in Figs. E-1 and E-2. Fig. E-1 shows the

results plotted in terms of normal variables, log-log plot of [p;-p.s ]/q against time. It can
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be observed from Fig. E-1 that the results from the three software show similar results
except for Saphir which deviates at later times. Our linear model differs as expected

from the three software by the convergence skin expected with an actual horizontal well.

1000 T
I

— - —Fekete (skin=0)
""" ECLIPSE simulation(skin=0)

1004+ ------"-—"————~—~———~———— — Saphir(skin=0) |-

Linear model (skin=0)

o
f
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

—— - =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

[pi-pwil/a, psi/STB/day

0.1 4

0.01

Time (days)

Fig. E-1 — Case 1 (skin = 0) - Comparison of Results. The three software show
similar results except for Saphir which deviates at later times. Our linear model
differs as expected from the three software by the convergence skin expected with
an actual horizontal well.
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1.E+00

1.E-01

Porw

— - = Fekete (skin=0)
""" ECLIPSE simulation (skin=0)
”””” —— Saphir (skin=0) I
Linear model (skin=0)

|
|
|

1.E-02 +— — :

T |

: —=— Derivative

|

|

|

|

|

|

1.E-03 T t t
1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Fig. E-2 — Case 1 (skin = 0) - Comparison of Results (Dimensionless Pressure
against Dimensionless Time). The three software show similar results except for
Saphir which deviates at later times. Our linear model differs as expected from the
three software by the convergence skin expected with an actual horizontal well.

The generated pressure and time results for Fekete, ECLIPSE from Fig. E-1 are
converted to pp,, using Eq. E-3 and 7p,, using Eq. E-5 and are plotted in Fig. E-2. Fig.
E-2 shows the results plotted as a dimensionless plot of pressure, pp,, against

dimensionless time, 7p,,. The derivative is also added to the plot.

_ 0.00633ks
D”V —_—— . s sssssssssssssssss sttt s s s e s s

duc,r,;
The results from the linear model are converted to the above variables pp,, and fp,,

using the relations

h r
= ———and 1, =t | (E-6)
Ppw = PpL ( ™ } prw = Upac ( A j

cw

Fig. E-2 shows the same results as Fig. E-1. The three software show similar

results except for Saphir which deviates at later times (Saphir’s horizontal well model
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might be different from the others). Our linear model as expected indicates linear flow
(half-slope on derivative). Our linear model also differs as expected from the three
software by the convergence skin expected with an actual horizontal well. The effect of
convergence skin has been discussed in Chapter III.

The results from Case 2 (skin = 10) are shown in Figs. E-3 and E-4. Fig. E-3
shows the results plotted in terms of normal variables as a log-log plot of [pi-p.s //q
against time. It can be observed from Fig. E-3 that the results from ECLIPSE and Fekete
are similar. The results from Saphir differ from the others indicating that the skin
definition is different. The linear model obviously also differs from the other results due
to its different skin definition. Fig. E-4 shows the corresponding dimensionless pressure
and time plot similar to Fig. E-3 except that the skin=10 runs are also added to the plot.

The results are summarized in Table E-2.

1000 T

—-—-Fekete (skin=10)
--- ECLIPSE simulation(skin=10)
— Saphir(skin=10)

100+ —————————————————

Linear model (skin=10) |- ———— — —
T

[PrPulia, psi/STB/day

0.1

0.01 0.1
Time (days)

Fig. E-3 — Case 2 (skin = 10) - Comparison of Results. ECLIPSE and Fekete are
similar while Saphir and the Linear model are different because of the different
skin definitions.



1.E+02 T T T
| | |
| | |
| | |
Saphir (skin = 10) | |
1.E+01 y - - -
| ) .
| | |
Linear Model (skin = 10) — | |
| | |
| | |
1.E+00 - | | |
Fekete, ECLIPSE (skin =10) :
z )
S T~ |
e T i
Fekete, ECLIPSE (skin =0; ! !
1E01 + - -~ t-——-————--
- |
|
— - — - Fekete (skin=0)
ECLIPSE simulation (skin=0)
! —— Saphir (skin=0)
1.E-02 A== === Linear model (skin=0)
1 ! —— Derivative
A | —— Fekete (skin=10)
Beliative) I —— ECLIPSE simulation (skin=10
| —— Saphir (skin=10)
| Linear model (skin=10)
1.E-03 T t t t
1.E+02 1.E+08 1.E+04 1.E+05 1.E+06 1.E+07
torw
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Fig. E-4 — Comparison of Results (skin = 0 and skin =10) Dimensionless Pressure
against Dimensionless Time. Fekete and ECLIPSE have similar definitions of skin

different from the other software

Table E-2 — Summary of Results from Fig. E-4.

Software SKin : ppry(skin=10) = PDrw(skin=0)
Fekete 0.15

ECLIPSE simulator 0.15

Saphir 10

Linear model 5.44

It can be observed from Table E-2 that the Fekete definition is based on L,, as

shown in Eq. E-4. The conversion to conventional definitions results in

5y =100 21022 _0.15
L, 2000

W

The Saphir definition is obviously based on 4. The linear model definition as was

previously shown is based on VAew.

275, = (27:)(10)L = (27:)(10)L =5.44

JA., {120,000
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When utilizing the different software these different skin definitions should be
noted so as to ensure that accurate interpretation and calculations.

The results from Fekete are plotted on a [m(p;)-m(p.s)]/q against - plot in Fig.
E-5. It can be observed from Fig E-5 that there are two parallel lines representing the
response in the transient linear region for the skin = 0 and skin = 10 cases. It can thus be

concluded that the effect of skin is a constant offset on this plot.

[pi-Pwil/a, psi/STB/day

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| R
Pr
|
|
|
|
|

T

—- = Fekete (skin=0)

—— Fekete (skin=10)

0 0.2 0.4 0.6 0.8 1‘ 1‘.2 114 1‘.6 1‘.8 2

Time®* (days®®)
Fig. E-5 — Comparison of Results (skin=0 and skin=10) - Specialized Plot of [m(p,)-
m(p.y)]/q against > . The two plots are parallel with a constant offset showing the
effect of skin. The initial curve is due to the horizontal well radial flow present in
the Fekete model.
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An equationGO for computing the convergence skin in the linear flow period
which account for additional pressure drop caused by linear flow streamlines converging

to an actual horizontal well is given by

s, = ln[%(l+ Ik{_vj sin(ml;lz j] ...................................... (E-7)

This equation should be added to the response from our linear model to obtain similar

results as in Fekete and ECLIPSE as demonstrated in Chapter III.

E.1 Constant p,r Case

In this section, an investigation will be conducted using the constant p,,, horizontal well,
homogeneous rectangular bounded reservoir case. Only ECLIPSE and the linear model
will be used for this test. The data set is the same as given in Table E-1 except that a well
flowing pressure of 250 psi is used. The results for ECLIPSE are shown in Figs. E-6 and
E-7. The results for the linear model is shown in Fig. E-8 and E-9. It can be observed
from Figs. E-6 and E-8 that the effect of the skin is to lower the rates in the transient
linear region. This is contrary to observations with the constant rate case. It can be
observed from Figs. E-7 and E-9 that the effect of the skin decreases with increasing

time. This is contrary to the parallel lines observed in Fig. E-5 for the constant rate case.
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10000

—— ECLIPSE (skin=0)

T B S e ECLIPSE(skin=10)
1000 - .

Rate (STB/d)
)
o

o
L

0.1 :
) 10 100

Time (days)

Fig. E-6 — Comparison of Results for ECLIPSE (skin =0 and 10, Constant Pressure
case) — Log-log Plot of Rate against Time. The skin = 10 case shows lower rates.

[p-pud/a
)

—— ECLIPSE(skin=0)

----- ECLIPSE(skin=10)

Time®® (day®®)

Fig. E-7 — Comparison of Results for ECLIPSE (skin =0 and 10, Constant Pressure
case) — Specialized Plot of [p;.p,s/q, against ">, There is a diminishing effect of skin
with time.
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100000

Linear model (skin=0)
10000 +

----- Linear model (skin=10)

1000 +

Rate (STBd)
)
o

5}
L

0.1+

0.01 T
1 10 100

Time (days)

Fig. E-8 — Comparison of Results for the Linear Model (skin =0 and 10, Constant
Dwr case) — Log-log Plot of Rate against Time. The skin = 10 case shows lower rates.

20

Linear model (skin=0)

----- Linear model
(skin=10)

[pi-pwil/q
>

0 1 2 3 4

Time®® (days®®)

Fig. E-9 — Comparison of Results for the Linear Model (skin =0 and 10, Constant
pwr case) — Specialized Plot of [p;p,l/q, against >, There is a diminishing effect of

skin with time.
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APPENDIX F
DERIVATION OF THE EQUATION FOR THE CONSTANT
BOTTOMHOLE PRESSURE EFFECT OF SKIN

(HOMOGENEOUS, LINEAR RESERVOIR)

In this section, the constant pressure effect of skin shown previously in Appendix D will

be derived for the infinite, homogeneous linear reservoir case.

The equation16 for the linear model (infinite reservoir case) is given by

! —2—7[-5 F8, ASTUS) e, -
i‘mh Acm] (F-1)

A

For the homogeneous reservoir case, f(s)=1

Thus
1 27s
B N OO (F-2)
9 pLn \/;
dor = OO (F-3)
27[\/;[1 + sAch \/EJ
and solving by partial fractions
! A B (F-4)
2sfi+s, 5| 27ds  1+s,s
1= All+s, V5 )FB22Vs e (F-5)

put Vs =0 into Eq. F-4 and thus A=1



put [y - s‘; into Eq. F-4 and thus B = %2_‘”
and thus Eq. F-3 can be expressed as
o 27
Gy = o p + eeds (F-6)
4 1 N
Qi =1 {271-\/;}% m ...................................... (F-7)
o - 5_{2”1\/;} ;_; = ﬁ ...................................... (F-8)
S Ach

Eq. F-10 gives the transient response for an infinite homogeneous, constant pressure
inner boundary reservoir with a skin effect, s, present.

It can be observed from Eq. F-10 that at small times, 7,,. =0

1

Aprh = T (F-11)
2723‘Ach

And at large times 1, = oo

Using first term of asymptotic expansion for erfc(x) for large x

x2

e

wr

Erfc(x) =

Eq. F-10 becomes

161
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APPENDIX G

DERIVATION OF THE EQUATION FOR THE SQUARE ROOT OF

TIME LINEAR DERIVATIVE (HOMOGENEOUS, LINEAR

RESERVOIR, CONSTANT BOTTOMHOLE PRESSURE)

In this section, the analytical equation for linear derivative for the linear homogeneous

reservoir (constant pressure inner boundary, infinite) with a skin effect will be derived.

From Eq. F-10,
1 lyz Ipach 1
9prn =2—e(/ﬁm jerfc[—\/ tDAchj
mAch

We know that

1)
( 4L 1 dqyp,

2
dt pye Gpun A pach

and

ot

2
d tDAch DLh dtDAc/l

1
Let 4= fpa andthus w? =——t,.

S Ach S Ach

Thus Eq. G-1 becomes

1 2
Apin =7 € e’fc(u)

Ach
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Differentiating

44y, __ 1 e d lerfe(u)]+ erfe(u) [ ! e“z} .................... (G-4)
dtDAch 27ZSAch dtDAch dtDAch 27ZSAch

We know that di erfe(x)=——=¢7*
x

Thus ierfc(u) = —ie_uz
du

N

And d _ d du

dtpa, du dtppen

d du 26_” 1
lerfe(u)]= lerfe(u)]=-
dtDAch d” dt ppen 75' S Ach 2\/ DAch

Eq. G-4 becomes

dapy _ 1 el 2e 1 +€rfc{ L e"zj
dtpa, 27054, sAch 2\/ DAch TS s ch

Thus

Applying Eq. G-2 to obtain the square root of time derivative

d(y—qlm}—zrm[ 1}[ 1 e( 26 1 J+eifc ( j

d\tpan G )| 27 pe ﬂ' Sach 2T pacn

o 1 el 1
Do/ _ 15~V pach ﬁe[ﬁlm Je’fc[_ tDACh]

AN psen 9 pinS acn”® 9 pin? ch
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At zero time Eq. G-7 becomes

(V)

= (G-8)
d tDAch q?)th/z‘;chﬂ-LS
from Eq. F-10 that at small times, ,,, =0
1
qDLh T ettt (G_9)
27zsAch

The ratio of the slopes at zero time and late time is given by

1
%%LMZM ) I (G-10)
27[\/;

Substituting Eq. G-9 in Eq. G-10

1
/El/ 271‘.S‘Ach )2 sichﬂ'lls
N

Which yields

ar? _

2
TS T = G-11
kY NP 4 (-1

The ratio of the slopes at zero time and late time is given by 2
VA
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APPENDIX H
DERIVATION OF THE EQUATION FOR THE CONSTANT
BOTTOMHOLE PRESSURE EFFECT OF SKIN

(SLAB MATRIX, LINEAR RESERVOIR)

In this section, the equation for the linear dual porosity reservoir (slab matrix, constant
pressure inner boundary, closed) with a skin effect will be derived.

The constant rate solution (zero skin) is given by Eq. B-23 in Appendix B as

2z 1420 H-1
e O — o
This was shown in Appendix B to be the same as
— 2z

= ot s (v H-2
PwpL gm ot ( sf(s)yDe) ( )

2x
using Corh(x) =< . *l
e’ —1
the addition of skin to Eq. H-2 in Laplace space is given by
27 2mAc
Pupr =——=—=Coth\\[Sf ()Y p, JF =" H-3
DL S\/W ( D ) P ( )
27zC0th( SF($)Ype )+ 275 40/ S (S)
2 Y 7 P (H-4)
s/ f (8)

The solution for the constant pressure is obtained by applying the Van Everdingen and

Hurst relation” given by Eq. H-5 to Eq. H-4.




This results in

1 ZﬂSCoth( SF(S)Y pe )+ 2738 40 A/ SF(S)

aL VS (s)

4dpL
Taylor’s series expansion of
2x°

3
Coth(x):l+f—x—+
x 3 45 945

Taking first two terms of the series

Coth(x) =~ += ..
x 3

Thus, In Eq. H-6,

1 + sf(s)yDe

Coth =
ot ( Sf(S)yDe) \/Sf(s)yDe 3

Eq. H-6 becomes

27t ! + Y)Y e + 2755 4,4/ SF($)
1 ()Y pe 3

4pr B Vsf(s)

This yields

1 2m(3)+ 215 (9)y2, )+ 21(5 0057 ()37 ,)

qDL 3sf(s)yDe
And thus

— 3

dpL = sf(s)yDe

225(3) + 2msf ()3, )+ 23505 4o 7 ()37 1)

For slab matrix,

% (1-w) tanh( \/ 3 (I,I_Af))s ]

f(s)=a)+\/
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Assume @ <<<< \/ /13’“
and 1-w=1

Approximately for For x >3, Tanh(x)=~1

Assume tanh[ 3(1_—/160%] =]

Therefore Eq. H-13 becomes

f()= ]/ 3s

Substituting Eq. H-16 in G-12

TyDe

dpL = 2 1
275(3) + 271:9&/’;”5)1%6] + 27;{% W/f;cswm]

3yDe\,
[ + Ac\ AC 3 De:|
3yDe
+ Ac\ AC 3 De:l

4dpL =

3+

4dpL =

271'\/_ [3 +

= 3yDe\

4pL

27z\/_ {3+\/_ [\/T yDe+SAC\/? 3ymﬂ

or

168
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Ton =3, /%+ .......................... (H-21)
Zﬂ\/;A[A+\/§}

f/l : f/l :
Where A= g‘ Ve +5 a0 %3)’&

Inverting Eq. H-21 from Laplace space

1 Aie 3| 3 ton 3
= / » Z{E(A) ”f{z -~ ﬂ .......................... (H-22)

It can also be shown as in Appendix F that at small times, 7,,. =0 Eq. H-22 becomes

1 3
dpL = Py [m} .......................... (H-23)

Which yields similar results as Eq. F-11 as described in Chapter VIIL.

And at large times, 1, =~

Using first term of asymptotic expansion for erfc(x) for large x

x2

-
'z
Eq. H-22 becomes
3 2
3V _{ - tDAL‘]
L s i)
e BT T T e (H-24)

2z A %VIDACJ;

1 Ape

qDL = yDe ......................................
2T pac V3

Which is the expected equation for Region 4 previously given in Eq. C-65.

Erfc(x) =
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APPENDIX I

DERIVATION OF EQUATIONS FOR THE BEGINNING OF

CONVERGENCE SKIN STABILIZATION IN LINEAR FLOW

As previously discussed, convergence skin accounts for distortion of the linear flow in

the rectangular reservoir to radial flow around the wellbore. The convergence skin

develops during radial flow and stabilizes throughout linear flow. In this section

equations will be derived for the beginning of this stabilization for both constant rate and

constant Pwy Cases.

I-1 Constant Rate

The equation for the radial flow in a horizontal well is given by

Pon = %m 1y +0.4045

Eq. I-1 can also be expressed as

kLAp 1 h{o.oossya

1412gBu 2 2

J +0.4045
uc,r,,

The equation for linear flow is given by

Por =4 py +5,

where s, is the convergence skin
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Eq. I-3 can also be expressed as

WAL ”[0.006331“}& ...................................... (1-4)

1412gBu duc, A,

From Eq. I-2,

Ky 1 { 1 h{o.00633kr)+0_ 4045} ...................................... (I-5)

1412gBu L, |2\ ouer’

Differentiating Eq. I-5

W 21(1) ...................................... (1-6)

dt L \2t

From Eq. 1-4,

kap 1 0.00633k2 ) [ e 1-7)
1412qBu  \[A,, {4 7{ duc, A, j“‘}

Differentiating Eq. 1-7

d[ kap J
1412gBu) 1, | 1000633 1 (1-8)
d[ Acw ¢ILIC t A(-w 2\/;

Equate Egs. I-6 and 1-8

14 ,{00063%} L (1-9)

ZtL w Az'w ¢1Llc t 27'\/;

1 _L, ,{0-0063%J ...................................... (I-10)

\/; - A(TW ¢ﬂc t



Squaring both sides
[lj | Ly ,{0-0063%] ...................................... (I-11)
\/; Acw ¢:uct
1= L3¢-16”(0-00633’“] ...................................... (I-12)
A('I«V ¢/IC t A('I«V
L 16rx
1= :VLXT e (I-13)
Since A, =2L h
Then (- L167, (I-14)
ZLW]’Z DAc
and , —_ M (I-15)
DAc 87[l,w
I-2 Constant p,s
The equation for the radial flow in a horizontal well is given by
Lo g, 404045 e (I-16)
dpy 2
Eq. I-16 can also be expressed as
MAp 1 ln(0-00633kr}0. 1045 e (I-17)
141.2gBu 2\ guc,r}
The equation for linear flow is given by
L s fmy 45, e (I-18)

4oL
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Eq. I-18 can also be expressed as

kA A
VAL oo 000633k) (1-19)
141.2gBy guc A,

Solving Egs. I-16 to I-19 similarly to the constant rate case given previously yields

s, (I-20)

P oL

w

for the constant p,,r case
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