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ABSTRACT 

 

Rate Transient Analysis in Shale Gas Reservoirs with Transient Linear Behavior.  

(May 2009) 

Rasheed Olusehun Bello, B.Sc., University of Lagos, Nigeria; 

M.Sc., University of Saskatchewan, Canada 

Chair of Advisory Committee: Dr. Robert Wattenbarger 

Many hydraulically fractured shale gas horizontal wells in the Barnett shale have been 

observed to exhibit transient linear behavior. This transient linear behavior is 

characterized by a one-half slope on a log-log plot of rate against time. This transient 

linear flow regime is believed to be caused by transient drainage of low permeability 

matrix blocks into adjoining fractures. This transient flow regime is the only flow regime 

available for analysis in many wells. 

The hydraulically fractured shale gas reservoir system was described in this work 

by a linear dual porosity model. This consisted of a bounded rectangular reservoir with 

slab matrix blocks draining into adjoining fractures and subsequently to a horizontal well 

in the centre. The horizontal well fully penetrates the rectangular reservoir. Convergence 

skin is incorporated into the linear model to account for the presence of the horizontal 

wellbore. 

Five flow regions were identified with this model. Region 1 is due to transient 

flow only in the fractures. Region 2 is bilinear flow and occurs when the matrix drainage 

begins simultaneously with the transient flow in the fractures. Region 3 is the response 
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for a homogeneous reservoir. Region 4 is dominated by transient matrix drainage and is 

the transient flow regime of interest. Region 5 is the boundary dominated transient 

response. New working equations were developed and presented for analysis of Regions 

1 to 4.  No equation was presented for Region 5 as it requires a combination of material 

balance and productivity index equations beyond the scope of this work. 

It is concluded that the transient linear region observed in field data occurs in 

Region 4 – drainage of the matrix. A procedure is presented for analysis. The only 

parameter that can be determined with available data is  the matrix drainage area, Acm. 

It was also demonstrated in this work that the effect of skin under constant rate 

and constant bottomhole pressure conditions is not similar for a linear reservoir. The 

constant rate case is the usual parallel lines with an offset but the constant bottomhole 

pressure shows a gradual diminishing effect of skin. A new analytical equation was 

presented to describe the constant bottomhole pressure effect of skin in a linear 

reservoir. 

It was also demonstrated that different shape factor formulations (Warren and 

Root, Zimmerman and Kazemi) result in similar Region 4 transient linear response 

provided that the appropriate f(s) modifications consistent with λAc calculations are 

conducted. It was also demonstrated that different matrix geometry exhibit the same 

Region 4 transient linear response when the area-volume ratios are similar.  
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CHAPTER I 

INTRODUCTION 

 

Natural gas demand in the United States is expected to increase from 23 tcf/yr currently 

to 30-34 tcf/yr by the year 2025.1 United States natural gas production is also expected to 

increase from 19.5 tcf/yr in 2004 to more than 25 tcf/yr by the year 2020 in order to 

satisfy this demand as shown in Fig. 1.1. Conventional gas sources (sandstone 

reservoirs) will not be able to satisfy this demand and unconventional gas sources (tight 

gas, shale gas and coalbed methane) are thus expected to be a major component of this 

production (Fig. 1.1).  

Unconventional reservoirs are defined as reservoirs that cannot be produced at 

economic flowrates or that do not produce economic volumes of oil and gas without 

assistance from massive stimulation treatments or special recovery processes, such as 

steam injection.2 Unconventional reservoirs are normally described as basin-centered 

continuous accumulations. The hydrocarbons are distributed throughout a large area. 

These accumulations do not have well-defined hydrocarbon-water contacts and are 

usually abnormally pressured.3  

Shales are fissile rocks composed of layers of fine-grained sediments. Shale 

reservoirs are normally regarded as the source rocks for the petroleum system according  

 
____________________ 
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Fig. 1.1 – United States Natural Gas Production, 1990-2020.
4
 

 
 
to the organic theory. The hydrocarbon is generated in the source rock (shale) and 

migrates to a reservoir rock (e.g. sandstone). However, the unconventional shale gas 

reservoir which is the focus of this study are self-sourcing reservoirs. The shale acts as 

both a source rock and reservoir.  

A map of the major shale basins in the United States is shown in Fig. 1.2. The 

Gas Technology Institute estimates that organic shale reservoirs in the United States 

contain up to 780 tcf of gas. The Barnett Shale in the Fort Worth Basin is by far the most 

active shale gas play in the United States. The reservoir ranges from 100 ft to more than 

1000 ft in gross thickness and holds from 50 to 200 bcf of gas per square mile.5 
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Fig. 1.2 - Map of the Major United States Shale Basins.

5 

 

Shales can be classified2 based on hydrocarbon (gas) generation mechanism as 

thermogenic (organic matter is transformed into hydrocarbons under the influence of 

temperature) or biogenic (water which contains microorganisms migrates into the rock 

and transforms the organic matter). 

 Shales can be also be classified as:2 (i) Shales having very fine sand and silt 

laminae and beds; gas is thermogenic (similar to tight sand e.g. Ohio Shale, Lewis 

shale); (ii) Dark organic-rich shales having water-filled fractures and must be 

depressurized (like coalbed reservoirs; gas reservoirs may be biogenic or thermogenic 

e.g. Antrim shale); and (iii) Mixed – Shales that have characteristics of the above, 

depending on location in basin e.g. New Albany Shale. 
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In general, shale gas reservoirs are characterized6 by low production rates (20 to 500 

Mscf per day), long production lives (up to 30 yrs), low decline rates (typically 2 to 3% 

per yr), ability to be thick (up to 1,500 ft) and large gas reserves (5 bcf to 50 bcf per 

section). Shale gas reservoirs are also typically organically rich. 

In shales, natural fractures provide permeability and the matrix provides storage 

of most of the gas. They are thus also referred to as a Nelson Type II Fractured 

Reservoir.2 Shale matrix permeabilities can be as low as 10-9 md.7 Matrix porosities 

range from 1 to 6%.8 The gas is stored either by compression (as free gas) or by 

adsorption on the surfaces of the solid material (either organic matter or minerals).  

The adsorption (desorption) behavior of shale gas reservoirs have typically been 

modeled by the Langmuir isotherm.9 It has been shown8,10 that in the Barnett shale, at 

higher pressures (above 1000 psia), gas storage occurs as free gas in the matrix porosity. 

Below 1000 psia, desorption is important and adsorbed gas may account for 50 to 60% 

of total gas stored. 

Shale gas reservoirs were traditionally ignored because of the low matrix 

permeability and the costs thus associated with production. The Section 29 tax credit 

(1980-2002) was one of the factors which revived interest in these reservoirs. It allowed 

a credit of $3 per barrel of oil equivalent for production from unconventional sources. It 

was amended in 2003 by the Energy Policy Act Section 1345.11 Other factors were 

technological improvements and include horizontal wells and hydraulic fracturing. The 

use of water-based or nitrogen foam fracturing fluids along with proppants in hydraulic 
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fracturing have aided production from these reservoirs. In recent times, high oil and gas 

prices have renewed interest in shale gas reservoir exploitation. 

 

1.1    Problem Description 

Horizontal wells producing gas in the Barnett shale are typically multi-stage 

hydraulically fractured. Typical micro-seismic data used to monitor the hydraulic 

fractures is shown in Fig. 1.3. The different hydraulic fracture stages are indicated by the 

different clusters.  

Shale gas production data from a sample well in the Barnett shale is plotted 

against time on a log-log plot as shown in Fig. 1.4. A half-slope is obtained on the plot. 

This indicates a transient linear regime analogous to Regime 4 described by Ozkan et 

al.12 for dual porosity behavior in a radial reservoir. The transient linear behavior shown 

in Fig. 1.4 occurs for a duration of almost two log cycles. The transient linear behavior 

shown in Fig. 1.4 has been observed in several shale gas wells and is the only flow 

regime available for analysis in numerous cases. The question thus arises of how to 

conduct proper analysis of this flow regime and what parameters can be determined. 

Wattenbarger13 identified different causes for transient linear flow including 

hydraulic fracture draining a square geometry, high permeability layers draining adjacent 

tight layers and early-time constant pressure drainage from different matrix geometry. A 

possible cause for the transient linear regime identified in Fig. 1.4 is the drainage from 

the matrix blocks into high permeability surrounding fractures (as demonstrated in 

Appendix A). These high permeability fractures thus have negligible pressure drop and  
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Fig. 1.3 – Microseismic Map of Multi-Stage Hydraulically Fractured Horizontal 

Well. 
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Fig. 1.4 - Log-log Plot of Field Production Rate as a Function of Time. Line drawn 

on plot indicates half slope. 
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transient linear flow occurs. This description is consistent with the dual porosity concept 

for shale gas reservoirs. 

Mayerhofer et al.14 present a model for hydraulically fractured shale gas 

reservoirs. Their model represents the hydraulic fracture as an interconnected network of 

fractures. Their paper indicates that drainage does not occur far beyond the stimulated 

region because of the low matrix permeability. This observation was also stated by 

Carlson and Mercer.15  

In the current work, the hydraulically fractured horizontal shale gas well will be 

modeled as a horizontal well draining a rectangular geometry containing a network of 

fractures separated by matrix blocks (dual-porosity system) as suggested by Fig. 1.3. The 

solutions presented by El-Banbi16 for a linear dual porosity model will be extended and 

applied to this system. The effects of desorption and diffusion will be assumed 

negligible in this paper since they will not be important at reservoir pressures of interest 

in the Barnett shale as previously described. 

 

1.2   Objectives  

The objectives of this research are  

• To develop mathematical models to analyze these multi-stage hydraulically 

fractured horizontal wells 

• To develop a rate transient analysis procedure for analyzing these wells to 

enable the determination of reservoir characteristics, drainage 
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volume/original gas-in-place (OGIP), fracture network characteristics and 

assessment of the effectiveness of different hydraulic fracture treatments. 

 

 

1.3   Organization of This Dissertation 

The study is divided into eight chapters. The outline and organization of this dissertation 

are as follows: 

Chapter I presents an overview of shale gas. The research problem is described 

and the project objectives are presented. 

 Chapter II presents an extensive literature review. The dual porosity model and 

its applications to liquids and gas are reviewed. Horizontal well applications are also 

reviewed.  

Chapter III describes the linear model to be used in this work. Validation of the 

linear model is also presented. 

Chapter IV presents new analysis equations developed using the linear model. 

Chapter V discusses the transient linear regime in detail and discusses the effects 

of shape factors and area-volume ratio. 

Chapter VI describes the constant bottomhole pressure effect of skin in linear 

reservoirs  

Chapter VII presents development of new type curves with application to sample 

field data.  

Chapter VIII presents conclusions and recommendations.  
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CHAPTER II 

LITERATURE REVIEW 

 

2.1   Introduction 

Initial studies of fractured reservoirs were concerned with applications to well test 

analysis of reservoir flow of liquids (constant rate, pressure buildup and drawdown). 

Subsequent research considered production data analysis (constant bottomhole pressure) 

and extension of existing models to gas flow. Most of the literature is devoted to radial 

reservoir models. In this chapter, review of literature will be conducted in three sections. 

The first section discusses the dual porosity model and its application to flow of slightly 

compressible fluids. The second section discusses the application of the dual porosity 

model to gas flow. The final section discusses the application of the dual porosity model 

to analysis of naturally fractured reservoirs with horizontal wells. 

 

2.2   Dual Porosity Model (Slightly Compressible Fluids)  

Naturally fractured reservoirs (tight gas, shale gas and coal gas) have been described by 

the dual porosity model. The dual porosity model was first formulated by Barenblatt et 

al.17 and later extended to well test analysis by Warren and Root.18 The Warren and Root 

model forms the basis of modern day analysis of naturally fractured reservoirs. In the 

Warren and Root model, the naturally fractured reservoir is modeled by uniform 

homogeneous matrix blocks separated by fractures as shown in Fig. 2.1. The matrix 

blocks provide storage of the fluid to be produced while the fractures provide the 
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permeability. When a producing well is present, the fluid flows from the matrix to the 

fractures and to the well. There have been two types of approach in applying the dual 

porosity model based on how flow of the fluid from the matrix to the fractures is 

modeled – pseudosteady state and transient. 

 

 

Fig. 2.1 - Dual Porosity Model.
18 

 

2.2.1   Pseudosteadystate Matrix-Fracture Transfer Models 

An equation for interporosity flow from the matrix to the fractures at a mathematical 

point under pseudosteadystate (quasisteadystate or semisteadystate) conditions was 

presented by Warren and Root.18 
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Where q is the drainage rate per unit volume, σ  is the Warren and Root shape factor, pm 

is the matrix pressure at a mathematical point. 

Two new parameters which are used to characterize naturally fractured reservoirs 

were presented by Warren and Root18 - the interporosity flow parameter, λ (a measure of 

the flow capacity of the system) and the storativity, ω (a measure of the storage capacity 

of the fractures). Warren and Root18 were the first to apply Laplace transformation to 

obtain “f(s)” and solve for the dimensionless pressure distribution. A method of 

analyzing pressure buildup data for the infinite radial reservoir case was presented. 

Buildup plots were found to exhibit parallel lines on a semilog plot separated by an S-

shaped transition period. The first line represents flow in the fracture system only while 

the second line represents flow in the total system (matrix and fractures). 

Kazemi et al.19 investigated the suitability of applying the Warren and Root 

model to interpret interference results. They presented a model which extends the 

Warren and Root model to interference testing. They applied the Laplace transformation 

to obtain “f(s)” and solve for the dimensionless pressure distribution. They also 

numerically solved the model equations by finite-difference methods and included 

vertical pressure gradients. It was concluded that an equivalent homogeneous model was 

not appropriate at early times but could be used at later times. It was also concluded that 

the Warren and Root model yielded similar results as their numerical solution and was 

thus appropriate for analyzing naturally fractured reservoirs. 
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Odeh20 developed an infinite radial reservoir model for the behavior of naturally 

fractured reservoir. The model incorporates some limiting assumptions. The Laplace 

transformation is also utilized. Two parallel straight lines were not observed on a 

semilog plot contrary to Warren and Root’s results. It was concluded that buildup and 

drawdown plots of naturally fractured reservoir transient responses are similar to those 

of homogeneous reservoirs. 

Mavor and Cinco-Ley21 present solutions for the constant rate case in an infinite 

radial reservoir with and without wellbore storage and skin; and a bounded radial 

reservoir. Solutions are also presented for the first time for a constant pressure inner 

boundary with skin in an infinite radial reservoir.  

Da Prat et al.22 extended the Warren and Root18 solutions to constant pressure 

inner boundary conditions and bounded outer boundary cases for the radial reservoir. 

They also present type curves for analysis. The results do not appear to represent 

realistic field cases. 

Bui et al.
23 present type curves for transient pressure analysis of partially 

penetrating wells in naturally fractured reservoirs by combining the Warren and Root 

model with the solution for  these wells in homogeneous reservoirs. 

 

2.2.2   Transient Matrix-Fracture Transfer Models 

Kazemi24 used a slab matrix model with horizontal fractures and unsteady state matrix-

fracture flow to represent single-phase flow in the fractured reservoir. The assumptions 

include homogeneous behavior and isotropic matrix and fracture properties. The well is 
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centrally located in a bounded radial reservoir. A numerical reservoir simulator was 

used. It was concluded that the results were similar to the Warren and Root model when 

applied to a drawdown test in which the boundaries have not been detected. Two parallel 

straight lines were obtained on a semilog plot. The first straight line may be obscured by 

wellbore storage effects and the second straight line may lead to overestimating ω when 

boundary effects have been detected. 

De Swaan25 presented a model which approximates the matrix blocks by regular 

solids (slab and spheres) and utilizes heat flow theory to describe the pressure 

distribution. It was assumed that the pressure in the fractures around the matrix blocks is 

variable and the source term is described through a convolution term. Approximate line-

source solutions for early and late time are presented. The late time solutions are similar 

to those for early time except that modified hydraulic diffusivity terms dependent on 

fracture and matrix properties are included. The results are two parallel lines 

representing the early and late time approximations. The late time solution matches 

Kazemi24 for the slab case. De Swaan’s model does not properly represent the transition 

period. 

Najurieta26 presented a transient model for analyzing pressure transient data 

based on De Swaan’s25 theory. Two types of fractured reservoir were studied- stratum 

(slabs) and blocks (approximated by spheres). The model predicted results similar to 

Kazemi.24 

Serra et al.27 present methods for analyzing pressure transient data. The slab 

model used is similar to De Swaan25 and Najurieta.26 The model considers unsteady state 
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matrix fracture transfer and is for an infinite reservoir. Three flow regimes were 

identified. Flow Regime 1 and 3 are the Warren and Root18 early and late time semilog 

lines. A new flow Regime 2 was also identified with half the slope of the late time 

semilog line.  

Chen et al.
28 present methods for analyzing drawdown and buildup data for a 

constant rate producing well centrally located in a closed radial reservoir. The slab 

model similar to De Swaan25 and Kazemi24 is used. Five flow regimes are presented. 

Flow regimes 1, 2 and 3 are associated with an infinite reservoir and are described in 

Serra et al.27 Flow regime 1 occurs when there is a transient only in the fracture system. 

Flow regime 2 occurs when the transient occurs in the matrix and fractures. Flow regime 

3 is a combination of transient flow in the fractures and “pseudosteady state” in the 

matrix. Pseudosteadystate in the matrix occurs when the no-flow boundary represented 

by the symmetry center line in the matrix affects the response. Two new flow regimes 

associated with a bounded reservoir are also presented. Flow regime 4 reflects unsteady 

linear flow in the matrix system and pseudosteadystate in the fractures.. Flow Regime 5 

occurs when the response is affected by all the boundaries (pseudosteady-state). 

Streltsova29 applied a “gradient model” (transient matrix-fracture transfer flow) 

with slab-shaped matrix blocks to an infinite reservoir. The model predicted results 

which differ from the Warren and Root model in early time but converge to similar 

values in late time. The model also predicted a linear transitional response on a semi-log 

plot between the early and late time pressure responses which has a slope equal to half 
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that of the early and late time lines. This linear transitional response was also shown to 

differ from the S-shaped inflection predicted by the Warren and Root model. 

Cinco Ley and Samaniego30 utilize models similar to De Swaan25 and Najurieta26 

and present solutions for slab and sphere matrix cases. They utilize new dimensionless 

variables – dimensionless matrix hydraulic diffusivity, and dimensionless fracture area. 

They describe three flow regimes observed on a semilog plot – fracture storage 

dominated flow, “matrix transient linear” dominated flow and a matrix 

pseudosteadystate flow. The “matrix transient linear” dominated flow period is observed 

as a line with one-half the slopes of the other two lines.27,29 It should be noted that the 

“matrix transient linear” period yields a straight line on a semilog plot indicating radial 

flow and might be a misnomer. The fracture storage dominated flow is due to fluid 

expansion in the fractures. The “matrix transient linear” period is due to fluid expansion 

in the matrix. The matrix pseudosteadystate period occurs when the matrix is under 

pseudosteadystate flow and the reservoir pressure is dominated by the total storativity of 

the system (matrix + fractures). It was concluded that matrix geometry might be 

identified with their methods provided the pressure data is smooth. 

Lai et al.31 utilize a one-sixth of a cube matrix geometry transient model to 

develop well test equations for finite and infinite cases including wellbore storage and 

skin. Their model was verified with a numerical simulator employing the Multiple 

Interacting Continua (MINC) method. 

Ozkan et al.12 present analysis of flow regimes associated with flow of a well at 

constant pressure in a closed radial reservoir. The rectangular slab model similar to De 



 16 

Swaan25 and Kazemi24 is used. Five flow regimes are presented. Flow regimes 1, 2 and 3 

are described in Serra et al.27 Two new regimes are presented- Flow regime 4 reflects 

unsteady linear flow in the matrix system and occurs when the outer boundary influences 

the well response and the matrix boundary has no influence. Flow Regime 5 occurs 

when the response is affected by all the boundaries. 

Houze et al.32 present type curves for analysis of pressure transient response in 

an infinite naturally fractured reservoir with an infinite conductivity vertical fracture. 

Stewart and Ascharsobbi33 present an equation for interporosity skin which can 

be introduced into the pseudosteadystate and transient models. The effect of 

interporosity skin is to delay flow from the matrix to the fractures. This equation is given 

by 

sm

smi
ma

kh

hk
s

2
=  

where kmi is the intrinsic matrix permeability, hs is the thickness of the interporosity skin 

layer, hm is the matrix block dimension and ks is the permeability of the interporosity 

skin layer. 

It should be noted that all the transient models previously described were 

developed for the radial reservoir cases (infinite or bounded).  

El-Banbi16 was the first to present transient dual porosity solutions for the linear 

reservoir case. New solutions were presented for a naturally fractured reservoir using a 

dual porosity, linear reservoir model. Solutions are presented for a combination of 

different inner boundary (constant pressure, constant rate, with or without skin and 
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wellbore storage) and outer boundary conditions (infinite, closed, constant pressure). 

This model will be used in this work. 

 

2.3   Dual Porosity Model (Gas)  

Kucuk and Sawyer34,35presented a model for transient matrix-fracture transfer for the gas 

case. Previous work had been concerned mainly with modeling slightly compressible 

(liquid) flow. They considered cylindrical and spherical matrix blocks cases. They also 

incorporate the pseudopressure definitions for gases. Techniques for analyzing buildup 

data are also presented for shale gas reservoirs. Their model results plotted on a 

dimensionless basis matched Warren and Root18 and Kazemi24 for very large matrix 

blocks at early time but differ at later times. They also conclude from their tests that 

naturally fractured reservoirs do not always exhibit the Warren and Root behavior (two 

parallel lines). 

Carlson and Mercer15 coupled Fick’s law for diffusion within the matrix and 

desorption in their transient radial reservoir model for shale gas. Modifications include 

use of the pressure-squared forms valid for gas at low pressures to linearize the 

diffusivity equation. They provide a Laplace space equation for the gas cumulative 

production from their model and use it to history match a sample well. They also show 

that semi-infinite behavior (portions of the matrix remain at initial pressure and is 

unaffected by production from the fractures) occurs in shale gas reservoirs regardless of 

matrix geometry. They present an equation for predicting the end of this semi-infinite 

behavior. 
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Gatens et al.36 analyzed production data from about 898 Devonian shale wells in 

four areas. They present three methods of analyzing production data – type curves, 

analytical model and empirical equations.  The empirical equation correlates cumulative 

production data at a certain time with cumulative production at other times. This avoids 

the need to determine reservoir properties. Reasonable matches with actual data were 

presented. The analytical model is used along with an automatic history matching 

algorithm and a model selection procedure to determine statistically the best fit with 

actual data. 

Watson et al.37 present a procedure that involves selection of the most 

appropriate production model from a list of models including the dual porosity model 

using statistics. The analytical slab matrix model presented by Serra et al.27 is utilized. 

Reservoir parameters are estimated through a history matching procedure that involves 

minimizing an objective function comparing measured and estimated cumulative 

production. They incorporate the use of a normalized time in the analytical model to 

account for changing gas properties with pressure. Reasonable history matches were 

obtained with sample field cases but forecast was slightly underestimated. 

Spivey and Semmelbeck38 present an iterative method for predicting production 

from dewatered coal and fractured gas shale reservoirs. The model used is a well 

producing at constant bottomhole pressure centered in a closed radial reservoir. A slab 

matrix is incorporated into these solutions. These solutions are extended to the gas case 

by using an adjusted time and adjusted pressure. Their method also uses a total 

compressibility term accounting for desorption.  
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2.4 Horizontal Wells in Naturally Fractured Reservoirs 

There have been different traditional approaches to modeling horizontal wells in 

homogeneous reservoirs.  Horizontal wells are normally modeled as infinite conductivity 

(pressure is uniform along the wellbore). It is not practical, as Gringarten et al.39  

demonstrated with infinite conductivity fractures, to compute the wellbore pressure from 

the infinite-conductivity model because of the computational work involved. Gringarten 

et al.39 suggested computing the pressure drop from the uniform flux model (flowrate is 

the same for each individual segment along a wellbore) at a value of xD = 0.732. This 

value was the point at which the uniform flux model yields the same results as the 

infinite conductivity model. This computation has also been incorporated into horizontal 

well models.40-46  

The mathematical problem to be solved for the anisotropic case is usually given 

by 
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Several authors have used a model of a line source well in a semi-infinite45,47 or 

infinite reservoir.40-44,48-50 Others41-44,48,51 have used a line source well in a closed 

rectangular reservoir. The infinite model has no-flow boundaries at the top and bottom. 

The semi-infinite reservoir model has three no-flow boundaries (top, bottom and left). 

The closed reservoir model has all four no-flow boundaries.  
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It should be noted that in these models, the well is usually not completely 

penetrating but the models by Ozkan 41-44 and Odeh and Babu51 provide this possibility 

once the appropriate well and reservoir dimensions are specified. 

The differential equation and boundary conditions have been mostly solved by 

the Newman product method and source functions.40-45 These concepts for the 

homogeneous reservoir case have been extended to model horizontal wells in naturally 

fractured reservoirs. 

Ozkan41-44 presents Laplace space solutions for horizontal wells in a reservoir for 

infinite and closed rectangular boundary cases in terms of f(s). The line source approach 

previously described is utilized. As demonstrated by Ozkan, there is a possibility of 

applying this to the naturally fractured reservoir by substituting the appropriate f(s) for a 

selected matrix geometry. 

Carvalho and Rosa52 present solutions for an infinite conductivity horizontal well 

in a semi-infinite reservoir. The reservoir is homogeneous and isotropic. The horizontal 

well is modeled as a line source. The solutions for the homogeneous case were then 

extended to the dual porosity case by substituting s*f(s) for s in Laplace space for the 

pressure derivative (homogeneous). Wellbore storage and skin are incorporated into their 

model using Laplace space. 

Aguilera and Ng53 present analytical equations for pressure transient analysis. 

Their model is a horizontal well in a semi-infinite, anisotropic, naturally fractured 

reservoir. Transient and pseudosteadystate interporosity flow is considered. Six flow 

periods are identified –First radial flow (at early times, from fractures), Transition 
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period, Second radial flow in vertical plane, First linear flow, Pseudoradial flow and 

Late linear -  with expressions for determining skin provided. 

Ng and Aguilera54 present analytical solutions using a line source and then 

compute pressure drop on a point away from the well axis to account for the radius of 

the actual well. A method for determining the numerical Laplace transform is presented. 

This method was then used to compute the dual porosity response (pseudosteady state). 

Their solutions were compared to other solutions. 

Thompson et al.55 present an algorithm for computing horizontal well response in 

a bounded dual porosity reservoir. Their model is a horizontal well in a closed 

rectangular reservoir. Their procedure involves converting a known analytic solution to 

Laplace space numerically point by point and then inverting using the Stehfest 

algorithm.56 This is similar to the procedure presented by Ohaeri and Vo46 who use a 

numerical Laplace space algorithm57 but also present alternative equations determined 

by parameter ranges which result in computational efficiency. 

Du and Stewart58 describe situations which can yield linear flow behavior – a 

multi-layered reservoir (one layer has a very high permeability relative to the other); 

naturally fractured reservoir (flow from matrix into horizontal well intersecting 

fractures); and areal anisotropy (vertical fractures aligned predominantly in one 

direction). Their model is that of a horizontal well in a homogeneous, infinite acting 

reservoir. Three flow regimes are identified – radial vertical flow, linear flow opposite 

completed section and pseudoradial flow at late time. A bilinear flow behavior was also 

identified. 
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The model presented in this work has the advantage of being simpler than the 

horizontal well models. The model will be presented in Chapter III. It also allows the 

direct use of Laplace space techniques not easily seen with these horizontal well models. 

Review of literature also shows that the transient linear flow regime has not been 

investigated in the manner presented in this work. 
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CHAPTER III 

MATHEMATICAL MODEL 

 

3.1   Introduction 

A schematic of the model to be used in this work is shown in Fig. 3.1. A rectangular grid 

is imposed on the microseismic results as shown in Fig. 3.1. The model is shown in 

detail with representative cube matrix blocks in Fig. 3.2.  The features of the model to be 

used in this work are described below. 

• A closed rectangular geometry reservoir containing a network of natural and 

hydraulic fractures (as in Mayerhofer et al.14). The fractures do not drain beyond 

the boundaries of this rectangular geometry. 

• The perforated length of the well , xe is the same as the width of the reservoir.  

• Flow is towards the well at the centre of the rectangular geometry 

• It is a dual porosity system consisting of matrix blocks and fractures 

• The transient dual porosity solutions presented for a linear model by El-Banbi16 

are applied and extended to this system. Modifications will be made to this linear 

model to include the convergence skin accounting for flow towards an actual 

horizontal well. 

The slab matrix model is more commonly used in the literature. This model will 

be similarly adopted and is shown in Fig. 3.3. The mathematical details of this linear 

dual porosity model (slab matrix) are given in Appendix B. 
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Fig. 3.1 –  Hydraulically Fractured Horizontal Well in Shale Gas Reservoir. 

Rectangular grid superimposed on system to represent our model. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2 –  Schematic of Cube Matrix Linear Model of Hydraulically Fractured 

Well. Cross-sectional area at well face, Acw =2xeh. 
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Fig. 3.3 – Schematic of Slab Matrix Linear Model of Hydraulically Fractured Well. 

Cross-sectional area at well face, Acw =2xeh. 

 

3.2   Matrix (Slab) Equations 

The  diffusivity equations for the matrix  along with the initial and boundary conditions 

are given by Eqs. B-4 to B-6 in Appendix B. 
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Outer boundary: 
DLfzDLm pp

D

=
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The dimensionless time and pressure variables are given for the slightly compressible 

fluid by 
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and for the gas case by 
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kf  is defined as the bulk fracture permeability of the dual porosity models. 

 

3.3  Fracture Equations 

The diffusivity equations for the fracture and the initial and boundary conditions are 

given by Eq. B-12 in Appendix B. The second term on the right side of the equation 

represents the source term from the matrix. 
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3.4  Constant Pressure Inner Boundary Solution 

The solution to the system presented in Eqs. 3.1 and 3.3 in Laplace space is given by Eq. 

B-23 in Appendix B 
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In Laplace space, the constant pwf case at the wellbore can be found from the solution for 

the constant rate case given by Eq. 3.4 using the Van Everdingen and Hurst relation59 

given by Eq 3.5 
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Eq. 3.5 thus becomes for the constant pwf  case 
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Eq. 3.6 can then be inverted to obtain the solutions as a function of time using suitable 

Laplace numerical inversion algorithms such as Stehfest’s inversion algorithm.56 

 

3.5  Convergence Skin 

The convergence skin accounts for distortion of the flow from linear to radial around the 

wellbore and is given by Lichtenberger60 as  
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where dz is the distance to the nearest horizontal boundary and kV and kH are horizontal 

and vertical permeabilities respectively. 

The effect of including the convergence skin into the linear model is illustrated in 

Fig. 3.4. This accounts for flow towards an actual horizontal well present in the center of 

the rectangular reservoir distinct from flow towards a plane in the El-Banbi model.16 

 

 

 

 

 

 

Fig. 3.4 – Side View of Linear Model (Rectangular Reservoir) with and without 

Convergence Skin. In the figure on the left,  linear flow occurs towards a plane. In 

the figure on the right, the inclusion of the convergence skin accounts for the 

distortion of the flowlines from linear to radial around the horizontal wellbore. 

 

Equations for the beginning of the stabilization of the convergence skin in linear flow 

were derived in Appendix I, and are given by Eqs. I-15 and I-20 for the constant rate and 

constant pwf  cases respectively as  
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3.6 Validation of Model 

In this section, a set of runs will be performed to compare the linear model previously 

described to Fekete (WellTest32 Module version 7.0.0.2), the numerical simulator 

ECLIPSE version 2007.1. and Ozkan’s Laplace space solution41 for horizontal well in a 

bounded rectangular reservoir. More extensive tests are described in Appendix E. 

The problem is to determine the constant rate transient response of a fully 

penetrating horizontal well in the center of a bounded rectangular reservoir as in Fig. 3.3. 

The data for the problem set is given in Table 3.1. For simplicity, the reservoir will be 

assumed to be homogeneous and the fluid slightly compressible. 

Ozkan’s Laplace space solution (too lengthy to be reproduced here) is given by 

Eq. 2.6.42 in his dissertation.41 This is inverted from Laplace space to yield the 

dimensionless pressure, pDOzkan. An equation for the pseudoskin factor41,42 given below is 

added to pDOzkan to yield the horizontal well response. 

( )






















+−= wzDwzDwD

xD

rrz
kkL

s
2

sin2
2

sin4ln
2

1 ππ
     …………………………(3.10) 

Ozkan’s dimensionless pressure and time variables are defined as 

( )
( )2

2
00633.0           ,

2.141
wt

DOzkan

wfi

DOzkan
Lc

kt
t

qB

ppkh
p

φµµ
=

−
=   where Lw is the length of the 

horizontal well. 

The following is input into Ozkan’s model to adapt it to our test case.  

xeD = 2, yeD = 1 (rectangular reservoir dimensions), LD = 33.33, xwD =1,ywD = 0.5, zwD=0.5 

(location of well in rectangular reservoir). The response is computed at xD=0.732, yD = 

0.5, zD = 0.778. These dimensionless variables are those defined by Ozkan.41 
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It is assumed above that kx=ky=kz 

Table 3.1 – Dataset for Model Validation Runs. 

rw 0.25 ft 

h 30 ft 

φ 0.1 

k  1 md 

pi 5,000 psi 

Lw (xe) 2,000 ft 

ye 500 ft 

q 100 stb/d 

Β 1 rb/stb 

µ 1 cp 

ct 3x10-6 psi-1 

 

 

The results from programming Ozkan’s Laplace space solution is checked 

against the analytical solution given by Eq. 2.6.59 in his dissertation.41 It can be seen 

from Fig. 3.5  that our results obtained from using Ozkan’s Laplace solution appears to 

be comparable to the analytical solution. 
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Fig. 3.5 – Verification of Ozkan’s Laplace Solution for Horizontal Well in a 

Rectangular Reservoir. The half-slope linear and pseudoradial regions are shown. 

The Laplace solution appears to be comparable to the analytical solution. 

 

Our linear model (constant rate) solution is given by Eq. 3.4. with  f(s) =1 for the 

homogeneous case. The convergence skin is computed as 2.95 from Eq. 3.7. 
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This convergence skin is then converted to linear variables using 
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This value is added to the dimensionless pressure using Eq. 3.11 
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The 2π in the definition for skin was given by El-Banbi16 and will be adopted in the 

current work. 

The dimensionless linear model variables given in Eq. 3.2 is used to convert the 

results to pressure and time. 

The results from the runs are given in Fig. 3.6. It can be observed from Fig 3.6 

that the linear model (with convergence skin) matches Fekete and ECLIPSE but differs 

from Ozkan’s solutions. It is believed that the Ozkan solution differs because of his 

equation for pseudoskin factor which might not properly account for the convergence 

skin. 

It can thus be concluded that our linear model with the inclusion of the 

convergence skin is valid for the purposes of this work. 

The beginning of the stabilization of the convergence skin can be computed for 

this example from Eq. 3.8 as 

( )( )
000597.0

000,28

30

8
===

ππ w

DAc
L

h
t                                  …………………………(3.12) 

The time of intersection of the radial and linear flow periods is determined from the 

derivative in Fig. 3.6 as 0.00314 days. This time yields a dimensionless time of 

( )( )
( )( )( )( )

000552.0
000,12010311.0

00314.0100633.0
6

==
−

x
tDAc

                       …………………………(3.13) 

where ( )( ) 2000,12030000,22 ftAcw ==  

The dimensionless time computed in Eq. 3.13 is similar to that computed from  Eq. 3.12. 

It can thus be concluded that Eq. 3.8 is appropriate. 
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Fig. 3.6 – Comparison of Linear model (homogeneous, zero skin, closed) with 

Fekete, ECLIPSE and Ozkan Laplace solution. The convergence skin has been 

added on to the linear model. The Linear model matches Fekete and ECLIPSE but 

differs from Ozkan’s solution.  
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CHAPTER IV 

DEVELOPMENT OF ANALYSIS EQUATIONS 

 

4.1   Introduction 

The model used to represent the multi-stage hydraulically fractured shale gas well has 

been described in Chapter III. It should be noted that the slab matrix geometry (shown in 

Fig. 3.3) is used in this work since it is most commonly used in the literature. 

Applications to the other matrix geometry types (two-dimensional: cylinder, columns; 

three-dimensional: sphere, cubes) will be demonstrated in Chapter V. The linear dual 

porosity model given in El-Banbi16 will be used as a basis for the work in this chapter. 

The mathematical details of this linear dual porosity model are given in Appendix B.  

From Eq. 3.6 and B-25, the Laplace space solution for the constant pressure inner 

boundary, closed outer boundary reservoir (slab matrix) is given by 

( )

( )

( )












−

+
=

−

−

De

De

yssf

yssf

DL e

e

ssf

s

q 2

2

1

121 π                     ……………………………(4.1) 

where  dimensionless variables are defined as 

[ ]
Tq

pmpmAk

q g

wficwf

DL 1422

)()(1 −
= ,  

cw

e
De

A

y
y =                 ……………………………(4.2) 

where  s is the Laplace space variable and  the inverse is 
( ) cwmft

f

DAc
Ac

tk
t

+

=
φµ

00633.0
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Additionally for the slab matrix case,  

( ) ( )

Ac

Ac s

s
sf

λ

ω
ω

λ
ω

−
−+=

13
tanh1

3
)(               ……………………………(4.3) 

The dual porosity parameters are given by  cw

f

m
Ac A

k

k

L2

12
=λ  and  

( )

( ) ( )
mtft

ft

cc

c

φφ

φ
ω

+
=  

A parametric study conducted with the linear model given by Eq. 4.1 is summarized in 

Figs. 4.1 and 4.2.  Figs. 4.1 and 4.2 show results for reservoir sizes yDe = 1 and 100 for 

ranges of ω (10-3 and 10-7) and λAc (10-3,10-5 and 10-7). The homogeneous case (ω =1) is 

also added to the plot. 
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Fig. 4.1 – Effect of ωωωω and λλλλΑΑΑΑc    on Linear Model Response (yDe = 1). λλλλAc =10
-3

, 10
-5

,10
-7

 

for values of ωωωω = 10
-3

 and 10
-7

. There is no effect of ω ω ω ω on the late time transient 

linear response for a fixed λλλλΑΑΑΑc.  
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It can be observed from Fig. 4.1 that the homogeneous response is above the dual 

porosity response. It can also be observed that for ω = 10−3, all the responses for λAc = 

10-3, 10-5,10-7  converge to the same initial half-slope (indicative of linear flow in the 

fractures) at early times and different half slopes at later times. The half slope at later 

times is indicative of linear flow in the matrix. As ω decreases to 10−7 (dotted lines), the 

common initial half slope disappears and the responses show only the late time half 

slopes. The late time responses for each of the λΑc is similar for ω = 10−3 and 10-7. It can 

thus be concluded that there is no effect of ω on the late time transient response for a 

particular λΑc. It can also be concluded that the initial half slope region preceding the 

later time half slope region is only evident as λΑc and ω increases. 
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Fig. 4.2 – Effect of ωωωω and λλλλΑΑΑΑc    on Linear Model Response (yDe = 100). λλλλAc =10
-3

, 10
-5

, 

10
-7

 for values of ωωωω = 10
-3

 and 10
-7

   The parameters ω  ω  ω  ω  and    λλλλΑΑΑΑc affect the transient 

response significantly. 
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The parameters in Fig. 4.2 are similar to Fig. 4.1 except that yDe has increased 

from 1 to 100.  Similar to Fig. 4.1, the homogeneous response is above the dual porosity 

response. It can be observed from Fig. 4.2 that the ω = 10−3 cases also indicate the 

common initial half-slope and then progressively indicate a quarter slope (bilinear flow 

caused by simultaneous linear flow in the matrix and fractures). The λΑc=10-5, ω =10-3 

and λΑc = 10-7, ω =10-3 cases indicate a bilinear flow followed by linear flow (half-

slope). As ω decreases to 10−7 (dotted lines) , the early linear flow disappears and the 

only transient responses are bilinear (λΑc=10-3, ω =10-7) and bilinear followed by linear 

(λΑc=10-5, ω =10-7  and λΑc=10-7, ω =10-7).   

It appears that relatively large λΑc and ω result only in the bilinear transient flow. 

As λΑc and ω decrease, bilinear followed by an increasing transient linear regime is 

observed.   

It can be concluded from Figs. 4.1 and 4.2 that relatively smaller yDe reservoirs 

exhibit long periods of late-time transient linear flow only as shown in Fig. 4.1 and 

bilinear flow occurs with large reservoirs. 

There are thus five flow regions identified and equations are subsequently 

presented for each region. All the equations are derived beginning with Eq. 4.1. The 

details of the development are shown in Appendix C. The flow regimes are illustrated in 

Fig. 4.3. 
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Fig. 4.3 –  Illustration of the Five Flow Regions. This is the same case as in Fig. 4.2 

for  (yDe = 100). λλλλAc =10
-3

, 10
-5

, 10
-7

 for values of ωωωω = 10
-3

. 

 

 

4.2  Region 1 

This represents early transient linear flow in the fracture system only. There is negligible 

drainage from the matrix. This occurs at early times as shown in Fig 4.3. As shown in 

Eq. C-11 in Appendix C-1, the equation is given by  

ωππ DAc

DL
t

q
2

1
=                                     ……………………………(4.4) 

and the approximate valid range is given by  Eq. C-17 

9
0

2 ωDe
DAc

y
t <<                                                            ……………………………(4.5) 
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Applying the dimensionless pressure and time definitions given in Eq. 4.2 to convert Eq. 

4.4 to usual variables yields 

( ) 1
~
11262

mc

T
Ak

mft

cwf

+

=
φµω

                                                 ……………………………(4.6) 

Where  1
~m  is the slope obtained from a plot of  

[ ]
g

wfi

q

pmpm )()( −
  against  t  

If  Region 1 is observed, Eq. 4.6 may be used to determine the fracture permeability if 

the other parameters are known. 

 

4.3  Region 2 

This represents bilinear flow caused by simultaneous transient flow in the fracture 

system and matrix. It is indicated by a one-quarter slope on a log-log plot as shown in 

Fig. 4.3. As shown in Eq. C-27 in Appendix C-2, the equation is given by  

25.0

25.0

 133.10 DAc

Ac

DL
t

q
λ

=      ……………………………(4.7) 

This region has been found occur only when AcDey λ3> . Otherwise it bends down to 

Region 4 as shown in Fig. 4.3. This region is valid approximately when  
Ac

DAct
λ3

1
<  or 

when 
33

4

AcDe
DAc

y
t

λ








<                                        ……………………………(4.8) 

as shown in the derivations given in Appendix C ( Eq. C-36) 

Applying the dimensionless pressure and time definitions given in Eq. 4.2 to 

convert Eq. 4.7  to usual variables yields 
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( )[ ] 2
25.0 ~

14064

mck

T
Ak

mftm

cwf

+

=
φµσ

                               ……………………………(4.9) 

Where  2
~m  is the slope obtained from a plot of  

[ ]
g

wfi

q

pmpm )()( −
  against  t0.25

 

If  Region 2 is observed, Eq. 4.9 may be used to determine the fracture permeability and 

the shape factor, σ , if the other parameters are known. 

 

4.4  Region 3 

This represents the homogeneous reservoir case response (An equation for the complete 

analytical homogeneous reservoir transient response is given in Appendix D). This is 

also indicated by a one-half slope on a log-log plot as shown in Fig. 4.3. As shown in 

Appendix C-3, the equation is given by Eq. C-44 

DAch

DLh
t

q
ππ2

1
=                                       ……………………………(4.10) 

Where [ ]
Tq

pmpmAk

q g

wficw

DLh 1422

)()(1 −
=

  ;  
( ) cwt

DAch
Ac

kt
t

φµ

00633.0
=  and k is the homogeneous reservoir 

permeability. 

This region has been found occur only when AcDey λω3≥ . 

This region is valid approximately when  
9

2

De

DAch

y
t <  ……………………………(4.11) 

as shown in the derivations given in Appendix C ( Eq. C-50) 

Applying the dimensionless pressure and time definitions given in Eq. 4.2 to 

convert Eq. 4.10 to usual variables yields 
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( ) 3
~
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Ak

mft
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=
φµ

                                               ……………………………(4.12) 

where  3
~m  is the slope obtained from a plot of  

[ ]
g

wfi

q

pmpm )()( −
  against  t  

If Region 3 is observed, Eq. 4.12 may be used to determine the bulk reservoir 

permeability if the other parameters are known. 

 

4.5  Region 4 

This represents the transient linear case when the transient response is primarily from 

drainage of the matrix from the outer edges towards the matrix block centers. This is 

also indicated by a one-half slope on a log-log plot as shown in Fig. 4.3. As shown in 

Appendix C-4, the equation is given by Eq. C-61 

De
Ac

DAc

DL y
t

q
32

1 λ

ππ
=                                                  ……………………………(4.13) 

and the approximate valid range is given by Eq. C-73 
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DAc
DeAc t
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4
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                                     ……………………………(4.14) 

Applying the dimensionless pressure and time definitions given in Eq. 4.2 to convert Eq. 

4.13 to usual variables along with Eqs. 4.15 and 4.16  (for the slab matrix case) yields 

Eq. 4.17 
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( ) 4
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φµ

=                                                 ……………………………(4.17) 

where  4
~m  is the slope obtained from a plot of  

[ ]
g

wfi

q

pmpm )()( −
  against  t . It is also 

assumed that ( ) ( )
mtmft cc φµφµ ≈

+
  If Region 4 is observed, Eq. 4.17 may be used to 

determine the matrix drainage area, Acm, if the other parameters are known. 

It should be noted that Eq. 4.13 can be written as 

DAcm

DLm

t
q

ππ2

1
=                                                      ……………………………(4.18) 

where  [ ]
Tq

pmpmAk

q g

wficmm

DLm 1422

)()(1 −
=   ;  

( ) cmmt

m
DAcm

Ac

tk
t

φµ

00633.0
=  and km is the reservoir matrix 

permeability. 

Eq. 4.18 can easily be converted to Eq. 4.17. 

This implies that Region 4 depends only on matrix properties km and Acm and is not 

affected by fracture flow properties. 

 

4.6  Region 5 

This represents the period when the reservoir boundary begins to influence the transient 

response as shown in Fig. 4.3. The transient response in the matrix blocks have reached 

their central inner no-flow symmetry lines. No equation is presented for this region in 

this study. Unlike the slightly compressible fluid case (liquid), the use of pseudopressure 

relations for gas to linearize and solve the diffusivity equation will only be accurate for 

the transient regions (Regions 1 to 4). The boundary dominated Region 5 requires the 

use of the following equations simultaneously. 
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( ) ( )[ ]wfCPg pmpmJq −=                                                 ……………………………(4.18) 

where  JCP is the productivity index for the constant pressure case. 

and 












−
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p p
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1                                                        ……………………………(4.19) 

Which is the material balance equation for a closed gas reservoir. 

 

All the derived equations are summarized in Tables 4.1. A summary of the 

equivalent equations for the constant rate inner boundary case is also presented in Table 

4.2. 
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Table 4.1 – Summary of Analysis Equations for the Constant pwf Inner Boundary 

Case (Slab Matrix). 

Region Equation Analysis Equation 

( ) ( )
tvs
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ωππ DAc

DL
t

q
2

1
=  

( ) 1
~
11262

mc

T
Ak

mft

cwf

+

=
φµω

 

2 – Bilinear 
25.0

25.0

  133.10 DAc

Ac

DL
t

q
λ

=  *
( )[ ] 2

25.0 ~
14070

mck

T
Ak

mftm

cwf

+

=
φµσ

 

3 – Homogeneous 

DAch

DLh
t

q
ππ2

1
=  

( ) 3
~
11262

mc

T
Ak

t

cw

φµ
=  

4 – Matrix transient linear 
De

Ac

DAc

DL y
t

q
32

1 λ

ππ
=  

or 

DAcm

DLm

t
q

ππ2

1
=  

( ) 4
~
11262

mc

T
Ak

mft

cmm

+

=
φµ

 

5 – Boundary-dominated      ------------ -------------- 

* This case is the ( ) ( )
g

wfi

q

pmpm −   vs  4 t plot 

 

 

 

 

 



 45 

 

Table 4.2 – Summary of  Analysis Equations for the Constant Rate Inner Boundary 

Case (Slab Matrix). 

Region Equation Analysis Equation 
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The effect of yDe on Region 4 response is shown in Figs. 4.4 to 4.7. The slab matrix dual 

porosity linear reservoir transient response is compared with the equations for Region 3 

[
DAc

DL
t

q
ππ2

1
= ] and Region 4 [

De

Ac

DAc

DL y
t

q
32

1 λ

ππ
= ] in Figs. 4.4 and 4.5 to show the 

effect of small (yDe = 1) and relatively larger (yDe = 105) reservoirs. It can be observed 

that for the small reservoir in Fig. 4.4, the slab matrix response matches the equation for 

Region 4. For the larger reservoir in Fig. 4.5, the slab matrix response indicates a 

bilinear region at early times and matches the equation for Region 3 at later times.  

The slab matrix dual porosity transient response is shown in Figs. 4.6 and 4.7 for 

several values of  yDe. It can be observed from Fig. 4.6 and 4.7 that the transient response 

for Region 4 curves downwards when  
AcDey λω3<   and is not evident when 

AcDey λ3≥ . 

 

4.7   Summary 

Five flow regions have been identified with the linear dual porosity model and derived 

equations were presented for four of the regions. Analysis equations were also presented 

for the region along with the criteria for existence of each of these regions. It has been 

shown that the dimensionless reservoir size, yDe has an important effect on Region 4 

transient response. 
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Fig. 4.4 – Effect of Small Reservoir Size on Region 4 (yDe = 1, λλλλAc =10
-4

, ωωωω = 10
-5

). 

The half slope region on the slab matrix (dual porosity, constant pwf, closed) 

response matches the equation shown previously for Region 4. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5 – Effect of Large Reservoir Size on Region 4 (yDe = 10
5
,λλλλAc =10

-4 
, ωωωω = 10

-5
). 

The half slope region on the slab matrix (dual porosity, constant pwf, closed) 

response matches the equation shown previously for Region 3 (homogeneous) and 

not that for Region 4 as shown in Fig. 4.4. 
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Fig. 4.6 –  Effect of yDe (Case A - slab matrix dual porosity, constant pwf, closed). 

The usual half slope (Region 4) initially curves down only when  
AcDey λω3< . 

 
 

 

 

 

 

 

 

 

 

Fig. 4.7 – Effect of yDe (Case B - slab matrix dual porosity, constant pwf, closed). 

There is no evident half slope (Region 4) when 
AcDey λ3≥  but a bilinear region 

(Region 2). 
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CHAPTER V 

TRANSIENT LINEAR FLOW REGIME (REGION 4) 

 

5.1   Introduction 

The transient linear regime is the regime in which the response is dominated by matrix 

drainage and was described as Region 4 in Chapter IV. Matrix block drainage of 

different geometries have been shown in detail to exhibit the transient linear drainage in 

Appendix A. This chapter deals with Region 4 in detail and summarizes the effects of 

shape factors and area-volume ratios. A preliminary procedure is presented for analyzing 

field data with zero skin and is illustrated with a synthetic case.  

 

5.2  Effect of Shape Factors 

The term shape factor as used in this work refers to the parameter first presented by 

Warren and Root18 to describe matrix geometry and utilized in their pseudosteady-state 

matrix-transfer equation. Several authors61-69 have investigated and shown their values 

for these shape factors. The Warren and Root shape factors have been factored into the 

commonly used transient dual porosity models (illustrated in Appendix B). It will be 

shown that other shape factors can be factored into the transient dual porosity models 

with consistent appropriate modifications. In this work, the shape factors given by 

Warren and Root, Kazemi and Zimmerman will be used for comparison. 
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As previously mentioned, the Warren and Root shape factor formulation for the 

slab matrix geometry (12/L
2) is inherent in f(s) as shown in Appendix B. The Kazemi 

and Zimmerman relations for the shape factor can be similarly substituted into the 

transient dual porosity model as was shown in Appendix B. This is summarized in Table 

5.1. 

 

Table 5.1 -  Summary of  f(s) Formulations for the Slab Matrix 

Case. 

Author Shape Factor f(s) 

Warren and Root 
2

1

12

L
 ( )

( )
λ

ω
ω

λ
ω

s

s
sf

−
−+=

13
tanh1

3
)(  

Kazemi 
2

1

4

L
 ( )

( )
λ

ω
ω

λ
ω

s

s
sf

−
−+=

1
tanh1)(  

Zimmerman 

2

1

2

L

π
 ( ) ( )

λ

ωπ
ω

λ

π
ω

s

s
sf

−
−+=

1

4
tanh1

4
)(

2

2

 

 

The generalized test run procedure is illustrated for the slab matrix, rectangular 

geometry reservoir case with the Warren and Root shape factor case. It was previously 

illustrated for the radial geometry case.70 The dataset is given in Table 5.2. 

a) Select a shape factor formulation (e.g. Warren and Root) 

b) Compute a value for the shape factor (e.g. slab matrix)  
( )

3

2
108.4

50

12 −== xσ  

c) Compute��� λ   : ( ) ( )
( )

( ) 45
5

3 1084.3108
100

10
108.4 −

−
− === xxxA

k

k
cw

f

m
Ac σλ  
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d) Ensure appropriate f(s) from Table 5.1 (in this case, Warren and Root) is 

programmed in transient dual porosity model. 

e) Run program with computed λAc and given ω. 

 

Table 5.2 – Shape Factor Example Calculation Dataset. 

xe 2000 ft 

ye 500 ft 

h 200 ft 

L 50 ft 

kf 100 md 

km 10-5 md 

ω 10-3 

Computed Values 

yDe 0.559 

σ (slab case) 0.0012  ft-2 

λAc (slab case) 3.84x10-4 

Αcw 8x105 ft2 

 
 

The results from the runs are compared in Fig. 5.1.  It can be observed from Fig. 

5.1 that the different shape factor formulations – Warren and Root, Kazemi and 

Zimmerman - result in the same transient linear response. It can thus be concluded that 

any shape factor formulation can be utilized as long as the appropriate f(s) formulation is 

used along with the consistent λAc equation and calculations. More importantly, 

programs that have the Warren and Root formulation correctly programmed can be 

utilized. This conclusion has also been verified for the cylinder and sphere geometries. 
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Fig. 5.1 - Effect of Shape Factors on Transient Linear Response (slab matrix case; 

ω ω ω ω =10
-3

; W&R : λλλλAc    =3.84x10
-4

; Kazemi : λ λ λ λAc        =1.28x10
-4

; Zimmerman 

: λ λ λ λAc        =3.16x10
-4

). The shape factors result in the same transient linear response 

once the corresponding  f(s) changes are made consistent with the λλλλAc definition. 

 

 
5.3  Effect of Area-Volume Ratio 

In this section, the transient dual porosity response of different matrix geometry (slab, 

cylinder and sphere) will be compared. Two cases are presented. 

 Case 1 is one in which the different matrix geometry transient dual porosity 

models are run with the same λAc (3.84x10-4). The dataset is the same as in Table 5.2. 

The Warren and Root shape factors were used for the three matrix geometries. Slab: 

12/L
2, Cylinder: 32/D

2,  Sphere : 60/D
2. The results are presented in Figs. 5.2 and 5.3. It 

can be observed that the transient linear responses are different for all the geometries. 
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Case 2 is one in which the area-volume ratios for all the three matrix geometry 

are made equivalent. The dataset is given in Table 5.3. The area-volume ratios are given 

thus: 

Slab   (One-dimensional)   
1

2

L
 

Cylinder/Column (Two-dimensional) 
D

4  or  
2

4

L

 

Sphere/Cube (Three-dimensional)   
D

6   or  
3

6

L
  

It is noticed that the area-volume ratios for the two-dimensional case, 4/D and 4/L2 will 

be the same if the fracture spacings D and L2 are equivalent. This observation also 

applies to the three-dimensional cases if D and L3 are equivalent. This allows the use of 

transient dual porosity models with the cylinder and sphere as good approximations for 

the two-dimensional and three-dimensional cases (since the transient dual porosity 

models are actually developed and programmed with simpler cylinder and sphere 

geometries instead of the more realistic column and cube geometries).  

Dimensions for the slab, cylinder and sphere were selected as 50, 100 and 150 ft 

respectively to ensure similar area/volume ratios of 0.04. The parameter, λAc is computed 

for each geometry and then run in the transient dual porosity model. The results are 

presented in Figs. 5.4 and 5.5. It can be observed that the initial transient linear 

responses are similar for all the geometries before the effect of the boundary. 
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Table 5.3 – Case 2 Calculation Dataset. 

xe 2000 ft 

ye 500 ft 

h 200 ft 

L 50 ft 

Dc 100 ft 

Ds 150 ft 

kf 100 md 

km 10-5 md 

ω 10-3 

Computed Values 

yDe 0.559 

Αcw 8x105 ft2 
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Fig. 5.2 -  Log-log Plot of qDL against tDAC - Effect of Matrix Geometry on Transient 

Response Case 1. Similar λλλλAc (ωωωω=10
-3

; λλλλAc    =3.84x10
-4

). The three geometries result 

in different transient linear responses. 
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Fig. 5.3 – Specialized Plot of 1/qDL against tDAc

0.5
 - Effect of Matrix Geometry on 

Transient Response Case 1.  Similar λλλλAc (ωωωω=10
-3

; λλλλAc    =3.84x10
-4

). The three 

geometries result in different transient linear responses. 
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Fig. 5.4 – Log-log Plot of qDL against tDAc - Effect of Matrix Geometry on Transient 

Response Case 2.  Area-volume ratio is 0.04 for all geometries. (slab : λλλλAc = 3.84x10
-

4
; L=50 ft; cylinder: λλλλAc = 2.56x10

-4
, D =100 ft; sphere: λλλλAc = 2.13x10

-4
, D=150 ft). 

The three geometries result in similar initial transient linear responses. 
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Fig. 5.5 – Specialized Plot of 1/qDL against tDAc

0.5
 - Effect of Matrix Geometry on 

Transient Response Case 2. Area-volume ratio is 0.04 for all geometries. (slab : λλλλAc 

= 3.84x10
-4

; L=50 ft; cylinder: λλλλAc = 2.56x10
-4

, D=100 ft; sphere: λλλλAc = 2.13x10
-4

, 

D=150 ft). The three geometries result in similar initial transient linear responses. 

 

 
 

The results from these cases illustrate the importance of the area-volume ratio in 

obtaining similar transient linear response from any matrix geometry. This significant 

result ensures that we can develop a method for analysis of the transient linear regime 

for geometry that incorporates the area-volume ratio.   

It can be concluded that the matrix drainage area, Acm has to be the same for all 

matrix geometries in order to achieve the same transient linear response. 

It can also be concluded that for the same reservoir, the fracture spacings for the 

one, two and three-dimensional matrix geometries have to be in the ratio of 1:2:3 in 

order to achieve the same transient linear response. These results and conclusions have 

also been verified using the other shape factor formulations- Zimmerman and Kazemi. 
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5.4   Data Analysis Procedure 

Results from the previously described sections are combined to develop a preliminary 

practical method of analyzing field data. The following procedure for determining the 

fracture spacing is presented.  

a) Obtain field production rate data. 

b) Check for half slope on log-log plot of rate against time indicating the transient 

linear flow regime. Also check for a straight line on a plot of  [m(pi)-m(pwf)]/qg 

against t . 

c) Determine 
cmm Ak  from  

             
( ) 4

~
11262

mc

T
Ak

mft

cmm

+

=
φµ

                                 ……………………………(5.1)  

d) If matrix permeability is known, determine Acm from 
cmm Ak  

e) If Ac and ye are known (Ac may be estimated from product of well length and net 

thickness;  ye is estimated from well spacing); 

Assuming   one-dimensional slab matrix determine fracture spacing,   

from   
cw

cm

e A
A

y
L

2
1 =                                   ……………………………(5.2) 

Assuming   two-dimensional matrix geometry determine fracture spacing 

from   
cw

cm

e A
A

y
L

4
2 =                                    ……………………………(5.3) 

Assuming three-dimensional matrix geometry determine fracture spacing 

from   
cw

cm

e A
A

y
L

6
3 =                                    ……………………………(5.4) 
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5.5   Application of Procedure to Synthetic Case 

In this section, the field analysis procedure is demonstrated with synthetic data generated 

using the transient dual porosity model (rectangular geometry, slab matrix blocks) 

analytical solutions. Data used for this illustration is given in Table 5.4. Calculated 

parameters are also shown in Table 5.4.  

 

5.5.1   Problem Formulation 

Since we know the data in Table 5.4, we can calculate certain values for our synthetic 

case. 

The cross-sectional area is computed from 25108)200)(000,2(22 ftxhxA ecw ===  

The matrix drainage area is computed from  
LV

A

bm

cm 2
=   (area-volume relation for the slab) 

and with 
ecwbm yAV = ;    275 106.1)108(

50

)500(22
ftxxA

L

y
A cw

e
cm ===  

The interporosity flow parameter is computed as 

( )
45

5

22
10*84.3)108(

100

10

50

1212 −
−

=













== xA

k

k

L
cw

f

m
Acλ  

The transient dual porosity model  is  then run with λAc = 3.84x10-4, ω =10-3 and  

yDe=ye /√Acw = 0.559. The following equations for dimensionless pressure and time are 

then used to convert to rate and time values used to plot  Fig. 5.6.  

[ ]
Tq

pmpmAk

q g

wficwf

DL 1422

)()(1 −
=      ;       

( ) cwmft

f

DAc
Ac

tk
t

+

=
φµ

00633.0
` 
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Table 5.4 – Synthetic Case Calculation 

Dataset. 

xe 2000 ft 

ye 500 ft 

h 200 ft 

L 50 ft 

φ(m+f) 0.15 

cti 304.02x10-6  psi-1 

kf 100 md 

km 10-5 md 

pi 3000 psi 

pwf 500 psi 

Τ 660 oR  (200oF) 

γg 0.8 

Βgi 0.00531 rcf/scf 

µι 0.0224 cp 

Corresponding Values 

yDe 0.559 

m(pi) 5.902x108 psi2/cp 

m(pwf) 2x107 psi2/cp 

σ (slab case) 0.0012  ft-2 

λAc (slab case) 3.84x10-4 

ω 10-3 

Αcm 1.6x107 ft2 

Αcw 8x105 ft2 
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Fig. 5.6 – Log-log Plot of Rate against Time - Synthetic Case. Data was generated 

using the transient dual porosity model (rectangular geometry, linear flow, slab 

matrix). 

 

5.5.2  Application  

The data indicates a half-slope as shown in Fig. 5.6. The next step is to make a plot of 

[m(pi)-m(pwf)]/qg against t  as shown in Fig. 5.7 using the synthetic data generated in 

Fig. 5.6. As previously stated, it will be assumed that ( )
mftc

+
φµ  (the total system - matrix 

and fractures) is approximately the same as ( )
mtcφµ for the matrix only. The parameter 

( )
mtcφµ  is also computed using properties at initial reservoir pressure of the gas equations. 
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The slope, 4
~m   is determined from Fig. 5.7 as 16,250 psi2/cp/Mscf/day 

And, 
( )

25.04

6
4

1007.5
)250,16()10*02.304)(0224.0)(15.0(

)660(1262
~

1262
ftmdx

mc

T
Ak

mft

cmm ===
−

+φµ
 

If we can estimate the matrix permeability (km=10-5 md for this synthetic case) then we 

can calculate 

                     27

5

4

106.1
10

1007.5
ftx

x
Acm ==

−
 

This computed Acm value is the same as the expected value given in Section 5.5.1.  

Assuming one-dimensional (slab) matrix geometry; 

The fracture spacing is determined from Eq. 5.2 as  ftx
x

A
A

y
L cw

cm

e 50)108(
106.1

)500(22 5

71 ===  

This fracture spacing value is similar to the expected value given in Section 5.5.1. 

 

The calculations for our synthetic case were done for our slab matrix block case 

since this was used to generate the data. If we did not know that this was a slab matrix 

geometry case and assumed that it was a two-dimensional (column) case, then we can 

calculate the fracture spacing from Eq. 5.3 as  ftx
x

A
A

y
L cw

cm

e 100)108(
106.1

)500(44 5

72 ===  

If we assume that it was a three-dimensional (cube) matrix geometry, then we can 

similarly calculate the fracture spacing from Eq. 5.4 as   

ftx
x

A
A

y
L cw

cm

e 150)108(
)106.1(

)500(66 5

73 ===  
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Fig. 5.7 – Specialized Plot of [m(pi)-m(pwf)]/qg against t

0.5
 - Synthetic Case. Data was 

generated using the transient dual porosity model (rectangular geometry, linear 

flow, slab matrix). 

 

It has been shown that the matrix drainage area, Acm and (effective) fracture 

spacings (L1, L2, and L3) can be calculated using our procedure, if km can be estimated. 

However, there is no way to determine whether the slab, column, or cube case actually 

applies to a particular well.  But it has been shown that the values of  (L1, L2, and L3) are 

in the ratios 1:2:3. In addition to production rate, these calculated values may be useful 

in determining the effectiveness of the hydraulic fracture treatments. Smaller fracture 

spacings result in higher gas rates and recovery factors as shown by Mayerhofer et al.
14 

These calculated values may be used to compare the effectiveness of the fractured 

systems of different wells. It should be remembered that ( )tcφµ  should be calculated at 

initial pressure for all equations, as is always done for the gas equations. 
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It should be noted that the skin effect has been assumed to be zero in all that has been 

presented in this chapter. The effect of skin will be discussed in detail in Chapter VI. 

 

5.6  Summary 

The transient linear flow regime (Region 4) was studied in detail. Different shape factor 

formulations were shown to result in similar Region 4 response when appropriate f(s) 

modifications consistent with λAc  computations are made. A preliminary procedure for 

analyzing field data was presented. This was illustrated with a synthetic case. The 

parameter Acm can be obtained with available limited data. 
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CHAPTER VI 

CONSTANT BOTTOMHOLE PRESSURE EFFECT OF SKIN IN 

LINEAR GEOMETRY 

 

 

6.1   Introduction 

Skin is normally defined as a dimensionless pressure for the slightly compressible fluid 

case given for the radial case by71 

µqB

pkh
s s

rw
2.141

∆
=                                                          ………………………………..(6.1) 

Where the skin is an additional dimensionless pressure 

rwDwD spp +=                                                            ………………………………..(6.2) 

srw is the skin for the radial case and pD is the solution without skin 
 
The Laplace space solution solution for an infinite homogeneous radial reservoir with 

skin and zero wellbore storage (constant rate inner boundary) is given by 

( ) ( )
( )sKss

sKsssK
p rwo

Drw

1

1+
=                                          ………………………………..(6.3) 

The corresponding Laplace space solution for the constant pwf inner boundary can be 

obtained by the Van Everdingen and Hurst59 relation given by 

Drw

Drw
qs

p
2

1
=                                                               ………………………………..(6.4) 
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The solution is thus obtained from Eq. 6.4 as 

( ) ( )[ ]
( )sKs

sKsssKs

q

rwo

Drw 1

11 +
=                                      ………………………………..(6.5) 

The constant rate solution from Eq. 6.3 is inverted from Laplace space and plotted for srw 

= 0 and srw =10 on a semilog plot in Fig. 6.1. It can be observed from Fig. 6.1 that the 

two responses are parallel and there is a constant offset of 10 from the srw = 0 case.  

The constant pwf solution from Eq. 6.5 is inverted from Laplace space and plotted 

for srw = 0 and srw =10 on a semilog plot in Fig. 6.2. It can be observed from Fig. 6.1 that 

the two responses are parallel and there is a constant offset of 10 from the srw = 0 case.  

Both the constant rate and constant pwf cases are plotted in Fig. 6.3. It can be 

observed that the responses are similar for constant rate and constant pwf. It can thus be 

concluded that the effect of skin on constant rate and constant pwf for the radial reservoir 

are similar. The constant rate pwf effect has also been confirmed with simulation as 

shown in Appendix E. 

 

6.2 Effect of Skin in Linear Reservoir 

The Laplace space solution for an infinite homogeneous linear reservoir with skin and 

zero wellbore storage (constant rate inner boundary) is given by16 

[ ]ss
ss

p AchWDLh += 1
2π                                           ……………………………(6.6) 

where sAch is the skin and s is the Laplace space variable. 

 

Eq. 6.6 will also govern the response of the closed linear reservoir at early times. 
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Fig. 6.1–  Effect of Skin on Radial Reservoir Model (Constant rate, homogeneous, 

infinite) for srw = 0 and 10. Semilog plot. The two responses are parallel and there is 

a constant offset of 10 from the srw =0 case.  
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Fig. 6.2 – Effect of Skin on Radial Reservoir Model (Constant pwf, homogeneous, 

infinite) for srw = 0 and 10.  Semilog plot. The two responses are parallel and there 

is a constant offset of 10 from the srw =0 case.  
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Fig. 6.3 –   Effect of Skin on Radial Reservoir Model (Comparing constant rate and 

pwf, homogeneous, infinite) for srw = 0 and 10. Semilog plot. It can be observed that 

the responses are similar for constant rate and pressure. 

 

It can be observed from Eq. 6.6 that 

s

s

ss
p Ach

WDLh

ππ 22
+=                                                    … …………………………(6.7) 

Inverting from Laplace space 

AchDAchAch

DAch

WDLh sts
t

p πππ
π

π 24222 +=+=                  ……………………………(6.8) 

Where [ ]
Tq

pmpmAk
p

g

wficw

WDLh
1422

)()( −
=   ;  

( ) cwt

DAch
Ac

kt
t

φµ

00633.0
=  and k is the homogeneous reservoir 

permeability. 
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From Eq. 6.8, the first term on the right hand side is the curve through the origin and the 

second term is the skin term.  This is illustrated in Fig. 6.4 where the sAch = 10 case is 

parallel to the sAch = 0 case with a constant offset of 2πsAch. The skin effect was defined 

as 2πsAch for the linear model by El-Banbi.16 
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Fig. 6.4 –   Effect of Skin on Linear Reservoir Model (Constant rate, homogeneous, 

infinite) for sAch = 0 and 10. The two responses are parallel and there is a constant 

offset of  2ππππ(10) from the sAch = 0 case.  
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Fig. 6.5 –  Effect of Skin on Linear Reservoir Model (Constant pwf, homogeneous, 

infinite) for sAch = 0 and 10.  The sAch = 10 case is not parallel to the sAch = 0 case. 

The difference between the two curves diminish with time.  
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Fig. 6.6 – Effect of Skin on Linear Reservoir Model (Constant pwf, homogeneous, 

infinite) for sAch = 0 and 10.  The constant rate case is different from the constant 

pressure case. Note that the constant rate case with srw = 0 and 10 are parallel 

whereas the constant pwf case with srw=10 converges to srw=0 case at later times. 

 



 70 

The Laplace space solution for an infinite homogeneous linear reservoir with 

skin and zero wellbore storage for the constant pressure inner boundary using Eq. 6.6 is 

given by 

   [ ]ss
s

s

q
Ach

DLh

+= 1
21 π

                                        …..……………………………(6.9) 

where sAch is the skin (homogeneous case) and s is the Laplace space variable. 

Details of the derivation of the skin effect for the constant pressure case are provided in 

Appendix F. 

From Eq. 6.9 

[ ]sss
q

Ach

DLh
+

=
12

1

π
                                           ………………………………..(6.10) 

Solving by partial fractions , Eq. 6.10 can be expressed as 

ss

s

s
q

Ach

Ach

DLh
+

−
+=

1

2

2

1 π

π
                                        ………………………………..(6.11) 

Inverting from Laplace space, from Eq. F-10, 














=















Ach

DAchs

t

Ach

DLh
s

t
erfce

s
q Ach

DAch

2

2

1

π
                            ………………………………..(6.12) 

 

 Eq. 6.12 gives the transient response for an infinite homogeneous, constant 

pressure inner boundary reservoir with a skin effect, sAch present.  This is not the same as 

the constant rate case as illustrated in Figs. 6.5 and 6.6.  For the constant pressure case, 

the skin effect diminishes with time. These results from the linear reservoir case are 

different from previous observations for the radial case. Eq. 6.12 is confirmed by 

comparing with the Laplace space inversion of Eq. 6.9 in Fig. 6.7. 
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It can be observed from Eq. 6.12 that at small times as 0≈DAcht  

Ach

DLh
s

q
π2

1
=                                                   ………………………………..(6.13) 

It can also be observed from Eq. 6.12 that at large times  as ∞≈DAcht , 

Using the first term in the asymptotic expansion for erfc(x) for large x 

( )
πx

e
xerfc

x2−

=                                                   ………………………………..(6.14) 

Eq. 6.12 becomes 

DACh

DLh
t

q
ππ2

1
=                                              ………………………………..(6.15) 

These results explain observations in Fig. 6.6 where the constant pressure 

response for sAch =10 ranges from the reciprocal of 
Achsπ2

1  at approximately zero time 

until it approaches the reciprocal of
DAchtππ2

1  at late times. 

The following empirical equation has also been found to fit the constant pwf 

response shown in Fig. 6.5 

Ach

DAch

Ach
DAch

DLh

s

t

s
t

q 8.0
1

2
2

1

+

+=
π

ππ
                 ………………………………..(6.16) 

An expression for the square root of time derivative given by 
td

q
d

DL






 1

for 

identification of the linear region is derived in Appendix G. The derivative is shown for 

the sAch = 10 case in Fig. 6.8. This derivative is flat for the linear region. 
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Fig. 6.7 – Validation of Analytical Solution (Linear model, homogeneous, constant 

pwf) for sAch =10. The analytical solution is similar to the Laplace space solution. 
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Fig. 6.8 – Rate and Linear Derivative (Linear model, homogeneous, constant pwf) 

for sAch =10. The transient linear region is flat on the derivative while the 

convergence skin region gradually increases. 
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6.3 Dual Porosity Reservoir 

The solutions16 for the closed linear dual porosity reservoir (slab matrix) for the constant 

rate and constant pressure inner boundary with a skin, sAc are given by Eqs. 6.17 and 

6.18 respectively. 

( )
( )( ) ( )( ) ( )( )

( )( ) 











−−

++−−
=
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wDL

yssf

ssfsyssfssfs
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p

2exp1

12exp12π             …………………(6.17) 
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12exp121 π            ……………………(6.18) 

with  

( ) ( )

AcAc

Ac s

s
sf

λ

ω

λ

ωλ
ω

−−
+=

13
tanh

1

3
)(        for the slab matrix case. 

 

These equations are inverted from Laplace space for the constant rate and 

constant pwf case as shown in Figs. 6.9 and 6.10.  The constant rate case in Fig. 6.9 

shows similar results to the homogeneous case – there are two parallel lines with an 

offset of 2πsAc.  

 



 74 

0

200

400

600

800

1000

0.0 0.2 0.4 0.6 0.8 1.0

tDAc
0.5

 or tDAcm
0.5 

p
D

L
 o

r 
p

D
L

m
  

sAc = 10

sAc = 0

 

Fig. 6.9 – Effect of Skin on Linear Reservoir Model (Constant rate, Dual porosity, 

slab matrix, infinite) for sAc = 0 and 10.  Similar to the homogeneous case, the two 

responses are parallel and there is a constant offset of 2ππππ(10) from the sAc =0 case. 
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Fig. 6.10 – Effect of Skin on Linear Reservoir Model (Constant pwf, Dual porosity, 

slab matrix, closed) for sAc = 0, 10 and 100.   For the sAc =100 case, the skin effect 

diminishes with time as was observed with the homogeneous case. 
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For the constant pwf case shown in Fig. 6.10 the skin effect diminishes with time 

as was observed with the homogeneous case eventually approaching the linear transient 

response. This is also shown in Fig. 6.11. It can be observed from Fig. 6.11 that as the 

skin, sAc, increases, the flatter initial response increases and the linear transient response 

of the reservoir is delayed. 
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Fig. 6.11 – Log-log plot: Effect of Skin on Linear Reservoir Model (Constant pwf, 

Dual porosity, slab matrix, closed) for sAc = 0, 10 and 100 (λλλλAc = 3.84*  10
-4

, ωωωω =10
-3

, 

yDe = 0.559). As skin increases, the flatter initial response increases and the linear 

transient response of the reservoir is delayed. 

 

An equation similar to Eq. 6.12 (for the homogeneous case) is derived in 

Appendix G for the slab matrix dual porosity case. From Eq. G-22, 
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Where De
Ac

AcDe
Ac ysyA 3

33

2 λλ
+=  

Eq. 6.19 is confirmed by comparison with the inverted Laplace space solution given in 

Eq. 6.18 as shown in Figs. 6.12 and 6.13 for sAc = 10 and 100 respectively. It can be 

observed from Fig. 6.12 that the analytical solution matches the Laplace space solutions 

at very early and late times. The slight difference noticed on the graph might be as a 

result of the assumptions made in the derivations of Eq. 6.19. 

A better match with the Laplace space solutions is obtained for the sAc = 100 case 

in Fig. 6.13. It can thus be concluded that Eq. 6.19 is appropriate for cases with 

relatively higher skin, sAc . 
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Fig. 6.12 – Validation of Analytical Solution (Linear model, slab matrix, constant 

pwf, closed) for sAc =10 (λλλλAc = 3.84*10
-4

, ωωωω =10
-3

, yDe = 0.559).  The analytical solution 

matches the Laplace space solutions at very early and late times.  
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Fig. 6.13 – Validation of Analytical Solution (Linear model, slab matrix, constant 

pwf, closed) for sAc =100 (λλλλAc = 3.84*10
-4

, ωωωω =10
-3

, yDe = 0.559).  The analytical 

solution matches more closely with the Laplace space solution compared to the sAc 

=10 case in Fig. 6.12. 

 

 

An empirical equation analogous to that for the homogeneous case previously 

described in Eq. 6.16 has also been found to fit the constant pwf  response for the dual 

porosity reservoir (slab matrix) shown in Fig. 6.10. 
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=  and km is the reservoir matrix 

permeability. 
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6.4 Summary 

It has been shown that the effect of skin (constant pwf case) on the transient response is 

different for radial and linear reservoirs. The effect of skin on the linear reservoir 

response diminishes gradually with time as demonstrated with sAc = 0 and sAc = 10 cases 

in Fig. 6.5. The effect of skin for the radial reservoir is the usual constant offset between 

parallel lines on a semilog plot. A new equation was presented to model the effect of 

skin on the linear reservoir. The limiting forms of the equations for homogeneous and 

the dual porosity (slab matrix) are compared in Table 6.1. 
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Table 6.1 – Comparison of the Limiting Forms of the Transient Linear 

Response (Constant pwf). 

Period Homogeneous 

(Region 3) 

Dual Porosity (Slab Matrix) 

(Region 4) 
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CHAPTER VII 

APPLICATION TO SAMPLE FIELD DATA CASES 

 

7.1   Introduction 

It is necessary to predict field data with a skin effect behavior. A synthetic case is 

developed to represent field behavior using data given in Table 7.1. The linear model 

(slab matrix, constant pwf, closed, linear) is used to generate the transient response in 

dimensionless variables, qDL and tDAc.  The generated results are then converted to rate 

and time using Eq. 7.1.  

[ ]
Tq

pmpmAk

q g

wficwf

DL 1422

)()(1 −
=                

( ) cwmft

f

DAc
Ac

tk
t

+

=
φµ

00633.0
        ……………..………(7.1) 

The results are then plotted as Figs. 7.1 and 7.2 for the sA c= 0 and sAc = 10 cases. 

The dimensionless time for the end of the convergence skin period is computed 

as 8.06 x 10-4 using Eq. 7.2 (previously shown as Eq. 3.8). This is equivalent to a time of 

0.74 days. 

w

DAc
L

h
t

32π
=                                                                          ……………..………(7.2) 

The results in Figs. 7.1 and 7.2 indicate that the half-slope transient linear period 

(Region 4) dominates the response. Actual field data is thus expected to lie in Region 4. 
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Table 7.1 – Synthetic Case Dataset. 

Lw 2,000 ft 

ye 250 ft 

h 100 ft 

rw 0.3 ft 

φ(m+f) 0.08 

cti 1.185x10-4  psi-1 

kf 0.015 md 

km 2.5x10-9 md 

pi 4300 psi 

pwf 500 psi 

Τ 600 oR  (140oF) 

γg 0.57 

Βgi 0.6702 RB/Mscf 

µι 0.02308 cp 

Corresponding Values 

yDe 0.395 

m(pi) 1.1x109 psi2/cp 

m(pwf) 1.99x107 psi2/cp 

λAc (slab case) 3.20x10-4 

ω 10-3 

Αcw 4x105 ft2 
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Fig. 7.1 – Log-log Plot of Rate against Time (Synthetic Case :sAc = 0 and 10). Arrow 

indicates that the convergence skin stabilizes after 0.74 days. Response is expected 

to be primarily in Region 4. 

 

 
 

 

 

 

 

 

 

 

Fig. 7.2 – Specialized Plot of [m(pi)-m(pwf)]/qg against t
0.5

 (Synthetic Case :sAc = 0 

and 10). Arrow indicates that the convergence skin stabilizes after 0.74 days. 

Response is expected to be primarily in Region 4. 
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A preliminary procedure was presented in Chapter V for data analysis. This was 

for the zero skin case. The only parameter that could be determined from the [m(pi)-

m(pwf)]/qg vs t0.5 plot was essentially the matrix drainage area, Acm. But the techniques 

previously presented also apply to the case where the data points are on a straight line 

through the origin on the [m(pi)-m(pwf)]/qg vs t
0.5 plot. It is necessary to develop 

techniques for the case where the data points indicate an “intercept” on the [m(pi)-

m(pwf)]/qg vs t0.5 plot as expected with the presence of skin (this was demonstrated on a 

dimensionless plot basis in Chapter VI). In this chapter, a procedure incorporating the 

effect of skin will be described and the procedures will be applied to two sample field 

cases (Wells A and B). 

 

7.2 Effect of Skin Plots 

Fig. 7.3 shows a series of curves generated from the linear dual porosity model (slab 

matrix (λAc = 10-4, ω =10-3, sAc = 0, 1, 10, 100;  yDe = 0.5, 1). This also shown as a square 

root time plot in Fig. 7.4. It can be observed from Fig. 7.3 that the curves for a particular 

yDe indicate the expected initial flat portion and converge to the transient linear regime.  

The plot in Fig. 7.5 clearly indicates that the Region 3 (homogeneous) equation  

cannot be applied for transient linear analysis since there is no half slope evident in the 

presence of skin. 

The initial qDL value of the curves in Fig. 7.3 at time zero obeys Eq. 6.12 

Ac

DL
s

q
π2

1
=                                                  ………………………………..(7.3) 
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Fig. 7.3 – Log-log Plot of qDL against tDAc for the Linear Dual Porosity Reservoir, 

Slab Matrix Case (λλλλAc = 10
-4

, ωωωω =10
-3

, sAc = 0, 1, 10, 100; yDe = 0.5, 1). The curves 

converge to the same initial point for a fixed sAc. The curves also converge to the 

same Region 4 half-slope line for a fixed yDe. 
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for the Linear Dual Porosity 

Reservoir, Slab Matrix Case (λλλλAc = 10
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, ωωωω =10
-3

, sAc =0, 1, 10, 100; yDe = 0.5, 1). The 

curves converge to the same initial point for a fixed sAc and asymptotically 

approach the sAc = 0 line at late times. 
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Fig. 7.5 – Log-log Plot of qDL against tDAc for the Linear Dual Porosity Reservoir, 

Slab Matrix Case (λλλλAc = 10
-4

, ωωωω =10
-3

, sAc = 1, 10, 100; yDe = 0.5, 1) – Fig. 7.3 - with 

Homogeneous Case. This plot clearly indicates that the Region 3 (homogeneous) 

cannot be applied to the transient linear analysis – there is no half slope evident in 

the presence of skin. 

 

 

 

The following empirical equation for the effect of skin on the dual porosity transient 
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Eq. 7.4 can be expressed as 
 

[ ]
( )

( )

Acm

cmmt

m

Acm

cmmt

m

g

wficmm

s

Ac

tk

s

Ac

tk

Tq

pmpmAk

φµ

π

φµ
ππ

00633.0
8.0

1

200633.0
2

1422

)()(

+

+=
−

        ………………………..(7.5) 

 

where [ ]

0

)()(













 −

g

wfi

q

pmpm  is the intercept obtained from a plot of  ( ) ( )
tvs

q

pmpm

g

wfi −  

 

with    [ ]

0

)()(

1422
2













 −
=

g

wficmm

Ac
q

pmpm

T

Ak
sπ  , Eq. 7.5 becomes 

[ ]
( )

[ ]

( )

[ ]

0

0

)()(

14222

1

00633.0
8.0

1

)()(

142200633.0
2

1422

)()(













 −
+













 −

+=
−

g

wficmm

cmmt

m

g

wficmm

cmmt

m

g

wficmm

q

pmpm

T

Ak

Ac

tk

q

pmpm

T

Ak

Ac

tk

Tq

pmpmAk

π

φµ

φµ
ππ

  

        …………………………..(7.6) 
 

where [ ]

0

)()(













 −

g

wfi

q

pmpm  is the intercept obtained from a plot of  ( ) ( )
tvs

q

pmpm

g

wfi −  

 

[ ]
( )

[ ]

( )

[ ]
( )

cmm

g

wfi

cmmt

m

g

wficmm

cmmt

m

g

wficmm

Ak

T

q

pmpm

Ac

tk

q

pmpm

T

Ak

Ac

tk

Tq

pmpmAk

14222

)()(

00633.0
8.0

1

)()(

142200633.0
2

1422

)()(

0

0

πφµ

φµ
ππ













 −
+













 −

+=
−

 

…………………………..(7.7) 
 

[ ]
( )

[ ]

[ ]
( ) ( ) ( )

[ ]
( )

cmmmt

g

wfi

cmmmt

g

wfi

g

wficmm

cmmt

m

g

wficmm

Akc
q

pmpm

tTAkc
q

pmpm

q

pmpm

T

Ak

Ac

tk

Tq

pmpmAk

φµ

πφµ
φµ

ππ

0

0

0

)()(

1422200633.08.0
)()(

)()(

142200633.0
2

1422

)()(













 −

+












 −













 −

+=
−

 

 

 

…………………………..(7.8) 
 

 

 



 87 

 

[ ]
( )

[ ] [ ]
( )

[ ]
( ) ( ) ( ) tTAkc

q

pmpm

Akc
q

pmpm

q

pmpm

T

Ak

Ac

tk

Tq

pmpmAk

cmmmt

g

wfi

cmmmt

g

wfi

g

wficmm

cmmt

m

g

wficmm

1422200633.08.0
)()(

)()()()(

142200633.0
2

1422

)()(

0

00

πφµ

φµ

φµ
ππ

+












 −













 −













 −

+=
−

 
 

…………………………..(7.9) 
 

Multiplying Eq. 7.9 by  
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The expression given by Eq. 7.10 represents an equation that can be used to fit data on a  
 

plot of  ( ) ( )
tvs

q

pmpm

g

wfi − .  The term 
cmm Ak  can be determined from the equation 

previously presented for Region 4 in Chapter IV. 
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4
~m  is the slope of a line drawn through the origin passing through the linear half-slope 

data points. 

Eq. 7.10 can be reproduced on a log-log plot using Eq. 7.12. 
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The procedure previously given in Chapter V can be summarized and modified thus: 
 

a) Obtain field production rate data. 

b) Check for half slope on log-log plot of rate against time indicating the transient 

linear flow regime. Also check for a straight line on a plot of [m(pi)-m(pwf)]/qg 

against t0.5.  

c) Draw a line through the origin passing through the linear half-slope data points. 

Determine the slope of this line and use as 4
~m  in Eq. 7.11 to determine 

cmm Ak . 

d) If matrix permeability, km is known then calculate matrix drainage area Acm from 

cmm Ak  

e) Use 
cmm Ak  and the intercept [ ]

0

)()(













 −

g

wfi

q

pmpm  in Eq. 7.10 to fit the given field 

data 

f) Reproduce the equivalent to the fit from step e) on the log-log plot using Eq. 

7.12. 

 

 

7.3   Application of Procedure to Field Data 

In this section, the methods previously presented will be applied to actual field cases. 

Two examples are presented (Wells A and B). The gas rate and flowing tubing pressure 

data are shown for Wells A and B in Figs. 7.6 and 7.7 respectively. The reservoir and 

fluid properties data are shown in Table 7.2. Other computed parameters are given in 

Table 7.3. The length of the wells are shown in Table 7.4 A log-log plot of the rate 
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against time and specialized plot of [m(pi)-m(pwf)]/qg against t0.5 is shown for Well A in 

Figs. 7.8 and 7.9. These plots are shown for Well B in Figs. 7.10 and 7.11. These plots 

indicate the transient linear flow (half-slope on log-log plot). The log-log plot also 

indicates the constant pwf effect of skin previously described. An initial curve 

corresponding to the convergence skin effect is noticed at early times. The transient 

linear is noticed at later times. 
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Fig. 7.6 – Field Rate and Pressure Data for Well A. 
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Fig. 7.7 – Field Rate and Pressure Data for Well B. 

 
 

 

Table 7.2 -  Reservoir and Fluid Properties Data for Wells A   

 

                    and B Analysis. 

h 140 ft 

km 1.5x10-4 md 

pi 3000 psi 

φ 0.034 

T 175oF (635oR) 

γg 0.65 
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Table 7.3 -  Other Fluid Data for Wells A and B  

                   Analysis. 

m(pi) 5.98x108 psi2/cp 

Bgi 0.00535 rcf/scf  

cgi 3.03x10-4 psi-1 

µi 0.0199 cp 

 

 

 

 

Table 7.4   Completion Parameters of Horizontal Wells A and B. 

 xe Acw (=2xeh) 

A 3417 ft 9.57*105 ft2 

B 3000 ft 8.4*105 ft2 
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Fig. 7.8 – Log-log Plot of Rate against Time with Data Fit for Well A. Line drawn 

on plot indicates half slope. 
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Fig. 7.9 – Specialized Plot of [m(pi)-m(pwf)]/qg against t

0.5
  with Zero Skin Fit for 

Well A. Line shown is drawn through origin and fitted to data. Data appear to 

indicate an initial curve corresponding to the convergence skin effect and linear 

transient at later times. This appears to match theory discussed in Chapter VI. 
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Fig. 7.10 – Log-log Plot of Rate against Time with Data Fit for Well B. Line drawn 

on plot indicates half slope. 
 

0.E+00

2.E+05

4.E+05

6.E+05

8.E+05

1.E+06

0 5 10 15 20 25 30

Time
0.5

 (day
0.5

)

[m
(p

i)
-m

(p
w

f)
]/

q
g

Field Data

Zero Skin Fit

 

Fig. 7.11 – Specialized Plot of [m(pi)-m(pwf)]/qg against t
0.5

 with Zero Skin Fit for 

Well B Line shown is drawn through origin and fitted to data. Data appear to 

indicate an initial curve corresponding to the convergence skin effect and linear 

transient at later times. This appears to match theory discussed in Chapter VI. 
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Fig. 7.12 – Specialized Plot of [m(pi)-m(pwf)]/qg against t
0.5

 with Eq. 7.10 Fit for Well 

A.  Line shown is drawn through origin and fitted to data. Eq. 7.10 is also fitted to 

data as shown. A better fit can be obtained by choosing a lower intercept. 
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Fig. 7.13 – Log-log Plot Representation of Fig.7.12 Fit for Well A.  Eq. 7.12 is also 

fitted to data as shown. 
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7.4   Discussion 

A sample calculation for the matrix drainage area, Acm using the techniques described in 

Chapter V is described for Well A. The slope is determined from Fig. 7.9 and 7.12 as 

35,874 respectively. It should be noted that the slope computed is that of a line drawn 

through the origin as shown in Fig. 7.9 and 7.12. The intercept on the y-axis is 

determined approximately as 116,875. 

Eq. 7.10 is fitted to that data and shown in Fig 7.12. The plot from Fig. 7.12 is 

reproduced on a log-log plot using Eq. 7.12 and shown in Fig. 7.13. 

The parameter 
cmm Ak  can be calculated using Eq. 7.11.  
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Acm is computed similarly for Well B as 7.54x106 ft2. Well B has a larger Acm value than 

Well A. This indicates that Well B has a larger matrix area contacted by the frac job.  

Other information is required to determine the fracture spacing from Acm as 

demonstrated in Chapter V. Computed spacing for the slab matrix case can then be used 

to determine the corresponding values for other column and cube matrix geometries as 

described in Chapter V. The fracture spacings will be in the ratios 1:2:3 for the same 

matrix drainage area, Acm. 

In conclusion, a procedure has been presented for analyzing field data in which 

transient linear flow has been observed. This procedure is dependent on the linear model 

presented in this paper with its underlying assumptions and ability to reasonably 
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determine fluid and reservoir properties. The well has also been assumed to be located in 

the center of the reservoir. 

It is concluded that field data obtain exhibit Region 4 only (drainage primarily 

from the matrix). The only parameter than can be determined from available data is 

cmm Ak . 

The effects of adsorption have been neglected for reasons mentioned in Chapter 

I. As pressures approach 1000 psia in the Barnett shale, these effects will become more 

prominent. 

The effect of water production has also been neglected. These are areas of further 

research. 

 

 

 

 

 

 

 

 

 

 

 

 



 97 

CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

 

8.1   Conclusions 

The major conclusions of this work can be summarized as follows: 

1. A linear dual porosity model can be utilized to represent multi-fractured 

horizontal wells in shale gas reservoirs. 

2. It has been shown extensively that matrix drainage of any geometry at 

constant pressure boundary conditions results in transient linear flow.  

3. Five flow regions were identified using this linear model. Region 1 is the 

early transient linear response in the fracture system. Region 2 is the bilinear 

flow regime and occurs when there is a transient linear in the fracture and 

matrix simultaneously. Region 3 is the response for a homogeneous reservoir 

case. Region 4 is primarily drainage of the matrix (our regime of interest). 

Region 5 occurs when all the boundaries start to influence the transient 

response. 

4. New analysis equations were presented for Regions 1 to 4. 

5. The effect of skin on the response for the constant rate case is different from 

that for the constant pwf case.  The effect of skin shows up as parallel lines 

with a constant offset for the constant rate case while it diminishes with time 

for the constant pwf case. 
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6. A new analytical equation was presented to model the constant pwf effect of 

skin in a linear reservoir. 

7. Different shape factor formulations result in similar Region 4 response when 

appropriate f(s) modifications consistent with λAc computations are made. 

8. Different matrix geometry exhibit the same Region 4 response when the area-

volume ratios are made equivalent. 

 

8.2    Recommendations for Future Work 

The following recommendations are listed: 

1. Investigation of the effect of water production on the results. 

2. Investigation of the effects of adsorption and desorption 

3. Investigation of the effects of anisotropy and varying well location. 
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NOMENCLATURE 

Acm = total matrix surface area draining into fracture system, ft2 

Acw = well-face cross-sectional area to flow, ft2 

B = liquid formation volume factor, rB/STB 
 
Bgi = formation volume factor at initial reservoir pressure, rcf/scf 

ct = liquid total compressibility, psi-1 

cti = total compressibility at initial reservoir pressure, psi-1 

dz = well position in reservoir , dimensionless 

D = diameter, fracture spacing, ft 

f(s) = relation used in Laplace space to distinguish matrix geometry types 

h = reservoir thickness, ft 

Io(x) = modified Bessel function of first kind, zero order 

I1(x) = modified Bessel function of first kind, first order 

Jo(x) = Bessel function of first kind, zero order 

k = homogeneous reservoir permeability, md 

kf = bulk fracture permeability of dual porosity models, md 

km = matrix permeability, md 

kV = vertical permeability, md 

kH = horizontal permeability, md 

l =half of fracture spacing, ft 

1−
l  = Inverse Laplace space operator 

L = general fracture spacing, ft 
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Lw = horizontal well length, ft 

L1 = fracture spacing (one-dimensional, slab), ft 

L2 = fracture spacing (two-dimensional, column), ft 

L3 = fracture spacing (three-dimensional, cube), ft 

mDL = dimensionless pressure (rectangular geometry, gas) 

m~  = slope of  regions 1 to 5  defined in Chapter IV 

m(p) = pseudopressure (gas), psi2/cp 

pi = initial reservoir pressure, psi 

pwf = wellbore flowing pressure, psi 

pDL = dimensionless pressure based on Acw
0.5 and kf (rectangular geometry, liquid,   

           dual porosity) 

pDrw = dimensionless pressure based on radial definition (formation thickness, h) 

pDH = dimensionless pressure based on horizontal well length, Lw  

pDm = dimensionless pressure in the matrix 

pDf = dimensionless pressure in the fracture 

pf  = fracture pressure, psi 

pi = initial pressure, psi 

pWDL = dimensionless pressure based on Acw
0.5 and kf (rectangular geometry, liquid,   

           dual porosity) 

pWDLh = dimensionless pressure based on Acw
0.5 and k (rectangular geometry, liquid,    

            homogeneous) 

pWDLm = dimensionless pressure based on matrix Acm
0.5 and km (rectangular geometry,  
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            liquid) 

qD = dimensionless rate (transient dual porosity model) 

qDL = dimensionless rate based on Acw
0.5 and kf (rectangular  

           geometry, liquid,  dual porosity) 

qDLh = dimensionless rate based on Acw
0.5 and k (rectangular geometry, liquid,    

            homogeneous) 

qDLm = dimensionless rate based on matrix Acm
0.5 and km (rectangular geometry,  

            liquid 

qg = gas rate, Mscf/day 

Q = cumulative production, STB 

r = radial geometry coordinate 

rmc = radius of cylinder matrix, ft 

rms = radius of sphere matrix, ft 

rw = wellbore radius , ft 

s = Laplace space variable 

sAc = skin definition for linear model (dual porosity) based on kf and Acw
0.5

 

sAch = skin definition for linear model (homogenenous) based on k and Acw
0.5

 

sAcm = skin definition for linear model based on  km and matrix area Acm
0.5

 

sc = convergence skin 

sH = skin definition based on horizontal well length 

srw = skin definition based on wellbore radius 

t = time, days 
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tD = dimensionless time coordinate 

tDAc =dimensionless time based on Acw and kf  (rectangular geometry, dual porosity) 

tDAch =dimensionless time based on Acw and k  (rectangular geometry, homogeneous) 

tDAcm =dimensionless time based on matrix Acm and km  (rectangular geometry) 

tDrw =dimensionless time (radial definition) based on wellbore radius 

T = absolute temperature, oR 

Vbm = total matrix bulk volume, ft3 

Vpm = matrix pore volume, ft3 

xe = drainage area width (rectangular geometry), ft 

ye = drainage area half-length (rectangular geometry), ft 

yDe = dimensionless reservoir length (rectangular geometry) 

z = coordinate, z-direction (matrix) 

zD = dimensionless coordinate, z-direction 

 

Greek symbols 

α = hydraulic diffusivity term defined in Appendix A 

αn = nth zero of Bessel function, Jo used in Eqs. 3.4, 3.5 

γ  = specific gravity 

λ = dimensionless interporosity parameter 

µ = viscosity, cp 

ω = dimensionless storativity ratio 

φ = porosity 
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σ = shape factor, ft-2 

 

Subscript 

Ac = cross-sectional area to flow 

i =initial 

f =fracture system 

g = gas 

m =matrix 

f+m =total system (fracture+matrix) 
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APPENDIX A 

SINGLE MATRIX BLOCK DRAINAGE  

AT CONSTANT PRESSURE 

 

A-1   Overview 

As previously described, the dual porosity model of a naturally fractured 

reservoir is composed of matrix blocks draining into surrounding fractures at constant 

pressure (the most widely used boundary condition in the literature). It was mentioned in 

Chapter I that the drainage of these matrix blocks is the cause of the transient linear 

regime observed in the shale gas wells. In this section, drainage of single matrix blocks 

will be investigated. Three methods will be used to illustrate and compare constant 

pressure drainage of matrix blocks of different geometries – slab, cylinder and sphere. 

The cylinder and sphere geometries have been used in the literature as approximations to 

the ideal two-dimensional (column) and three-dimensional (cube) geometries. This will 

be demonstrated for the slightly compressible fluid case.  The results are expected to be 

applicable to the compressible gas case. These methods are numerical simulation, 

analytical solution and Laplace space solutions. The development of the equations for 

the analytical and Laplace space solutions are shown only for the slab case in Section A-

2.  Data common to three matrix geometries is shown in Table A-1 
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A-10   SLAB MATRIX 

Data specific to the slab case is shown in Table A-2. A schematic of the slab matrix is 

shown in Fig. A-1. The three methods will subsequently be presented.  

 

A-10.1  Numerical Simulation  

The simulation was conducted using two numerical simulators – GASSIM and ECLIPSE 

version 2007.1 (Schlumberger). A 101 x 1 x 1 grid system was utilized in both 

simulators with ∆x = 0.5 ft, ∆y = 1000 ft and ∆z = 10 ft. The 101st grid contains the well 

(constant bottomhole pressure of 100 psi) and was assigned a small porosity of 10-8 and 

high permeability of 1011 md to model the constant pressure condition at the boundary of 

the slab. It was found by comparing with the analytical solution that maximum timestep 

sizes of 0.05 (GASSIM) and 0.001(ECLIPSE) were required to give accurate results. 

 

Table A-1 – Data for the Slab, Cylinder and Sphere 

Matrix. 

km 0.1 md 

φ 0.065 

µ 1 cp 

ct 15 x 10-6 psi-1 

B 1 RB/STB 
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Fig. A-1 –  Schematic of Slab Matrix.  

 

 

Table A-2 – Data for the Slab Matrix Case. 

l (half of fracture spacing) 50 ft 

pf 100 psi 

pi 1000 psi 

Vp 32,500 ft3 

a (one dimension on fracture face) 1000 ft 

b (other dimension on fracture face) 10 ft 

Acm ( = a x b) 10,000 ft2 

l

a

b

l

a

b
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A-10.2  Analytical Solution  

The development of the equations for the slab matrix case is illustrated in Appendix A-2. 

The two equations used are : 
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Where α is the hydraulic diffusivity defined in Appendix A as 
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A-10.3  Laplace Space Solution  

The development of the equation for the slab matrix case is illustrated in Appendix A-2. 

The equation is given by  
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     and is inverted numerically using a Laplace 

space inversion algorithm and substituted into Eq. A.3. 

 

The results from all the tests are shown in Fig. A-2. It can be observed from Fig. A-2 

that the results from all the methods are similar and exhibit an initial transient linear 
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response (one-half slope on a log-log plot) and a boundary-dominated response at later 

times. 
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Fig. A-2 – Comparison of Slab Matrix Drainage Results. All methods exhibit 

similar initial transient linear response and later boundary dominated response. 

 

A-11   CYLINDER MATRIX 

Data specific to the cylinder case is shown in Table A-3. The three methods will 

subsequently be presented. 

 

A-11.1   Numerical Simulation 

The simulation was conducted using two numerical simulators – GASSIM and ECLIPSE 

version 2007.1 (Schlumberger). A 101 x 1 radial grid system (∆r = 1 ft, ∆z = 1 ft) was 

utilized in GASSIM while a 201 x 1 radial grid (∆r =0.5 ft, ∆z = 1 ft was utilized in 
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ECLIPSE.  The 101st and 201st grid in GASSIM and ECLIPSE respectively contain the 

well (constant bottomhole pressure of 100 psi) and was assigned a small porosity of 10-4 

and high permeability of 106 md to model the constant pressure condition at the 

boundary of the slab. It was found by comparing with the analytical solution that 

maximum timestep sizes of 0.05 (GASSIM) and 0.01(ECLIPSE) were required to give 

accurate results. 

Table A-3 – Data for the Cylinder Matrix Case. 

rmc 100 ft 

pf 100 psi 

pi 1000 psi 

Vpm 2,042  ft3 

h 1 ft 

Acm 628 ft2 

 

 

A-11.2   Analytical Solution  

The two equations developed using methods similar to the slab matrix case are: 
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Where α is the hydraulic diffusivity defined in Appendix A as 
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and αn is the nth  zero of the Bessel function Jo 

A-11.3   Laplace Space Solution  

The equation developed using methods similar to the slab matrix case is given by  
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     and is inverted numerically using a Laplace 

space inversion algorithm and substituted into Eq. A-6. 

Io, I1 are modified Bessel functions. 

 

The results from all the tests are shown in Fig. A-3. It can be observed from Fig. A-3 

that the results from all the methods are similar and exhibit an initial transient linear 

response (one-half slope on a log-log plot) and a boundary-dominated response at later 

times. 
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Fig. A-3 – Comparison of Cylinder Matrix Drainage Results. All methods exhibit 

similar initial transient linear response and later boundary dominated response 

 

 

A-12   SPHERE MATRIX 

Data specific to the sphere case is shown in Table A-4. The three methods will 

subsequently be presented. 

 

A-12.1  Numerical Simulation 

There is no available simulator for the sphere case. An attempt will be made to simulate 

the sphere matrix case using the numerical simulator GASSIM. The cylinder case will be 

adapted to simulate the sphere case by using fictitious transmissibilities and porosity. 

Our equation for the required pore volume (grid) of a sphere is given by 
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4
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Where φ  = 0.065 as given in Table A-1  

           r1 and r2 are inner and outer radial grid dimensions 

The equation for the pore volume (grid) of a cylinder is thus given by 

( ) spm hrrV φπ 2
1

2
2 −=                                                  ……………………………(A-8) 

φs is a fictitious porosity that will be input into the simulator (cylinder case) to yield the 

required sphere pore volume. 

The transmissibility of the sphere (grid) is given by 
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The transmissibility of the cylinder (grid) is thus given by 
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ks is a fictitious permeability that will be input into the simulator (cylinder case) to 

behave like the sphere. 

A 101 x 1 radial grid system (∆r = 1 ft, ∆z = 10 ft) was utilized. 
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Table A-4 – Data for the Sphere Matrix Case. 

rms 100 ft 

pf 100 psi 

pi 1000 psi 

Vpm 272,271 ft3 

Acm 125,664 ft2 

 

 

A-12.2   Analytical Solution 

The two equations developed using methods similar to the slab matrix case are 
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A-12.3   Laplace Space Solution  

The equation developed using methods similar to the slab matrix case are 
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     and is inverted numerically using a 

Laplace space inversion algorithm and substituted into Eq. A-13. 
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The results from all the tests are shown in Fig. A-4. It can be observed from Fig. A-4 

that the results from Analytical methods and Laplace exhibit similar initial transient 

linear response. Numerical simulation is not similar to the other methods. It is possible 

that a match with the other methods might be obtained with a smaller maximum timestep 

(0.05 days was used in this work) and smaller grids.  
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Fig. A-4 – Comparison of Sphere Matrix Drainage Results. Analytical and Laplace 

space solutions exhibit similar response. Numerical simulation is different probably 

due to approximations. 
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Summary 

Matrix drainage at constant pressure was investigated using different methods. It can be 

concluded from Figs. A-2 to A-4 that drainage of matrix blocks of any geometry at 

constant pressure boundary condition results in transient linear flow (one-half slope on a 

log-log plot). This is one of the possible causes of the observed transient linear flow 

regime in the shale gas wells as discussed in Chapter I. 

 

 

A-2   Derivation of Equations for Slab Matrix Case 

In this section, the development of an equation for one –dimensional slab geometry 

matrix drainage at constant pressure is shown using analogy with heat flow principles 

from Carslaw and Jaeger72 

The underlying assumptions are stated thus: 

• Incompressible fluid 

• Constant fluid properties 

• The slab is initially at the same initial pressure 

• One boundary is at constant pressure 

 

 

A-20   Analytical solution (Method I)  

Half of the slab is modeled. The length of which is given by 

2

L
l =  

The following expression can be written for the pressure distribution 

( )
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12

0
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18
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nif

i e
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π

+
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=

∑
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=
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−                       …………………………(A-14) 



 127 

where pf is the constant pressure boundary condition, p is the average pressure and 

pi  is the initial pressure 

and  
t

m

c

k

φµ
α

00633.0
=  

From Eq. A-14, 

( )
( )

( )
2

22

4

12

0
22

12

18
l

tn

n

ifi e
n

pppp

πα

π

+
−∞

=

∑
+

−+=                           …………………………(A-15) 

The fluid content at any time is given by 

B

pcV
Q tbmφ

=                             …………………………(A-16) 

differentiating Eq. A-16 
 

dt

pd

B

cV

dt

dQ tbmφ
=                                                               …………………………(A-17) 

  
Differentiating Eq. A-15 
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∑
∞

=

+
−

−−=
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4
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2

2
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l
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if epp
ldt
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πα

α                                     …………………………(A-18) 

Substituting Eq.  A-18 in Eq. A-17 
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( )

∑
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0

4

12

2

2

22

2

n

l
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αφ                          …………………………(A-19) 

And thus rate (scf/day) is given by 

dt

dQ
q =  
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∑
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+
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−=
0

4
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2

22

2

n

l
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αφ                            …………………………(A-20) 

 

A-21   Analytical solution (Method II)  

The following expression can also be written for the pressure distribution 
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( ) ( ) ( )
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…………………………(A-22) 

Differentiating Eq. A-22 
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…………………………(A-23) 
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…………………………(A-24) 
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m

cm x
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A

q
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∂

∂
−=

µ
00633.0      …………………………(A-26) 

Thus rate is given by 
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…………………………(A-27) 

 

A-22         Laplace Space Solution 

This method utilizes a form of the matrix-fracture source term normally utilized in the 

dual porosity equations. 

The following dimensionless variable definitions are used. 

( )
µqB

ppkh
p

i
D

2.141

−
=              

( )2

2

00633.0
Lc

tk
t

t

m
DL

φµ
=           

2
L

z
z D =          ……………(A-28) 
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The diffusivity equations for the matrix and fracture and the boundary conditions are 

stated below: 

 

Matrix                

t

p

k

c

z

p m

m

tm

∂

∂








=

∂

∂ φµ
2

2

                                 …………………………(A-29)

                                  
Initial condition:   ( ) im pzp =0,                   

Inner boundary:   at  0,0 =
∂

∂
=

z

p
z m              (line of symmetry) 

Outer boundary: at 
fm

pp
L

z == ,
2

 

 
Converting Eq. A-29  to dimensionless variables 

D

Dm

D

Dm

t

p

z

p

∂

∂
=

∂

∂
2

2

 

The Initial condition in Eq. A-29 becomes in dimensionless variables 

( ) 00, =DDm zp                                                 …………………………(A-30) 

                                                                                                
The  Inner boundary condition in Eq. A-29  becomes in dimensionless variables 

0
0

=
∂

∂

=DzD

Dm

z

p                                                                    …………………………(A-31) 

                                                       

The outer boundary condition in Eq. A-29 becomes in dimensionless variables  

DfzDm pp
D

=
=1

                                                                 …………………………(A-32) 

Transforming Eqs. A-29, A-30, A-31 and A-32 into Laplace space  
 

( )[ ]0,
2

2

DDmDm

D

Dm zpps
dz

pd
−=                                                  …………………………(A-33) 

initial  condition:    ( ) 00, =DDm zp                                   

inner boundary:     0

0

=

=DzD

Dm

dz

pd                                  

outer boundary:      
Df

z
Dm pp

D

=
=1

                              

 
The general solution is given by 

   DDDm zsBzsAp sinhcosh +=                                     …………………………(A-34) 

 
and  A and B are determined as 

s

p
A

Df

cosh
=                   
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0=B  

and Eq. A-34  becomes 
s

zs
pp D

DfDm
cosh

cosh
=                …………………………(A-35) 

 

Transforming Eq. A-35;  
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                                 …………………………(A-38) 

Eq. A-38 is inverted using the Stehfest algorithm. It should be noted that the inverse of 

the Laplace variable, s is the dimensionless variable tDL. This is then converted to time, t 

using the dimensionless variable definitions in Eq. A-28. 
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APPENDIX B 

LINEAR DUAL POROSITY MODEL 

 

Derivations for the linear dual porosity model (slab matrix, constant rate, bounded 

rectangular reservoir) are shown in this section. The assumptions relevant to the model 

are stated: 

Naturally fractured reservoir is made up of matrix and fractures (dual-porosity) 

Both porous media are homogeneous and isotropic 

Matrix acts as a uniformly distributed source for the fractures 

Fluid flows through the fractures to the wellbore 

Flow of a slightly compressible fluid of constant viscosity 

Reservoir is a bounded rectangular reservoir with a well at the centre producing at 

constant rate 

The following dimensionless variables are defined 

 Dimensionless time:      
[ ] [ ][ ] cwftmt

f

DAc
Acc

tk
t

µφφ +
=

00633.0  

 

Dimensionless pressure:     ( )
µqB

ppAk
p

icwf

DL
2.141

−
=  

 

Storativity:     [ ]
[ ] [ ]

ftmt
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c

φφ

φ
ω

+
=  

 
Interporosity flow parameter:  

cw

f

m
Ac A

k

k
αλ =  

 
Dimensionless length coordinate:  

2
L

z
zD =                   …………………………(B-1) 
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The diffusivity equations for the matrix and fracture along with the boundary conditions 

are stated below: 

Matrix 
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p m
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∂ φµ
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                                                        …………………………(B-2) 

                               
Initial condition:     ( ) im pzp =0,                   

Inner boundary: At 0,0 =
∂

∂
=

z

p
z m              (line of symmetry) 

Outer boundary:  At  
fm pp

L
z == ,

2
 

 
Fractures 
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∂
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∂ φµ                                         …………………………(B-3) 

The additional term on the right-hand side is the source term from the matrix. 
 
Initial condition: ( ) if pyp =0,  

 

Inner boundary:  
0=












∂

∂
−=

y

fcwf

y

pAk
q

µ
                       (constant rate) 

Outer boundary:  At  y = 
cw

e

A

y ,  0=
∂

∂

y

p f                     (no-flow boundary) 

 
Converting Eq. B-2 to dimensionless variables with definitions in Eq. B-1 
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where  cw

f

m
Ac A

k

k

L
2

12
=λ    is the Warren and Root interporosity flow parameter 
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The Initial condition in Eq. B-2 becomes in dimensionless variables 

( ) 00, =DDLm zp           …………………………(B-5) 

 The  Inner boundary condition in Eq. B-2 becomes in dimensionless variables 

0
0

=
∂

∂

=DzD

DLm

z

p                                                                …………………………(B-6)                           

 

The outer boundary condition in Eqn. B-2 becomes in dimensionless variables  

DLfzDLm pp
D

=
=1

                                                         …………………………(B-7)                                                               

 
Transforming Eqs. B-4, B-5, B-6 and B-7 into Laplace space  
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13
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2
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AcD

DLm zpps
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−
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initial  condition:    ( ) 00, =DDLm zp                                   

inner boundary:     0

0

=

=DzD

DLm

dz

pd                                  

outer boundary:      
DLf

z
DLm pp

D

=
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Applying the initial condition to Eq. B-8 yields  
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0

13
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=
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− DLm
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ω                                              …………………………(B-9)                                                                                                              

the general solution is given by 
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A and B are determined as 
 

0=B  
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and Eq. B-10  becomes  
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Converting the equation for the fractures in Eqn. B-3 into dimensionless variables 
 

1
2

2

3
=

∂

∂
−

∂

∂
=

∂

∂

DzD

DLmAc

DAc

DLf

D

DLf

z

p

t

p

y

p λ
ω                                   …………………………(B-12)                                                                                                   

 
Initial condition:  ( ) 00, =
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yp  

Inner boundary:  π2
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Transforming Eqn. B-12 into Laplace space 
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Differentiating and substituting Eqn. B-11 into B-13 
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Which can be represented as 

0)(
2
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=− ssfp
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D
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where  ( ) ( )
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Eq. B-12 thus becomes in Laplace space 
 

0)(
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=− DLf
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DLf
pssf

dy
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Initial condition:   ( ) 00, =DDLf yp  
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D
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Outer boundary:  0, =













s

A

y

dy

pd

c

e

D

DLf  

Thus, the general solution to Eq. B-15 is 
 

( ) ( )DDDLf yssfByssfAp )(sinh)(cosh +=                      …………………………(B-16)                                                               

 
   A and B are determined as 
                                                       

( )ssfs
B
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Substituting into Eqn. B-16 yields 
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Substituting yD = 0 (at the well) into Eq B-18 yields 
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Where 
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dividing by   ( ) Deyssf
e

2  
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In Laplace space, the constant pressure case at the wellbore can be found from the 

solution for the constant rate case given by Eq. B-23 using Eq. B-24. 

wDL

DL
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q
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1
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Eq. B-23 thus becomes for the constant pressure case 
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Eq. B-25 can then be inverted to obtain the solutions as a function of time using suitable 

Laplace numerical inversion algorithms such as Stehfest’s inversion algorithm. 
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 APPENDIX C 

DEVELOPMENT OF ANALYSIS EQUATIONS 

In this section, the analysis equations for the linear model are derived. 

 

C-1    Region 1 

This region represents early linear flow in the fracture system only. The Laplace space 

solution for the constant pressure inner boundary, closed outer boundary reservoir (slab 

matrix) is given from Eq. B-25 by 
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This can be shown to be the same as 

( )De
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1

1
)(

2
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−

+
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x

x

e

e
xCoth                                          …………………………(C-2)     

 
Approximately for x >3, ( ) 1≈xCoth                                   

 

Therefore  ( )( ) 1≈DeyssfCoth   when  ( ) 3>Deyssf    …………………………(C-3)     

Eq. C-1 becomes 
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For slab matrix,  ( ) ( )
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Therefore   ω=)(sf                                                 …………………………(C-7)     
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Eq. C-4 becomes 

ω

π 121

s

s

qDL

=              …………………………(C-8)     

 
 

or    ω
π s

qDL
2

1
=                                                  …………………………(C-9)     

 
 
Inverting from Laplace space 
 

ω
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1
=            …………………………(C-10)     

 
 

ωππ DAc
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t

q
2

1
=                                                   …………………………(C-11)     

 
 
From the assumptions in Eqs. C-3 and C-6 we can derive approximate equations for the 

approximate range where Eq. C-11 is valid 

 

From   Eq. C-3,   ( ) 3>Deyssf   

Applying Eq. C-7  
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Inverting from Laplace space 
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 139 

And    
9

2 ωDe
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y
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From Eq. C-6,   ( ) ( )












 −
−>>>>>

Ac

Ac s

s λ

ω
ω

λ
ω

13
tanh1

3
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      …………………………(C-16)     

 
This implies that s is large (very small times, tDAc) 
 
We can thus give an approximate range for Region 1 as  

9
0

2 ωDe
DAc

y
t <<         …………………………(C-17)     

 
 
C-2    Region 2 

This represents bilinear flow caused by simultaneous depletion in the fracture system 

and matrix. The Laplace space solution for the constant pressure inner boundary, closed 

outer boundary reservoir (slab matrix) is given from Eq. B-25 by  
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From Eq. C-1,  
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For slab matrix,   
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Assume  ( ) ( )
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and   11 ≈− ω  
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Approximately for For x >3,   ( ) 1≈xTanh  
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1
13

tanh ≈
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>
Ac

s

λ
     …………………………(C-22)     

 
 
Therefore   Eq. C-19 becomes 
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3
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Approximately For x>3   1)( ≈xCoth  

 
Therefore  In Eq. C-18  
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And  Eq. C-18 becomes 
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Substituting Eq. C-23 in C-25                 
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and                      
( )( ) 75.025.0

25.0
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Inverting from Laplace space 
 

( )( ) ( )75.03 2
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Γ
=

−
DAcAc

DL

t
q

π

λ
  where Γ( ) is the gamma function. 
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( ) ( ) 22542.13 2

25.0

25.0

25.0 −

= DAcAc
DL

t
q

π

λ
                      

25.0

25.0

  13317.10 DAc

Ac
DL

t
q

λ
=     …………………………(C-27)     

 
 

From the assumptions in Eqs. C-22 and C-24 we can derive approximate equations for 

the approximate range where Eq. C-26 is valid 

 

From   Eq. C-22,   3
3

>
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λ
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                                             …………………………(C-28)     
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2
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9
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Inverting from Laplace space 

9
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λ

           …………………………….(C-30) 
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DAct
λ3

1
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From Eq. C-24,   ( ) 3>Deyssf                   …………………………….(C-32) 

 
 
Applying Eq. C-23 to Eq. C-32 
 

3
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>De
Ac y

s λ
                    …………………………….(C-33) 
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s
λ
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4











>         …………………………….(C-34) 
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Multiplying by 
2

1

s
 

AcDeyss λ

3311
4

2 









>         …………………………….(C-35) 

 
Inverting from Laplace space 
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And   
33

4

AcDe
DAc

y
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λ








<  

 
It thus appears that an approximate criteria for Region 2 is  

Ac
DAct

λ3

1
<  

and  
33

4

AcDe
DAc

y
t

λ








<       …………………………….(C-37) 

 
 
C-3    Region 3 

This region represents the homogeneous reservoir case. The Laplace space solution for 

the constant pressure inner boundary, closed outer boundary reservoir (slab matrix) is 

given from Eq. B-25 by 
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21 π   where 
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From Eq. C-1,  

( )
De

DL

yssfCoth
ssf

s

q
)(

)(

21 π
=                     …………………………….(C-38) 

 
 
Approximately for x >3, ( ) 1≈xCoth                                   

 

Therefore  ( )( ) 1≈DeyssfCoth   when  ( ) 3>Deyssf   …..……….…….(C-39) 
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Eq. (C-38) becomes 

)(

21

ssf

s

qDL

π
=         …………………………….(C-40) 

 

For the homogeneous case ,  1)( =sf     …………………………….(C-41) 

 
and 
 

)(

21

ssf

s

qDLh

π
=  

 
Eq. C-40 becomes 

s

s

qDLh

π21
=         …………………………….(C-42) 

 

or    
s

qDLh
π2

1
=                                       …………………………….(C-43) 

 
Inverting from Laplace space 
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t

q
ππ2
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Where [ ]
Tq

pmpmAk

q g

wficw

DLh 1422

)()(1 −
=

  ;  
( ) cwt

DAch
Ac

kt
t

φµ

00633.0
=  and k is the homogeneous reservoir 

permeability. 

 
From the assumptions in Eqs. C-39 and C-41 we can derive approximate equations for 

the approximate range where Eq. C-44 is valid 

 

From   Eq. C-39,   ( ) 3>Deyssf   

 
Applying Eq. C-41 
 

Thus    3>Deys                                      …………………………….(C-45) 

And      
2

9
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Multiplying by 
2

1

s
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Inverting from Laplace space 
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2
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y
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We can thus give an approximate criteria for Region 3 as 

9

2
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DAc

y
t <                             …………………………….(C-50) 

 
      
 
C-4   Region 4 

This represents the transient linear case when the transient response is primarily from 

drainage of the matrix. The Laplace space solution for the constant pressure inner 

boundary, closed outer boundary reservoir (slab matrix) is given from Eq. B-25 by 
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From Eq. C-1,  

( )
De

DL

yssfCoth
ssf

s

q
)(

)(

21 π
=                                  …………………………….(C-51) 

 
 
For slab matrix,   

( ) ( )
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Assume  ( ) ( )
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and   11 ≈− ω  
 
Approximately for For x >3,   ( ) 1≈xTanh  

 

Assume ( )
1

13
tanh ≈









 −

Ac

s

λ

ω                          …………………………….(C-54) 

Thus  3
3

>
Ac

s
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               …………………………….(C-55) 

 
 
Therefore   Eq. C-52 becomes 

s
sf Ac

3
)(

λ
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Taylor’s series expansion of  

......
945

2

453

1
)(
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++−+=
xxx

x
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Taking first term of series   
x

xCoth
1

)( ≈                     ……………..……………(C-58) 

 
Thus,  In Eq. C-51,  
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De

De
yssf

yssfCoth
)(

1
)( ≈               ……………..……………(C-59) 

 

Eq. C-51  becomes  
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s
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1
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                   and    
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Substituting Eq. C-56 in C-60                 
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Inverting from Laplace space 

De
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DAc

DL y
t

q
32

1 λ

ππ
=                ……………..……………(C-61) 

 
From the assumptions in Eqs. C-55 and C-59 we can derive approximate equations for 

the approximate range where Eq. C-61 is valid 
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Inverting from Laplace space 
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From   Eq. C-59,   ( )
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1
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x
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1
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This implies that  5.0)( <Deyssf            ……………..……………(C-67) 

 
Applying  Eq. C-56 
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Multiplying by 
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Inverting from Laplace space 
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We can thus give an approximate range from Eq. C-65 and C-72 for Region 4 as 
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APPENDIX D 

HOMOGENEOUS LINEAR RESERVOIR RESPONSE  

 

In this section, the derivations of the equations for the homogeneous, constant pressure 

inner boundary, bounded rectangular reservoir are shown. This equation is derived 

beginning with Eq. B-25 for the linear model.  
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As shown in Appendix C, this is the same as 
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For the homogeneous case, f(s) = 1, and  
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Applying Eq. D-3 to D-2 

[ ]...........2221
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Inverting from Laplace space 
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Eq. D-7 is the exact analytical solution for Eq. B-25 for the homogeneous case. 
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APPENDIX E 

EFFECT OF SKIN 

 

Skin is normally defined as a dimensionless pressure for the slightly compressible fluid 

case given by71 

µqB

pkh
s s

rw
2.141

∆
=                                                         ………………………………..(E-1) 

Where the skin is an additional dimensionless pressure 

rwDwD spp +=                                                           ………………………………..(E-2) 

There have been different definitions for the dimensionless pressure used in pressure 

transient horizontal wells.  One set of investigators42,48,54,55 define 

µqB

pkh
pDrw

2.141

∆
=                                                         ………………………………..(E-3) 

While Kuchuk50 and Lichtenberger60 define 

µqB

pkL
p w

DH
2.141

∆
=   and thus   

µqB

pkL
s sw

H
2.141

∆
=                   ……………………………..(E-4) 

For the linear model we will define 

µ
π

qB

pAk
s

scw

Ac
2.141

2
∆

=  which represents the skin defined in El-Banbi16. 

 In this section, an investigation will be conducted using different software to 

determine how their skin is defined or represented. The test model is the constant rate, 

horizontal well, homogeneous rectangular bounded reservoir case. The software to be 
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used in this exercise are Kappa Ecrin v4.02.02 (Saphir module), Fekete (WellTest32 

Module version 7.0.0.2) and the numerical simulator ECLIPSE version 2007.1. The 

results will be compared with our linear model given in Appendix B (homogeneous case, 

f(s) = 1). The dataset is given in Table E-1. Two cases will be presented. Case 1 is one in 

which skin = zero and Case 2 is one in which skin =10. Skin = 0 and Skin = 10 means 

that 0 and 10 will be input into each software for the required case. 

 

Table E-1 – Dataset for Effect of Skin Runs. 

rw 0.25 ft 

h 30 ft 

φ 0.1 

k 1 md 

pi 5,000 psi 

Lw (xe) 2,000 ft 

ye 500 ft 

q 100 stb/d 

Β 1 rb/stb 

µ 1 cp 

ct 3x10-6 psi-1 

 

The results from Case 1 are shown in Figs. E-1 and E-2. Fig. E-1 shows the 

results plotted in terms of normal variables, log-log plot of [pi-pwf ]/q against time. It can 
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be observed from Fig. E-1 that the results from the three software show similar results 

except for Saphir which deviates at later times. Our linear model differs as expected 

from the three software by the convergence skin expected with an actual horizontal well. 
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Fig. E-1 –  Case 1 (skin = 0)  - Comparison of Results. The three software show 

similar results except for Saphir which deviates at later times. Our linear model 

differs as expected from the three software by the convergence skin expected with 

an actual horizontal well. 
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Fig. E-2 – Case 1 (skin = 0) - Comparison of Results (Dimensionless Pressure 

against Dimensionless Time). The three software show similar results except for 

Saphir which deviates at later times. Our linear model differs as expected from the 

three software by the convergence skin expected with an actual horizontal well. 

 
 
 The generated pressure and time results for Fekete, ECLIPSE from Fig. E-1 are 

converted to pDrw using Eq. E-3 and tDrw using Eq. E-5 and are plotted in Fig. E-2.  Fig. 

E-2 shows the results plotted as a dimensionless plot of pressure, pDrw against 

dimensionless time, tDrw. The derivative is also added to the plot. 
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The results from the linear model are converted to the above variables pDrw and tDrw 

using the relations 
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Fig. E-2 shows the same results as Fig. E-1. The three software show similar 

results except for Saphir which deviates at later times (Saphir’s horizontal well model 
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might be different from the others). Our linear model as expected indicates linear flow 

(half-slope on derivative). Our linear model also differs as expected from the three 

software by the convergence skin expected with an actual horizontal well. The effect of 

convergence skin has been discussed in Chapter III. 

The results from Case 2 (skin = 10) are shown in Figs. E-3 and E-4. Fig. E-3 

shows the results plotted in terms of normal variables as a log-log plot of [pi-pwf ]/q 

against time. It can be observed from Fig. E-3 that the results from ECLIPSE and Fekete 

are similar. The results from Saphir differ from the others indicating that the skin 

definition is different. The linear model obviously also differs from the other results due 

to its different skin definition. Fig. E-4 shows the corresponding dimensionless pressure 

and time plot similar to Fig. E-3 except that the skin=10 runs are also added to the plot. 

The results are summarized in Table E-2. 
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Fig. E-3 –  Case 2 (skin = 10)  - Comparison of Results. ECLIPSE and Fekete are 

similar while Saphir and the Linear model are different because of the different 

skin definitions. 
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Fig. E-4 –  Comparison of Results (skin = 0 and skin =10) Dimensionless Pressure 

against Dimensionless Time. Fekete and ECLIPSE have similar definitions of skin 

different from the other software  

 
 
 

Table E-2 – Summary of Results from Fig. E-4. 

Software Skin : pDrw(skin=10) - pDrw(skin=0) 

Fekete 0.15 

ECLIPSE simulator 0.15 

Saphir 10 

Linear model 5.44 

 
 

It can be observed from Table E-2 that the Fekete definition is based on Lw as 

shown in Eq. E-4. The conversion to conventional definitions results in 

15.0
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1010 ===

w

H
L

h
s  

 
The Saphir definition is obviously based on h. The linear model definition as was 

previously shown is based on √Acw. 
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000,120
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When utilizing the different software these different skin definitions should be 

noted so as to ensure that accurate interpretation and calculations. 

The results from Fekete are plotted on a [m(pi)-m(pwf)]/q against t0.5
 plot in Fig. 

E-5. It can be observed from Fig E-5 that there are two parallel lines representing the 

response in the transient linear region for the skin = 0 and skin = 10 cases. It can thus be 

concluded that the effect of skin is a constant offset on this plot. 
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Fig. E-5 –  Comparison of Results (skin=0 and skin=10) - Specialized Plot of [m(pi)-

m(pwf)]/q against t
0.5

 . The two plots are parallel with a constant offset showing the 

effect of skin. The initial curve is due to the horizontal well radial flow present in 

the Fekete model. 
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An equation60 for computing the convergence skin in the linear flow period 

which account for additional pressure drop caused by linear flow streamlines converging 

to an actual horizontal well is given by 
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Vw
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ππ
sin1ln                      ………………………………..(E-7) 

This equation should be added to the response from our linear model to obtain similar 

results as in Fekete and ECLIPSE as demonstrated in Chapter III. 

 

E.1   Constant pwf Case 

In this section, an investigation will be conducted using the constant pwf, horizontal well, 

homogeneous rectangular bounded reservoir case. Only ECLIPSE and the linear model 

will be used for this test. The data set is the same as given in Table E-1 except that a well 

flowing pressure of 250 psi is used. The results for ECLIPSE are shown in Figs. E-6 and 

E-7. The results for the linear model is shown in Fig. E-8 and E-9. It can be observed 

from Figs. E-6 and E-8 that the effect of the skin is to lower the rates in the transient 

linear region. This is contrary to observations with the constant rate case. It can be 

observed from Figs. E-7 and E-9 that the effect of the skin decreases with increasing 

time. This is contrary to the parallel lines observed in Fig. E-5 for the constant rate case. 
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Fig. E-6 –  Comparison of Results for ECLIPSE (skin =0 and 10, Constant Pressure 

case) – Log-log Plot of Rate against Time. The skin = 10 case shows lower rates. 
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Fig. E-7 –  Comparison of Results for ECLIPSE (skin =0 and 10, Constant Pressure 

case) – Specialized Plot of [pi-pwf]/qg against t
0.5

. There is a diminishing effect of skin 

with time. 
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Fig. E-8 –  Comparison of Results for the Linear Model (skin =0 and 10, Constant 

pwf case) – Log-log Plot of Rate against Time. The skin = 10 case shows lower rates. 
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Fig. E-9 –  Comparison of Results for the Linear Model (skin =0 and 10, Constant 

pwf case) – Specialized Plot of [pi-pwf]/qg against t
0.5

. There is a diminishing effect of 

skin with time. 
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APPENDIX F 

DERIVATION OF THE EQUATION FOR THE CONSTANT 

BOTTOMHOLE PRESSURE EFFECT OF SKIN  

(HOMOGENEOUS, LINEAR RESERVOIR) 

 

In this section, the constant pressure effect of skin shown previously in Appendix D will 

be derived for the infinite, homogeneous linear reservoir case. 

 

The equation16  for the linear model (infinite reservoir case) is given by  
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( )[ ]ssfs

ssf

s

q
Ac

DL

+= 1
21 π

                           ………………………………..(F-1) 

For the homogeneous reservoir case, ( ) 1=sf   
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and solving by partial fractions 
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put 0=s  into Eq. F-4 and thus A=1 
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put  
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Eq. F-10 gives the transient response for an infinite homogeneous, constant pressure 

inner boundary reservoir with a skin effect, sAch present.  

It can be observed from Eq. F-10 that at small times, 0≈DAct  

Ach

DLh
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q
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1
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And at large times  ∞≈DAct  

Using first term of asymptotic expansion for erfc(x) for large x 

( )
πx

e
xErfc

x2−

=  

Eq. F-10 becomes 
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APPENDIX G 

DERIVATION OF THE EQUATION FOR THE SQUARE ROOT OF 

TIME LINEAR DERIVATIVE (HOMOGENEOUS, LINEAR 

RESERVOIR, CONSTANT BOTTOMHOLE PRESSURE) 

 

In this section, the analytical equation for linear derivative for the linear homogeneous 

reservoir (constant pressure inner boundary, infinite) with a skin effect will be derived. 

 

From Eq. F-10, 
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We know that 
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Let 
DAch
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t
s

u
1

=  and thus  DAch
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Thus Eq. G-1 becomes 
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Differentiating 
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We know that ( )
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Eq. G-4 becomes 
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Applying Eq. G-2 to obtain the square root of time  derivative 
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At zero time Eq. G-7 becomes 
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from Eq. F-10 that at small times, 0≈DAct  
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The ratio of the slopes at zero time and late time is given by 
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Substituting Eq. G-9 in Eq. G-10 
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The ratio of the slopes at zero time and late time is given by 
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APPENDIX H 

DERIVATION OF THE EQUATION FOR THE CONSTANT     

BOTTOMHOLE PRESSURE EFFECT OF SKIN  

(SLAB MATRIX, LINEAR RESERVOIR) 

 

In this section, the equation for the linear dual porosity reservoir (slab matrix, constant 

pressure inner boundary, closed) with a skin effect will be derived. 

The constant rate solution (zero skin) is given by Eq. B-23 in Appendix B as 
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This was shown in Appendix B to be the same as 
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the addition of skin to Eq. H-2 in Laplace space is given by 
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The solution for the constant pressure is obtained by applying  the Van Everdingen and 

Hurst relation59 given by Eq. H-5 to Eq. H-4. 
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This results in 
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Taking first two terms of  the series   
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Thus, In Eq. H-6,  
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This yields 
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For slab matrix,   
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Assume  ( ) ( )
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Substituting Eq. H-16 in G-12 
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Inverting Eq. H-21 from Laplace space 
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It can also be shown as in Appendix F that at small times, 0≈DAct  Eq. H-22 becomes 
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Which yields similar results as Eq. F-11 as described in Chapter VII. 

And at large times,  ∞≈DAct  

Using first term of asymptotic expansion for erfc(x) for large x 
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Eq. H-22 becomes 
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Which is the expected equation for Region 4 previously given in Eq. C-65. 
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APPENDIX I 

DERIVATION OF EQUATIONS FOR THE BEGINNING OF  

CONVERGENCE SKIN STABILIZATION IN LINEAR FLOW 

 

As previously discussed, convergence skin accounts for distortion of the linear flow in 

the rectangular reservoir to radial flow  around the wellbore. The convergence skin 

develops during radial flow and stabilizes throughout linear flow. In this section 

equations will be derived for the beginning of this stabilization for both constant rate and 

constant pwf  cases. 

 

I-1   Constant Rate 

The equation for the radial flow in a horizontal well is given by 
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Eq. I-1 can also be expressed as 
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The equation for linear flow is given by 
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where sc is the convergence skin 
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Eq. I-3 can also be expressed as 
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From Eq. I-2,  
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Differentiating Eq. I-5 
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From Eq. I-4,  
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Differentiating Eq. I-7 
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Equate Eqs. I-6 and I-8 
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Squaring both sides 
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I-2   Constant pwf 

The equation for the radial flow in a horizontal well is given by 
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Eq. I-16 can also be expressed as 

4045.0
00633.0

ln
2

1

2.141 2
+







=

∆

wt

w

rc

kt

qB

pkL

φµµ
                     ………………………………..(I-17) 

The equation for linear flow is given by 
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Eq. I-18 can also be expressed as 
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Solving Eqs. I-16 to I-19 similarly to the constant rate case given previously yields 
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for the constant pwf case 
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