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ABSTRACT

The Effect of Practice on Learning and Transferring Goal Directed Isometric Contractions across 

Ipsilateral Upper and Lower Limbs. (May 2009)

Navneet Kaur, B.S. (PT), University of Delhi

Chair of Advisory Committee: Dr. Evangelos A. Christou

The purpose of this thesis was to determine whether practice-induced adjustments and 

retention of a goal directed isometric motor accuracy task were similar between ipsilateral upper 

and lower limb and whether there is an ipsilateral transfer between upper and lower limbs. In 

addition, this thesis project aimed to determine whether motor output variability and the activity 

of the involved agonist and antagonist muscles could predict any of the above stated changes.

Sixteen young adults (8 men, 8 women; 22.1 ± 2.1 years) performed 80 trials of goal directed 

isometric contractions that involved accurately matching a target force of 25% MVC in 200 ms, 

either with the upper limb or the lower limb followed by the other limb. After an interval of 48 

hours, 10 trials similar to the practice trials were performed to examine retention. Feedback of 

performance was provided in the form of a force-time trajectory along with numerical error 

values for force and time on each trial. End-point error was quantified as the absolute deviation 

from the targeted force and time. Motor output variability was quantified as the SD of force, SD 

of time to peak force and SD of force trajectory.

The practice-induced adjustments for force and time endpoint accuracy were similar for the 

two limbs, however, two days later, retention of the force accuracy was better with the upper 

limb compared with the lower limb. Practice-induced reduction and practice-to-retention 



iv

increase in force and time endpoint error were predicted by respective changes in peak force and 

time to peak force trial-to-trial variability for both limbs. In addition, the changes in accuracy 

were predicted by the changes in the activity of the involved agonist and antagonist muscles. 

Nonetheless, the changes in muscle activity differed between the two limbs. The adjustments in 

muscle activity were also different during the practice session despite the fact that the rate of 

improvement was similar for the two limbs. Finally, there was an asymmetric transfer of force 

accuracy from the lower limb to the ipsilateral upper limb, which was associated with the 

changes in motor output variability. The upper limb, which is inherently less variable as 

compared to the lower limb, may have retained the task better due to the formation of a stronger 

muscle synergy (or stronger internal model) to perform the contractions with accuracy. The 

lower limb, on the other hand may have formed a weaker internal model due to the greater

interference from amplified signal-dependent noise (motor output variability) or an alternative 

motor plan, which may have been concerned primarily with the minimization of motor output 

variability instead of formation of a muscle synergy to perform the contractions accurately.
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CHAPTER I

INTRODUCTION

Motor learning is defined as changes induced by practice or experience that lead to 

relatively permanent changes in the capability for movement (Schmidt and Lee 2005). Because 

the learning process can’t be directly observed, changes in the performance of a motor task are 

used as an index of learning. Motor learning is associated with acute and long-term adaptations.  

Acute adaptations refer to the initial adjustments in the nervous system and motor output upon 

exposure to the novel task, whereas long-term adaptations refer to the ability to retain the initial 

adjustments and performance of the motor output. Finally, long-term adaptations improve the 

ability of an individual to transfer what was learnt to new conditions and variations of the 

practiced task. Transfer of learning refers to the gain or loss in the proficiency of performance on 

a new condition or variation of a task that was previously practiced. It is important to know how 

well a motor skill is retained and transferred to understand how well the skill was learnt.

Learning-induced adaptations have been shown to induce changes in brain chemistry (Dunn 

1980), changes in the cortical representation of the body parts involved in learning (Pascual-

Leone et al. 1994), changes in the activity of higher centers (Floyer-Lea and Matthews 2005; 

Hikosaka et al. 2002) and changes in the activation of antagonist muscles (Christou et al. 2007). 

Contralateral transfer between limbs

Motor learning improves performance not only of the practiced limb but also improves 

the performance (transfer) of the contralateral limb (Malfait and Ostry 2004).  There is evidence 

____________
This thesis follows the style of Journal of Neurophysiology.
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that the transfer of learning across congruous contralateral limbs (hand to hand and foot to foot)

is greater than the transfer of learning across incongruous contralateral limbs (hand to foot and 

vice versa) (Ammons et al. 1958; Cook 1936). A study on visuomotor task adaptations that 

required subjects to adapt to a 30o counterclockwise rotation in the visual display during a 

center-out reaching task performed in eight directions showed that different movement features 

transferred in different directions across contralateral limbs. Subjects that practiced with the non-

dominant arm first showed improved trajectory direction with the dominant arm, whereas 

subjects that practiced with dominant arm first showed improved final position accuracy 

(Sainburg and Wang 2002).  

The transfer to contralateral limbs can be explained by the following three mechanisms: 

First, when a motor task has been learnt with one limb, the contralateral limb has already 

acquired the best technique or strategy to learn that motor task and thus, there is a transfer of 

learning across the two limbs. Second, the transfer of learning across two limbs can be explained 

using the concept of internal models. Skilled motor behavior depends on the acquisition of 

internal models, which are the representations of the sensorimotor transformations within the 

central nervous system that guide the actual transformations between sensory inputs and motor 

outputs to achieve a desired action (Wolpert et al. 2001). While the CNS uses the forward 

internal model to predict the sensory consequences of motor commands and estimate the state of 

the body and the environment, the inverse internal model helps the CNS transform the desired 

sensory consequences into the motor commands required to achieve them. When a motor task 

has been learnt by one limb, the forward and inverse internal models appropriate for that task 

have been acquired by that limb and these models are now available for use by the contralateral 

limb to perform the same task successfully. The third explanation comes from the 
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neuroanatomical and neurophysiological evidence that although the descending neural signals 

from the higher centers to the muscles are mainly contralateral, there is some overflow of these 

signals ipsilaterally that leads to stimulation of spinal motorneuron controlling the ipsilateral 

limbs as well (David 1942). The clinical relevance of contralateral limb transfer has been greatly 

explored in the rehabilitation of patients recovering from stroke where practice using the 

unaffected limb leads to improvement in performance with the affected contralateral limb.

Ipsilateral transfer between limbs

  In contrast to the numerous studies that examined the ability of subjects to transfer motor 

learning to contralateral limbs, fewer studies have examined the transfer of learning across 

ipsilateral limbs.  Subjects who practiced an interlimb multifrequency (2:1) coordination task 

with the upper limb moving twice as fast as the lower limb were able to transfer the same pattern 

to the contralateral side of the body. This pattern however did not transfer to the ipsilateral side 

of the body when subjects were asked to move the lower limb twice as fast as the upper limb 

(Vangheluwe et al. 2006). The authors proposed a dual layer movement representation model for 

their findings according to which the effector independent component (general movement goal of 

moving one limb twice as fast as the other) was thought to be represented at a higher level as 

compared to the effector specific component (muscle synergies acquired through practice), and 

hence a positive transfer to the contralateral side but not within the ipsilateral side. Seidler, 

Bloomberg and Stelmach (2001) found that the transfer of learning for goal directed pointing 

movements was symmetrical between the proximal and distal joints of the upper limb. The 

adaptations acquired were transferred from the wrist joint to the shoulder joint and vice versa. In 

the same study, arm and head pointing movements were also examined for transfer effects. There 
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was a high transfer from the arm to the head pointing movements and only little transfer from the 

head to the arm pointing movements (Seidler et al. 2001). These findings contradict those of 

many others that demonstrated a hierarchical nature of transfer between body segments, with the 

proximal segment always dominating the distal segment (Hay and Brouchon 1972; Krakauer et 

al. 2006; Putterman et al. 1969). Bloomberg and Stelmach (2001) proposed that different but 

dependent target representations exist for the arm and the head pointing movements, whereas a 

common representation exists for the arm segments.  

A recent study examined the ability of individuals to transfer the force and time 

components of an isometric goal-directed task between the ipsilateral upper and lower limb 

submaximal isometric elbow flexion and dorsiflexion contractions (Christou and Rodriguez 

2008). The authors demonstrated that time error and variability decreased significantly for the 

limb that performed the task second, while there was no transfer of force component across 

ipsilateral upper and lower limbs. The findings indicated that time and not force was transferred 

symmetrically between limbs. The authors proposed that planning of the timing (but not force) 

may be taking place at a common part of the brain for both the upper and the lower limb. They 

suggested that force did not transfer from one limb to the ipsilateral limb because of similar 

motor unit recruitment and discharge rate characteristics for the upper and the lower limb

muscle, as the study used target force levels that were normalized to 25% of the maximum.  In 

contrast, the time to peak force target was absolute at 200 ms.

Understanding of whether learning and transfer of learning is different between ipsilateral 

upper and lower limbs, two systems with inherently different motor output variability (Christou 

et al. 2003) within the same individual has both theoretical and clinical implications. 

Theoretically, it can help us understand how the central nervous system learns and transfers a 
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new task and the importance of the end effector in motor learning. For example, there is evidence 

that the lower limb exhibits greater motor output variability than the upper limb (Christou et al. 

2003). According to the optimal feedback model (Scott 2004) greater noise in the nervous 

system will impair the formation of a strong internal model. This theory is supported by 

experimental evidence which demonstrates that practice improves the accuracy of the task by 

decreasing motor output variability within a trial (trajectory variability) and across trials (trial to 

trial variability) (Christou et al. 2007). These differences in motor performance may contribute to 

learning differences between the ipsilateral limbs. Clinically, it may enable the development of 

new training techniques to compensate for neurological impairments and promote neurological 

recovery.  

Furthermore, it is important, both theoretically and clinically, to understand the 

associated changes in neuromuscular mechanisms that occur with motor learning.  Because the 

activation of the motor unit is the last common pathway of the central nervous system to the 

periphery, the behavioral changes must be associated with acute and long-term adaptations in the 

activation of muscles involved in the task. Therefore, the differences in learning of a motor task 

between upper and lower limbs can also arise from the difference in the pattern of muscle 

activation involved in the learning process. Nonetheless, the literature on understanding the 

muscle activation with motor learning is limited. Such differences have been highlighted across 

young and old adults as they practiced a novel end-point isometric accuracy task (Christou et al. 

2007). While young adults improved their force accuracy by adjusting the activity of both the 

agonist and antagonist muscle, old adults primarily adjusted the activity of the agonist muscle.  

In addition, an increase in the coactivation of agonist and antagonist muscles was reported at the 

elbow and shoulder joints with practice induced improvements in accuracy on a pointing task 
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(Gribble et al. 2003). These findings raise the possibility of a task-dependent nature of muscle 

activation with learning, which may be different for the upper and lower limb.  

Overall, there is a need in the literature to further understand the relation between the 

practice-induced changes in performance across limbs, the ability to retain and transfer between 

ipsilateral upper and lower limbs, and the neuromuscular changes that occur at the level of the 

effector in a particular motor task. The overall purpose of this thesis project, therefore, was to 

determine whether the acute adjustments (rate of improvement with practice) and long-term 

adaptations (retention) to perform a novel motor task with accuracy are similar between the 

ipsilateral upper and lower limb and whether there is an ipsilateral transfer between upper and 

lower limbs. In addition, this thesis project attempted to determine whether the synergistic 

activation of the involved agonist and antagonist muscles in this task can predict such learning 

adaptations.

Research questions and hypotheses

This thesis project focused on addressing the following 4 research questions:

Question 1. Are there differences in motor performance between ipsilateral upper and lower 

limbs? If yes, can motor output variability and EMG measurements of the agonist and antagonist 

muscles predict the differences in the motor output between ipsilateral upper and lower limbs?

Hypothesis: Based on previous findings (Christou and Rodriguez 2008; Christou et al. 2003), it 

was hypothesized that the lower limb will be less accurate and more variable compared with the 

upper limb. The differences in performance will be due to differences in the synergistic 

activation of the agonist and antagonist muscles.
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Question 2. Are the acute practice-induced adjustments different for the ipsilateral upper and 

lower limbs? If yes, can motor output variability and EMG measurements of the agonist and 

antagonist muscles predict the differences in the motor output between ipsilateral upper and 

lower limbs?

Hypothesis: Based on previous findings (Christou and Rodriguez 2008), it was hypothesized that 

the relative acute adjustments (rate of improvement with practice) will be similar for the upper 

and lower ipsilateral limbs.

Question 3. Is there any transfer of learning between ipsilateral upper and lower limb? If yes, 

which components (force or time) of the motor task are transferred between ipsilateral upper 

limb and lower limb as a result of practice? Can motor output variability and EMG 

measurements of the agonist and antagonist muscles predict such transfer?

Hypothesis: Based on previous findings (Christou and Rodriguez 2008), it was hypothesized that 

time but not force will transfer symmetrically between the ipsilateral upper and lower limbs. The 

transfer of timing between the two limbs will be due to transfer in the timing of activation 

between the agonist and antagonist muscles.

Question 4. Is the retention of the practiced motor task 48 hours after practice different for the 

ipsilateral upper and lower limb? If yes, which components (force or time) of the motor task are 

retained better as a result of practice? Can motor output variability and EMG measurements of 

the agonist and antagonist muscles predict the differences in retention?

Hypothesis: Because time was transferred between ipsilateral upper and lower limbs in previous 

findings (Christou and Rodriguez 2008), it was hypothesized that time but not force will be 
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retained. The retention will be similar for the ipsilateral upper and lower limbs. The retention of 

timing between the two limbs will be due to retention in the timing of activation between the 

agonist and antagonist muscles.
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CHAPTER II

METHODS

Subjects

Sixteen young adults (eight men, eight women; 22.1 + 2.1 years) participated in this 

study. All participants reported being physically healthy and moderately active and all of them 

were right limb dominant for both the leg and the arm according to the Edinburgh Handedness 

Inventory (Oldfield 1971). The experimental protocol for the study was approved by the 

Institutional Review Board at Texas A&M University. Subjects provided a written informed 

consent prior to participation in the study.

Experimental arrangement

An isokinetic dynamometer (KIN-COM 125A; Chattanooga Corporation, Chattanooga, 

TN) was used to measure the force exerted during goal-directed isometric contractions with the 

non-dominant upper and lower limb. The signal from the force transducer of the Isokinetic 

dynamometer was collected with an external A/D board (iWorx 118, iWorx CB Sciences Inc., 

Dover, New Hampshire, USA) and visual feedback was provided on a 51’’ screen 1.8m in front 

of the subject via Matlab custom-made software.  Each subject was seated on the chair of the 

dynamometer and affirmed that could see both the target and force-time trajectories. For the 

upper limb contraction, the left shoulder and the left elbow were positioned at 90o of flexion and 

the forearm was fully supinated. The upper limb goal-directed contraction primarily involved 

elbow flexion (Figure 1A). For the lower limb contraction, the left hip was positioned at 110o of 

flexion with neutral rotation and the left knee was positioned at 100o of flexion. The ankle joint 
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was positioned so that the foot and the shank formed an angle of 90o. The lower-limb goal-

directed contraction primarily involved dorsiflexion (Figure 1B). Stabilizing trunk and thigh 

straps were used to avoid accessory joint movements that could confound the findings.

Force and EMG measurements

The force exerted by upper limb muscles was recorded with a force transducer at the 

wrist joint. The force exerted by lower limb muscles was recorded with a force transducer at the 

dorsal aspect of the left foot. The force signal was low pass filtered at 20 Hz and digitized at 

1000 samples/s with a data acquisition system (iWorx 118, iWorx CB Sciences Inc., Dover, New 

Hampshire, USA) and stored on a personal computer.

The Electromyographic (EMG) activity of the primary agonist and antagonist muscles 

involved in the upper limb and lower limb contractions was measured with narrow pad Ag-AgCl 

bipolar surface EMG electrodes (model BL –AE- N, B&L Engineering, Tustin, CA, USA). The 

interelectrode distance or the distance between the conductive areas of the two electrodes in the 

bipolar electrode arrangement electrodes was less than ¼ of the muscle-fiber length for all 

muscles. The electrodes had an in-built amplifier that had a gain of 330 times, input impedance 

greater than 100 M Ω and a bandwidth of 10Hz to approximately 3.12 kHz. The placement of the 

electrodes on the muscles followed the guidelines proposed by the European initiative, Surface 

Electromyography for Noninvasive Assessment of Muscles (Hermens and Freriks 1997). For the 

upper limb contractions the EMG activity of the biceps, short and long heads; triceps long and 

lateral heads and the brachioradialis muscles was quantified; whereas, for the lower limb 

contractions the EMG activity of the Tibialis anterior, Peroneus longus, medial Gastrocnemius, 

lateral Gastrocnemius and Soleus muscles was quantified. The reference electrode was placed on 
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the styloid process of ulna. The interference EMG signals were band-passed filtered with a 

fourth order Butterworth digital filter from 10-500 Hz. To quantify the burst of activity from 

each muscle, the interference EMG signal was rectified and low pass filtered at 6 Hz using a 

fourth-order Butterworth digital filter. The EMG of all the muscles was sampled at 1000 

samples/s with a data acquisition system (iWorx 118, iWorx CB Sciences Inc., Dover, New 

Hampshire, USA) and stored on a personal computer. The interference EMG signals were 

observed online by the investigator using the LabScribe2 Data Recording and Analysis software 

(iWorx LabScribe2, iWorx CB Sciences Inc., Dover, New Hampshire, USA) and a custom made 

MATLAB program.  

Experimental procedures

Testing was conducted in two different days (sessions) with an interval of 48 hours 

between the two sessions (Figure 2).  During the first testing session, the following were 

performed: 1) Brief familiarization of the equipment and task. 2) Five maximal voluntary 

isometric contractions (MVC). 3) Practice: Eight blocks of 10 practice trials (80 trials) of goal-

directed submaximal isometric contractions performed either with the upper limb or lower limb. 

Contractions were repeated every 3 s and at the end of each block subjects received 1 minute 

rest. 4) Five MVCs as performed earlier to assess whether the repeated submaximal contractions 

induced any muscle fatigue. The same sequence of tasks was performed with the other limb after 

20 minutes of rest. The order of the ipsilateral upper and lower limbs was counterbalanced 

among subjects.   

The second testing session was conducted after an interval of 48 hours from the first 

testing session. During the second testing session, the following were performed: 1) Five MVC 
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trials. 2) Retention trials: One block of 10 trials of isometric goal-directed contractions at the 

same force and time target levels as the first session to examine retention of the task practiced 

during the first session; 3) Random trials: Eight blocks of 12 trials (96 trials) of goal directed 

isometric contractions at four different force and time targets.  Each block was followed by a 1 

minute rest period before the next block of trials and the trials within a block were separated by 

3s rest periods. 4) Five MVCs as performed earlier to determine whether the protocol induced 

any muscle fatigue. The same sequence of movements was performed with the other limb after a 

break of 20 minutes. The order of limbs was the same as session 1 and was counterbalanced 

among subjects. 

MVC TASK. Subjects were instructed to exert their maximal force as fast as they could 

during elbow-flexion, elbow-extension, dorsiflexion and plantarflexion isometric contractions. 

The maximum force value was considered as the MVC for the task performed.  The MVC was 

used to normalize the force during practice (25% MVC) and random trials (12% and 50% MVC).  

In addition MVC was used to normalize the EMG amplitude for various muscles during the two 

experimental sessions. Finally, MVC was used at the beginning and end of trials for each limb to 

determine whether the repeated submaximal contractions induced any muscle fatigue.

ENDPOINT ACCURACY TASK. The task was to match the peak of the force-time 

trajectory exerted by the upper or lower limb to the center of the target box (Figure 3). The 

center of the target had both time (X-axis) and force (Y-axis) coordinates. The size of the target 

box was 20% of the targeted parameters. For the practice and retention trials the target 

coordinates were 200 ms (time target) and 25% MVC (force target). The same contraction was 

repeated for 80 practice trials (8 blocks of ten trials per limb) and ten retention trials (one block 

of ten trials per limb). For the random trials the target coordinates were: 1) 200 ms and 12.5% 
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MVC; 2) 200 ms and 50% MVC; 3) 100 ms and 25% MVC; 4) 400 ms and 25% MVC. The 

order of appearance for each target occurred randomly in eight blocks of 12 trials (4 targets x 3 

random trials for each target). A custom-written program in Matlab® (Math Works™ Inc., 

Natick, Massachusetts, USA) manipulated the targeted force level and time and provided visual 

feedback regarding the errors.

The subjects were instructed to perform the contraction when they saw the target box 

change color from red to green. The red color target lasted 1s and was used to prepare the subject 

for the upcoming contraction (“GET READY” phase), whereas the green target was an 

indication to the subject that could initiate the contraction (“CONTRACT” phase). To avoid 

reaction time effects, the subjects were told to perform the movement at any point of time as long 

as the green box continued to be displayed on the screen. Feedback of performance was provided 

to the subjects in the form of a force-time trajectory along with numerical error values for force 

and time on each trial (Figure 4). There is evidence (Christou et al. 2007; Newell 1976) that 

when knowledge of results is provided by this kind of feedback, it improves performance in 

subsequent trials. The same knowledge of results was provided to the subjects during the 

retention and transfer trials. The screen with the target and the feedback was projected on a wall 

1.8m in front of the subject at eye level. The screen was 46’ long, 35’ wide and 58’ diagonally 

across. The length of the target box (along the x-axis) was 20% of the length of the x-axis of the 

screen and the width of the target box (along the y-axis) was 20% of the length of the y-axis of 

the screen.
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Data analysis

Data were acquired and analyzed off-line with custom-written program in Matlab® 

(Math Works™ Inc., Natick, Massachusetts, USA). The force and surface EMG signals were 

analyzed from the start to the peak of the force trajectory. The start of the force trajectory was 

considered when the contraction value exceeded the resting value by 3% of the peak force in 

each trial.  The force signal was low-pass filtered at 20 Hz with a fourth order Butterworth digital 

filter and digitized at 1000 samples/s. The interference EMG signals were band-pass filtered with 

a fourth order Butterworth digital filter from 10-500 Hz and subsequently rectified and low-pass 

filtered at 6 Hz to identify the burst of EMG activity in each muscle and contraction.

MOTOR OUTPUT. For each contraction the following parameters were recorded: 1) 

peak force; 2) time to peak force; 3) force endpoint error - quantified as the absolute difference 

between the targeted peak force and the exerted peak force for every trial; 4) time endpoint error 

- quantified as the absolute difference between the targeted time-to-peak force and the exerted 

time-to-peak force for every trial; 5) trajectory variability – quantified as the SD of force in the 

detrended force trajectory (start of force to peak force).  This was achieved by removing the 

linear trend from the force data.  In addition, the trial-to-trial variability for each block of trials 

was quantified for the following: 1) SD of peak force; 2) (CV; (SD / mean force) x 100); 3) SD 

of time to peak force; 4) CV of time to peak force.

EMG BURSTS. The EMG bursts of the involved agonist and the antagonist muscles was 

quantified with the following parameters: 1) EMG amplitude – peak of the EMG burst 

normalized to the peak EMG value of the MVC; 2) EMG onset – start of EMG activity 

quantified when EMG burst was > 5% of the peak EMG; 3) EMG offset – end of EMG activity 

quantified when EMG burst was < 5% of the peak EMG following the peak EMG burst; 4) EMG 
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duration - time between the onset and the offset of the EMG burst; 5) Time to peak EMG: 

duration of time from the onset of the EMG burst to the time of peak EMG amplitude; 6) 

Antagonist-Agonist EMG delay - time between the peak EMG amplitude of the major antagonist 

muscle (Triceps brachii or Soleus) relative to that of the major agonist muscle (Biceps brachii or 

Tibialis anterior) ( 7) Time of EMG overlap between the agonist and antagonist muscles. The 

trial to trial variability of the above listed parameters was quantified as the SD of each parameter 

for every block of trials.

To determine the changes in EMG activity of the involved muscles with practice, the 

change in EMG burst parameters was quantified as the difference in the EMG parameters

recorded during the last practice block from the EMG parameters recorded during the first 

practice block. To determine the transfer of changes in the EMG activity of the involved muscles 

between ipsilateral upper and lower limb, the change in EMG burst parameters was quantified 

separately for the order where the upper limb contractions were performed first and the order 

where they were performed second. For the order where the upper limb contractions were 

performed first, the change in EMG parameters was quantified as the difference in the EMG 

parameters averaged over the 8 practice blocks with upper limb contractions from the EMG 

parameters averaged over 8 practice blocks with lower limb contractions. For the order where the 

upper limb contractions were performed second, the change in EMG parameters was quantified 

as the difference in the EMG parameters averaged over 8 practice blocks with lower limb 

contractions from the EMG parameters averaged over 8 practice blocks with upper limb 

contractions. To determine the changes in EMG activity of the involved muscles with retention 

following practice, the change in EMG burst parameters was quantified as the difference in the 
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EMG parameters recorded during the last practice block from the EMG parameters recorded 

during the retention block.

Statistical analysis

To examine the performance differences with practice and any potential transfer between 

the upper and the lower limb after one session of practice, a mixed three way ANOVA (2 limbs x 

8 blocks of practice trials x 2 orders) with repeated measures on limbs and blocks of trials was 

used (SPSS version 16.0). To examine the performance differences between the last practice 

block (10 trials) and the retention block (10 trials), a mixed two way ANOVA (2 limbs x 2 

times) with repeated measures on the limbs and the times was used.

            Multiple linear regression models were used to establish statistical models that could 

predict 1) the change in force and time endpoint error (criterion variables) during a single 

practice session for the ipsilateral upper and lower limb from the change in peak-force 

variability, time-to-peak force variability, force trajectory variability, and agonist and antagonist 

muscle EMG activity parameters (predictor variables);  2) the change in force and time endpoint 

error (criterion variables) with transfer between ipsilateral upper and lower limb  from the 

change in peak-force variability, time-to-peak force variability and force trajectory variability; 

and 3) the change in force and time endpoint error (criterion variable) with retention 48 hours 

after practice for ipsilateral upper and lower limb from the change in peak-force variability, time-

to-peak force variability, force trajectory variability, and agonist and antagonist muscle EMG 

activity parameters (predictor variables). Only those predictor variables were included in the 

multiple regression models, that were significantly associated (bivariate regressions) with the 

force and time endpoint error (criterion variables).
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            The squared multiple correlation (R2) and the adjusted squared multiple correlation 

(adjusted R2 ) were used to give the goodness-of-fit of the model, to indicate how well the linear 

combination of the variables predicted the force and time endpoint error. Since the adjusted R2

can overestimate the percentage of the variance in the criterion variable that can be accounted for 

by the linear combination of the predictor variables, especially with small sample size and a large 

number of predictors (Green and Salkind 2002), it is reported as the adjusted R2. Part 

correlations (part r), were used to estimate the relative importance of the predictors as they 

provide the correlation between a predictor and the criterion after accounting for the effect of all 

other predictors in the regression equation (Green and Salkind 2002). A positive sign of the part 

correlation indicates a direct relation between the predictor and the criterion variable, whereas a 

negative sign indicates an inverse relation between the predictor and the criterion variable.

The alpha level was 0.05 for all statistical tests. Data are reported as means ± confidence 

intervals within the text and figures.
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CHAPTER III

RESULTS

The purpose of this thesis project was achieved by examining the following: 1) Whether 

performance and practice-induced adjustments during a single practice session were similar with 

the ipsilateral upper and lower limb. 2) Whether any transfer of learning occurred between the 

ipsilateral upper and lower limb following a single practice session. 3) Whether retention 48 

hours after practice of the goal-directed task was similar for the ipsilateral upper and lower limb.   

In addition, there was an interest of whether motor output variability and EMG of the involved 

agonist and antagonist muscles could predict any of the above potential differences in behavior. 

Fatigue

To examine the level of fatigue in the muscles, a paired-samples T test was conducted to 

determine the difference in the MVC force before and after the testing session for the elbow 

flexion and dorsiflexion contractions. There was no significant difference in the means of the 

MVC forces between the pre and post test values for both upper (t = 2.229, P = 0.09) and lower 

limb (t = 1.855, P = 0.08). Therefore, the changes observed as a result of practice are not related 

to muscle fatigue in the contracting muscles. 

Practice and limb motor performance

ENDPOINT ACCURACY. The end-point accuracy was quantified in the force and time 

domains. The force end-point error was the shortest distance between the exerted peak force and 

the targeted force, whereas the time end-point error was the shortest distance from the exerted 
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time to peak force and targeted time. Because the absolute amount of force was different 

between the upper and lower limb, the force error was normalized to the targeted force.  

For the force end-point error, there was a significant limb (F(1,14) = 7.205, P = 0.018) 

and block (F(7,98) = 12.118, P = 0.000) main effect (Figure 5A). The limb main effect indicated 

that the upper limb exhibited greater force endpoint accuracy compared with the lower limb.  

The block main effect indicated that the rate of decline in force endpoint error with practice was 

similar for the upper and lower limb. The interaction between limb and block was not significant 

(F(1,98) = 0.733, P = 0.644). For the time endpoint error, there was only a significant block 

(F(7,98) = 2.853, P = 0.009) main effect (Figure 5B), which indicated that the rate of decline in 

time endpoint error with practice was similar for the upper and lower limb. The limb main effect 

(F(1,14) = 2.246, P = 0.156) and limb x block interaction (F(1,98) = 0.674, P = 0.694) were not 

significant.

            MOTOR OUTPUT VARIABILITY. The motor output variability was quantified as the

trial-to-trial variability (SD) of the peak force and time to peak force.  In addition, the trajectory 

variability was quantified for each trial as the SD of the detrended force from the onset of force 

to the peak force. 

For the SD of peak force, there was a significant limb (F(1,14) = 8.054, P = 0.013) and 

block (F(7,98) = 8.879, P = 0.000) main effect (Figure 6A). The limb main effect indicated that 

the lower limb exhibited greater variability in peak force compared with the upper limb. The 

block main effect indicated that the rate of decline in peak force variability with practice was 

similar for the upper and lower limb. The interaction between limb and block was not significant 

(F(1,98) = 1.572, P = 0.153). For the SD of time to peak force, the limb main effect (F(1,14) = 

0.240, P = 0.632), block main effect (F(7,98) = 1.276, P = 0.270) and limb x block interaction 
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(F(1,98) = 0.867, P = 0.536) were not significant. The results were similar for the CV of peak 

force and the CV of time to peak force. For the SD of force trajectory, there was a significant 

limb (F(1,14) = 8.042, P = 0.013) main effect (Figure 6B). The limb main effect indicated that 

the lower limb exhibited greater variability in force trajectory compared with the upper limb. The 

block (F(7,98) = 0.794, P = 0.594) main effect and the interaction between limb and block 

(F(1,98) = 1.064, P = 0.393) were not significant.

Prediction of the change in endpoint accuracy with practice

A single practice session of 80 trials improved the ability of the participants to perform 

accurate contractions (in force and time) with the upper and lower limb. Therefore, we wanted to 

determine whether the practice-induced adjustments for the upper and lower limb (change from 

block 1 to block 8) were associated with changes in: a) motor output variability (peak force 

variability, time-to-peak force variability, and force trajectory variability); and b) changes in the 

activation of the involved agonist and antagonist muscles.

MOTOR OUTPUT VARIABILITY. The change in force endpoint error with practice for 

the upper limb was predicted (R2 = 0.379; adjusted R2 = 0.334; P = 0.011; Figure 7A) from the 

change in the variability of peak force but not from the change in the variability of time to peak 

force or the change in the variability of force trajectory. Similarly, the change in force endpoint 

error with practice for the lower limb was predicted (R2 = 0.345; adjusted R2 = 0.298; P = 0.017; 

Figure 7A) from the change in the variability of peak force but not from the change in the 

variability of time to peak force or the change in the variability of force trajectory. The change in 

time endpoint error with practice for the upper limb was predicted (R2 = 0.779; adjusted R2 = 

0.763; P = 0.000; Figure 7B) from the change in the variability of time-to-peak force but not 
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from the change in the variability of peak force or the change in the variability of force 

trajectory. Similarly, the change in time endpoint error with practice for the lower limb was 

predicted (R2 = 0.469; adjusted R2 = 0.431; P = 0.003; Figure 7B) from the change in the

variability of time-to-peak force but not from the change in variability of peak force or the 

change in the variability of force trajectory. This analysis indicates that the improvements in 

force endpoint accuracy with practice for both limbs were moderately predicted from a decrease 

in the variability of peak force, whereas the improvements in time endpoint accuracy with 

practice for both limbs were moderately predicted from a decrease in the variability of time to 

peak force. The individual associations between the change in endpoint accuracy and motor-

output variability measures with practice are reported in Table 1.

EMG. A similar analysis examined the adjustments in the agonist–antagonist EMG 

activity that accompanied improvements in accuracy with practice for ipsilateral upper and lower 

limbs. The change in force endpoint error with practice for the upper limb was predicted (R2 = 

0.764; adjusted R2 = 0.679; P = 0.002; Figure 8A) from the change in the EMG delay between 

Biceps brachii (long head) and triceps brachii (lateral head) muscles (part r = -0.377), the change 

in the variability of the EMG delay between the Biceps brachii (long head) and triceps brachii 

(lateral head) muscles (part r = 0.559), the change in the EMG amplitude of Biceps brachii (short 

head) muscle (part r = -0.457) and the change in the time-to-peak EMG of the Biceps brachii 

(short head) muscle (part r = 0.346). The change in force endpoint error with practice for the 

lower limb was predicted (R2 = 0.480; adjusted R2 = 0.400; P = 0.014; Figure 8A) from the 

change in the EMG amplitude of the Soleus muscle (part r = 0.348) and the change in the 

duration of EMG activity of the Gastrocnemius Medialis muscle (part r = 0.536). The change in 

time endpoint error with practice for the upper limb could not be predicted from the changes in 
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the agonist–antagonist EMG activity. The change in time endpoint error with practice for the 

lower limb was predicted (R2 = 0.803; adjusted R2 = 0.753; P = 0.000; Figure 8B) from the 

change in the variability of time-to-peak EMG of the Soleus muscle (part r = 0.250), the change 

in the amplitude of the Peroneus Longus muscle (part r = -0.224) and the change in the 

variability of duration of the Tibialis anterior muscle (part r = 0.367). This analysis indicates that 

improvements in force endpoint accuracy with practice for the upper limb were predicted from a 

decrease in the agonist-antagonist EMG delay, decrease in the EMG amplitude of the agonist 

(Biceps brachii, short head) muscle, increase in the variability of agonist-antagonist EMG delay 

and increase in the time to peak EMG of agonist (Biceps brachii, short head), whereas the 

improvements in force endpoint accuracy with practice for the lower limb were predicted from 

the increase in the EMG amplitude of the antagonist (Soleus) muscle and increase in the EMG 

duration of the antagonist (Gastrocnemius medialis) muscle. The improvements in time endpoint 

accuracy with practice for  the upper limb were not predicted from the changes in the agonist-

antagonist EMG activity, whereas the improvements in time endpoint accuracy with practice for 

the lower limb were predicted from an increase in the variability of time to peak EMG of the 

antagonist (Soleus) muscle, decrease in the EMG amplitude of the agonist (Peroneus longus) 

muscle and increase in the variability of EMG duration of the agonist (Tibialis anterior) muscle.                        

Transfer between ipsilateral upper and lower limbs

ENDPOINT ACCURACY.  For the force end-point error, the limb x order x block 

interaction ((F(1,98) = 1.929; P = 0.073; Figure 9) was not statistically significant. However, this 

interaction exhibited a trend towards a decrease in the endpoint force error for the upper limb 

when the upper limb contractions were preceded by the lower limb contractions compared with 
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when the upper limb contractions were performed first. Furthermore, this interaction indicated 

that the lower limb contractions were not influenced by the order of performance. For the time 

endpoint error, there was no significant limb x order x block interaction (F(1,98) = 0.940; P = 

0.479). This indicated that the change in time endpoint error was not influenced by the order of 

performance. Therefore, only force endpoint accuracy and not time endpoint accuracy exhibited 

a trend towards transfer between ipsilateral upper and lower limbs. This occurred from the lower 

limb to the ipsilateral upper limb and not from the upper limb to the ipsilateral lower limb.

MOTOR OUTPUT VARIABILITY. For the SD of peak force (F(1,98) = 0.282; P = 

0.267) and the SD of time to peak force (F(1,98) = 1.956; P = 0.069), there was no significant 

limb x order x block interaction. The results were similar for the CV of peak force and the CV of 

time to peak force. For the SD of force trajectory, there was a significant limb x order x block 

interaction F(1,98) = 3.152; P = 0.005; Figure 10). This indicated that the change in the 

variability of force trajectory was lower when the upper limb contractions were preceded by the 

lower limb contractions compared with when the upper limb contractions were performed first. 

Therefore, only force trajectory variability got transferred between ipsilateral upper and lower 

limbs and this occurred form the lower limb to the ipsilateral upper limb.

Prediction of ipsilateral transfer of force endpoint accuracy

Only the peak force endpoint error showed a trend towards transfer from the lower limb 

to the upper limb. Therefore, we wanted to determine whether the transfer of force endpoint 

accuracy from the lower limb to the ipsilateral upper limb was associated with changes in the

motor output variability (peak force variability, time-to-peak force variability, and force 

trajectory variability).
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MOTOR OUTPUT VARIABILITY. The change in force endpoint error across limbs for 

the order where the upper limb contractions preceded the lower limb contractions and the order 

where the lower limb contractions preceded the upper limb contractions was predicted (R2 = 

0.812; adjusted R2 = 0.798; P = 0.000; Figure. 11) from the change in variability of peak force

but not from the change in the variability of time to peak force or the change in the variability of 

force trajectory. This analysis indicates that the ipsilateral transfer of force endpoint accuracy 

from the lower limb to the ipsilateral upper limb (but not from the upper limb to the ipsilateral 

lower limb) was predicted by a decrease in the variability of peak force. The individual 

associations between the transfer of force endpoint accuracy and motor-output variability 

measures are reported in Table 2.

Retention of practiced task for the ipsilateral upper and lower limbs

           ENDPOINT ACCURACY. For the force end-point error, there was a significant limb 

(F(1,14) = 22.732; P = 0.000) and time (F(1,14) = 32.967; P = 0.000) main effect (Figure 12A). 

The limb main effect indicated that, on average, the lower limb compared with the upper limb 

exhibited a greater force endpoint error for the last practice block and the retention block. The 

time main effect indicated that the average force endpoint error for both limbs on the retention 

block was greater than the last practice block. The interaction between limb and time was 

significant (F(1,14) = 5.611; P = 0.033) for the force endpoint error, which indicated that the 

upper limb retained peak force endpoint accuracy better than the lower limb. For the time 

endpoint error, there was a significant time (F(1,14) = 9.163; P = 0.009) main effect (Figure 

12B). The time main effect indicated that the average time endpoint error for both limbs on the 

retention block was greater than the last practice block. The limb main effect (F(1,14) = 1.615; P 
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= 0.225) and the interaction between limb and time (F(1,14) = 0.757; P = 0.399) were not 

significant. Therefore, the average force and time endpoint errors were greater on the retention 

block than the last practice block for both limbs. The upper limb exhibited greater force endpoint 

accuracy than the lower limb and better retention after 48 hours.

MOTOR OUTPUT VARIABILITY. For the SD of peak force, there was a significant 

limb (F(1,14) = 21.120; P = 0.000) and time (F(1,14) = 32.281; P = 0.000) main effect (Figure 

13A). The limb main effect indicated that lower limb had greater variability in peak force as 

compared to the upper limb. The time main effect indicated that, on average, there was an

increase in the variability of peak force from the last practice block to the retention block for 

both the limbs. The interaction between limb and time was significant (F(1,14) = 11.274, P = 

0.005). This interaction indicated that the retention of peak force variability was better with the 

upper limb than the lower limb. For the SD of time to peak force, there was a significant time 

main effect (F(1,14) = 6.808, P = 0.021; Figure 13B). The time main effect indicated that, on 

average, there was an increase in the variability of time to peak force from the last practice block 

to the retention block for both the limbs. The limb main effect (F(1,14) = 1.720; P = 0.211) and 

the limb x time interaction (F(1,14) = 0.001, P = 0.982) were not significant. The results were 

similar for the CV of peak force and the CV of time to peak force. For the SD of force trajectory, 

there was a significant limb (F(1,14) = 12.236, P = 0.004; Figure 13C) main effect. The limb 

main effect indicated that the lower limb had a greater variability in force trajectory as compared 

to the upper limb. The time main effect (F(1,14) = 0.764, P = 0.397) and the interaction between 

limb and time (F(1,14) = 3.864, P = 0.069) were not significant.
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Prediction of the practice-to-retention change in endpoint accuracy

After two days, retention performance for force and time endpoint accuracy was impaired 

relative to the last practiced block for both limbs. The upper limb exhibited lesser impairment in 

force endpoint accuracy as compared to the ipsilateral lower limb, indicating that the upper limb 

retained peak force accuracy better than the ipsilateral lower limb. Therefore, we wanted to 

determine whether the practice-to-retention changes for the upper and lower limb (change from 

the last practice block to the retention block) were associated with changes in: a) motor output 

variability (peak force variability, time-to-peak force variability and force trajectory variability) 

and b) changes in the activation of the involved agonist and antagonist muscles.

MOTOR OUTPUT VARIABILITY. The change in force endpoint error from the last 

practice block to the retention block for the upper limb was predicted (R2 = 0.531; adjusted R2 =

0.498; P = 0.001; Figure 14A) from the change in variability of peak force but not from the 

change in variability of time to peak force or variability of force trajectory. Similarly, the change 

in force endpoint error from the last practice block to the retention block for the lower limb was 

predicted (R2 = 0.870; adjusted R2 = 0.861; P = 0.000; Figure 14A) from the change in the 

variability of peak force but not from the change in variability of time to peak force or the 

change in the variability of force trajectory. The change in time endpoint error from the last 

practice block to the retention block for the upper limb was predicted (R2 = 0.747; adjusted R2 = 

0.729; P = 0.000; Figure 14B) from the change in variability of time-to-peak force but not from 

the change in the variability of peak force or the change in the variability of force trajectory. 

Similarly, the change in time endpoint error from the last practice block to the retention block for 

the lower limb was predicted (R2 = 0.422; adjusted R2 = 0.381; P = 0.006; Figure 14B) from the 

change in the variability of time-to-peak force but not from the change in the variability of peak 
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force or the change in the variability of force trajectory. This analysis indicates that the decline in 

force endpoint accuracy from the last practice block to the retention block for both limbs was 

predicted by an increase in the variability of peak force, whereas the decline in time endpoint 

accuracy for both limbs was predicted by an increase in the variability of time-to-peak force. The 

individual associations between the change in endpoint accuracy and motor-output variability 

measures from the last practice block to the retention block are reported in Table 3.

EMG. A similar analysis examined the adjustments in the agonist–antagonist EMG 

activity that accompanied the practice-to-retention changes in force and time endpoint accuracy 

for ipsilateral upper and lower limbs. The change in force endpoint error from the last practice 

block to the retention block for the upper limb was predicted (R2 = 0.556; adjusted R2 = 0.445; P 

= 0.018; Fig. 15A) from the change in variability of the EMG amplitude of the Triceps brachii 

(long head) muscle (part r = 0.282), the change in the EMG duration of the Triceps brachii

(lateral head) muscle (part r = -0.501) and the change in the EMG amplitude of the Biceps 

brachii (long head) muscle (part r = 0.321), whereas the change in force endpoint error from the 

last practice block to the retention block for the lower limb predicted (R2 = 0.525; adjusted R2 = 

0.406; P = 0.026; Fig. 15A) from the change in time to peak EMG of the Gastrocnemius medialis 

muscle (part r = 0.353), the change in the EMG duration of the Tibialis anterior muscle (part r = -

0.386) and the change in the EMG amplitude of the Gastrocnemius medialis muscle (part r = 

0.256). The change in time endpoint error from the last practice block to the retention block for 

the upper limb was predicted (R2 = 0.750; adjusted R2 = 0.688; P = 0.001; Fig. 15B) from the 

change in variability of the EMG amplitude of the Brachioradialis muscle (part r = 0.415), the 

change in the variability of the time to peak EMG of the Biceps brachii (long head) muscle (part 

r = 0.284) and the change in the time to peak EMG of the Brachioradialis muscle (part r = 
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0.436), whereas the change in time endpoint error from the last practice block to the retention 

block for the lower limb was predicted (R2 = 0.867; adjusted R2 = 0.818; P = 0.000; Fig. 15B) 

from the change in the variability of time to peak EMG of the Soleus muscle (part r = 0.460), the 

change in the EMG amplitude of the Tibialis anterior muscle (part r = 0.318), the change in the

EMG delay between Tibialis anterior and Soleus muscles (part r = -0.319) and the change in the 

time to peak EMG of the Soleus muscle (part r = -0.163). This analysis indicates that practice-to-

retention change in force endpoint accuracy for the upper limb was predicted from an  increase in 

the variability of the EMG amplitude of an antagonist (Triceps brachii (long head)) muscle, 

decrease in the EMG duration of an antagonist (Triceps brachii (lateral head)) muscle and 

increase in the EMG amplitude of an agonist (Biceps brachii (long head)) muscle, whereas the 

practice-to-retention change in force endpoint accuracy for the lower limb was predicted from an 

increase in the time to peak EMG of an antagonist (Gastrocnemius medialis) muscle, decrease in 

the EMG duration of an agonist (Tibialis anterior) muscle and increase in the EMG amplitude of 

an antagonist (Gastrocnemius medialis) muscle. The practice-to-retention change in time 

endpoint accuracy for the upper limb was predicted from an increase in the variability of the 

EMG amplitude of an agonist (Brachioradialis) muscle, increase in the variability of time to peak 

EMG of an agonist (Biceps brachii (long head)) and increase in the time to peak EMG of an 

agonist muscle (Brachioradialis), whereas the practice-to-retention change in time endpoint 

accuracy for the lower limb was predicted from an increase in the variability of time to peak 

EMG of the Soleus muscle, increase in the EMG amplitude of the Tibialis anterior muscle, 

decrease in the EMG delay between Tibialis anterior and Soleus muscles and decrease in the 

time to peak EMG of the Soleus muscle.
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CHAPTER IV

CONCLUSION

The purpose of this thesis project was to determine whether the ability of individuals to 

perform and learn with the ipsilateral upper and lower limb is similar. An additional interest of 

this project was to examine whether transfer could occur between ipsilateral upper and lower 

limbs. As expected from previous studies (Christou and Rodriguez 2008; Christou et al. 2003), 

the lower limb was less accurate and more variable from trial-to-trial than the upper limb. This 

impairment in performance was evident for the force but not the time component of the task.  

The practice-induced adjustments for force and time endpoint accuracy were similar for the two 

limbs, however, two days later the retention of the force accuracy was better with the upper limb 

compared with the lower limb. Finally, there was a trend for asymmetric transfer of force 

endpoint accuracy from the lower limb to the ipsilateral upper limb. The practice-induced 

adjustments for both limbs and the differential transfer between the upper and lower limbs were 

predicted by trial-to-trial motor output variability and activation of the involved agonist and 

antagonist muscles.

Limb performance and practice-induced adjustments

One of the main reasons for comparing the upper and lower limb in this learning 

paradigm was the expected differences in endpoint accuracy and motor output variability.  

Previous studies have demonstrated that the lower limb is less accurate and more variable than 

the upper limb. For example, Christou & Rodriguez (2008) demonstrated recently that the upper 

limb is more accurate than the lower limb during goal-directed isometric contractions. In 
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addition, there is evidence that independent of the joint used in the upper and lower limb, the 

lower limb will be more variable across trials compared with the upper limb during goal-directed 

isometric contractions (Christou et al. 2003). According to the minimum variance theory, the 

central nervous system learns to perform new tasks with accuracy by minimizing the signal-

dependent noise, which is exhibited as endpoint variability across trials (Harris and Wolpert 

1998). In addition, according to the optimal feedback control model (Scott 2004), this noise can 

impair the ability of individuals to form an internal model and thus retain the task. These 

performance differences between limbs, therefore, present a good model to determine whether 

within the same individual, an effector (limb) with greater inherent variability will impair 

learning and transfer of a goal-directed isometric task.

Consistent with the previous findings (Christou and Rodriguez 2008; Christou et al. 

2003) the results of this project demonstrate that the upper limb was more accurate and less 

variable than the lower limb. Specifically, force endpoint error and peak force variability was 

greater for the dorsiflexion contractions (lower limb) compared with the elbow-flexion 

contractions (upper limb). In contrast, the time endpoint error and time to peak force variability 

were not significantly different between the two limbs. This finding contrasts the time findings 

of previous studies (Christou and Rodriguez 2008; Christou et al. 2003). This difference may be 

due to methodological differences. For example, for the Christou et al. (2003) study, subjects had 

to match a parabola with their force output, whereas in this project, subjects aimed to place their 

endpoint force in a target. The Christou & Rodriguez (2008) methods, however, were similar 

with this project except that the screen for the target presentation was not directly in front of the 

subjects but 20 degrees to their left. This setup may have influenced the accurate perception of 

the contraction time during the previous study. 
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The lower limb exhibits greater motor output variability and lower endpoint accuracy as 

compared to the upper limb. This can be explained by the greater number of synapses that occur 

to activate the lower limb muscles compared with the upper limb muscles or a smaller cortical 

representation for the lower limb muscles as compared to the upper limb muscles. Another

possible explanation could be that the upper limb movements are practiced more than the lower 

limb movements in normal daily routines. It has been shown that the hand and arm muscles were

active for 18% of the recording time, whereas leg muscles were active for only 10% of the 

recording time during a 10-hour recording session, and that the upper-limb muscles, on average 

were activated 67% more often than the lower-limb muscles (Kern et al. 2001). Thus, the more 

practiced upper limb movements are more extensively represented in the primary motor cortex as 

compared with the less practiced lower limb movements (Ungerleider et al. 2002), which leads to 

a more accurate and less variable upper limb performance as compared with the lower limb 

performance, as the upper limb can draw from a more diverse repertoire of internal models.

Despite the differences in accuracy and motor output variability between the two limbs, 

the practice-induced adjustments (improvements) in accuracy and variability were similar for the 

two limbs. In support of the proponents of the minimum variance theory (Hamilton et al. 2004; 

Harris and Wolpert 1998; van Beers et al. 2004) and previous studies performed with the upper 

limb (Christou et al. 2007; Christou and Rodriguez 2008), the improvement in force and time 

endpoint accuracy with practice was associated with a decline in motor output variability. For 

both limbs, approximately 35% of the improvement in force accuracy was predicted by the 

decline in peak force variability. Approximately 78% and 47% of the improvement in time 

endpoint accuracy was predicted by the decline in time to peak force variability for the upper and 

lower limb respectively. These findings are consistent with results from previous studies which 
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showed that force and time endpoint accuracy improved with practice and such improvements 

were associated with a decline in motor output variability during isometric contractions (Christou 

and Rodriguez 2008; Floyer-Lea and Matthews 2005) and movements (Corcos et al. 1993;

Darling and Cooke 1987; Gottlieb et al. 1988; Muller and Sternad 2004).

The predictions of the minimum variance theory (Hamilton et al. 2004; Harris and 

Wolpert 1998; van Beers et al. 2004), therefore, are supported by the parallel improvement in 

endpoint accuracy and motor output variability. Nonetheless, the reduction of signal-dependent 

noise (motor output variability) can only partially explain the endpoint accuracy improvements.  

It is possible, therefore, that improvements in motor performance with practice come from two 

major adjustments in muscle activity. Such muscle adjustments may lead to: a) a reduction in the 

motor output variability and b) improvement in the position of the endpoint relative to the target. 

The results of this project, demonstrate that this occurs for both the upper and lower limb. For 

the upper limb, practice-induced adjustments were strongly predicted (R2 = 0.76) by longer delay 

between the agonist and antagonist muscles, reduction in the variability of the delay between the 

agonist and antagonist muscles, an increase in the amplitude of the agonist activity, and a 

decrease in the rate of the EMG development for the agonist muscle. For the lower limb, 

practice-induced adjustments were moderately predicted (R2 = 0.48) by a decrease in the 

amplitude of the major antagonist muscle and a decrease in the duration of another antagonist 

muscle. These synergistic muscle adaptations, therefore, may be related to the formation of an 

internal model while learning to perform this task accurately (Scott 2004). Consequently, the 

formation of an internal model appears to be stronger for the upper limb compared with the 

lower limb during practice.
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Task retention

The main interest of this proposal was to determine whether retention of the goal-directed 

task would be similar for the upper and lower limb due to the differential amount of inherent 

variability. The findings clearly demonstrate that 48 hours after the practice session, performance 

(force and time endpoint accuracy) declines compared with the last block of practice.  

Nonetheless, the upper limb better retained the force component of the goal-directed task 

compared with the lower limb. This finding supports the prediction by Harris and Wolpert 

(1998) and Scott (2005) that greater signal-dependent noise may impair the formation of a strong 

internal model and consequently learning of a motor task with accuracy. For example, the upper 

limb compared with the lower limb, exhibited lower trial-to-trial variability in peak force but not 

time to peak force. Consistent with the predictions, only retention of the force endpoint accuracy 

was impaired for the lower limb compared with the upper limb. Retention of time endpoint 

accuracy was similar for the two limbs because the time to peak force trial-to-trial variability was 

also similar for the two limbs. For the upper limb contractions, approximately 50% of the 

impairment in force accuracy 2 days after the practice session was predicted by the amplified 

peak force variability. For the lower limb contractions, however, approximately 86% of the 

impairment in force accuracy 2 days after the practice session was predicted by the amplified 

peak force variability. Therefore, it appears that constraining the peak force trial-to-trial 

variability 2 days after practice was harder to do with the lower limb than the upper limb. This 

suggests that the formation of the internal model with the upper limb may have been better to 

reduce peak force variability, which consequently helped subjects retain the task better.  

Interestingly, the impairment in retention was also predicted by different EMG parameters for 

the upper and lower limb. Specifically, the impaired force endpoint accuracy in the upper limb 
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during the retention task relative to the last practice block, was predicted (R2 = 0.556) from an 

increase in the variability of the antagonist EMG amplitude, a decrease in the EMG duration of 

the antagonist muscle, and an increase in the agonist EMG amplitude. In contrast, the impaired 

force endpoint accuracy in the lower limb during the retention task relative to the last practice 

block, was predicted (R2 = 0.525) from an increase in the time to reach peak EMG of the 

antagonist muscle (slower rate), a decrease in the EMG duration of the agonist muscle, and an 

increase in the antagonist EMG amplitude.  

It is possible, therefore, that 2 days after the practice session different muscle activation 

schemes were forgotten by the nervous system to accurately control the upper and lower limb.  

This comes in addition to the different muscle activation adaptations that occurred with practice, 

which may also point to the possibility that different parameters were controlled at the last block 

of practice for the upper and lower limb. Potentially, the differences in muscle activation 

adaptation with practice and during the retention period may reflect differential acquisition of 

internal models. Internal models are thought to be representations of the sensorimotor 

transformations within the central nervous system that guide the actual transformations between 

sensory inputs and motor outputs to achieve a desired action (Wolpert et al. 2001). Possibly, 

practice with lower inherent motor output variability, as occurred with the upper limb, may have 

caused less interference with the formation of an internal model. Therefore, it is possible that a 

stronger internal model was formed for the upper limb than the lower limb, which consequently 

allowed the subjects to retain the task better. Another possible explanation could be that the 

motor plan of the goal-directed contraction for the upper and lower limbs was different. For 

instance, the motor plan formed by the higher centers for the lower limb could have been more 

concerned with minimization of motor output variability simply because the lower limb was 
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inherently more noisy due to the greater number of synapses that occur to activate the muscles or 

the smaller cortical area that is dedicated to the lower limb. In contrast, the motor plan for the 

upper limb goal-directed contractions could have been less concerned with minimization of the 

motor output variability and more concerned with the formation of a synergy between the 

antagonist muscles to improve the endpoint of the force. Consequently it led to greater retention 

of the force component of the task.

Ipsilateral transfer

Only force endpoint accuracy showed a trend towards being transferred between the 

ipsilateral upper and lower limb. The transfer occurred in a distal to proximal direction from the 

lower limb to the ipsilateral upper limb but not vice versa. There was no transfer of motor output 

variability (except force trajectory variability) across the ipsilateral upper and lower limb. This is 

in contrast to the findings of Christou & Rodriguez (2008) where only the time components of 

the goal-directed task got transferred symmetrically between the ipsilateral upper and lower

limb. The differences in findings may be due to methodological differences. For example, for the 

Christou & Rodriguez (2008) study, the elbow flexion was performed while the forearm was in 

neutral position, whereas in this study, we used a supinated position of the forearm (relatively 

harder).  In addition, as described above, the feedback of the goal-directed contractions was 

provided to the left of the subject, whereas in this study, the feedback was provided right in front 

of the subject. Potentially, this off center view of the feedback may have made it more difficult 

for the Christou & Rodriguez (2008) subjects to perceive time feedback. Finally, the number of 

subjects in each group was almost twice as many in this project compared with the previous 
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study.  Whatever the methodological differences, this type of study needs to be repeated to 

determine whether transfer can occur ipsilaterally between upper and lower limbs. 

Independent of the dissimilar findings between the study by Christou and Rodriguez 

(2008) and this project, there was an improvement in the force endpoint accuracy in the upper 

limb contractions when they were preceded by lower limb contractions but not vice versa. 

Interestingly, this transfer was also associated with trial-to-trial variability. Specifically, the 

improvement in force endpoint accuracy for the upper limb contractions when they were 

preceded by lower limb contractions was strongly associated with reductions in peak force trial-

to-trial variability. Therefore, one possible explanation is that subjects who performed with the 

lower limb first experienced more variability in the force-time feedback environment and thus 

had more experience with performing adjustments in their muscle activation to reduce the motor 

output variability. Another possible explanation is that practice with the lower limb occurred in a 

more variable environment due to the inherently greater variability of the lower limb compared 

with the upper limb. Previous studies show that variability of practice improves the ability of 

subjects to transfer to new variations of the task (Shea et al.1990; Shea and Morgan 1979; Wulf 

and Lee 1993). Nonetheless, this is the first study to show that this transfer may occur between a 

more variable to a less variable effector system.

Furthermore, this study supports previous findings that transfer ipsilaterally can occur 

from distal to proximal segments. For example, Seidler, Bloomberg and Stelmach (2001) found 

that the transfer of learning for goal directed pointing movements was symmetrical between the 

proximal and distal joints of the upper limb. The adaptations acquired were transferred from the 

wrist joint to the shoulder joint and vice versa. In the same study, arm and head pointing 

movements were also examined for transfer effects. There was a high transfer from the arm to 
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the head pointing movements and only little transfer from the head to the arm pointing 

movements.

Based on the literature review, this may be the first study that compares the ability of 

humans to learn and retain goal-directed contractions with the upper and lower limb. The 

findings clearly demonstrate that although the rate of learning is similar for the two limbs, the 

upper limb, which is inherently less variable than the lower limb, better retains the force 

accuracy of goal-directed isometric contractions. Based on the changes observed in motor output 

variability and activation of the antagonist muscles, it is hypothesized that the upper limb formed 

a stronger internal model than the lower limb. The formation of a weaker internal model for the 

lower limb compared with the upper limb may have been due to: a) greater interference from 

amplified signal-dependent noise (greater motor output variability) or b) an alternative motor 

plan, which may have been concerned primarily with minimization of motor output variability 

instead of the formation of a strong muscle synergy to execute the contraction accurately. Future 

studies should further explore the influence of inherent motor output variability in learning and 

transferring motor tasks with accuracy. Such studies may include comparisons between young 

and older adults or between neurological patients and healthy controls. In addition, the findings 

of this project should be extended to goal-directed movements and more complex tasks.
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APPENDIX A

FIGURES
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Figure 2
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Figure 3
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Figure 4      
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Figure 5        
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Figure 6
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Figure 7
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Figure 8
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Figure 9
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Figure 10                                               
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Figure 11
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Figure 12
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Figure 13
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Figure 14
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Figure 15
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APPENDIX B

TABLES

Table 1. Pearson correlations between the change in end-point accuracy and the change in motor-
output variability with practice in ipsilateral upper and lower limbs

Bold numbers indicate significant Pearson correlation (P < 0.05).

Table 2. Pearson correlations between the change in end-point accuracy and the change in motor-
output variability with transfer of peak force accuracy across ipsilateral upper and lower limbs.

Bold numbers indicate significant Pearson correlation (P < 0.05).
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Table 3. Pearson correlations between the practice-to-retention change in end-point accuracy and 
the practice-to-retention change in motor-output variability with practice in ipsilateral upper and 
lower limbs

Bold numbers indicate significant Pearson correlation (P < 0.05).
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APPENDIX C

LEGENDS FOR FIGURES

Figure 1. Experimental apparatus setup for the upper limb and the lower limb: subject 

was seated on the chair of an isokinetic dynamometer and affirmed that could see both the target 

and force-time trajectories. (A) For the upper limb contraction, the left shoulder and the left 

elbow were positioned at 90o of flexion and the forearm was fully supinated. The upper limb 

goal-directed contraction primarily involved elbow flexion. (B) For the lower limb contraction, 

the left hip was positioned at 110o of flexion with neutral rotation and the left knee was 

positioned at 100o of flexion. The ankle joint was positioned so that the foot and the shank 

formed an angle of 90o. The lower-limb goal-directed contraction primarily involved 

dorsiflexion.

Figure 2.  Sequence of events for the testing sessions: Testing was conducted in two 

sessions separated by an interval of 48 hours. Each testing session started with a brief 

familiarization of the equipment and the task but no practice trials were given. During the first 

testing session, the following were performed: 1) Five maximal voluntary isometric contractions 

(MVC). 2) Eight blocks of 10 practice trials  (block P1 to block P8) performed with force target

at 25%MVC and time target at 200ms either with the upper limb or lower limb 4) Five MVCs as 

performed earlier. The same sequence of tasks was performed with the other limb after 20 

minutes of rest. During the second testing session, the following were performed: 1) Five MVC 

trials. 2) Retention trials: One block of 10 trials performed at the same force and time target 

levels as the first session. 3) Random trials: Eight blocks of 12 trials performed at four different 
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force and time targets. (block R1 to block R8) 4) Five MVCs as performed earlier. The same 

sequence of movements was performed with the other limb after a break of 20 minutes.

Figure 3. Goal-directed end-point accuracy task: target was the center of a box displayed 

on a white background. The center of the target had both time (X-axis) and force (Y-axis) 

coordinates. Subjects were instructed to match the peak of the force-time trajectory exerted by 

the upper or lower limb to the target. Force and time end-point errors were quantified as the 

absolute error to the targeted force and time. Force trajectory variability was quantified as the SD 

of force in the detrended force trajectory (start of force to peak force). The trial-to-trial peak 

force variability for each block of trials was quantified as the SD of peak force and the 

coefficient of variation of peak force (CV; (SD / mean force) x 100); and the trial-to-trial time to 

peak force variability was quantified as the SD and CV of time to peak force.

Figure 4. Presentation of the target and the feedback to the subjects: subjects were 

instructed to perform the contraction when they saw the target box change color from red (A) to 

green (B). (A) The red color target lasted 1s and was used to prepare the subject for the 

upcoming contraction (“GET READY” phase). (B) the green target lasted 1s and was an 

indication to the subject they could initiate the contraction (“CONTRACT” phase) at any point 

of time as long as the green box continued to be displayed on the screen. (C) feedback of 

performance was provided to the subjects in the form of a force-time trajectory along with 

numerical error values for force and time on each trial.
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Figure 5. Average peak force and time endpoint error for blocks of 10 trials across the 8 

block practice protocol. (A) practice improved force endpoint error similarly in the upper and 

lower limb. Similarly, the lower limb exhibited greater force endpoint error as compared to the 

upper limb (B) practice improved time endpoint error similarly in the upper and lower limb. The 

rate of improvement with practice was similar for both upper and lower limbs.

Figure 6. Variability (SD) of peak force and variability (SD) of force trajectory for blocks 

of 10 trials across the 8 block protocol. (A) The rate of decline in variability of peak force with 

practice was similar for the upper and lower limb. The lower limb exhibited greater variability in 

peak force compared to the upper limb. (B) The lower limb exhibited greater variability in force 

trajectory as compared to the upper limb. 

Figure 7. Prediction of the change in force and time endpoint error with practice from 

changes in motor output variability. (A) the decrease in force endpoint error with practice was 

predicted from a decrease in the peak force variability for both limbs. (B) the decrease in time 

endpoint error with practice was predicted from a decrease in time-to-peak force variability for 

both limbs.

Figure 8. Prediction of the change in force and time endpoint error with practice from 

changes in agonist-antagonist EMG. (A) The improvements in force endpoint accuracy with 

practice for the upper limb were predicted from a decrease in the agonist-antagonist EMG delay, 

decrease in the EMG amplitude of the agonist (Biceps short head) muscle, increase in the 

variability of agonist-antagonist EMG delay and increase in the variability of agonist-antagonist 
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EMG delay, whereas the improvements in force endpoint accuracy with practice for the lower 

limb were predicted from the increase in the EMG amplitude of the antagonist (Soleus) muscle 

and increase in the EMG duration of the antagonist (Gastrocnemius medial head) muscle. (B)The 

improvements in time endpoint accuracy with practice for  the upper limb were not predicted 

from the changes in the agonist-antagonist EMG activity, whereas the improvements in time 

endpoint accuracy with practice for the lower limb were predicted from an increase in the 

variability of time to peak EMG of the antagonist (Soleus) muscle, decrease in the EMG 

amplitude of the Peroneus longus (agonist) muscle and increase in the variability of EMG 

duration of the agonist (Tibialis anterior) muscle.

    

Figure 9. Transfer of endpoint force error across upper (UL) and lower limb (LL) for 

blocks of 10 trials across the 8 block protocol. The upper limb contractions exhibited lower peak 

force endpoint error when they were preceded by lower limb contractions (LL-UL) compared 

with when they were practiced first (UL-LL). The lower limb contractions exhibited similar peak 

force endpoint error under both conditions (UL-LL and LL-UL). This indicated an asymmetric 

transfer of peak force accuracy from the lower limb to the upper limb and not from the upper 

limb to the lower limb.

            Figure 10. Transfer of variability (SD) of force trajectory across upper (UL) and lower

(LL) limb for blocks of 10 trials across the 8 block protocol. The upper limb contractions 

exhibited lower peak force endpoint error when they were preceded by lower limb contractions 

(LL-UL) compared with when they were practiced first (UL-LL). The lower limb contractions 

exhibited similar peak force endpoint error under both conditions (UL-LL and LL-UL). This 
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indicated an asymmetric transfer of force trajectory variability from the lower limb to the upper 

limb and not from the upper limb to the lower limb.

            

Figure 11. Prediction of the transfer of change in force endpoint error across limbs from 

changes in motor output variability. The transfer of endpoint force accuracy across ipsilateral 

upper (UL) and lower limbs (LL) was predicted (R2 = 0.812) by changes in peak force variability 

across limbs.

Figure 12. Retention of average force and time endpoint error after 48 hours (48 hrs) of 

rest. (A) force endpoint error increased from the last practice block to the retention block (Ret)

for both upper and lower limb. Lower limb exhibited a greater endpoint force error than the 

upper limb from the last practice block to the retention block (Ret). The rate of increase of force 

endpoint error was greater for the lower limb than the upper limb. (B) time endpoint error 

increased from the last practice block to the retention block (Ret) for both upper and lower limb. 

The rate of increase of time endpoint error from the last practice block to the retention block

(Ret) was similar for the upper and lower limb. 

Figure 13. Retention of variability (SD) in peak force, time-to-peak force and force 

trajectory. (A) peak force variability increased from the last practice block to the retention block 

(Ret) for both upper and lower limb. Lower limb exhibited greater peak force variability and a 

greater rate of increase in peak force variability than the upper limb from the last practice block 

to the retention block (Ret). (B) variability of time to peak force increased from the last practice 

block to the retention block (Ret) at a similar rate for both limbs. (C) lower limb exhibited 
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greater force trajectory variability than the upper limb from the last practice block to the 

retention block (Ret).

Figure 14. Prediction of retention of force and time endpoint accuracy from changes in 

motor output variability. (A) the decline in force endpoint accuracy from the last practice block 

to the retention block for both limbs was predicted by an increase in the variability of peak force. 

(B) the decline in time endpoint accuracy for both limbs was predicted by an increase in the 

variability of time-to-peak force.

Figure 15. Prediction of retention of force and time endpoint accuracy from changes in 

agonist-antagonist EMG. (A) The practice-to-retention change in force endpoint error for the 

upper limb was predicted from an  increase in the variability of the EMG amplitude of an 

antagonist (Triceps brachii (long head)) muscle, decrease in the EMG duration of an antagonist 

(Triceps brachii (lateral head)) muscle and increase in the EMG amplitude of an agonist (Biceps 

brachii (long head)) muscle, whereas the practice-to-retention change in force endpoint accuracy 

for the lower limb was predicted from an increase in the time to peak EMG of an antagonist 

(Gastrocnemius medialis) muscle, decrease in the EMG duration of an agonist (Tibialis anterior) 

muscle and increase in the EMG amplitude of an antagonist (Gastrocnemius medialis) muscle. 

(B) The practice-to-retention change in time endpoint accuracy for the upper limb was predicted 

from an increase in the variability of an agonist (Brachioradialis) muscle, increase in the 

variability of time to peak EMG of an agonist (Biceps brachii (long head)) and increase in the 

time to peak EMG of an agonist muscle (Brachioradialis), whereas the practice-to-retention 

change in time endpoint accuracy for the lower limb was predicted from an increase in the 
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variability of time to peak EMG of an antagonist (Soleus) muscle, increase in the EMG 

amplitude of an agonist (Tibialis anterior) muscle, decrease in the EMG delay between agonist 

(Tibialis anterior) and antagonist (Soleus) muscles and decrease in the time to peak EMG of an 

antagonist (Soleus) muscle.
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