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ABSTRACT 

 

A Framework for Defending against Prefix Hijack Attacks. (May 2009) 

Krishna Chaitanya Tadi, B.E., Jawaharlal Nehru Technological University 

Chair of Advisory Committee: Dr. Narasimha Reddy 

 

 Border Gateway Protocol (BGP) prefix hijacking is a serious problem in the 

Internet today. Although there are several services being offered to detect a prefix hijack, 

there has been little work done to prevent a hijack or to continue providing network 

service during a prefix hijack attack.  

This thesis proposes a novel framework to provide defense against prefix 

hijacking which can be offered as a service by Content Distribution Networks and large 

Internet Service Providers. Our experiments revealed that the hijack success rate reduced 

from 90.36% to 30.53% at Tier 2, 84.65% to 10.98% at Tier 3 and 82.45% to 8.39% at 

Tier 4 using Autonomous Systems (ASs) of Akamai as Hijack Prevention Service 

Provider. We also observed that 70% of the data captured by Hijack Prevention Service 

Provider (HPSP) can be routed back to Victim. However if we use tunneling, i.e. trying 

to route data to neighbors of Victims which in turn sends the traffic to Victims, we 

observed that data can  be routed to Victim 98.09% of the time. Also, the cost of such 

redirection is minimal, since the average increase in path length was observed to be 2.07 

AS hops.  
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CHAPTER I 

INTRODUCTION 

 A prefix hijack involves a hijacker announcing IP prefixes that it does not own 

into the global routing system. It is a serious security threat in the Internet today. 

Potentially, a prefix hijack can be launched from any part of the Internet and can target 

any prefix belonging to any network because Border Gateway Protocol (BGP), which is 

the major inter domain routing protocol used in Internet, is completely insecure and uses 

no authentication mechanism. There have been several prefix hijack incidents reported 

in recent years and they are on the rise. There are several flavors of prefix hijacking such 

as exact prefix hijack, sub prefix hijack and interception. In both exact prefix and sub 

prefix hijacks, data is blackholed / dropped at the hijacker. In an interception based 

attack, hijacker routes the data to the victim after eavesdropping on the information. 

Such interception based attacks are both difficult to achieve and detect. Attackers hijack 

IP addresses for the purpose of conducting malicious activities such as spamming and 

Denial of Service (DoS) without worrying about their identity getting disclosed. 

Sometimes the attackers want to disrupt the reachability to legitimate hosts or spoof 

them. Such hijacked IP prefixes were also found to be sold on eBay [1]. Imagine typing 

www.citibank.com in your browser, which in turn sends/fetches information from the 

machines belonging to hijacker instead of authentic Citi bank machines.  

 

 

____________ 

This thesis follows the style of IEEE Transactions on Dependable and Secure 

Computing. 
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There are several tools currently available to detect a prefix hijack. Such 

detection usually involves monitoring changes in the origin Autonomous System set for 

a given prefix. However the response to thwart such hijack is mostly through NANOG 

mailing lists or contacting the administrators of hijacking Autonomous System. 

Considerable time is wasted in such process during which the stability and security of 

Internet is severely disrupted. If administrators of hijacking Autonomous System fail to 

cooperate, such hijacking can continue for long periods of time. We propose a 

mechanism which wastes no time in restricting the hijack and ensures reachability to the 

authentic prefix owner without any manual intervention. 
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CHAPTER II 

BGP ROUTING 

The internet is a vast collection of networks that interact with each other using 

the TCP/IP protocol suite. Routing protocols are responsible for determining the 

connectivity in the Internet and for generating routing tables that direct packets to their 

destinations. Thus routing protocols provide connectivity between every pair of routers 

in the Internet.  This poses a huge scalability challenge with the explosive growth of 

Internet. The Autonomous System (AS) structure introduces a two level hierarchy that 

decomposes the problem of determining Internet connectivity into two parts [2]:  

(i) Intra Domain Routing: Routing within the AS. 

(ii) Inter Domain Routing: Routing between ASs. 

An AS is defined by Wikipedia [3] as a collection of connected IP routing prefixes under 

the control of one or more network operators that presents a common, clearly defined 

routing policy to the Internet. In other words, AS is one network or set of networks 

under a single administrative control. An AS might be the set of all computer networks 

owned by a company, or a college. Companies or organizations might sometimes own 

multiple ASs. In such cases, each of them is managed independently. A good example is 

UUNet, which owns one AS for domestic networks (AS 701) and another for 

International networks (AS 702).  

The AS numbers are allocated by the Internet Assigned Numbers Authority 

(IANA) to the Regional Internet Registries (RIR), which in turn, assigns them to the 

customers. The low level routing i.e. Intra domain routing is handled by Interior 
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Gateway Protocols such as Routing Information Protocol (RIP) and Open Shortest Path 

First (OSPF). At higher level, Exterior Gateway Protocol such as BGP determines AS 

connectivity or Inter domain routing. Also Classless Inter Domain Routing (CIDR) 

allows BGP routers to advertise aggregated addresses that reduce the amount of global 

routing information that needs to be exchanged [2]. 

 

Figure 1. Inter Domain Versus Intra Domain Routing 

 

 

 In Figure 1, AS 1 is a national ISP with two routers R1 and R2, AS 2 and AS 3 

are regional ISPs with Routers R3 and R4 respectively. The routing between R1 and R2 

is governed by Intra domain routing policies where as routing between R1/R2 and R3, 

R1/R2 and R4 is governed by Inter domain routing such as BGP. Usually when BGP is 

used between Autonomous Systems, the protocol is referred to as External BGP 

(EBGP), if the service provider is using BGP to exchange routes within an AS it is 

referred to as IBGP (Interior BGP). 
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Figure 2. Typical BGP Routing Table 

 

Figure 2 shows some entries in the BGP routing table obtained from RouteViews 

for IP addresses of AS 3794 which belongs to Texas A&M University. The attributes 

listed in the Figure 2 are elaborated below [4]: 

Network:  This is the destination IP address to which the packet must be delivered. 

Next Hop: This attribute is the IP address that is used to reach the destination router. 

Metric:  This is also referred to as Multi Exit discriminator. In Figure 3, Router C is 

advertising the route 172.16.1.0 with a metric of 10, while Route D is advertising 

172.16.1.0 with a metric of 5. The lower value of the metric is preferred, so AS 100 will 

select the route to router D for network 172.16.1.0/24 in AS 200 [4]. 

Local Preference: This attribute is used to choose a suitable exit point from the AS. In 

Figure 4, Router A belonging to AS 100 receives advertisement for network 

172.16.1.0/24 and it sets the Local Preference to 50. Similarly Router B belonging to AS 

100 receives the advertisement for 172.16.1.0/24 and it sets the Local Preference to 100. 

These values will be exchanged between Routers A and B, because Router B has higher  
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Figure 3.  BGP Metric Attribute [4] 

 

 

Figure 4.  BGP Local Preference Attribute [4] 
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Local Preference value, it will be used as an exit point to reach network 172.16.1.0/24 

while sending data from AS 100 to AS 200. 

Weight: This is a Cisco defined proprietary attribute that is local to the router. If the 

router learns about more than one route to a destination, the route with the highest 

weight will be preferred. 

Path:  BGP is a path vector routing protocol. BGP advertises the sequence of AS 

numbers to reach a destination. In Figure 5, AS D is the owner of the prefix set PD say 

165.91.0.0/16. AS D announces this information to its neighboring routers B and C. 

Now B propagates the information obtained from D to its other neighboring routers A 

and C by appending itself to the route. Thus C receives the following information [Path 

B, D: Destination 165.91.0.0/16] from B and [Path D: Destination 165.91.0.0/16] from 

D. Now AS C can either choose the path through B to reach D or directly route 

information to D. The decision depends on the business relationship between 

Autonomous Systems which is discussed in detail later. If we assume, for now, that path 

length is the deciding factor, AS C will directly try to route information to D instead of 

routing it through B. Now C propagates this information to its neighboring routers B and 

A. B would stick to its original route i.e. directly route traffic to D instead of routing it 

through C which leads to longer path length. Now A receives the following BGP updates 

from B [Path B, D: Destination 165.91.0.0/16] and C [Path C, D: Destination 

165.91.0.0/16]. Since both paths have the same length (assuming length here refers to 

number of hops), it can arbitrarily choose the path or the administrator of AS A can 

create rules/attributes to choose the path appropriately. However, in the real world, such 



 8 

routing based on path length is rarely true. The business relationship between two 

connected ASs plays a major role in determining what traffic is routed on a link. 

 

 

Figure 5. BGP Path Vector Routing 

 

 The Business Relationships/Contractual Agreements between the Autonomous 

Systems are usually classified into the following categories [5].  

Customer – Provider: In this scenario, the customer AS pays the provider AS for routing 

its traffic to the rest of the world. Thus a provider can transit traffic to a customer, but 

the customer cannot transit traffic between its providers. This is explained in Figure 6. 

P1 and P2 are the provider ASs of AS C. Thus P1 can route traffic to C or P2 can route 

traffic to C, but P1 cannot route traffic to P2 via C, because C would end up paying both 

P1 and P2 for data exchanged between P1 and P2. This is also called the valley free 

property of Internet. 

 

Figure 6. Illustrating Customer Provider Relationship 
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Peer – Peer: In this, there is usually no monetary flow involved. Two peers exchange 

traffic between their respective customers.  A peer does not act as transit for exchanging 

data between two other Peers. In Figure 7, P1 is the provider of AS 1, C1 is the customer 

of AS 1. AS 1 - AS 2 and AS 1 – AS 3 are peers. Now if AS 2 wants to send data to C1, 

it can send it through AS 1 since C1 is a customer of AS 1. However AS 1 cannot act as 

transit for traffic between AS2 – P1 and AS2 – AS3. 

 

Figure 7. Illustrating Peer - Peer Relationship 

 

Sibling: This refers to link between ASs of the same organization. 

 The properties described above can be summarized as follows. If an Origin AS 

can reach a destination AS using a Provider, Peer and a Customer AS, it chooses 

Customer AS to route its traffic. If the Origin AS has to decide between a Provider and a 

Peer, it chooses the Peer AS. In other words, the order of preference is Customer > Peer 

> Provider. A destination AS is on a Customer (Peer, or Provider) route from origin AS, 

if the first non sibling edge on the route from Origin AS is a Provider – Customer (Peer 

– Peer, or Customer – Provider) edge. Also, if an AS receives updates for the same 

prefix from multiple ASs at the same level, say multiple customers, it then decides based 
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on the path length i.e. it chooses the AS with the least number of hops. Although the 

administrators of ASs may chose different policies, [6] verifies that the above described 

no-valley prefer-customer policy is followed in most of the ASs since it makes more 

commercial sense. 

 There is no publicly available information about inter AS relationships. Internet 

registries such as American Registry for Internet Numbers (ARIN) only provide 

information about who administers an AS. The authors of [5] have proposed an 

algorithm which classifies the relationships with 99% accuracy. More than 90.5% of AS 

pairs in the Internet have customer-provider relationship, less than 1.5% of AS pairs 

have sibling relationships and less than 8% of AS pairs have peer relationships. 

Traffic Engineering in Autonomous Systems: An AS with more than one 

provider is called a multihomed AS.  Motivated by the need to improve network 

resilience and performance, increased number of enterprise and campus networks are 

connecting through multiple providers [7]. These multihomed ASs, therefore, must 

undertake the task of engineering the traffic flowing in and out of the network through 

these multiple links using different inter-AS traffic engineering approaches. ASPP (AS 

path prepending) is a popular method to achieve such objectives. Prepending here means 

an AS path that has duplicated AS numbers that appear consecutively. The BGP routing 

table in Figure 2 shows such paths. Consider the traffic from AS 1 to AS 4 in Figure 8. 

AS 1 receives two routes for prefixes in AS 4 i.e. (AS2, AS4) and (AS3, AS4). 

Assuming same local preference, AS 1 can route data either through AS 2 or through AS 

3 since the path length is also same for both the cases. If AS 4 wishes that traffic from 
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AS 1 go through the link AS 2 −AS 4, it can use ASPP and announce AS path (AS 3, AS 

4, AS 4) to AS 1. Now AS 1 receives two routes with AS path (AS 2, AS 4) and (AS 3, 

AS 4, AS 4). Therefore, the router in AS1 would choose the first route. 

 

Figure 8. Path Prepending Illustration 

 

There are several other approaches [8], [9] apart from AS path prepending to 

perform traffic engineering. These techniques are mainly used for Load Balancing, Cost 

Minimization, Performance Optimization, and Backup Routes [7]. Sometimes these 

approaches are also used for detecting and preventing prefix hijacks. 

AS Hierarchy: ASs with large customer cones have an important role in the Internet 

structure. At the top of the hierarchy are ISPs known as Tier-1 ISPs. A Tier-1 AS is an 

AS with no providers and Peers with all Tier-1 ASs [10]. Hence they are at the top of the 

Internet routing hierarchy. Table 1 shows networks that are believed to be Tier 1 by 

Wikipedia [11] and CAIDA [12]. Because of no formal definition or body that 

determines Tier-1 ASs, the term is often misused for marketing purposes. The list of ASs 

in Table 1 is an approximate estimate and cannot be guaranteed to be 100% accurate. 

Tier 2 networks are “regional aggregators”, they collect traffic from Tier 3 sites and, if 
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they cannot satisfy them directly, they pass it on to Tier 1 sites. In other words, Tier 2 

acts as transit between Tier 3 and Tier 1. Most of the ISPs are located in Tier 3. An AS 

connected to only provider ASs is called a stub. Stub ASs are located at the bottom of 

the AS hierarchy. More details about the BGP protocol/standards can be found in RFC 

4271 [13]. 

 

Table 1. Tier 1 Networks 

 

AS Number 

AS Information 

ISP Name Country 

AS 1239 Sprint US 

AS 701 UUNET Technologies US 

AS 7018 AT&T US 

AS 3356 Level 3 US 

AS 209 QWEST US 

AS 174 Cogent Communication US 

AS 3549 Global Crossing US 

AS 3561 Savvis US 

AS 2914 NTT Communication JP 

 

 

 

Content Distribution Networks (CDN):  We used the largest CDN, Akamai for the 

purpose of analyzing our proposed prefix hijack prevention scheme. CDNs such as 
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Akamai (http://www.akamai.com) attempt to improve web performance by delivering 

content to end users from multiple, geographically dispersed servers located at the edge 

of the network [14]. Most CDNs have their ASs in points of presence of major ISPs so 

that requests can be forwarded to topologically proximate replicas. Thus they serve as 

excellent points to implement our prefix hijack prevention framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 14 

CHAPTER III 

PREFIX HIJACKING 

We already know that an AS announces IP prefixes belonging to its customers. A 

prefix hijack occurs when an AS announces prefixes that it does not own. From here on, 

we will refer to such AS as Hijacker and the AS to which the prefix originally belongs to 

will be referred to as a victim. In Figure 9 [6], assume AS 6 wrongly announces the 

prefix that belongs to AS 1. AS 5 previously routed through AS 3 to reach AS 1. On 

receiving a customer route through AS 6, it prefers the customer route over the Peer 

route and hence believes the false route. Thus, in this example of prefix hijack, AS 6 

announces prefix that it does not own and deceives AS 5. 

 

 
Figure 9. Illustrating Prefix Hijack 

  

Currently there is no authentication mechanism in BGP. Any AS can claim to be 

the owner of any prefix in the Internet. Taking advantage of this weakness is the 

fundamental mechanism for constructing prefix hijack attacks [15]. The Internet Routing 
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Registries such as ARIN maintain databases of prefix ownership, however, the contents 

are not maintained up to date and hence are not reliable. The attacks where the hijacker 

announces the same prefix as that of a victim is referred as an exact prefix hijack. 

Another type of hijack called sub prefix hijack involves an AS announcing a more 

specific prefix. Say the hijacker announces a /24 prefix, when the true origin announces 

a /16 prefix. In this case, BGP will treat them as different prefixes and will maintain 

separate entries for them in the routing tables. Due to the longest prefix matching rule, 

data destined to prefixes in the /24 range will be routed to the Hijacker AS. One might 

argue that since both Victim AS and Hijacker AS are claiming to be the owners of the 

same prefix, we can find multiple entries with the same prefix but different origins (once 

with Victim as the origin, another one with hijacker as the origin) in the routing table. 

Can such multiple origin ASs (MOAS) be used as a signature to detect prefix hijacking? 

The answer is unfortunately NO.   The authors of [16], [17] show MOAS prefix can be 

legitimately announced by multiple origin ASs.  Also, hijacker AS can cleverly avoid 

MOAS anomaly by announcing an AS with an invalid next hop. Assume AS X is the 

victim which advertises to sender AS S. The path at AS S would be [AS S, …, AS X]. 

Now in an invalid next hop attack, hijacker AS Y sends advertisement such that AS S 

will see the path as [AS S, …, AS Y, AS X]. Thus, the origin will remain the same i.e. 

AS X, making it difficult to detect. However, because of the increased path length, such 

attacks usually have low impact.  

 Based on how the hijacker treats the hijacked traffic, prefix hijacks can be 

classified into following categories: 
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(i) Blackholing: The attacker simply drops the attracted packets, i.e. packets 

destined to victim address prefix. 

(ii) Interception: The attacker forwards the hijacked traffic to the Victim after 

eavesdropping on the information in the packets. 

Usually Interception is hard to detect and can last a long period of time before being 

detected. The consequences of Blackholing can be online phishing, spam emails [18] 

and DDos attack. Interception on the other hand is much more dangerous and at the 

same time hard to achieve.  

Hijack Analysis: Here we discuss all the scenarios occurring in a prefix hijack. The rules 

obtained here are the basis for the simulation experiments we did to test our hijack 

prevention framework.  

Scenario 1: Existing route is a Customer route, invalid route from the hijacker is a 

Customer Route. Since both Hijacker and Victim are on the Customer Path, path length 

is the deciding factor. If the path to hijacker is shorter, hijack succeeds. However, if the 

path to the Victim is shorter, hijack fails. If both have the same path length, the routing 

policy attributes such as weight and Local Preference decide the route. In our simulation 

analysis, the decision is made randomly. 

Scenario 2: Existing route is a Customer route, invalid route from the hijacker is a Peer 

route. Since ASs give higher preference to advertisements from Customer routes 

compared to Peer routes, the hijack fails. 
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Scenario 3: Existing route is a Customer route, invalid route from the hijacker is a 

Provider route. Since ASs give higher preference to advertisements from Customer 

routes compared to Provider routes, the hijack fails. 

Scenario 4: Existing route is a Peer route, invalid route from the hijacker is a Customer 

route. Since ASs give higher preference to Customer routes compared to Peer routes, the 

hijack succeeds. 

Scenario 5: Existing route is a Peer route, invalid route from the hijacker is also a Peer 

route. Since both the Hijacker and the Victim are on the same Peer path, path length is 

the deciding factor. If the path to the hijacker is shorter, hijack succeeds. However, if the 

path to the Victim is shorter, the hijack fails. If both have the same path length, the 

routing policy attributes such as weight and Local Preference decide the route. In our 

simulation analysis, the decision is again made randomly. 

Scenario 6: Existing route is a Peer route, invalid route from the hijacker is a Provider 

route. Since ASs give higher preference to Peer routes compared to Provider routes, the 

hijack fails. 

Scenario 7: Existing route is a Provider route, invalid route from the hijacker is a 

Customer route. Since ASs give higher preference to Customer routes compared to 

Provider routes, the hijack succeeds. 

Scenario 8: Existing route is a Provider route, invalid route from the hijacker is a Peer 

route. Since ASs give higher preference to Peer routes compared to Provider routes, the 

hijack succeeds. 
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Scenario 9: Existing route is a Provider route, invalid route from the hijacker is also a 

Provider route. Since both Hijacker and Victim are on the same Provider path, path 

length is the deciding factor. If the path to the hijacker is shorter, the hijack succeeds. 

However, if the path to the Victim is shorter, the hijack fails. If both have the same path 

length, the routing policy attributes such as weight and Local Preference decide the 

route. In our simulation analysis, the decision is again made randomly.  

 Table 2 summarizes all the scenarios for prefix hijack analysis. In this table we 

assume the path length to the Victim, i.e., existing path length is always „n‟. 

Interception Analysis: In order to intercept traffic, the hijacking AS should reroute the 

captured traffic to the Victim. It can do so by forwarding the traffic along its existing 

valid route to the Victim. None of the ASs in this route should choose the invalid 

advertisement sent by the hijacker. If they do, traffic loops back to the Hijacker before 

reaching the victim. The authors of [10] have done a detailed analysis of Interception 

techniques based on the no-valley, prefer-customer policies discussed earlier. Since our 

framework concentrates on hijacking, we don‟t elaborate Interception techniques here. A 

summary of interception analysis from [10] states that an AS trying to intercept traffic to 

Victim prefix p can advertise the invalid route to all its neighbors unless its existing 

route for p to Victim AS is through a provider, in which case, the invalid route should 

not be advertised to other providers of the AS. 

The authors of [6] perform analysis on Resilience and Impact of Autonomous 

Systems in prefix hijacking. Resilience is defined as the defensive power of a node in 

hijack, where as Impact measures the attacking power of an AS. It was observed that 
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Resilience and Impact are directly proportional i.e. a node with high resilience during 

hijack can also cause major impact during an attack. Figure 10 indicates the 

Resilience/Impact of nodes in different Tiers. 

 

Table 2. Prefix Hijack Analysis 

 Invalid Route Customer Peer Provider 

Existing 

Route 

Length    

 

Customer 

<n Hijack Fails Hijack Fails Hijack Fails 

=n Random  Hijack Fails Hijack Fails 

>n Hijack Succeeds Hijack Fails Hijack Fails 

 

Peer 

<n Hijack Succeeds Hijack Fails Hijack Fails 

=n Hijack Succeeds Random Hijack Fails 

>n Hijack Succeeds Hijack Succeeds Hijack Fails 

 

Provider 

<n Hijack Succeeds Hijack Succeeds Hijack Fails 

=n Hijack Succeeds Hijack Succeeds Random 

>n Hijack Succeeds Hijack Succeeds Hijack 

Succeeds 

 

 

Historically, it was believed that Tier 1 nodes are the most resilient nodes, but 

now it came to light that it is the well connected Tier 2 nodes with highest 
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impact/resilience. Akamai with its heavy presence in Tier 2, or major ISP‟s such as 

AT&T with large AS presence in Tier 2 networks can cause high impact in the case of a 

hijack. This is one of the major reasons to choose Akamai and AT&T for analyzing our 

framework. 

 

Figure 10. Resilience/Impact of Nodes in Different Tiers [6] 

 

Our prefix hijack threat model assumes the following: 

(i) An attacker can hijack TCP connection between peers. 

(ii) An attacker can modify updates, delay or delete them. 

(iii) An attacker can get access/control to a BGP router and generate false 

advertisements of prefixes that it does not own or generate non authentic 

updates. 
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CHAPTER IV 

PREFIX HIJACK INCIDENTS CASE STUDY 

There have been several incidents of prefix hijacking due to router 

misconfiguration. RIPE [19] reports an incident involving prefix hijacking of YouTube 

on 24 February 2008. AS 36561 (Authentic AS) announces prefix 208.65.152.0/22 

belonging to YouTube. Pakistan Telecom (AS 17557) which was trying to block 

YouTube in its own country claimed as the owner of 208.65.153.0/24.  Since PT 

announced a more specific prefix, due to the way BGP is organized, majority of the ASs 

chose PT instead of original YouTube AS to route data. Most of the customers of 

YouTube started receiving “Server not found” error. YouTube realized this and started 

announcing 2 prefixes: 208.65.152.0/22, 208.65.153.0/24 (longer prefix).  This lead to 

decrease in impact and YouTube started receiving some traffic. After sometime, 

YouTube started announcing more specific prefixes 208.65.153.128/25, 208.65.153.0/25 

as well which further decreased the hijack impact. By this time, PT realized its mistake 

and used AS prepending to further reduce the hijack impact, and after sometime it 

withdrew its false announcement. The key points to take from this incident are: 

Announcing the hijacked route only mitigates the problem but does not solve it. There is 

some delay before YouTube could realize prefix hijacking on its domain. Our proposed 

model on the other hand reacts quickly and announces the same prefix from multiple 

ASs distributed around the world reducing the hijack impact to minimal.  It also raises 

an important question, in case of hijack, can‟t we announce a more specific prefix and 

reclaim traffic?  The answer is NO. Most ISPs block prefixes longer than /24 because it 
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leads to explosive growth in the routing tables. Figure 11 indicates the scenarios before 

and after the hijack of YouTube prefix. 

On 25 April 1997, a misconfigured router maintained by a small service provider 

in Virginia injected incorrect routing information into the global Internet and claimed to 

have optimal connectivity to all Internet destinations. Because such statements were not 

validated in any way, they were widely accepted. As a result, most Internet traffic was 

routed to this small ISP. The traffic overwhelmed the misconfigured router and other 

intermediate routers, and effectively crippled the Internet for almost two hours [20]. 

Malicious prefix deaggregation can allow adversaries to take over a prefix by 

advertising a more specific prefix block. An example occurred in 1997, when 

misconfigured routers in the Florida Internet Exchange (AS7007) deaggregated every 

prefix in their routing table and started advertising the first /24 block of each of these 

prefixes as their own. A /24 block is the smallest prefix generally allowed to be 

advertised by BGP, and because of its specificity, routers trying to reach those addresses 

would choose the small /24 blocks first. This caused backbone networks throughout 

North America and Europe to crash, as AS 7007 was overwhelmed by a crush of traffic 

and the routes it advertised started flapping [20]. This was not a malicious attack, but an 

error made by the network operator. 

The authors of [6] report more such incidents. On Jan 22, 2006, AS-27506 

belonging to RCN New York Communications announced a number of prefixes that did 

not belong to it. Almost 40 prefixes belonging to 22 unique ASs were hijacked. In 

another incident, AS 9121 falsely announced routes to over 100,000 prefixes on 
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December 24, 2004. AS 174 (Cogent) hijacked a prefix (64.233.161.0/24) belonging to 

AS 15169 (Google) on May 07, 2005. All prefix hijack events are frequently reported in 

the NANOG [21] mailing list. 

 

Figure 11. YouTube Hijack Incident [20] 
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CHAPTER V 

RELATED WORK ON PREFIX HIJACK DETECTION AND PREVENTION 

The authors of [22] propose a Prefix Hijack Alert System (PHAS).  All the prefix 

owners who are interested in using their service register with the PHAS server and 

provide contact email addresses. PHAS uses BGP monitor data from RIPE [23] and 

Route Views [24] to maintain current origin set for each registered prefix. A change in 

this origin set triggers an origin event, which in turn translates to a notification message 

to the prefix owner. To control origin events for prefixes with frequent origin changes, a 

time-window based mechanism is used. This adaptive window based scheme is central 

to ensure that the system scales from the perspective of origin set monitoring and limits 

the number of false positives. In addition, there is a local notification filter that 

administrators can fine tune according to the properties of their AS to further reduce 

false positives.  In fact, RIPE operates an online service MyASN [25] which notifies the 

network operators when their prefix is announced with an incorrect AS path. It is based 

on similar principles as that of PHAS. 

 The authors of [26] propose a protocol enhancement which enables BGP to 

detect bogus route announcements from false origins. They propose to create a list of 

multiple ASs who are entitled to originate a particular IP address prefix, and then attach 

this list to the route announcements by all the originating ASs of this prefix. The BGP 

community attribute [27] provides a simple way of attaching the MOAS list to a route 

announcement. The community is a BGP attribute of variable length. It can be used to 

convey additional information to the global routing system for a group of prefixes that 
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share some common properties. BGP routers that receive the route announcements from 

multiple origins can verify that the MOAS is intentional and valid. If another AS makes 

a faulty route announcement of a prefix p, BGP routers which have received the right 

route to this prefix p can easily detect the fault since the faulty route‟s origin AS will not 

be in p‟s MOAS list. In Figure 12, prefix p is multihomed and is originated by AS 1 and 

AS 2. A MOAS list is attached to the routing enhancements indicating that both AS 1 

and AS 2 can serve as origin ASs for this prefix. Hijacker AS 4 also originates a route to 

prefix p, but AS 4 does not appear in the MOAS list announced by AS 1 and AS 2 

indicating ongoing prefix hijack. This scheme will only help to detect hijack but does not 

give information about who the hijacker is. In the above example, it can be either AS 4 

or AS1, AS2. Also schemes that require BGP protocol changes at massive levels have 

failed when it comes to practical implementation. MOAS list also adds to the ever 

increasing overall size of the routing table and route announcements. 

 

Figure 12. MOAS List Enhancement to BGP Protocol 
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 The authors of [15] present a detection scheme based on the following 

observations. When a prefix is not hijacked: 

(i) The hop count of the path from a source to prefix is generally stable. 

(ii) The path from a source to this prefix is almost always a super path of the path 

from the same source to a reference point along the previous path, as long as the 

reference point is topologically close to the prefix. 

By carefully selecting multiple vantage points and monitoring from these points 

for any departure from the above listed observations, one can detect a hijack.  

Cryptographic based solutions S-BGP [28], SoBGP [29] requiring public key 

infrastructures for the entire IP address space and AS number space to certify if an AS 

has the authority to advertise a prefix have been proposed. Such solutions although 

necessary are hard to be implemented and require universal adoption. 

  The authors of [30] propose a prefix hijack mitigation system. They preselect 

several ASs and call them lifesaver ASs. In case of a hijack, a detection system notifies 

these lifesaver ASs with information about the hijacker AS, Victim AS and the victim 

prefix. All the lifesaver ASs attempt to purge bogus routes originating from hijacker and 

promote victim routes by reducing path length in AS_SET.  

 The authors of [31] propose a detection system based on prefix owner‟s view of 

reachability. The system is based on the fact that during prefix hijack, large percentages 

of ASs in the Internet are polluted, and hence, probes (such as ping) initiated from 

victim‟s network are expected to witness unreachability to large number of ASs. In other 

words, unreachability to large number of ASs is used as a signature of a prefix hijack.  
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 From the current literature, we came to a conclusion that there have been several 

methods proposed to detect prefix hijack, but very few proposed to prevent a hijack. The 

ones proposed to prevent hijack are very complex and require global adoption of several 

BGP protocol changes. Such solutions don‟t appeal to ISPs because of complexity and 

overhead. Our proposed framework on the other hand requires no changes at all and can 

be offered as a paid service making it commercially an attractive and implementable 

solution. 
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CHAPTER VI 

PROPOSED FRAMEWORK AND RESULTS 

MODEL 

 The goal of our proposed framework is to provide safety against prefix hijack as 

a service from CDNs such as Akamai or major ISPs such as AT&T with significant 

presence of ASs in Tier 2 and are well connected. The summary of our goals include: 

 Provide Hijack Prevention as a commercial service. 

 No infrastructure upgrade required. 

 Mitigate an ongoing hijack. 

 Not effecting the routing of prefixes in other ASs. 

Figure 13 shows an idealistic view of high level Internet topology. It ignores 

multihoming and cross connections between customer cones. 

 

Figure 13. High Level View of Internet Topology 
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In Figure 13, AS 1, 2 and 3 are Tier 1 ASs and the cones represent their 

respective customer base. We call the ASs used to implement hijack prevention service 

as HPSP (Hijack Prevention Service Provider) ASs. These are marked as circles. 

Diamond represents the Victim AS and Square represents the hijacker AS. In the above 

scenario, hijacker AS announces a prefix owned by victim AS. HPSP gets its input from 

any of the several Hijack detection schemes discussed in the previous chapter. Once the 

HPSP knows the prefix being hijacked, it advertises the same prefix, in other words 

HPSP claims to be the owner of the hijacked prefix. Since ASs give preference to 

advertisements from customers, all Tier 1 ASs i.e. AS 1, 2, and 3 believe in HPSP 

because HPSPs are usually concentrated in Tier 2 and are direct customers of multiple 

Tier 1 ASs. Now, if any sender in the customer cone of AS 1 or AS 3 tries to send the 

data to hijacked prefix, it ends up either in the victim or in the HPSP which in turn routes 

it back to the victim. Thus the impact of hijacker is throttled. In this idealistic scenario, 

as long as the hijacker and the sender are in different customer cones and HPSP has 

presence near all Tier 1 networks, the data will always be sent to Victim or HPSP. We 

assumed that there are 9 Tier 1 ASs in chapter I. There are around 60,000 ASs. 

Assuming a uniform distribution, each cone has 6666 ASs. 

A sender and hijacker can be chosen in 
(9*6666)

C2 ways i.e. 1799610021. 

Scenarios where the hijacker and sender belong to the same customer cone = 9*(
6666

C2) 

= 199930005 

Thus the probability of Hijack success = (199930005)/( 1799610021) = 11.1%. 

However in reality, the scenario is different. There will be cross cone links, distances of 
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hijacker and sender from Tier 1 and the routing policies of ASs all play an important 

role. 

 In all our experiments, we assume there is a strong hijack detection scheme that 

feeds hijack related data to HPSP in real time. Going forward, we try to answer two 

important questions: 

(i) In case of a hijack, what is the traffic distribution to the Hijacker (ASs that 

modify their route by believing the hijacker) and to the Victim (ASs that continue 

to route to the Victim) without HPSP service? Also, what is the traffic 

distribution to the Hijacker, the Victim and the HPSP AS with active HPSP 

service? 

(ii) How many times can we route the data from the HPSP to the victim? 

SIMULATION SETUP 

 For answering the first question, we used the BGP Routing Information Base 

(RIB) data from Route Views [24].  Route Views currently collects BGP routing table 

data from 30 Peers around the world. We can peek into AS level connectivity from these 

30 peers mostly distributed in Tier 1 and Tier 2. The raw data obtained has several 

duplicates, incomplete paths that need to be cleaned.  The StraightenRV [32] script 

available from CAIDA does this. StraightenRV massages a Route Views table for 

further processing. In addition, it produces a number of files containing statistics, and a 

'full' version of the RV table. The full RV table is a standard, easy-to-parse version of the 

RV table. The .as file contains the following counts for each AS: origin, transit, peer and 

degree. The origin count of an AS is the number of times the AS appears in the origin 
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(last) position of AS paths. The peer count of an AS is the number of times the AS 

appears in the peer (first) position of AS paths longer than one.  The transit count of an 

AS is the number of times an AS appears in a transit (any but first or last) position of AS 

paths. Once we obtain this data, we need to derive relationships between the ASs. For 

this we use the Gao‟s [5] heuristic algorithm. It is based on the valley free property of 

the Internet. Valley-free property states that: 

(i) A provider-to-customer edge can be followed by only provider-to-customer.  

(ii) A peer-to-peer edge can be followed by only provider-to-customer edges. 

The heuristic algorithm goes through the AS path of each routing table entry. It 

finds the highest degree AS and lets the AS be the top provider of the AS path. Here 

degree refers to the number of neighboring ASs. Knowing the top provider, we can infer 

that consecutive AS pairs before the top provider are Customer to Provider, and 

consecutive AS pairs after the top provider are Provider to Customer edges. If two pairs 

of nodes have been classified as both Customer – Provider and Provider – Customer, we 

convert their relationship to siblings.  We ignore siblings for most of our analysis since 

they constitute approximately 1% of the total links. Now, we need to identify peering 

relationships. If an AS pair appears consecutively in the AS path and neither of the AS 

pair is the top provider of the AS path, then the AS pair has a transit relationship and 

cannot be peers.  An AS path has at most one consecutive AS pair that has a peering 

relationship. That is, a top provider can have a peering relationship with at most one of 

its neighbors in the AS path. Also, AS pairs that peer have comparable degree. All the 

facts stated above are used to identify peer relationships. 
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RESULTS 

 We first built the basic AS topology and identified the business relationships 

between each neighboring AS pairs. Since the hijack success rate increases as we move 

to the top of the AS hierarchy, we analyzed the distribution of ASs at various levels. 

Figure 14 illustrates the distribution of ASs with respect to average distance from a Tier 

1 AS. We measured the path length of an AS to all well known Tier 1 ASs, averaged it 

and rounded it off to the nearest integer. Although this may not be the exact 

classification to distribute ASs into Tiers we chose this approach since there are no 

formal rules for classification of ASs into Tiers. From here on, Tier X AS refers to an 

AS whose average path length is X-1 from all Tier 1 ASs. The AS distribution data 

indicated that most of the ASs are located at Tier 3 (41.08%), 4 (36.22%) and 5 

(13.81%). Thus ASs from these tiers account for 91.11% of the total ASs. 

 

 

Figure 14. AS Distribution at Different Tiers 
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To measure hijack success rates, we used Route View monitors as information 

sources i.e. senders. The hijackers and victims were randomly chosen. Initially, we chose 

a hijacker at Tier 2. One of the Route View monitors acted as the Sender. Victim was 

chosen at different tiers. We repeated the experiment now with different senders in the 

Route View set. The entire process is repeated again for different hijackers in the Tier 2 

and the data are averaged. If there were X experiments in total and if it was observed 

that Y (Y<= X) times the data was routed to the hijacker, then the hijack success rate is 

defined as: 

Hijack Success rate at Tier 2 = (Y/X)*100. 

Now this hijack success rate is measured at different Tiers. Figure 15 gives the pseudo 

code of the algorithm described. 

Figure 16 shows the Hijack Success Rate at different Tiers without any Hijack 

Prevention Service Provider (HPSP). We observe that hijack is successful 90.36% of the 

time if launched from a hijacker in Tier 2, 84.65% if launched from a hijacker in Tier 3, 

82.45% of the time if launched from a hijacker in Tier 4, 79.85% of the time if launched 

from a hijacker in Tier 5. Thus we conclude that the impact of hijack is severe without 

any hijack prevention/mitigation mechanism.  

Now, we repeat the experiment with a HPSP. The pseudo code in Figure 15 still 

applies, but now in Step 20, we carry out hijack analysis with H (Hijacker), V (Victim), 

RV (Route View monitor/Sender) and HPSPs (Hijack Prevention Service Providers). 

Also in Step 22, hijack succeeded if Victim gets the data, but now hijack succeeds if 
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either victim or HPSP gets the data. The routing of data from HPSP to victim is analyzed 

later.  

 

1. X=2, Total_Experiments = 0, Hijack_Success = 0, Count = 10. 

2. Choose a Unique Random Hijacker H in Tier X. 

3. Count-- 

4. If Count = 0 

5.       Count = 10 

6.       X = X + 1 

7.       If X > 5 

8.             Print Total_Experiments, Hijack_Success 

9.             End Program 

10.       EndIf 

11.       Go to Step 2 

12. EndIf 

13. If all RV monitors have been selected as Senders 

14.       Go to Step 2 

15. Else 

16.       Select a Route View monitor RV. 

17. EndIf 

18. For Y = 2 to 5 

19.       Choose a Victim V in Tier Y. 

20.       Carry out hijack analysis with H, RV and V. 

21.       Total_Experiments++ 

22.       If Hijack Succeeds 

23.             Hijack_Success++ 

24.       EndIf 

25. EndFor 

 

Figure 15. Pseudo Code to Measure Hijack Success Rate 
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Figure 16. Hijack Success Rate without HPSP 

 

 Ideally HPSP ASs should be located in Tier 2, with strong connectivity to Tier 1 

and Peer Tier 2 ASs. CDN‟s such as Akamai and large ISPs such as AT&T fall into this 

category. Akamai has around 22 ASs distributed mainly in Tier 2, Tier 3 and Tier 4. 

Figure 17 indicates the results of Hijack success rates with Akamai as HPSP.  We 

observe the hijack is successful 30.53% of the time if carried from a Tier 2 hijacker, 

10.98% of the time if launched from a Tier 3 hijacker, 8.39% of the time if launched 

from a Tier 4 hijacker, and 2.66% of the time if launched from a Tier 5 hijacker. In 

conclusion, we can say that the hijack success rates reduced significantly by using 

HPSPs. Figure 18 indicates the results of Hijack success rates with AT&T as the HPSP. 

The results are similar to that observed with Akamai. We observe the hijack is successful 

33.96% of the time if carried from a Tier 2 hijacker, 6.69% of the time if launched from 
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a Tier 3 hijacker, 10.68% of the time if launched from a Tier 4 hijacker, and 9.5% of the 

time if launched from a Tier 5 hijacker. 

 

 

Figure 17. Hijack Success Rate with AKAMAI as HPSP 

 

 

Figure 18. Hijack Success Rate with AT&T as HPSP 
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 In Figure 19, we compare all the hijack experiments. We can conclude clearly 

that using HPSP reduces the hijack success rate drastically. Also Figure 19 shows results 

with both Akamai and AT&T acting as HPSPs. For such a scenario, we observe the 

hijack is successful 24.3% of the time if carried from a Tier 2 hijacker, 5.62% of the 

time if launched from a Tier 3 hijacker, 2.96% of the time if launched from a Tier 4 

hijacker, and 2.2% of the time if launched from a Tier 5 hijacker. Assuming a hijacker 

can originate with equal probability from any AS, we take the distribution of ASs in Tier 

2, 3, 4 and 5 into account and combine with the hijack success results and calculate 

Weighted Hijack Success Rate. 

WHSR = 


5

2Tier

 (Hijack Success Rate in Tier * Average AS distribution in Tier) 

 

Figure 19. Comparing All the Hijack Experiments 
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Figure 20. Weighted Hijack Success Rates for Different HPSPs 

 

Figure 20 gives the WHSR figures for all the experiments. WHSR drops from 

71% to 8.8% by using an HPSP, and from 8.8% to 4% using multiple HPSPs. 

 We studied if there exists any correlation between the geographic locations of 

HPSP ASs to the geographic locations of data originators/source to guide the placement 

of Hijack Prevention Service Provider ASs. We choose Akamai as HPSP for this 

experiment. The results are illustrated in Table 3. RV refers to Route View node or data 

originator, A refers to AKAMAI node i.e. HPSP. ASi refers to Asia, EU refers to Europe 

and US refers to United States. A value of 36 for (RV(US), A(US)) indicates that in 36 

hijack events the data from a Route View AS node in US ended up at AKAMAI AS in 

US. From the data we found that geographic location does not have a strong impact on 

the traffic that it attracts. For example most of the data originated at US, ASi ended up at 
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EU AKAMAI node. We attribute this result to Akamai AS node 20940 located in 

Germany which is well connected with Peer ASs located in US and ASi. 

 

Table 3. Correlating Geographic Locations of HPSP ASs with That of Data 

Originators/Source 

Data Originator, Destination AS Hijack Events 

RV(US), A(US) 36 

RV(EU), A(EU) 43 

RV(ASi), A(ASi) 0 

RV(US), A(EU) 40 

RV(US), A(ASi) 0 

RV(EU), A(US) 11 

RV(EU), A(ASi) 0 

RV(ASi), A(US) 5 

RV(ASi), A(EU) 32 

 

 

 To prove that well connected ASs at Tier 2 do a good job as hijack defender, we 

did two experiments with ATT ASs. In the first experiment we chose only 6 ATT ASs 

that have strong peer network at Tier 2 and that are directly connected with multiple Tier 

1 ASs. The hijack success rates were observed to be 36.77%, 10.34%, 7.4% at Tier 2, 

Tier 3 and Tier 4 respectively. We repeated the experiment with all the 122 ATT ASs 
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providing the service, which included the 6 ATT ASs in the first experiment. The 

success rates were observed to be 33.96%, 6.69% and 10.68% respectively at Tier 2, 

Tier 3 and Tier 4 respectively. The results are compared in figure 21. Thus, we don‟t see 

much difference in hijack success rates even though we increased the ASs providing the 

service from 6 to 122.  From this we can deduce that, ASs that are customers of multiple 

Tier 1 ASs and have a strong peer network at Tier 2 are the ideal choice for providing 

the proposed hijack defense service. 

 We also did an analysis on which Akamai ASs i.e. HPSPs captured the hijacked 

data and results are illustrated in Figure 22 (X axis indicates hijack simulation events, Y 

axis indicates ASs. A long horizontal bar indicates that AS was able to capture data from 

several hijack simulation events). Although all the 22 Akamai ASs are announcing the 

prefix, only 4 ASs (12222 in USA, 20940 in Germany, 34164 in London, 21342 in Asia) 

are successful in capturing the data most of the time. This can cause a problem because, 

if a single HPSP AS is overwhelmed with traffic, it might lead to congestion near this 

AS. To prevent this, we experimented by increasing the path lengths for ASs 12222 and 

20940 which capture most of the traffic using Route Aggregation  which can be 

implemented without any changes to the BGP protocol. This, however, leads to increase 

in hijack success rate which is illustrated with an example in Figures 23 and 24. Figure 

23 indicates a network topology where A refers to HPSP node, RV is the route view 

node which originates traffic, H is the hijacker node trying to capture traffic. T is a 

transit node. A is on a customer path for RV node, and so do H and T. H is also on a 

customer path for T. During Route aggregation, node A tries to append itself to the path 
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before sending the BGP update to RV node. If A appends itself 3 times, A appears to be 

3 hops away for RV node as shown in Figure 24. Thus RV would send the traffic to 

Hijacker instead of AKAMAI. 

 

 

Figure 21. Comparing HSR between 6 (Well connected) ATT ASs and 122 ATT ASs 

 

We experimented with several combinations and finally found that increasing the 

path length for AS 12222 by 1 and that of AS 20940 by 2 yields best traffic distribution 

with minimal increase in hijack success rate. The traffic distribution results after Route 

Aggregation are shown in Figure 26. The effect of Route aggregation on Hijack Success 

Rate is indicated in Figure 25. As expected the Hijack Success Rate (HSR) rates go up. 
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Figure 22. Traffic Distribution in HPSP ASs 

 

 

                                 

Figure 23. Normal Topology                       Figure 24. Topology with Route Aggregation 
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Figure 25. Effect on HSR due to Route Aggregation for Better Traffic Distribution  

 

 

Figure 26. Traffic Distribution after Route Aggregation 
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ROUTING DATA FROM HPSP TO VICTIM 

 Once the HPSP captures the data, it needs to route it back to the Victim or the 

authentic owner of the prefix. In other words, HPSP is now trying to intercept the 

Victim‟s data. This is shown in Figure 27. The circles which represent HPSP ASs should 

route the captured data back to the Victim. However, sometimes, it might happen that all 

the neighboring ASs of HPSP are corrupted by HPSP/Hijacker ASs and thus HPSP can‟t 

route data to Victim. From Victims point of view, such traffic, which is captured by 

HPSP but can‟t be routed to the Victim, is equivalent to Hijacked traffic thus increasing 

HSR. 

 

 

Figure 27. HPSP Trying to Route the Data Back to Victim 
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  For all the simulations till now, we used the data from Route Views. Since we 

always chose Route View monitors as sources of information, we had path information 

from sender to victim, sender to HPSP, sender to Hijacker to carry out hijack analysis. 

But now, we also need data about all possible paths from HPSPs to Victim and if any 

ASs in this path prefer Hijacker/HPSP instead of the Victim. For this, we constructed a 

strong AS level connectivity graph by combining the data from Route Views [24], RIPE 

[23]. Although the quality and accuracy of such AS maps is not 100%, it‟s a generally 

accepted notion that such BGP maps constructed from publicly available data are good 

enough for most BGP simulation experiments [33]. 

 Table 4 summarizes the results of our experiments with routing back the data 

from HPSP (in this experiment Akamai ASs) to the victim. For this, we randomly chose 

a Sender AS, a Hijacker and a Victim AS. Then we did an analysis on who will capture 

the data sent by the Sender AS. If HPSP wins, we retain the experiment results, else, we 

ignore the results of the experiment. We repeat this now by choosing a different Hijacker 

and a Victim AS. This process is repeated until we have 15 valid experiments in which 

HPSP wins. The entire process is again repeated with a different sender AS. Average 

Path Length in Column 3 indicates the average path length from sender to victim without 

any hijacker or HPSP AS. Column 4 lists the cases in which HPSP receives the data and 

can send it back to the Victim. Column 5 lists scenarios, where HPSP cannot send the 

data directly to Victim, thus uses the prefixes advertised by neighbors to tunnel the data 

to the victim. This requires victim ASs to have some partnership with neighbors so that 

the tunneled data can be routed back to the victim. Column 6 indicates scenarios where 
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data can neither be sent directly nor tunneled. This might occur because, the neighboring 

ASs of the Victim believe in advertisements from the Hijacker or the HPSP rather than 

the Victim. However, such instances are very rare. Column 7 indicates the new average 

path length because of routing data through the HPSP. 

 

Table 4. Analysis of Routing Back the Data from HPSP (Akamai) to Victim 

Sender 

AS 

Total 

Experime

nts (We 

ignore 

details of 

experime

nts in 

which 

HPSP 

fails to 

capture 

the data) 

Averag

e Path 

Length 

Experi

ments 

in 

which 

HPSP 

can 

send the 

data 

directly 

Exp.  in 

which 

HPSP 

can send 

data to its 

neighbor 

Exp.  in 

which 

HPSP 

cannot 

send the 

data 

Average path 

Length in 

Experiments 

where it can 

send the data 

(Sender -> 

HPSP + HPSP 

-> 

Victim/Neighb

or) 

AS18423 15 3.8 11 4 0 5.85 

AS29520 15 3.4 14 0 1 5.57 

AS3893 15 5.26 13 2 0 7.07 

AS16484 15 3.8 10 4 1 7.75 

AS6885 15 4.33 8 7 0 5.2 

AS22321 15 4.13 6 9 0 5.28 

AS1890 15 3.66 9 6 0 8.22 

AS11299 15 5.2 10 4 1 7.5 

AS18924 15 3.66 12 3 0 4.08 

AS31223 15 5.6 10 5 0 6.2 

AS22312 15 4 12 3 0 4.92 

AS2299 15 3.8 11 4 0 7 

AS5433 15 4.46 9 6 0 8.5 

AS42332 15 4.8 13 2 0 5.84 
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1. Total_Experiments = 0; HPSP_direct = 0; HPSP_indirect = 0; HPSP_nodata = 0,  

     Orig_avg_path_len =0; New_avg_path_len = 0; 

2.  Choose a sender AS. 

3.  While Total_Experiments <=15 

4.   Choose a random Hijacker AS and Victim AS. 

5.  Analyze advertisements received at Sender AS from Hijacker, Victim and HPSP 

   nodes. 

6.  If Hijacker/Victim wins the traffic from Sender 

7.   continue; 

8.  EndIf 

9.  Total_Experiments++; 

10.  Orig_avg_path_len = Orig_avg_path_len + (No. of hops from Sender to Victim) 

11.  Analyze advertisements at HPSP nodes to determine, if there exists a path to the 

   Victim node.   

12.  If path exists from any HPSP node to Victim 

13.   HPSP_direct++; 

14.   Choose shortest path from HPSP to Victim. (NOTE: We assume overlay  

   network HPSP Peers. Thus the HPSP node that receives or captures the  

   data may be different from HPSP node that sends data to Victim. This  

   reduces the path length/delay). 

15.   New_avg_path_len = New_avg_path_len + (Hops from Sender to HPSP)  

   +  (Hops from  HPSP to Victim) 

16.    Else 

17.              Get the neighbor ASs of Victim 

18.    Tunnel the data to neighbor of Victim using prefixes announced by the  

    neighboring AS. 

19.    If any neighboring AS can send data to Victim 

20.    HPSP_indirect++; 

21.    New_avg_path_len = New_avg_path_len + (Hops from Sender to  

    HPSP)  + (Hops from HPSP to neighbor) + 1 

22.   Else 

23.    HPSP_nodata++; 

24.   EndIf 

25.   EndIf 

26.  EndWhile 

27.  New_avg_path_len = New_avg_path_len / (HPSP_indirect); 

28.  Orig_avg_path_len = Orig_avg_path_len/(Total_Experiments); 

 

Figure 28. Pseudo Code to Route Data from HPSP to Victim 
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Table 5. Analysis of Routing Back the Data from HPSP (AT&T) to Victim 

Sender 

AS 

Total 

Experime

nts (We 

ignore 

details of 

experime

nts in 

which 

HPSP 

fails to 

capture 

the data) 

Averag

e Path 

Length 

Experi

ments 

in 

which 

HPSP 

can 

send the 

data 

directly 

Exp.  in 

which 

HPSP 

can send 

data to its 

neighbor 

Exp.  in 

which 

HPSP 

cannot 

send the 

data 

Average path 

Length in 

Experiments 

where it can 

send the data 

(Sender -> 

HPSP + HPSP 

-> 

Victim/Neighb

or) 

AS18423 15 3.62 12 3 0 4.84 

AS29520 15 5.4 14 1 0 6.22 

AS3893 15 4.66 9 6 0 6.8 

AS16484 15 3.62 13 2 1 5 

AS6885 15 5.4 9 6 0 5.8 

AS22321 15 4.00 8 6 1 4.6 

AS1890 15 6.26 9 6 0 6.8 

AS11299 15 5.6 14 1 0 6.2 

AS18924 15 5.89 13 2 0 6.84 

AS31223 15 6.5 14 1 0 7.6 

AS22312 15 4.7 11 4 0 6.54 

AS2299 15 5.34 15 0 0 6.75 

AS5433 15 5.4 10 5 0 5.8 

AS42332 15 3.8 13 2 0 5.2 

 

Figure 28 shows the pseudo code used to perform such an analysis. We observe 

that without tunneling we can route the data 70% of the time from the HPSP to the 

Victim. However, using tunneling, we can route the data 98.09% of the time. The cost of 

such redirection is an average increase in path length of 2.07 AS hops. Table 5 

summarizes the results of our experiments with routing the data from HPSP with AT&T 

as the HPSP, to the Victim. We observe that without tunneling we can route the data 

78% of the time from the HPSP to the Victim. However, using tunneling, we can route 
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the data 99.52% of the time. The cost of such redirection is an average increase in path 

length of 1.057 AS hops. Figure 29 summarizes the results of experiments on routing 

data from HPSP to the Victim. 

 

 

Figure 29. Summary of Routing Data from HPSP to Victim 

 

We conclude that the illustrated HPSP framework is highly successful in 

preventing prefix hijacks and can be fine tuned and better improved by carefully 

choosing locations of HPSP ASs. 
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CHAPTER VII 

CONCLUSION AND FUTURE WORK 

 In this research, we proposed and evaluated a framework for Hijack Prevention. 

While the analysis involved routing tables from Route Views and RIPE, the simulation 

cannot be 100% accurate unless we have the routing tables from Akamai and AT&T 

whom we used as HPSP. We plan to further investigate on schemes to route data 

optimally from HPSP to the Victim so that the average increase in AS hops is minimal. 

We would also like to extend our analysis by choosing other Internet Service Providers 

as HPSPs.  Also, we would like to configure our scheme in Autonomous Systems to test 

real time performance. 

 BGP was designed in 1980‟s. It has definitely failed to address security issues in 

the current era. A transition to stronger and more secure Inter domain routing protocol is 

required. Such transition will require global cooperation among all Autonomous 

Systems. We believe our scheme can serve to mitigate prefix hijack attacks on BGP and 

act as insurance during hijack in this period of transition. 
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