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ABSTRACT 

 

Film Cooling, Heat Transfer and Aerodynamic Measurements in a Three Stage Research Gas Turbine. 

(May 2009) 

Arun Suryanarayanan, B.E., University Visvesvarya College of Engineering, Bangalore, India;  

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. M.T. Schobeiri  

 

The existing 3-stage turbine research facility at the Turbomachinery Performance and Flow 

Research Laboratory (TPFL), Texas A&M University, is re-designed and newly installed to enable coolant 

gas injection on the first stage rotor platform to study the effects of rotation on film cooling and heat 

transfer. Pressure and temperature sensitive paint techniques are used to measure film cooling 

effectiveness and heat transfer on the rotor platform respectively. Experiments are conducted at three 

turbine rotational speeds namely, 2400rpm, 2550rpm and 3000rpm. Interstage aerodynamic measurements 

with miniature five hole probes are also acquired at these speeds. The aerodynamic data characterizes the 

flow along the first stage rotor exit, second stage stator exit and second stage rotor exit. For each rotor 

speed, film cooling effectiveness is determined on the first stage rotor platform for upstream stator-rotor 

gap ejection, downstream discrete hole ejection and a combination of upstream gap and downstream hole 

ejection. Upstream coolant ejection experiments are conducted for coolant to mainstream mass flow ratios 

of MFR=0.5%, 1.0%, 1.5% and 2.0% and downstream discrete hole injection tests corresponding to 

average hole blowing ratios of M = 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0 for each turbine speed. To 

provide a complete picture of hub cooling under rotating conditions, experiments with simultaneous 

injection of coolant gas through upstream and downstream injection are conducted for an of MFR=1% and 

Mholes=0.75, 1.0 and 1.25 for the three turbine speeds. Heat transfer coefficients are determined on the 

rotor platform for similar upstream and downstream coolant injection. Rotation is found to significantly 

affect the distribution of coolant on the platform. The measured effectiveness magnitudes are lower than 
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that obtained with numerical simulations. Coolant streams from both upstream and downstream injection 

orient themselves towards the blade suction side. Passage vortex cuts-off the coolant film for the lower 

MFR for upstream injection. As the MFR increases, the passage vortex effects are diminished. 

Effectiveness was maximum when Mholes was closer to one as the coolant ejection velocity is 

approximately equal to the mainstream relative velocity for this blowing ratio. Heat transfer coefficient 

and film cooling effectiveness increase with increasing rotational speed for upstream rotor stator gap 

injection while for downstream hole injection the maximum effectiveness and heat transfer coefficients 

occur at the reference speed of 2550rpm. 
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1. INTRODUCTION 

  

1.1 Turbine Aerodynamic Research 

Aerodynamic measurement and analysis of gas turbines is a continually evolving field with newer and 

accurate findings emerging regularly due to better instrumentation and improved measurement techniques. 

The results of such analyses are oriented towards providing the design engineer with sufficient information 

to put forward an improved design that would facilitate higher machine efficiencies. One of the primary 

causes leading to the loss of efficiency in a turbomachine is the secondary flow occurring in the rotor tip 

and the hub region. The flow near the blade tip and hub generate vortice which induce drag forces that 

reduce the mainstream total pressure. Similarly, the low energy boundary layer flow and cross flow across 

the blade pressure and suction surfaces on the rotor hub, also influence the mainstream flow near the hub, 

slowing it down and increasing the losses. Reduction of losses due to secondary flow can result in major 

energy savings by improving system efficiency. The measurement of the secondary flow near the blade tip 

and on the rotor hub is complicated and difficult due to the 3-D nature of the flow. Several attempts have 

been made by researchers to measure and quantify the characteristics of secondary flow and their effects 

on the performance of turbines. 

Schobeiri et al. [[1], [2], [3] ] and Wright and Schobeiri [4] investigated steady and unsteady wake 

development and decay and their effects on the boundary layer transition and losses. Their experiments 

were conducted in a low pressure turbine cascade and along the concave surface of a constant curvature 

plate at zero pressure gradients. Ristic et al [5] listed out the features contributing to the generation of 3-D 

flow in turbines. He found blade and endwall surface boundary layers, shock boundary layer interaction, 

blade wake, horseshoe vortices near blade leading edge, tip leakage flow and the secondary flow 

contributed to the complexity of the flow in turbines. He provided detailed information on the three 

dimensional viscous flow phenomena to better understand the flow behaviour such as the origin, 

development of wakes, secondary flow and leakage flows. The study was based on velocity measurement 

This dissertation follows the journal style of ASME Journal of Turbomachinery. 
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taken with a three dimensional Laser Doppler Velocimeter system. Also, it was found that the tip leakage 

flow affects the mainstream flow up to 10% of the blade length from the blade tip and is characterised by 

strong vortice distributions. 

The research turbine facility used for the current work is described in detail by Schobeiri et al. [1], [2] 

and [3]. The research turbine has the flexibility and capability to deal with current aerodynamics, film 

cooling and heat transfer issues. The secondary flow and its impact on efficiency and performance of 

turbine components are described extensively by Lakshminarayana [6] and Schobeiri [7]. Denton [8] gave 

an overview of the effects of different flow mechanisms including the secondary flow on turbomachinery 

losses. The platform surface is characterized by a highly complex 3-D flow due to the viscous nature of 

the mainstream hot gases. A detailed model of the different types of vortices generated and the nature of 

the secondary flow on the platform surface has been put forth by several people in the past (Langston et al. 

[9] , Goldstein and Spores [10], Takeishi et al. [11], Sieverding et al. [12], Herzig et al. [13] and Wang et 

al. [14]). Every model in general acknowledges the existence of a saddle point in the region near the blade 

leading edge on the platform beyond which the flow separates to give rise to pressure and suction side 

vortice commonly referred to as the horse shoe vortex. The pressure side horse shoe vortex, under the 

influence of the differential pressures existing across the pressure and suction surface of adjacent blades, 

migrates towards the suction side and either attaches or flows over or under the suction side horse shoe 

vortex, depending on the driving parameters. This vortex is commonly referred to as the passage vortex 

and almost always is detrimental to attempts made at platform cooling as it tends to lift the coolant off the 

surface. Further, the existence of several other secondary flow vortices also makes providing uniform 

platform cooling a difficult task. All the above investigations were conducted on a cascade and the 

influence of rotation on the end wall flows and the subsequent effects on the coolant flow hasn’t been 

investigated.  

In a very recent paper, Reid et al. [15] presented an investigation into the effect of the chordwise inter-

platform leakage flow between vane segments on turbine performance. Their tests showed that the leakage 

flow can have a significant impact on turbine performance, but they pointed out that below a threshold 

leakage fraction the efficiency loss does not rise with increasing leakage flow rate. Bindon [16] theorized 
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the mechanisms involved in the generation of losses in turbines due to secondary flows also using turbine 

cascades. An up to date summary of the existing literature dealing with the endwall aerodynamics, film 

cooling and heat transfer is also provided by Han et al.[17], Simon and Piggush [18]and Bogard and 

Thole[19].  

Paniagua et al. [20] investigated the hub endwall cavity flow that exists due to small gaps between the 

stator and rotor disk. They found that though the volume of leakage flow injected through the gap is small, 

it has significant effect on the mainstream flow. The injection of leakage flow increases the static 

pressures at the stator exit by 6%. The interaction of flow and the mainstream flow reported in this paper is 

analogous to the interaction of coolant ejected and rotation influenced mainstream flow in the current 

work. 

The mainstream flow along a gas turbine is influenced by the characteristics of the stages ahead of 

them. Urbassik et al. [21] conducted experiments to investigate the unsteady interaction between a high 

pressure turbine vane and rotor blade. The rotor blade was influenced by the flow potential as well as the 

shock propagating through it while the vane was affected by only the flow potential. Upstream vane wakes 

had little to no effect on the unsteadiness in the rotor blades. 

Influence of blade leading edge geometry on endwall heat transfer and flow was studied by Han and 

Goldstein [22]. Aerodynamic losses are believed to be lower for optimum leading edge fillets. A 

naphthalene sublimation technique on fillet geometry is investigated to determine local heat transfer 

coefficients.  A comparison of this result with a simple blade with no fillet is made and found that for the 

modified blade, the horse shoe vortex is not observed while the passage vortex is diminished or not seen 

depending on the fupstream turbulence intensities. 

In a series of two papers, Praisner and Smith [23] and [24] investigated the characteristics of 

horseshoe vortex and their effects on endwall heat transfer. PIV and liquid crystal technique was used in 

conjunction with one another to simultaneously measure the endwall vortex flow and heat transfer 

coefficients respectively. All the features described by earlier researchers were seen clearly with the 

horseshoe vortex breaking of near the blade leading edge. Time averaged and mean heat transfer 

distribution on the endwall is presented for a turbulent flow created by a blunt body. 
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Figure 1: Modern Cooled Gas Turbine Blade (from Han et al. [17]). 

 

 

 

Interaction of the leakage flow from the stator-rotor disk gap with mainstream flow and endwall heat 

transfer is also presented by Rehder and Dannhauer [25]. Experiments were performed on a contoured 

platform with representative engine conditions. Infra red cameras were used to measure temperatures 

while a 2-D PIV system allowed for flow measurements near the coolant ejection location. They observed 

that when coolant was injected perpendicular to the mainstream flow, the horseshoe vortex was 

substantially amplified and endwall heat transfer was also enhanced.  For tangential leakage ejection, the 

vortex system was noticed to diminish. Recently, Piggush and Simon [26] studied the effects of endwall 

contouring and disk misalignment in a turbine cascade facility. A forward facing step is found to locally 

accelerate the leakage flow, thinning the boundary layers and enhancing the heat transfer on the endwall. 

On the contrary, the backward facing step increased the boundary layer thickness and decreased the 

endwall heat transfer. Similar studies to study the leakage flow effects on mainstream flow and endwall 
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heat transfer were performed by Reid et al. [27] and Leishman et al. [28]. All the investigations concerning 

the leakage flow are all performed on cascades and none of them take into account the fact that the leakage 

flow ejecting out of the disk space is also affected by the rotor rotation. A tangential velocity component 

which the leakage flow might acquire while leaving the disk space may substantially alter the flow pattern 

around the slot. 

 

1.2 Turbine Film Cooling and Heat Transfer Research 

The initial stages of the turbine are constantly exposed to high temperatures from gases exiting the 

combustion chamber. For a given aerodynamic efficiency, any increase in the turbine inlet temperature 

translates to an increase in the thermal efficiency and hence, the overall system efficiency. In pursuit of 

higher thermal efficiencies, gas turbines are operated at first stage inlet temperatures around 1500°C 

resulting in excessive thermal stresses on the turbine components. Continuous operation under high 

turbine inlet temperatures enhances the possibility of thermal failure of the hot gas path components. Also, 

the uniform temperature profile of the gases exiting the present day combustors further exposes the rotor 

platform to higher temperatures requiring effective thermal protection. The life of the turbine airfoils can 

be increased by implementing any of a variety of cooling techniques, as shown in Figure 1. Film cooling is 

an external cooling technique commonly used in conjunction with internal cooling to protect the turbine 

components from the mainstream hot gas. In film cooling, a portion of the coolant used for internal 

cooling is ejected through discrete holes or slots over the surface of the components that need thermal 

protection. The coolant thus ejected displaces the mainstream boundary layer creating a protective film on 

the surface of the exposed component. This isolates the hot mainstream gas from the metal surface and 

considerably decreases the magnitude of the temperatures the hot gas path components encounter. The 

location of the coolant holes, their geometry and the quantity of the coolant gases are critical in providing 

proper coolant film protection. In addition, the complex 3D flow (Figure 2) around the turbine blade can 

have adverse effects on the film coverage across the airfoils.  
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Figure 2: Secondary Flow through a Blade Passage (from Han et al. [17]). 

  

 

 

1.2.1 Steady and Unsteady Heat Transfer and Film Cooling Research 

Heat transfer on the hot gas path components are significantly affected by the nature of flow that 

passes through them. Insufficient knowledge as to their effects will often lead to under cooled components 

leading to thermal fatigue failures. Effects of upstream flow conditions on heat transfer have been a 

subject of investigation for several years. Priddy et al. [29] studied the effects of steady and unsteady flow 

conditions on heat transfer in a turbine blade using a cascade facility for a variety of upstream flow 

simulating actual conditions existing in a turbine. The steady state conditions were simulated using 

upstream girds while the unsteady flow conditions were obtained a squirrel cage. They found that any 

increase in the upstream turbulence caused a higher heat transfer coefficient near the blade leading edge. 

The pressure surface too showed enhanced heat transfer with higher turbulence. The also studied the 

effects of turbulence on flow transition and related heat transfer to it. 
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Martin and Brown [30] listed the factors influencing heat transfer on the pressure side of the turbine 

blade. It was suggested that the existence of Taylor-Goertler vortices and upstream turbulence had a 

significant effect on the blade pressure side heat transfer. Each of this parameter both separately or in 

concert caused the pressure side heat transfer to increase above average values. Yi Liu [31] predicted the 

aerodynamic and heat transfer performance of a highly loaded turbine vane taking into account the impact 

of upstream wake, shock waves and boundary layer. A modified Navier Stokes (N-S) equation was used to 

model the mainstream flow while a K-ε model accounted for the turbulence. A similar study was 

conducted by Thakur et al. [32] for a leading edge film cooling blade. The results of both the simulations 

in general matched fairly well with experiments. Any variations in the predicted data were attributed to the 

anisotropy of the system turbulence which could not be modelled more accurately. 

Pasinato et al. [33] compared numerical predictions with experiments and attempted to quantify the 

flow field and heat transfer in a linear cascade platform. Coolant was injected through 3 discrete angled 

slots positioned upstream of the stator. The coolant injection was found to alter the flow patter on the 

platform, interacting with the horse shoe vortex and enhancing heat transfer. Total pressure measurements 

also were made to quantify any changes in aerodynamic losses associated with coolant injection. The 

numerical analysis over predicted the film cooling effectiveness compared to the experimental case. This 

is similar to that observed during the current investigation of coolant injection on rotating platform. 

Schook et al. [34] measured heat transfer on flat plates at high Mach numbers using a Ludwieg tube 

set up. Turbulence was generated upstream by means of grids of different pitch and varied between 0.25% 

and 3.5%. Thin film technique was used to make temperature measurements of the test section. The 

experiments showed that the initiation of transition was substantially affected by increasing turbulence. 

The structure of turbulence itself was found had a more significant effect on transition than the turbulence. 

The Stanton numbers were reported to increase locally with increasing upstream turbulence. 

A detailed experimental study was performed by Liu and Rodi [35] to experimentally determine the 

effects of wake induced unsteady flow on heat transfer in a linear turbine cascade. A squirrel cage 

apparatus was used to vary the upstream wake induced passing frequency between 0 and 240Hz. Their 

results showed that the boundary layer on the suction side remained laminar only for steady flow 
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condition. Under unsteady flow, the boundary layer was transitional and moved towards the leading edge 

for higher frequencies. The boundary layer on the pressure side remained laminar for all flow conditions. 

Any increase in turbulence translated to a higher heat transfer coefficient along the blade. 

Al-Hamadi et al. [36] focused on the effects of free stream turbulence on film cooling effectiveness 

and heat transfer on turbine blades using a cascade facility. Turbulence intensity was varied between 

0.43% and 17% using upstream turbulence grids. Similar research was conducted by Mehendale et al. [37] 

with air and CO2 injection to study the density ratio effects along with mainstream turbulence. Several 

blowing ratios were also considered for the study. Turbulence intensity was varied between 0.7% and 17% 

using upstream grids. The results showed that in general heat transfer coefficient increased with increasing 

upstream turbulence and coolant blowing ratio. 

Butler et al. [38]conducted a study to quantify the effects of turbulence intensity and length scale on 

turbine aerodynamics and heat transfer on a low pressure turbine blade. Turbulence intensities between 

0.8% and 10% along with Reynolds numbers of 40000 to 80000 were considered for the experiments. 

Biplanar lattice grids positioned upstream of the test section generated the required turbulence intensity. 

Surface temperatures were measured using uniform heat flux liquid crystal technique. The results showed 

as the turbulence increased, suction side boundary layer moved upstream causing the heat transfer 

coefficients to increase locally. The stagnation location heat transfer also was enhanced for higher 

mainstream turbulence. 

Han et al. [39] studied the influence of upstream Strouhal number and concluded that both Reynolds 

number and Strouhal number are important for calculation of unsteady flow heat transfer coefficients. 

Several parameters like the upstream rod diameter, the rod spacing and speed, mainstream velocities were 

considered for the study. Their results showed that the unsteady passing wake promotes boundary layer 

transition much earlier than for no wake cases and enhances the heat transfer coefficients on the suction 

surface. The passing wakes also tend to increase the heat transfer coefficient on the pressure side 

substantially.  

Jenkins et al. [40] quantified the effects of mainstream turbulence and film cooling on a stator blade 

dispersion of a hot streak. Results from upstream turbulence magnitudes of 3.5% and 20% were compared 



 9 

and found that the hot streak was diminished due to higher turbulence. A 75% reduction in the 

temperatures in the hot streak region was noticed with the introduction of coolant flow. Different 

combinations of coolant injections were also tested. 

 

1.2.2 Cascade Heat Transfer and Film Cooling –General-Research 

 Results of heat transfer experiments rotor blades mounted in a transonic cascade was presented by 

Giel et al. [41]. Four different Reynolds numbers were considered along with three pressure ratios. The 

changing Reynolds number altered the flow on the suction surface by changing the location of the 

transition zone. Changing pressure ratio had little to no effect on the blade heat transfer. Changing the inlet 

flow angle affected the pressure gradients on the blade and in turn the location of the transition zone. 

Nasir et al. [42] experimented with different tip gaps and squealer geometries on heat transfer on a 

high pressure turbine blade using a rotor blade on the cascade. Transient liquid crystal technique was used 

to measure the temperature distribution on the blade tip for two different blade tip gap to r=span ratio. The 

squealer tipped blade showed lower coolant crossing over from the pressure side to the suction side and 

the associated heat transfer also decreased. 

A computational study was performed by Kohli and Bogard [43] to alter the contour of the suction side 

blade cooling hole to improve the film cooling effectiveness. The optimization method was tested on real 

scale model in a low wind tunnel and found the predictive method capable of designing blade contours. 

Brian and Langston modelled the leading edge heat transfer and analytically, experimentally and using 

computational methods.  Ligrani and Hedlund [44] presented the results of experiments performed on a 

curved channel for laminar, transitional and turbulent flows. Heat transfer and flow structure were 

quantified using flow visualisation techniques and standard procedure used to measure heat transfer 

coefficients. Higher Nusselt numbers were seen for the concave section of the channel for different Dean 

numbers representing the upstream flow conditions. 

Bernsdorf et al. [45] performed film cooling experiments on a flat plate to simulate the pressure side 

of a turbine blade. 3-D PIV measurements were made to quantify the flow field and two different hole 

geometries were considered. The observed the classic kidney vortex pair and the jet lift-off at higher 
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momentum flux ratios. The incoming boundary layer thickness is minimised by the presence of injected 

coolant and the effect is amplified with increasing blowing ratio, density ratio and hole angle. 

 

1.2.3 Turbine Cascade-General Heat Transfer and Film Cooling Research on Turbine Platform 

Platform film cooling effectiveness investigations have been predominantly performed using cascade 

vanes due to the inherent complexities in designing and instrumenting rotating systems. One of the earliest 

studies on platform film cooling was performed by Blair [46] using an upstream slot in a large scale 

turbine vane passage. Harasgama and Burton [47] conducted heat transfer and aerodynamic measurements 

in an annular cascade fit with vanes under representative engine flow conditions. Their results show that 

film cooling reduced the Nusselt numbers near the suction side by about 50% suggesting that the coolant 

was convected towards the suction side by the passage secondary flows. Friedrichs et al. [48] and [49] 

detailed the aerodynamic aspects of platform film cooling and the effectiveness distributions using the 

ammonia and diazo technique. The tests were performed in a large scale low-speed turbine cascade with 

four rows of film cooling holes along four axial stations on the platform. The presence of secondary flows 

was found to erode the coolant film near the surface necessitating a detailed investigation of the flow 

phenomenon in this region. The film cooling traces were observed to be pushed towards the suction side 

especially near the leading edge of the blade similar to that observed by Harasgama and Burton [47]. They 

also concluded that platform film cooling can increase aerodynamic losses due to the mixing of the coolant 

with the mainstream.  

A review of heat transfer and cooling on a turbine nozzle platform has been done by Chyu [50]. 

Zhang and Jaiswal [51] investigated film cooling in a turbine nozzle endwall with two different upstream 

coolant hole geometries using pressure sensitive paint. Effects of coolant mass flow on the effectiveness 

and distribution of coolant gas were studied. Lower coolant mass flow was found to be less effective in 

counteracting the effects of secondary flow in the endwall region and hence led to lower film cooling 

effectiveness. Higher coolant-to-mainstream mass flow ratios gave a more uniform effectiveness 

distribution. Kost and Nicklas [52], Nicklas [53] and Kost and Mullaert [54]studied the effects of film 

cooling and heat transfer on the endwall of a linear cascade. The location of the upstream cooling slot with 
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respect to the blade leading edge was found to determine the effectiveness of film cooling. Slots 

positioned near the saddle point tended to reinforce the horse shoe vortex and the increased turbulence 

washed away the effects of the coolant fluid decreasing film effectiveness. For cooling the platforms 

upstream of the blade passage, slot ejection was found to be more useful than discrete holes. Film cooling 

through holes enhanced the heat transfer coefficients as compared to the no blowing cases.  

Tests on film cooling effectiveness on contoured platforms were performed by Oke et al. [55], [56], 

[57] in a linear, low speed cascade. Coolant was injected through single and double slots upstream of the 

blades. Film cooling hole patterns on the platform with several holes along with slot injection were studied 

by Knost and Thole [58] in a low speed cascade with nozzle guide vanes. Patterns with film cooling holes 

along iso-Mach lines were found to give much better film coverage. The effect of a back facing step 

before coolant injection was studied by Zhang and Moon [59] to simulate realistic engine geometry 

conditions. They used PSP to determine the film cooling effectiveness and found that a back facing step 

caused an unstable boundary layer and damages film coverage. Component misalignment with a forward 

as well as a backward step, at the upstream injection slot and on the slashface gap, was investigated by 

Piggush and Simon [60]. They studied flow and loss characteristics associated with these features and 

noticed that blowing through the slashface gap has the most significant impact on the passage losses. 

Similar assembly features were also studied by Cardwell et al. [61].  

Hada and Thole [62]computationally predicted the film cooling effectiveness with upstream and mid-

passage slot on turbine endwall and also for the height difference between the upstream slot and the 

downstream endwall. Adiabatic film cooling effectiveness using wide banded thermochromic liquid 

crystals was measured on the turbine endwall nozzle vane cascade by Barigozzi et al. [63] for fan shaped 

holes with different area ratios. The secondary flow was suppressed for the smaller area ratios as the 

coolant exiting the holes had higher momentum to overcome the effects of the secondary flow, thus 

decreasing the secondary losses. As expected increase in hole area ratio ensured wider spread for the 

exiting coolant.  

Transient liquid crystal technique was used by Nasir et al. [64] to measure film cooling through 

cylindrical holes on a flat plate with triangular tabs placed along different orientations upstream of the 
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coolant holes. Certain combinations of the coolant blowing ratio and the tab orientation produced higher 

effectiveness implying that the common denominator for higher effectiveness is the nature of flow around 

the hole.  A similar research was performed by Yeun and Martinez-Botas [65] to study the effects of 

coolant hole orientation for L/D=4.0 and P/D=3 to 6 on effectiveness distribution on a flat plate. Several 

holes in in-line and staggered form with different angles were tested for different blowing ratios. 

Large eddy simulations were performed by Rozati et al. [66] on blade leading edge film cooling. His 

models predicted that the adiabatic effectiveness decreased with turbulent jets while not affecting the heat 

transfer significantly. The predictions of turbulent coolant jet concurred with the experimental results only 

for spanwise averaged adiabatic film cooling effectiveness. Heat transfer coefficient data was not affected 

much and was closer to experimental values as they were influenced only by the turbulence around the 

coolant hole.  

Thin film technique was used by Guo et al. [67] to measure turbine vane heat transfer and film 

cooling effectiveness. The free stream velocity was maintained at 13% to simulate close to actual engine 

conditions. Their experiments showed that fan shaped holes had higher effectiveness magnitudes on the 

blade surface as compared to cylindrical holes. Pressure surface showed a higher increase than the suction 

surface with the fan shaped holes. Garg et al. [68] again compared experimental measurements of Nusselt 

numbers with predicted values for a film cooled turbine blade. A 3-D N-S based program was found to 

reasonably predict heat transfer coefficients on the suction surface and on the turbine hub. 

Endwall and blade heat and mass transfer in a linear cascade was numerically predicted by Papa et al. 

[69]. The blade profile selected for the modelling closely resembled a rotor blade though the predictions 

did not account for rotation. A Reynolds Averaged Navier Stoke’s model along with a modified K- ω 

model was used to model the mainstream flow and turbulence respectively. The model was able to predict 

well the heat transfer coefficients on the endwall up to the location where the passage vortex combined 

with a leg of the horse shoe vortex. Beyond this zone, the predicted values were higher than those 

observed during experiments. 

 The PSP technique for film cooling effectiveness is based on mass transfer analogy and is free from 

heat conduction related errors frequently encountered with other heat transfer measurement techniques 
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measuring adiabatic effectiveness. A complete map of local film cooling effectiveness distribution on the 

rotor platform surface can be obtained rather than just a few discrete points obtained using heat flux gages 

or thermocouples. The results from this technique have been calibrated with other measurement techniques 

by Wright et al. [70] on a film cooled flat plate, Gao et al. [71] on a film cooled turbine blade leading edge 

model and Wright et al. [72] on a turbine cascade platform film cooling study. A detailed working 

methodology of PSP to measure film cooling effectiveness has been described in Wright et al. [92]. Since 

no heating is involved, errors arising from lateral heat conduction in the test surface are avoided resulting 

in a distinct and well-defined coolant trace. The results from this technique have also been successfully 

demonstrated by Ahn et al. [73]and Mhetras et al. [74] on blade tip film cooling.  

Saumweber and Schulz [75] studied the interaction of two rows of coolant hole to quantify the 

performance of the downstream hole. He determined that the downstream film cooling is determined by 

the coolant parameters through the 2
nd
 row and also the shape of the coolant holes themselves. 

Effectiveness is enhanced downstream of the 2
nd
 row due to coolant ejection from the 1

st
 row. Bons and 

McClain [76] investigated the effects of turbine component roughness and pressure gradients on heat 

transfer. Smooth surface heat transfer was found to be less sensitive to flow changes than surfaces with 

roughness. Roughness enhanced heat transfer irrespective of the pressure gradients though the magnitude 

of increase is smaller at higher pressure gradients. Rutledge et al. [77] also investigated the degradation 

performance of film cooling on a turbine vane suction side due to surface roughness. In general he found 

that roughness enhances heat transfer and the flux increased by 30% to 70% depending on the different 

tested cases.  

 

1.2.4 Rotating Rig Film Cooling and Heat Transfer - General Research 

Experimental studies available in open literature on film cooling and heat transfer on rotating turbine 

blades and their components are few and far between. The introduction of rotation increases the 

complexity of the heat transfer and film cooling measurements on any of the turbine hot gas components. 

The cooling designs available for these components are often a result of extrapolated data available from 

stationary cascades. This method, though functional can be further optimized with actual data from 



 14 

rotating test rigs. This will enable the hot gas components to be cooled efficiently, increasing their life and 

also improving system performance by minimizing coolant usage. The primary issue with measuring data 

on a rotating facility is the difficulty in instrumenting the facility for all the necessary measurements and 

data acquisition.  

Dring et al. [78] investigated film cooling performance in a low speed rotating facility with a film 

cooling hole positioned on both the pressure and suction sides of the blade. They used ammonia and 

Ozalid paper to qualitatively observe the coolant trace while the quantitative tests were conducted using 

thermocouples. Their results showed that the film coolant had only a small radial displacement, similar to 

flat plate results, on the suction side. On the pressure side, the film coolant trace had a large radial 

displacement toward the blade tip. Effectiveness distributions on the blade span for a rotating turbine blade 

were also provided by Takeishi et al. [79] and Abhari and Epstein [80] using gas chromatography and thin 

film heat flux gages respectively.  

Garg [81] modeled a film cooled rotating blade to validate different turbulence models. He utilized 

Wilcox’s K-ω, Coakley’s q- ω and zero equation Baldwin Lomax methods to model the turbulence around 

the blade. A conclusive result couldn’t be arrived at as each of the models was able to predict heat transfer 

accurately in different locations. Haldeman and Dunn [82] measured and predicted the heat transfer 

coefficients along different planes of a vane and a rotor blade on the endwall and blade tip. The effects of 

thermal barrier roughness was also quantified and the results simulated using the commercially available 

software called STAR-CD
©
. Ling et al. suggested a procedure to minimize lateral conduction effect in heat 

transfer experiments using liquid crystal techniques and then demonstrated it on systems with film 

cooling. A correction was used to accurately predict heat transfer data for transient measurements. This 

lateral conduction problem is negligible and can be completely omitted by the usage of TSP. 

Recently, Ahn et al. [83] and [84] investigated the film cooling effectiveness on the leading edge of a 

rotating blade for two row and three row coolant injection on the leading edge at design and off-design 

rotating conditions. Off-design conditions were found to significantly alter the film coolant traces on the 

leading edge. The same experimental facility has been used in this paper with a new turbine rotor to allow 

for stator-rotor gap and downstream discrete hole cooling. 
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Lung Fu et al. [85] investigated the heat transfer in a 2-pass rectangular rotating channel to simulate 

internal cooling passages in a gas turbine blade. 45° and 90° roughened ribs were positioned along the rib 

walls close to the leading and trailing walls and heat exchange was determined for Reynolds number 

between 5000 and 40000. They found that rotation caused the heat transfer differential between the 

leading and the trailing walls to decrease for the second pass. Very few papers are available which 

characterize the flow in a ribbed internal channel. Miin Liou [86] used laser Doppler velocimetry to 

present results of flow in a ribbed rotating internal channel. Ribs were arranged at 45° to each other and 

were of square cross section. Correlations between rib roughness and rotation and their effects on Nusselt 

number distributions were presented. The rotation affected the development of the flow regime and 

delayed the evolution of fully developed flow within the channel. 

Lacovides et al. [87] presented the results of experiments performed to study impingement cooling in 

a rotating semi-cylindrical passage. Rotation was found to decrease heat transfer, minimising the 

magnitudes of the primary and secondary peaks that existed close to the injection point and mid way 

between two injection locations for stationary case. LDA and PIV tests of the flow show that rotation 

accelerates the spreading of the coolant and thereby decreasing its effectiveness. 

Wright et al. [88] investigated the effects of rotation on heat transfer for a ribbed rectangular channel. 

Two different combinations of ribs were studied for a channel aspect ratio of 4:1. The rotation number was 

varied between 0 and 0.15 for a range of Reynolds numbers. It was found that the discrete V and W ribs 

had the optimum thermal performance for minimum pressure loss. Heat transfer was enhanced for the 

narrow channel along the leading and trailing walls.  

Vortex or latticework cooling effectiveness measurements were made by Acharya et al. [89]. For the 

channel they studied no significant enhancement in Nusselt numbers were observed due to rotation except 

at lower Reynolds numbers.  Latticework cooling was found to be as effective as the conventional rib 

turbulated internal cooling. Effects of high rotation numbers on fluid flow and heat transfer in a curved 

duct was investigated by Sleiti and Kapat [90]. Their simulation results based on Reynolds stress model 

showed that the averaged Nusslet number of all the four walls of the channel at high rotational numbers 

was similar to that observed for low rotational numbers, increasing linearly with increasing rotation 
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numbers. Increasing the coolant density decreased the heat transfer as compared to the lower rotational 

number cases. 

 

1.2.5 Heat Transfer and Film Cooling Research on Rotating Platform 

Blair [91] studied the heat transfer on the pressure and suction sides as well as on the hub platform 

surface for a rotating turbine model. Enhanced heat transfer was observed on the platform due to the 

secondary flow effects. The effects of coolant swirl of film on mainstream flow and thereby heat transfer 

in a rotating cavity was investigated by Karabay et al. [92]. They predicted that when the coolant moment 

ratio is zero, the ratio of coolant tangential velocity to the rotor tangential velocity is a critical value and 

the Nusselt number under those conditions is minimal for coolant injection.  

As can be seen, the literature for rotating turbine heat transfer and film cooling is scarce and designers 

have limited information when it comes to optimising cooling for rotating components. The dearth of 

material is even more for the rotating platform case which has hardly been dealt with previously. In view 

of this, the following section offers details as to the scope and objectives of the current investigation. 
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2. RESEARCH PROGRAM AND OBJECTIVES 

 

There is very limited experimental data available for rotating heat transfer and film cooling in the 

literature for gas turbines. Further, the information regarding heat transfer and film cooling on the turbine 

platform under rotating conditions is few and far between. Therefore, there is a need to study the detailed 

turbine platform heat transfer and film cooling under engine representative flow and rotating conditions.  

This investigation attempts to provide the designers with reliable data for improving the cooling 

performance and thermal efficiency of gas turbines by optimising coolant distribution on the rotating 

platform. In addition, detailed measurements of the mainstream flow upstream of the rotor platform under 

study will be gathered to quantify the nature of coolant flow and understand the influence of mainstream 

flow on coolant distribution on the platform surface. With a better understanding of the flow physics and 

heat transfer distributions on the rotating blade platforms, it will be possible to reduce the amount of air 

extracted from the compressor for the purpose of turbine blade cooling. Improving the platform cooling 

would allow for increase in rotor inlet temperatures and thereby enhancing the system thermal 

performance. To meet the above stated objectives, the following aerodynamics, film cooling effectiveness 

and heat transfer results were performed: 

 

2.1 Film Cooling Effectiveness 

• To study rotational effects on stator-rotor gap coolant injection the following cases were studied on 

the rotor platform: 

o MFR = 0.5%, 1.0%, 1.50% and 2.0% 

o Rotational speeds = 2400rpm, 2550rpm and 3000rpm 

• To study rotational effects on downstream discrete hole coolant injection the following cases were 

investigated on the rotor platform: 

o Mhole = 0.5, 0.75, 1.00, 1.25, 1.50 and 2.00 
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o Rotational speeds = 2400rpm, 2550rpm and 300rpm 

• Combined upstream stator-rotor gap and downstream discrete hole coolant injection were studied for 

the rotor platform for the following cases: 

o MFR = 1.00% 

o Mhole = 0.75, 1.00 and 1.25 

o Rotational speeds = 2400rpm, 2550rpm and 3000rpm 

 

2.2 Heat Transfer Measurement 

• To study rotational effects on stator-rotor gap coolant injection the following cases were studied on 

the rotor platform: 

o MFR = 0.5%, 1.0%, 1.50% and 2.0% 

o Rotational speeds = 2400rpm and 2550rpm 

• To study rotational effects on downstream discrete hole coolant injection the following cases were 

investigated on the rotor platform: 

o Mhole = 0.0, 0.75, 1.00 and 1.25 

o Rotational speeds = 2400rpm and 2550rpm 

 

2.3 Aerodynamics 

• Aerodynamic measurements were performed at station 2 along the stator-rotor gap plane for MFR for 

o MFR = 1% and varying the rotor speeds between 2200 and 2550rpm at intervals of 

50rpm 

o 2550rpm and MFR of 0, 0.25%, 0.50%, 1% and 1.5% 

• Circumferential and radial interstage aerodynamic measurements were performed at stations 3, 4 and 

5 at reference rotor speed of 2550rpm. 
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3. EXPERIMENTAL FACILITY 

 

 

Figure 3: Existing Turbine Research Facility, (Schobeiri et al. [1] and [2]). 

 

 

 

The experimental investigations have been carried out in a three-stage turbine research facility at the 

Turbomachinery Performance and Flow Research Laboratory of Texas A&M University. The turbine is 

the core component of the TPFL-research facility designed by Schobeiri et al. [1] in 1997 to address 

aerodynamics, efficiency, performance and heat transfer issues of high pressure (HP), intermediate 

pressure (IP), and low pressure (LP) turbine components. Detailed aerodynamic, efficiency, loss and 

performance measurements were carried out to verify and document the efficiency and performance of a 

high efficiency 3-D, bowed blading [1]. To compare the results of the investigations reported in [1] with 

those for 2-D cylindrical blades, detailed aerodynamic measurements were conducted and summarized in 

the subsequent reports [2]and [3]. 

The overall layout of the test facility is shown in Figure 3. It consists of a 300HP electric motor 

connected to a frequency controller which drives the compressor component. A three-stage centrifugal 
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compressor supplies air with a maximum pressure difference of 55kPa and a volume flow rate of 4m
3
/s. 

The compressor operates in suction mode and its pressure and volume flow rate can be varied by a 

frequency controller operating between 0 to 66Hz. A pipe with a transition piece connects the compressor 

to a Venturi mass flow meter used to measure the mass flow through the turbine component. The exit 

diffuser serves as a smooth transition piece between the turbine component and the Venturi, which is used 

for mass flow measurement. The three-stage turbine has an automated data acquisition system for detailed 

flow measurement at each blade row location. The turbine inlet has an integrated heater that prevents 

condensation of water from humid air expanding through the turbine during the test. The turbine shaft is 

connected through a flexible coupling with one end of a high precision torque meter that has a maximum 

rotational speed of 8500rpm and a maximum torque rating of 677.9N-m. The other end of the torque meter 

is coupled via a second flexible coupling with an eddy current low inertia dynamometer with a maximum 

power capacity of 150kW and a maximum torque of 500Nm. 

 

 

 

Table 1: Turbine dimensions and operating conditions. 

Stage no., N 3 Mass flow 3.728 kg/s 

Dt 685.8mm Dh 558.8mm 

Reference speed 2550 rpm Speed range 2400 to 3000 rpm 

Inlet pressure 101.356 kPa Exit pressure 71.708 kPa 

Blade height 63.5 mm Power 80-110 kW 

Blade no. Stator 1 = 56 Stator 2 = 52 Stator 3 = 48 

Blade no. Rotor 1 = 46 Rotor 2 = 40 Rotor 3 = 44 

αv2 19
o
 φ 0.353 

βv3 161
o
 λ 1.0 

α3 110
o
 r 0.5 
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3.1 Interstage Instrumentation 

The turbine component shown in Figure 3 is a three-stage air turbine with the dimensions and 

operating conditions specified in Table 1. To achieve a high degree of versatility, the turbine was designed 

with a casing that incorporates stator rings. It also incorporates three T-rings for sealing the three 90º 

circumferential traversing slots, as seen in Figure 4. 

 

 

 

Figure 4: Turbine Cross Section Showing T-ring Slots for Circumferential Interstage Aerodynamic 

Measurements, (Schobeiri et al. [1] and [2]). 

 

 

 

The sealed T-rings move circumferentially inside the slots and effectively prevent the leakage of 

mainstream mass flow through the slots. As shown in Fig. 3, three five-hole probes are mounted on three 

traversing systems with decoder and encoder for accurate probe positioning. The traverse in the radial 
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direction spans from 1mm below the hub diameter to 1mm above the blade tip.  Each of the radial and 

circumferential traverses also has individual stepper motors which allow for accurate alignment of the 

probes to the direction of flow near the rotor hub and tip during actual data acquisition. The controllers to 

these stepper motors are connected to the same aerodynamic data acquisition computer through COM 

ports where the control program to rotate the motors, provided by IMS, is also available. The required 

operational commands and procedure for the controller is provided extensively in the user manual for the 

controllers. These three stepper motors along with the three radial and one circumferential traverse make 

up the high precision 7-axes probe traverse system used in the interstage aerodynamics measurement. 

For the performance instrumentation, combined total pressure, total temperature rakes are used 

upstream of the first stator row and downstream of the last rotor row. At the inlet, the rakes were located 

radially at 45
o
, 135

0
, 225

o
, and 315

o
. Each rake consists of 4 total pressure and 3 total temperature probes 

that are equidistantly distributed in the radial direction. The total pressure probes are of the Pitot tube 

types, and the total temperature probes are calibrated J-type thermocouples. To reduce the wake thickness 

originating from the trailing edge of the inlet rakes, the rakes are shaped aerodynamically with a round 

leading edge and a sharp trailing edge.  

The exit rakes are located radially with the same spacing as the inlet rakes, but offset to them in order 

to prevent the interference with the inlet rake wakes. Wall static pressure taps are arranged at the top and 

bottom half of the main casing and on the T-rings (Figure 4), as well as on the stator rings. In addition, 

total temperature and pressure probes are mounted on the leading edge stagnation points of two 

diametrically opposed stator blades of the second and third stator rows. The turbine facility has the 

capability of radially traversing the flow field at stations 1 through 7 and circumferentially and or radially 

traversing at stations 3, 4, and 5. The data from the traversing is used to generate the total and static 

pressure contours, velocity components, flow angles and the span wise distribution of total pressure loss 

coefficients and the efficiency for each row. Three L-shaped five-hole Pitot probes were used for this 

purpose. The first and the third probes were installed at stations 3 and 5 and were calibrated at low 

subsonic Mach number (M = 0.1), while the second one installed at station 4 was calibrated taking into 

account any small compressibility effects due to the moderate subsonic Mach number of M = 0.3. 
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Figure 5: Schematic of the 5 Hole Probe Adjustment Angle at Station 3, 4 and 5, (Schobeiri et al. [1] 

and [2]). 

 

 

 

Five-hole probes are independently calibrated in a fully automated calibration facility. Each probe is 

placed in an angular indexing mechanism and is pitched and yawed through the range of angles (-20
0
 to 

20
0 
in pitch and -20

0
 to 20

0
 in yaw) in 1

0
 increments. The calibration facility probe indexing mechanism 

uses two stepper motors that are computer controlled to achieve a very fine angle resolution. A computer 

algorithm called TURBOPROBE, which creates a user-specified grid of pitch and yaw angles, is used to 

control these stepper motors. The same program also records the pressures from the PSI- 9016 pressure 

scanner and stores the pressures from the five-hole probe with the corresponding pitch and yaw angles and 

the calibration nozzle total pressure into a data file. This data file is then used to create the calibration 

surfaces for the specific probes that are later used to determine the velocity components and vectors at 
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stations 3, 4, and 5 of the turbine. Further information if necessary can be found in [2] and Sharef Abdel 

Fatteh [93]. The absolute and relative flow angles and velocity components of the turbine rows are 

calculated by implementing the probe adjustment angle for each of the three probes at stations 3, 4 and 5 

respectively (Figure 5). 

To determine the film cooling effectiveness under rotating conditions for leading edge film cooling 

(Ahn et al. [80], [84]), the turbine rotor was modified to integrate the coolant loop into the downstream 

section of the hollow turbine shaft and into the cylindrical hub cavity. The same rotor was not compatible 

for the platform cooling experiments needed for the current investigation hence, a new rotor with the 

ability to provide cooling on the rotor platform surface was designed, manufactured and installed. Further 

information regarding the instrumentation and test facility is provided by [93].  

 

 

 

Figure 6: Section View of the Modified Stator-Rotor Turbine Assembly for Stator-Rotor Purge Flow 

and Platform Film Cooling. 
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Figure 7: Turbine Components with the 24-Channel Slip Ring and Upstream Stator-Rotor Gap 

Cavity. 

 

 

3.2 New Turbine Component Design 

A completely new advanced three-stage turbine component as shown in Figure 6 and Figure 7 was 

designed to replace the one discussed in [[1], [2], [3]] and [[80], [84]]. In addition to the tasks performed 

by the old rotor, the new one was designed to operate at high speeds of 8500rpm close to the transonic 

range. The first critical speed for vibration for the new rotor at its natural frequency occurs at 6500rpm. 

Two independently controlled, concentric coolant loops provide the necessary mass flow for film cooling 

experiments. The outer loop supplies coolant for film cooling experiments in the blade passage section 

close through discrete coolant holes. The inner loop ejects coolant from a circumferential gap between the 

first stage stator and rotor and provides platform cooling near the blade leading edge. A concentric jet exits 

this circumferential gap at an angle of 25
o
 into the mainstream (Fig. 8). The maximum normal gap width is 
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designed to be 3mm. However, it can be decreased to up to 0.5mm by translating the entire rotor towards 

the front bearing. For the current study it was set to 2.3mm. 

 

 

 

Figure 8: Detailed Views of Stator-Rotor Gap and Downstream Discrete Holes. 

 

 

 

The axial stator-rotor gap for the first stage was measured at 5mm. Similar to the optimization of the 

trailing edge slot ejection described in detail by Schobeiri [94] and Schobeiri and Pappu [95], the 

reduction of slot width is instrumental in establishing an optimum ejection ratio while keeping the cooling 

mass flow constant.  Figure 8 also shows the detailed view of the downstream discrete holes. Nine holes of 

Ø1mm were machined at complex angles (as shown in Table 2 on p. 86) mid-way through the blade 

passage to enable cooling in the endwall passage zone left uncovered by the upstream injection. A printed 

circuit board constant flux heater (Figure 9) designed to match the profile of the rotor blade passage was 
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also mounted on the first stage rotor platform for conducting heat transfer measurements. Due to design 

constraints, the heater element begins about 3mm downstream of the blade leading edge and extends 

downstream up to 70% of the suction surface. Though this heater set-up does not cover the entire platform 

of the blade passage, the effects of coolant ejection through upstream gap and downstream holes can be 

clearly seen and is found sufficient to quantify the effects of rotation on platform heat transfer. The 

downstream discrete holes are also machined on to the heater corresponding to the holes already on the 

rotor platform. The insert using which the heater is assembled on the rotor hub is shown in (Figure 10). 

Three thermocouples each are mounted near the leading edge and the trailing edge underneath the heater, 

the insulation and the metal insert to calculate heat loss due to conduction during heat transfer 

experiments. Other thermocouples located around the rotor passage monitor the mainstream and coolant 

temperatures. 

 

 

 

 Figure 9: Heater Element as Mounted on the Rotor Platform Blade Passage. 
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The blades attached to the new rotor were taken from the rotor described in [[1], [2], [3]] and also 

used in [[80], [84]]. They are typical HP-turbine blades used in steam turbines characterized by a relatively 

thick leading edge portion. This particular blade design allows reducing the total pressure losses due to the 

adverse off-design incidence changes caused by part-load operation. Thus, these blades are not 

characteristic of power generation or aircraft gas turbines. Although the blade geometry does not represent 

typical gas turbine blade geometry, it provides the basic features to extract information relevant to gas 

turbine design community. These features are (a) stator-rotor unsteady interaction, (b) blade and platform 

rotation and consequent exposure of the platform boundary layer to centrifugal and coriolis forces, and (c) 

the flow acceleration. Except for the last feature (c), none of the above features can be simulated in a 

cascade investigation. 

 

 

Figure 10: Insert Used to Mount Heater on the Rotor Platform. 
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To ensure that minimal coolant escapes through the rotary-stationary interfaces, the internal and 

external loops were sealed with labyrinths. The teeth spacing and the tip clearance were taken using the 

design instructions detailed by Schobeiri [7]. A 24-channel slip-ring is mounted to the rear of the shaft to 

transfer temperature data from thermocouples from the rotating frame to the data acquisition system and 

also to power the heater used for the heat transfer measurements. 
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4. EXPERIMENTAL PROCEDURE 

 

4.1 Aerodynamic Measurement Theory and Analysis 

Interstage aerodynamic measurements are performed along the first stage rotor exit, second stage 

stator exit and third stage rotor exit using miniature 5-hole probes. The circumferential and radial traverse 

facility enables comprehensive data acquisition at these locations. To reduce the error in measurements 

near the blade tip and hub where the flow is highly complex, additional stepper motor controls are 

provided to allow for accurate adjustment of the miniature 5-hole probes in line with the mainstream flow. 

Five hole probes are calibrated in order to be able to correlate the measured pressures with flow velocity 

and direction. The calibration is highly dependent on flow velocity and therefore the three probes to be 

used are calibrated at velocities similar to those encountered within the engine as seen from previous tests 

by [1]. As mentioned earlier, the probes are calibrated at Mach numbers of 0.1 and 0.3 in a calibration 

facility using a non-nulling technique. From this calibration data, five probe coefficients are calculated 

using the method suggested by Rubner and Bohn. These coefficients are then plotted against the probe 

pitch and yaw angles to obtain the following functions: 

 

α = f1 [(P3-P1)/(Pm-P)]         (1) 

 

γ = f2 [(P2-P4)/(Pm-P)]         (2) 

 

[(Pm-P)/(Pt-P)] = f3(α, γ)         (3) 

 

[(Pm-P3)/(Pt-P)] = f4(α, γ)         (4) 

 

[(Pm-P1)/(Pt-P)] = f5(α, γ)         (5) 
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The calibration of the 5 hole probe is complete once these functions relating the five probe pressures, 

the total and static pressures with the flow angles are determined. These calibration functions replace the 

previously employed calibration functions based on Morrison et al. [96] in the aerodynamic data analysis 

program of Schobeiri et al. [1]. An iterative procedure, assuming Pi = 0.8 Pm, is then used to determine the 

actual pressures and flow angles in the research turbine. Thus, by measuring the pressures within the 

turbine using a 5-hole Pitot probe, the unknown velocity field in machine coordinates can be determined 

using the calibration functions and the procedure described in [1], [2] and [93]. 

  

4.2 Film Cooling Effectiveness Measurement Theory and Data Analysis 

 Data for film cooling effectiveness was obtained by using the PSP technique. PSP is a photo-

luminescent material which emits light when excited, with emitted light intensity inversely proportional to 

the partial pressure of oxygen. This light intensity can be recorded using a CCD camera and can then be 

calibrated against the partial pressure of oxygen. Details of using PSP for pressure measurement are given 

in McLachlan and Bell [97]. The image intensity obtained from PSP by the camera during data acquisition 

is normalized with a reference image intensity taken under no-flow conditions. Background noise in the 

optical setup is removed by subtracting the image intensities with the image intensity obtained under no-

flow conditions without excitation. The resulting intensity ratio can be converted to pressure ratio using 

the previously determined calibration curve and can be expressed as: 
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where I denotes the intensity obtained for each pixel and f (Pratio) is the relation between intensity ratio and 

pressure ratio obtained after calibrating the PSP.  

 Calibration for PSP was performed using a vacuum chamber at several known pressures varying from 

0 to 1atm with intensity recorded for each pressure setting. The same optical setup was chosen for 

calibration as well as for data acquisition during the experiments. A schematic of the calibration setup is 

shown in Figure 11.   
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Figure 11: Typical Pressure Sensitive Paint Calibration Setup and Calibration Curve. 

(a) PSP Calibration Setup. 
(b) PSP Calibration Curve. 
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PSP is sensitive to temperature with higher temperatures resulting in lower emitted light intensities. 

Hence, the paint was also calibrated for temperature. It was observed that if the emitted light intensity at a 

certain temperature was normalized with the reference image intensity taken at the same temperature, the 

temperature sensitivity can be removed. Hence, during data acquisition, the reference image was acquired 

immediately after the experiment was completed to avoid errors related to temperature variation. 

Reference images were acquired after the rotor came to a halt and the temperature change from loaded to 

stationary condition was small enough to disregard its effect on PSP measurement. Flow and surface 

temperatures were monitored by a thermocouple placed 2mm above the surface close to the suction side 

and by another thermocouple placed underneath the platform surface respectively. The thermocouples 

were wired through a slip-ring and connected to a digital readout. To obtain film cooling 

effectiveness, air and nitrogen were used alternately as coolant. Nitrogen which can be assumed to have 

the same molecular weight as that of air displaces the oxygen molecules on the surface causing a change in 

the emitted light intensity from PSP. By noting the difference in partial pressure between the air and 

nitrogen injection cases, the film cooling effectiveness can be determined using the following equation. 
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where Cair, Cmix and CN2 are the oxygen concentrations of mainstream air, air/nitrogen mixture and 

nitrogen on the test surface respectively. The definition of adiabatic film cooling effectiveness is 
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The accuracy of the PSP technique for measuring film-cooling effectiveness has been compared by 

Wright et al. [92] on a flat plate with compound angled ejection holes using several measurement 

techniques such as steady and transient liquid crystal, IR camera and using a foil heater with 

thermocouples. Results were obtained for a range of blowing ratios and show consistency with each other. 

Wright et al. [92] found that IR, TSP as well as PSP gave effectiveness results within 15% of each other. 

Larger uncertainties for heat transfer techniques such as IR and TSP methods were observed due to lateral 

conduction in the flat plate. 

 

 

 

Figure 12: Optical Components Setup for the Model Turbine and PSP. 
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4.2.1 Data Acquisition Procedure for Film Cooling Effectiveness Measurements Using PSP 

Technique 

 The platform passage under investigation was layered with PSP using an air brush. This coated 

surface was excited using the strobe light fitted with a narrow bandpass interference filter with an optical 

wavelength of 520nm. Upon excitation from this green light, the PSP coated surface emitted red light with 

a wavelength higher than 600nm. A 12-bit scientific grade CCD camera (High speed Sensicam with CCD 

temperature maintained at –15
o
C using 2-stage Peltier cooler) was used to record images and was fitted 

with a 35mm lens and a 600nm longpass filter. The filters were chosen to prevent overlap between the 

wavelength ranges such that the camera blocked the reflected light from the illumination source and 

measured only the emitted light from the PSP. A schematic of the optical components setup used in data 

acquisition is depicted in Figure 12. The camera and the strobe light were triggered simultaneously by an 

optical sensor at a specific angular location on the shaft corresponding to the area of interest for every 

rotation. By detecting the same angular position, the camera was able to view the same region of interest 

every time, making it possible to average the image intensities without blurring the information. A 

minimum exposure time of 16µs was used for image capture from the camera. Estimated rotor movement 

during image capture at 2550rpm, for 16µs exposure time was 1.15mm. A total of 200 TIF images were 

captured for each experiment with air and nitrogen being injected separately and the pixel intensity 

recorded for both cases. A MATLAB
®
 code given in appendix D was used to average the images and 

convert the digital images into intensity values. A binning of 4 was used on the camera to provide 

optimum pixel resolution and sufficient emitted intensity by the PSP and TSP to acquire quality data. This 

corresponded to approximately 0.69mm per pixel on the rotor platform. Further, a FORTRAN code 

(Appendix D) was used to convert these pixel intensities into pressure using the calibration curve and then 

into film cooling effectiveness based on equation (7). The coolant flow rate was set using a rotameter 

based on prior calculation for the desired mass flow ratio. The coolant was heated to the same temperature 

as mainstream air (46
o
C) before injection through the coolant loops using external heaters. Uncertainty 
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calculations were performed for a confidence level of 95% and are based on the uncertainty analysis 

method of Coleman and Steele [56].  

 

4.3 Heat Transfer Coefficient Measurement Theory and Analysis 

Like PSP, temperature sensitive paint (TSP) is also comprised of luminescent molecules suspended in a 

polymer binder. However, the photophysical process associated with TSP is thermal quenching, rather 

than oxygen quenching. Unlike with PSP, the polymer binder is not oxygen permeable. Therefore, the 

luminescence intensity of the TSP is related only to temperature, and is not a function of pressure (unlike 

the reverse relationship observed with PSP). Like PSP, the luminescent molecules in the TSP must be 

excited with the absorption of a photon. The molecules return to their ground state with the emission of the 

photon at a longer wavelength. Increasing the temperature of the luminescent molecules triggers their 

return to ground state (releasing the photon through a radiationless process) [92]. Temperature of the 

surface on which it is coated determines the number of molecules returning to ground state causing 

variations in emitted light intensity at different temperatures. Therefore, the emission intensity from 

molecules at elevated temperatures is lower than the emission of molecules at relatively lower 

temperatures. This photophysical process wherein the luminescent molecules emit light based on the 

surrounding temperature is known as thermal quenching. 

Similar to the use of PSP, a data image, a reference image and a black image are acquired for the TSP 

measurements. Typically, the reference condition is set at the room temperature at which the experiments 

are performed. However, for cryogenic applications the reference temperature may be much lower. With 

the reference condition, and the black image used to eliminate the background noise from the optical 

components, the emission intensities are related to the surface temperature as shown in Equation 9. 

( )
( )

( )Tf
ITI

ITI

blkref

blk =
−

−
                                         (9) 

TSP is calibrated to determine the relationship between the emission intensity and the surface 

temperature. Calibration is performed using a heated copper block with a thermocouple attached to 
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monitor the specimen temperature. The copper block is coated with the TSP and positioned between the 

same excitation light and CCD camera used to acquire temperature data on the experimental facility. The 

paint is calibrated for a temperature range of 24ºC to 75ºC corresponding with the temperatures observed 

in the experimental facility and used for PSP experiments. Emission intensities are recorded (coupled with 

black images) at pre-determined temperatures and a correlation between intensity and temperature is 

identified. The TSP calibration curve is shown in appendix H along with the MATLAB
®
 program used for 

converting images into intensities. A simple EXCEL
®
 spreadsheet can be used to plot the calibration curve 

of intensities against temperature. 

 

4.3.1 Data Acquisition Procedure for Heat Transfer Measurements Using TSP Technique 

The experimental setup used for temperature measurements is similar to the one used for the PSP 

technique. For this study, TSP is used to measure the steady state surface temperature. The heater fixed to 

the platform, heats the rotor platform surface by supplying the surface with uniform heat flux. A digital 

power supply is used to supply power to the heater coils through the slip-ring. Care must be taken to 

ensure that the heater is powered up only when there is air flow over it. Supply power should not exceed 

the power rating of the heater which in this case was 16W. For acquiring temperature data, the filters on 

the camera are changed accordingly as recommended by the TSP supplier. For minimum error during 

temperature measurements using TSP, the temperature difference between the heater surface and 

mainstream flow was maintained between 10ºC to 20ºC. 

During the actual film cooling experiment with heated platform, three images are acquired: black 

image (no flow, no excitation light), reference image (no flow, with excitation light), and air image 

(mainstream and coolant flows, with excitation light). Similar set of pictures are taken again but with zero 

power supplied to the heater to determine the adiabatic wall temperatures under cooling. The reference 

image must be acquired at the same temperature of the reference image measured during calibration. With 

a temperature being recorded at every pixel in the viewing window, detailed distributions of the 

temperature and heat transfer coefficients can be obtained on the rotor platform. 
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As the film coolant mixes with the mainstream temperature variations are created on the platform. 

This variation is noted by the change in emitted intensity from the TSP by the high speed camera used for 

PSP measurements. Once again the coolant and the mainstream flow temperatures are maintained the 

same using upstream heaters. From the measured platform surface temperatures, adiabatic wall 

temperatures and power input to the heater, the heat transfer coefficient on the platform can be determined 

from Equation 10. 
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where T is the platform surface temperature and Taw is adiabatic wall temperature, both obtained from TSP 

measurements. Q”in is the heat flux provided by the heater element. Q” losses to the surroundings and is 

defined as: 

Q”loss = Q”rad + Q”cond                                   (11)  

where Q”loss is the heat loss due to conduction through the insulation and the stainless steel insert and Q”rad 

is the radiation heat flux emitted from the endwall surface. Q”cond is the heat flux lost through conduction. 

Q”in, Q”cond and Q”rad are defined as follows:                                             

  

 Q”in = (Iheater
2
*R) / (Aheater)                               (12)   

 

Q”rad = εσ (T
4
-T∞

4
)                         (13)  

 

Q”cond = K (T-Tinsulation)                              (14) 

where, R is the resistance of the heater coil (R=1.4 Ω) and Iheater (~2.4 Amps) is the current passing through 

it. Aheater is the total surface area of the flow passage on the platform between two adjacent rotor blades. 

For the radiation term, ε is the emissivity of the TSP (provided by the manufacturer as 0.50) and σ is the 

Stefan-Boltzmann constant. Conduction effects from the heater to its mount are minimal as the mount is 



 39 

made of bakelite which has a very low thermal conductivity. Data acquisition and calibration for TSP is 

similar to PSP except that the filter on the camera is changed to a 570nm long pass filter. For TSP as the 

light intensity emitted by the paint on excitation is higher than TSP, the exposure time of the camera was 

decreased (to 10µs) to eliminate any possible blurring of image in that small time period. The rotor spins 

about 0.75mm in that time span of camera exposure. The binning on the camera was again set to 4 bits. 
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5. RESULTS AND DISCUSSION 

 

 

Figure 13: Film Cooling Effectiveness Distribution on the Rotating Endwall for 2550rpm. 
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two coolant flows to be controlled independently: ejection flow and film cooling flow. Figure 8 shows 

detailed views of the modified rotor platform. The turbine housing was also modified to include an optical 

window for data acquisition on the rotor platform. As described previously, both an excitation light and 

camera are needed to capture images of the area of interest using pressure and temperature sensitive 

paints. For every blowing ratio, an image of the platform was collected with air as coolant and also 
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concluded and the film cooling effectiveness calculated after processing the data through the MATLAB
®
 

and FORTRAN programs provided in appendix D. 

  

5.1.1 Film Cooling Effectiveness from Upstream Slot Injection 

5.1.1.1 Upstream Injection at Reference Rotating Condition 

 Film cooling effectiveness measurements were performed for four coolant-to-mainstream mass flow 

ratios of 0.5%, 1.0%, 1.5% and 2.0%. Film cooling data was also obtained for three rotational speeds, 

2550rpm (reference condition), 3000 and 2400rpm. Total mass flow in the engine was 3.73 kg/s and was 

ensured to be the same for all three rotor speeds by adjusting the blower frequency through the frequency 

controller. Blowing ratios for each rotating speed differ slightly as the relative mainstream velocity at the 

rotor inlet changes with the rotating speed.  

 Variation of rotational speed performed in the [42, 43] showed that the location of the leading edge 

stagnation line, which yielded symmetric spreading of coolant on the suction and pressure surfaces of the 

leading edge was at an rpm of 2550. This rotational speed was chosen as the reference rotating condition 

for the current investigation. The effectiveness results obtained with PSP measurements for the reference 

rotating condition of 2550rpm are plotted in Figure 13. The figure shows the contour plots for all four 

mass flow ratios tested. The contour plots also show the location of the stator-rotor slot upstream of the 

passage and the path of the mainstream and coolant flow. The effectiveness in the slot, as the coolant 

escapes through it, could not be recorded completely as the plexiglass window through which the rotor 

platform is observer is not wide enough.   

 Higher mass flow ratios result in coolant injection with higher momentum. As this momentum 

increases, it can be observed that the spread of the coolant as well as the effectiveness magnitudes are 

higher. The injected coolant is at the same density as the mainstream i.e. the coolant to mainstream density 

ratio is one. Hence, the injected coolant velocity is higher for higher mass flow ratios. At lower blowing 

ratios, the low momentum coolant is not capable of penetrating into the highly vortical secondary flow 

region on hub platform. It mixes with the main flow where its kinetic energy dissipates, making only a 
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marginal contribution to effectiveness improvement. For the lowest mass flow ratio (MFR = 0.5%), the 

maximum effectiveness magnitude is less than 0.2. 

 As the mass flow ratio increases, the coolant injection velocity increases due to which the coolant can 

penetrate the complex secondary flows in the passage resulting in higher effectiveness on the platform. For 

the highest mass flow ratio of 2%, a region of high effectiveness can be observed near the entrance of the 

blade passage. The effectiveness from the gap to the beginning of this high effectiveness region is slightly 

lower. This indicates that the coolant probably detaches itself from the surface as it exits from the gap and 

then reattaches as it is pushed by the mainstream towards the surface which is marked by the high 

effectiveness spot (at around 15% of axial chord). Effectiveness magnitudes as high as 0.6 can be observed 

near this reattachment spot. Smaller reattachment spots can be observed for MFR = 1.5% too. Thus, as the 

mass flow ratio increases, the effectiveness magnitude and its spread become larger. The same 

phenomenon has been recorded by several researchers mentioned earlier with studies for slot film cooling 

on stationary, flat as well as curved platforms. Common to all blowing ratios investigated is that the 

suction surface is the location of inception of the effectiveness. Major parameters instrumental in making 

the suction surface the inception location are: (a) the platform secondary flow, (b) the Coanda effect that 

helps the injected coolant attach on the suction surface and (c) the coolant injection angle.  

 The coolant distribution on the platform is predominantly governed by its flow characteristics. A 

strong pressure gradient exists within the passage from the pressure to the suction side with the static 

pressure near the pressure side being much higher due to lower mainstream velocities and blade curvature. 

The coolant traces show slightly higher effectiveness magnitudes towards the suction side near the leading 

edge. More coolant gets diverted away from the higher pressure stagnation region on the leading edge of 

the blade and finds its way towards the suction side. Effectiveness magnitudes on the pressure side begin 

to fade away rapidly as the coolant travels along the axial chord. As the passage vortex moves towards the 

suction side while gaining strength, it entrains the mainstream on the platform surface damaging the 

coolant film which results in a sharp drop in effectiveness magnitudes. This sudden drop gives a good 

indication of the path traced by the passage vortex. Similar coolant spread profiles affected by secondary 
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flows can be observed for stationary platform cooling through slots akin to the current design in turbine as 

well as vane cascades in the tests conducted by Blair [20].  

 

 

 

 

Figure 14: Velocity Triangles and Relative Inlet and Exit Flow Angles for Design and Off-Design 

Rotating Speeds. 
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Figure 15: Numerical Prediction of Endwall Static Pressure Distribution (kPa) along with Flow 

Pathlines, ([100] and [101] ). 

 

 

 

5.1.1.2 Upstream Injection at Off-Reference Rotating Conditions 

 At rotational speeds lower than the reference speed, the blade flow deflection becomes larger leading 

to higher specific stage load coefficient and the stagnation region moves towards the pressure side as the 

flow incidence angle increases as sketched in Figure 14. At progressively lower rotating speeds, the 

stagnation line will further move towards the blade pressure side resulting in a higher pressure zone owing 

to higher flow deflection. The pressure gradient on the platform from the pressure to the suction side gets 
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affected by this shift in the stagnation region due to larger flow incidence angles. Figure 15 shows the 

numerical predictions of local static pressures on the platform surface with flow pathlines for 2550rpm and 

2100rpm. These numerical predictions were performed using the CFD code, FLUENT for the same 

geometry and flow conditions. About 1.1 million cells were used to grid 1.5 stages of the turbine. A 

sliding mesh was used to simulate rotation. A Reynolds stress model with a non-equilibrium wall function 

was used to solve the Reynolds Averaged Navier-Stokes equations. From the figure, the movement of the 

stagnation region towards the pressure side for lower rotational speed can be easily discerned. Lower 

pressure at lower rotating speeds can be observed near the suction side.  Figure 15 also shows the 

mainstream pathlines near the platform surface. The pathlines for 2100rpm appear to converge together as 

the flow gets pushed to the suction side.  

 

 

 

 
Figure 16: Film Cooling Effectiveness Distribution on the Rotating Endwall for 2400rpm. 

 

 

 

 The larger gradients in the platform static pressure distribution for lower rotating speeds cause 

significant movement of the coolant film on the platform surface when it comes from the stator-rotor gap. 

The local mass flow of coolant from stator-rotor gap depends on the pressure difference between the 
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plenum and the mainstream static pressure. A higher pressure region near the blade pressure side close to 

the leading edge at lower rotating speeds will result in a smaller pressure difference across the as 

compared to reference condition. This will promote non-uniform coolant distribution from the stator-rotor 

gap with the coolant traces re-orienting themselves towards the suction side of the platform. This 

phenomenon can be clearly observed from data taken for 2400rpm as shown in Figure 16. Both figures 

include contour plots for 4 different mass flow ratios. More coolant appears to come out from near the 

suction side of the platform where the pressure difference across the platform from inlet to outlet is larger 

with the 2400rpm showing large non-uniformity. Thus, the coolant film distribution and hence film 

cooling effectiveness strongly depends on the pressure distribution on the platform surface. As the 

blowing ratio increases, the traces get stronger due to the increase in the coolant momentum.  

 

  

 
Figure 17: Film Cooling Effectiveness Distribution on the Rotating Endwall for 3000rpm. 
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angle at lower rpm. Very low effectiveness levels can be discerned for the lowest blowing ratio, MFR = 

0.5% for 2400rpm as compared to other rpm’s. Coolant traces can only be observed locally near the 

MFR = 2.0%MFR = 0.5% MFR = 1.0% MFR = 1.5%

M = 0.116 M = 0.232 M = 0.348 M = 0.468

PS

SS

PS

SS

PS

SS

PS

SS

MFR = 2.0%MFR = 0.5% MFR = 1.0% MFR = 1.5%

M = 0.116 M = 0.232 M = 0.348 M = 0.468

PS

SS

PS

SS

PS

SS

PS

SS



 47 

suction side of the blade. The coolant spread for MFR = 2.0% is appreciably larger and some reattachment 

of coolant can also be observed for 2400rpm similar to that observed for 2550rpm. Effectiveness traces on 

the suction side though are more visible than that for 2550rpm. Some coolant traces can even be observed 

close to the trailing edge near the suction side for higher mass flow ratios. For both reference and lower 

rotating speeds, the region downstream of the throat remains uncooled. Weak traces can be observed in 

this region for 2550rpm for MFR = 2.0% near the throat. This region experiences much higher velocities 

from the accelerating mainstream flow resulting in high local heat transfer coefficients. The secondary 

flow vortices in the passage erode the coolant film before it reaches the throat.  

 

Figure 18: Pitchwise Averaged Film Cooling Effectiveness Distribution along Axial Chord for 

Different MFR (Mass Flow Ratio Effect). 
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 Figure 17 shows the measured film cooling effectiveness on the rotating platform operating at 

3000rpm. Although the film cooling effectiveness measured at 3000rpm varies from that measured at 

2550rpm, the variation is less for the higher rotational speed than the lower rotational speeds. Increasing 

the coolant flow rate increases the coolant coverage area on the rotating platform. As the flow rate 

increases to 2%, the coolant covers almost the entire passage; whereas at the other rotational speeds, the 

pressure side of the passage and the trailing edge region were left unprotected. 

 

5.1.1.3 Different Turbine Rotating Speeds (Mass Flow Ratio Effect) 

In addition to the effect on static pressure distribution and film cooling due to inlet flow incidence 

angle change with rotational speed, rotation may also affect the coolant flow as it exits the stator-rotor gap. 

The disk cavity is bound by two walls, stator endwall and the rotor platform. The enclosed coolant mass in 

the disk cavity will rotate with a certain frequency due to the cavity wall shear stress. High shear stresses, 

caused by relative motion in the circumferential gap, may introduce some swirl in the coolant flow as it 

exits. Hence, a tangential component may exist in the coolant flow as it exits the stator-rotor slot. This 

may cause some additional spreading of the coolant which cannot be achieved for film cooling studies in 

stationary cascades. This might also explain the larger coolant spread with increasing rotational speeds due 

to a larger tangential velocity component in the coolant as it exits the slot. The determination of the swirl 

angle as well as the measurement of this tangential velocity component was not the subject of the current 

investigation. However, these are items of high importance along with the inter-stage measurements.  

 

5.1.1.4 Pitchwise Averaged Film Cooling Effectiveness with Upstream Injection 

 The film cooling effectiveness results were averaged along the pitchwise direction and the averaged 

data for all coolant-to-mainstream mass flow ratios and rotational speeds are presented in Figure 18 along 

the axial chord. For a given rotor speed, increase in effectiveness magnitudes with increasing mass flow 

ratio can be clearly observed from this plot. The averaged plots show a sharp decrease in effectiveness 
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magnitude along the axial chord as indicated earlier with the region beyond x/Cx = 0.6 remaining mostly 

uncooled with mean effectiveness magnitudes below 0.1. The spikes occurring as a result of coolant jet 

reattachment at MFR = 2.0% for 2550rpm, 2000rpm, and 3000rpm can also be observed. The decrease in 

effectiveness with lower rotational speeds can also be discerned.  

 

 

 

Figure 19: Pitchwise Averaged Film Cooling Effectiveness Distribution along Axial Chord for 

Different Mass Flow Ratios (Turbine Rotation Effect). 
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Figure 19 shows the same pitchwise averaged film cooling effectiveness results plotted for the four 

different coolant-to-mainstream mass flow ratios. The impact of turbine rotational speeds on film cooling 

effectiveness can be clearly perceived from this plot. As rpm increases, the effectiveness magnitudes 

increase for the same mass flow ratio. Figure 20 shows the average film cooling effectiveness plotted with 

x/MS as the abscissa.  The figure compares the data with a correlation from Goldstein [98] for an 

equivalent two-dimensional slot on a flat stationary surface as given in Eq. 15. 

     ( )( ) 18.0
249.01

−
⋅+= SMx gapη                                                                                                    (15) 

 

 

 

 
Figure 20: Comparison of Pitchwise Average Effectiveness with a Correlation from Goldstein [40] 

for Different Speeds. 

 

 

 

 This correlation works well for x/MS > 10, where the flow regime is more two-dimensional. For x/MS 

< 10, the 3-dimensional flow regime due to mixing of the coolant jet with mainstream results in lower 

effectiveness than that predicted by the correlation. When compared to current data, for reference rotating 

condition, it shows relatively good comparison with the correlation at x/MS = 10 but decays rapidly due to 

the destructive action of the passage vortex on the coolant film. For lower rotating speeds than reference, 

more non-uniform pitchwise effectiveness distribution lowers the average effectiveness value with the data 

for 2400rpm showing the largest deviation from the correlation. The results of these experiments were 
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published in Suryanarayanan et al [99] and the equivalent numerical prediction was performed by Yang et 

al [100]. 

 

5.1.2 Film Cooling Effectiveness from Discrete Film Cooling Holes 

As shown from the previous experiments, the coolant from the stator-rotor seal can adequately protect 

the upstream half of the blade platform. However, much of the pressure side of the passage, as well as the 

downstream half of the platform is unprotected and thus left exposed to the hot mainstream gas. Taking 

this into account, nine discrete holes were machined onto the rotating platform, as shown in Figure 8. The 

film cooling effectiveness can be measured on the rotating platform with PSP. The blowing ratio for the 

coolant through the discrete film hole is varied from Mholes = 0.5 – 2.0 at intervals of 0.25, based on the 

relative velocity of the mainstream flow at the rotor exit (station 3). In addition, the rotational speed of the 

turbine is varied to investigate the effect of rotation at reference and off-reference conditions over a range 

of blowing ratios. For this set of experiments, the upstream slot coolant injection is completely shut-off 

and effectiveness is measured on the platform with coolant flowing through only the discrete film cooling 

holes.  
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Figure 21: Film Cooling Effectiveness Distribution from Downstream, Discrete Film Cooling Holes 

on the Rotating Endwall for 2550rpm.  
 

 

 

This section presents the results obtained from the film cooling experiments performed on the first 

stage rotor platform for downstream discrete hole coolant injection. Experiments were conducted at three 

rotational speeds, 2400rpm, 2550rpm and 3000rpm, with the average film hole blowing ratios of 

Mholes=0.5, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00. The Reynolds number based on the rotor axial chord 

length and the exit velocity was around 200,000 and the pressure ratio was 1.12 for the first stage. The 

rotation numbers corresponding to 3000rpm, 2550rpm and 2400rpm are 0.23, 0.19 and 0.18 respectively. 

Film cooling effectiveness was calculated by applying the calibration curves to the intensity fluctuation 

captured by the camera between air and nitrogen injection. Overall it is found that film cooling 
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effectiveness is maximum as we approach an approximate average blowing ratio of Mholes=1.00 for all 

three rotational speeds. The reference rotational speed of 2550rpm has the maximum effectiveness 

amongst all rotational speeds for all blowing ratios. Platform cooling using simultaneous upstream slot and 

downstream discrete hole injection yielded results similar to the individual blowing cases with little to no 

effects due to synchronized coolant ejection for MFR=1% and Mholes=0.75, 1.00 and 1.25.  

 

5.1.2.1 Reference Rotating Case 

Film cooling results on the effects of rotational speed performed Ahn (42, 43) showed that the 

location of the leading edge stagnation line, which yielded symmetric spreading of coolant on the suction 

and pressure surfaces of the leading edge was at a rotational speed of 2550. This rotational speed was 

chosen as the reference rotating condition for the current investigation. Figure 21 shows film cooling 

effectiveness on the rotor platform for downstream hole film cooling for the reference speed, 2550rpm, 

and all the blowing ratios. As expected film cooling effectiveness is maximum near the coolant hole exit. 

As we proceed downstream of the holes, effectiveness magnitude diminishes as the coolant mixes with the 

mainstream flow. Peak effectiveness values occur as we approach Mholes=1 and is approximately equal to 

η=0.70 exactly where the coolant ejects out of the holes. Effectiveness values and film distribution begin 

to decrease below and above Mholes=0.75 and 1.25 respectively. Mholes in this range provide good film 

cooling protection on the platform covering most of the downstream passage surface. The contribution of 

each hole towards effective film coverage also varies depending on its location on the platform surface.  

Since coolant density is assumed to be the same as that of the mainstream, Mholes is dependent only on 

the exit velocity of the coolant gas. For Mholes=1.00, the velocity of the coolant ejecting out of the 

individual holes is approximately the same as that of the mainstream relative velocity at the first stage 

rotor exit. As the coolant flow velocity approaches the mainstream relative velocity, it appears that the 

ejected coolant has just the right momentum to adhere to the platform surface displacing the mainstream 

boundary layer and minimizing the effects of the secondary flows. This allows the coolant to provide 

better film coverage and higher effectiveness magnitudes as minimal coolant is dissipated into the 
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mainstream flow before providing any protection. At Mholes lower than 0.75, the coolant quantity for film 

cooling is small and is incapable of providing any effective protection on the platform surface. The lower 

momentum prevents the coolant from penetrating the boundary layer on the platform surface, hindering 

the development of an effective thermal barrier. The low momentum coolant tends to get carried away by 

the higher momentum mainstream flow decreasing the effectiveness. On the contrary, the ejected coolant 

for Mholes higher than 1.25, possess larger momentum and have a tendency to lift-off as they leave the 

coolant holes. The high velocity coolant merges with the mainstream immediately having little time to 

shield the platform surface. This effect of coolant mass on film effectiveness is similar to that seen by 

Zhang and Jaiswal [51] with their experiments on a linear cascade. 

 

Figure 22: Film Cooling Effectiveness Distribution from Downstream, Discrete Film Cooling Holes 

on the Rotating Endwall for 2400rpm.  
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The coolant distribution on the platform is predominantly governed by the mainstream and secondary 

flow characteristics. The secondary flow generated by the pressure differential between neighbouring 

blades influence the behaviour of coolant gas in their path and significantly affects the capability of the 

coolant to offer uniform thermal protection. The coolant under the effects of the secondary flow is drawn 

towards the suction surface leading to better protection near the suction surface. This movement of the 

coolant to the suction side under the influence of the platform secondary flow has also been documented 

by researchers experimenting with cascades. The higher tangential velocity of the coolant jet under 

rotation also increases the migration of the coolant from the pressure side to the suction side on the 

platform. Interestingly, the holes 1 and 4 (Figure 8) show lower effectiveness and coolant coverage 

compared to the other holes. It is believed that these two holes lie in the path of the passage vortex and 

hence the coolant ejected through them is immediately dissipated into the mainstream. It can be deduced 

that providing protection closer to the suction surface is relatively easier due to the tendency of the coolant 

to flow towards the suction surface.  

 

5.1.2.2 Effect of Rotation on Film Cooling 

At rotational speeds lower than the reference speed, the blade flow deflection becomes larger leading 

to higher specific stage load coefficient and the stagnation region moves towards the pressure side as the 

flow incidence angle increases as sketched in Figure 14. Similarly, higher rotational speeds lead to 

negative incidence angle and cause the stagnation region to move towards the suction side. The pressure 

gradient on the platform across the pressure and suction side is affected by the change of the incidence 

angle based on the rotational speed change. This will alter the location of formation and the strength of the 

passage vortex and other secondary vortice which affect platform film cooling. Figure 22 and Figure 23 

show the film cooling effectiveness distribution for off-reference rotational speeds of 2400rpm and 

3000rpm. The figures contain contour plots for all the blowing ratios with the arrows depicting the 

geometric orientation of the coolant holes on the platform. Under no mainstream flow, the coolant exiting 

the holes is assumed to follow the arrow direction.  
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Figure 23: Film Cooling Effectiveness Distribution from Downstream Discrete Film Cooling Holes 

on the Rotating Endwall for 3000rpm.  

 

 

 

Overall, it is seen that the effectiveness values for off-reference speeds are lower when compared to 

the reference speed. Reference speed of 2550rpm has larger areas of the platform with higher film cooling 

effectiveness though the peak effectiveness lies in the same range as the off-reference speeds. Blowing 

ratios below 0.75 and above 1.25 provide minimal protection to the platform surface irrespective of the 

rotational speeds. The coolant traces once again follow the cross flow from the pressure side to the suction 

side.  
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Maximum effectiveness for 2400rpm occurs between Mholes=1.00 and 1.25 and for 3000rpm it is 

between Mholes=0.75 and 1.00. The effectiveness magnitudes for both cases show a peak value of 

approximately η=0.70 close to the coolant hole exit. Varying the rotational speed over or under the 

reference speed affects the coolant distribution on the platform surface with the higher rotational speed 

showing the lowest coolant coverage. At rotational speeds lower than the reference speed and for same 

blowing ratio, the coolant mass ejected through the holes is smaller and hence has a lower relative velocity 

than the reference case. Similarly at higher rotational speeds the coolant ejecting out of the holes has a 

higher relative velocity due to the higher coolant mass necessary to maintain the same blowing ratio. This 

causes the Mholes =1.00 and 1.25 (higher coolant flow mass) to have a better effectiveness at 2400rpm than 

the lower blowing ratios while at 2550rpm and 3000rpm, the best film protection is between Mholes =0.75 

and 1.00 which has the ejected coolant mass comparable to Mholes =1.00 and 1.25 at 2400rpm.  

 

 

Figure 24: Pitchwise Averaged Film Cooling Effectiveness Distribution along Axial Chord for 

Different Turbine Rotating Speeds (Mass Flow Ratio Effect). 
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Figure 25: Pitchwise Averaged Film Cooling Effectiveness Distribution along Axial Chord for 

Different Hole Blowing Ratios (Rotation Effect). 
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velocity and hence the coolant mass effectively suppress the effects of the secondary flow leading to better 

coolant distribution on the platform surface. Increase in rotational speed causes the coolant exit velocity to 

increase for the same blowing ratio. To quantify the effects of rotation on film cooling effectiveness, the 

pitchwise averaged film cooling effectiveness was plotted along the axial chord for different rotational 

speeds but same blowing ratio (Figure 25). It is obvious from the plot that for the same blowing ratio, film 

cooling effectiveness is maximum for the reference speed of 2550rpm. The effectiveness magnitudes 

decrease on either side of the reference speed with 2400rpm having slightly higher values than 3000rpm as 

the flow conditions prevailing on the platform for 2400rpm are much closer to the reference speed. 

 

 

Figure 26: Film Cooling Effectiveness for Combined Stator-Rotor Gap and Hole Coolant Injection, 

2400rpm. 
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 A combined platform cooling case involving coolant ejection through upstream stator-rotor annular 

slot presented in a recent study by Suryanarayanan et al. [99] and downstream discrete holes was 
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cooling under rotation. 
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Figure 27: Film Cooling Effectiveness for Combined Stator-Rotor Gap and Hole Coolant Injection, 

2550rpm. 

Figure 28: Film Cooling Effectiveness for Combined Stator-Rotor Gap and Hole Coolant Injection, 

3000rpm. 
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was acquired using PSP technique with coolant supplied simultaneously through both the loops. 

Temperatures of both the coolant loops were maintained the same as the mainstream flow to eliminate any 

temperature effects. Figure 26, Figure 27 and Figure 28 show the film cooling effectiveness for the 

combined coolant ejection case for all three turbine rotational speeds. Red and blue arrows depict the 

mainstream and stator-rotor gap coolant flow respectively. The figures also show the relative location of 

the stator-rotor upstream gap with respect to the blade leading edge. The coolant supplied through the 

stator-rotor gap as expected provides fairly good coverage in the upstream region though the distribution 

in the pitchwise direction is not uniform near the blade leading edge. Coolant concentration near the 

suction side (SS) is greater than near the pressure side (PS) for all rotational speeds. The pressure gradient 

that persists between the pressure and suction surface of the blade tends to draw most of the coolant 

towards the suction side. At 2400rpm, a strong vortex on the platform near the leading edge pressure side 

depletes any coolant supplied in this region and leads to lower effectiveness magnitudes. As the rotational 

speed is increased, the position of stagnation point on the leading edge changes. This movement of the 

stagnation point from the pressure surface leading edge for the lower rotational speed to the suction 

surface for the higher rpm’s causes the pressure gradient (∆P/∆S) across the platform between the suction 

side and the pressure side to decrease leading to a much more uniform static pressure distribution on the 

platform surface. This reduction in the spanwise pressure gradient reduces the strength of the horse shoe 

vortex and allows for the spreading of the purge flow coolant on the platform surface leading to higher 

effectiveness. 

 Also, the coolant exiting the gap, as it travels from the disk cavity into the rotating frame, undergoes a 

swirl due to the high shear associated with relative motion in the circumferential gap. This might cause 

some further spreading of the coolant on the platform surface for the higher rotor speeds. A little 

downstream of the leading edge near the pressure surface on the platform, the effect of upstream coolant 

ejection is drastically reduced as the passage vortex detaches from the pressure side and travels across the 

platform to merge with the suction side horse shoe vortex, diminishing the coolant coverage on the 

platform surface closer to the blade pressure side. These results are comparable to that obtained for the 

individual rotor frequencies discussed earlier at the same MFR. The downstream hole blowing follows the 
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trend seen in individual hole blowing cases discussed earlier. Reference rotation speed has the best spread 

and effectiveness magnitudes. Pitchwise averaged film cooling effectiveness for the combined case is as 

shown in Figure 29. The results for the combined case reflects data for the individual blowing cases put 

together and gives a comprehensive view of the appropriate upstream slot blowing MFR, average hole 

blowing ratio and location of the coolant holes to provide appropriate coolant coverage for each rotational 

speed. The zero in the axial chord direction for the combined case corresponds to an x/Cx=0.18 to 0.2 in 

the experiments with just the upstream gap injection. This was done due to geometric constraints on the 

data acquisition plexiglass window while attempting to capture both upstream and downstream effects 

simultaneously. 
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Figure 29: Pitchwise Averaged Film Cooling Effectiveness for Combined Upstream Slot and 

Downstream Discrete Hole Injection. 
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Figure 30: Heat Transfer Coefficient Distribution from Upstream Stator-Rotor Gap Coolant 

Injection on the Rotating Endwall for 2550rpm. 
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temperatures facilitates acquisition of high resolution data and there and provides an accurate picture of 

the coolant flow and its interaction with the mainstream flow under centrifugal and coriolis forces.  

 

5.2.1 Heat Transfer from Upstream Slot Cooling 

5.2.1.1 Upstream Injection at Reference Rotating Condition 

Figure 30 shows the heat transfer coefficient distribution on the rotor platform for at the reference 

rotor frequency of 2550rpm and coolant to mainstream mass flow ratios of 0%, 0.5%, 1.0%, 1.5% and 

2.0%.  In general it is seen that increasing the coolant to mainstream mass flow ratio increases the heat 

transfer on the rotor platform. The distribution of the heat transfer coefficients along the rotor platform is 

similar to that seen in stationary cascades. The suction side has a higher flow velocity and hence, higher 

rate of heat transfer in the region close to the leading edge. The passage mid-section experiences the least 

heat transfer and is represented by the smaller heat transfer coefficient values. As we proceed towards the 

trailing edge, the flow accelerates and the heat transfer coefficients increase in magnitude. Also, the rate of 

heat transfer is amplified by the presence of holes intended for future heat transfer measurements with 

discrete hole coolant injection. The holes act as hurdles to the flow and cause additional turbulence and 

enhance heat transfer.  

MFR=0% is the reference case where the heat transfer coefficients on the platform are determined 

with just the mainstream flow. Close to the blade leading edge the heat transfer coefficient is 

approximately uniform across the platform though a small region near the leading edge on the suction 

surface shows a higher rate of heat transfer compared to the pressure side. The magnitude of heat transfer 

coefficient varies between 500 to 700 W/m
2
-K in the entrance region as will be later evidenced more 

clearly in the chordwise averaged plot. The higher magnitude of ‘h’ near the passage inlet is due to a 

combination of factors like the rotation leading to differential pressures on the platform and coolant 

injection. The scale of 200-500 W/m
2
-K is used to provide a platform for comparison with off-design rotor 

frequency. A region of low heat transfer coefficient (in the range of 200-300 W/m
2
-K) is seen to exist just 

near the blade mid-section. Once the coolant injection is started, the heat transfer rate near the leading 
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edge and across the platform increases. Injection of the coolant increases the momentum of flow close to 

the platform and the ensuing higher turbulence causes the rise in heat transfer rates. As evidenced from 

previous film cooling effectiveness measurements for gap injection, the coverage of coolant on the 

platform is seen to increase with increase in coolant mass. This coolant coverage on the platform causes a 

mixing of the flow in the boundary layer region over a larger area. As a result the heat transfer rates near 

the platform mid-section is also higher than the reference MFR=0.0% case. At lower MFR, the coolant 

does not possess sufficient velocity and hence, the momentum necessary to disrupt the existing boundary 

layer. The turbulence levels are therefore smaller leading to lower heat transfer rates and smaller area of 

influence. At MFR=2%, the effects of coolant are observed further downstream of the leading edge 

manifesting as increase in heat transfer coefficients. This distribution matches with the coolant distribution 

seen in the film cooling effectiveness measurements where increase in MFR resulted in more of the 

platform coming under the coolants protection. Increasing the coolant mass provides better film cooling 

effectiveness but also increases ‘h’. An informed decision should be made by the designer to balance film 

protection and coolant usage to minimize efficiency losses and at the same time provide optimum 

protection. 

 

5.2.1.2 Upstream Injection at Off-Reference Rotating Condition 

At frequencies lower than the reference speed, the flow angles of the mainstream flow are 

significantly different than the same for reference speeds causing the movement of the stagnation point on 

the blade leading edge more towards the pressure side (Figure 14). The suction surface pressures decrease 

further and the pressure differential between the pressure side and the suction side increases. The higher 

static pressures near the pressure surface leads to uneven coolant coverage of the platform with more of 

the coolant being oriented towards the low pressure area near the suction side as compared to that seen for 

the reference speed. Hence, the ‘h’ magnitudes in the leading edge suction surface are lower than at 

reference speed. At a lower rotational frequency, the coolant film has lower total energy and is unable to 

disturb the boundary layer. Figure 31 shows the heat transfer coefficient distribution on the rotor platform 
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for the off reference rotor frequency of 2400rpm and MFR between 0% and 2%. The heat transfer 

coefficient distribution for 2400rpm is similar to 2550rpm except that the magnitudes are lower and the 

effect of coolant on the platform surface is also restricted in the chordwise direction. For both the speeds, 

the platform region beyond 50% of the blade chordwise length show little to no effect due to upstream 

coolant injection. Regions of discontinuity observed beyond the passage mid-section are due to the 

presence of coolant holes and the turbulence they add to the mainstream flow. 
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Figure 31: Heat Transfer Coefficient Distribution from Upstream Stator-Rotor Gap Coolant 

Injection on the Rotating Endwall for 2400rpm.  

 

 

5.2.1.3 Pitchwise Averaged Heat Transfer Coefficients with Upstream Injection 

To understand the effects of MFR on platform heat transfer, the heat transfer coefficients were 

averaged along the pitchwise direction for each of the coolant mass flow ratios and plotted as shown in 

Figure 32. Increase in MFR leads to higher heat transfer coefficients for both the reference and off 
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reference rotor frequencies. Maximum heat transfer is seen to occur very close to the leading edge which 

in turn is near the coolant injection slot. A 20-25% increase in heat transfer is observed by increasing the 

MFR from 0% to 2%. As we proceed from the leading edge to the trailing edge, a sharp drop in heat 

transfer coefficient is seen for all MFRs as the coolant begins to dissipate into the mainstream at about 35-

40% in the chordwise direction and only a small change in ‘h’ is seen beyond this fall. As we approach the 

throat region the mainstream flow is accelerated and ‘h’ increases and is accentuated by the disturbance 

the coolant holes cause to the mainstream flow, though in this region the ‘h’ values remain almost the 

same for all the MFR indicating that the upstream coolant injection for MFR=0.5% to 2.0% has little to no 

effect here. 

 

 

Figure 32: Pitchwise Averaged Heat Transfer Coefficient Distribution along Axial Chord for 

Different Turbine Rotating Speeds (Mass Flow Ratio Effect). 

 

 

 

Figure 33 shows the effects of rotation on the pitchwise averaged heat transfer coefficients for MFR 

between 0% and 2.00%. The higher momentum of the mainstream flow combined with that of the coolant 

at the higher rotational frequency enhances the heat transfer on the platform for coolant all mass flow 
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rates. Thus it can be deduced that increasing the rotor speed has an amplifying effect on the platform heat 

transfer.  
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Figure 33: Pitchwise Averaged Heat Transfer Coefficient Distribution along Axial Chord for 

Different Mass Flow Ratios (Rotation Effect). 
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Comparing the experimental (Suryanarayanan et al [99]) and the numerically predicted (Yang et al 

[101]) heat transfer results, it is observed that the magnitude of the heat transfer coefficient is lower in the 

predictions. On the contrary for the similar case, the effectiveness is higher for the predicted results. It can 

be deduced that in the experimental case the injected coolant mixes more rapidly with the mainstream flow 

than in the predictions; thereby, decreasing the effectiveness magnitudes and increasing mixing leading to 

higher heat transfer coefficients. Further, it is also noted that any increase in rotational frequency appears 

to decrease the heat transfer coefficient distribution on the rotor platform in the predicted results as against 

an increase seen in the experimental data. 

 

5.2.2 Heat Transfer due to Downstream Hole Cooling 

Heat transfer measurements were also performed for downstream discrete hole coolant ejection on the 

rotor platform surface for 2400rpm and 2550rpm and average blowing ratios of M=0.75, 1.00 and 1.25 as 

the film cooling effectiveness was found to be optimum for these blowing ratios. Heat losses are 

calculated using the thermocouples placed underneath the heater and insert at different locations along the 

leading and trailing edges. Since, the temperature differential between the thermocouples between the 

heater and insulation in the leading and trailing edge varied by a small value (~2.5ºC), it can be assumed 

that the heat loss along the rotor passage is approximately uniform and hence, using either set of 

thermocouples for heat transfer calculation is appropriate. As for earlier gap injection, the temperature 

differential between the rotor platform surface and the coolant and mainstream flow was maintained 

between 10ºC and 15ºC to minimize measurement errors while using TSP for temperature measurements.  

The same experimental set up with similar camera exposure settings and image acquisition rates were used 

for the hole injection experiments. 

The results indicate that heat transfer coefficient is the highest when the blowing ratio is closer to one 

for both the rotational speeds. The coolant trace orients towards the suction surface though the amount of 

deflection and a relative comparison with a stationary platform for similar case is unavailable in open 

literature. Rotation appears to affect the heat transfer between the platform and mainstream flow with the 

highest magnitudes seen for the reference speed of 2550rpm. The upstream ‘h’ values are commensurate 
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with the no injection case observed at MFR=0% with rotor-stator slot injection. 

 

 

 
Figure 34: Heat Transfer Coefficient Distribution from Downstream Discrete Hole Coolant 

Injection on the Rotating Endwall for 2550rpm. 
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platform surface. Maximum ‘h’ values in the range of 700W/m
2
-K are encountered exactly where the 

coolant exits the holes. The effect of coolant injected through each hole on platform heat transfer varies 

depending on their location in the flow passage.  The central hole in the first column is affected by the 

passage vortex and the coolant ejecting out of it is immediately mixed with the mainstream flow.  Coolant 

path manifests clearly as increase in heat transfer when compared with the zero blowing condition. 

Coolant is observed to migrate from the pressure surface to the suction surface on account of the pressure 

differential existing on the platform and also due to the tangential velocity component due to rotation. 

As noted earlier in the film cooling experiments, the density ratio of the mainstream flow and coolant 

is equal to one implying that the blowing ratio is simply the result of difference in the coolant injection 

velocity.  At reference speed for M=1.00, the coolant has approximately the same relative velocity of the 

mainstream flow. Under these circumstances the coolant provides optimum protection to the platform but 

due to the modification of the mainstream flow on the platform, the magnitude of heat transfer increases 

from the no blow condition. This effect is clearly seen for all blowing ratios which show an increase in 

heat transfer as compared to the M=0.0 case. At M=0.75, the coolant mass does not have sufficient 

momentum to alter the flow as much as the M=1.00 and hence the heat transfer magnitudes are lower. 

Heat transfer also decreases as the blowing ratio is increased as the coolant mixes with the mainstream 

flow as soon as it is injected and the flow near the platform surface is minimally affected. The quality of 

data near the holes and near the blade root and hub intersection is also greatly influenced by the 

unavoidable non-uniformity in the supplied heat flux. High heat transfer coefficient near the leading edge 

and very close to the trailing edge is also in part to the flow disturbance caused by the heater edge while 

mounted on the rotor platform. Though this is maintained as minimal as possible during assembly, the 

minute edge will influence the flow and in turn the heat transfer in that region. Data close to the trailing 

edge suction side is also affected by the presence of heater power input terminals and appears as non 

uniform heat transfer coefficient distribution.   
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Figure 35: Heat Transfer Coefficient Distribution from Downstream Discrete Hole Coolant 

Injection on the Rotating Endwall for 2400rpm. 

 

 

 Figure 36: Pitchwise Averaged Film Cooling Effectiveness Distribution along Axial Chord for 

Different Turbine Rotating Speeds (Blowing Ratio Effect). 
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5.2.2.2 Downstream Injection at Lower Rotational Speeds 

At lower rotational speeds than the reference, the stagnation location on the blade leading edge moves 

to the pressure side and alters the flow accordingly in the downstream region. Coolant injection which is 

mainly influenced by the mainstream flow will change depending on the angle of mainstream flow as it 

enters blade passage. Figure 35 shows the contour plot of the rotor platform heat transfer coefficient for a 

rotational speed of 2400rpm and blowing ratios of M=0, 0.75, 1.0 and 1.25. The coolant flow and 

distribution patterns are observed to be similar to that for the reference rotating case though the 

magnitudes are considerably lower and in the range of 450 to 550 W/m
2
-K at most locations. Blowing 

ratio of M=1.25 has better coolant spread and higher heat transfer as higher coolant mass has a greater 

momentum approaching that at M=1.00 at the reference speed. This allows it to affect the mainstream flow 

more than at M=0.75. On the contrary at M=0.75, the lower coolant mass is incapable of penetrating the 

platform boundary layer leading to lower minimal flow alteration and lower heat transfer rates. The 

coolant once again migrates from the pressure to the suction surface. The central hole in column two is 

influenced to the minimum by the variations in heat flux supplied by the heater and hence the coolant trace 

is distinct and clear.  

 

5.2.2.3 Pitchwise Averaged Heat Transfer Coefficients with Downstream Discrete Hole Injection 

 Figure 36 shows the pitchwise averaged heat transfer coefficients for all the blowing ratios at 

2400rpm and 2550rpm. This figure assists in understanding the effects of blowing ratio at the two 

rotational speeds better by augmenting the earlier discussion for contour plots. For both the rotational 

speeds it is observed that there is an optimum coolant velocity or coolant mass that offers higher heat 

transfers. For 2400rpm, that blowing ratio appears to fall between M=1.00 and 1.25 while for the reference  

speed it is closer to M=1.00. From previous film cooling studies, it is observed that the best platform 

protection is obtained under these conditions where the coolant has a higher film cooling effectiveness and 

better spread on the platform surface though any injection accentuates the heat transfer coefficients. The 

effects of rotation on heat transfer coefficients due to hole injection for different blowing ratios is shown 
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in Figure 37. Observing the plot for M=0.0 itself clearly suggests that rotation amplifies the magnitude of 

heat transfer coefficients on the rotor platform and the same carries over to the coolant injection case. The 

‘h’ values are lower for the lower rotational speed as the tangential velocity of mainstream as well as 

coolant flow is smaller than the higher reference speed. 

 

 

 

Figure 37: Pitchwise Averaged Heat Transfer Coefficient Distribution along Axial Chord for 

Different Turbine Rotating Speeds (Blowing Ratio Effect). 
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5.3 Aerodynamic Flow Measurements  

5.3.1 Interstage Instrumentation 

To achieve a high degree of versatility, the turbine facility has provision for radial aerodynamic 

measurements at inlet and exit of each blade row and circumferential measurements at first stage rotor 

exit, second stage stator and rotor exits. The turbine was designed with three T-rings for sealing the three 

90
o
 circumferential traverse slots used for aerodynamic measurements. The sealed T-rings move 

circumferentially inside these slots and effectively prevent the leakage of mass flow through them. Five-

hole probes can be mounted on each of the three traversing systems which have stepper motors with 

encoders for accurate probe positioning. Three traversing systems have in all seven axes between them: 3 

axes for radial traverse, 1 axis for circumferential traverse and 3 axes for actively aligning the probes, 

whenever the flow angle is out of the calibration range. This is particularly necessary when the probe is 

close to the hub or tip. The traverse in the radial direction spans from 1mm below the hub diameter to 

1mm above the blade tip.  

 

5.3.2 Aerodynamic Flow Measurement – Probe Set-up Instructions 

Aerodynamic flow measurements were performed at different stages within the turbine to quantify the 

flow at different rotational speeds. Five-hole probes calibrated for ±20° in pitch and yaw were traversed 

radially from hub to tip at an interval of 1mm up to 5% of the blade near the hub and tip and 2mm in the 

central region to obtain accurate pressure, velocity and flow-angle distributions. The precise alignment of 

the five-hole probe with the direction of flow is necessary to ensure the accuracy of the data acquired. To 

enable proper probe alignment, a stepper motor along with a worm-gear arrangement was used to actively 

rotate and adjust the five-hole probe inside the turbine especially near the hub and the tip where the flow 

angles can change rapidly. To determine the precise rotational angle of 5-hole probe alignment along the 

blade length, the probe is first radially traversed in different regions till the magnitude of flow angles and 

velocities are reasonable. Once this is accomplished, the difference in this angle with the initial reference 

angle for each rotational speed is noted and is incorporated into the probe alignment during actual tests 

and also I the data analysis as described in Schobeiri et al. ([1] and [2]). The rotational stepper motors are 
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controlled using Intelligent Motion Systems
©
 controller and the accompanying software to obtain high 

resolution angular positioning. Once the initial reference position of the probe is known, the probe 

alignment angle can be determined by a simple calculation. 

 

 

Figure 38: Variation of Absolute Flow Angle, Alpha, and Meridional Flow Angle, Gamma, with 

Rotor Speed at the Stator-Rotor Gap Exit, MFR=1.00%. 

 

 

5.3.3 Aerodynamic Flow Measurement – Results and Discussion 

Aerodynamic measurements were performed on the first stage stator exit using a 25° angular probe to 

measure the coolant flow out of the upstream stator rotor gap. As mentioned earlier, the slot width in the 

radial direction is 2.3 mm and since the probe head diameter is 1mm, only one data point could be 

acquired close to the endwall immediately after the slot. Also, the axial location of the probe head tip from 

the slot exit is approximately 2mm. The probe was aligned in the axial direction to the turbine and this 

angle was considered to be 90º, the reference angle. At zero rotational speed it was observed that the flow 

followed the stator rotor slot pitch angle of 25º and ejected out of the slot in the axial direction. 
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Figure 39: Variation of Absolute Flow Velocity with Rotor Speed at the Stator-Rotor Gap Exit, 

MFR=1.00%. 

 

 

 

To study the effects of rotation on coolant flow exiting the stator rotor gap, the miniature angular 5-

hole probe was positioned precisely at the slots entrance and aerodynamic measurements were performed 

for an MFR=1.0% and varying the rotor speed between 2200rpm and 2600rpm. Figure 38 shows the 

effects of rotation on the yaw (alpha) and pitch (gamma) angles of the coolant injected through the 

upstream slot on the platform immediately after the first stage stator exit at different rotor speeds.  As seen 

from the graphs, at 2200rpm, the yaw angle is approximately 77º. The initiation of rotation draws the 
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measurement is very close to the slot and the coolant flow has little time to be affected significantly with 

changes in rotational speeds. To be able to further accurately measure the rotational effects on the platform 
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the absolute and circumferential velocity variation at the stator-rotor gap exit for an MFR=1.0% and 

different rotor speeds. 

 

 

Figure 40: Variation of Circumferential Flow Velocity with Rotor Speed at the Stator-Rotor Gap 

Exit, MFR=1.00%. 

Figure 41: Variation of Absolute Flow Angle, Alpha, with MFR at the Stator-Rotor Gap Exit, 

2550rpm. 

 

rpm

V
c
ir

c
,

m
/s

2200 2250 2300 2350 2400 2450 2500 2550

25

26

27

28

29

30

31

32

33

34

35

rpm

V
c
ir

c
,

m
/s

2200 2250 2300 2350 2400 2450 2500 2550

25

26

27

28

29

30

31

32

33

34

35

MFR%

A
lp

h
a

,
d

e
g

re
e

s

0 0.5 1 1.5
60

65

70

75

80

85

90



 79 

It is clearly seen that the effect of rotation has little to no effect on the coolant velocity very close to 

the slot exit. The non dimensionalized circumferential velocity distribution of the coolant decreases a little 

with rotation but the change is very small. With no rotation, the absolute velocity of the coolant was 

determined to be around 7-8m/s for MFR=1.0%. 

 

 

Figure 42: Variation of Meridional Flow Angle, Gamma, with MFR at the Stator-Rotor Gap Exit, 

2550rpm. 
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MFR forces the coolant towards the metallic angle of the slot by negating to a certain extent the effects of 

the mainstream flow and rotation. The non dimensionalized circumferential velocity of the coolant 

increases a little at the exit of the slot as the MFR is increased (Figure 43). 

 

 

 

Figure 43: Variation of Non-Dimensionalized Circumferential Velocity, with MFR at the Stator-

Rotor Gap Exit, 2550rpm. 
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metal angle of the stator blade of 19º.  The probes were aligned as accurately as possible to obtain smooth 

results near the hub and tip. The radial absolute velocity (Figure 44) at the stator exit was approximately 

equal to a Mach number of 0.1 while at the rotor exit it was 0.3. 
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Figure 44: Radial Distribution of Absolute Flow Velocity, 2550rpm. 
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Figure 45: Radial Distribution of Relative Flow Velocity, 2550rpm. 
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Figure 46: Radial Distribution of Total and Static Pressures, 2550rpm. 
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section. The total and static pressure along the radial direction along the three turbine stations are shown in 

Figure 46. The pressures are lower than atmospheric as expected in a turbine stage and the fluctuations 

near the hub and tip have been measured more accurately than previously obtained on the same facility 

due to the presence of the angular stepper motors. To eliminate this completely, instantaneous 

aerodynamic measurements using either hot film probes or piezoelectric fast response probes need to be 

utilized.  

 

Figure 47: Contour Plots of Total Pressure Distribution, 2550rpm. 
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provides the radial distributions discussed in the previous section. The circumferential traverse covers two 

blade spans and can be seen in the contour plots. The blade trailing edge and the region in between can be 

discerned clearly on the contour plots by looking at the pressure variation as the blade passes by the 5-hole 

probe. Contour plots for static pressure distribution for the same stations are shown in  Figure 48.  

 

 

 Figure 48: Contour Plot Distribution of Static Pressure Distribution, 2550rpm. 
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6. UNCERTAINTY ANALYSIS 

 

6.1 Uncertainty Analysis for Aerodynamic Measurements Using 5-Hole Pitot Probes 

Uncertainty analysis is performed for the 5-hole Pitot probes after calibration and data reduction 

based on the method suggested by Kline-McClintock [102]. This method outlines the procedure to 

calculate the total uncertainty on a variable by calculating the uncertainties on the individual components 

that constitute the calculation of the variable. The magnitude of error calculated by this process can also be 

described as the maximum error one can expect in the calculated variable. The results of this analysis 

along with the process of uncertainty determination are as shown below. Further details used in the 

determination of the individual uncertainties are presented in Appendix F.  

As suggested by the adopted procedure, the uncertainties in each of the parameters measured were 

calculated using the following equation: 
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where R is the equation used to calculate the magnitude of the variables xi. Hence, R=f(x1,x2,x3,x4,...,xn) 

and the measurement uncertainty in each independent variable xn is given by wn. Equation 16 modified to 

apply to our calibration is as shown in equation 17.  
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where, wp is the uncertainty in the pressures measured by the 5-hole probe through the PSI pressure 

transducer, wρ  is the uncertainty in the calculation of flow density, wDin
 and wDou

 are the uncertainty in 

the measurement of the nozzle inside and outside diameters using a Vernier caliper. The velocity of the 
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flow in the calibration facility is calculated from simplified Bernoulli’s principle and is as shown in 

equation 18. 
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Now to calculate the uncertainties on the actual experimental velocity results, the calibration error is 

added to the velocities calculated from the experimental pressure measurements from the five hole probes. 

Thus the equation shown in 16 is applied to each of the equations ([93]) used to calculate the two flow 

angles, total and static pressures and the absolute velocity using a previously used MathCAD
®
 program to 

obtain the actual experimental uncertainty. The experimental variation in pressure measurement is 

approximately 0.5 Pa from the pressure transducers and 1
o
C for temperature measurements, these values 

are then utilized in the uncertainty equations of the corresponding parameters to obtain the uncertainties in 

the parameters measured using the five hole probes. The maximum uncertainties of all the independent 

parameters measured are thus calculated and are as shown in table 2. 

 

 

Table 2:  Uncertainty analysis for the miniature 5-hole probes. 

Probe Number 
% Uncertainty in 

Pitch 
% Uncertainty in 

Yaw 
% Uncertainty in 
Total Pressure 

% Uncertainty in 
Static Pressure 

% Uncertainty in 
Absolute Velocity 

Probe 1 2.72 2.44 1.23 1.57 2.47 

Probe 2 1.95 1.88 0.96 1.11 2.33 

Probe 3 2.83 3.01 1.46 1.49 2.65 
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6.2 Uncertainty Analysis for Film Cooling Effectiveness Measurements Using PSP 

The primary reasons for any PSP measurements like in any other experiments are again due to the 

individual errors from the instruments used in the calibration and in data acquisition. To minimize such 

errors, the calibration set up was as closely replicated to the main test set-up including the instruments and 

the wiring. In addition, things beyond control like dust, paint deterioration and error in reference image 

measurement, however minimal they might be, can contribute to an increase in the uncertainty of the data. 

Kline McClintok’s [102] uncertainty calculation can again be modified for error calculation for PSP and 

the corresponding equation with the significant terms is as shown below: 
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where, calw  is the error in calibration while maintaining the vacuum and temperatures in the vacuum 

chamber, Iw is the error in image intensity measurement associated with the optical setup and the 

electronics of the data acquisition system and Tw  is the error in temperature measurement during data 

acquisition. Here, the errors associated with temperature effects of PSP can be neglected due to the 

following reasoning. Error in PSP measurements can be significantly enhanced if the reference 

temperature during calibration is different from the temperature at which reference image is acquired 

during actual data collection. This is minimised by acquiring the reference image immediately after data 

collection which should be the same as the reference temperature used during calibration analysis. Hence, 

the uncertainty in PSP for the current experiments depends on the calibration uncertainty and intensity 

measurements during experimentation. Uncertainty calculations for all PSP measurements were performed 

based on a confidence level of 95% and are based on the uncertainty analysis method suggested by Kline 

McClintock [102] and Coleman and Steele [104]. Lower effectiveness magnitudes have higher 

uncertainties. For an effectiveness magnitude of 0.8, uncertainty was around 1% while for effectiveness 

magnitude of 0.07, uncertainty was as high as 10.3%. This uncertainty is the cumulative result of 

uncertainties in calibration and data acquisition. Uncertainties for very low effectiveness magnitudes are 
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higher as the magnitude of noise from the camera and the system start approaching the actual intensity of 

data. Uncertainty for the average blowing ratio calculations is estimated to be approximately 3.5 % and is 

discussed in detail by Holman [103]. The relevant programs and further details are provided in Appendix 

F. 

 

6.3 Uncertainty Analysis for Heat Transfer Measurements Using TSP 

 

TSP measurements are significantly affected by the same parameters which introduce uncertainties in 

PSP, except that TSP is not sensitive to pressure changes like PSP is to temperature changes, implying that 

the reference image can be acquired at atmospheric pressures. Once again, the same set optical setup used 

for calibration is used for image acquisition during actual experiments. Thermocouples at different 

locations on the platform surface monitor and assist in maintaining the required surface and coolant 

temperatures and thereby decreasing the actual experimental errors. Kline-McClintock’s [102] equation 

modified for TSP analysis is as shown below: 
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Tw  is the total uncertainty in temperature measurements using TSP, calw  is uncertainty during calibration 

and is dependent on the uncertainty of the thermocouples which is 0.5ºC. Calibration error is also 

dependent on the uncertainty in the high accuracy digital power supply used to power the heater. Iw  is 

the uncertainty in the intensity measurements during actual experiments. Uncertainty calculations for all 

TSP measurements was also performed based on a confidence level of 95% using the method suggested by 

Coleman and Steele [104] and was determined to be around 6.3% on the temperature arising out of 

calibration and image uncertainties. As mentioned earlier in the PSP section, the blowing ratio and had 

uncertainties of 3.5% arising from the flow measurements using the rotameter and hole diameter 

measurements using a digital Vernier calipers. 
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7. SUMMARY AND CONCLUSIONS 

 

 Experiments were performed for film cooling effectiveness obtained from purging of coolant through 

the wheel space cavity on the first stage of a rotating platform of a three stage model turbine facility.  Film 

cooling effectiveness results were obtained for 4 different coolant-to-mainstream mass flow ratios.  Engine 

operation at reference and lower rotational speeds was investigated for all mass flow ratios.  The main 

conclusions from this study are summarized below: 

 

7.1 Film Cooling Effectiveness Measurements Using PSP 

7.1.1 Stator- Rotor Gap Coolant Injection 

1. The new research turbine facility provides the basic features to extract information relevant to gas 

turbine design community. These features are (a) stator-rotor unsteady interaction, (b) blade and 

platform rotation including the relative blade circulation and the exposure of the platform boundary 

layer to centrifugal and coriolis forces, and (c) the flow acceleration. Except for the last feature (c), 

none of the above features can be simulated in a cascade investigation. 

2. Film cooling effectiveness due to coolant injection from the stator-rotor gap increases with increasing 

coolant-to-mainstream mass flow ratio. 

3. Complete coverage of the passage platform cannot be obtained by using coolant injection from the 

stator-rotor gap.  The passage vortex over the platform has an adverse impact on film adherence. 

4. Film coolant traces are reoriented more towards the suction side for lower speeds than that observed 

for reference condition due to the stagnation region shift towards the pressure side. 

5. Film cooling effectiveness increases with rotational speed for all the considered coolant mass flow 

ratios. 
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6. The film cooling effectiveness on the blade platform decays much more rapidly than that observed in 

studies with film cooling on a flat stationary surface, primarily due to the presence of the passage 

vortex.   

 

7.1.2 Downstream Discrete Hole Coolant Injection 

Film cooling effectiveness measurements were performed on a rotating platform using PSP technique. 

Rotational speeds of 2400rpm, 2550rpm and 3000rpm were considered for the experiments to determine 

the effects of rotation on platform film cooling. Film cooling effectiveness was quantified for downstream 

discrete hole film cooling for Mholes=0.5, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00. Film cooling effectiveness 

and coolant coverage on the rotor platform due to coolant ejection through downstream holes is maximum 

for the reference speed of 2550rpm. 

1. Mholes between 0.75 and 1.25 provided the best protection on the rotor platform for all three rotational 

speeds. Coolant coverage and effectiveness magnitudes were highest at these blowing ratios than the 

others tested. This result confirms that the Mholes one not only provides the best film coverage, but also 

minimizes the aerodynamic losses due to mixing of the cooling jets with the main flow.  

2. Two downstream film cooling holes (1 and 4 in Fig. 7) were affected more by the passage vortex than 

the other cooling holes owing to their position on the rotor platform. 

3. Secondary flow from the blade pressure surface to the suction surface is strongly affected by the 

rotational motion causing the coolant traces from the holes to clearly flow towards the suction surface.  

4. Complete film cooling protection on a rotating platform can be provided with combined upstream 

stator-rotor gap ejection and discrete hole ejection. Positioning the holes with angles oriented more 

towards the pressure surface will help reduce the effects of passage vortex and cross flow. 

 

7.1.3 Combined Upstream Stator-Rotor Gap and Downstream Discrete Hole Coolant Injection 

Further, combined film cooling tests were performed for an upstream stator-rotor gap purge flow 

ejection and downstream discrete hole coolant ejection at MFR=1.00% and Mholes=0.75, 1.00 and 1.25. 

The results of this research work are summarized as follows: 
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1. To optimize coolant usage, maintaining the stator-rotor gap injection close to MFR=1% and 

increasing the number of holes on the platform without compromising the structural integrity is the 

way forward in providing proper film protection on the platform. 

2. The upstream and downstream injection provided good coolant coverage on the rotor platform for an 

MFR=1.00% and Mholes close to one. 

3. The film cooling effectiveness magnitudes reflected the results shown due to individual coolant 

injection cases, hence, can be concluded that for the cases tested, there was minimal interaction 

between the two injection forms. 

 

7.2 Heat Transfer Coefficients Measurement Using TSP 

Heat transfer measurements using temperature sensitive paint was performed for rotor platform for 

MFR corresponding to 0%, 0.5%, 1.5% and 2.0% upstream injection for rotational speed of 2400rpm and 

reference speed of 2550rpm. For the downstream coolant hole case Mholes= 0.75, 1.00 and 1.25 were 

considered at the same rotational speed. The following are the results of those experiments: 

 

1. Heat transfer coefficient distribution on the rotor platform increases with rotor frequency for upstream 

coolant injection.  

2. The heat transfer magnitudes for MFR=2% is the highest and in the range of 400-600W/m
2
-K 

3. ‘h’ also tends to increase for higher coolant injection rates through downstream discrete holes. 

4. The coefficients appear to be maximum along the coolant flow path as they flow towards the trailing 

edge. 

 

7.3 Aerodynamic Measurements 

Aerodynamic measurements were performed to compliment the heat transfer and film cooling 

experiments at the first stage stator exit along the stator rotor gap plane. Effects of rotation on the coolant 
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flow angles very close to the gap were studied to analyze the coolant distribution on the rotor platform. 

Also interstage measurements were conducted to quantify the velocity, flow angles and pressure 

distributions in the radial and circumferential direction. The results of those experiments have been 

summarized below: 

1. With no rotation, the coolant ejects out of the stator rotor gap along the rotor axis. 

2. Introduction of rotation causes the coolant flow close to the stator-rotor gap to reorient in the direction 

of flow by approximately 13º from the turbine axis. 

3. Beyond the initial reorientation, the change in coolant direction with rotational speeds up to  2600 is 

negligible. 

4. For zero rotation, the coolant also follows the solid angle (25 º) of the stator-rotor gap.  

5. At 2550rpm, the angle at which coolant comes out of the gap are lower for the lower injection rates 

and approaches the solid angle of 25º as the MFR if closer to 1.5%. 

6. A system for probe fine alignment for all the aerodynamic measurements was established using a 

worm gear arrangement and controlled stepper motor in addition to the already existing 6 axes 

traverse system. The system enabled precise positioning of the 5 hole Pitot probe close to the rotor 

hub and tip for accurate velocity, flow angle and pressure measurements.  

Essentially, this work provides detailed data on aerodynamics, film cooling and heat transfer 

performance on a rotating platform for the first time in open literature. It has also been established that 

with accurate adjustment of the 5-hole probes using the stepper motor-controller set-up, more reliable and 

accurate data can be acquired. By utilizing these results for film cooling, heat transfer and aerodynamics, 

turbine researchers and designers will be better equipped with knowledge for providing efficient cooling 

and protection to the rotor platform. 
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7.4 Future Investigation 

Using the pressure sensitive paint technique, the film cooling effectiveness has been measured on the 

rotating platform with coolant flow from the stator-rotor seal. Film effectiveness has also been measured 

with coolant from discrete film cooling holes. To complement the above test cases, a combined case with 

simultaneous stator-rotor gap and discrete hole injection has also been experimented with to determine the 

interaction between the two methods of cooling and to best provide for platform cooling. This will provide 

engineers with detailed film cooling effectiveness distributions under more realistic coolant flow 

conditions. Heat transfer under rotation has been studied for upstream stator-rotor seal injection and 

downstream hole injection. In all the above cases, it has been noticed rotation significantly affects the 

coolant distribution and the heat transfer from the mainstream flow to the platform due to its effects on the 

platform secondary flow. Contouring of the platform is found to alter the secondary flow and also 

minimize the aerodynamic losses.  

In the future, the effects of such contouring on platform heat transfer and film cooling with different 

configurations of the contours and coolant holes can be studied extensively with the already established 

PSP and TSP techniques with some changes to the existing rotor. Also, with the available equipment and 

measurement techniques, similar aerodynamic, film cooling effectiveness and heat transfer measurements 

can be performed for rotor blade tip with different tip configurations. Also, to capture the turbulence 

effects within the turbine, aerodynamic study with hot films is recommended. 
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APPENDIX A 

 

This appendix presents a detailed user’s guide to operation of PSI-Pressure sensor system, Fluke 

temperature sensor system and turbine engine traversing system via the LabVIEW
©
 interface and data 

acquisition system. All software described as found on the data acquisition computer that contains the 

National Instruments data acquisition board. This information is also provided in [93]. Any changes made 

since then with extra details have been added for better clarity. 

  

PSI-Pressure System Guide:  

Before the use of the pressure scanners for pressure acquisition the 8 individual scanners (7 gauge 

pressure sensors and 1 ambient pressure sensor) must be zeroed. The pressure scanner system is connected 

to the computer through the use of a local network system which assigns each scanner a separate internet 

protocol (IP) number. Each IP number is preset by the manufacturer and should not be changed. The IP 

address of each pressure scanner can be read off of the labels attached to them. To zero each scanner a 

program Setzero.exe found as an icon on the user desktop is run. Make sure all the required connections 

from the computer to the scanner port are made before the zeroing. A window pops up and clicking on the 

“Set Zero” button, zeros each scanner individually. This procedure should always be applied before 

running the main LabVIEW
©
 acquisition system. Running the Setzero.exe program while the LabVIEW© 

acquisition software is run may cause a system crash. Additionally the zeroing program should not be run 

when the engine is running.   

The pressure scanners after zeroing require an initialisation procedure which is automatically 

performed by the LabVIEW
©
 data acquisition program. To activate the LabVIEW

©
 program, click on the 

turbo.vi shortcut on the desktop of the data acquisition computer.  Prior to activation of the LabVIEW
©
 

application, one must ensure that power to the traversing controllers, the Fluke temperature system and the 

PSI pressure system must be on. After the initial pop-up screen select the I/O Config option in the edit 

menu. A initialisation window is opened. To initialise the pressure sensor channels click on the 8 buttons 
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beside each scanner module on the right side of the screen, the initialisation assigns each channel its 

predetermined IP address. The red colour of the button implies that the scanners are online and ready to 

use while brown means offline. Make sure all the buttons are red while clicking the config pressure button. 

Additionally make sure that the pressure ratio is calculated using module number 2, transducer number 2 

at the inlet and module number 6, transducer number 12 at the exit or the exact physical location on the 

machine as set by the operator.  

Each of the pressure scanners have sixteen transducers connecting to different locations on the 

turbine. Identify each transducer connection physically on the turbine and name them correspondingly 

using the green button on the pressure module section shown in Figure A1. This will assist later in the data 

analysis stage where it is required to know which column in the data file corresponds to what location on 

the turbine. Note down the identity of each connection accurately.  

 

 

Figure A1: Shows the I/O config menu of the data acquisition program. 
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Figure A1 shows the I/O config menu, the IP addresses assigned to each pressure modules or sensors 

are shown in the table below: 

 

 

Table A1: Pressure sensor IP addresses. 

 Scanner No. IP Address 

1  200.200.1.22 

2  200.200.1.57 

3  200.200.1.24 

4  200.200.1.26 

5  200.200.1.25 

6  200.200.1.27 

7  200.200.1.58 

8  200.202.0.117 

 

 

To ensure the operation of the pressure sensors after initialisation, press OK at the I/O Config window, 

and click on the “Auto Collect On” button, read outs from the pressure sensors will be shown in the main 

LabVIEW
©
 window of turbo.vi. The pressure sensor system may also be accessed using software provided 

by the sensor manufacturer. The software is accessed by pressing the start menu button and is run by 

selecting the “NetScanner Start V1.04" shortcut. A window pops up, and to initialise the pressure scanners 

the “Init” and then “Netscanner Modules” option must be selected from the menu bar. When selected a 

secondary window props up which gives the option of typing in the IP addresses of each pressure sensor. 

All the IP addresses may be typed in at this point or a single IP address may also be typed in. After typing 

in the required IP addresses of the pressure sensors, press F1 or the “OK” button. The software can only 

display pressure read outs from the sixteen channels of one pressure sensor at a time, so if the user entered 

more then one sensor to move to the next sensor the “next module” option on the menu bar must be 
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selected. To begin acquiring or showing pressure data from the sixteen channels of one sensor, the keys 

Ctrl-D must be selected to begin displaying pressures.  

 

 

 

 

A2: Fluke Temperature Sensor System. 

 

 

  

The Fluke sensor system is initialised in a similar manner to the pressure sensor system via the 

LabVIEW
©
 interface. At the Config window shown in figure F1, click the “Config Temp” button, which 

produces the temperature configuration window. The Fluke temperature system uses two temperature 

modules each capable of acquiring 20 thermocouple channels. The temperature configuration window is 
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shown in figure A2. To initialize the Fluke system, make sure the module is set to number 2, and the 

enabled indicator is on, clicking on the “Initialize” button starts up both modules. A message window will 

pop up to inform of each unit’s initialisation status. If only one of the units are initialised, repeat the 

process again. It is worth noting that if the unit is left inactive for a considerable amount of time the 

temperature sensors will require initialisation again. 

 

 After the Fluke system is initialised, the temperature can be simultaneously scanned by clicking 

the “Auto Collect On” button from the main menu. Additionally the temperatures can be scanned 

manually from the read out at each Fluke temperature module; this is done by pressing the “MON” button 

and then clicking the up and down scanning arrows. If the thermocouples are not functioning or are 

disconnected, the Fluke module readout will produce an “OTC” or open thermocouple connection 

message. On the LabVIEW
©
 display, a disconnected or malfunctioning thermocouple will produce a zero 

temperature.  

  The Fluke temperature system is set to recognising that all thermocouples used are J-type 

thermocouples, and therefore the voltages are automatically displayed as degrees centigrade. Calibrated 

thermocouple curves cannot be invoked into the data acquisition however they maybe included into the 

data analysis FORTRAN
©
 program.  
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A3: Torque and Engine Frequency Acquisition. 

 

 

 

 The torque read out from the Himmelstein torquemeter and the engine speed readout from the Froude 

Consine dynamometer controller are both used to calibrate and initialise the readouts from the LabVIEW© 

data acquisition software. At the I/O Config window clicking the “Config RPM/Torque”, produces the 

RPM and torque configuration window shown in figure A3. The “Offset” buttons for both RPM and 

torque are used to set the zero point, the “Span” buttons are used to set the slope of the calibration curve in 

RPM per volt or torque in lb.in per volt. Therefore the “Span” buttons should not be pressed when the 

torque and engine rpm are zero, but must be used when the engine is running at the required design point.  
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A4: Main window of LabVIEW© interface turbo.vi. 

 

 

 

 The traversing system controls four channels, three of which are used to control the three probe radial 

positions, and the fourth channel is used to control the circumferential position of all three probes. The 

position of each channel is displayed as a linear measurement in millimetres. The circumferential centre 

position is at a distance of 500 mm. The maximum circumferential positions are 350 mm, and 800 mm. 

For the radial channels, the hub position is at 100 mm, and the tip position is at 34 mm, which allows for a 

66 mm radial displacement. Before initialisation of the traversing unit, the circumferential position should 

be set at the centre position (500 mm), and the three radial stations placed at the hub positions (100mm) as 

a default starting position. However the starting position may be set however the user wishes but the 

positions keyed into the LabVIEW© software must match the actual positions of the traversing channels. 

The initialisation is performed by enabling the channels A1, A2, B1, and B2 as shown in figure A1, 

making sure the positions keyed into the unit match the actual positions and then pressing the “Config 
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Traverse” button.  The movement schedule for all the four traverses are dictated by the script file, which is 

a text file that specifies the movement for each channel, the number of data points to be collected and the 

time each channel is allowed for acquisition. The format of the script file is as follows: 

  

<traversing device or channel>,<position>,<data points>,<waiting time in milliseconds> 

  

The a,1 traverse device is the circumferential unit and the a,2 b,1 and b,2 channels are the radial 

traverses corresponding to stations 3, 4 and 5. The script files can be automatically generated using the 

“Genfile.exe” program available on the data acquisition computer desktop. An example of a script file is 

shown below: A line beginning with an asterisk (*) is a line which is ignored by the LabVIEW© software 

and that movement is not executed.  

 

*Demonstration script file  

a,1,350,0,0 

b,1,100,10,2000 

b,2,100,10,2000 

a,2,100,10,2000 

b,1,99,10,2000 

b,2,99,10,2000 

a,2,99,10,2000 

b,1,98,10,2000 

b,2,98,10,2000 

a,2,98,10,2000 

b,1,97,10,2000 

b,2,97,10,2000 

a,2,97,10,2000 

…….. 

b,1,34,10,2000 

b,2,34,10,2000 

a,2,34,10,2000 

a,1,360,0,0 

b,1,34,10,2000 
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b,2,34,10,2000 

a,2,34,10,2000 

b,1,37,10,2000 

b,2,37,10,2000 

a,2,37,10,2000 

...  

A point taken includes all pressure channels, temperatures channels and traverse positions which are 

initialised and saved to the final data file. Note down the column numbers of the relevant data column by 

opening the data text file in excel. 

 

F.5 Machine Startup Procedure:  

1. Zero pressure transducers before start up (program SetZero.exe). 

2. Check bearing oil level on the compressor (both sides). 

3. Turn on outside switch for the compressor. 

4. Open the garage door (use anchoring rope to secure the door). 

5. Turn on water for dynamometer. Pressure gauge should read 20 psi. 

6. Turn on in-cell dynamometer box. Make sure stop button is disabled. 

7. Turn on inlet heater. Check heater is pre-set to zero degrees (green LCD is pre-set temperature and 

red LCD is actual temperature). 

8. Check the dynamometer controller in the control room by pressing the green button. 

9. Put the controller in constant rpm mode. 

10. Set rpm demand to 600 rpm. 

11. Set compressor out frequency at the compressor controller in the test cell between 30-35 Hz and 

press the start button. 

12. The turbine starts running and the rpm should stabilise at 600 rpm. 

13. Turn on the heater to an inlet temperature of 57ºC to produce a inlet temperature of 45 ºC to50ºC. 

Adjust the inlet temperature to produces a temperature that is just above 21ºC at the venturi inlet to 

avoid condensation. 
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14. Set the rpm demand at the dynamometer controller to the required rpm. The rotating speed will 

increase and the critical speed for the velocimeter on the torquemeter stand was observed to be 

around 2800rpm to 2900rpm. Please note that the rpm will slightly overshoot by about 50-100rpm 

before stabilizing in the next 20-30s.  

15. Monitor venturi inlet temperature, make sure it does not go below 21ºC. Additionally monitor 

bearing temperatures, they should not go above 70ºC. 

16. Monitor the velocimeters mounted on the bearing housing and torquemeter support. Stop the 

machine if the reading goes above 0.55in/s. 

17. For film cooling and heat transfer measurements, in addition to the above, turn on the coolant 

supply loop provided at the rear of the turbine.  

18. Once, the coolant is flowing as per the required flowrate, turn the coolant supply heater on and set 

the coolant temperature to be the same as the turbine inlet temperature using the PID controller. 

19. Turn on the power supply to the rotor surface mounted heater such that the rotor surface 

temperature is roughly 10ºC to 20ºC greater than the inlet temperature for accurate TSP 

measurements. This step is not needed for the film cooling effectiveness measurement using PSP. 

20. For film cooling and heat transfer experiments, turn on the camera, the probe light and the trigger 

which activates them both at the area of interest on the rotor. 

 

Notes: 

 Make sure that everybody who is present in the testing area knows where the emergency compressor 

shutdown button is located (red button next to the office area entrance door). Do not leave control 

room while the turbine is running. Record the test in the Run Log. If Emergency shutdown is performed, 

make sure the inlet heater is switched off.  

  

Machine Shutdown Procedure: 

1. If you are running film cooling or heat transfer experiments, shut down the heaters related to the 

coolant loop first. This is very important as failure to do this will burn the heaters up. 
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2. Allow the coolant to flow through the turbine for a few minutes and then shut the coolant loop 

down. 

3. Turn off the camera, probe light and the trigger. 

4. Set the compressor demand at the compressor controller in the test area to 30 Hz. Note that the 

compressor has a slow deceleration rate and it takes a few minutes to reach 30 Hz. 

5. When the compressor has reached 30Hz, set the heater temperature to 0 ºC.  

6. Set the dynamometer demand to 600 rpm. This will ensure rapid passing of the critical speed. 

7. Set the compressor demand to 0Hz and decrease the rotor speed completely. 

8. Allow the turbine and compressor slow down. This will take a few minutes. 

9. Wait for the turbine rpm to reach zero. 

10. Turn off the compressor switch at the compressor controller in the test cell area. 

11. Turn off the compressor power switch on the outside. 

12. Check bearing oil level on the compressor (both sides). 

13. Shut the garage door. 

14. Turn off the inlet heater. 

15. Turn off the in cell dynamometer box. 

16. Turn off water supply to dynamometer.   
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APPENDIX B 

 

The calibration facility used to calibrate the five hole pressure probes is shown in figure below 

Schobeiri et al. ([1] and [2]). A two axis fully automated traverse unit was used to move the probe -15º to 

+15º in pitch and yaw angles with one degree increments. At each point the five port pressures as well as 

total and static pressures were acquired through the use of a multi-channel pressure transducer system. 

 

 

Figure B1: Schematic of calibration facility used to calibrate five hole pressure probes (dimensions 

in mm) Schobeiri et al. ([1] and [2]). 
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The following figures are the calibration curves obtained after plotting each 5-hole probe data as per 

Bohn’s method. Calibration data acquisition is simple and a program called turboprobe is used after the 

initialization of the pressure scanners. The coefficients Q1 to Q5 are described in the main section as well 

as in Bohn’s paper. The location of the calibration files and the corresponding names are also seen in the 

plots. 
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r 2̂=0.989779  DF Adj r 2̂=0.98975348  FitStdErr=1.1975617  Fstat=51743.678

a=8.6677702 b=21.278875 
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The following spreadsheet is a sample of a typical calibration sheet with the angle , 5 pressures from the 5-

hole Pitot probe, the total and the static pressures from the calibration facility. Columns Q1 to Q5 are the 

coefficients calculated as described earlier based on Bohn’s. Also in all the graphs above, x-axis 

corresponds to pitch and y-axis to yaw.  

Pitch Yaw P1 P2 P3 P4 P5 Ptot Psta Pm-Psta Pt-Psta Q1 Q2 Q3 Q4

1 -20 -20 4470.753 4036.389 -1318.222 -3399.369 3362.881 6470.43 -302.361 4773.114 6772.791 1.557842 -0.980723 0.704748 0.85474

2 -20 -18 4568.71 3753.303 -1281.919 -2939.207 3456.133 6469.328 -301.03 4869.74 6770.358 1.374305 -0.972958 0.719274 0.864154

3 -20 -17 4610.624 3590.775 -1282.385 -2675.351 3496.656 6465.712 -306.529 4917.153 6772.241 1.27434 -0.971912 0.726075 0.870171

4 -20 -16 4645.181 3426.13 -1301.425 -2408.365 3529.381 6459.761 -305.287 4950.468 6765.048 1.178574 -0.975828 0.731771 0.879019

5 -20 -15 4676.986 3267.338 -1314.943 -2160.96 3549.096 6458.591 -304.733 4981.719 6763.324 1.089644 -0.976378 0.736578 0.885944

6 -20 -14 4706.165 3082.885 -1368.296 -1895.729 3554.029 6463.022 -308.192 5014.357 6771.214 0.992872 -0.981646 0.74054 0.897101

7 -20 -13 4735.713 2889.344 -1447.223 -1631.183 3554.071 6467.676 -308.258 5043.971 6775.934 0.896224 -0.991539 0.744395 0.912485

8 -20 -12 4747.012 2693.912 -1537.843 -1387.236 3555.364 6455.088 -306.373 5053.385 6761.461 0.807607 -1.00788 0.747381 0.929511

9 -20 -11 4765.777 2481.866 -1646.412 -1137.983 3554.073 6458.262 -308.103 5073.88 6766.365 0.713428 -1.024952 0.749868 0.947656

10 -20 -10 4783.08 2260.9 -1719.128 -900.524 3553.512 6457.161 -305.909 5088.989 6763.07 0.621228 -1.036088 0.752467 0.961428

11 -20 -9 4793.862 2049.878 -1747.383 -687.398 3559.328 6455.46 -307.394 5101.256 6762.854 0.536589 -1.040275 0.754305 0.967231

12 -20 -8 4802.298 1829.016 -1772.995 -461.437 3559.307 6454.56 -308.569 5110.867 6763.129 0.448154 -1.043326 0.755696 0.972226

13 -20 -7 4808.755 1606.854 -1753.432 -238.65 3556.097 6453.654 -308.79 5117.545 6762.444 0.360623 -1.037515 0.75676 0.970387

14 -20 -6 4812.544 1393.858 -1723.357 -27.399 3551.616 6451.539 -309.19 5121.734 6760.729 0.277495 -1.029919 0.757571 0.966745

15 -20 -5 4815.922 1175.142 -1694.424 185.725 3546.014 6452.089 -310.897 5126.819 6762.986 0.192988 -1.022162 0.75807 0.962644

16 -20 -4 4820.354 959.368 -1664.898 399.73 3529.081 6455.044 -310.719 5131.073 6765.763 0.109068 -1.01226 0.758388 0.95854

17 -20 -3 4814.674 771.926 -1668.113 593.479 3515.291 6451.275 -308.347 5123.021 6759.622 0.034832 -1.011787 0.757886 0.959046

18 -20 -2 4814.588 571.793 -1651.552 802.33 3481.684 6460.422 -310.231 5124.819 6770.653 -0.044984 -1.001642 0.756917 0.955025

19 -20 -1 4804.752 388.707 -1665.491 1007.114 3460.313 6460.071 -310.963 5115.715 6771.034 -0.120884 -1.001972 0.755529 0.955577
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APPENDIX C 

 

The following section deals with the data acquisition procedure for PSP and TSP system using a 

software called Camware© available on the desktop of the PSP and TSP data acquisition computer. A 

series of pictures showing the sequence from starting the program to data acquisition is given below. This 

is common for PSP and TSP data and calibration measurements. 

 

 

 

Figure C1: Snapshot of the data acquisition computer’s desktop. 

 

 

 

1. Click on the icon which says Camware© to start the program which interfaces the camera with 

the computer and enables acquisition of picture data. 

2. This will open a window as shown in C2. The software allocates system memory for the camera 

to operate. Allow a few minutes for the camera and the system to stabilize.  

3. Once the software is up, click on the options on the screen and familiarize yourself with them as 

they help you monitor the data during acquisition. 
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4. Before taking any data, click on the option shown in C3 and set the number of images you want 

to acquire. 

5. Once this is done, the software is ready to acquire data and the image acquisition can be enabled 

by clicking the option shown in C4. 

6. Care must be taken to acquire data when there is minimum light in the test room, preferably a 

dark environment. The camera will now acquire data every time the trigger activates data 

acquisition.  

7. Save the data in tif format. 

 

 

 

 

Figure C2: Window which pops up after clicking the camware icon. 
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Figure C3: This picture shows the option to set the number of images for data acquisition. 
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Figure C4: This picture shows the black and white window where the image can be seen during data 

acquisition.  

 

To start data acquisition, click on the circular icon to the left of the green play button in the main 

window. Adjust the binning setting depending on the intensity observed on the acquired image. This can 

be done through the window which pop-ups when the penultimate icon from the right on the menu bar is 

clicked. 
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APPENDIX D 

 

 

The following information provides details regarding the programs needed for analysing calibration 

data and experimental data for PSP measurements. It consists of one MATLAB
®
 and three FORTRAN

©
 

programs. The MATLAB
® 
program (cal.m) is used to convert the digital image taken by the camera to the 

corresponding intensity values. It is the same program used to analyze both calibration and experimental 

data files. The input for this file is the tif image acquired by the camera. This program will average all the 

data images acquired and provide a single text file as output. The only modification required in the 

program itself is the data file name and the image size in pixels depending on the binning setting on the 

camera. If the file is modified, a new executable file is created after compilation and the executable is 

copied into the data folder and run to obtain the processed output. The output is in the form a *.dat or any 

similar text file depending on how one wants it. The output file will contain the pixel number in x and y 

directions and pixel intensity along the z-axis. This program is also used to analyze the black and reference 

images acquired by the camera. For calibration, this file is further averaged using a simple MS-EXCEL 

spreadsheet to obtain one intensity value for every pressure setting in the calibration chamber and the ratio 

of calibration pressures and intensities are plotted as shown to obtain the calibration curve. Reference 

image is acquired at temperatures (~46°C) similar to that seen during actual experiments and Patm is 

considered Pref. Calibration is complete once the plotted pressure versus intensity curves are curve fitted 

and the corresponding equation is obtained. 

 

• Once this is performed, the first of the FORTRAN
© 
files called a1p.f or n1p.f is used for converting 

the intensities from the MATLAB
®
 output to pressures after applying the calibration function.  

• The inputs (3 files) for this program are the intensity data, *.dat files, either air or nitrogen data, the 

black and the reference files from the MATLAB
®
 program. This FORTRAN

© 
program is run 

separately for nitrogen data and oxygen data in the same folder containing all the data and input files.  
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• Output from this file will be a single file with pressure distribution due to either air injection or 

nitrogen injection, whichever case it was run for. 

• A pixel shift program can be used to make the image acquired during actual tests correspond with the 

reference image acquired immediately after the rotor is stopped. 

• The second FORTRAN
©
 called effect.f is used to determine the final effectiveness distribution as 

follows: 

• Input to the files are n1p.dat and a1p.dat corresponding to the pressure distributions on the platform 

surface for nitrogen and air injection respectively. 

• A profile.dat file corresponding to the flow passage profile and as obtained from drawing the platform 

profile using AutoCAD
© 
is also needed for this program to function. This profile simplifies the 

process of marking the flow passage manually after the effectiveness data has been calculated. 

• Running this program will provide the final effectiveness distribution on the platform along with the 

boundary. 

• The final FORTRAN
© 
program called ave_eta.for provides the average chordwise effectiveness 

distribution for the rotor platform. It is important to note down the pixel number of interest from the 

output of the previous program for this case. The input data for this program is the effectiveness 

distribution output file from effect.f. 

• Data analysis for PSP measurements is complete once the average chordwise effectiveness is 

obtained. This effectiveness average and the distribution on the platform are eventually plotted using 

TECHPLOT
®
 to obtain the final graphs. 

 

Location of all Programs: 

MATLAB
®
 =c:\Arun\doe\data2006\gap cooling\2400rpm\analysis with profile\ 

 Or   c:\Arun\doe\data2006\gap cooling\2550rpm\analysis with profile\  

 Or   c:\Arun\doe\data2006\gap cooling\3000rpm\analysis with profile\  

And in similar folders containing PSP data for hole and combined injection. 
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FORTRAN
© 
(all the three remaining i.e. aip.f, effect.f and ave_eta.f): 

= c:\arun\doe\data2006 \Data-2006\Gap Cooling\Program 4-4-binning\ 

Or c:\arun\doe\data2006 \Data-2006\hole Cooling\Program\ 

Or c:\arun\doe\data2006 \Data-2006\gap-hole Cooling\Program\ 

 

The location of all the experimental data for PSP programs are listed in the following folders: 

c:\Arun\doe\data2006\gap cooling\2400rpm\analysis with profile\ 

c:\Arun\doe\data2006\gap cooling\2550rpm\analysis with profile\  

c:\Arun\doe\data2006\gap cooling\3000rpm\analysis with profile\  

 

The final effectiveness files are named: 

Effect.dat for contour plot distribution and average.dat for the chordwise averaged effectiveness. 

 

Sample Experimental data sheet for each step of data acquisition is as follows: 

Data output from cal.m, n1p.f or aip.f and effect.f will look like what is shown below. Column 1 and 2 are 

pixel locations in x and y directions while column 3 is the intensity at each pixel location. Zone j and I 

correspond to the pixel resolution of the camera during data acquisition. 

zone j=60 i=80 

  1.00    1.00           52.16 

  2.00    1.00           50.52 

  3.00    1.00           49.98 

  4.00    1.00           49.24 

  5.00    1.00           49.10 

  6.00    1.00           49.24 

  7.00    1.00           49.31 

  8.00    1.00           50.37 

  9.00    1.00           51.58 

 10.00    1.00           56.08 

 11.00    1.00           56.98 

 12.00    1.00           57.22 

 13.00    1.00           57.48 

 14.00    1.00           57.87 

 15.00    1.00           57.19 

 16.00    1.00           57.73 

 17.00    1.00           56.48 
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 18.00    1.00           51.53 

 19.00    1.00           51.87 

 

The ave_eta.f output file will look as shown below: 

ZONE T="Average eta along axial chord" 

  0.0000000E+00  0.1748539     

  0.0000000E+00  0.1748539     

  4.1666668E-02  4.7683168E-02 

  4.1666668E-02  4.7683168E-02 

  8.3333336E-02  6.2460892E-02 

  8.3333336E-02  6.2460892E-02 

  0.1250000      7.1295686E-02 

  0.1250000      7.1295686E-02 

  0.1666667      6.1686646E-02 

  0.1666667      6.1686646E-02 

  0.2083333      5.3668242E-02 

  0.2083333      5.3668242E-02 

  0.2500000      4.8669264E-02 

  0.2500000      4.8669264E-02 

  0.2916667      4.6691611E-02 

  0.2916667      4.6691611E-02 

  0.3333333      4.0005341E-02 

  0.3333333      4.0005341E-02 

  0.3750000      3.6817040E-02 

  0.3750000      3.6817040E-02 

  0.4166667      3.4643199E-02 

  0.4166667      3.4643199E-02 

  0.4583333      2.6215306E-02 

  0.4583333      2.6215306E-02 

  0.5000000      2.6122063E-02 

  0.5000000      2.6122063E-02 

  0.5416667      2.9814955E-02 

  0.5416667      2.9814955E-02 

  0.5833333      2.1382395E-02 

  0.5833333      2.1382395E-02 
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  0.6250000      2.0048432E-02 

  0.6250000      2.0048432E-02 

  0.6666667      1.9376004E-02 

  0.6666667      1.9376004E-02 

  0.7083333      1.5263919E-02 

  0.7083333      1.5263919E-02 

  0.7500000      1.0377718E-02 

  0.7500000      1.0377718E-02 

  0.7916667      1.5225942E-02 

  0.7916667      1.5225942E-02 

  0.8333333      9.9040223E-03 

  0.8333333      9.9040223E-03 

  0.8750000      1.2714732E-02 

  0.8750000      1.2714732E-02 

 AVERAGE=  4.2231787E-02 

 

where column 1 is the chordwise distance from the blade leading edge to the trailing edge or it can be the 

length of the area of interest along the axis of the turbine. The 2
nd
 column is the chordwise averaged 

effectiveness magnitude. This data can be once again plotted using commercially available plotting 

software like TECHPLOT
®
. 

 

MATLAB
® 
for image to data conversion (cal.m): 

 

 

 

clear all 

close all 

 

tic 

 

X0 = 1; 

Y0 = 1; 

 

W = 160; 

H = 120; 
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Start=1 

End=200 

 

 

'a' 

name = 'windon_'; 

sum=zeros(H,W); 

 

 

for i = Start:End 

 

    if( ~mod(i,10) )    

        fprintf('%d\n',End-i) 

    end 

    

    num = sprintf('%04d',i); 

    ifile = strcat( name,num,'.tif');  

    

    I = imread( ifile, 'tif' ); 

    I = I(Y0:Y0+H-1,X0:X0+W-1); 

    inten=double(I); 

    sum=sum+inten; 

     

 

end 

%%%%% write intensity values to file %%%%%%%% 

    

   ofile = strcat( 'windon.dat');  

   fid = fopen(ofile,'w'); 

    

   fprintf(fid,'zone j=120 i=160\n');    

   for ii = 1:H 

      for jj = 1:W 

%          ave=ave/(End-Start+1); 
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          fprintf(fid, '%6.2f  %6.2f    %12.2f',jj,ii,sum(ii,jj)/(End-Start+1)); 

%         fprintf(fid, '%12.2f',sum(ii,jj)); 

         fprintf(fid, '\n');     

     end 

       

  end 

    

   fprintf(fid, '\n'); 

   fclose(fid); 

     

   toc 

 

 

Sample FORTRAN
© 
Programs: PSP 

 

 

Sample A1P.f 

 

 

 DIMENSION P(200,200) 

      OPEN (1,FILE='Black.DAT') 

 OPEN (2,FILE='NEWREF.DAT') 

 OPEN (3,FILE='a1.DAT') 

 open (5,FILE='a1P.dat') 

c open (6,file='air.dat') 

c open (7,file='gas.dat') 

 

 READ(1,*)   

 READ(2,*)   

 READ(3,*)   

c read(*,*) 

c Calculate Nx and Ny based on binning 

 

 NX=160 

 NY=120 
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 NCUTOFF=45 

c NCUTOFFMAX=180 

 

 WRITE(5,*) 'ZONE J=',NY,'  I=',NX  

  

 sum=0.0 

       

C WRITE(*,*) 'OK' 

C READ(*,*) 

 

 DO 100 I=1,NX 

 DO 101 J=1,NY 

 READ(1,*) A,B,DARK 

  READ(2,*) A,B,WINDOFF 

 READ(3,*) A,B,WINDON 

  

        

 IF(WINDON .LE. DARK) THEN 

C WRITE(*,*) 'DIVIDED BY ZERO' 

 RI=0.0 

      ELSE   

 RI=(WINDOFF-dark)/(WINDON-dark) 

 ENDIF  

 

 IF(WINDON .LE. NCUTOFF) RI=0.0 

 IF((RI.le.0.0).or.(RI.ge.1.0)) then 

 RI=0.0 

 endif 

 

 

c IF(WINDON .GE. NCUTOFFMAX) RI=0.0 

c IF(WINDOFF .GE. 150) RI=0.0 
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 a0 =    4.039133056885E-001 

 a1 =   -6.030004417414E+000 

 a2 =    3.690545577213E+001 

 a3 =   -9.699909626772E+001 

 a4 =    1.358575746787E+002 

 a5 =   -9.588733466192E+001 

 a6 =    2.674944804871E+001 

  

 

 P(I,J)=a0 + a1*ri + a2*ri**2. + ri**3.*a3 + ri**4.*a4 

     +  + ri**5.*a5 + ri**6.*a6 

 

 

 

c WRITE(5,*) A,B,P(I,J) 

 WRITE(5,*) B,REAL(NX)-A+1.0,P(I,J) 

 

101   CONTINUE 

c WRITE(*,*) I 

100   CONTINUE 

 

 

 

 CLOSE(5) 

 CLOSE(3) 

 CLOSE(2) 

 CLOSE(1) 

 

 STOP 

 END 

 

Sample Effect.f 

 

 DIMENSION XT(200),YT(200),XB(200),YB(200) 
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     +  ,YSS(200),YBB(200) 

      OPEN (1,FILE='a1p.DAT') 

 OPEN (2,FILE='n1p.DAT') 

 OPEN (3,FILE='PROFILE.DAT') 

 open (4,FILE='effect.dat') 

 open (5,FILE='Y.dat') 

 

 

 READ(1,*)   

 READ(2,*)   

c read(*,*) 

 

 NX=120 

 NY=160 

 

c PRO1 corresponds to number of points in autocad profile on suction side 

c PRO1 corresponds to number of points in autocad profile on pressure side 

 

 PRO1 = 19 

 PRO2 = 14 

 

 

 WRITE(4,*)'ZONE I=2, J=',PRO1 

 C=0. 

 

 READ(3,*) 

  

 DO I=1,PRO1 

 READ(3,*) A,B 

 XT(I)=A 

 YT(I)=B  

 

 WRITE(4,*) A,B,C 

 WRITE(4,*) A,B,C 
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 ENDDO 

  

c ************************** 

c profiles 

 WRITE(4,*)'ZONE I=2, J=',PRO2 

 C=0. 

 

 READ(3,*) 

  

 DO I=1,PRO2 

 READ(3,*) A,B 

 XB(I)=A 

 YB(I)=B  

 

 WRITE(4,*) A,B,C 

 WRITE(4,*) A,B,C 

 

 ENDDO 

  

c ************************** 

 

 

 

 WRITE(4,*) 'ZONE J=',NX,'  I=',NY 

 

 

 DO I=1,NX 

 X=REAL(I) 

 

C ******* TIP 

 DO J=1,PRO1-1 

  IF(X.GE.XT(J).AND.X.LE.XT(J+1)) THEN 

  YSS(I)=( YT(J+1)-YT(J))/(XT(J+1)-XT(J))*(X-XT(J))+YT(J) 

C  WRITE(5,*) X,YSS(I) 

  GOTO 1105 
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      ENDIF 

 ENDDO 

1105 CONTINUE 

 

 

 

 

C ***** BASE LINE 

 

 DO J=1,PRO2-1 

 

  IF(X.GE.XB(J).AND.X.LE.XB(J+1)) THEN 

  YBB(I)=( YB(J+1)-YB(J))/(XB(J+1)-XB(J))*(X-XB(J))+YB(J) 

C  WRITE(5,*) X,YBB(I) 

  GOTO 1106 

      ENDIF 

 ENDDO 

1106 CONTINUE 

 

 ENDDO 

 

   

 DO 100 I=1,NX 

 DO 101 J=1,NY 

 READ(1,*) A,B,air 

  READ(2,*) A,B,gas 

c WRITE(*,*) 'OK' 

c READ(*,*) 

 

 IF(((AIR .LE. 0.0) .OR. (GAS .LE. 0.0)) .OR. ((AIR .GE. 7.0) 

     +  .OR. (GAS .GE. 7.0))) THEN 

 EFFECT=-0.1 

 ELSE     

 effect=abs((air-gas))/air 

 ENDIF 
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 IF((A .GE. XB(1) .AND. A .LE. XB(PRO2-1)  ) 

     +.AND. (B .LE. YBB(A) .AND. B .GE. YSS(A)) ) THEN 

  

 WRITE(4,*) A,B,effect 

 WRITE(5,*) I,J 

 

 ELSE  

 WRITE(4,*) A,B,-0.1 

 ENDIF 

  

 

 

101   CONTINUE 

 

100   CONTINUE 

 

 CLOSE(4) 

 CLOSE(2) 

 CLOSE(1) 

 

 STOP 

 END 

 

 

Sample ave_eta.for 

 

      DIMENSION H(250,250), 

 

     &YSO(250),YSI(250),AX(250), 

      

     &XSMI(250),YSMI(250),XSMO(250),YSMO(250),XPMI(250),YPMI(250),  

C    &XPMO(250),YPMO(250),YPO(250),YPI(250),   

  

     &IMSI1(250,250)!, IMSI2(250,250),IMSI3(250,250) 
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 OPEN(8,FILE='EFFECT.DAT') 

 OPEN(9,FILE='PROFILE.DAT')   ! BLADE PROFILE 

 

C OPEN(10,FILE='TEST.DAT') 

 OPEN(14,FILE='AVERAGE.DAT') 

 OPEN(11,FILE='TEST2.DAT') 

c OPEN(12,FILE='TEST3.DAT') 

  

 

 

 

C ********** MATERIAL PROPERTIES & OTHER VALUES *********** 

 

 NX=120  

 NY=160   ! SIZE OF INTERESTING REGION 

      ! ##### MUST BE CHANGED ##### 

 

c XMAX = 98     !UNROTATED MAX PIXEL NO. 

c XMIN = 43      !UNROTATED MIN PIXEL NO. 

 

 XMAX = 78 

 XMIN = 28  

 

 

C ************************************************************************ 

 

C ***** READ BLADE PROFILE ***** 

C ***** SUCTION SIDE *****  

 

 

 

 NPO=19     !POINTS IN PROFILE - sn. and pr. side 

respectively 
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 NPB=14 

 

c NPO=24 

c NPB=29 

 

c NMAX=46    !Ending PIXELS No. of profile IN AXIAL CHORD 

DIRECTION 

c NMIN=19     !STARTING PIXEL NO. of profile FOR 

AXIAL CHORD 

 

 NMAX=78 

 NMIN=28 

 

 

c NMAX=98 

c NMIN=43 

 

 NSTEP=1 

 

C WRITE(10,*)'ZONE i=2, j=',NPO 

 C=0 

 

c suction surface  

 

 READ(9,*) 

 

 DO I=1,NPO 

 READ(9,*) A,B 

 

 XSMO(I)=A 

 YSMO(I)=B 

 X1=A 

 Y1=B 

C WRITE(10,*) X1,Y1,C 

C WRITE(10,*) X1,Y1,C 
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 ENDDO 

 

 

 

 

 WRITE(10,*)'ZONE i=2, j=',NPB 

 C=0 

c pressure surface 

 

 READ(9,*) 

 

 DO I=1,NPB 

 READ(9,*) A,B 

 XSMI(I)=A 

 YSMI(I)=B   

 X1=A 

 Y1=B 

C WRITE(10,*) X1,Y1,C 

C WRITE(10,*) X1,Y1,C 

 ENDDO 

 

  

  

 

 WRITE(10,*)'ZONE i=',NY,', j=',NX 

 

C ***** READ EFFECTIVENESS ***** 

 DO I=1,69  ! 113 REPRESENTS THE ROW WHERE THE HEADING FOR DATA IN  

            ! EFFECT.DAT STARTS. I.E. ZONE 3 STARTING ROW 

            ! ZONE 1 AND 2 FOR PRESSURE AND SUCTION SIDE INFO 

    !CHANGES FOR EVERY DIFFERENT PROFLIE 
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c DO I=1,109 

 READ(8,*)  

 ENDDO 

 

 DO I=1,NX 

  DO J=NY,1,-1 

 READ(8,*) A,B,H(I,J) 

 X1=A 

  Y1=B 

C WRITE(10,*) X1,Y1,H(I,J) 

 ENDDO 

 ENDDO 

 

 

 

 

 

 

C ***** MAKE BLADE PROFILE ****** 

 

 

 

 DO I=1,NX 

 

 

 X=FLOAT(I) 

 

 

 

 

C ***** PRESSURE OUTSIDE 

 

 DO J=1,NPO-1 

 

  IF(X.GE.XSMO(J).AND.X.LE.XSMO(J+1)) THEN 
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  YSO(I)=( YSMO(J+1)-YSMO(J))/(XSMO(J+1)-XSMO(J))*(X-XSMO(J)) 

     & +YSMO(J) 

C  WRITE(10,*) X,YSO(I),C 

 

  GOTO 1101 

      ENDIF 

 ENDDO 

1101 CONTINUE 

 

 

 

C ***** PRESSURE BOTTOM 

 

 DO J=1,NPB-1 

 

  IF(X.GE.XSMI(J).AND.X.LE.XSMI(J+1)) THEN 

  YSI(I)=( YSMI(J+1)-YSMI(J))/(XSMI(J+1)-XSMI(J))*(X-XSMI(J)) 

     & +YSMI(J) 

 

C  WRITE(10,*) X,YSI(I) 

  GOTO 1102 

      ENDIF 

 ENDDO 

1102 CONTINUE 

 

 

 ENDDO 

 

   

 

 DO I=1,NX 

 DO J=1,NY  

 

 IF( (FLOAT(J).GE.(YSO(I))).AND.(FLOAT(J).LE.(YSI(I))) ) 
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     &IMSI1(I,J)=1  

        ! IMSI1: PRESSURE SIDE 

 

 ENDDO 

 ENDDO 

         

      

      WRITE(11,*)'ZONE i=',NX,', j=',NY 

 DO I=1,NY 

 DO J=1,NX 

 WRITE(11,*) J,I,IMSI1(J,I) 

 ENDDO 

 ENDDO 

 

 

 

C ****** ROTATE  

 

C ****** BLADE PROFILE 

 

 

 SUMT=0. 

 CT=0.  

 

 

 WRITE(14,*) 'ZONE T="Average eta along axial chord"' 

 

C UNROTATED AVERAGE - AVERAGE ALONG CHORD  

 

 SUM=0. 

 C=0. 

 

 DO I=1,NX 

 X=FLOAT(I) 

 SUM=0. 
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 C=0. 

 DO J=1,NY 

 

 IF ( IMSI1(I,J).EQ.1) THEN 

 Y=FLOAT(J) 

 IF( (H(I,J).GT.0.).AND.(H(I,J).LT.1))THEN 

C  WRITE(*,*) X, H(I,J), C 

  C=C+1 

  SUM=SUM+H(I,J) 

 ENDIF 

 

 ENDIF 

 

 ENDDO 

 

 SUMT=SUMT+SUM 

  CT=CT+C 

 

 

  

      Z=0. 

 IF(C.EQ.Z) THEN 

 AVE=0. 

 GOTO 101 

 ENDIF 

 

 AVE=SUM/C 

c WRITE(12,*) X, AVE 

101 CONTINUE 

 

 

 IF (AVE.EQ.Z) GOTO 2101 

 IF (X.GT.XMAX) GOTO 2101 
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C WRITE(*,*) X,X1 

 XX = (X-NMIN)/FLOAT(NMAX-NMIN) 

 

 WRITE(14,*) XX,AVE 

 

C XX = (X - XMIN)/(XMAX - XMIN) 

 

 WRITE(14,*) XX,AVE 

2101 CONTINUE 

 

 ENDDO 

 

 

 

 

 

1000 CONTINUE 

 

 AVERAGE=SUMT/CT 

 WRITE(*,*) 'AVERAGE=',AVERAGE 

 WRITE(14,*) 'AVERAGE=',AVERAGE 

 

 

 WRITE(*,*) 'PRESS ENTER' 

 READ(*,*) 

 

 

 

 

 STOP 

 END   
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APPENDIX E 

 

Calibration for TSP uses the same instrument set-up as shown for the PSP calibration but in this case 

all measurements are performed at atmospheric pressure and with appropriate filters mentioned in the 

experimental set-up section. A copper specimen previously coated with PSP is now coated with TSP and 

heated to different pre-set temperatures using an external power supply. Images are captured of the test 

specimen at these different temperatures and monitored against an accurate T-type thermocouple. A black 

and a reference image are also captured ~46ºC. Once again like in PSP, the cal.m program is used to 

average all the images acquired for each temperature and the same procedure is used to plot the ratio of 

(Iref/I vs T). After plotting this graph, a curve is fit against this calibration data and the function defining 

the relation between intensities and the temperatures is determined (use TECHPLOT
®
 or 

TABLECURVE2d
®
 to curve fit). 

 

Experimental data acquisition and processing: 

Obtained intensity data from TSP coated surfaces is in *.tif format with a picture resolution dependent 

on the binning setting on the camera during data acquisition. About 200 images per test case are acquired. 

This set of data is run though cal.m to obtain an averaged single data file for each test case. The output 

from this file will have the pixel location in the first column and intensity magnitude in the third column. 

The file is named windon.dat or can be named anything the user prefers. 

Three FORTRAN
©
 programs are further used to process this intensity data to obtain the final heat 

transfer coefficients. The first program called the temperature.f processes the output file of cal.m. This 

program contains the TSP calibration data which when applied to the intensity values provides us with the 

temperature distribution on the platform surface. Also, it is important to remember that for this program to 

function correctly, the cal.m processed black and the reference image acquired immediately after data was 

collected is necessary in the same folder as windon.dat. The output of this program (temperature.dat) is 

also three columned with the third column now containing the temperature distribution on the platform.  
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The next program “haw with prof.f ” processes temperature.dat and converts temperatures into heat 

transfer coefficients. The constant.dat file is important for the proper calculation of heat transfer 

coefficients and the losses associated with conduction and radiation. I should be modified appropriately 

based on experimental temperatures and physical constants for the heater and insulation material. The 

ouput of this program again is h.dat file and a sample portion of a large data file is as shown below with 

the same column sequence as earlier. 

 

ZONE I=2, J=   21.00000     

   35.06740       107.5594      0.0000000E+00 

   35.06740       107.5594      0.0000000E+00 

   35.37360       80.10460      0.0000000E+00 

   35.37360       80.10460      0.0000000E+00 

   38.84440       82.24790      0.0000000E+00 

   38.84440       82.24790      0.0000000E+00 

   40.98810       83.06440      0.0000000E+00 

   40.98810       83.06440      0.0000000E+00 

   43.02970       83.88090      0.0000000E+00 

   43.02970       83.88090      0.0000000E+00 

   44.92230       84.23100      0.0000000E+00 

   44.92230       84.23100      0.0000000E+00 

   47.01090       84.39130      0.0000000E+00 

   47.01090       84.39130      0.0000000E+00 

   50.07340       83.88090      0.0000000E+00 

   50.07340       83.88090      0.0000000E+00 

   53.23790       82.55410      0.0000000E+00 

   53.23790       82.55410      0.0000000E+00 

   55.48370       81.02320      0.0000000E+00 

   55.48370       81.02320      0.0000000E+00 

   58.34200       78.67580      0.0000000E+00 

   58.34200       78.67580      0.0000000E+00 

   60.34460       76.75200      0.0000000E+00 

   60.34460       76.75200      0.0000000E+00 

   62.89470       73.69120      0.0000000E+00 
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   62.89470       73.69120      0.0000000E+00 

   64.89620       71.03680      0.0000000E+00 

   64.89620       71.03680      0.0000000E+00 

   66.90190       67.96610      0.0000000E+00 

   66.90190       67.96610      0.0000000E+00 

   69.30510       63.73380      0.0000000E+00 

   69.30510       63.73380      0.0000000E+00 

   70.75980       60.92880      0.0000000E+00 

   70.75980       60.92880      0.0000000E+00 

   72.08100       57.92060      0.0000000E+00 

   72.08100       57.92060      0.0000000E+00 

   73.41310       55.91960      0.0000000E+00 

   73.41310       55.91960      0.0000000E+00 

   73.41310       55.91960      0.0000000E+00 

   73.41310       55.91960      0.0000000E+00 

   73.86460       83.31340      0.0000000E+00 

   73.86460       83.31340      0.0000000E+00 

 ZONE I=2, J=   18.00000     

   35.06740       107.5594      0.0000000E+00 

   35.06740       107.5594      0.0000000E+00 

   39.15060       106.6408      0.0000000E+00 

   39.15060       106.6408      0.0000000E+00 

   41.28640       106.4130      0.0000000E+00 

   41.28640       106.4130      0.0000000E+00 

   43.79100       105.8296      0.0000000E+00 

   43.79100       105.8296      0.0000000E+00 

   46.55490       105.1201      0.0000000E+00 

   46.55490       105.1201      0.0000000E+00 

   49.74580       103.9379      0.0000000E+00 

   49.74580       103.9379      0.0000000E+00 

   52.55580       102.8233      0.0000000E+00 

   52.55580       102.8233      0.0000000E+00 

   54.94530       101.8061      0.0000000E+00 

   54.94530       101.8061      0.0000000E+00 

   56.95790       100.8413      0.0000000E+00 
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   56.95790       100.8413      0.0000000E+00 

   59.14930       99.52400      0.0000000E+00 

   59.14930       99.52400      0.0000000E+00 

   61.14580       97.97140      0.0000000E+00 

   61.14580       97.97140      0.0000000E+00 

   63.49740       96.19700      0.0000000E+00 

   63.49740       96.19700      0.0000000E+00 

   65.67140       94.06770      0.0000000E+00 

   65.67140       94.06770      0.0000000E+00 

   67.79170       91.85170      0.0000000E+00 

   67.79170       91.85170      0.0000000E+00 

   69.74840       89.60040      0.0000000E+00 

   69.74840       89.60040      0.0000000E+00 

   71.84030       86.22270      0.0000000E+00 

   71.84030       86.22270      0.0000000E+00 

   73.86460       83.31340      0.0000000E+00 

   73.86460       83.31340      0.0000000E+00 

   73.86460       83.31340      0.0000000E+00 

   73.86460       83.31340      0.0000000E+00 

 ZONE J=         120  I=         160 

   1.000000       160.0000     -0.1000000     

   1.000000       159.0000     -0.1000000     

   1.000000       158.0000     -0.1000000     

   1.000000       157.0000     -0.1000000     

   1.000000       156.0000     -0.1000000     

   1.000000       155.0000     -0.1000000     

   1.000000       154.0000     -0.1000000     

   1.000000       153.0000     -0.1000000     

   1.000000       152.0000     -0.1000000     

   1.000000       151.0000     -0.1000000     

   1.000000       150.0000     -0.1000000     

   1.000000       149.0000     -0.1000000     

   1.000000       148.0000     -0.1000000     

   1.000000       147.0000     -0.1000000     

   1.000000       146.0000     -0.1000000     
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   1.000000       145.0000     -0.1000000     

   1.000000       144.0000     -0.1000000     

   1.000000       143.0000     -0.1000000     

   1.000000       142.0000     -0.1000000     

   1.000000       141.0000     -0.1000000     

   1.000000       140.0000     -0.1000000     

   1.000000       139.0000     -0.1000000     

   1.000000       138.0000     -0.1000000     

   1.000000       137.0000     -0.1000000     

   1.000000       136.0000     -0.1000000     

   1.000000       135.0000     -0.1000000     

   1.000000       134.0000     -0.1000000     

   1.000000       133.0000     -0.1000000     

   1.000000       132.0000     -0.1000000     

   1.000000       131.0000     -0.1000000     

 

ZONE I=2, J=21.00000 and ZONE I=2, J=18.00000 represent the corresponding profile.dat file obtained 

like earlier from AutoCAD
© 
used in marking the platform boundary. ZONE J=120,  I=160 is where the 

actual data begins.  

 

The next step would be to use ave_eta.f to determine the chordwise heat transfer coefficient exactly like it 

was explained for PSP. 

 

Location of all Programs: 

MATLAB
®
 =c:\Arun\doe Data-2006\TSP\Gap\2400rpm\ 

 Or   c:\Arun\doe Data-2006\TSP\Gap\2550rpm\  

And in similar folders containing TSP data for hole and combined injection. 

 

FORTRAN
© 
(all the three remaining i.e. aip.f, effect.f and ave_eta.f): 

= c:\arun\doe\data2006 \ TSP\Gap\Program 4-4-binning\Temperature 

   c:\arun\doe\data2006 \ TSP\Gap\Program 4-4-binning\HT with Taw and Profile 

   c:\arun\doe\data2006 \ TSP\Gap\Program 4-4-binning\average 

 

The location of all the experimental data for TSP programs are listed in the following folders: 

c:\Arun\doe\data2006\TSP\gap cooling\2400rpm\ 
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c:\Arun\doe\data2006\gap cooling\2550rpm\  

All output data from the MATLAB
® 
and

 
FORTRAN

© 
programs are of the *.dat file form with three 

columns representing the x, y coordinates of the pixels and the data whether it may be intensities, 

pressures, effectiveness, temperatures or heat transfer coefficients. 

 

Sample Programs used for analyzing PSP and TSP data and calibration files (in addition to cal.m): 

 

Extra Programs for TSP: 

 

Temperature .f 

 

 DIMENSION T(200,200) 

      OPEN (1,FILE='Black.DAT') 

 OPEN (2,FILE='NEWREF.DAT') 

 OPEN (3,FILE='WINDON.DAT') 

 open (5,FILE='Temperature.dat') 

c open (6,file='air.dat') 

c open (7,file='gas.dat') 

 

 READ(1,*)   

 READ(2,*)   

 READ(3,*)   

c read(*,*) 

c Calculate Nx and Ny based on binning 

 

 NX=160 

 NY=120 

 

 NCUTOFF=45 

c NCUTOFFMAX=180 

 

 WRITE(5,*) 'ZONE J=',NY,'  I=',NX  

  

       

C WRITE(*,*) 'OK' 
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C READ(*,*) 

 

 DO 100 I=1,NX 

 DO 101 J=1,NY 

 READ(1,*) A,B,BLACK 

  READ(2,*) A,B,REFERENCE 

 READ(3,*) A,B,WINDON 

  

        

 IF(WINDON .LE. BLACK) THEN 

C WRITE(*,*) 'DIVIDED BY ZERO' 

 RI=0.0 

      ELSE   

 RI=(WINDON-dark)/(REFERENCE-dark) 

 ENDIF  

 

 IF(WINDON .LE. NCUTOFF) RI=0.0 

 IF((RI.le.0.0).or.(RI.ge.1.0)) then 

 RI=0.0 

 endif 

 

 

 IF(WINDON .LE. NCUTOFF) RI=0.0 

c IF(WINDOFF .GE. 150) RI=0.0 

 

 

 a0 =    117.51 

 a1 =   -125.84 

 a2 =    34.005 

  

 

 T(I,J)=a0 + a1*ri + ri**2.*a2 

 

c WRITE(5,*) A,B,P(I,J) 

 WRITE(5,*) B,REAL(NX)-A+1.0,T(I,J) 
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101   CONTINUE 

c WRITE(*,*) I 

100   CONTINUE 

 

 

 

 CLOSE(5) 

 CLOSE(3) 

 CLOSE(2) 

 CLOSE(1) 

 

 STOP 

 END 

 

 

 

Sample program for heat transfer coefficient calculation: 

 

 DIMENSION XT(200),YT(200),XB(200),YB(200) 

     +  ,YSS(200),YBB(200) 

 

 open (1,FILE='temperature.DAT') 

 open (2,FILE='Tair.DAT') 

 open (3,FILE='PROFILE.DAT') 

 open (4,FILE='h.dat') 

 open (5,FILE='constants.dat') 

 open (6,FILE='qnet.dat') 

 open (7,FILE='nusselt.dat') 

 open (8,FILE='DeltaT.dat') 

 

 

 READ(1,*)   

 READ(2,*)   
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 NX=120 

 NY=160 

 

 

c PRO1 corresponds to number of points in autocad profile on suction side 

c PRO1 corresponds to number of points in autocad profile on pressure side 

 

 PRO1 = 21 

 PRO2 = 18 

 

c Writing profiles in file unit 4 (h.dat) 

 

 WRITE(4,*)'ZONE I=2, J=',PRO1 

 C=0. 

 

 READ(3,*) 

  

 DO I=1,PRO1 

 READ(3,*) A,B 

 XT(I)=A 

 YT(I)=B  

 

 WRITE(4,*) A,B,C 

 WRITE(4,*) A,B,C 

 

 ENDDO 

  

c ************************** 

c profiles 

 WRITE(4,*)'ZONE I=2, J=',PRO2 

 C=0. 

 

 READ(3,*) 

  

 DO I=1,PRO2 
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 READ(3,*) A,B 

 XB(I)=A 

 YB(I)=B  

 

 WRITE(4,*) A,B,C 

 WRITE(4,*) A,B,C 

 

 ENDDO 

  

c ************************** 

 

 WRITE(4,*) 'ZONE J=',NX,'  I=',NY 

 

 

 DO I=1,NX 

 X=REAL(I) 

 

C ******* TIP 

 DO J=1,PRO1-1 

  IF(X.GE.XT(J).AND.X.LE.XT(J+1)) THEN 

  YSS(I)=( YT(J+1)-YT(J))/(XT(J+1)-XT(J))*(X-XT(J))+YT(J) 

C  WRITE(5,*) X,YSS(I) 

  GOTO 1105 

      ENDIF 

 ENDDO 

1105 CONTINUE 

 

 

 

 

C ***** BASE LINE 

 

 DO J=1,PRO2-1 

 

  IF(X.GE.XB(J).AND.X.LE.XB(J+1)) THEN 
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  YBB(I)=( YB(J+1)-YB(J))/(XB(J+1)-XB(J))*(X-XB(J))+YB(J) 

C  WRITE(5,*) X,YBB(I) 

  GOTO 1106 

      ENDIF 

 ENDDO 

1106 CONTINUE 

 

 ENDDO 

 

 

 read(5,*)tmainstream 

 read(5,*)sso 

      read(5,*)Area 

 read(5,*)E 

 read(5,*)h 

 read(5,*)R 

 read(5,*)kcon 

 read(5,*)th 

 read(5,*)ti 

      read(5,*)DThb 

 read(5,*)DTib 

 read(5,*)kh 

 read(5,*)ki 

 

 write(*,*)'Enter the voltage in V' 

 read(*,*)V 

 write(*,*)'Enter the current in A' 

 read(*,*)A 

 

      Qfoil=(V*A)/Area 

 

 

 

 DO 100 I=1,NX 

 DO 101 J=1,NY 
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 READ(1,*) A,B,temperature 

 READ(2,*) A,B,tair 

 

   Qloss=h*E*(((temperature+273.15)**4)-((tair+273.15) 

     &                **4)) 

 

      Qloss=Qloss+((kh*DThb)/th)+((ki*DTib)/ti) 

 

      Qnet=Qfoil-Qloss 

 

   DeltaT=(temperature-tair) 

  

 If (DeltaT.le.0.0) then 

 

  ht=-0.1 

c  nusselt=-0.1 

 

c goto 102 

 

c  WRITE(8,*) A,B,DeltaT 

c  WRITE(7,*) A,B,nusselt 

c  WRITE(6,*) A,B,Qfoil,Qloss,Qnet 

c  WRITE(4,*) A,B,ht 

 

 else 

     

     ht=Qnet/(DeltaT) 

 

 endif 

 

 If (ht.ge.1000.0) then 

 

  ht=-0.1 

c  nusselt=-0.1 
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 endif 

 

 IF((A .GE. XB(1) .AND. A .LE. XB(PRO2-1)  ) 

     +.AND. (B .LE. YBB(A) .AND. B .GE. YSS(A)) ) THEN 

 

 WRITE(8,*) A,B,DeltaT 

c WRITE(7,*) A,B,nusselt 

 WRITE(6,*) A,B,Qfoil,Qloss,Qnet 

 WRITE(4,*) A,B,ht 

 

 else 

 

 WRITE(4,*) A,B,-0.1 

   

 endif 

 

101   CONTINUE 

 

100   CONTINUE 

 

 CLOSE(8) 

 CLOSE(7) 

 CLOSE(6) 

 CLOSE(5) 

 CLOSE(4) 

 CLOSE(2) 

 CLOSE(1) 

 

 STOP 

 END 

All the above mentioned programs and the corresponding data files (Calibration and Experimental data) 

can be found in the following folder: 

C:\arun\data2006\TSP\ 
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APPENDIX F 

 

Interstage aerodynamic performance was measured along 1
st
 stage rotor exit, 2

nd
 stage stator exit and 

2
nd
 stage rotor exit. The flow angles, velocities and pressure were quantified along the radial and 

circumferential directions. Radial measurements were conducted at the stator-rotor gap plane to determine 

the effects of rotation on coolant injection through the gap and its spreading on the rotor platform. The 

results are all tabulated in the following folder along with the data acquisition program.  

C:\arun\doe\data2007\ 

The LabVIEW©
©
 program saves data in a *.dat format and the location of the saved data and the 

names can be altered as per the user’s want in the LabVIEW©
©
 user interface window. The locations of 

the pressure data from the three 5-hole probes and the monitoring temperatures can also be modified from 

a window similar to that shown in figure A1 in Appendix A in the LabVIEW©
©
 code. Two programs are 

used for the purpose of analysing the data recorded by the LabVIEW©
©
 system. 

C:\arun\doe\data-2007\fortran1\Newgenesis\genesis.for 

C:\arun\doe\data-2007\fortran\final\final.for 

The same programs are also available in the C:\arun\doe\ or C:\arun\ folders under the folder name 

“Original Programs”.  The section of the original program which has the calibration section needs to be 

modified every time a probe is calibrated. In this case the following equations were replaced in the original 

programs and modified to accommodate Bohn’s method of analysis. The equations used in calculation of 

individual velocities, pressures and flow angles are explained in detain in [93].  

The first program averages the single data file from the LabVIEW©
©
 code and creates three necessary 

input files consisting of averaged pressure data from the three 5-hole probes. As a second step, these files 

are now processed using final.for program after applying the new calibration equations given below, to 

obtain several output files explained in detail by Thomas Neuenschwander and Jerman Christensen in their 

report. The output files have all the information regarding the velocities, pressures and flow angles at each 

of the stations where the measurements were made. The calibration coefficients for each of the probes as 
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used in the FORTRAN analysis code final.for are as shown below. These equations can be used directly in 

future codes for the current set of probes as long as the pressure transducers are not re-calibrated. 

 ! Calculation of the angles using function AL1 and BET1 

  

 AL2  = AL1(J,Q2,Q1) 

 

 BET2  = BET1(J,Q2,Q1) 

 

 Q3  = CP51(J,AL2,BET2)       

  

 Q4  = CPAVG1(J,AL2,BET2) 

 

 Q5  = CPAVG2(J,AL2,BET2) 

 

Probe 1: 

 

AL1= -5.512319983759953+x*(-17.11543392651964+ 

1    x*(-1.298040809491938))+y*(0.2241142175247812) 

 

BET1=-2.718717264745798+x*(0.8199478036058257)+ 

1 y*(-16.67654041023808+y*(-1.127445921223135)) 

 

CP51=1.009104614865544+x*(-0.004425444787712442+ 

1     x*(-0.0003394569419639734))+ 

1     y*(-0.003053282360168662+ 

1     y*(-0.0003218973111682963)) 

 

CPAVG1=0.9485927251228654+x*(-0.003568709539507006+ 

1       x*(-0.0003834157855173904))+ 

1    y*(0.01658397781341292+y*(-0.0002755939909962648))+ 

1    x*y*(-9.995698816520405E-05) 

 

CPAVG2=0.7632956623155647+x*(-0.005242099724902170+ 

1       x*(-0.0003394033373811817))+ 
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1       y*(-0.03721439331458725+y*(-0.0002293591747291200)) 

 

Probe 2: 

 

AL1 = -8.188964057650064+x*(-13.78914194278253+ 

1   x*(0.6145039055028483+x*(0.4689422285801132+ 

1   x*(-0.3080744206055622+x*(-0.1496309643057025))))) 

1 +y*(-0.5005278751038056+y*(-0.1334792991511408)) 

 

BET1=0.1997811942435538+x*(0.4691401072615720)+ 

1   y*(-13.16462897329833+ 

1   y*(-0.06375826157095292+y*(0.6503498150902935))) 

 

CP51 =1.015220101196470+x*(-0.005323243460482455+ 

1      x*(-0.0003385301154613443))+ 

1      y*(-0.0002656617149876935+ 

1      y*(-0.0003330521625932724)) 

 

CPAVG1=0.9598539427228956+x*(-0.004098652968853929+ 

1    x*(-0.0003609428462679500))+ 

1    y*(0.03711967828031742+y*(-0.0001664334884193794))+ 

1    x*y*(-0.0002348891720108321) 

 

CPAVG2=0.9576666607755363+x*(-0.008614741621418281+ 

1       x*(-0.0003622218616282675+x*(5.869469631430000E-06)))+ 

1       y*(-0.03926906810323694+y*(-0.0002081335300061541+ 

1    y*(-5.663869765284229E-07)))+x*y*(0.0002219286244152836+y* 

1       (4.032837222616043E-06)+x*(1.978757358982856E-05)) 

 

Probe 4: 

 

AL1 = -6.379411169456789+x*(-14.85942703259849)+ 

1 y*(0.7667061209486384) 

 

BET1=-5.165865108394477+x*(-0.1645089917806040)+ 
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1   y*(-18.13056021310048) 

 

CP51=1.015735341870901+x*(-0.003748683124218612+ 

1     x*(-0.0003713739136215536))+ 

1     y*(-0.004256964676743704+ 

1     y*(-0.0003710276222985216)) 

 

CPAVG1=0.8985706469162790+x*(-0.002372043221930672+ 

1    x*(-0.0003309886202759218))+ 

1       y*(0.01305761922434033+y*(-0.0003332929596081366))+ 

1    x*y*(-7.036558380246632E-05) 

 

CPAVG2=0.6142847441978816+x*(-0.0004840503546749991+ 

1    x*(-0.0002170332396303335))+y*(-0.03318508289987696) 

 

 

These equations are representative of the five functions used by Rubner and Bohn to determine the 

interstage flow parameters. For more information, read the aerodynamic section in this dissertation or the 

original paper itself. CP51, CPAVG1 and CPAVG2 are Q3, Q4 and Q5 coefficients defined by Bohn. The 

probes were calibrated twice each. The equations as entered in the fortran
©
 code form is from one set 

while the graphs are from the second set. Both are accurate and either one can be used to eventually 

analyze data. Samples of both are given for the sake of clarity and as a demonstration.  

 

 

 

 

 

 

 

 

 

 

 

Fig F1: Hole Configuration of the 5-Hole Pitot Probes. 

 

2 

4 

3 5 1 
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APPENDIX G 

 

Sample Kline McClintock Uncertainty Analysis for uncertainty analysis of 5-hole probe calibration and 

data analysis: 

 

Pamb 102000:=  

input READPRN "probe1.txt"( ):=   - Input calibration file here, i.e have the calibration file in the same 

folder as the program. 

T 23.5 273+:=  

pitch input
1〈 〉

:=  

yaw input
2〈 〉

:=  

P1 input
3〈 〉

:=  

P2 input
4〈 〉

:=  

P3 input
5〈 〉

:=  

P4 input
6〈 〉

:=  

P5 input
7〈 〉

:=  

Pstat input
8〈 〉

:=   

Ptot input
10〈 〉

:=  

n 1 2601..:=  

Q1
n

P3
n

P2
n

−( )
P1

n
Pstat

n
−( )

:=  

Q2
n

P5
n

P4
n

−( )
P1

n
Pstat

n
−( )

:=  
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Q3
n

P1
n

Pstat
n

−( )
Ptot

n
Pstat

n
−( )

:=  

Q4
n

P1
n

P3
n

−( )
Ptot

n
Pstat

n
−( )

:=  

Q5
n

P1
n

P2
n

−( )
Ptot

n
Pstat

n
−( )

:=  

From the collected calibration points 

x
n

Q1
n

:=  

y
n

Q2
n

:=  

z
n

5.5124− 17.115− x
n

⋅+ 1.3− x
n( )2⋅+ 0.224 y

n( )⋅+:=  

pitchcalc
n

z
n

:=  

From the collected calibration points 

x
n

Q1
n

:=  

y
n

Q2
n

:=  

z
n

2.719− 0.82 x
n

⋅+ 16.677− y
n

⋅+ 1.127− y
n( )2⋅+:=  

yawcalc
n

z
n

:=  

x
n

Q1
n

:=  

y
n

Q2
n

:=  

z
n

1.009 0.004x
n

⋅− 0.0003x
n

⋅( )+ 0.003y
n

⋅− 0.0003 y
n( )2⋅−:=  

Q3
n

z
n

:=  

z
n

0.94860 0.004x
n

⋅−( ) 0.0004 x
n( )2⋅− 0.0166y

n
⋅+



 0.0003 y

n( )2⋅− 9.9956 y
n( )⋅ x

n( )⋅+:=  
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Q4
n

z
n

:=  

Pstatcalc
n

Q3
n
Q4

n
⋅ Q4

n
P1

n
⋅−

Q3
n

Q4
n

−
:=  

Ptotcalc
n

P1
n

Pstatcalc
n

−

Q3
n







Pstatcalc
n

+:=  

pitcherror
n

pitchcalc
n

pitch
n

−

pitchcalc
n

100⋅:=  

yawerror
n

yawcalc
n

yaw
n

−

yawcalc
n

:=  

Ptoterror
n

Ptotcalc
n

Ptot
n

−

Ptot
n

100⋅:=  

Pstaterror
n

Pstatcalc
n

Pstat
n

−

Pstat
n

100⋅:=  

pitchdiff
n

pitchcalc
n

pitch
n

−:=  

yawdiff
n

yawcalc
n

yaw
n

−:=  

comp1 augment pitch yaw, pitchdiff,( ):=  

comp2 augment pitch yaw, yawdiff,( ):=  

WRITEPRN "compare1.dat"( ) comp1:=  

WRITEPRN "compare2.dat"( ) comp2:=  

Uncertainty in measurements: 

wT 0.5:=  

R 287.1:=  

wP 1:=  

ρ
Pamb

R T⋅
:=  
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ρ 1.198=  

dρdT
Pamb

R T
2

⋅( )
:=  

dρdPamb
1

R T
2

⋅( )
:=  

wρ dρdT
2

dρdPamb
2

+:=  

wρ 4.041 10
3−

×=  

%ρ
wρ

ρ
100⋅:=  

%ρ 0.337=  

V 2
Ptot Pstat−( )

ρ
:=  

wCpalpha
n

wP
1

P1
n

Pstat
n

−








⋅







2

wP
1−

P1
n

Pstat
n

−








⋅







2

+ wP−
P4
n

P5
n

−( )
P1
n

Pstat
n

−( )2
⋅











2

+ wP

P4
n

P5
n

−( )
P1
n

Pstat
n

−( )2
⋅











2

+









0.5

:=  

wCpbeta
n

wP
1

P1
n

Pstat
n

−
















2

wP
1−

P1
n

Pstat
n

−








⋅







2

+ wP−
P2
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Thus uncertainties for each of the flow parameters like alpha, beta the velocities and the pressures can 

be calculated using the Mathcad
©
 code shown above. 
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APPENDIX H 

 

Table H1: Rotor platform film cooling hole orientation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 D,mm β º θ º 

Hole 1 1.00 35º 47.39º 

Hole 2 1.00 35º 34.50º 

Hole 3 1.00 35º 25.31º 

Hole 4 1.00 35º 49.58º 

Hole 5 1.00 35º 42.29º 

Hole 6 1.00 35º 32.62º 

Hole 7 1.00 37º 57.46º 

Hole 8 1.00 37º 40.25º 

Hole 9 1.00 37º 33.83º 

θ 

Top view 

β 

Side view 
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