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ABSTRACT 
 
 

Geological Modeling of Dahomey and Liberian Basins. 

 (May 2009) 

Hakeem Babatunde Gbadamosi 

B.S., Obafemi Awolowo University, Ile-Ife, Nigeria    

Chair of Advisory Committee: Dr. Luc T. Ikelle 

 

The objective of this thesis is to study two Basins of the Gulf of Guinea (GoG), 

namely the Dahomey and the Liberian Basins. These Basins are located in the northern 

part of the GoG, where oil and gas exploration has significantly increased in the last 10 

years or so. We proposed geological descriptions of these two Basins. The key 

characteristics of the two models are the presence of channels and pinch-outs for depths 

of between 1 km and 2 km (these values are rescaled for our numerical purposes to 600-

m and 700-m depths) and normal faults below 3 km (for our numerical purposes we use 

1 km instead of  3 km). We showed that these models are consistent with the plate 

tectonics of the region, and the types of rocks and ages of rocks in these areas. 

 

Furthermore, we numerically generated seismic data for these two models and 

depth-migrated them. We then interpreted the migrated images under the assumption 

that the geologies are unknown.  The conclusions of our interpretations are that we can 

see clearly the fault systems in both models. However, our results suggest that seismic 

interpretations of the channels and pinch-outs associated with the geology of the 
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Dahomey and Liberian Basins will generally be difficult to identify. In these particular 

cases, we missed a number of channels and pinch-outs in our interpretations. The limited 

resolution of seismic images is the key reason for this misinterpretation. 
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CHAPTER I 

INTRODUCTION 

The main focus of this thesis is to propose 2D geological models of the offshore 

Dahomey and Liberian Basins in the Gulf of Guinea (GoG). These Basins are parts of 

the passive margin that developed from the opening of southern Atlantic Ocean in the 

Late Jurassic to Early Cretaceous as a result of the motion of South American and 

African plates (Emery et al., 1975 and Dumestre, 1985). The motivation for studying 

these Basins is to improve the understanding of potential petroleum reservoir units 

within these segments of the GoG.  

We have divided this introductory chapter into four sections. In the first section, 

we briefly define the geology of the GoG, including the definition that we have adopted 

for this thesis. In the second section, we will describe the major transform fault zones, as 

they play a key role in the construction of the geological models of the Liberian and 

Dahomey Basins in the next chapters. In the third section, we will review the petroleum 

traps likely to be encountered in the GoG. In the final section, we describe in more detail 

the scope of this thesis. 

 
 
 
____________________ 
This thesis follows the style of Geophysics.  
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A brief introduction to the Gulf of Guinea 

In order to establish a good understanding of the petroleum systems of the two 

Basins which are focused in this thesis, we would like to briefly review the geology of 

the GoG. There are several definitions of the GoG in the literature; we have adopted here 

the definition of Emery et al., 1975. They defined the GoG as extending from Sierra 

Leone to Walvis ridge in Angola, to other definitions, such as that of Brownfield and 

Charpentier, 2007. These definitions cover the two Basins of interest. These Basins 

(Dahomey and Liberian Basins) have similar structural and stratigraphic characteristics, 

because they are wrench-modified Basins (Clifford, 1986) and the age range of the rocks 

is from Ordovician to Holocene (Kjemperud et al., 1992). 

Using the Emery definition, we can partition the GoG into three major segments: 

upper, central and lower segments. These three segments are shown in Figure 1.1. The 

upper GoG extends from the Liberian to the Dahomey Basin (A more detailed 

illustration of the various Basins in this section is shown in Figure 1.2). The central part 

is mainly the Niger Delta  (as shown in Figure 1.3) and  the Lower part extends from 

Douala to Walvis ridge in Namibe Basin which is also referred to as the Aptian Salt 

Basin (as shown in Figure 1.4). Because we focus on the Liberian and Dahomey Basins, 

let us expand more on the geology of the upper part.  

 

 

 



 3

The upper Gulf of Guinea Basin* 

The tectonic evolution of the upper part of the GoG can be described in four 

stages which are captured in Figures 1.5a – d. This description is attributed to Mascle et 

al., 1988. 

Stage 1: In the Early Cretaceous times, the opening of the central Atlantic 

resulted in a wide Basin bounded southeastward by the Demarara and western-Guinea 

margin. Rifting in the equatorial Atlantic was initiated contemporaneously with the early 

opening of the South Atlantic. Between Sierra Leone and the Ghana Ridge (on the 

African side) and northern Brazil (on the south American side), small segments represent 

divergent rifting (off Sierra Leone – northern Liberia, off eastern Ivory Coast, off Benin 

and western Nigeria, and off the Brazilian conjugates of these areas), while large areas 

were subjected to transform rifting (northern Sierra Leone, southern Liberia, Ghana and 

the Brazilian conjugates of these areas). The future Demerara-Guinea marginal plateaus 

were also progressively subjected to this new rifting event. 

Stage 2: In Aptian times, the progress of rifting resulted in the creation of small 

divergent Basins (off northern Liberia, eastern Ivory Coast, Benin and the Brazilian 

conjugates of these areas), which were characterized by a thinned continental crust in 

which very thick clastics were probably rapidly deposited and subsequently deformed 

____________________ 
*Part of this chapter is reprinted with permission from “The shallow structures of the 
Guinea and Ivory Coast–Ghana transform margins-Their bearing on the equatorial 
Atlantic Mesozoic Evolution” by Mascle, J., Blarea, E., and Marinho, M., 1988, 
Tectonophysics, 155, 193-209,© 1988 by Elsevier. 
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Figure 1.1: The distribution of the Basins and the geological map of the Gulf 
of Guinea. (Brownfield and Charpentier, 2007) 
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along the main shear zones (northern Sierra Leone, southern Liberian, Ghana and the 

Brazilian conjugates). The Demerara-Guinea Jurassic margin was also affected and 

progressively split, giving rise to the structures of the southern Guinea slope. 

Stage 3: By the Late Albian, the final contact between the continental crusts of 

Brazil and Africa was breached, allowing the formation of the progressive junction 

between small oceanic Basins (created between Sierra Leone and northern Liberia, Ivory 

Coast, Togo-Benin and Brazil), leading to the end of the synsedimentary deformation in 

these Basins.  

Figure 1.2: The distribution of the Basins in the upper segment of the Gulf of Guinea. 
(Brownfield and Charpentier, 2007) 
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Figure 1.3: The location of the main structural domain of the Niger Delta 
from the onshore to the offshore depocenters. (Corredor et al., 2005) 

Figure 1.4: An illustration of the generalized geological profile of the Aptian Salt 
Basin showing the different tectonostratigraphic elements of the raft tectonics in 
the shelf zone to the toe-thrust in the ultra-deepwater of the lower Gulf of Guinea. 
(Arthur et al., 2003) (Used with permission from the Geological Society London) 
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Stage 4: During the Late Cretaceous, in approximately Turonian – Coniacian 

times, the junction between the central Atlantic and south Atlantic oceanic Basins 

through the equatorial Atlantic was established. Prominent bathymetric highs such as the 

equatorial fracture zones and the ridge axis may however, still have formed structural 

Figure 1.5a-d: Four schematic stages of the evolution of upper segment of the Gulf of 
Guinea. The Figures (A-D) show the major events during phase 1-4 (Lower 
Cretaceous, Aptian, Late-Albian and Turonian-Coniacian times respectively) of the 
evolution of the upper GoG. (Brownfield and Charpentier, 2007 and Mascle et al. 
1989) 
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dams, restricting deepwater exchanges between both oceans particularly from Liberia, 

Ghana and the Brazilian conjugates. 

Transform fault zones in the upper part of Gulf of Guinea* 

One of the important aspects of the upper part of GoG that is captured in our 

geological models is the presence of transform fault zones. In this section we would like 

to give the details of the major transform fault zones in the upper part of GoG. The result 

of this section will be used in the next two chapters.  Early tectonic history of the upper 

part of GoG is different from the rest of central and lower parts. Basically, the upper 

part, as described in Figure 1.1, shows two important differences compared to the 

margin of the central GoG: (1) the influence of Transform tectonics (2) the absence of 

evaporites and halokinesis. Middle Jurassic volcanic rocks occur in the upper GoG 

province showing that tectonism started no later than the Mid Jurassic (Dumestre, 1985; 

Kjemperud et al., 1992). 

Transform faulting was initiated between the African and South American 

continental plates in the Early Cretaceous time. This transform faulting has been largely 

studied by several authors (Blarez and Mascle, 1998, Haack et al., 2000, Chierici, 1996, 

MacGregor et al., 2003, Uchupi, 1989, Doust and Omatsola, 1990, Teisserenc and  

____________________ 
*Part of this chapter is reprinted with permission from “Geology and total petroleum 
systems of the Gulf of Guinea” by Brownfield M.E, Charpentier R.R, 2007, U.S 
Geological Survey Bulletin 2207-C, 1-32, © 2007 by USGS. 
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Villemin 1990, Brown et al., 1995, Cameron et al., 1999, Mello and Katz 2000, Arthur et 

al., 2003). Today, it is well accepted that the upper GoG can be described with three 

major transform fault zones: 

I  Pre-transform (Precambrian to Triassic intracratonic rocks and Jurassic to 

                Lower Cretaceous rocks) 

II  Syn-transform (Lower Cretaceous to Late Albian rocks) 

III  Post-transform (Cenomanian to Holocene) 

The key reference for this discussion is Brownfield and Charpentier, 2007. Let us 

expand on each of the three major transforms. 

Pre-transform stage 

 The Pre-transform rocks in the Benin and Dahomey embayment are represented 

by the lower part of the Ise formation (Dumestre, 1985; Elvsborg and Dalode, 1985; 

MacGregor et al., 2003). The Upper Jurassic to the Neocomian Ise formation, which is 

as much as 2,000 m thick, is composed of sandstones, shales and conglomerates 

deposited in fluvial and deltaic environments. Drilling has not reached the base of the 

formation, but seismics indicate that it directly overlies the basement rocks in the 

offshore part of the Benin Basin. 
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Syn-transform stage 

 Data on the age of volcanic intrusives associated with initial block faulting in 

Liberia, southern Sierra Leone, and Ghana indicate that faulting started no later than the 

Mid Jurassic and may be as old as the Early Jurassic (Dumestre, 1985; Kjemperud et al., 

1992). Continental syn- transform rocks in the Ivory Coast Basin also show evidence 

that volcanic and fault activity may have started in the Early Jurassic. The orientation of 

the intrusives indicates that the initial fracturing and the graben formation were 

subparallel to the present coastline. Extensive block faulting and graben filling 

characterized the initial stage of tectonism, followed by transform or extensional faulting 

in the Gulf of Guinea.  

The oldest Mesozoic syn-transform sedimentary rocks are continental Jurassic 

conglomerate and sandstone (Dumestre, 1985), with thicknesses as much as 2,000 m in 

the Ivory Coast Basin. A comparable sequence has not been penetrated by drilling in 

Ghana, indicating a period of non deposition and /or erosion in that area (Kjemperud et 

al., 1992). Drilling has not encountered rocks older than Jurassic in the Ivory Coast 

Basin. During the Neocomian, Aptian and probably Early and Middle Albian, more than 

5,000 m (Chierici, 1996) of syn-transform sediments were deposited in continental to 

marginal marine environments in the Ivory Coast Basin. The oldest marginal marine 

strata are in the Upper Albian, and the lack of evaporites in the Lower Cretaceous 

section indicates that in the Gulf of Guinea province the syn-transform sediments were 

deposited in a humid equatorial climate. 
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Post – transform stage 

The post-transform stage rocks in the Gulf of Guinea province consist 

predominantly of marine Cenomanian to Holocene sandstones, shales and minor 

carbonate rocks deposited in alternating regressions and transgressions (Dumestre, 1985; 

Chierici, 1996; Kjemperud et al., 1992; MacGregor et al., 2003) that resulted in several 

Late Cretaceous and Tertiary unconformities. In general, continental-margin tectonics of 

the province’s post-transform stage was driven by thermal subsidence (Kjemperud et al., 

1992).A marine transgression in the Ivory Coast Basin in the Early Cenomanian signaled 

the beginning of the post-transform stage, resulting in the deposition of limestone on 

fault-block crests and of organic-rich black shale and turbidites in the grabens 

(Dumestre, 1985; Chierici, 1996).  

 
Paleontological evidence indicates restricted water circulation and low oxygen 

content. Following this transgression, a Middle Cenomanian regression and uplift 

resulted in the erosion of the Upper Albian to lower Cenomanian sequence in the eastern 

part of the Ivory Coast Basin. During the regression, more than 3,000 m of Middle and 

Upper-Cenomanian sediments were deposited in the central and western parts of the 

Basin, as evidenced by strata encountered in the Attoutu-1 well in the northwestern part 

of the Basin (Chierici, 1996). In the Turonian time, a major transgression took place that 

established the first communication between Atlantic and Tethyan waters. 

Paleontological analysis indicates that restricted water circulation and low oxygen 
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content continued through the Turonian. Mainly marine shale, with some sandstone, 

characterizes the overlying Coniacian to Santonian interval. 

 
Hydrocarbon reservoirs, traps and seals 

 

The reservoir rocks present in the upper GoG can be classified, according to their 

age, into five major groups within the three main transform sections (Brownfield and 

Charpentier, 2007) as follows: Devonian-Carboniferous sandstone (pre-transform), 

Lower Cretaceous sandstone (syn-transform), Upper and Mid Albian sandstones (syn-

transform), Cenomanian (post-transform and Tertiary sandstones (post-transform). 

Devonian-Carboniferous rocks are the oldest sandstone reservoirs identified within the 

upper GoG. The type-section of these units is present in the Saltpond field in Ghana. The 

depositional environments for the Devonian and carboniferous sandstones are shallow 

restricted marine and fluvial environments, respectively.  

   

 The Lower Cretaceous sandstone of fluvial to deltaic depositional environments 

has been delineated on the seismic data within the syn-transform sequence of the 

offshore Dahomey Basin. Similar sandstone reservoir types have also been encountered 

within the Ivorian Basin with a thickness of about 5,000 m. The depositional 

environment in the Ivory Coast area is continental to marginal marine (Chierici, 1996). 

This type of sandstone reservoir is also expected within the Keta and Tano Basins. 
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The Upper Albian sandstone present in Espoir and Belier fields in the Ivory Coast, 

Tano and Keta Basins represents the late syn-transform reservoir unit. The depositional 

environments vary from the lacustrine, fluvial to fluvial deltaic, marginal marine to 

marine and sub-marine fans. The marginal marine to marine sandstone units in the 

Ivorian Basin have the best petrophysical qualities (porosity of 25 percent and a 

permeability of hundreds of millidarcies). They are laterally discontinuous and exhibit 

variable petrophysical properties over short distances (Kjemperud et al., 1992, 

MacGregor et al., 2003). The Mid Albian sandstones in the Ivorian Basin have poorer 

petrophysical properties, unlike the Upper Albian, and their depositional environment is 

fluvial to continental. In the Dahomey Basin, the Mid Albian reservoir sandstones 

represent the only marine sediments within the syn-transform sequence. 

 

The Cenomanian is noted for the development of a steep-shelf along the 

continental margin of the upper GoG. This steep configuration makes the continental 

shelf more susceptible to a series of low stands which aided in the deposition of detached 

sandstone units, ponded turbidites and clastic fans of potential reservoir properties 

within the slope margin areas. The Tertiary reservoir sandstones are composed of slope 

deposits within the shales and the most likely zone where this can be prospective will be 

the deeper-water section of the Dahomey Basin (Elvsborg and Dalode, 1985, MacGregor 

et al., 2003).   
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Four main trap types have been generally delineated within the upper GoG, as 

follows: fault-block traps, anticlinal traps, erosional channel-fill traps and ponded 

turbidite traps. The fault-block traps host most of the hydrocarbon accumulations within 

the upper part of syn-transform section in shallow to moderate water-depth areas of the 

Espoir and Tano fields. In the offshore-continental slope areas, they occur along the 

Romanche fracture zones in the Ivorian Basin.  

 

The presence of untested anticlinal traps along the fault terminations of the major 

fracture zones in the offshore Dahomey, Keta and Ivorian Basins was delineated on the 

seismic data by MacGregor et al., 2003. However, the anticlinal trap has been 

successfully proven to hold hydrocarbon in the Tano and the eastern part of the Ivorian 

Basins. The erosional channel fills are proven traps within the offshore Dahomey in the 

Aje field. Most of the yet-to-be-drilled erosional channel traps are mostly associated 

with the regional Oligocene unconformity present from Benin to the Ivorian deepwater 

sections. 

 

The ponded turbidites have been delineated within both the pre-transform and 

syn-transform sequence. In the syn-transform sequence, they lie directly above the 

Upper-Albian unconformity (western Ivorian Basin) and are mostly trapped against the 

existing fault. In the post-transform sequence, they occur as isolated sandstone bodies 

that are present in the Ivorian, Keta and Dahomey Basins. The carbonate traps are 

mostly associated with the Late-Albian unconformities which are represented by high 
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amplitude reflections on the seismic data (Kjemperud et al., 1992, MacGregor et al., 

2003). Other unproven stratigraphic traps are mounded sandstones and channel-fill 

sandstones encased within Cenomanian source rocks in the post-transform section of the 

GoG. Sealing is provided by the shale intercalations and up-dip faults in the syn-

transform sequence, whereas the seals for the post-transform reservoirs are provided by 

only the shales. 

 

The remaining part of this thesis is composed of three chapters. In chapter II, we 

propose a geological model of the Dahomey Basin using information obtained from 

published works. Finite- difference modeling will then be used to generate data. The 

resulting seismic data were depth-migrated and structurally interpreted. The algorithms 

used for seismic modeling and migration were obtained from the Center for Automated 

Signal Processing (CASP). We repeated the process of building a geological model, 

generating data and interpreting them for the Liberian Basin in chapter III. In chapter IV, 

we draw some conclusions. 
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CHAPTER II 

GEOLOGICAL MODELING OF THE DAHOMEY BASIN 

Introduction 

In this chapter a 2D geological model that is composed of the major sedimentary 

features in the Dahomey Basin will be proposed. The geological model will be built 

based on lithostratigraphic column, regional chronostratigraphic section, cross-section, 

photographs from outcrops and other published studies from the Basin.  The synthetic 

data for this geological model will be obtained using finite-difference modeling (FDM). 

The resulting shot gathers will be depth migrated and interpreted.   

Dahomey Basin is an integral part of the upper GoG located between 

southwestern part of Nigeria (as shown in Figure 2.1a and b) to southeastern part of 

Ghana (Burke et al., 1972, and Okosun, 1989). It is bounded by the romanche fracture 

zone on the southeastern axis of Ghana and the chain fracture zone on the southwestern 

axis of Nigeria (Jones and Hockey, 1964). The evolution of the Basin could be grouped 

into three earlier-mentioned transform stages i.e., the pre-transform, syn-transform and 

post-transform phases. These zones have had a significant influence on the overall 

petroleum systems of the Basin.   
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Figure 2.1: (a) A schematic map showing the location and bathymetry of 
offshore Dahomey Basin. (b) shows the physiographic features and the 
boundary of both onshore and offshore Dahomey Basin in the Gulf of 
Guinea.  (National Geophysical Data Center, 2008)   
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The discovered fields from this Basin include Aje (southwestern Nigeria), Seme 

(Benin) and Lome (Togo). The syn-transform section is the main reservoir unit for Lome 

field, while the early post-transform unit is responsible for the hydrocarbon production 

in both the Seme and Aje fields. The reservoir rocks are made up of turbidites, channel 

fills and detached sandstones. The trap types are both stratigraphic and structural. The 

shale intercalations and up-dip sealing faults provide the seals for the emplaced 

hydrocarbons. 

Construction of a geological model for the Dahomey Basin 

 

The objective of this section is to build a 2D geological model that is 

representative of the tectonic sequences, facies associations, primary sedimentary 

structures and other depositional structures that are characteristic of the Dahomey Basin. 

The modeling involved integration of published studies by Elvsborg and Dalode, 1985, 

MacGregor et al., 2003, Brownfield and Charpentier, 2007; an outcrop study by 

Olabode, 2006; other earlier publications. The lithostratigraphic columns, regional 

chronostratigraphic correlations, schematic cross-sections, photographs taken from the 

surface outcrop of the Cretaceous Abeokuta group and generalized geological sections 

provided by these authors guided the construction of the geological model.  

Elvsborg and Dalode, 1985, provided a detailed lithostratigraphic column and 

generalized cross-section based on the results of nine exploratory wells drilled and 2D 

seismic data. These results were modified by Brownfield and Charpentier, 2007.  
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Figure 2.2: Stratigraphic column of the offshore Dahomey Basin. (Modified 
after Brownfield and Charpentier, 2007 and Elvsborg and Dalode, 1985). (Used 
with permission from the Oil and Gas Journal and United States Geological 
Survey)  
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The lithostratigraphic column (Figure 2.2) sub-divided the offshore Dahomey 

Basin into 18 geological units from the Jurassic age to the Holocene. These units are 

composed of sandstone, conglomerates, shales, siltstone and sandy-shales, with three 

major unconformities representing the Oligocene, Senonian and Albian.  

The generalized geological section (Figure 2.3) provided a 2D configuration of 

the Basin with detailed facies associations in the younger section of the Basin. The 

characteristic horst and graben structures of the basement rocks were also shown to be 

dipping in the southern direction of the Basin. MacGregor et al., 2003 provided a 

regional correlation of reservoir and source rocks according to their age (Figure 2.4) 

from northeastern Brazil through Dahomey Basin. The Basin was subdivided into five 

Figure 2.3: The cross-section of Dahomey Basin (Brownfield and Charpentier, 
2007 and Elvsborg and Dalode, 1989). (Used with permission from the Oil and 
Gas Journal and United States Geological Survey)  
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major sequences namely, the pre-transform, syn-transform and post-transform I, II and 

III. The reservoir units in the Aje/Seme and Lome fields of the Dahomey Basin were 

correlated with those in the Ivorian, Tano and northeastern Brazilian Basins.  

In addition, a detailed schematic cross-section of the play types within each of 

the Transform sections of the Dahomey Basin was generated (Figure 2.5). The cross-

section provided more insight into structural and stratigraphic configurations for the 

offshore section of the Dahomey Basin. Most of the channels, pinch-outs, and anticlines 

were located in post-transform-I segment of the Basin. Three major source rocks, 

namely: Lacustrine Neocomian (pre-transform), Albian (syn-transform) and the 

Cenomanian-Turonian (post-transform-I) were delineated.  

Olabode, 2006, performed a detailed outcrop study of the Cretaceous sandstones, 

otherwise referred to as the Abeokuta Group, which are comprised of the Araromi, 

Afowo and Ise formations (Omatsola and Adegoke, 1981, Okosun, 1989 and Adediran et 

al., 1991). The study involved the mapping of the different facies from surface outcrops 

and road-cuts in order to establish a depositional model for each of the sequences of 

Cretaceous Abeokuta group. This is the first reported attempt to correlate the offshore 

facies association and sedimentary structures with a surface outcrop of the type-sections 

of the Cretaceous Abeokuta group. 
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Figure 2.4: The regional correlation of the reservoir units and the transform 
boundaries from the upper Gulf of Guinea and northeastern Brazil. (MacGregor 
et al., 2003 (Used with permission from the Geological Society London) 

Figure 2.5: Schematic cross-section of Benin- Dahomey Basin according to 
MacGregor et al., 2003. (Used with permission from the Geological Society London) 
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a) 

b) 

c) 

Figure 2.6a-c: The illustration of the outcrop of the Cretaceous sandstone in the 
Dahomey Basin. (a)  Santonian Mastrichtian sandstone channel (b) Turonian 
(Afowo formation) sandstone encased within a thick deposit of mudstone. (c) Early 
Cretaceous (Ise formation) basal sandstone. (Olabode, 2006) 
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The results suggested that the basal part shown in Figure 2.6c is composed of 

cross-bedded sandstone, laminated sandstones and shale of distal lower shoreface to the 

upper slope environment of deposition.  This sequence is referred to as the Ise formation 

(Omatsola and Adegoke, 1981). The post-transform I sequence is composed of poorly 

sorted pebbles, cobbles, turbidites, pinch-outs, channel complexes and other sedimentary 

facies of upper-slope depositional environment. The presence of these facies associations 

served as an effective stratigraphic trap for the hydrocarbon accumulation in the Basin. 

The Post-Transform II sequence, otherwise known as the Araromi sandstones (Omatsola 

and Adegoke, 1981), is predominantly composed of channel complexes, channel fills 

and other erosional “facies” that are consistent with an upper-slope environment of 

deposition.   

Using results from the above-mentioned studies, 2D geological model of 

Offshore Dahomey Basin was constructed. The model was built with a dimension of 

2.5km by 1.5km for computational efficiency, with 18 geological units to represent the 

major facies and the seawater. A simplified workflow of the key steps taken in creating 

the geological model is given in Figure 2.7. Each color in the geological model (Figure 

2.8) represents a particular lithological unit. These lithostratigraphic units were defined 

within the five transform sections described earlier in the background geology. I used 

Figures 2.3 and 2.5 as a template for the 2D geometrical configuration in drawing the 

geological model shown in Figure 2.8. The details of the facies provided by Figure 2.3 in 

the upper section (predominantly shales and minor sandstone pinch-out directly below 

the seafloor) were replicated in my model in units 1-7 (0 - 430 m).  However, I included 
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a minor limestone (unit-4) in my model to show the reported (Omatsola and Adegoke, 

1981) Paleocene Limestone (Ewekoro Formation). These lithologic units represent the 

sediments present within the post-transforms II and III. 

 

From units 8-13 (between 430 m and 700 m in Figure 2.8), I used Figures 2.5 and 

2.6a because they gave more details of the facies than Figure 2.5 for the post-transform-I 

segment. The channel-fills, thin beds, and pinch-outs shown in Figure 2.5 were included 

in my model (Figure 2.8). I drew two vertically stacked channels as units 9 and 13. Two 

additional detached sand-bodies in the up-dip and down-dip section were included in my 

geological model to indicate the extension of channel-sand bodies. The thin sandstone 

layer shown by unit-10, which indicates turbiditic sandstone, was taken from Figure 2.5. 

 

 In order to draw the configurations of units 14-17, I used Figures 2.3, 2.5 and 

2.6c.  The outcrop photograph showed laminated sandstones numbered 1 - 6 within the 

syn-transform. In my model, I only represented the major sandstones reported in the 

literature, but I followed the configuration shown in Figure 2.5. The basement structure 

in my model was taken from Figure 2.3. I included block faulting in the model to show 

the graben and horst structures that characterize the basement rocks in the pre-transform 

and syn-transform segments.  
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Key steps in building the geological model of Dahomey Basin 

 

 

2D geometrical configuration was obtained 

from figures 2.3 and 2.5 

Details of the facies association for the shallower 

section was taken from figure 2.3 

Configurations of units 14-17 was taken from figures 2.3, 2.5 and 

2.6c 

Figures 2.5 and 2.6b were used in deciphering the facies 

associations in units 8-13 within post-transform I and II 

The basement topography followed the structure shown in figure 2.3.  

 

Figure 2.7: Simplified key-steps followed in the building of the geological model 
for the Dahomey Basin.     
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Figure 2.8: 2D geological model of the Dahomey Basin.
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Seismic data simulation from the geological model 

The geological model was used in the acoustic finite-difference modeling (FDM) 

algorithm obtained from CASP. The velocity and density values shown in Table 2.1 

were assigned to the different layers. We generated 180 shot gathers with stationary 

receivers. The spacing between the shot gathers is 12.5 m. The same spacing was used 

for the receiver positions as shown in Figure 2.9. The first and last shot points and 

receivers were located at 125 m and 2362.5 m respectively.  A sampling rate of 4 ms was 

used in recording the data, to a total record length of 2 s. Absorbing free-surface 

boundary condition was implemented in the code to prevent the generation of free-

surface multiples and ghosts. The distributions of input parameters in the geological 

model were plotted in Figures 2.10 and 2.11 in order to order to convert the geological 

model into the physical models used in FDM. Figures 2.12 and 2.13 show the shot 

gathers at 425 m and 1237.5 m, respectively. 

In order to remove direct waves from the shot gathers, a simulation was done 

using a geological model involving only water. Shot gathers with only direct waves were 

subsequently subtracted from shot gathers containing all the seismic events. The 

resulting seismic data were corrected for geometrical spreading before analyzing the 

various events present in the data. Also, for better understanding of the seismic events in 

these shot gathers, the simulation was carried out by successively revealing the deeper 

layers, so I was able to identify the reflection associated with say the top of unit-3, by 

subtracting the results of the corresponding step of the simulation from the previous one.  



 29

The approach described above was used in identifying the primary events from 

the major transform boundaries from the geological model.  Figure 2.14 shows the 

primary reflection from the top of post-transform II. The major surfaces were delineated 

from the shot gather by the same technique for post-transform I, syn-transform and the 

top of the crystalline basement rocks, as shown in Figures 2.15 to 2.17. While this 

approach works very accurately in delineating continuous reflections from the model, it 

is, however, more challenging to delineate stratigraphic pinch-outs and other 

discontinuous sand bodies in the model. 

In order to confirm the presence of all the geological units in the seismic model, 

the zero-offset gather was generated from the shot gathers. This shows the various 

seismic reflections in all the layers within the model (Figure 2.18). Some of the 

channels, sand pinch-outs and other stratigraphic features were more visible in the zero-

offset gather. However, the presence of diffractions from the rough sea floor and sand 

pinch-outs, coupled with internal multiples and other numerical artifact reduces the 

quality of the image. In order to improve the image quality, the seismic data were depth-

migrated (as shown in Figure 2.19) using the imaging algorithms obtained from CASP. 
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Table 2.1: A listing of compressional velocity and density values used in simulating 
the seismic data for the Dahomey Basin. (Well Leg 159 IODP database)   
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Figure 2.10: The distribution of the compressional velocity (m/s) values in the 
geological model for the Dahomey Basin. 
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Figure 2.9: An illustration of the geometrical configuration of the shot-points and 
receiver positions used in the finite-difference modeling of the seismic data.  
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Figure 2.11: The distribution of the density (kg/m3) values in the geological model 
for the Dahomey Basin. 
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Figure 2.12: An illustration of the shot gather obtained at shot 
point 425 m from FDM simulation of the geological model for 
the Dahomey Basin.  
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Figure 2.13: An illustration of the shot gather obtained at shot 
point 1237.5 m from FDM simulation of the geological model 
for the Dahomey Basin.  
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Figure  2.14: An illustration of the shot gather obtained at shot 
point 425 m showing the primary reflection from the top of layer 
5 (post-transform-I1 boundary) of the geological model for the 
Dahomey Basin. 
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Figure 2.15: An illustration of the shot gather obtained at shot 
point 425 m showing the primary reflection from the top of layer 
8 (post-transform-I boundary) of the geological model for the 
Dahomey Basin. 
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Figure 2.16: An illustration of the shot gather obtained at shot 
point 425 m showing the primary reflection from the top of 
unconformity surface at layer 14 (syn-transform boundary) of the 
geological model for the Dahomey Basin. 
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Figure 2.17: An illustration of the shot gather obtained at shot 
point 425 m showing the primary reflection from the top of layer 
18 (basement complex rock) of the geological model for the 
Dahomey Basin. 
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Figure 2.18: An illustration of the zero-offset shot gather obtained using 180 
shot-points and receivers for the geological model of the Dahomey Basin. 
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Figure 2.19: An illustration of the un-interpreted depth migrated seismic data 
from the shot gathers generated from the geological model for the Dahomey 
Basin.  
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Interpretation of the migrated seismic data 

The interpretation of the 2D migrated seismic data generated from the geological 

model, involved structural interpretation of the seismic data as shown in Figure 2.20.  

The interpretation began with the mapping of all the faults present in the migrated 

image. A gravity driven slump-fault (F-1) was delineated in the shallower depth of the 

seismic section and it dips in the northwest to southeast direction.  The remaining 

interpreted faults, F-2 to F-6, were restricted to the deeper depth of the Basin. Faults F-3 

to F-4 dips in northeast to southwest direction and they have higher inclination angles 

than F-1 and F-2.  

An interpretation was also carried out for the main reflections by tracking 

horizons with significant amplitude and continuity. Eleven horizons interpreted from the 

data were named H-1 to H-11. All the interpreted horizons generally dip towards the 

same direction. Horizon H-8 shows an anticlinal structure around the up-thrown side of 

fault F-3. Horizons H-10 could not be delineated between faults F-5 and F-6. From the 

displacement of the horizons around the basement faults, the type of fault could be 

determined as normal.  For example, horizon H-10 between F-4 and F-5 represents the 

hanging wall of F-4 fault whereas the H-10 between F-4 and F-3 represents the footwall 

segment of F-4.     
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Figure 2.20: An illustration of the interpretation of the migrated seismic 
section with eleven horizons (H-1 to H-11) and six normal faults (F-1 to F-6) 
from the geological model for the Dahomey Basin.    
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Figure 2.21: The result of the comparison between the interpretations in 
Figure 2.20 and the actual geological model for the Dahomey Basin. 
 Notice: The presence of five additional horizons named (P1 - P5). The 
dashed lines (P-1, P-3 and P-5) represent the horizons that were drawn 
across the image. P-2 and P-4 represent the base of the two isolated channels 
within the post-transform I sequence.  
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Discussion of the interpretation 

 On comparing the interpretation with geological model (Figure. 2.8), the 

interpreted horizons and faults could be related to the major layers. The transform 

boundaries in the geological model were interpreted as H-3, H-6, H-8 and H-9 horizons. 

The interpretation of the base of the Santonian to Mastrichtian channel was delineated by 

H-5. The unconformity surface that separates the syn-transform margin from the post-

transform margin was marked by the H-8 horizon. The interval between H-8 and H-9 

represents the Albian–Aptian sequence that is composed of sandstones with the 

characteristic syn-transform anticline. The interval between H-9 and H-11 are 

predominantly basal sandstone, shale and siltstone units of the Neocomian age. The 

basement (H-11) is characterized with horst and graben structures that resulted from the 

extensional faulting system.  

However, the main objective of interpreting this data is to confirm whether all 

the layers represented in the geological model were also imaged in the migrated seismic 

section. On contrary, some of the layers were not delineated as shown in Figure 2.21. 

Horizons H-2 and H-3 in the interpretation should be switched with addition of an extra 

horizon on the up-thrown side of fault F-1. Horizons P1 to P-5 were used to represent 

those missed layers. P-1 and P-3 represent the tops of the second and third channels 

whereas; the basal parts were denoted by P-2 and P-5 respectively. These sand-rich 

vertically stacked channel systems within the post-transform I sequence are the 
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exploration target in the Dahomey Basin.  Horizon P-5 (denoted by dashed line) with 

weak reflection showed the top of Aptian sandstone.  

Summary and conclusions  

In this chapter, a 2D model of the geological units of the Dahomey Basin was 

built by using surface outcrop studies, information obtained from available well-log and 

other published works. The seismic data for this geological model were simulated using 

finite-difference modeling. The shot gathers were processed and depth-migrated to 

enhance the structural interpretation of the seismic data.  

The interpretation showed the presence of six normal faults, F-1 to F-6, that are 

consistent with an extensional tectonic environment. Most of them are related to the 

development of horst and graben structures in the basement except for F-1 which is a 

gravity-driven slump fault (growth fault).  Eleven horizons (H-1 to H-11) with 

significant amplitude and continuity were also interpreted for the various geological 

units in the model.  

The base of the Santonian to Mastrichtian channel complex was interpreted and 

named H-5. This channel system shows an amalgamated channel complex representing 

at least two erosional phases. The remaining two isolated channel bodies were difficult 

to delineate because their reflections were laterally restricted and weak. It is noteworthy 

to emphasize that the values of the depth were chosen for computational efficiency. The 

actual depths of these geological units could be five times higher than the chosen values.  
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This approach to Basin modeling has facilitated a better understanding of the 

challenges involved in constructing geological models and seismic imaging of potential 

reservoirs in the Dahomey Basin. 
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CHAPTER III 

GEOLOGICAL MODELING OF THE LIBERIAN BASIN 

Introduction 

The aim of this section is to propose a 2D geological model that shows the 

various geological units in the Liberian Basin. The model will be constructed based on 

the integration of chronostratigraphic framework and cross-section published by Bennett 

and Rusk, 2002.  The synthetic seismic data for this geological model will be simulated 

using finite-difference modeling. The seismic data will be depth-migrated and 

structurally interpreted.  

The Liberian Basin is located in offshore Liberia between Sierra Leone and the 

southern Liberian-Harper Basin (as shown in Figure 3.1). It is bounded on the southern 

margin by the St. Paul transform system and on the northern margin by the Sierra Leone 

transform system. Behrendt et al., 1974 conducted a study of the continental margin of 

Liberia using gravity and magnetic data. The study showed the presence of three fracture 

zones between the transform systems, which are referred to as the Monrovian, Buchanan 

and Greenville fracture zones. 

Two major episodes of tectonics i.e., the rifting phase (Late Jurassic to Aptian) 

and the passive margin phase (Late Albian to Present) controlled the stratigraphic and 

structural architecture of the Basin. The rifting phase is equivalent to the pre- and syn- 

transform phases of the Dahomey Basin.  
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This phase is dominated by a series of basement-faulting, subsidence and the 

development of horsts, graben and half graben structures. The passive margin phase is 

associated with marine transgression and a shift in the shelf margin that led to the 

deepening of the fault blocks and deposition of marine sediments in the Basin.  

The petroleum system of the Liberian Basin could be divided into five as 

follows; Aptian, Early to Mid Albian, Late Albian to Early Cenomanian, Late 

Cenomanian to Mastrichtian and Paloecene to Eocene. The three main source rocks are 

the lacustrine Aptian shales, the Aptian to Early Cenomanian shales and the Late 

Figure 3.1: The location map of the Liberian Basin with the major fractured 
zones that are associated with the transform system. (University of Texas (UT) 
Library, 2008) 
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Cenomanian to Turonian shales.  The reservoir rocks are Aptian to Early Cenomanian 

sandstones, Late Cretaceous carbonates and sandstones and the Paleogene sandstones 

and carbonates (Bennett and Rusk, 2002). The stratigraphic pinch-outs, slumps and 

debris flow features are restricted to the Early Tertiary and Late Cretaceous sections of 

the Basin (Brownfield and Charpentier, 2007). The major trapping mechanisms are the 

fault anticlines, unconformities, sand pinch-outs, drapes and rotated block faults 

(combination trap types). The sedimentation and Basin geometry were controlled by the 

closeness to the strike-slip fault along the St. Sierra Leone and St. Palmas at the northern 

and southern margins of the Basin, respectively (Bennett and Rusk, 2002).  

Construction of a geological model for the Liberian Basin 

The construction of the geological model of the Liberian Basin was based on the 

regional cross-section performed by Bennett and Rusk, 2002. Unlike the Dahomey 

Basin, which has been more extensively studied, there is no outcrop analog to 

complement the cross-section. Therefore, the model was built with the aim of 

representing the major geological units present in the Basin using the results of the study 

by Bennet and Rusk, 2002 (as shown in Figure 3.2a and 3.2b). Also, most of the 

volcanic intrusives (the Monrovia diabase) were restricted to the Paleozoic; hence they 

were combined with the crystalline basement rocks in the older segments of the Basin.  
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Figure 3.2: (a) The regional lithological correlation of the facies, (b) 
illustrates the chronostratigraphic framework of the projected oil window in 
the deepwater section of the Liberian Basin. (Bennett and Rusk, 2002) 
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The aim of this modeling is to capture the major structural configurations that 

have influenced the depositional pattern of the various facies within the Basin. The 

simplified key steps taken in building the geological model is shown in Figure 3.3. In 

order to understand the basement topography of the study area, the 2D 

chronostratigraphic framework and regional lithological section provided by Bennett and 

Rusk, 2002, gave a lead on the geological units within the Liberian Basin. The regional 

well-section was modified by eliminating the last two wells in the northwestern section 

(the Sierra Leone wells) and the last well on the southeastern segment (the onshore well) 

in order to show only the Liberian offshore wells. This cross-section (Figure 3.2a) aided 

in the determination of the facies association in the chronostratigraphic framework.  

A 2D geological model (Figure 3.4) with a dimension of 2.5 km by 1.4 km was 

built according to the modified cross-section and Chronostratigraphic framework 

(Figures 3.2a and b) described above for the Liberian Basin. The first seven layers 

represent the Passive margin segment of the Basin while the last three units represent the 

rifting phase margin. Units-2 and 3 represent the Early Tertiary sequence below the 

seawater in which unit-3 is sandstone pinch-out from the Paleocene interval of limestone 

and shale represented by unit-2.  The Mid to Late Cretaceous shales and sandstones were 

represented by units-4 and 5 respectively. This is equivalent to the prolific Turonian 

sandstone in the Dahomey Basin area.   

Unit-6 represents the Early Cenomanian sandstone, which is a potential reservoir 

rock within the petroleum system in the Liberian Basin. Unit-7 represents the massive 
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Albian shale, which is a mature source rock interval within the Basin. The Aptian 

sandstone was represented by unit-8, whereas the pre-Aptian shale was represented by 

unit-9. The regional equivalence of unit-9 is the Neocomian-shale (pre-Aptian shale) in 

the adjoining Basins. This unit serves as a source rock for the pre-transform reservoir 

rocks. The last layer shows the combination of volcaniclastics, basalts, intrusive diorites 

and a granitic basement to form the crystalline basement complex rocks of the Paleozoic 

age. The basement structure shows the prevalence of deep extensional tectonics in form 

of normal faults.  

Key-steps in building the geological model of Liberian Basin 

 
 
 
 
 
 

Facies associations in the geological model 
were obtained from Figure 3.2a 

2D geometrical configuration was obtained from the 
chronostratigraphic framework in Figure 3.2b 

The basement structure was determined from Figure 3.2a (horst and 
graben structure) 

Figure.3.3: Simplified key-steps followed in building the geological model for 
the Liberian Basin.   
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 Velocity (m/s) Density (kg/m3) Facies 
Tectonic 

Subdivision 

1 1500 1000 Sea-Water  

2 1680 1321 Early Tertiary Limestone + Shale 

Passive-Margin 
Phase 

3 2203 1756 Early Tertiary  Sandstone 

4 2480 1977 Late Cenomanian /Turonian Shale 

5 2600 2150 Turonian Sandstone 

6 2762 2280 Early Cenomanian Sandstone 

7 2605 2550 Albian - Shale 

8 2862 2650 Aptian - Sandstone 

Rifting Phase 9 2500 2450 Pre - Aptian Shale 

10 3000 2850 Crystalline Basement Complex 
 

 

Seismic data simulation from the geological model 

The simulation of the seismic data from the geological model followed the same 

configuration used in generating the data set for the Dahomey Basin as shown in Figure 

3.5. The assigned compressional velocity and density values shown in Table 3.1 were 

used in the acoustic FDM algorithm obtained from CASP. The distributions of the input 

parameters in the geological model were plotted in Figures 3.6 and 3.7 in order to 

convert the geological model into the physical models used in FDM. The direct waves 

were also removed from the data to enhance the reflection from the primary events. 

Table 3.1:  A listing of compressional velocity and density values used in simulating the 
seismic data for the Liberian Basin. (Well Leg 159 IODP database)    
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The next task after the FDM simulation was to identify the various primary 

reflections present in the data. Figures 3.8 and 3.9 showed the shot gather obtained from 

the first shot point (125 m) and 750 m. Apart from the sea floor, the identification of the 

exact primary reflection from the other units can be challenging. By creating sub model 

of the Basin and simulating the seismic data at shot-point 51 (750 m), the primary 

reflections from units-4 to 10 (Figures 3.10 to 15) were identified separately. The 

primary reflections from these seven units were correctly identified in the shot gather 

shown in Figure 3.16.  

The relatively continuous geological units were easier to identify than the sand 

pinch-outs. In order to confirm the presence of all the geological units in the seismic 

model, the zero-offset gather was also generated from the shot gathers. The zero-offset 

gather shows the seismic events simulated from all the geological units present in the 

model (Figure 3.17). Unlike the Dahomey Basin, the shallower stratigraphic pinch-outs 

were difficult to delineate from the zero-offset gather because the interval between the 

basal part of the stratigraphic pinch-out and the underlying unit is too thin. Also the 

primary reflections from the basement were difficult to identify because of the 

interference from diffractions, edge-effects, internal multiples and other numerical 

artifacts present in the data. Therefore, in order to carry out a meaningful analysis, the 

seismic data were depth-migrated and the interpretation is discussed in the next section. 
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Figure 3.5: An illustration of the geometrical configuration of the shot-point and 
receiver positions used in the finite-difference modeling of the seismic data from 
the geological model for the Liberian Basin.  Notice that a total of 180 shot-points 
and receivers at 12.5m intervals were used in generating the data. 

2375 (m) 125 (m) 

NW SE 
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Figure 3.7: The distribution of the density (kg/m3) values in the geological 
model for the Liberian Basin. 

Figure 3.6: The distribution of the compressional velocity (m/s) values in the 
geological model for the Liberian Basin. 
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Figure 3.8: An illustration of the shot gather obtained at shot point 125 m 
from the FDM simulation of the geological model for the Liberian Basin.   
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2250 0 

Figure 3.9: An illustration of the shot gather obtained at shot point 
750 m from the FDM simulation of the geological model for the 
Liberian Basin. Notice the identification of the reflections from the 
various geological units can be challenging without generating the 
shot-gathers separately from different sub models.  

Distance (m) 
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Figure 3.10: An illustration of the shot gather obtained at shot point 
750 m showing the primary reflection from the top of layer 4 (Late 
Cenomanian/Turonian shale) of the geological model for the Liberian 
Basin. 
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2250 0 

Figure 3.11: An illustration of the shot gather obtained at shot 
point 750 m showing the primary reflection from the top of layer 6 
(Early Cenomanian sandstone) of the geological model for the 
Liberian Basin. 

Distance (m) 
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Figure 3.12: An illustration of the shot gather obtained at shot point 
750 m showing the primary reflection from the top of layer 7 (Albian 
shale) of the geological model for the Liberian Basin. 
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Figure 3.13: An illustration of the shot gather obtained at shot point 
750 m showing the primary reflection from the top of layer 8 (Aptian 
sandstone) of the geological model for the Liberian Basin. 
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Distance (m) 

Figure 3.14: An illustration of the shot gather obtained at shot 
point 750 m showing the primary reflection from the top of layer 9 
(pre-Aptian shale) of  the geological model for the Liberian Basin. 
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2250 0 

Figure 3.15: An illustration of the shot gather obtained at shot point 
750 m showing the primary reflection from the top of layer 10 
(basement complex rock) of  the geological model for the Liberian 
Basin. 

Distance (m) 
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Figure 3.16: An illustration of the shot gather obtained at 
shot point 750 m showing the primary reflections from all 
the surfaces of the layers within the geological model for the 
Liberian Basin. Notice the reflections from the tops of the 
shally intervals are weaker and more difficult to identify.   
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2250 0 

Distance (m) 
Figure 3.17: An illustration of the zero-offset shot gather obtained using 180 
 shot-points and receivers for the geological model of the Liberian Basin. 
 Notice the presence of events from diffractions from the rough sea floor, 
edge-effects, internal multiples and other numerical artifacts. 
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Figure 3.18: An illustration of the un-interpreted depth-migrated seismic data 
from the shot gathers generated from the geological model for the Liberian 
Basin.  
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Interpretation of the migrated seismic data  

Interpretation of the migrated section from the shot gathers involved a structural 

interpretation of the reflection geometry as shown in Figure 3.19.  Five faults named (F-

1 to F-5) were delineated. All the faults were confined to the deeper section, but the 

associated anticlinal and synclinal structures still affected the shallower segments of the 

Basin. Except for fault F-3, all the faults dip towards northwest-southeast direction. The 

interpretation of the horizons involved tracking the reflection continuity across the 

seismic section. Seven horizons denoted by H-1 to H-7 were delineated in the migrated 

seismic section.  

The geometrical configuration of the fault system and the mapped horizons 

reveals the structure of the basement topography. The anticlinal structures observed in 

horizons H-4 and H-5 were as a result of the up-thrown side of the basement faults F-2 

and F-3. Also horizon H-7 could not be delineated on the hanging wall of fault F-4 and 

F-3 because its depth was not included in the migration.  The shallowest horizons H-1 to 

H-5 generally dip towards the same direction.  

Discussion of the interpretation 

By comparing the interpreted horizons with the geological model, we can check 

whether all the layers were properly imaged in the migrated seismic section. Horizon H-

1 shows the sea floor dipping in the northwest-southeast according to the cross-section 

shown in Figure 3.2a. The detached sand bodies were quite difficult to delineate because  
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Figure 3.19: An illustration of the interpretation of the migrated seismic 
section with seven horizons (H-1 to H-7) and five normal faults (F-1 to F-5) 
from the geologic model for the Liberian Basin.  
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their reflections were weak and discontinuous across the seismic section. The Early 

Tertiary sandstone pinch-outs were interpreted as a continuous horizon with H-2. The 

Turonian sand bodies were completely missed out.  These Late Cretaceous and Early 

Tertiary sand bodies are the main reservoir rocks in the deepwater areas of Liberian 

Basin. The top of Late Cenomanian shale was represented by H-3 whereas; H-4 

represents the top of Turonian sandstones. The top of Albian shale was represented by 

H-5. The boundary between the passive margin and rifting phase was represented by 

horizon H-6. 

In the interpretation above, some of the layers present in the geological model 

were not delineated. Figure 3.20 showed the comparison between the interpretation and 

the geological model. Four horizons namely; P-1, P-2, C-1 and C-2 were missed out in 

the interpretation. Horizon P-1 was represented with dashed lines because it was drawn 

across the seismic section to aid the mapping of the top of the detached sand bodies. 

Horizons C-1 and C-2 represent the base of these sandstone pinch-outs. Horizon P-2 

represents the top of pre-Aptian shale that was also missed out in the interpretation in 

Figure 3.19.  

All the interpreted faults are normal, which is consistent with the extensional 

tectonic regime described earlier for the Basin. Unlike the Dahomey Basin, no fault was 

delineated in the shallower segment (Tertiary unit) of the seismic data.  
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Figure 3.20: The result of the comparison between the interpretation in 
Figure 3.19 and the actual geological model for the Liberian Basin. Notice: 
The presence of four additional horizons named (P-1, P-2, C-1and C-2). 
The dashed line (P1) represents the horizon that was drawn across the 
image. C-1 and C-2 represent the base of the isolated sand bodies.   
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The reflections above the horst structures were more representative of the total 

number of reflections expected in the seismic section because the horizons were 

encountered at a shallower depth compared with the horizons above the graben structure.  

Summary and conclusions 

In this chapter, a 2D geological model was built from a published regional cross-

section of the offshore segments of Liberian Basin. This model included major structural 

configuration of the geological units in Liberian Basin. The seismic data from the 

geological model were simulated using finite-difference modeling. The shot gathers 

were processed and depth-migrated to allow for a detailed interpretation of the seismic 

section.   

The interpretation showed the presence of seven horizons (H-1 to H-7) and five 

basement-related extensional faults (F-1 to F-5) in the migrated seismic section. The 

slope-related isolated sand bodies within the Late Cretaceous could not be delineated in 

the interpretation because the reflections were weak and laterally discontinuous. These 

slope deposits were products of mass wasting, and the sediments occur in form of 

slumps, debrites, and rubbles which are related to gravity-controlled sedimentary 

features. The slope deposits represent the main reservoir targets in the Late Cretaceous 

and Early Tertiary section of the Basin particularly in the deeper water areas. 

 However, it is noteworthy to emphasize that the values of the depth used in the 

modeling were chosen only for computational efficiency. The actual depths could be 
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seven times higher than the chosen values. This approach to modeling has provided 

further insight into understanding the reservoir potentials of the offshore Liberian Basin 

and some of the challenges associated with imaging and interpreting the potential 

reservoir units. This approach to reservoir modeling could be a useful template for future 

exploration in this segment of the GoG.    
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

This study involved the construction of geological models of two Basins (the 

Dahomey and Liberian) in the Gulf of Guinea. The central focus of this thesis was to 

provide a further understanding of the geological sequences and the challenges involved 

in properly imaging and interpreting the potential reservoir units for hydrocarbon 

exploration. These geological models were built using available information in the 

literature, well-log data, outcrop studies, regional cross-sections and schematic 

geological sections that show the geometrical relationships of the various units.  

The seismic data for the geological models were simulated using finite-difference 

modeling. The resulting shot gathers were plotted and analyzed to show all the seismic 

events from the geological model. The seismic data were depth-migrated before 

performing a structural interpretation. The interpretation of the migrated seismic section 

showed that the basement tectonics had a significant impact on the general architecture 

of the two Basins. 

 In Dahomey Basin, the base of the amalgamated channel complex was 

delineated with H-5 but the two other isolated channel systems in the Mid to Late 

Cretaceous segment of the model could not be interpreted from the seismic data. The 

delineation of these channels was difficult because of the discontinuous reflections 

above the channels. A similar difficulty was faced in delineating the slope fills and other 
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sandy pinch-outs in the Liberian Basin. Except for the gravity-related slump fault 

interpreted in the Dahomey Basin, almost all the faults were restricted to the older 

segments of both Basins. All the faults interpreted are normal, and are consistent with 

the extensional tectonic regime of the Basins. 

 Overall, despite the inherent ambiguities in the choice of velocity, density and 

depths assigned to each defined facies, this approach to the geological and seismic 

modeling of potential reservoir units could be a viable template for future exploration 

efforts in the GoG. 
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