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ABSTRACT 

 

Characterization and Mapping of the Gene Conferring Resistance to Rift Valley Fever 

Virus Hepatic Disease in WF.LEW Rats. (December 2008) 

Ralph Jennings Callicott, D.V.M., Louisiana State University 

Chair of Advisory Committee: Dr. James Womack 

 

 Rift Valley Fever Virus is a plebovirus that causes epidemics and epizootics in 

sub-Saharan African countries but has expanded to Egypt and the Arabian Peninsula. 

The laboratory rat (Rattus norvegicus) is susceptible to RVFV and has been shown to 

manifest the characteristic responses of humans and livestock. The rat has frequently 

been used as a model to study RVFV pathogenesis.  Several strains have been infected 

and some found to be resistant to hepatic disease while others were not. This resistance 

was found to be associated with a dominant gene inherited in Mendelian fashion. The 

congenic rat strain WF.LEW and several substrains of the parental strains were used to 

try and locate the resistance gene. Microsatellites and single nucleotide polymorphisms 

were used to characterize the genomes of various rat substrains in an attempt to map the 

gene. Breeding and viral challenge experiments were used to further characterize the 

strains and assign a location to the resistance gene. 

  The LEW/SsNHsd rats showed approximately 37% genomic difference as 

compared with LEW/MolTac rats, and 8% difference as compared with LEW/Crl rats. 

WF/NHsd rats demonstrated a difference of approximately 8% as compared with 
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WF/CrCrl rats. Genotyping of the congenic WF.LEW revealed Lewis markers on RNO3 

and RNO9. Subsequent backcross experiments and viral challenge experiments assigned 

the resistance gene to the distal end of RNO3. 
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NOMENCLATURE 

 

LEW Lewis 

RNO3 Rat chromosome 3 

RNO9 Rat chromosome 9 

RVFV Rift Valley Fever Virus 

SSLP Simple Sequence Length Polymorphism 

SNP Single Nucleotide Polymorphism 

TFIIH Transcription Factor II H 

WF Wistar-Furth 
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CHAPTER I 

INTRODUCTION: RIFT VALLEY FEVER VIRUS AND RATS 

 

 Rift Valley Fever virus (RVFV) is a member of the family Bunyaviridae. This 

family is divided into the five genera of Bunyavirus, Phlebovirus, Hantavirus, 

Nairovirus, and Tospovirus (Frese et al. 1996). RVFV is a plebovirus that causes 

epidemics and epizootics in sub-Saharan African countries but has expanded to Egypt 

(Ritter et al. 2000) and the Arabian Peninsula (Morrill and Peters 2003). Its 

transmission occurs mainly by Aedes and Culex mosquitoes (Le May et al. 2004), 

although transmission may also occur by other mosquito species or possibly by blood 

sucking arthropods. RVFV is responsible for devastating disease in livestock with 

ruminants being the most susceptible. Humans may be infected and suffer from a mild 

influenza-like illness. However, in a small proportion of cases the disease may progress 

in severity and result in hepatitis in conjunction with hemorrhagic fever, retinitis, or 

meningoencephalitis (Laughlin et al. 1979).  The first human deaths reported to be 

directly caused by RVFV occurred in 1975 (Anderson et al. 1987). In ruminants the 

disease is usually associated with a fulminant hepatitis in young naïve animals and 

abortions in older animals. Sheep are particularly sensitive and experience mortality 

from 25% in adults up to 90% in lambs (Ritter et al. 2000). Recently, concern has been 

raised about the use of RVFV as a bioterrorism agent due to its ability to infect 

________________ 
This dissertation follows the style of Mammalian Genome. 
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humans as well a livestock. Subsequently it has been classified as a select agent by both 

the Centers for Disease Control and the United States Department of Agriculture.  

 Rift Valley Fever virus like all members of the Bunyaviridae family carries a three 

part single-stranded RNA genome.  The three segments are designated large (L), 

medium (M), and small (S).  Both the L and M segments are of negative polarity with 

the L coding for the L RNA –dependant polymerase and the M segment coding for the 

glycoprotein precursor that is cleaved to produce the envelope glycoproteins G1 and G2 

and two nonstructural proteins, 14K and 78K.    The S segment codes for the 

nucleoprotein N and the nonstructural protein NSs in an ambisense fashion (Vialat et al. 

2000). The NSs protein forms filamentous structures in the nuclei of infected cells that 

were found to inhibit host transcription (Le May et al. 2004; Vialat et al. 2000).  The 

basal transcription factor, TFIIH, was shown to be targeted by the virus. Le May et al. 

(2004) hypothesized that the NSs protein bound to the p44 subunit of TFIIH and was 

transported to the nucleus. The binding of p44 coupled with the binding of the XPB 

subunit by NSs limits the quantity of TFIIH that can be assembled. This results in a 

reduced concentration of TFIIH in the nucleus and a reduction in transcription (Le May 

et al. 2004). In addition Le May et al. (2008) found that the NSs protein forms a SAP30 

complex that serves to inhibit expression of IFN-β through transcriptional repression. 

This repression occurred at 3-6 hours post infection before the filamentous structure 

formation as opposed to the previously reported TFIIH inhibition which started at eight 

hours post infection (Le May et al. 2004; Le May et al. 2008).  
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  The laboratory rat (Rattus norvegicus) is susceptible to RVFV and has been 

shown to manifest the characteristic responses of humans and livestock (Peters and 

Slone 1982). The rat has frequently been used as a model to study RVFV pathogenesis.  

Several strains have been infected and some found to be resistant to hepatic disease 

while others were not. This resistance was found to be associated with a dominant gene 

inherited in Mendelian fashion (Anderson and Peters 1988). More specifically, Lewis 

rats (LEW/Mai) were shown to be resistant to hepatic disease and Wistar-Furth rats 

(WF/Mai) were more sensitive (Anderson et al. 1987; Peters and Slone 1982).  Viral 

titers for WF/Mai were found to be higher than LEW/Mai in every sample from the 

earliest timepoints (Anderson et al. 1987). The resistance was documented to be host-

genotype dependent as well as age and dose dependent (Anderson et al. 1987; Anderson 

et al. 1991). Based on these findings a congenic rat strain was developed by 

backcrossing the resistance gene from the LEW/Mai strain onto the WF/Mai 

background. Rats of each generation were challenged with live virus and the survivors 

were mated with WF/Mai rats for the subsequent generation (Anderson et al. 1991). 

However, the resistance gene for RVFV hepatic disease was not located or identified. 

The congenic strain WF.LEW was terminated but embryos were cryopreserved and 

tissues collected before the colony was phased out. Interestingly, Ritter and colleagues 

(2000) reported experiments that demonstrated the WF strain as resistant to RVFV and 

LEW  rats as succumbing to fatal hepatic disease. However, a different viral strain and 

different substrains of rats, LEW/Mol and WF/Mol, were used. Subsequently, the 

LEW/Mol substrain was reported to contain approximately 37% non-Lewis genome 
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when compared to the LEW/Ztm substrain. The presence of the relatively large amount 

of non-Lewis genome was attributed to a past crossbreeding event (Olofsson et al. 2004). 

Inbred strains of the laboratory rat are commonly used models in biomedical and 

behavioral research. Rats are second only to mice as the most frequently used laboratory 

mammal (Kohn and Clifford 2002). Inbred strains are produced and generally 

maintained with a brother–sister (full-sib) mating scheme. The genetic homogeneity 

achieved through this process eliminates the variability associated with genetic factors 

and reduces the number of animals needed per experiment. However, this homogeneity 

may be affected by several mechanisms that lead to divergence of an inbred strain into 

differing substrains. Genetic contamination caused by breeding errors, incomplete 

inbreeding with residual allogenicity, mutation, and genetic drift all are known to 

contribute to substrain divergence (Sharp et al. 2002; Simpson et al. 1997) . Therefore, 

colonies of inbred strains from various suppliers likely contain differing amounts of 

genetic variation.  
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CHAPTER II 

GENOMIC COMPARISON OF SUBSTRAINS* 

 

Rationale 

 The LEW/Mai, WF/Mai, and WF/Mol commercial rat colonies were all 

discontinued and as a result those substrains are extinct. In addition the Lewis strain has 

been shown to have phenotypic and genetic variation among the various substrains 

(Canzian 1997; Olofsson et al. 2004; Ritter et al. 2000).  Therefore the first step 

undertaken was to compare the genetic makeup of the commercially available Lewis and 

Wistar-Furth substrains. Microsatellite markers were chosen for a genome scan and 

genotyped for three commercially available Lewis substrains and two commercially 

available Wistar-Furth substrains. This was done for later comparison with the WF.LEW 

congenic and to decide which substrains to use in future breeding experiments with the 

congenic. 

Materials and Methods 

 DNA sources. LEW/SsNHsd and WF/NHsd spleens were purchased from 

Harlan Bioproducts for Science (Indianapolis, IN). LEW/Crl and WF/CrCrl rats were 

purchased from Charles River Laboratories (Boston, MA). LEW/MolTac rats were 

purchased from Taconic (Germantown, NY). Rats were housed in a facility accredited  

__________________ 
*Reprinted with permission from “Genomic comparison of Lewis and Wistar-Furth rat 
substrains by use of microsatellite markers” by Ralph J. Callicott, Scott T. Ballard, 
James E. Womack 2007 Journal of the American Association for Laboratory Animal 
Science Vol 46;No 2, p25-29 Copyright 2007 by the American Association for 
Laboratory Animal Science. 
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by the Association for the Assessment and Accreditation of Laboratory Animal Care, 

International, and were maintained on animal use protocols approved by the University 

Laboratory Animal Care and Use Committee at Texas A & M University. Live rats were 

euthanized humanely, and spleens were removed for DNA isolation. Genomic DNA was 

extracted from spleen by phenol extraction with ethanol precipitation (Moore 1996).We 

genotyped two rats for each of the LEW/SsNHsd and WF/NHsd substrains and one rat 

for each of the remaining substrains. 

 Selection of simple sequence-length polymorphisms (SSLPs). SSLPs were 

selected by use of the Genome Scanner tool provided by the Rat Genome Database 

(http://rgd.mcw.edu). Markers were chosen at approximately 15- to 20-cM intervals 

across the rat genome. A minimum of four markers were selected for each chromosome.  

Genotyping protocol. A previously described allele-sizing method using M13-

tailed primers was used to genotype samples of genomic DNA (Boutin-Ganache et al. 

2001). Briefly, forward primers were synthesized with the M13 sequence at the 5' ends. 

Three M13 sequence primers were 5' labeled with the fluorescent dyes 6-FAM, HEX, 

and NED (Applied Biosystems, Foster City, CA). Each SSLP was amplified by use of 

standard polymerase chain reaction (PCR) techniques (Kramer and Coen 1995). 

Reactions contained 1 μl 10× PCR buffer with 15 mM MgCl2 (Applied Biosystems), 0.2 

mM each dNTP, 0.5 U AmpliTaq Gold (Applied Biosystems), 250 nM each of the 

forward and reverse primers, 50 ng genomic DNA, and enough double-distilled H2O to 

yield a 10-μl reaction. The M13-labeled forward SSLP primers and the fluorescent-

labeled M13 primers were mixed together in a 1:15 ratio for the forward primer 
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component of each reaction. Thermocycler reaction conditions were set at 94 °C for 10 

min followed by 35 cycles of 94 °C for 30 s, 57 °C annealing for 30 s, and extension at 

72 °C for 30 s, with final extension for 5 min at 72 °C. Postreaction products were 

analyzed automatically (3130xl Genetic Analyzer, Applied Biosystems), and genotypes 

were scored with GeneMapper version 3.7 (Applied Biosystems). Results were exported 

to a spreadsheet (Excel, Microsoft, Redmond, WA) for analysis and substrain 

comparisons.  

Results 

 Genotyping. We performed genome scans consisting of 159 SSLP markers on 

DNA samples from the five substrains (three Lewis, two Wistar-Furth). The 

amplification products for three markers of different sizes were loaded together into a 

single well for injection into the genetic analyzer. All three Lewis substrains were scored 

simultaneously for each SSLP to eliminate variation due to the different genetic analyzer 

run times (Fig. 1). All markers were genotyped at least three times to assess 

repeatability. The Wistar-Furth samples were genotyped in the same manner. All rats 

genotyped were found to be homozygous for the markers tested.    
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Fig. 1 Sample electropherogram. Genotypes scores (in basepairs) 
for the 3 Substrains of Lewis rats. 

Lewis substrains. LEW/SsNHsd showed approximately 37% genomic 

difference when compared with LEW/MolTac. When compared with LEW/Crl, the 

LEW/SsNHsd substrain showed only an 8% difference. LEW/MolTac compared with 

LEW/Crl demonstrated an approximate 45% difference (Fig. 2). 
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Fig. 2 Ideogram with selected SSLP markers for 3 substrains of Lewis rats. LEW/SsNHsd is used as the 
reference strain. Alleles specific to a particular substrain are denoted by the corresponding color. 
 

 

 

 

 

Wistar-Furth substrains. WF/NHsd compared with WF/CrCrl demonstrated a 

difference of 8%, similar to the LEW/SsNHsd to LEW/Crl comparison (Fig. 3).  
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Fig. 3 Ideogram with selected SSLP markers for 2 substrains of Wistar-Furth Rats. WF/NHsd is used as the 
reference strain. Alleles specific to a particular substrain are denoted by the corresponding color.  
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Discussion  

Smits and colleagues (2004) examined 80 single-nucleotide polymorphisms in 11 

Lewis substrains and four Wistar-Furth substrains and found approximately 20% and 

19% genetic variation within each inbred strain, respectively. Inbred strains are known 

to have residual allogenicity if separated at the 20th generation (Bailey 1982). Once past 

F40, at which residual allogenicity becomes negligible, the strain is still subject to 

mutation (Bailey 1982). The founder effect could be an important factor, considering that 

inbred colonies usually are created by use of small numbers of animals. With unfixed 

alleles segregating in a strain, genetic drift and founder effect may lead to fixation or 

loss of certain alleles, thereby creating substrains when colonies are separated.  

The Lewis and Wistar-Furth strains both were created from outbred Wistar stock. 

The various Lewis substrains we used in this study have been separated since the late 

1950s. Most notably, the LEW/MolTac substrain has been transferred to several 

locations (Fig. 4); overall the Wistar-Furth substrains have been transferred to fewer 

locations. LEW/SsNHsd and WF/NHsd rats potentially were derived from similar source 

colonies as were the LEW/Mai and WF/Mai rats, respectively, and are thought to be the 

living substrains most closely related to the extinct LEW/Mai and WF/Mai substrains.  
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Fig. 4 Chart depicting the lineage of the Lewis and Wistar-Furth substrains. Information compiled from 
public databases, publications, and personal communication. *Information regarding exact origin of Tulane 
colony was unavailable. Therefore a possibility of an intermediate source exists. 
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LEW/Mol rats have long been known to have a different level of susceptibility to 

induction of autoimmune disease, compared with other Lewis substrains. Kallen and 

Lodgberg (1982) found that LEW/Mol rats failed to mount a host-versus-graft response 

to LEW/Mai rats. Those investigators concluded that LEW/Mol carried a mutation that 

was responsible for the difference in susceptibility and that the difference was not due to 

accidental crossbreeding of the strain (Kallen and Lodgberg 1982).However, no 

molecular genetic markers were evaluated. Kallen and Lodgberg (1982) mentioned the 

LER strain, which had its origin at Simonsen Laboratories (Gilroy, CA) as did 

LEW/Mol. It was later suggested that the LER strain was the result of contamination of 

the Lewis strain by crossbreeding with the Buffalo strain (Goldmuntz  1993).  

Our data comparing the LEW/MolTac substrain with the LEW/SsNHsd substrain 

show similar results to the comparison of LEW/Mol with LEW/Ztm made by Olofsson 

and colleagues (2004). The presence of approximately 37% non-Lewis genome in the 

LEW/MolTac substrain leads to the conclusion that a crossbreeding event occurred 

somewhere in the history of this substrain. Comparison of our genotyping data with the 

public records of inbred strains failed to demonstrate a likely source for the 

contamination, perhaps because of contamination of other inbred strains reported in the 

public database (Olofsson et al. 2004). Other possibilities include outcrossing of the 

Lewis strain with an outbred stock or outcrossing to multiple inbred strains over time. 

Subsequent studies are needed to compare the LEW/MolTac substrain with a more 

robust group of control DNAs to determine the likely source of the contamination. We 

support the claim made by Olofsson and colleagues (2004) that LEW/MolTac should not 
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be considered a substrain of the Lewis strain. We submit that LEW/MolTac is a separate 

inbred strain and that the nomenclature should be updated accordingly to reflect this. 

Therefore, LEW/MolTac rats should not be used in studies for which standard Lewis 

genetics are needed as controls.  

As evidenced by the data we present, genetic monitoring is an important 

management tool for any entity maintaining colonies of inbred rodents. Investigators 

should consider the background genetics of the particular strains used for their research 

projects and should use strains from a single source when feasible.  
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CHAPTER III 

MAPPING OF RESISTANCE GENE AND VIRAL CHALLENGE 

 

Rationale 

 With the ultimate goal of locating the gene conferring resistance to RVFV 

induced hepatic disease in rats, embryos were obtained and the WF.LEW congenic rat 

strain was rederived. These rats were then genotyped and the results compared with the 

substrains previously genotyped in order to locate the congenic segment and determine 

which substrains were most closely related to the original parental strains used to make 

the WF.LEW congenic. Once that was accomplished breeding experiments were 

performed in an effort to reduce the size of that segment and further clarify the resistant 

gene location. Finally, viral challenge experiments were undertaken to confirm and 

clarify the phenotypes of the various substrains and the congenic. 

Materials and Methods 

 DNA and live rat sources. LEW/SsNHsd and WF/NHsd spleens were purchased 

from Harlan Bioproducts for Science (Indianapolis, IN). LEW/SsNHsd and WF/NHsd 

rats were purchased from Harlan (Indianapolis, IN). LEW/Crl and WF/CrCrl rats were 

purchased from Charles River Laboratories (Boston, MA). LEW/MolTac rats were 

purchased from Taconic (Germantown, NY). Embryos from the WF.LEW strain were 

frozen and maintained at National Institutes of Health (NIH). Live rats were rederived 

from WF.LEW embryos obtained from NIH by the Rat Resource and Research Center 

(RRRC), University of Missouri (Columbia, MO). Breeding pairs were then sent to 
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Texas A&M University to found a colony of WF.LEW rats. WF.LEW rats were mated 

with WF/NHsd rats to produce a generation of (WF.LEW X WF/NHsd)F1s. Female F1s 

were  then backcrossed to WF/NHsd males to produce an N1 generation of (WF.LEW X 

WF/NHsd)F1 X WF/NHsd rats. Rats were housed in a facility accredited by the 

Association for the Assessment and Accreditation of Laboratory Animal Care, 

International, and were maintained on animal use protocols approved by the University 

Laboratory Animal Care and Use Committee at Texas A&M University. Live rats were 

euthanized humanely, and spleens were removed for DNA isolation. Genomic DNA was 

extracted from spleen by phenol extraction with ethanol precipitation (Moore 1996). Tail 

biopsies were taken from neonatal rat pups from the N1 backcross litters and DNA 

extracted by a previously described technique (Truett et al. 2000).  

 Selection of simple sequence-length polymorphisms (SSLPs) and single 

nucleotide polymorphisms (SNPs). SSLPs were selected by use of the Genome 

Scanner tool provided by the Rat Genome Database (http://rgd.mcw.edu). Markers were 

chosen at approximately 15- to 20-cM intervals across the rat genome. A minimum of 

four markers were selected for each chromosome. Additional markers were chosen to 

further characterize regions where markers with LEW genotypes were located in the 

congenic strain. Appendix A lists the SSLP markers chosen for each chromosome and 

the allele sizes for each substrain. SNPs were selected with the GBrowse function of the 

Rat Genome Database (http://rgd.mcw.edu) and retrieved from the dbSNPs database 

(http://www.ncbi.nlm.nih.gov/SNP/). SNPs were chosen at regular intervals to fine map 
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regions of interest identified by SSLP markers. See Appendix B for the list of SNPs 

chosen for each region and the genotype for each substrain. 

Genotyping protocols. The allele sizing protocol previously described in 

Chapter II was used to genotype the SSLP markers.  

SNP’s were genotyped using the SNaPshot Multiplex Kit (Applied Biosystems). 

Primers flanking the SNP retrieved from dbSNPs database were designed using Primer3 

(http://primer3.sourceforge.net/). The 30 bases immediately 5’ to the SNP were used for 

each specific SNaPshot primer. Initial PCR reactions contained 1 μl 10× PCR buffer 

with 15 mM MgCl2 (Applied Biosystems), 0.2 mM each dNTP, 0.5 U AmpliTaq Gold 

(Applied Biosystems), 250 nM each of the forward and reverse primers, 50 ng genomic 

DNA, and enough double-distilled H2O to yield a 10-μl reaction. These products were 

then purified with a QIAquick PCR Purification Kit (Qiagen, Valencia, CA). SNaPshot 

PCR reactions consisted of 2 μl of SNaPshot Multiplex Ready Reaction Mix, 3 μl of 

purified PCR product, 250nM of SNaPshot primer, and enough double-distilled H2O to 

yield a 10-μl reaction. Thermal cycling conditions were set per manufacturers 

instructions and post extension treatment with Shrimp Alkaline Phosphatase was 

performed per manufacturer’s instructions. Postreaction products were analyzed 

automatically (3130xl Genetic Analyzer, Applied Biosystems), and genotypes were 

scored with GeneMapper version 4.0 (Applied Biosystems). Results were exported to a 

spreadsheet (Excel, Microsoft, Redmond, WA) for analysis and substrain comparisons 

similar to the SSLP data.  
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Viral challenges. Groups of adult rats 10+ weeks of age were anesthetized and 

inoculated subcutaneously with 0.1 ml of 5X105 ZH501 strain of RVFV. Commercially 

available inbred substrains tested included LEW/SsNHsd, LEW/Crl, LEW/MolTac, 

WF/NHsd, WF/CrCrl. In addition (WF.LEW X WF/NHsd)F1s and three backcross 

litters of N1s were challenged using the same protocol as the commercial strains. 

Control rats from the substrains LEW/SsNHsd and WF/NHsd were inoculated with 

Hank’s Balanced Salt Solution. All viral challenge work was done in the ABSL-4 

facility at the University of Texas Medical Branch, Galveston, Texas.  

Results 

 Genome scan.  Since the original parental substrains, LEW/Mai and WF/Mai, 

are extinct, an initial genome scan of 137 SSLP markers was performed to compare the 

WF.LEW strain with the LEW/SsNHsd, LEW/Crl , LEW/MolTac , WF/CrCrl, and 

WF/NHsd substrains. This served to evaluate how closely the commercially available 

substrains and the original parental strains were related and to locate the congenic region 

within the WF.LEW genome.  The Harlan substrains were found to share the most 

markers in common with the original strains used to construct the WF.LEW congenic. 

Lewis markers were located on RNO3 and RNO9 (Fig. 5).   Four markers tested failed to 

match any of the other five substrains chosen. These included D9Rat30, D15Rat81, 

D15Rat60, and D18Rat55.  
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RNO1 RNO2 RNO3 RNO4 RNO5 RNO6 RNO7 RNO8 RNO9 RNO10 RNO11

RNO12 RNO13 RNO14 RNO15 RNO16 RNO17 RNO18 RNO19 RNO20 RNOX

WF MonomorphicLEW

 Fig . 5 Rat ideogram showing selected genomic scan marker locations. 
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Fine mapping of regions of interest.  To further characterize the two regions of 

interest 22 additional SSLP markers were chosen, 15 on chromosome three and seven on 

chromosome nine. Genotyping experiments utilizing these 22 SSLPs to compare 

WF.LEW strain with the other substrains revealed two more Lewis markers on RNO3 

and no additional Lewis markers on RNO9 (Figs. 6 and 7).     

 

D3Mgh9

D3Rat47

D3Mgh6

D3Rat220

D3Rat5

D3Rat107, D3Rat210

D3Rat136, D3Mgh10, D3Rat2, D3Mgh26, D3Got163, D3Rat139
D3Got174

 

D3Rat1
D3Mgh27

Lewis

RNO3

Wistar Furth

Fig. 6 RNO3 ideogram showing selected SSLP marker locations. 
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RNO9

Wistar Furth
D9Rat139
D9Rat88, D9Rat135, D9Rat88

 

 

 

SNP’s were then chosen in the regions of interest to increase coverage between the 

SSLP markers.  A total of 32 SNP’s, 24 on RNO3 and eight on RNO9, were genotyped 

across the five substrains and the congenic (Figs. 8 and 9).  

 

D9Rat130
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D9Rat123, D9Rat23
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D9Rat139
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Lewis
Monomorphic

Fig. 7 RNO9 ideogram showing selected SSLP marker locations. 



 22

165000000

166000000

167000000

168000000
169100000

169200000

169300000

169400000

169500000

169600000

169700000

169800000

169900000

170000000

170100000

170200000

170300000

170400000

170500000

170600000

170700000

170800000

170900000

170000000

171000000

rs8155427

D3Got174
rs8165485
rs8161442
D3Got170
rs8159037

rs8158676
rs8148100
rs8153589

rs8148490

rs8161775

rs8160991

rs8147326

rs8165466
rs8169331
rs13449550

rs8146178
D3Rat1
rs8161944
rs8173385

rs8154945

rs8167859

D3Mgh27

rs8148813

rs8151937

D3UIA3

rs8151845

rs8149760

rs8159722

LH LC LM WL WH WC
RNO3

 
 
 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 RNO3 SNP marker locations. . LH=LEW/SsNHsd, LC=LEW/Crl, LM=LEW/MolTac, 
WL=WF.LEW, WH=WF/NHsd, WC=WF/CrCrl, Green=LEW, Red=WF, Orange=WF.LEW. 
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Fig. 9 RNO9 SNP marker locations. LH=LEW/SsNHsd, LC=LEW/Crl, LM=LEW/MolTac, 
WL=WF.LEW, WH=WF/NHsd, WC=WF/CrCrl, Green=LEW, Red=WF, Orange=WF.LEW. 
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Breeding and genotyping of N1 offspring. Since two regions of interest on two 

different chromosomes were located, breeding experiments were designed to separate 

the two regions and reduce the size of the larger one on RNO3 if possible. WF.LEW 

females were mated to WF/NHsd males to create an F1 hybrid generation. Females from 

the F1 generation were then mated to WF/NHsd males to produce a backcross N1 

generation.  

The single Lewis marker on RNO9 (D9Rat130) and 3 SNP markers (rs8158676, 

rs8164532, rs8159722) from RNO3 were chosen to allow the N1 offspring to be 

designated according to which chromosome the Lewis markers were located. The three 

SNP markers on RNO3 were used to evaluate if recombination had occurred in the 

larger segment on that chromosome.  The N1 offspring were genotyped for the selected 

markers and assigned to one of four groups as shown in Table 1. No recombinant 

offspring were found in the first three litters.  

 

Table 1 Genotypic classes of N1 litters 

 

Litter 

No Lewis 

 Markers 

Lewis Markers 

RNO 3 

Lewis Markers 

RNO 9 

Lewis Markers 

RNO 3 & 9 

A 3 2 1 2 

B 0 3 4 2 

C 3 3 1 1 

Total 6 8 6 5 
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Viral challenges. Groups of five rats from each of the commercially available 

substrains of Lewis and Wistar-Furth, the WF.LEW congenic and the F1 generation 

were challenged with live RVFV. Results were similar to those previously reported. 

(Anderson et al. 1987; Anderson et al. 1991; Ritter et al. 2000)  (Table 2 ,Figs. 10 and 

11) 

 

 

 

 

Table 2 Viral challenge survival 

Strain Inoculated Survived 

LEW/Crl 5 4 

LEW/SsNHsd 5 2 

LEW/MolTac 5 0 

WF/NHsd 5 0 

WF/CrCrl 5 0 

WF.LEW 5 4 

(WF.LEWxWF/NHsd)F1 5 4 
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Fig. 10 Lewis substrain survival comparison. 
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 Fig. 11 Wistar-Furth substrain survival comparison. 
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The 4 groups of N1 offspring were challenged in an attempt to discern which 

chromosome, RNO3 or RNO9, carried the locus responsible for the resistance. The 

results indicated RNO3 correlated with the major resistance to hepatic disease. (Table 3, 

Fig. 12) 

 

Table 3 Viral challenge survival of N1 groups 

Group Inoculated Survived 

No Lewis Markers 6 0 

Lewis Markers RNO3 8 6 

Lewis Markers RNO9 6 0 

Lewis Markers RNO3 & 9 5 5 
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N1 Backcross offspring
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Fig. 12 N1 survival comparison. 
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 

Summary  

Genotyping experiments were performed to survey the genetic variation among 

commercially available substrains of Lewis and Wistar-Furth rats. The results were 

compared to the genotyping results of the WF.LEW congenic. Lewis markers were 

identified on chromosomes RNO3 and RNO9 of the WF.LEW congenic. With the region 

found on RNO3 being the larger of the two regions. The LEW/MolTac substrain 

contained a striking amount of genomic difference from the other Lewis substrains as 

previously has been reported (Olofsson et al. 2004). 

The results of the viral challenge experiments of the commercial Lewis and 

Wistar-Furth strains were similar to those previously reported (Anderson et al. 1987; 

Anderson et al. 1991; Ritter et al. 2000). The Lewis substrains were confirmed to be 

resistant with the exception of the Lew/MolTac which had been reported to be 

susceptible (Ritter et al. 2000). The Wistar-Furth substrains were found to be 

susceptible. The congenic WF.LEW and the F1’s created from crossing the congenic 

with the WF/NHsd substrain were both resistant. Four groups of N1 backcross offspring 

created from mating the F1’s with WF/NHsd rats were challenged and two groups were 

found to be resistant, those having Lewis markers on RNO3 and those having Lewis 

markers on both RNO3 and RNO9. 
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Conclusions  

Rodent colonies separated after 20 generations of inbreeding but before 40 

generations contain residual allogenicity that will lead to separate lines of differing 

substrains if inbreeding is continued. Inbred colonies more than 20 generations from a 

common ancestor may contain enough genetic variation due to mutation and genetic 

drift to quality as different substrains. The genotyping experiments demonstrated that 

commercially available substrains of Lewis and Wistar-Furth rats do contain genetic 

variation. In the case of the Lewis strain this variation can be quite considerable even to 

the point of possibly being a distinct inbred strain. Reinforcing the point that genetic 

monitoring of rodent colonies is very important. Investigators should  be mindful if 

changing vendors that although purchasing the same strain the genetics may be 

somewhat different among the substrains of any particular strain. Comparison of the 

WF.LEW congenic to the commercial substrains demonstrated that the Lew/SsNHsd and 

the WF/NHsd substrains were the most closely related of the commercial substrains to 

the original substrains used to make the congenic. Comparison of the results from the 

various substrains to the WF.LEW congenic revealed two regions of interest for the gene 

conferring resistance to RVFV induced hepatitis. Results from the viral challenges of the 

N1 offspring suggest that the gene is located in the region identified on RNO3. The 

resistance of the F1’s and the survival pattern of the N1 groups is in agreement with the 

previous finding that the resistance was inherited from a single dominant gene in a 

Mendelian fashion (Anderson et al. 1987). The Lewis marker identified on RNO9 is 

thought to be an artifact left over from the Mai substrains that were initially used to 
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create the congenic. Although a slight possibility exists that a gene on RNO9 may 

modify the survival later in the course of the disease, this possibility is greatly reduced 

due to the fact that the WF.LEW and F1’s had a similar survival rate to the N1 group 

with Lewis markers only on RNO3.  The susceptible LEW/MolTac substrain carries the 

same markers as the susceptible substrains in the region of interest on RNO3 and the 

same markers as the resistant groups on RNO9. Although most of the evidence points to 

the Lewis marker on RNO9 as an artifact, the N1 group with Lewis markers on RNO3 

and RNO9 did have 100% survival at 28 days post infection. In addition the N1 group 

with Lewis markers only on RNO9 had a couple of animals that lived slightly longer 

than the other susceptible groups. Thus a greater number of animals would need to be 

tested to examine the hypothesis that a gene on RNO9 modifies the course of the 

disease.  

 Unfortunately, no strong candidate genes were identified on the region located at 

the distal end of RNO3. There are, however, several genes related to the process of 

transcription found in that area. These include transcription elongation factor A (SII)2 

(Tcea2), SRY (sex determining region Y)-box 18 ( Sox18), myelin transcription factor 1 

(Myt1) and death inducer-obliterator 1 (Dido1). It has been shown that RVFV inhibits 

host cell transcription through interactions with TFIIH and a SAP30 complex (Le May et 

al. 2004; Le May et al. 2008). Therefore one may hypothesize one of the transcription 

related genes or some unknown transcription factor located on the distal portion of 

RNO3 is responsible for the resistance to RVFV. A reduction in size of the region on 
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RNO3 through further backcross experiments would be useful to help locate a putative 

candidate.   
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APPENDIX A 

SSLP MARKERS AND SIZES* 

Marker LEW/ 

SsNHsd 

LEW/ 

MolTac 

LEW/ 

Crl 

WF. 

LEW 

WF/ 

NHsd 

WF/ 

CrCrl 

D1Rat232 
D1Rat5 
D1Arb3 

D1Rat257 
D1Rat266 
D1Rat183 
D1Rat281 
D1Rat70 

D1Rat169 
D1Rat166 
D1Rat312  

242 
181 
349 
134 
177 
256 
134 
133 
148 
157 
220  

242 
181 
349 
134 
177 
256 
132 
131 
160 
165 
216  

242 
181 
349 
134 
177 
256 
132 
133 
148 
159 
220  

248 
203 
349 
126 
175 
246 
138 
171 
160 
163 
214  

248 
203 
349 
126 
175 
246 
138 
171 
160 
163 
214  

248 
203 
349 
126 
175 
246 
138 
171 
160 
163 
214  

 
D2Rat3 

D2Rat200 
D2Rat123 
D2Rat35 

D2Mgh12 
D2Rat64 

D2Rat245 
D2Rat70  

 
137 
142 
200 
183 
184 
202 
135 
193  

 
143 
134 
200 
183 
158 
206 
117 
187  

 
139 
142 
198 
183 
184 
202 
135 
193  

 
141 
138 
202 
175 
180 
202 
131 
185  

 
141 
138 
202 
175 
180 
202 
131 
185  

 
145 
138 
202 
175 
180 
202 
131 
185  

 
D3Mgh9 
D3Rat47 
D3Mgh6 

D3Rat220 
D3Rat5 

D3Rat107 
D3Rat210 
D3Rat136 
D3Mgh10 

D3Rat2 
D3Mgh26 
D3Rat77 

D3Got163 
D3Got157 
D3Rat139 
D3Got171 
D3Got174  

 
166 
143 
126 
234 
181 
224 
165 
235 
138 
192 
223 
218 
183 
267 
170 
240 
222  

 
166 
143 
126 
234 
197 
218 
165 
237 
138 
192 
225 
234 
183 
263 
170 
245 
220  

 
166 
143 
126 
234 
181 
224 
165 
235 
138 
192 
223 
218 
183 
267 
170 
240 
222  

 
168 
135 
122 
248 
183 
220 
176 
233 
126 
188 
217 
226 
191 
265 
162 
240 
224  

 
168 
135 
122 
248 
183 
224 
176 
233 
126 
189 
217 
226 
191 
265 
162 
240 
224  

 
168 
135 
122 
248 
183 
220 
176 
233 
126 
189 
219 
226 
191 
265 
162 
240 
224  
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Marker LEW/ 

SsNHsd 

LEW/ 

MolTac 

LEW/ 

Crl 

WF. 

LEW 

WF/ 

NHsd 

WF/ 

CrCrl 

  D3Got170 
D3Rat1 

D3Mgh27 
D3UIA3  

396 
162 
169 
285  

400 
182 
161 
293  

396 
162 
169 
285  

396 
162 
169 
285  

396 
176 
157 
289  

396 
176 
161 
293  

 
D4Rat3 

D4Rat13 
D4Rat15 
D4Rat27 
D4Rat35 

D4Rat116 
D4Mgh7 

D4Rat107 
D4Rat90 

D4Rat204  

 
161 
140 
168 
140 
176 
259 
179 
254 
216 
225  

 
173 
140 
168 
140 
176 
251 
179 
250 
220 
225  

 
161 
140 
168 
140 
176 
261 
179 
256 
216 
225  

 
165 
140 
184 
146 
176 
253 
161 
250 
220 
235  

 
165 
140 
184 
146 
176 
253 
161 
250 
220 
235  

 
165 
140 
184 
146 
176 
253 
161 
250 
220 
235  

 
D5Rat120 
D5Rat70 
D5Rat12 
D5Rat60 
D5Rat36 
D5Rat67 

D5Rat205 
D5Rat51  

 
168 
284 
162 
274 
192 
224 
243 
152  

 
154 
284 
162 
272 
192 
232 
243 
156  

 
168 
284 
162 
274 
194 
224 
243 
152  

 
154 
268 
168 
271 
164 
218 
243 
142  

 
154 
268 
168 
271 
164 
218 
243 
142  

 
154 
268 
168 
271 
164 
218 
243 
142  

 
D6Rat46 
D6Rat68 

D6Rat105 
D6Rat74 

D6Rat144 
D6Rat135 
D6Rat124 
D6Rat116 

D6Rat1  

 
155 
278 
246 
253 
185 
169 
260 
152 
238  

 
155 
278 
244 
255 
181 
169 
260 
148 
252  

 
155 
278 
246 
253 
185 
169 
260 
152 
238  

 
147 
264 
246 
253 
181 
177 
270 
148 
246  

 
147 
264 
246 
253 
181 
177 
270 
148 
246  

 
147 
264 
246 
253 
181 
177 
270 
148 
246  

 
D7Rat158 
D7Rat113 
D7Rat152 
D7Rat69 
D7Mgh6 

D7Rat122 
D7Rat80  

 
137 
132 
144 
251 
154 
189 
239  

 
127 
116 
148 
251 
154 
189 
239  

 
137 
136 
144 
251 
152 
189 
239  

 
137 
116 
148 
247 
162 
199 
225  

 
137 
116 
148 
247 
162 
199 
225  

 
137 
116 
148 
247 
162 
199 
225  
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Marker LEW/ 

SsNHsd 

LEW/ 

MolTac 

LEW/ 

Crl 

WF. 

LEW 

WF/ 

NHsd 

WF/ 

CrCrl 

 
D8Rat58 
D8Rat57 

D8Rat162 
D8Rat150 
D8Rat126 
D8Rat119 
D8Rat171  

 
190 
192 
268 
230 
188 
201 
250  

 
198 
192 
258 
222 
188 
201 
250  

 
190 
192 
268 
230 
188 
201 
250  

 
190 
192 
264 
222 
184 
191 
270  

 
190 
192 
264 
222 
184 
191 
270  

 
190 
192 
264 
224 
184 
193 
270  

 
D9Rat139 
D9Rat88 

D9Rat135 
D9Rat131 
D9Rat130 
D9Rat30 
D9Rat70 
D9Rat76 

D9Rat123 
D9Rat23 

D9Rat106 
D9Rat2  

 
140 
220 
176 
122 
163 
176 
207 
248 
236 
162 
213 
146  

 
140 
220 
176 
122 
163 
176 
207 
248 
236 
162 
213 
146  

 
140 
220 
176 
122 
163 
176 
207 
248 
236 
162 
213 
146  

 
142 
220 
176 
122 
163 
180 
207 
240 
242 
150 
229 
156  

 
142 
220 
176 
122 
165 
176 
207 
240 
242 
150 
229 
156  

 
142 
220 
176 
122 
165 
176 
207 
240 
242 
150 
229 
156  

 
D10Rat94 

D10Rat218 
D10Mit16 

D10Rat166 
D10Rat21 
D10Rat11 
D10Rat4  

 
208 
166 
107 
163 
157 
208 
175  

 
208 
152 
107 
163 
157 
208 
185  

 
208 
166 
107 
163 
157 
210 
175  

 
208 
164 
102 
161 
145 
188 
177  

 
208 
162 
102 
161 
145 
188 
177  

 
208 
164 
102 
161 
145 
188 
177  

 
D11Rat40 
D11Rat35 
D11Rat64 

D11Mit8 
D11Rat1  

 
256 
239 
253 
229 
189  

 
250 
245 
253 
239 
189  

 
256 
239 
253 
229 
189  

 
260 
245 
257 
241 
189  

 
260 
245 
257 
241 
189  

 
260 
245 
257 
241 
189  

 
D12Rat58 
D12Rat47 
D12Rat46 
D12Rat96 
D12Rat49  

 
178 
235 
185 
220 
145  

 
178 
235 
185 
222 
132  

 
178 
235 
185 
220 
145  

 
200 
237 
185 
222 
132  

 
200 
237 
185 
222 
132  

 
200 
237 
185 
222 
132  
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Marker LEW/ 

SsNHsd 

LEW/ 

MolTac 

LEW/ 

Crl 

WF. 

LEW 

WF/ 

NHsd 

WF/ 

CrCrl 

 
D13Rat2 

D13Rat25 
D13Arb8 

D13Rat85 
D13Mit4  

 
183 
175 
250 
153 
135  

 
183 
175 
250 
153 
135  

 
183 
175 
250 
153 
135  

 
181 
175 
214 
157 
127  

 
181 
175 
214 
157 
127  

 
179 
175 
214 
157 
127  

 
D14Rat70 
D14Rat72 
D14Rat50 
D14Rat36 
D14Rat62 
D14Rat87 
D14Rat40 
D14Rat91 
D14Arb10 
D14Rat34 
D14Rat22  

 
197 
199 
270 
161 
240 
247 
124 
176 
278 
245 
185  

 
197 
199 
270 
161 
240 
247 
124 
174 
278 
245 
185  

 
197 
199 
270 
161 
240 
243 
124 
176 
278 
245 
185  

 
193 
189 
248 
161 
240 
245 
124 
172 
320 
245 
199  

 
193 
189 
248 
161 
240 
245 
124 
172 
320 
245 
197  

 
193 
189 
248 
161 
240 
245 
124 
172 
320 
245 
199  

 
D15Rat77 
D15Rat81 
D15Rat94 
D15Rat60  

 
253 
162 
195 
217  

 
253 
162 
193 
221  

 
253 
162 
195 
217  

 
251 
184 
199 
227  

 
251 
182 
199 
223  

 
251 
178 
199 
221  

 
D16Rat12 
D16Rat29 
D16Rat56 
D16Rat15  

 
139 
164 
244 
153  

 
141 
160 
238 
163  

 
139 
164 
244 
153  

 
129 
166 
252 
163  

 
129 
166 
252 
163  

 
129 
166 
252 
163  

 
D17Rat53 

D17Rat117 
D17Rat83 
D17Rat40 

D17Rat133  

 
157 
226 
141 
191 
164  

 
157 
224 
141 
191 
164  

 
157 
226 
141 
191 
164  

 
139 
214 
151 
193 
166  

 
139 
214 
151 
193 
166  

 
139 
214 
151 
193 
166  

 
D18Mit1 

D18Rat55 
D18Rat43 
D18Rat5 

D18Rat44  

 
310 
113 
246 
159 
222  

 
300 
113 
246 
159 
222  

 
310 
113 
246 
159 
222  

 
274 
135 
226 
169 
222  

 
274 
133 
226 
169 
222  

 
274 
133 
226 
169 
222  
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Marker LEW/ 

SsNHsd 

LEW/ 

MolTac 

LEW/ 

Crl 

WF. 

LEW 

WF/ 

NHsd 

WF/ 

CrCrl 

 
D19Rat74 
D19Rat25 
D19Rat66 
D19Rat2  

 
144 
132 
164 
168  

 
144 
118 
164 
178  

 
148 
132 
164 
168  

 
148 
118 
166 
178  

 
148 
118 
166 
178  

 
148 
118 
166 
178  

 
D20Rat21 
D20Rat46 
D20Rat33 
D20Rat10 
D20Rat19  

 
172 
163 
187 
181 
203  

 
172 
163 
211 
181 
203  

 
172 
163 
187 
181 
203  

 
184 
187 
211 
175 
199  

 
184 
187 
211 
175 
199  

 
184 
187 
211 
175 
199  

 
DXRat74 
DXRat90 
DXRat95 
DXRat97 

DXRat104  

 
152 
232 
223 
166 
163  

 
160 
232 
223 
166 
169  

 
152 
232 
223 
166 
163  

 
160 
232 
217 
168 
173  

 
160 
232 
217 
168 
173  

 
160 
232 
217 
168 
173  

* Allele sizes include the additional 19 base pairs of the M13 primer. 
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APPENDIX B 

SNP MARKERS 

RNO3 

Markers 

LEW/ 

SsNHsd 

LEW/ 

MolTac 

LEW/ 

Crl 

WF. 

LEW 

WF/ 

NHsd 

WF/ 

CrCrl 

 
rs8155427 
rs8165485 
rs8161442 
rs8159037 
rs8158676 
rs8148100 
rs8153589 
rs8148490 
rs8161775 
rs8160991 
rs8147326 
rs8165466 
rs8169331 
rs13449550 
rs8146178 
rs8161944 
rs8173385 
rs8154945 
rs8167859 
rs8148813 
rs8151937 
rs8151845 
rs8149760 
rs8159722  

 
C 
A 
T 
G 
A 
C 
G 
G 
A 
G 
T 
G 
T 
A 
G 
T 
C 
G 
T 
G 
C 
T 
C 
G  

 
C 
A 
C 
G 
G 
C 
A 
G 
T 
G 
T 
G 
T 
G 
G 
C 
T 
G 
C 
G 
C 
T 
C 
T  

 
C 
A 
T 
G 
A 
C 
G 
G 
A 
G 
T 
G 
T 
A 
G 
T 
C 
G 
T 
G 
C 
T 
C 
G  

 
C 
A 
T 
G 
A 
C 
G 
G 
A 
G 
T 
G 
T 
A 
G 
T 
T 
G 
T 
G 
C 
T 
C 
G  

 
C 
A 
T 
G 
G 
C 
G 
G 
T 
G 
T 
G 
T 
G 
G 
T 
T 
G 
C 
G 
C 
T 
C 
T  

 
C 
A 
T 
G 
G 
C 
G 
G 
T 
G 
T 
G 
T 
G 
G 
T 
T 
G 
C 
G 
C 
T 
C 
T  
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RNO9 

Markers 

LEW/ 

SsNHsd 

LEW/ 

MolTac 

LEW/ 

Crl 

WF. 

LEW 

WF/ 

NHsd 

WF/ 

CrCrl 

 
rs8162625 
rs8152810 
rs8164063 
rs8153923 
rs8171785 
rs8170413 
rs8170024 
rs8164296  

 
C 
G 
C 
G 
C 
A 
C 
G  

 
C 
G 
C 
G 
C 
A 
C 
G  

 
C 
G 
C 
G 
C 
A 
C 
G  

 
C 
G 
C 
G 
C 
A 
C 
G  

 
C 
G 
C 
G 
C 
A 
C 
G  

 
C 
G 
C 
G 
C 
A 
C 
G  
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