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ABSTRACT

Uncertainty Propagation in Hypersonic Flight Dynamics

and Comparison of Different Methods. (December 2008)

Avinash Prabhakar,

B.Eng., Indian Institute of Technology, Roorkee

Chair of Advisory Committee: Dr. Raktim Bhattacharya

In this work we present a novel computational framework for analyzing evolution

of uncertainty in state trajectories of a hypersonic air vehicle due to uncertainty in

initial conditions and other system parameters. The framework is built on the so

called generalized Polynomial Chaos expansions. In this framework, stochastic dy-

namical systems are transformed into equivalent deterministic dynamical systems in

higher dimensional space. In the research presented here we study evolution of uncer-

tainty due to initial condition, ballistic coefficient, lift over drag ratio and atmospheric

density.

We compute the statistics using the continuous linearization (CL) approach. This

approach computes the jacobian of the perturbational variables about the nominal

trajectory. The covariance is then propagated using the riccati equation and the

statistics is compared with the Polynomial Chaos method. The latter gives better

accuracy as compared to the CL method.

The simulation is carried out assuming uniform distribution on the parameters (ini-

tial condition, density, ballistic coefficient and lift over drag ratio). The method is
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then extended for Gaussian distribution on the parameters and the statistics, mean

and variance of the states are matched with the standard Monte Carlo methods. The

problem studied here is related to the Mars entry descent landing problem.
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CHAPTER I

INTRODUCTION

A. Problem Statement

NASA has clearly identified the need for fundamental research on entry, descent, and

landing of large robotic and manned spacecraft (> 30 MT) on the surface of Mars

with high accuracy. The expected mass of the next Mars Science Laboratory mis-

sion is approximately 2, 800 kg at entry. The mission includes plans for a precision

guided entry and a tether-based payload deployment system, which is expected to

provide a landing accuracy of 20 − 40 km, from the target. Another major concern

with high-mass entry is the mismatch between the entry conditions and the decelera-

tion capabilities provided by supersonic parachute technologies. In such applications,

there is uncertainty present in initial condition and other system parameters. Hence,

for successful mission, it is critical to study the impact of such uncertainties on state

trajectories and determine uncertainty in the landing site and the entry condition for

super sonic parachute deployment. Figures 1 and 2 shows how the uncertainty on

initial condition effects the uncertainty on landing site. Figure 3 summarizes the re-

search problem addressed in this work. The figure clearly shows that the uncertainty

on parameters like initial conditions and mass induces uncertainty on the final state

of the dynamics.

The problem of studying the evolution of uncertainty in dynamical systems has been

of interest consistently in the scientific community. In many cases, the uncertainty in

initial condition and other system parameters for a dynamical system are not known

The journal model is IEEE Transactions on Automatic Control.



2

precisely. However, characteristics of the uncertainty, such as mean, standard devia-

tion, probability density function, etc., may be known. A common technique to study

the evolution of such distributions is the Monte-Carlo simulation. In this approach,

a set of initial conditions that best represent the distribution, are propagated over

the desired time interval, and statistical properties of the envelope of trajectories are

studied. For example, the expected value of the set of trajectories may be evaluated

easily, once all the trajectories are known. However, Monte-Carlo simulations are es-

sentially brute force in nature, with the understanding that a large number of points

may be required to accurately represent the distribution on initial conditions. As

a consequence, the time required for computation is greatly affected by the dimen-

sion of the system and the desired accuracy of the result. Other alternatives include

Gaussian closure of the parametric uncertainty and analysis of its impact by means

of linear analysis. For nonlinear systems, this is achieved by continuous linearization.

Such methods are known not to work well when nonlinearities are significant.

Fig. 1. Uncertainty in initial condition.
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Fig. 2. Uncertainty in landing site.

Fig. 3. Uncertainty in parameters for a dynamic model.

B. Approach

In this research effort we are interested in developing methods for uncertainty prop-

agation based on Polynomial Chaos expansions, which can be thought of as an ex-

tension of Volterra’s theory of nonlinear functionals for stochastic systems [1]. Poly-

nomial chaos (PC) was first introduced by Wiener [2] where Hermite polynomials

were used to model stochastic processes with Gaussian random variables. According

to Cameron and Martin [3] such an expansion converges in the L2 sense for any ar-

bitrary stochastic process with finite second moment. This applies to most physical

systems. Xiu continuous and discrete distributions using orthogonal polynomials from

the so called Askey-scheme [4] and demonstrated L2 convergence in the correspond-
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ing Hilbert functional space. This is popularly known as the generalized Polynomial

Chaos (gPC) framework. The gPC framework has been applied to various applica-

tions including stochastic fluid dynamics [6], stochastic finite elements [7], and solid

mechanics. Application of gPC to problems related to control and estimation of dy-

namical systems, has been surprisingly limited.

The work is organized as follows. We first present preliminaries on the theory of

Polynomial Chaos and demonstrate transformation of stochastic dynamics, with para-

metric uncertainty, into deterministic dynamics in higher dimensional state space.

We then present the stochastic Vinh’s equation [9] for longitudinal motion where we

assume uncertainty in ballistic coefficient, lift over drag ratio, density parameters

and initial conditions. The stochastic hypersonic dynamics is then transformed into

deterministic dynamics in higher dimensional state space using Polynomial Chaos

expansions. This is followed by numerical results that characterize uncertainty prop-

agation in state trajectories induced by uncertainty in system parameters. The results

obtained from Polynomial Chaos framework are compared with Monte-Carlo simula-

tions, which are shown to agree well.
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CHAPTER II

POLYNOMIAL CHAOS

A. Generalized Polynomial Chaos

Let (Ω,F , P ) be a probability space, where Ω is the sample space, F is the σ-algebra of

the subsets of Ω, and P is the probability measure. Let ∆(ω) = (∆1(ω), · · · ,∆d(ω)) :

(Ω,F) → (<d,Bd) be an <d-valued continuous random variable, where d ∈ ℵ, and

Bd is the σ-algebra of Borel subsets of <d. A general second order process X(ω) ∈

L2(Ω,F , P ) can be expressed by Polynomial Chaos as

X(ω) =
∞∑
i=0

xiφi(∆(ω)), (2.1)

where ω is the random event and φi(∆(ω)) denotes the gPC basis of degree p in terms

of the random variables ∆(ω). The functions {φi} are a family of orthogonal basis in

L2(Ω,F , P ) satisfying the relation

E[φiφj] = E[φ2
i ]δij, (2.2)

where δij is the Kronecker delta and E[·] denotes the expectation with respect to the

probability measure dP (ω) = f(∆(ω))dω and probability density function f(∆(ω)).

Henceforth, we will use ∆ to represent ∆(ω).

For random variables ∆ with certain distributions, the family of orthogonal basis

functions {φi} can be chosen in such a way that its weight function has the same

form as the probability density function f(∆). These orthogonal polynomials are

members of the Askey-scheme of polynomials [4], which form a complete basis in the

Hilbert space determined by their corresponding support. Table I summarizes the
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correspondence between the choice of polynomials for a given distribution of ∆ [4].

Table I. Correspondence between choice of polynomials and given distribution of ∆(ω).

Random Variable ∆ φi(∆) of the Wiener-Askey Scheme

Gaussian Hermite

Uniform Legendre

Gamma Laguerre

Beta Jacobi

B. Approximate Solution of Stochastic Differential Equations

A stochastic dynamical system of the form ẋ = f(x,∆), where x ∈ <n,∆ ∈ <d,

can be solved using the Polynomial Chaos framework in the following manner. As-

sume solution of the stochastic differential equation to be x(t,∆). For second order

processes, the solution for every component of x ∈ <n can be approximated as

x̂i(t,∆) =
P∑
j=0

xij(t)φj(∆); i = 1, · · · , n. (2.3)

Substituting the approximate solution into the dynamical system results in error we

get,

ei = ˙̂xi − fi(x̂,∆); i = 1, · · · , n.

The approximation in eqn.(2.3) is optimal in the L2 sense when the projections of

the error on the orthogonal basis functions are zero, i.e.,

〈ei(t,∆), φj(∆)〉 =
∫
D∆

ei(t,∆)φj(∆)f(∆)d∆ = 0; j = 0, · · · , P ; i = 1, · · · , n; (2.4)
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where D∆ is the domain of ∆. Equation, eqn.(2.4) results in n(P + 1) deterministic

ordinary differential equations, which can be solved numerically to obtain the ap-

proximated stochastic response. Therefore, the stochastic dynamics in <n has been

transformed into deterministic dynamics in <n(P+1). The series is truncated after

P + 1 terms, which is determined by the dimension d of ∆ and the order r of the

orthogonal polynomials {φj}, satisfying P + 1 = (d+r)!
d!r!

.

C. Stochastic Dynamics and Polynomial Chaos

We first consider stochastic linear systems of the form

ẋ(t,∆) = A(∆)x(t,∆) +B(∆)u(t), (2.5)

where x ∈ <n, u ∈ <m. The system has probabilistic uncertainty in the system param-

eters, characterized by A(∆), B(∆), which are matrix functions of random variable

∆ ≡ ∆(ω) ∈ <d with certain stationary distributions. Due to the stochastic nature

of (A,B), the system trajectory will also be stochastic. The control u(t) is considered

to be deterministic in this paper. We do not consider stochastic forcing in this paper,

but this framework can be easily extended to include stochastic forcing and will be

addressed in future publications.

Let us represent components of x(t,∆), A(∆) and B(∆) as,

x(t,∆) = [x1(t,∆) · · · xn(t,∆)]T , (2.6)

A(∆) =


A11(∆) · · · A1n(∆)

...
...

An1(∆) · · · Ann(∆)

 , (2.7)
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B(∆) =


B11(∆) · · · B1m(∆)

...
...

Bn1(∆) · · · Bnm(∆)

 . (2.8)

By applying the Wiener-Askey gPC expansion to xi(t,∆), Aij(∆) and Bij(∆), we get

xi(t,∆) =
p∑

k=0

xi,k(t)φk(∆) = xi(t)
TΦ(∆), (2.9)

Aij(∆) =
p∑

k=0

aij,kφk(∆) = aTijΦ(∆), (2.10)

Bij(∆) =
p∑

k=0

bij,kφk(∆) = bTijΦ(∆), (2.11)

where xi(t), aij,bij,Φ(∆) ∈ <p are defined by

xi(t) = [xi,0(t) · · · xi,p(t)]T , (2.12)

aij = [aij,0(t) · · · aij,p(t)]T , (2.13)

bij = [bij,0(t) · · · bij,p(t)]T , (2.14)

Φ(∆) = [φ0(∆) · · · φp(∆)]T . (2.15)

(2.16)

The number of terms p+ 1 is determined by the dimension d of ∆ and the order r of

the orthogonal polynomials {φk}, satisfying p + 1 = (d+r)!
d!r!

. The coefficients aij,k and

bij,k are obtained via Galerkin projection onto {φk}pk=0 given by

aij,k =
〈Aij(∆), φk(∆)〉
〈φk(∆)2〉

, (2.17)

bij,k =
〈Bij(∆), φk(∆)〉
〈φk(∆)2〉

. (2.18)

The n(p+1) time varying coefficients, {xi,k(t)}; i = 1, · · · , n; k = 0, · · · , p, are obtained

by substituting the approximated solution in the governing equation (eqn.(2.5)) and
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conducting Galerkin projection onto {φk}pk=0, to yield n(p + 1) deterministic linear

differential equations, given by

Ẋ = AX + Bu, (2.19)

with X ∈ <n(p+1); M,A ∈ <n(p+1)×n(p+1); B ∈ <n(p+1)×m and

X = [xT1 xT2 · · · xTn ]T , (2.20)

A = M−1


A11 · · · A1n

...
...

An1 · · · Ann



Aij = 〈ΦΦT ⊗ ΦT 〉(Ip+1 ⊗ aij), (2.21)

M = In ⊗



〈φ0, φ0〉 0 · · · 0

0 〈φ1, φ1〉 · · · 0

...
...

...

0 0 · · · 〈φp, φp〉


,

B =


b11 · · · b1m

...
...

bn1 · · · bnm

 ,

where In ∈ <n×n, Ip+1 ∈ <(p+1)×(p+1) are identity matrices, ⊗ is the Kronecker

product, and the inner product in eqn.(2.21) is performed element wise. Therefore,

transformation of a stochastic linear system with x ∈ <n, u ∈ <m, with pth order

gPC expansion, results in a deterministic linear system with increased dimensional-

ity equal to n(p+ 1).
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Here we consider certain types of nonlinearities that may be present in the system

model. The nonlinearities considered here are rational polynomials, transcendental

functions and exponentials. We outline the process for representing these nonlineari-

ties in terms of Polynomial Chaos expansions.

If x, y are random variables with gPC expansions similar to eqn.(2.9) then the gPC

expansion of the expression xy can be written as

xy =
p∑
i=0

p∑
j=0

xiyjφiφj.

The gPC expansion of x2 can be derived by setting y = x in the above expansion to

obtain

x2 =
p∑
i=0

p∑
j=0

xixjφiφj.

Similarly x3 can be expanded as

x3 =
p∑
i=0

p∑
j=0

p∑
k=0

xixjxkφiφjφk.

This approach can be used to derive the gPC expansions of any multi-variate whole

rational monomial in general.

The gPC expansion of fractional rational monomials of random variables is illustrated

using the the expression z = x
y
. If x, y are random variables then z is also a random

variable with gPC expansions similar to eqn.(2.9). The expansions of x, y are known.

The gPC expansions of z can be determined using the following steps. Rewrite

z =
x

y
as yz = x,
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Expanding yz and x in terms of their gPC expansions gives

p∑
i=0

p∑
j=0

ziyjφiφj =
p∑

k=0

xkφk.

To determine the unknown zi we project both sides of the equation on the subspace

basis to obtain a system of p+ 1 linear equations

1

〈φk, φk〉

p∑
i=0

p∑
j=0

ziyj〈φiφjφk〉 = xk, k = 0, . . . , p;

to solve for the p unknowns zi. This can be generalized to obtain the gPC expansion

of any fractional rational monomial.

When nonlinearities involve non polynomial functions, such as transcendental func-

tions and exponentials, difficulties occur during computation of the projection on the

gPC subspace. The corresponding integrals may not have closed form solutions. In

such cases, the integrals either have to be numerically evaluated or these nonlinear-

ities are first approximated as polynomials using Taylor series expansions and then

the projections are computed using methods described above. While Taylor series

approximation is straightforward and generally computationally cost effective, it can

become severely inaccurate when higher order gPC expansions are required to repre-

sent the physical variability. A more robust algorithm is presented by Debusschere

et al. [10] for any non polynomial function u(x) for which du
dx

can be expressed as a

rational function of x, u(x).

D. Limitations of Polynomial Chaos

The gPC framework is well suited for evaluating short term statistics of dynamical

systems. However, their performance degrades upon long term integration. Consider
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the well known forced Van der Pol oscillator model,

ẋ1 = x2

ẋ2 = −x1 + µ(∆)(1− x2
1)x2 + u

 (2.22)

where µ is a random variable with uniform distribution in the range µ(∆) ∈ [0, 1].

Fig. 4. Evolution of Monte Carlo(blue) and Polynomial Chaos(green and red) trajec-

tories with time. With higher order of expansions Polynomial Chaos trajectory

approaches the Monte Carlo trajectory.

As shown in fig. (4), the mean trajectories of the stochastic Van der Pol oscillator

from eqn.(2.22), obtained from gPC calculations with 5th order expansions, deviate

from those obtained from Monte-Carlo simulations. This deviation arises due to finite

dimensional approximation of the probability space (Ω,F , P ). Several methods have

been proposed to reduce this divergence, including adaptive [11] and multi-element

approximation techniques [12]. We will include these approaches in our future work

on trajectory generation with probabilistic uncertainty.
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CHAPTER III

VINH’S EQUATION WITH PROBABILISTIC UNCERTAINTY ON SYSTEM

PARAMETERS

In this section we use Polynomial Chaos framework for analyzing uncertainty propa-

gation in hypersonic flight vehicles. Here we consider 3DOF Vinh’s equation to model

hypersonic flight dynamics. Figure (5) shows a hypothetical model and the way the

states are non dimensionalized.

Fig. 5. Planar 3 dimensional Vinh’s equation is used for modeling the dynamics. Here

the states are height(h), velocity(v), flight path angle (γ). The states(h, v)

are non dimensionalized using the radius of the planet(R0), and the escape

velocity(vc)

The state variables are height h from surface of planet, velocity v and flight path

angle γ. The equation of motion in the longitudinal plane is given by

ḣ = v sin γ,

v̇ = − ρ0

2Bc
exp(h2−hR0

h1
)v2 − sin γ,

γ̇ = cos γ
(
v2−1
v

)
+ ρ0ν

2Bc
exp(h2−hR0

h1
)v,


(3.1)

where R0, h1, h2, Bc, ρ0 and ν are constants as shown in table II.
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Table II. Parameters for a Mars atmospheric entry vehicle.

Description Symbol & Value

Density on the surface of Mars ρ0 = 0.0176kg/m3

Gravitational Constant of Mars: µ = 42.828× 103Km/s2

Scale Height in Density Computation h1 = 9.8× 103m, h2 = 20× 103m

Mean Equatorial radius of Mars R0 = 3397Km

Ballistic Coefficient Bc = 72.8kg/m2

Gravitational Oblateness Coeff. for Mars J2 = 1960.45× 10−6

Lift to Drag Ratio ν = 0.3

Surface Gravity on Mars gm = 3.71

We consider uncertainty in parameters ρ0 (density on surface of Mars), ν (lift over

drag ratio) and Bc (ballistic coefficient). The uncertainty in these parameters are

assumed to be uniform and we are interested in determining the uncertainty in state

trajectories in flight and at the time when the vehicle strikes the ground.

When ν,Bc and ρ0 are random variables, the differential equation defined by eqn.(3.1)

is stochastic, and h, v, and γ are random processes. We use Polynomial Chaos frame-

work to transform the stochastic differential equation into a deterministic differential

equation in higher dimension state space. It is assumed that random variables ν,Bc

and ρ0 are expressed in terms of probability density functions. In this paper we

assume uniform distribution on ν,Bc and ρ0. Therefore, from table(I), the basis func-

tions are given by Legendre polynomials. The random variables ν,Bc and ρ0 can then

be written as,
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ν(∆) = ν̄ + δν∆,

Bc(∆) = B̄c + δBc∆,

ρ0(∆) = ρ̄0 + δρ0∆,

where ∆ ∈ [−1, 1] and δν, δBc, and δρ0 are the perturbations about nominal values ν,

B̄c and ρ̄0 respectively. In this research we have assumed the parameters to have uni-

form distributions about their nominal values. The random processes h(t,∆), v(t,∆)

and γ(t,∆) are expanded as

h(t,∆) =
∑P

0 hi(t)φi(∆),

v(t,∆) =
∑P

0 vi(t)φi(∆),

γ(t,∆) =
∑P

0 γi(t)φi(∆).

Note that for the parameters with uniform uncertainty, only two basis functions are

required to completely capture their respective probability density functions. No

benefit is obtained by including more terms. However for the states, the expansion

includes higher order basis functions. From the gPC theory, we are guaranteed expo-

nential convergence as higher order basis functions are included[4].

Substituting these in eqn.(3.1) results in the following

∑P
0 ḣiφi =

∑P
0 viφi sin(

∑P
0 γiφi),

∑P
0 v̇iφi = − ρ0(∆)

2Bc(∆)

 exp
h2
h1

exp
R0

∑P

0
hiφi

h1

∑P
0

∑P
0 φiφjvivj − sin(

∑P
0 γiφi),

∑P
0 γ̇iφi = cos(

∑P
0 γiφi) (

∑P
0 viφi − 1∑P

0
viφi

) + ρ0(∆)ν(∆)
2Bc(∆)

(
exp

h2
h1

exp
R0

∑P

0
hiφi

h1

)
∑P

0 viφi.

The above equations are further simplified by the following substitutions
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∑P
0 wiφi = 1∑P

0
viφi

,

∑P
0 xiφi =

exp
h2
h1

exp
R0

∑P

0
hiφi

h1

,

∑P
0 yiφi = ρ0(∆)

2Bc(∆)
,

∑P
0 ziφi = ρ0(∆)ν(∆)

2Bc(∆)
,

where coefficients wi, xi, yi, zi ∈ < are yet to be determined. The Vinh’s equation can

now be written as

∑P
0 ḣiφi =

∑P
0 viφi sin

(∑P
0 γiφi

)
,

∑P
0 v̇iφi = −∑P

i,j,k,l=0 φiφjφkφlxiyjvkvl − sin
(∑P

i=0 γiφi
)
,

∑P
0 γ̇iφi = cos

(∑P
i=0 γiφi

) (∑P
i=0 viφi −

∑P
i=0wiφi

)
+
∑P
i,j,k=0 φiφjφkxizjvk.

Taking Galerkin projection on basis functions φi(∆), we get the following determin-

istic differential equations,

ḣm = 1
〈φ2
m〉
∑P

0 vi
〈
φiφm sin

(∑P
0 γiφi

)〉
,

v̇m = − 1
〈φ2
m〉
∑P
i,j,k,l=0 〈φiφjφkφlφm〉xiyjvkvl − 1

〈φ2
m〉

〈
φm sin

(∑P
i=0 γiφi

)〉
,

γ̇m = 1
〈φ2
m〉
∑P
i=0 vi

〈
φiφm cos

(∑P
i=0 γiφi

)〉
− 1
〈φ2
m〉
∑P
i=0wi

〈
φiφm cos

(∑P
i=0 γiφi

)〉
+ 1
〈φ2
m〉
∑P
i,j,k=0 〈φiφjφkφm〉xizjvk,


(3.2)

where m = 0, · · · , P . Equation (3.2) is the equivalent deterministic dynamics of the

stochastic dynamics given by eqn.(3.1), approximated by gPC expansions. Solution
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of this differential equation, in higher dimensional state space, can then be used to

characterize h(t,∆), v(t,∆) and γ(t,∆).

The terms wi, xi, yi and zi in eqn.(3.2) are computed as follows. Define

α =
P∑
0

γiφi, β =
R0
∑P

0 hiφi
h1

.

Multiplying,

P∑
0

xiφi =
exp h2

h1

exp
R0

∑P

0
hiφi

h1

,

by exp(β) on both the sides we get

exp
h2

h1

=
P∑
0

xiφi exp β.

Taking projection on the basis functions yields,

〈exp
h2

h1

φk〉 = 〈
P∑
0

φiφk exp β〉xi.

This produces a set of (P + 1) linear equations in xi. Similarly, wi are computed by

multiplying

1∑P
0 viφi

=
P∑
0

wiφi,

by
∑P

0 viφi on both the sides, which reduces to

1 =
P∑
0

P∑
0

φiφjviwj.
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Now taking projection on the basis functions we get,

〈φk〉 =
P∑
0

P∑
0

〈φiφjφk〉viwj,

which also is a system of linear equations in wi. The coefficients yi and zi can also be

determined in the similar manner.

The terms sin(α) and exp(β) are computed by approximating them by a Taylor series

expansion of the perturbation about the mean [10]. For example, computing the

exponential of a random variable ξ, the perturbation around the mean is given as

d = ξ − ξ0, where ξ0 is the mean. Therefore,

exp(ξ) = exp(ξ0)(1 +
Ntay∑
n=1

dn

n!
).

Here d is the stochastic part of ξ and Ntay is the number of terms in the Taylor series

expansion. The sine of the random process is computed similar to the exponential,

in the following manner,

sin(ξ) = sin(ξ0 + d) = sin(ξ0) cos(d) + cos(ξ0) sin(d).

While Taylor series approximation is straightforward and generally computationally

cost effective, it can become severely inaccurate when higher order gPC expansions

are required to represent the physical variability.

A. Obtaining Statistics from Polynomial Chaos

Mean and variance of the state trajectories can be easily computed from the coeffi-

cients of the gPC expansions. The mean trajectories can be derived as,
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E[h(t,∆)] = E[
p∑
i=0

hiφi] =
p∑
i=0

hiE[φi] =
p∑
i=0

hi

∫
D∆

φifd∆,

and similarly,

E[v(t,∆)] =
∑p
i=0 vi

∫
D∆

φifd∆,

E[γ(t,∆)] =
∑p
i=0 γi

∫
D∆

φifd∆,

where hi, vi, γi are the coefficients of the gPC expansions of h(t,∆), v(t,∆), γ(t,∆)

respectively, and f is the probability density function of the parameters.

The variance of a trajectory h(t,∆) is given by

σ2[h(t,∆)] = E[(h(t,∆)2]− E[h(t,∆)]2,

=
∑P
i,j=0 hihj

∫
D∆

φjφjfd∆− E[h(t,∆)]2

=
∑P
i=0 h

2
i

∫
D∆

φ2
i fd∆− E[h(t,∆)]2, because of orthogonality of φi, φj.

In this manner, the covariance matrix for the system can also be determined.

1. Uncertainty Propagation Using the Standard Approach of Monte Carlo

Simulations

In the subsequent analysis, we have assumed 5% parametric variation in ρ0, ν and

Bc, about the nominal values listed in table(II). The distribution is assumed to be

uniform about the nominal values. We have obtained statistics of the states trajecto-

ries from Monte-Carlo simulations and have compared them with those obtained from

Polynomial Chaos theory, to verify the validity of the Polynomial Chaos approach for

analyzing uncertainty in hypersonic flight dynamics.
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In the thesis work, we analyze the effect of uncertainty in initial condition and pa-

rameters on the downrange error and compare the results obtained from Monte-Carlo

simulations and Polynomial Chaos theory. Numerical analysis is also performed to

determine the sensitivity of the number of basis functions, Taylor series approxima-

tion and Debusschere’s method, on the statistics of the state trajectories. In the

simulation results shown, the dynamics has been non dimensionalized using the ra-

dius of planet and escape velocity.

Figures (6, 7 and 8) shows the results for uncertainty in initial conditions of h0, v0

and γ0 respectively. We observe that the state trajectories of the vehicle are greatly

affected by the uncertainty in initial conditions and initial condition uncertainty is

more when distribution is taken on v0. These trajectories were obtained using Monte-

Carlo simulations. Figures (9, 10 and 11) shows the evolution of uncertainty in state

trajectories due to parametric uncertainty. We observe that the effect of uncertainty

in ρ0, ν and Bc are pronounced in lower altitudes where the aerodynamic effects are

dominant. Also the uncertainty is more when it is taken for L over D ratio.

We next generate the mean trajectories of the system using Polynomial Chaos ap-

proach and the results agree with those obtained from Monte-Carlo simulations.

Figures (12, 13 and 14 ) show the mean trajectories obtained from Monte-Carlo

simulations and Polynomial Chaos theory, for uncertainty in parameters as initial

conditions. We take 5% uniform uncertainty on each of the initial states(h0, v0, γ0).

The moments like mean and variance for the states is propagated and matched with

the Monte Carlo simulation moments. We observe that Polynomial Chaos is able to

capture the statistics of the state trajectories very well. The variance obtained by

Polynomial Chaos is also matching with the Monte Carlo method.
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Fig. 6. Evolution of uncertainty using 5% uniform uncertainty on initial conditions of

state h0. The solid black trajectory is the mean

trajectory.

B. Simulation Results for the Moments Propagation Using Polynomial Chaos The-

ory

Moments are propagated using the Polynomial Chaos Theory. The results can be

seen in figures (12, 13 and 14). Here the mean and the variance of the states are

propagated using the Monte Carlo Simulation and again using the Polynomial Chaos

Theory. We observe that the moments obtained from both the methods are matching.

We are assuming 5% uniform uncertainty on the states (h0, v0, γ0)as well as density

(ρ0), ballistic constant (Bc) and L over D ratio (ν).

Figure (15) is for matching moments, between Monte Carlo and Polynomial Chaos

Simulations, for uniform uncertainty in ρ0. Figure(16) shows that by increasing the
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Fig. 7. Evolution of uncertainty using 5% uniform uncertainty on initial conditions of

state v0. Evolution of uncertainty is more predominant in this case. The solid

black trajectory is the mean trajectory.

order of truncations the error between the Monte Carlo and the Polynomial Chaos

Simulations converge.



23

Fig. 8. Evolution of uncertainty using 5% uniform uncertainty on initial conditions of

state γ0. The solid black trajectory is the mean

trajectory.

Fig. 9. Evolution of uncertainty using 5% uniform uncertainty on density(ρ0).
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Fig. 10. Evolution of uncertainty using 5% uniform uncertainty on Ballistic Con-

stant(Bc) ratio.

Fig. 11. Evolution of uncertainty using 5% uniform uncertainty on L over D ratio(ν0).

We notice that the evolution of uncertainty is more in this case as compared

to other parameters as Bc and ρ0.
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Fig. 12. Matching the moments, mean and variance, using 5% uniform uncertainty on

h0 using the Sampling Method. Blue trajectory is from Monte Carlo method

and red dashed is obtained from Polynomial Chaos method.

Fig. 13. Matching the moments, mean and variance, using 5% uniform uncertainty on

v0 using the Sampling Method. Blue trajectory is from Monte Carlo method

and red dashed is obtained from Polynomial Chaos method.
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Fig. 14. Matching the moments, mean and variance, using 5% uniform uncertainty on

γ0 using the Sampling Method. Blue trajectory is from Monte Carlo method

and red dashed is obtained from Polynomial Chaos method.

Fig. 15. Matching the moments, mean and variance, using 5% uniform uncertainty on

ρ0 using the Sampling Method.



27

Fig. 16. Comparing the error in moments (mean and variance) using 5% uniform un-

certainty on ρ0 and using the Sampling Method. Here the order of truncation

is varied to see the convergence of the errors.
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CHAPTER IV

CONTINUOUS LINEARIZATION APPROACH AND DOWNRANGE ANALYSIS

A variety of error sources contribute to the discrepancy between the position of the

intended target and the position of the reentry vehicle. Though the sources have

identifiable physical origin, it is not possible to assign the numerical value of precision

to these uncertainties. However, it is feasible to establish a mean value of a given error

source and a distribution of likely value that would closely resemble the uncertainty

present on the parameters. To illustrate, the atmospheric property such as density

or the parameters like ballistic constant or L by D ratio can be thought of having

Gaussian distribution with a mean value and suitably chosen standard deviation about

the mean. Let the nominal state or the state vector associated with the nominal

trajectory be designated by X0 and the actual state vector be X. The error in the

state vector can now be defined as

e = X−X0

A precise statistical description of the error state is given by the state covariance

matrix P, defined as the expectation of all possible pairs of error vector components.

P = E[eeT ] = E[(X−X0)(X−X0)T ]

This gives us a powerful tool for assessing the size of the error vector and the degree

of coupling among the components of the error vector. Hence, In assessing errors

induced by uncertainty, a useful procedure is to define one trajectory - a nominal

trajectory - assumed error free. The impact point of this trajectory is simply the in-

tended impact point or the reference point. The remaining trajectories then become

the perturbations, by some error source, about this nominal trajectory. We can then
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separate the state vector X into two parts. The nominal part X0 and a perturbed

part, X̃, as

X = X0 + X̃

The nonlinear vector function can be linearized and written as follows:

F ≈ F0 +
dF

dX
(X−X0)

Where a subscript 0 indicates the nominal trajectory. We insert the above equation

to get

dX0

dt
+
dX̃

dt
≈ F(X)|X=X0 +

dF

dX
(X−X0) = F(X0) +

dF

dX
|X0X̃

But from the state equation we know:

dX0

dt
= F(X0)

Consequently,

dX̃

dt
=
dF

dX
|X0X̃ = AX̃

The above equation is the linear differential equation that describes perturbation

about the nominal trajectory. The matrix A is the jacobian of the perturbational

variables whose elements are given as follows

A = [aij] = [
∂fi
∂Xj

]X=X0

We note that the elements of matrix A is evaluated using the current states of the

nominal trajectory. Even though the elements of A are time varying, reflecting the

time varying states of the nominal trajectory, the elements of A are treated as time

constant for integration of the perturbational variable X̃. A convenient way of rep-

resenting the relationship between the perturbational state vector X̃ at time ti and
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time ti+1 is by the use of the transition matrix, φ. Hence

X̃i+1 = φ(ti+1, ti)X̃i

If φ is assigned some fixed value by the nominal states, then according to the above

equation, φ may be accepted as a matrix that transitions the perturbation or the

error state vector X̃ over the time interval ti to ti+1. The transition matrix φ can

formally be identified with the matrix exponent and more usefully with the matrix

series.

φ(ti+1, ti) = eA(ti+1−ti) = eA∆t

Which can conveniently be expanded as

φ = I + A∆t+
1

2!
A2∆t2 +

1

3!
A3∆t3 + .......+

1

n!
An∆tn

Further we note that the error ellipsoid is the quadratic form of the covariance matrix.

We define the error covariance matrix at time ti, Pi as

Pi = E[X̃iX̃i
T

]

Where X̃i is the perturbational or error state vector at time ti. It can now be inferred

for time ti+1 that

Pi+1 = E[X̃i+1X̃
T

i+1]

Hence insertion of equation gives:

Pi+1 = φiPiφ
T
i
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The preceding equation provides the discrete propagation of the covariance matrix.

Using the expansion of the state transition matrix we get

Pi+1 ≈ [(I + A∆t)Pi(I + A∆t)T ]

Which upon simplification gives

Pi+1 − Pi
∆t

= APi + PiA
T

We use the above approach for computing the covariance matrix. The nominal tra-

jectory is computed assuming that the parameters are known with certainty and the

jacobian of the perturbational variables are computed about the nominal trajectory.

This approach is used for populating the covariance matrix along the nominal trajec-

tory.

A. Simulation Results

Here the simulation is run with Gaussian distribution on the parameters and the three

methods, Monte Carlo, Polynomial Chaos and Continuous Linearization approach is

compared.

B. State Acquisition

It is common to use the estimation or optimization algorithms for the system whose

states are given by the equation of the form:

ẋ = f(t,x,p)

Where,

p = [p1, p2, p3......, pq]
T
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is a set of model constants which appear in the system’s differential equations. In

our application initial conditions are poorly known as well as one or more elements of

the model parameters vector p. Hence it becomes necessary to estimate both x(t0)

and p based upon the measurements of of x(t) or a function thereof. Conventional

estimation require the partial derivative matrices:

Φ(t, t0) =
∂x(t)

∂x(t0)

and,

Ψ(t, t0) =
∂x(t)

∂p

These derivative matrices can be computed as

x(t) = x(t0) +
∫ t

t0
f(τ,x,p)dτ

This when applied to the derivative matrices give:

Φ(t, t0) = I +
∫ t

t0

∂f(τ,x,p)

∂x(τ)

∂x(τ)

∂x(t0)
dτ

and

Ψ(t, t0) =
∫ t

t0
(
∂f(τ,x,p)

∂p
+
∂f(τ,x,p)

∂x(τ)

∂x(τ)

∂x(t0)
)dτ

Taking the time derivative of the above equations we see that the desired derivative

matrices satisfy the first order linear differential equations:

Φ̇(t, t0) = F (t)Φ(t, t0)

Where Φ(t0, t0) = I, and

Ψ̇(t, t0) = F (t)Ψ(t, t0) +
∂f(t,x,p)

∂p
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with Ψ(t0, t0) = 0 and

F (t) =
∂f(t,x,p)

∂x(t)

The above derivations can be viewed in a more systematic way by augmenting the

system differential equation as:

ẋ = f(t,x,p)

ṗ = 0

The above equations can be rewritten as

ż = g(t, z)

Where, z ≡ [xTpT ]T and g(t, z) ≡ [fT0T ]T . We now form this augmented matrix:

Γ(t, t0) ≡ ∂z(t)

∂z(t0)
=

 Φ(t, t0) Ψ(t, t0)

0 I

 (4.1)

(4.2)

The augmented state transition matrix satisfies:

Γ̇(t, t0) =
∂g(t, z)

∂z(t)
Γ(t, t0)

and

Γ(t, t0) = I

Where,

∂g(t, z)

∂z(t)
=

 F (t) ∂(t,x,p)

∂p

0 0

 (4.3)

(4.4)
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The augmented state transition matrix is now used to obtain the statistics when the

initial condition is poorly known and uncertainty is present on one of the parameters.

In our simulation we assume that uncertainty is present on the initial condition as

well as on one of the parameters ρ0, ν or Bc in the form of Gaussian distribution. The

simulation is done for each of the three methods, Monte Carlo, Polynomial Chaos and

Continuous Linearization and statistics is obtained in the form of mean and variances

of the state trajectories.

Fig. 17. Matching the moments, mean and variance, using 5% Gaussian uncertainty

on IC for the three approaches (MC, PC, CL).

Next, we analyze the continuous linearization approach to obtain the statistics for

the states of the vinh’s equation. We are considering the enhanced state dynamics
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Fig. 18. Matching the moments, mean and variance, using 5% Gaussian uncertainty

on IC and ρ0 for the three approaches (MC, PC, CL).

to account for the Gaussian Uncertainty in one of the parameters(ρ0, Bc, ν) together

with uncertain initial conditions. The method to obtain the mean and the variance

trajectories has already been explained in previous chapter. For a given Monte Carlo

trajectory the Gaussian random number generator is entered with the appropriate

standard deviation and the trajectories are generated for uncertain initial condition

and one of the parameters. The random numbers used in the Monte Carlo process

are then combined to form an error covariance matrix by correlating each state taken

two at a time. The resulting matrix so formed at the start of the Monte Carlo sim-

ulation is used to initialize the covariance propagation procedure that is terminated

at the time of nominal trajectory impact. We note immediately that the three state

trajectories for the moments of the random variables(h, v, γ) obtained each for the
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Monte Carlo, Polynomial Chaos and Continuous Linearization approach agree well.

The simulation is first done for Gaussian uncertainty in Initial conditions on states,

Figure (17). We observe that Polynomial Chaos is more accurate as compared to

Continuous Linearization approach and the errors, when the trajectories are com-

pared with the standard Monte Carlo trajectory, is smaller in the case of Polynomial

Chaos. We see that is true for second order moments too. The Polynomial Chaos

approach works reasonably well over the Continuous Linearization approach when

the uncertainty on Initial conditions are taken. Figure(18) shows the result where

it is seen that Polynomial Chaos gives relatively far better result than Continuous

Linearization Approach . We extend the effort by taking the combined uncertainty

on the Initial Condition and density as well. We consider 5% Gaussian Uncertainty

on initial condition and density simultaneously. Figures (18, 19, 20) illustrates the

result. The first one of them shows the mean trajectories being compared for Monte

Carlo, Polynomial Chaos and the Continuous Linearization approach. This is done

by taking Gaussian uncertainty on the parameters initial conditions combined with

density ρ0 and subsequently with Bc and L over D ratio(ν). We next set to compare

the variances obtained by the three approaches. They also match well but we note

that Polynomial Chaos approach is giving better results than Continuous Lineariza-

tion approach when the trajectories are compared with Monte Carlo Simulations.
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Fig. 19. Matching the moments, mean and variance, using 5% Gaussian uncertainty

on IC and L over D(ν) ratio for the three approaches (MC, PC, CL).
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Fig. 20. Matching the moments, mean and variance, using 5% Gaussian uncertainty

on IC and Bc ratio for the three approaches (MC, PC, CL).
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CHAPTER V

SUMMARY AND CONCLUSIONS

A. Summary

In this thesis, we have presented a framework for analyzing evolution of uncertainty

in hypersonic flight. This framework is based on the generalized Polynomial Chaos

framework, which has been successfully applied to areas such as stochastic computa-

tional fluid dynamics and solid mechanics. We have demonstrated that this frame-

work captures the trajectory statistics quite accurately and is computationally less

demanding than methods based on Monte-Carlo simulations. Monte-Carlo methods

were used in this paper solely to verify the results obtained from the generalized Poly-

nomial Chaos approach.

However, the generalized Polynomial Chaos based approach has limitations related

to errors due to long term integration. This makes it suitable for estimation of short

term statistics. Further, we have used this method to capture the dynamics with

fewer dimensions. Further, in terms of computation, Polynomial Chaos requires some

effort in computing the tensors 〈φiφj · · ·φl〉, which has to be done once. This can be

computed in the preprocessing stage and stored for later use. It is the computation

of these tensors that makes higher order Taylor series approximation computation-

ally prohibitive. In general Polynomial Chaos based approach is computationally far

superior to Monte-Carlo methods.
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B. Future Work

Polynomial Chaos has long term integration issues. It cannot capture the statistics of

the dynamics over a long period of time. This was demonstrated for the well known

Van der Pol dynamics where the trajectory obtained by the Polynomial Chaos devi-

ated from the Monte Carlo trajectories. This will become more apparent when the

stochastic solutions are periodic with frequencies varying in random fashion. We can

choose the polynomial order adaptively but it will increase the computational burden.

Methods exist that reduce the error growth over time and they incorporate adaptive

multi-element schemes [11, 12]. The multi-element approach approximates Ω using

local approximations, instead of global approximations. It is well known in approx-

imation theory that locally supported basis functions provide superior results than

globally supported functions. The idea works on the framework of Multi-Element

generalized Polynomial Chaos where the random space is decomposed into smaller

elements and the gPC scheme is implemented for each of the elements. This will

allow us to work with low polynomial order as even the lower order approximation

will capture the short term statistics. This multi element gPC method is analogous

to h-p type convergence in Finite Element Theory. Here h will be the size of the

random element and p will be the order of the Polynomial Chaos.

We have used this method when the forcing is not there. For most of the practi-

cal cases we have forcing of stochastic nature. Polynomial Chaos scheme can be used

in this case if the forcing is represented using Karhunen-Loeve expansions. This is the

representation of the stochastic process as an infinite linear combination of orthog-

onal basis functions. The choice of basis functions is not restricted. The particular

interest is to restrict the basis functions to those which will make Xi uncorrelated
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random variables. Mathematically this will require:

E[XiXj] = E[Xi]E[Xj]

∀i, j 6= i

gPC works for standard distributions like uniform, Gaussian. Since most of the

practical simulations involve non standard type distributions, this method should be

extended to capture the dynamics with non standard distributions. This is done by

choosing the set of orthogonal polynomials using Gram-Schmidt orthogonalization.

Mathematically, the orthogonal polynomials can be represented as:

φj(ξ) = ej(ξ)−
j−1∑
k=0

cjkφk(ξ)

with φ0 = 1 and

cjk =
〈ej(ξ), φk(ξ)〉
〈φk(ξ), φk(ξ)〉

Here the polynomials ej(ξ) are polynomials of exact degree j. Further, to obtain

exponential convergence the weighting function has to be equal to the probability

distribution function(PDF) of the random variable. This will extend the use of gPC

method to other non standard type of distributions as well with exponential conver-

gence realized.

Although we have shown that the gPC scheme works well over the standard Monte

Carlo method for three dimensional stochastic planar dynamics, it needs to be checked

as how will this behave with cases having multi dimensional random spaces. It is ap-

parent that the evaluation of statistics of the dynamics will become more involved.

This approach might have problems when applied to partial differential equations
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with random fields.
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[14] M. Jardak, C.-H. Su, G.E. Karniadakis. “Spectral polynomial choas solutions of

the stochastic advection equation.,” J. Sci Comput., vol. 17, pp. 319- 338, 2002.

[15] G. Lin, C.-H. Su, G.E. Karniadakis, “Stochastic solvers for the euler equations,”

43rd AIAA Aerospace Sciences Meeting and exhibit Reno, Nevada, 2005.

[16] L. Mathelin, M.Y. Hussaini, T. Z. Zang., “Stochastic approches to uncertainty

quantification in CFD simulations,” Numerical Algorithms, vol. 38, pp. 209 -

236, 2005.



45

APPENDIX A

NOMENCLATURE

Ω Sample space

F σ-algebra defined over subsets of Ω

P Probability measure

ω ∈ Ω An event in the sample space

∆ ≡ ∆(ω) Random variables representing system parameters

f(∆) Joint probability density function of system parameters

h Non dimensional altitude, scaled by R0

V Non dimensional velocity, scaled by vc

γ Flight path angle

L/D Lift over drag ratio

Bc Ballistic coefficient of vehicle

ρ0 Density on surface of planet

t Non dimensional time, scaled by R0/vc

g GM/R2
0

R0 Radius of planet

vc Escape velocity =
√
gR0

M Mass of planet

G Universal gravitation constant
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APPENDIX B

DIFFERENT METHODS FOR UNCERTAINTY PROPAGATION

Monte Carlo methods belong to a class of computational algorithms which uses re-

peated random sampling for the computation. This becomes computationally cost

prohibitive as the number of sample points increase as the mathematical or physical

simulation needs to be run for each of the sample points. This technique is often

used when deterministic algorithm is not present to compute the exact result. This

method is particularly helpful in analyzing a system with large number of coupled

degrees of freedom such as fluids, disordered materials or strongly coupled solids. It

is used for modeling phenomena with significant uncertainty in inputs or parameter

constants. The general pattern for using this approach is to select a domain with

random possible inputs. This domain is used for generating random inputs and per-

forming a deterministic computation on them. The results of individual computation

is collected to get the final result. As an illustrative example, this method can be

used for the evaluation of definite integrals with complicated boundary conditions

which cannot be defined analytically or as in our case it is used for computing the

statistics like mean and variance of the states defined by the dynamical differential

equation where it is realized for each of the sample points in the domain selected for

the parameters like initial condition and constants.

Consider the differential equation:

dX = f(x)dt+ dW

Replacing the non linear system by the equivalent linear system:

˙̄Xeq = (A(t)X̄eq + b(t))dt+ dW
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Now, Stochastic Linearization implies:

f(Xt) = f(Xt−1) + f ′(xt−1)dt

and define the error term as:

ē = X̄ −Xeq

Therefore the problem statement reduces to :

min(E[
∫ T

0
ēT ēdt])A(t),b(t)

Now since

ē = (f(x)− AX̄eq − b) ≈ (f(x)− AXeq − b)

The cost function is defined as:

J =
∫ T

0
E[(f(x)− AXeq − b)T (f(x)− AXeq − b)]dt

Therefore,

δJ =
∫ T

0
([
∂E(eT e)

∂A
]δA+ [

∂E(eT e)

∂b
]δb)dt = 0

Minimization require:

[
∂E(eT e)

∂A
] = 0

[
∂E(eT e)

∂b
] = 0

⇒ 2E[f(x)− Ax− b] = 0

⇒ ˙̄X = E[f(x)] = Ax̄+ b

Similarly from the first inequality:

A = E[f(x)xT ]− x̄E[fT (x)]P−1
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Now since,

Ṗ = (AP + PAT +Q)

⇒ Ṗ = E[f(x)(x− x̄)T ] + E[(x− x̄)fT (x)] +Q(t)

Hence we get the final set of differential equations for the propagation of the mean

and variance:

˙̄X = E[f(x)]

Ṗ = E[f(x)(x− x̄)T ] + E[(x− x̄)fT (x)] +Q(t)

The Fokker-Plank equation gives the time evolution of the probability density function

and is commonly used for computing the probability densities of stochastic differential

equations. This is also commonly known as Kolmogorov forward equation. The

Fokker-Plank equation was first used to give the statistical description of Brownian

motion of a particle in a fluid.

In one spatial direction x, the Fokker-Plank equation for a process with drift D1(x, t)

and diffusion D2(x, t) is :

∂

∂t
f(x, t) = − ∂

∂x
[D1(x, t)f(x, t)] +

∂2

∂x2
[D2(x, t)f(x, t)]

More generally, the time dependent probability distribution function may depend on

a set of N variables xi. The general form of the Fokker-Plank equation can then be

written as:

∂

∂t
f(x, t) = −

N∑
i=1

∂

∂xi
[D1

i (x1, x2, ..xN t)f ] +
N∑
i=1

N∑
j=1

∂2

∂xi∂xj
[D2

ij(x1, x2, .....xN , t)f(x, t)]

Here D1 and D2 are drift and the diffusion tensors respectively. The diffusion term

results from the presence of the stochastic forces. Probability density of stochastic

differential equations are computed using Fokker-Plank equations. We take the Ito
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stochastic differential equation:

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt

This can be understood as the stock price model used by Black and Scholes where

µ(Xt, t) represents the instantaneous rate of return on a riskless asset, σ(Xt, t) is the

volatility of the stock, and dWt represents the infinitesimal change in a Brownian

motion over the next instant of time. Where Xt ∈ RN is the state and Wt ∈ RM is

a standard M-dimensional Wiener process. If we assume the initial distribution to

be X0 ∼ f(x, 0) then the probability density f(x, t) of the state Xt is given by the

Fokker-Plank equation with drift and diffusion terms as :

D1
i (x, t) = µi(x, t)

D2
ij(x, t) =

1

2

∑
k

σik(x, t)σ
T
kj(x, t)

Being a partial differential equation(PDE), the Fokker-Plank equation(FPK) can be

solved analytically only in special cases. Different numerical techniques are used for

computing the PDE’s generated by the FPK. This however is computationally faster

than the monte carlo technique where the simulation is run for greater number of

sample points.

Let us consider the scalar differential equation excited by white noise(W) of unit in-

tensity. We can write the differential equation as :

ẋ = −x+ εx3 +W

Here W is the white noise of unit intensity and ε is a parameter. For our computa-

tional purposes we are taking the value of epsilon as ε = −0.1. The value of epsilon

is so chosen such that the probability distribution function shows a stable behavior.
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We will use the different methods for the propagation of uncertainty and compare the

statistics obtained by each of them.

The given differential equation is:

ẋ = −x+ εx3 + w

Where w is white noise of unit intensity It is intuitive to write the differential equation

as:

∆x = (−x+ εx3)∆T + ∆w

Now here δT is fixed. We start with a small value of ∆T (= 0.1) and run the monte

carlo simulation and match the mean and variance with the Gaussian closure method.

We are running the simulation for this small period of time though the process can be

run for higher time spans by breaking that span into small (smaller!) increments and

capturing the statistics accurately and then propagating the states. The end result of

the integration for each step would become the initial condition for the next propaga-

tion. Matlab goes dismally slow and hence puts the restriction on running these for

smaller steps and capturing the accurate dynamics for even higher samples. Though,

it is being illustrated here that the dynamics is being captured adequately with even

small number of samples.(n = 100 for noise and IC, assumed to be Gaussian).

ẋ = −x+ εx3 +W

Clearly,

f(x) = −x+ εx3
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Upon substitution we get the differential equation for the mean and variance:

˙̄X = ε(Ẋ)3 + X̄(3εP − 1)

Ṗ = 2(−P + ε(6µ2P + 3P 2 − 3µP )) +Q

Here, X̄ = µ and P = σ2 How does the plot of mean and variance look like??

Fig. 21. Evolution of the dynamics using statistical linearization method. The simu-

lation is run with starting statistics of mean 0.5 and variance of 1.

We note here that the simulation is being run for a very small amount of time. δT =

0.1s. Again the value of epsilon is being taken as ε = -0.1. The plots so obtained is

compared with the monte carlo simulations. Figure (21) shows the evolution of mean,

variance and distribution on the Initial Condition using the Statistical Linearization

Approach. Using the above equation(eqn) we get the partial differential equation of

the PDF evolution as:

∂p(x, t)

∂t
= (x− εx3)

∂p(x, t)

∂x
+ (1− 3x2)p(x, t) +

1

2

∂2p(x, t)

∂x2

This solution for the PDE satisfies the boundary condition as:

p(t,∞) = p(t,−∞) = 0
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We can solve the above equation using Matlab that will give the evolution of the PDF

with time and space. The simulation is run for 0.1 secs with ε = −0.1 and with the

same initial statistics as in previous cases. This will allow us to compare and contrast

the distribution obtained through different methods. The evolution of PDF can now

be seen as given in the figure (22).

Fig. 22. Evolution of the PDF using the Fokker Plank Equation. The simulation is

run with starting statistics of mean 0.5 and standard deviation of 0.01.
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APPENDIX C

REPRESENTATION OF ARBITRARY RANDOM INPUTS

We know that with appropriately chosen Weiner Askey Polynomial Chaos expansion

based on the type of standard arbitrary random inputs, optimal convergence rate of

the chaos expansion is realized. However, for most of the cases the distribution of

the random input is not of the standard type as given in the table or even if they

do belong to certain standard types, the correspondence is not explicitly known. For

these cases we need to project the input process onto the weiner askey Polynomial

Chaos basis directly in order to solve the differential equation.

For example, let us consider the ordinary differential equation :

dy(t)

dt
= −ky, y(0) = ŷ

Now let us assume that the distribution of the decay parameter k is known in the

form of the probability function f(k). The representation of k by the weiner-askey

Polynomial Chaos expansion takes the form

k =
P∑
i=0

kiφi

where,

ki =
〈kφi〉
φ2
i

Where we know from the previous work that the operation 〈., .〉 denotes the inner

product in the Hilbert space spanned by the Weiner-Askey chaos basis φi, ie.,

ki =
1

〈kφ2
i 〉

∫
kφi(ξ)g(ξ)dξ
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Where g(x) and g(xi) are the probability function of the random variable ξ in the

Weiner-Askey Polynomial Chaos for continuous cases. Here we are taking the as-

sumption that that the random variable ξ is fully dependent on the target random

variable k. We understand that the support of k and ξ are different. This is the other

way of saying that k and ξ can belong to two different probability spaces (Ω,Λ, P ),

with different event spaces Ω, σ − algebra Λ and probability measure P.

For us to be able to conduct the above projection we need to transform the fully

correlated random variables k and ξ to the same probability space. The standard

method is to transform them to the uniformly distributed probability space u ∈ U(0,

1). This is the key to random number generation, where the uniformly distributed

numbers are generated as the seeds and then the inverse transformation is performed

according to the desired distribution function. Let us assume that the random variable

u is uniformly distributed in (0, 1) and the PDF’s for k and ξ are f(k) and g(ξ)

respectively. A transformation of the variable in probability space shows that

du = f(k)dk = dF (k), du = g(ξ) = dG(ξ)

Where F and G are the distribution functions of k and ξ, respectively, ie,

F (k) =
∫ k

−∞
f(t)dt,G(ξ) =

∫ ξ

−∞
g(t)dt.

If it is desired to convert the random variables to k and ξ to be transformed to the

same uniformly distributed random variable u, we obtain

u = F (k) = G(ξ)

After inverting the above equation we get

k = F−1(u) ≡ h(u), ξ = G−1(u) ≡ l(u)
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By doing so we convert the two random variables k and ξ to the same probability

space defined by u ∈, the projection (6.2) can be performed as,

ki =
1

〈φ2
i 〉

∫
kφi(ξ)g(ξ)dξ =

1

〈φ2
i 〉

∫ 1

0
h(u)φi(l(u))du

It is difficult to evaluate the above integral analytically. However it is possible to

evaluate the above integral using the Gauss quadrature in the closed domain [0, 1]

with reasonable accuracy. The analytical form for some of the standard distributions

are known. The above process requires that the distribution functions are known

and the inverse functions F−1 and G−1 exist and be known as well. In practice this

is not always satisfied and we know only the probability function f(k) for a specific

problem. The probability function g(ξ) is known from the choice of Weiner-Askey

Polynomial Chaos but the inversion is not known always. In this case we can per-

form the projection(6.2) directly by monte carlo integration, where a large ensemble

of random numbers k and ξ are generated. Further the requirement that k and ξ

be transformed to same probability space U ∈ (0, 1) requires that k and ξ has to

be generated from the same seed of uniformly generated random number U ∈ (0,

1). In this section we present numerical examples of representing an arbitrarily given

random distribution. Here, we will try to capture non Gaussian random variables us-

ing Hermite Chaos. Although, the solution by Hermite chaos converges but optimal

exponential convergence is not realized. It is assumed that the decay parameter k in

the ordinary differential equation is a random variable with exponential distribution

with pdf of the form

f(k) = e−k, k > 0
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The inverse of its distribution function is known as

h(u) ≡ F−1(u) = −ln(1− u), u ∈ U(0, 1)

We now take the Hermite-chaos as the Polynomial Chaos expansion of k instead of

the optimal Laguerre-chaos. The standard random variable ξ is a standard Gaussian

random variable with PDF g(ξ) = 1√
2π
e−

ξ2

2 . The inverse of the Gaussian distribution

G(ξ) is known as

l(u) ≡ G−1(u) = −sign(u− 1

2
)(t− c0 + c1t+ c2t

2

1 + d1t+ d2t2 + d3t3
)

Where,

t =
√
−ln[min(u, 1− u)]2

and c0 = 2.515517, c1 = 0.802853, c2 = 0.010328 d0 = 1.432788, d1 = 0.189269, d2 =

0.001308 The above analytical form is taken from Hastings.

Fig. 23. Numerical values of the coefficients of Hermite Chaos expansion used for cap-

turing exponential distribution.
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The figure (23) shows the results when the exponential distribution is captured by the

Hermite Chaos. We see that the major contribution of the Hermite chaos expansion

is coming from the first three terms.
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APPENDIX D

POLYNOMIAL CHAOS EXPANSION METHOD FOR SOLVING

UNCERTAINTY IN VAN DER POL EQUATIONS

The Cameron-Martin theorem states that any second-order(i.e, finite variance), one

dimensional process G can be written as the weighted sum of the Hermite polynomials

in the Gaussian random variable ξ(taken to have zero mean and unity variance), and

that series converges in the L2 sense. Using the symbolic notation of Abramowitz

and Stegun,

G =
∞∑
i=0

giHei(ξ)

Clearly, the distribution G is constructed from modes which are Hermite Polynomi-

als: He0 = 1, He1(ξ) = ξ,He2(ξ) = ξ2 − 1,..... Further, inner product of Hermite

polynomials are orthogonal with respect to the Gaussian PDF of the random variable

ξ. i.e., ∫ ∞
−∞

e−
ξ2

2 Hei(ξ)Hej(ξ)dξ = eijδij

Where δij are Kronecker delta function. We note that the orthogonality holds when

the weight functions are replaced by equivalent PDF of the random variable. Higher

tensors can similarly be defined as,

∫ ∞
−∞

e−
ξ2

2 Hei(ξ)Hej(ξ)Hek(ξ)dξ = eijkδijk

We will cite a specific example to illustrate the use of Polynomial Chaos expansion

to handle parametric uncertainty. Let us consider the case of van der pol equation,

d2y

dt2
+ µ(y2 − 1)

dy

dt
+ y = 0
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Here x is the position coordinate which is a function of time t, and µ is a random

variable with uniform distribution. The above equation now becomes stochastic in

nature. We will illustrate in this example the way Polynomial Chaos method con-

verts the stochastic differential equation into deterministic linear equations in higher

dimensions. Let us write the differential equation in the state space form as,

dx

dt
= y

dy

dt
= µ(1− x2)− x

In this problem, the random variable µ is expressed as a finite summation of modes,

up to the order P, along with the states. Hence the mathematical form is given as,

µ =
P∑
i=0

µiLei(ξ)

y(t) =
P∑
i=0

yi(t)Lei(ξ)

x(t) =
P∑
i=0

xi(t)Lei(ξ)

Where Le0 = 1, Le1 = ξ, Le2 = 1
2
(3ξ2−1), Le3 = 1

2
(5ξ3−3ξ) are Legendre polynomials

and possess the inner product property as Hermite polynomials. Substituting into

the dynamic equation we obtain,

P∑
i=0

ẋi(t)Lei(ξ) =
P∑
i=0

yi(t)Lei(ξ)

P∑
i=0

ẏi(t)Lei(ξ) =
P∑
i=0

µiLei(ξ)(1−
P∑
i=0

P∑
i=0

xi(t)xj(t)LeiLej)−
P∑
i=0

xi(t)Lei

Next, using the inner product property of these series of orthogonal polynomials,

we multiply by the kth mode and take the Galerkin projection to obtain a set of

deterministic linear equations in higher dimensions:



60

0 50 100 150 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

T

X
1

 

 

MC
PC/P=4

Fig. 24. Evolution of Monte Carlo and Polynomial Chaos trajectory with time. The

results match and the divergence over the period of time is due to long term

integration issues of Polynomial Chaos

method.

ẋk(t) = yk(t),

ẏk(t) = µk − 1
ekk

∑P
l=0

∑P
j=0

∑P
i=0 xi(t)xj(t)µleijlk − xk(t)

In the case of no parametric uncertainty(µi = 0, i > 0) and without nonlinearity each

mode will evolve independent of each other in accordance with the properties of time

invariant linear systems.

We observe from figure (24) that the Polynomial Choas Trajectory matches well

with the Monte Carlo Trajectory for initial span of time and diverges after some time

because of long term integration issues with Polynomial Chaos Method.
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