
656 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008

Polynomial Time Approximation Algorithms for
Multi-Constrained QoS Routing

Guoliang Xue, Senior Member, IEEE, Weiyi Zhang, Member, IEEE, Jian Tang, Member, IEEE, and
Krishnaiyan Thulasiraman, Fellow, IEEE

Abstract—We study the multi-constrained quality-of-service
(QoS) routing problem where one seeks to find a path from
a source to a destination in the presence of � additive
end-to-end QoS constraints. This problem is NP-hard and is
commonly modeled using a graph with vertices and edges
with additive QoS parameters associated with each edge. For
the case of � �, the problem has been well studied, with
several provably good polynomial time-approximation algorithms
reported in the literature, which enforce one constraint while
approximating the other. We first focus on an optimization
version of the problem where we enforce the first constraint
and approximate the other � constraints. We present an
� ��� ��� ��� � 	 time �� � 	� �	-approxi-

mation algorithm and an � ��� ��� ��� � � 	 �	
time �� � 	-approximation algorithm, for any
. When
is reduced to 2, both algorithms produce an �� � 	-approxima-
tion with a time complexity better than that of the best-known
algorithm designed for this special case. We then study the de-
cision version of the problem and present an � � 	 �	
time algorithm which either finds a feasible solution or confirms
that there does not exist a source–destination path whose first
weight is bounded by the first constraint and whose every other
weight is bounded by �� 	 times the corresponding constraint.
If there exists an -hop source–destination path whose first
weight is bounded by the first constraint and whose every other
weight is bounded by �� 	 times the corresponding constraint,
our algorithm finds a feasible path in � � 	 �	 time.
This algorithm improves previous best-known algorithms with
�� � ��� 	 	 time for � � and � � 	 �	

time for �.

Index Terms—Efficient approximation algorithms, multiple ad-
ditive constraints, quality-of-service (QoS) routing.

I. INTRODUCTION

I N THE multi-constrained quality-of-service (QoS) routing
problem, one seeks for a path from a source node to a des-

tination node that satisfies multiple QoS constraints, where the
constraints could be cost, delay, and reliability of the path [3],
[11], [16], [17], [23]. We model the network by a directed graph

Manuscript received March 22, 2006; revised November 23, 2006; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor Z.-L. Zhang. The work
of G. Xue, W. Zhang, and J. Tang was supported in part by the Army Research
Office under Grant W911NF-04-1-0385 and by the National Science Founda-
tion under Grants CCF-0431167 and ANI-0312635. The work of K. Thulasir-
aman was supported in part by the National Science Foundation under Grant
ANI-0312435.

G. Xue is with the Department of Computer Science and Engineering, Ari-
zona State University, Tempe, AZ 85287-8809 USA (e-mail: xue@asu.edu).

W. Zhang is with the Department of Computer Science, North Dakota State
University, Fargo, ND 58105 USA (e-mail: weiyi.zhang@ndsu.edu).

J. Tang is with the Department of Computer Science, Montana State Univer-
sity, Bozeman, MT 59717-3880 USA (e-mail: tang@cs.montana.edu).

K. Thulasiraman is with the School of Computer Science, University of Ok-
lahoma, Norman, OK 73019 USA (e-mail: thulasi@ou.edu).

Digital Object Identifier 10.1109/TNET.2007.900712

with vertices and edges where the vertices represent com-
puters or routers and the edges represent communication links.
Each edge has weights associated with it, representing the
edge cost, edge delay, and edge reliability. Weights on edges
can be extended to weights on paths in a natural way. If the
edge weights represent cost and delay, then the corresponding
path weight is the summation of the weights of the edges on the
path. If the edge weight represents reliability, then the corre-
sponding path weight is the product of the weights of the edges
on the path. Note that the logarithm of the product of posi-
tive numbers is equal to the sum of the logarithms of the pos-
itive numbers. Therefore, these QoS parameters are said to be
additive. QoS parameters such as bandwidth are known as bot-
tleneck parameters where the corresponding weight of a path is
the smallest of the weights of the edges on the path [8], [23].
Problems involving bottleneck QoS constraints can be solved
efficiently by considering only those edges whose weights are
no less than a chosen value. Problems involving two or more
additive QoS constraints have been shown to be NP-hard [23].
In this paper, we restrict our attention to the multi-constrained
path problem () with additive QoS parameters.

Due to its important applications, the problem has been
studied extensively. Most of the existing works concentrate on
an optimization version of for the special case of ,
known as the delay-constrained least cost path problem ()
where the two edge weights are cost and delay, and one seeks for
a least-cost path under the constraint that the delay of the path
is within a given delay constraint. Warburton in [24] first devel-
oped a fully polynomial time-approximation scheme ()
[4] for the problem on acyclic graphs. In [5], Ergun et al.
presented an for the case of acyclic graphs with a time
complexity of . For the problem on general graphs,
Hassin in [9] presented an with a time complexity of

, where is the approximation parameter.
Lorenz and Raz in [15] presented a faster with a time
complexity of . All of these ’s
share the following feature. Given a delay constraint , an ap-
proximation parameter , and a pair of source–destina-
tion nodes, the s find a source–destination path whose
delay is at most and whose cost is no more than times
the cost of the least-cost delay-constrained path, provided that
there is a source–destination path whose delay is at most .
We wish to emphasize that if every source–destination path has
delay greater then , then all of these algorithms will terminate
declaring that the problem is infeasible.

Chen and Nahrstedt [3] studied the decision version of the
problem where we want to find a path that satisfies both

the delay constraint and the cost constraint. They proposed
a polynomial time heuristic algorithm based on scaling and

1063-6692/$25.00 © 2008 IEEE

XUE et al.: POLYNOMIAL TIME APPROXIMATION ALGORITHMS FOR MULTI-CONSTRAINED QoS ROUTING 657

rounding of the delay parameter so that the delay parameter
of each edge is approximated by a bounded integer. For any
given , if there is a path whose cost is within the cost
constraint and whose delay is within times the delay
constraint, the heuristic guarantees finding a feasible path in

time.
In [32], Yuan presented a limited granularity heuristic

and a limited path heuristic for the decision version of the
general problem with a time complexity
of . Similar to the algorithm of Chen and
Nahrstedt [3], Yuan’s algorithm guarantees finding a feasible
path, provided that there exists a source–destination path
whose first path weight is bounded by the first constraint and
whose every other path weight is bounded by times the
corresponding constraint.

The aforementioned works are closely related to the current
paper. Our results can be viewed as improvements/extensions
of the works of Hassin [9], Lorenz and Raz [15], Chen and
Nahrstedt [3], and Yuan [32].

There are many other works related to this topic. Most of
them deal with the problem with two constraints. Goel
et al. [7] presented an approximation algorithm for the single
source all destinations delay sensitive routes problem. Given a
delay constraint , an approximation parameter , and a
source node, the algorithm finds a source—destination path for
every destination node such that the delay of the path is no more
than , and the cost of the path is no more than the cost
of the delay-constrained least cost path for that source–desti-
nation pair. In other words, if the delay-constrained (path delay
bounded by) least-cost path has a cost of (note that cannot
be computed in polynomial time, unless), the algo-
rithm computes a path whose cost is bounded by and whose
delay is bounded by . The time complexity of this algo-
rithm is , where is the hop-count of the
longest computed path. The authors of [12], [28], [29] proposed
to use a linear combination of the two weights and presented
simple algorithms for finding a good linear combination of the
two weights. Liu et al. [14] proposed a select-function-based
heuristic algorithm. Xiao et al. [27] presented a primal sim-
plex approach. Orda and Sprintson [18] presented a precompu-
tation scheme for QoS routing with two additive parameters.
Guerin and Orda [8] presented efficient approximation algo-
rithms for QoS routing with inaccurate information. Orda and
Sprintson [19] presented efficient approximation algorithms for
computing a pair of disjoint QoS paths.

For the general problem with , Korkmaz and
Krunz [13] proposed a randomized heuristic for the
problem. Van Mieghem et al. [21], [22] proposed a self-adap-
tive multiple constraints routing algorithm. Xue et al. [30]
presented an for an optimization version of the -con-
strained QoS routing problem with a worst-case running time
fully polynomial, but not strongly polynomial (the running time
depends on the encoding size of the values of link weights). In
a recent paper, Xue et al. [31] studied the problem with

and presented an efficient -approximation algorithm
and an . In the optimization problems studied in [31],
all constraints are approximated, with no constraint being
enforced. This is different from the common practice for the

case of , where one constraint is enforced, while the
other constraint is approximated.

In this paper, we study an optimization version the
problem with (to be called), where the first con-
straint is enforced while the other constraints are approxi-
mated. We also study the decision version of the problem, where
we seek for a path which satisfies all constraints. We make
the following contributions.

1) For the problem, we present an
time -approximation

algorithm, improving the current best
time algorithm of [15].

2) For the problem, we present an
-approximation algorithm with a time complexity of

, where is any given constant.
We also present an -approximation scheme for
with a time complexity of .
This contribution differs from the work of Lorenz and Raz [15]
in that we deal with the more general case of the problem
with , while Lorenz and Raz [15] deal with the
problem, which is equivalent to the special case of with

. Our work also differs from that of Xue et al. [31] in
that we enforce one constraint and approximate the other
constraints, while Xue et al. [31] approximate all constraints
without enforcing any of the constraints.

3) For the decision version of the problem, we present an
time algorithm which either finds a feasible

solution or confirms that there does not exist a source-destina-
tion path whose first path weight is bounded by the first con-
straint and whose every other path weight is bounded by
times the corresponding constraint. If there exists an -hop
source–destination path whose first path weight is bounded by
the first constraint and whose every other path weight is bounded
by times the corresponding constraint, our algorithm
finds a feasible path in time. This contribu-
tion improves the previously best-known
time algorithm of Chen and Nahrstedt [3] for the special case
of and previously best-known time
algorithm of Yuan [32] for the general case of . In other
words, our algorithm has the same performance guarantee while
having a better time complexity.

The rest of this paper is organized as follows. In Section II,
we define the problems and some notations. In Section III,
we present some basic results that will be used in later sec-
tions. In Section IV, we present our improved approximation
scheme for the problem. In Section V, we present our

-approximation algorithm and our for
. In Section VI, we present our algorithm for the deci-

sion version of the problem. In Section VII, we present
numerical results. We conclude this paper in Section VIII.

II. DEFINITIONS AND NOTATIONS

We use an integer constant to denote the number
of QoS parameters. Unless specified otherwise, all constants,
functions, and variables are assumed to have real values. We
refer readers to [4] and [26] for graph theoretic notations not
defined here. We refer readers to [4] and [6] for definitions of
“NP-hard” and other concepts in complexity theory that are not

658 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008

defined here. We use the symbol to denote the end of the de-
scription of a definition/lemma/theorem and use the symbol to
denote the end of the proof of a lemma/theorem. All logarithms
are base-2 logarithms.

We model a computer network by an edge-weighted directed
graph , where is the set of vertices, is
the set of edges, and is an edge weight
vector so that is the th weight of edge , ,

. For a path in , the weight of , denoted
by , is the sum of the th weights over the edges on :

. We study the following ecision version
of the ulti- onstrained ath problem ().

Definition 2.1 : INSTANCE: An
edge-weighted directed graph , with nonneg-
ative real-valued edge weights , , associated
with each edge ; a constraint vector ,
where each is a positive constant; and a source–destination
node pair . QUESTION: Is there an path such that

, ?
In the above definition, the inequality

is called the th QoS constraint. An path satis-
fying all QoS constraints is called a feasible path or a
feasible solution of . We say that

is feasible if it has a feasible path
and infeasible otherwise. We may simply use to denote

, if no confusion can be caused. The
problem is known to be NP-hard [6], [23], even for the

case of . We will also consider a tightened version of
, defined in the following, for a given .

Definition 2.2 : INSTANCE:
A constant , an edge-weighted directed graph

, with nonnegative real-valued edge weights
, , associated with each edge ; a

constraint vector where each is a
positive constant; and a source–destination node pair .
QUESTION: Is there an path such that and

, ?
An path satisfying the above QoS con-

straints is called a feasible path or a feasible solution of
. The problem is also

NP-hard, as it is equivalent to the problem.
In Section VI, we will present a polynomial time algorithm

which either finds a feasible solution of or verifies that
is infeasible, for any given constant .

We also study the problem, an ptimization version
of , which is defined in the following.

Definition 2.3 : INSTANCE: An
edge-weighted directed graph , with nonneg-
ative real-valued edge weights , , associated
with each edge ; a constraint vector
where each is a positive constant; and a source–destination
node pair . PROBLEM: Find an path such that

is minimized, subject to the constraint
.

We use to denote an optimal solution (also called
an optimal path) to and call

(denoted by) the op-
timal value of .

A -approximation algorithm for a minimization problem is
an algorithm that, for any instance of the problem, finds a solu-
tion whose value is at most times the optimal value of the in-
stance, in time bounded by a polynomial in the encoding size of
the instance [6]. is called a fully polynomial time-approxima-
tion scheme (), if for any fixed , is an -ap-
proximation algorithm whose running time is a polynomial in
the encoding size of the instance, and in .

When , the problem becomes the well-known
elay- onstrained east- ost path problem (). In this

case, for an edge , denotes the delay of and
denotes the cost of . We are seeking a least-cost

path in with path delay no more than . Although
is a special case of , in this paper, we use slightly

different notations to define the problem. We will use
(rather than) to denote the delay of edge , use

(rather than) to denote the cost of edge , and use
(rather than) to denote the delay constraint. These notations
help simplify the presentation of our algorithms for (in
Section V) where we need to transform an instance of
to an instance of such that , , and

.
Definition 2.4 : INSTANCE: An edge-

weighted directed graph , where each edge
is associated with a nonnegative real-valued delay

and a nonnegative real-valued cost ; a positive constant
(the delay constraint); and a source–destination node pair .

PROBLEM: Find an path such that is

minimized, subject to the constraint .
An path in is called a -delay-constrained
path if . seeks for a least-cost -delay-

constrained path, which we denote by . We also
use to denote and call it the optimal value of

.
In Section IV, we will present an

time for . In Section V, we will present
an time -approx-
imation algorithm and an
time for . Our approximation algorithm and

’s for and for need
to solve instances of the following two restricted versions of

, denoted by and , respectively.
Definition 2.5 : INSTANCE: An

edge-weighted directed graph , with nonneg-
ative edge weights , , associated with each
edge such that is a positive integer for and

; a positive constant and a positive integer con-
stant ; and a source–destination node pair . QUESTION: Is
there an path such that and ,

?
Definition 2.6 : INSTANCE: An

edge-weighted directed graph , with nonneg-
ative real-valued weight and nonnegative integer-valued
weight associated with each edge ; a positive
constant and a positive integer constant ; and a source-des-
tination node pair . QUESTION: Is there an path
such that and ?

XUE et al.: POLYNOMIAL TIME APPROXIMATION ALGORITHMS FOR MULTI-CONSTRAINED QoS ROUTING 659

Fig. 1. Network where each edge � has three QoS parameters
�� ���� � ���� � ����. � is the source node and � is the destination node.

TABLE I
FREQUENTLY USED NOTATIONS

In , the edge weights all take positive
integer-values, corresponds to in , and cor-
responds to (with equal values) in . In

, the edge weight takes nonnegative integer-values.
Before moving on, we use the simple network in Fig. 1 to il-

lustrate the concepts (, and) defined in
this section. In this network an edge has QoS parame-
ters . Assume .

is infeasible, as is for any .
has an optimal value with as the only
optimal path. If we change the constraints to

, then all three paths are feasible for . In this
case, has an optimal value of 5/11, with as
the only optimal path. The path is not a feasible
solution of for any . The path
is a feasible solution of for any . The
path is a feasible solution of for any

.
Note that, in the problems , , and , we

are enforcing the first constraint . Therefore, we
assume throughout this paper that there exists an path
such that (in the case of). This
condition can be verified in time by Dijkstra’s
shortest path algorithm using as the metric. We also assume
that . Table I lists frequently used notations.

III. EXACT ALGORITHMS FOR AND , SCALING

AND ROUNDING, AND APPROXIMATE TESTING

Here, we present some building blocks that will be used in
later sections. These include an time algorithm for

, an time algorithm for , two
scaling and rounding techniques, and their corresponding poly-
nomial time approximate testing procedures.

A. Pseudo-Polynomial Time Algorithm for

We first present an time algorithm for
. The algorithm is named

and listed as Algorithm 1. When the
problem is feasible, our algorithm outputs , together
with an path such that and ,

. When the problem is infeasible, our
algorithm outputs . This algorithm is well known and has
been used in [7] and [15] in the case of . We provide a
formal presentation for the sake of completeness. It is assumed
that, at each vertex , there is a -dimensional
array (where) which is used
to hold the least delay (measured by) among paths

such that , . At each vertex ,
there is also a -dimensional array which
holds the predecessor of on the path such that

and , . In the
description of the algorithm, we will use and

to denote the two arrays at node .

Lemma 3.1: The worst-case time complexity of Al-
gorithm 1 is . If
is feasible, the algorithm computes a feasible path
for , where is the smallest
nonnegative integer less than or equal to such that

is feasible.
Proof: The for-loop in lines 1–3 takes

time to initialize the table entries. The inner for-loop in
lines 5–9 spends time for the corresponding tuple

, trying to update the en-
tries and . Hence, the total
time spent by the outer for-loop in lines 4–10 is bounded by

. The if-statement in lines 11–13 takes constant
time. Lines 14–16 take time. Therefore, the time

660 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008

complexity of Algorithm 1 is . We prove the cor-
rectness of the algorithm next.

We call an path a -constrained
path, if for . We call an
path a -constrained shortest path, if is
a -constrained path and for
any -constrained path . The for-loop in lines
4–10 computes a -constrained shortest path
for each and each
(where the length is stored in and the prede-
cessor of on this path is stored in).

Recall that in the problem, is a positive in-
teger for each edge and . Therefore, if is
a -constrained shortest path (measured in

) and that is the predecessor of on the path, we must
have for ,
where is the subpath of from to . Since the outer for-loop
in lines 4–10 loops over all in
increasing lexicographic order, the inner for-loop in lines 5–9
correctly computes the -constrained shortest
path, since before the relaxation for edge is performed
(for the chosen), the -constrained
shortest path has already been correctly computed.
Therefore, is feasible if and only
if at the end of the outer for-loop of the
algorithm. When is feasible, lines
14–16 of the algorithm find the smallest integer such
that is feasible and outputs the cor-
responding path. This proves the correctness of Algorithm 1.

B. Pseudo-Polynomial Time Algorithm for

We now present an time algorithm for
. The algorithm, named , is listed as Al-

gorithm 2. When the problem is feasible, our algorithm
outputs , together with an path such that
and . When the problem is infeasible, our al-
gorithm outputs . The arrays and are similarly
defined as in . The separation of relaxations of
edges with positive cost (lines 5–9) from relaxations of edges
with zero cost (lines 10–17) makes the algorithm very fast in
practice. The idea of is also well-known, and has
been used in [3], [7]. We list it here for the sake of completeness.
We will see later that novel combinations of and

lead to our new algorithms with improved time
complexities.

Lemma 3.2: The worst-case time complexity
of is . If

is feasible, the algorithm
computes a feasible path for where

is the smallest nonnegative integer less than or equal to
such that is feasible.

Proof: The for-loop in lines 1–3 of the algorithm spends
time to initialize the arrays. The outer for-loop in lines

4–20 of the algorithm loops the value from 0 to to compute
the table entries for and . For each value of , we
first spend time performing relaxations via edges
with . We then perform relaxations on edges
with . This round of relaxations is performed in a
nondecreasing order of and is accomplished in

time by applying Dijkstra’s algorithm on the auxiliary
graph . At this time, the table entries and are
correctly computed. Therefore, the algorithm solves the
problem in time.

C. Scaling, Rounding, and Polynomial Time Approximate
Testing

Here, we describe the scaling, rounding, and polynomial time
approximate testing procedure used by Hassin [9] for . We
also describe a scaling, rounding, and polynomial time approxi-
mate testing procedure for that was used by Lorenz and
Raz [15] (for).

For a given positive real number and an instance of
, we construct an auxiliary graph
which is the same as

except that the edge weight is changed to such that, for
each edge , . For given real numbers

and , we define
if is feasible (where

) and define other-
wise. This is the rounding and approximate testing technique
used by Hassin [9] for and can be implemented using

. Using the techniques of [9], [10], and [20], one
can prove the following lemma (proof in Appendix A).

XUE et al.: POLYNOMIAL TIME APPROXIMATION ALGORITHMS FOR MULTI-CONSTRAINED QoS ROUTING 661

Lemma 3.3: Let be the optimal value of
. Let and be two fixed positive

numbers such that . Then:
• implies ;
• implies .

has time complexity.
For a given positive real number and an instance of

, we construct an auxiliary graph
which is the same as except

that the edge weight vector is changed to such that, for
each , , ,

. For given real numbers and
, we define if

is feasible
(where) and define
otherwise. This is a generalization of the rounding and approx-
imate testing technique for used by Lorenz and Raz
[15] and can be implemented using . Using the
techniques of [15], one can prove the following lemma (proof
in Appendix B).

Lemma 3.4: Let be the optimal value of
. Let and be two fixed positive

numbers such that . Then:
• implies ;
• implies .

has time com-
plexity.

When is applied to (equivalent to the special
case of with), we adopt the convention that

, , . Note also
that in this case. Both and
work for any positive constant . The time complexity
of can be made as low as by
increasing the value of . However, the time complexity of

cannot be made lower than by
increasing the value of . For the case of in partic-
ular, if we use , has a time complexity of

, while has a time complexity of .
If we set , has a time complexity of ,
while has a time complexity of .
These observations lead to our improved for
using a novel combination of existing techniques.

IV. IMPROVED FOR

The best known for is due to Lorenz and Raz
[15], which has a worst-case running time of

for computing an -approximation for any given
. Their scheme first spends time to com-

pute a lower bound and an upper bound of such
that . It then spends
time to compute an -approximation of by solving

with .
Here, we use a novel combination of the techniques of Hassin

[9] and the techniques of Lorenz and Raz [15] to obtain a new
for , listed as Algorithm 3, with a time complexity

of .
The basic idea of is as follows. First, in line 1,

we spend time to obtain an initial lower

bound and an initial upper bound of such that
using the technique of Lorenz and

Raz [15]. Second, in lines 2–11, we spend time to refine
the pair of lower and upper bounds such that

using the technique of Hassin [9].
This is accomplished by repeated applications of with

set to . Note that Hassin [9] used (a small
value) in , while we use (a large value)
in to achieve the reduced time complexity. Note that
with , has a lower time complexity than

. Third, in lines 12–21, we spend
time to further refine the pair of lower and upper bounds such
that using the technique of Lorenz
and Raz [15]. This is accomplished by repeated applications of

with set to 1. Note that with , has a
lower time complexity than . Finally, in lines 22–23, we
spend time to compute an -approximation of

using the technique of Lorenz and Raz [15].
Theorem 4.1: For any given , Algorithm 3 com-

putes an path that is an -approximation of
in time.

Proof: In line 1 of the algorithm, we find the bottleneck
edge cost such that: 1) there is an path with
and that and 2) any path with
must contain at least one edge with . This can be ac-
complished by executions of Dijkstra’s
shortest path algorithm, after the edges are sorted according

662 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008

their cost values in time. Therefore, the time re-
quired by line 1 is , which is bounded
by . By definition of the bottleneck edge cost, we know
that . Therefore, at the end of line 1, we have

(1)

By the choices of and in lines 2 and 4 of the algorithm,

we have
throughout the while-loop in lines 3–11. It follows from Lemma
3.3 that implies that is an
upper bound of and implies that

is a lower bound of . Therefore, we have

(2)

Therefore, the while-loop in lines 3–11 is executed at most
times. Since each

execution of takes
time, the time complexity of all

executions of this while-loop is bounded by . Let
denote the value of when Algorithm 3 enters line 12. We have

(3)

By the choices of and in lines 12 and 14
of the algorithm, we have

throughout the while-loop in lines
13–21. It follows from Lemma 3.4 that
implies that is an upper bound of and

implies that is a lower bound of
. Therefore, we have

(4)

Therefore, the while-loop in lines 13–21 is executed at most
times. Since

each execution of takes
time, the time complexity of all executions of this while-loop is
bounded by . Let denote the value of
when Algorithm 3 enters line 22. We have

(5)

We will now prove that the algorithm finds a path in line 23
of the algorithm and that is indeed an -approximation
of . Note that, when the algorithm enters line 23, we have

(6)

Let denote an optimal solution of ,
i.e., is an path s.t.

(7)

We have (note that the hop-count of is
and that)

(8)

Since is an integer, (8) also implies that

(9)

This shows that is a feasible solution of
.

Therefore, we are guaranteed to find a path in line 23 of the
algorithm. Note that may be different from .

Next we prove that the path found in line 23 is guaranteed
to be an -approximation of . Since is computed
in line 23 of the algorithm, we have

(10)

and (refer to lines 14–15 of Algorithm 1)

(11)

Therefore, we have

(12)

Equations (10) and (12) together show that is an -ap-
proximation of .

V. APPROXIMATION SCHEMES FOR

Here, we present an
time -approximation algorithm and an

time for
, where is the approxima-

tion parameter. Our approximation algorithm is based on a
transformation from the -constrained QoS routing problem

to the problem (which has two QoS parameters).
Theorem 5.1: Let an instance of

be given by an edge-weighted directed graph ,
a constraint vector , and a source–desti-
nation node pair . Define a corresponding instance of

by the following rules.
• and are the same as in .
• .
• , ;
• , .

XUE et al.: POLYNOMIAL TIME APPROXIMATION ALGORITHMS FOR MULTI-CONSTRAINED QoS ROUTING 663

Assume that the optimal value of is and the optimal
value of is . Then, . For
any given , an path is a -approximation of

implies that is a -approxi-
mation of .

Proof: As discussed at the end of Section II, we assume
that there is an path in whose first weight is no more
than , as otherwise neither of the two problems has a feasible
solution.

Use to denote an optimal solution of . We have
. In addition, we have

(13)
Inequality (13) implies

(14)

Summing (14) over , we obtain

(15)

Therefore

(16)
Inequality (16) implies

(17)

Since , is a feasible solution to .
Therefore, we have . This leads to

(18)

Let a -approximation of be denoted
by an path . Thus, we have
and . Using inequality (18), we have

(19)

On the other hand, we have

(20)

Combining (20), the fact that , and (18), we
know that for , we have

(21)

Therefore is a -approximation of
.

Based on Theorem 5.1 and presented in
Section IV, we present an -approximation
algorithm for , which is listed as
Algorithm 4.

The basic idea of Algorithm 4 is as follows. In line 1, we
spend time to construct an instance of

corresponding to the instance of as in Theorem
5.1. In line 2, we apply to compute an path

which is an -approximation to the newly constructed
instance of , in time.
According to Theorem 5.1, is a -approxima-
tion to the instance of . Therefore, we have proved the
following theorem.

Theorem 5.2: The path found by Algorithm 4 is an
-approximation of ,

i.e., and ,
, where is the optimal value

of . Algorithm 4 has
time complexity.

Using the above approximation algorithm, we design an
time for ,

named , and presented as Algorithm 5.
The basic idea of is as follows. First, in line

1, we apply Algorithm 4 with to compute an path .
According to Theorem 5.2,
is a lower bound for and
is an upper bound for . Second, in lines 2–4, we
check to see whether the path is actually an optimal
solution for . If so, the algo-
rithm stops with an optimal solution . If not, in line
5, we set the initial lower bound of to

and the initial upper bound
of to . Then, in lines
6–13, we use the approximate testing procedure to
generate a sequence of refined lower bound-upper bound pairs
so that the ratio of the upper bound over the corresponding
lower bound becomes sufficiently small (less than or equal to
4). Finally, in line 14, we solve an instance of to obtain
an -approximation of .

Following the techniques of [15] and [31], we can prove the
following theorem, whose proof is left in Appendix C.

Theorem 5.3: Algorithm 5 finds an -approximation of
in

time.

VI. FAST ALGORITHM TO DECIDE THE FEASIBILITY OF

OR THE INFEASIBILITY OF

The problem has been studied by Chen and Nahrstedt
[3] for the case and by Yuan [32] for the case .

664 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008

Using the technique of scaling all but the first QoS parame-
ters, they presented polynomial time algorithms such that, for
any given constant , the algorithms either find a fea-
sible path for , or conclude that is infeasible.
The algorithm of Chen and Nahrstedt has a time complexity of

(for the case). The algorithm of
Yuan has a time complexity of . We present a
faster algorithm for solving the same problem. Our algorithm,
called , is listed in Algorithm 6.

The basic idea of Algorithm 6 is based on the fact that, if
has a feasible solution with a hop count of , then we

can compute a feasible solution of in
time by solving an instance of obtained by scaling
with , where is any integer between and .
However, we do not know the exact value of a priori. There-
fore, the algorithm uses a parameter to estimate . is ini-
tially set to 1 and is doubled every time we find that it is not
sufficiently large.

The doubling technique has been used by Goel et al. [7]
in their delay-scaling algorithm for computing delay-sensitive
routes. The delay-scaling algorithm of [7] uses the scaling and
rounding technique of Hassin [9], which leads to nonnegative
edge weights. Therefore, a straightforward extension of the
delay-scaling algorithm to the case of additive QoS
parameters would lead to an algorithm with a time complexity
of . Our algorithm has a time
complexity of , since we use the scaling and
rounding technique of Lorenz and Raz [15], which leads to
positive edge weights. It is the combination of the doubling
technique of [7] and the scaling and rounding technique of [15]
that leads to the reduced time complexity.

Theorem 6.1: either finds a feasible path
of or confirms the infeasibility of , in

worst-case time. If has an -hop
feasible path, then finds a feasible path for

in time.

Proof: Let us first analyze the time complexity of Al-
gorithm 6, which is dominated by the solution of
instances in line 3. Suppose that solves
instances of using Algorithm 1, with taking the
values . Then for

and . Therefore, the
total time required for these calls to Algorithm 1 is bounded
by (recall that is a constant)

(22)

Since , Algorithm 6 stops either in line 6 or in line 12,
with a worst-case time complexity of , which
is bounded by .

In the following, we will prove that if has a feasible
solution with hops, then Algorithm 6 finds a feasible solution

of and stops in line 6 with such that
. Let be a feasible solution of which has

hops. We must have

(23)

Due to the condition checking in line 5, we know that, if Algo-
rithm 6 stops in line 6, the computed path is a feasible solution
of . Therefore, if , Algorithm 6 must have found
a feasible solution of with running time bounded by

. Assume that we enter
line 2 with . We will prove that is a feasible solu-
tion of the instance of and
that the path (which could be different from) found in
this step is a feasible solution of . Since , (23)
implies

(24)

XUE et al.: POLYNOMIAL TIME APPROXIMATION ALGORITHMS FOR MULTI-CONSTRAINED QoS ROUTING 665

Since the hop-count of is , (23) also
implies

(25)

Recall that . Therefore, (25) implies

(26)

Since is integer-valued, (26) implies

(27)

Equations (24) and (27) imply that is a feasible solution
of . Therefore, with this
value of , the algorithm is guaranteed to find a path (which
may be different from) in line 3, which is a feasible
solution of . Therefore, we
have

(28)

and

(29)

It follows from the definition of that
. Therefore, (29) implies

(30)

Equations (28) and (30) imply that is a feasible solution of
and that Algorithm 6 must stop in line

6 after is computed with . Since a feasible path for
is guaranteed to be found when we enter line 2 with

, we must have when this (feasible to)
is computed. Therefore, the running time of the algorithm is

in this case.
When is feasible, finds a feasible

solution of in time, where is the
minimum hop-count of a feasible solution of . Note
that, in practice, could be much smaller than . Therefore,

runs faster than when
is feasible. When fails to find a feasible path to

, we can infer that is infeasible. Note that the
running time of the algorithm is in this case.

Chen and Nahrstedt [3] (for the case of) and Yuan
[32] (for the general case of) also presented polynomial
time algorithms that are guaranteed to find a feasible solu-
tion of when is feasible. Compared with the

time algorithm of Chen and Nahrstedt
[3] (for the case of), our algorithm is faster both when

is feasible (with a time complexity
of) and when is infeasible
(with a time complexity of). Compared with the

time algorithm of Yuan [32] (for the general
case of), our algorithm is faster by a factor of at least.

VII. NUMERICAL RESULTS

Here, we present some numerical results to confirm our theo-
retical analysis. We implemented of this paper
(denoted by in the figures), of this paper
(denoted by in the figures), the -approx-
imation algorithm of this paper (denoted by in the fig-
ures), and compared them with Yuan’s heuristic [32] (denoted
by in the figures), as well as the of Xue et al. [31]
(denoted by in the figures). All tests were performed on
a 2.4 GHz Linux PC with 2 G bytes of memory.

We used well-known Internet topologies to verify the suit-
ability of the algorithms and randomly generated topologies
to verify the computational scalability of the algorithms. The
well-known Internet topologies used for our tests are
(20 nodes and 32 edges) and (33 nodes and 67 edges).
These topologies can be found in Andersen et al. [1]. As in Xue
et al. [31], we used , a well-known Internet topology
generator [2] to generate random topologies. provides
several well-known models (including the Waxman model [25])
for generating reasonable network topologies. We adopted the
Waxman model to generate random networks, using the pa-
rameters provided by . In the Waxman model, nodes
are randomly inserted one by one into a square field of size

m . Let denote the Euclidean distance be-
tween nodes and . The probability of having a bidirected
edge connecting nodes and is ,
where is the base for natural logarithms, is the maximum
distance between two nodes, and , are two parameters in the
interval (0, 1]. We have used and (the de-
fault parameters set by). We used five different numbers
of nodes: 80, 100, 120, 140, and 160. Correspondingly,
generated five network topologies with the following sizes: 1)
80 nodes with 314 edges; 2) 100 nodes with 390 edges; 3) 120
nodes with 474 edges; 4) 140 nodes with 560 edges; and 5) 160
nodes with 634 edges.

As in [3], [7], [12], [13], [31], [32], the edge weights were
uniformly generated in a given range (we used the range [1,
10]). From our analysis, one should expect our algorithms to
perform similarly on various edge weights. We report numerical
results for the case of . For each network topology and
each given value of , we generated 10 source–destination pairs
for testing. For each such test case (topology, , source–desti-
nation pair), we considered two scenarios: tight constraint and
-loose constraint. A constraint vector is tight, if:

1) there is an path such that and 2)
is infeasible, i.e., there does not exist an path such that

, . A constraint vector is
-loose, if is feasible, i.e., there exists an path

such that and , .
We studied these two scenarios because: 1) and
Yuan’s algorithm guarantee finding a feasible of if and
only if the constraint vector is -loose and 2) has
a time complexity when the constraint vector
is -loose and has a time complexity otherwise.
The performance of , and

666 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008

Fig. 2. . Running time versus various factors. (a) Time versus �� .
(b) Time versus �.

Fig. 3. Running time versus network size. (a) Time versus � with tight con-
straints. (b) Time versus � with loose constraints.

should be independent of the tightness or looseness of the con-
straint vector. Our numerical results are presented in Figs. 2–5,
where each figure shows the average of ten runs.

Fig. 2(a) illustrates the running times (in seconds) of the
different algorithms (illustrated in the order , ,

, , and), as well as their dependency on the
tightness of the constraint vector, using the case of
for . As expected, and are
always the fastest, and have
similar running times, and takes the longest time. The
running times of , and
are independent of the tightness of the constraint, while the
running time of is very small for loose con-
straint, and is about 10% of that of for tight
constraint. The running time of can be explained
as follows. When the constraint is loose, takes

time, where is often very small. This leads to
the very small running time. When the constraint is tight, time
running time of is dominated by the solution of
an instance of with , while the running time
of is dominated by the solution of an instance
of with . Therefore, the ratio of the
running time of over that of is
roughly equal to .
We also observe that the running time of may increase
with slightly, but not significantly. This is due to the fact
that more edge relaxations may be performed by for
larger values of .

Fig. 2(b) illustrates the running times (in seconds) of
, , and as

functions of , using the case of tight constraint for .
As expected, the running times increase with .

To study the scalability of and
with the network size, we also tested

and on large, randomly

Fig. 4. . Ratio of path weight versus constraint. (a) With tight con-
straint. (b) With loose constraint.

Fig. 5. . Ratio of path weight versus constraint. (a) With tight con-
straint. (b) With loose constraint.

generated network topologies as described in the second para-
graph of this section. Here we have used for the
test cases. The running times of our algorithms are shown in
Fig. 3(a) and (b). For the case of tight constraint, we observe
that the running times of all three algorithms increase with the
network size. required the least amount of time
(but did not return any path, other than claiming that
is infeasible). For the case of loose constraint, we observe
that and have similar running
times as in the case of tight constraint. However,
is very efficient in this case. This shows that the numerical
results match very well with our theoretical analysis.

Fig. 4(a) shows the vector , ,
for the path computed by each of the five

algorithms for with tight constraint such that
is infeasible. We have used for the cases in this figure.
When an algorithm failed to find a path, we use the vector

in the figure. We observe that ,
and all found source-destination paths,

while and failed to find a source-destina-
tion path. This is expected because there is no feasible solution
to the decision version of the problem. We also observe that

found paths with the minimum-maximum
ratio among the three constraints ,
without strictly enforcing the first constraint, while both

and strictly enforce the first constraint.
Fig. 4(b) shows the result for with loose constraint
such that is feasible. As expected, all five algorithms
were able to find a source-destination path in this case. Fig. 5
shows the corresponding results on , where we can
make similar observations.

VIII. CONCLUSION

In this paper, we have studied the multi-constrained QoS
routing problem with additive constraints. We studied
an optimization version of this problem (called the

XUE et al.: POLYNOMIAL TIME APPROXIMATION ALGORITHMS FOR MULTI-CONSTRAINED QoS ROUTING 667

problem) by approximating constraints, while enforcing
one of the constraints. The problem contains the
well-known problem as a special case when .
We first presented an for of time complexity

, which is better than that of the
best-known algorithm due to Lorenz and Raz [15]. Next we
presented a theorem characterizing the performance ratio of
approximating an instance of using a corresponding
instance of . Based on this theorem, we presented an

-approximation algorithm for with time
complexity , for any constant

. We then presented an for with a time
complexity of , where

is the approximation precision. When is reduced to 2,
our approximation algorithms become -approximation
algorithms for the problem. For the decision version
of the problem, we presented an time algo-
rithm which either finds a feasible solution or confirms that
there does not exist a source-destination path whose first path
weight is bounded by the first constraint and whose every other
path weight is bounded by times the corresponding
constraint. If there exists an -hop source-destination path
whose first path weight is bounded by the first constraint and
whose every other path weight is bounded by times the
corresponding constraint, our algorithm finds a feasible path
in time. This algorithm improves previously
best-known algorithms with time for

and time for .

APPENDIX

A. Proof of Lemma 3.3

When returns , we have an path that
is a feasible solution of .
Therefore, we have

(A1)

Recall that and
, . Hence, , since

has at most hops. Therefore, we have

(A2)

This leads to

(A3)

Therefore . Recall that is the optimal
value of .

Now assume that . This means that for
any path , implies

(A4)

Since is an integer, we have

(A5)

On the other hand, we have . Therefore, we
have

(A6)

which implies . Given the arbitrariness of , we con-
clude that .

B. Proof of Lemma 3.4

When returns , we have an path that
is a feasible solution of

. Therefore, we have and

(B1)

Recall that and
, . Hence, ,

. Therefore, we have

(B2)

This leads to

(B3)

Therefore, . Recall that is the optimal
value of .

Now assume that . This means that for
any path , implies

(B4)

Since is an integer , we have

(B5)

On the other hand, we have ,
since has at most hops. Therefore, we have

(B6)

which implies , . Given the arbi-
trariness of , we conclude that .

C. Proof of Theorem 5.3

Let and denote the sequences of lower
bounds and upper bounds generated by the algorithm. We know
that

(C1)

is true for . Assume that (C1) is true for

. If , we set

and . If

668 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008

, we set

and . It follows from
Lemma 3.4 that (C1) is also true for . Also, from the
definition of the sequences and , we have

(C2)

Therefore, the condition in line 6 can be false (hence the
statements in lines 9–12 be executed) for no more than

times. However,
according to Theorem

5.2. As a result, the worst case running time required by lines
2–13 of the algorithm is bounded by .

In the remainder of this proof, we will use to denote
(as in line 14) to simplify notations

within the proof. Let denote an optimal solution of
, i.e., is an path such

that and for
. Since

for every edge
, we have (noting that has at most edges)

(C3)

Since (for) always have integer values, (C3)
implies

(C4)

This implies that is a feasible solution of
.

Therefore, line 14 of the algorithm is guaranteed to find a
feasible path. Note that (C3) also implies

(C5)

Let be the path found in line 14 of the algorithm.
It follows from Lemma 3.1 that is a feasible solution of

, where is the smallest integer
less than or equal to such that

is feasible. Since is optimal
for the instance of while is only feasible for the
same instance, the maximum path weight of cannot exceed
the maximum path weight of :

(C6)

Combining (C6) with (C5), we obtain

(C7)

On the other hand, we also have

(C8)

Combining (C7) and (C8), we have

(C9)
Some algebraic manipulations on (C9) yield the following:

(C10)

Therefore, is an -approximation to
. It follows from Lemma 3.1 that the

worst case time complexity of line 14 is . Since
is a constant, the time complexity of line 14 dominates

the time complexity of lines 2–13. Since the time complexity
of line 1 is , the overall time complexity of
Algorithm 5 is .

ACKNOWLEDGMENT

The authors would like to thank the associate editor and the
anonymous reviewers whose comments on an earlier version of
this paper have helped to significantly improve the presentation
of this paper.

REFERENCES

[1] R. Andersen, F. Chung, A. Sen, and G. Xue, “On disjoint path pairs
with wavelength continuity constraint in WDM networks,” in Proc.
IEEE INFOCOM, 2004, pp. 524–535.

[2] BRITE. [Online]. Available: http://www.cs.bu.edu/brite/
[3] S. Chen and K. Nahrstedt, “On finding multi-constrained paths,” in

Proc. IEEE ICC, 1998, pp. 874–879.
[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, 2nd ed. New York: McGraw Hill, 2001.
[5] F. Ergun, R. Sinha, and L. Zhang, “An improved FPTAS for restricted

shortest path,” Inf. Process. Lett., vol. 83, pp. 287–291, 2002.
[6] M. R. Garey and D. S. Johnson, Computers and Intractability: A

Guide to the Theory of NP-Completeness. San Francisco, CA: W.H.
Freeman, 1979.

[7] A. Goel, K. G. Ramakrishnan, D. Kataria, and D. Logothetis, “Efficient
computation of delay-sensitive routes from one source to all destina-
tions,” in Proc. IEEE INFOCOM, 2001, pp. 854–858.

[8] R. Guerin and A. Orda, “QoS routing in networks with inaccurate in-
formation: Theory and algorithms,” IEEE/ACM Trans. Netw., vol. 7,
no. 2, pp. 350–364, Apr. 1999.

[9] R. Hassin, “Approximation schemes for the restricted shortest path
problem,” Math. Oper. Res., vol. 17, pp. 36–42, 1992.

[10] O. H. Ibarra and C. E. Kim, “Fast approximation algorithms for the
knapsack and sum of subset problems,” J. ACM, vol. 22, pp. 463–468,
1975.

[11] J. M. Jaffe, “Algorithms for finding paths with multiple constraints,”
Networks, vol. 14, pp. 95–116, 1984.

[12] A. Juttner, B. Szviatovszki, I. Mecs, and Z. Rajko, “Lagrange relaxation
based method for the QoS routing problem,” in IEEE INFOCOM, 2001,
pp. 859–868.

[13] T. Korkmaz and M. Krunz, “A randomized algorithm for finding a
path subject to multiple QoS requirements,” Comput. Netw., vol. 36,
pp. 251–268, 2001.

[14] W. Liu, W. Lou, and Y. Fang, “An efficient quality of service routing
algorithm for delay-sensitive applications,” Comput. Netw., vol. 47, pp.
87–104, 2005.

[15] D. H. Lorenz and D. Raz, “A simple efficient approximation scheme
for the restricted shortest path problem,” Oper. Res. Lett., vol. 28, pp.
213–219, 2001.

[16] Q. Ma and P. Steenkiste, “Quality-of-service routing for traffic with
performance guarantees,” in Proc. IWQoS’97, May 1997.

XUE et al.: POLYNOMIAL TIME APPROXIMATION ALGORITHMS FOR MULTI-CONSTRAINED QoS ROUTING 669

[17] A. Orda, “Routing with end-to-end QoS guarantees in broadband net-
works,” IEEE/ACM Trans. Netw., vol. 7, no. 3, pp. 365–374, Jun. 1999.

[18] A. Orda and A. Sprintson, “Precomputation schemes for QoS routing,”
IEEE/ACM Trans. Netw., vol. 11, no. 4, pp. 578–591, Aug. 2003.

[19] A. Orda and A. Sprintson, “Efficient algorithms for computing disjoint
QoS paths,” in Proc. IEEE INFOCOM, 2004, pp. 727–738.

[20] S. Sahni, “General techniques for combinatorial approximation,” Oper.
Res., vol. 25, pp. 920–936, 1977.

[21] P. Van Mieghem and F. A. Kuipers, “Concepts of exact QoS routing
algorithms,” IEEE/ACM Trans. Netw., vol. 12, no. 5, pp. 851–864, Oct.
2004.

[22] P. Van Mieghem, H. D. Neve, and F. A. Kuipers, “Hop-by-hop quality
of service routing,” Comput. Netw., vol. 37, pp. 407–423, 2001.

[23] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting
multimedia applications,” IEEE J. Sel. Areas Commun., vol. 14, no. 7,
pp. 1228–1234, Sep. 1996.

[24] A. Warburton, “Approximation of Pareto optima in multiple-objective,
shortest path problem,” Oper. Res., vol. 35, pp. 70–79, 1987.

[25] B. M. Waxman, “Routing of multipoint connections,” IEEE J. Sel.
Areas Commun., vol. 6, no. 9, pp. 1617–1622, Dec. 1988.

[26] D. B. West, Introduction to Graph Theory. Englewood Cliffs, NJ:
Prentice-Hall, 1996.

[27] Y. Xiao, K. Thulasiraman, and G. Xue, “QoS routing in communica-
tion networks: Approximation algorithms based on the primal simplex
method of linear programming,” IEEE Trans. Comput., vol. 55, no. 7,
pp. 815–829, Jul. 2006.

[28] G. Xue, “Primal-dual algorithms for computing weight-constrained
shortest paths and weight-constrained minimum spanning trees,” in
Proc. IEEE IPCCC, 2000, pp. 271–277.

[29] G. Xue, “Minimum cost QoS multicast and unicast routing in commu-
nication networks,” IEEE Trans. Commun., vol. 51, no. 5, pp. 817–824,
May 2003.

[30] G. Xue, A. Sen, and R. Banka, “Routing with many additive QoS con-
straints,” in Proc. IEEE ICC, 2003, pp. 223–227.

[31] G. Xue, A. Sen, W. Zhang, J. Tang, and K. Thulasiraman, “Finding
a path subject to many additive QoS constraints,” IEEE/ACM Trans.
Netw., vol. 15, no. 1, pp. 201–211, Feb. 2007.

[32] X. Yuan, “Heuristic algorithms for multiconstrained quality-of-service
routing,” IEEE/ACM Trans. Netw., vol. 10, no. 2, pp. 244–256, Apr.
2002.

Guoliang (Larry) Xue (SM’99) received the B.S.
degree in mathematics and the M.S. degree in opera-
tions research from Qufu Teachers University, Qufu,
China, in 1981 and 1984, respectively, and the Ph.D.
degree in computer science from the University of
Minnesota, Minneapolis, in 1991.

He is a Full Professor with the Department
of Computer Science and Engineering, Arizona
State University, Tempe. He has held previous
positions with Qufu Teachers University (Lec-
turer, 1984–1987), the Army High Performance

Computing Research Center (Postdoctoral Research Fellow, 1991–1993),
and the University of Vermont (Assistant Professor, 1993–1999; Associate
Professor, 1999–2001). His research interests include efficient algorithms
for optimization problems in networking, with applications to survivability,
security, privacy, and energy efficiency issues in networks ranging from WDM
optical networks to wireless ad hoc and sensor networks. He has published
over 150 papers in these areas, including many papers in journals such as the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, the IEEE TRANSACTIONS

ON COMMUNICATIONS, the IEEE TRANSACTIONS ON COMPUTERS, the IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY, the IEEE/ACM TRANSACTIONS

ON NETWORKING, SIAM Journal on Computing, SIAM Journal on Discrete
Mathematics, SIAM Journal on Optimization, and conferences such as ACM
MobiHoc, ACM/SIAM SODA, and IEEE INFOCOM. His research has been
continuously supported by federal agencies including the National Science
Foundation (NSF) and the Army Research Office (ARO).

Dr. Xue was the recipient of the Graduate School Doctoral Dissertation Fel-
lowship from the University of Minnesota in 1990, a Third Prize from the Min-
istry of Education of P.R. China in 1991, an NSF Research Initiation Award in
1994, and an NSF-ITR Award in 2003. He is an Editor of Computer Networks
(COMNET), an Editor of IEEE Network, and the Journal of Global Optimiza-
tion. He has served on the executive/program committees of many IEEE con-
ferences, including INFOCOM, Secon, Icc, Globecom and QShine. He served
as a TPC co-chair of IEEE IPCCC in 2003, a TPC co-chair of IEEE HPSR
in 2004, the General Chair of IEEE IPCCC in 2005, a TPC co-chair of IEEE
Globecom’2006 Symposium on Wireless Ad Hoc and Sensor Networks, a TPC
co-chair of IEEE ICC’2007 Symposium on Wireless Ad Hoc and Sensor Net-
works, and a TPC co-chair of QShine in 2007. He also serves on many NSF
grant panels and is a reviewer for ARO. He has been a member of the ACM
since 1993.

Weiyi Zhang (M’08) received the Ph.D. degree in
computer science from Arizona State University,
Tempe, in 2007.

He is an Assistant Professor with the Depart-
ment of Computer Science at North Dakota State
University, Fargo. His research interests include
reliable communication in networking, protection
and restoration in WDM networks, QoS provisioning
in communication networks, and wireless sensor
networks.

Jian Tang (M’08) received the Ph.D. degree in com-
puter science from Arizona State University, Tempe,
in 2006.

He is an Assistant Professor with the Department
of Computer Science, Montana State University,
Bozeman. His research interests are in the area of
networking, with an emphasis on routing, sched-
uling, cross-layer design, and QoS provisioning in
communication networks.

Krishnaiyan Thulasiraman (F’90) received the
B.S. degree and M.S. degree in electrical engineering
from the University of Madras, India, in 1963 and
1965, respectively, and the Ph.D. degree in electrical
engineering from the Indian Institute of Technology
(IIT), Madras, in 1968.

He holds the Hitachi Chair and is a Professor
with the School of Computer Science, University
of Oklahoma, Norman, which he joined in 1994.
Prior to joining the University of Oklahoma, he was
a Professor (1981–1994) and Chair (1993–1994) of

the Electrical and Computer Engineering Department, Concordia University,
Montreal, QC, Canada. He was on the faculty in the Electrical Engineering and
Computer Science Departments of IIT Madras during 1965–1981. His research
interests have been in graph theory, combinatorial optimization, algorithms and
applications in a variety of areas in computer science and electrical engineering:
electrical networks, VLSI physical design, systems-level testing, communi-
cation protocol testing, parallel/distributed computing, telecommunication
network planning, fault tolerance in optical networks, and interconnection
networks. He has published more than 100 papers in archival journals,
coauthored with M. N. S. Swamy two text books, Graphs, Networks, and
Algorithms (Wiley Inter–Science, 1981) and Graphs: Theory and Algorithms
(Wiley Inter-Science, 1992), and authored two chapters in the Handbook of
Circuits and Filters (CRC and IEEE, 1995) and a chapter on “Graphs and
Vector Spaces” for the handbook Graph Theory and Applications (CRC, 2003).
He has held visiting positions with the Tokyo Institute of Technology, the
University of Karlsruhe, the University of Illinois at Urbana-Champaign, and
Chuo University, Tokyo.

Dr. Thulasiraman was the recipient of several awards and honors: 2006
IEEE Circuits and Systems Society Technical Achievement Award, Endowed
Gopalakrishnan Chair Professorship in Computer Science at IIT Madras
(summer 2005), elected member of the European Academy of Sciences (2002),
IEEE Circuits and Systems (CAS) Society Golden Jubilee Medal (1999),
Fellow of the IEEE (1990) and Senior Research Fellowship of the Japan
Society for Promotion of Science (1988). He has been Vice President (Admin-
istration) of the IEEE CAS Society (1998, 1999), Technical Program Chair of
ISCAS (1993, 1999), Deputy Editor-in-Chief of the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS I–REGULAR PAPERS (2004–2005), Co-Guest Editor of
a special issue on “Computational Graph Theory: Algorithms and Applications”
(IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, March 1988), Associate
Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS (1989–91,
1999–2001), and Founding Regional Editor of the Journal of Circuits, Systems,
and Computers and an editor of the AKCE International Journal of Graphs
and Combinatorics. Recently, he founded the Technical Committee on “Graph
theory and Computing” of the IEEE CAS Society. He has been a member of
the ACM since 1995.

