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ABSTRACT 

 

Children’s Use of Visual Information in Action Planning. 

(December 2008) 

Alberto Cordova, B.S., Tarleton State University; M.S., Texas A&M University 

Chair of Advisory Committee: Dr.  Carl P. Gabbard 

 

 

 The primary intent of this study was to gain insight into children’s ability to use 

visual information in planning reaching movements. More specifically, the work 

presented here examined, from a developmental perspective, the use of visual 

information to use a) egocentric cues, b) allocentric cues, and c) the combination, in the 

form of visual background around a target. Children representing the age groups 5-, 7-, 

9-, 11 years and adults participated in three experiments. All experiments were 

conducted using an immediate (visually-guided) and response-delay (memory-guided) 

paradigm. Experiment 1 examined the ability of participants to use an egocentric frame 

of reference to estimate reach via motor imagery. Results indicated that introducing a ≥ 

2s delay affected responses in all age groups, especially the younger age groups (5- and 

7-year-olds). As delay increased, children as a group tended to overestimate, while 

adults underestimated. Experiment 2 investigated how participants used allocentric cues 

to estimate the location of objects in a perceptual estimate paradigm. Results revealed 

that introducing a delay affected the estimation of distance among all age groups, with 
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greater effect on the younger age groups. Experiment 3 examined how a visual 

background surrounding a target would affect estimation of reach. Results revealed that 

there were no differences when targets were surrounded with or without a background. 

Results also showed that the 5- and 7-year-olds were most affected on their perception of 

reach and estimates by longer delays. 

Considered together, these results hint that: (1) there is a significant temporal 

constraint on the representation of movement through the visoumotor stream, especially 

with children 7 years and younger, and (2) children as a whole tend to operate and rely 

more on an egocentric frame of reference; therefore, responses of reachability and 

distance estimates were susceptible to greater error when performed after a 2s delay.  
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CHAPTER I 

INTRODUCTION 

 Understanding the perception to action developmental dynamics involved in 

reaching and grasping an object constitutes one of the most mystifying issues in motor 

behavior research. It is assumed that one of the initial steps in programming such 

movements is to derive a perceptual estimate of the object's distance and location 

relative to the body. This means that an individual must be able to perceive critical reach 

distances beyond which a particular reach action is no longer afforded and to which a 

transition to another reach mode must occur. For example, the individual must ascertain 

whether the object is close enough to reach while seated, or should they stand up? From 

a Gibsonian view (1979), the detection of the affordance for a particular mode of 

reaching entails perceiving whether the reach action will fit in the existing layout of the 

environment. Obviously, visual information and an action representation are critical 

factors in planning reach movements.  

Part of the motivation for this project derived from recent work in our laboratory 

showing that there are differences between children and young adults in estimates of 

reach (Gabbard, Cordova, & Ammar 2007a). More specifically, when viewing reaching 

space as peripersonal (within grasp) and extrapersonal  (beyond reach), children display 

a distinct ‘body-scaling’ problem in extrapersonal space; a problem not shown in adults. 

It has been our contention and the view of some reviewers of our work that part of the 

problem is age-related differences in the use of visual information – which includes the  

____________ 
This dissertation follows the style of Research Quarterly for Exercise and Sport. 
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ability to represent and predict actions.  

The primary purpose of this project was to gain insight into children’s ability to 

use visual information in planning reaching movements. To this end, three experiments 

examined the use of visual information in action processing via estimating reach among 

children ages 5- to 12 years, and a sample of young adults. More specific, our plan 

aimed to determine the age-related ability to use a) egocentric cues, b) allocentric cues, 

and c) the combination of both cues, in the form of visual background around a target.  

 Often linked to the use of visual information in the form of visual representations 

are egocentric and allocentric visual frames of reference. It is generally well-accepted 

that visual information is used to code specific characteristics of objects and its 

surroundings with respect to particular references. One form involves reference relative 

to the actor’s body or body parts, labled as an egocentric frame of reference.  For 

example, the visual mapping of the actor’s effector (hand) and reaching object.  The 

other, referred to as an allocentric frame of reference, is a representation relative to the 

object and background independent of the actor; such as recognition of object shape and 

general location. Furthermore, it has been proposed that egocentric cues associated with 

intended action are processed in the dorsal pathways thru the brain, whereas allocentric 

representations that help to recognize (for example) object shape and location are found 

mainly along the ventral pathways in the brain (Goodale et al., 2005; Goodale & 

Westwood, 2004). Moreover, specific propositions of the two-visual-system hypothesis 

[vision-for-perception and vision-for-action; Goodale et al., 2005] and behavioral data 

support the idea that for estimation judgments (as with reach), the dorsal stream (via 
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egocentric reference) is ‘metrically’ more accurate than the ventral stream (allocentric 

reference) (Bradshaw et al., 2004; Goodale & Humphrey, 1998).  

Moreover (and of specific relevance to this work), the perception and action 

streams are speculated to operate under very different temporal constraints. That is, real-

time (visually-guided) movements depend on pathways from the early visual areas via 

relatively encapsulated visuomotor mechanisms in the dorsal stream. These dedicated 

visuomotor mechanisms, together with motor centers in the premotor cortex and 

brainstem, compute the absolute metrics of the target object and its position in the 

egocentric coordinates of the effector used to perform the action. In contrast, it is 

suggested that memory-driven actions make use of a perceptual representation of the 

target object generated by the ventral stream. Unlike the real-time visuomotor 

mechanisms, perception-based movement planning makes use of scene-based 

coordinates to establish an allocentric frame of reference. Research testing the temporal 

aspects of the visual systems is supportive of how the two visual frame of references 

operate (Goodale et al., 1994; Graham et al., 1998; Hu et al., 1999).  

 Although the consensus of research leads to the notion that the two visual 

pathways have a distinct (and independent) role, the ‘interactive’ complementary 

function of the processes has drawn considerable attention in updated discussions 

(Goodale et al., 2005; Goodale & Westwood, 2004; Guillery, 2005). For example, 

research has demonstrated that allocentric and egocentric references interact to influence 

the trajectory and accuracy of a movement (Bradshaw et al., 2004; Diedrichsen et al., 

2004; Krigolson & Heath, 2004; Stevens, 2005). In addition, Goodale et al. (2005) has 
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stated, “Of course, the two systems are not hermetically sealed from one another - 

perception and action are intimately linked. After all, many actions, which are mediated 

by mechanisms in the dorsal stream, are conditional upon the presence of complex 

stimuli that can be interpreted only by mechanisms in the ventral perceptual stream” (p. 

274). From a developmental perspective, this observation may be described as a 

‘coupling’ of perception to action processes.  

Although little has been reported about motor cognition per se for reaching in 

children, contemporary studies have found significant age-related change in mastery of 

the visuomotor system between 5 and 11 years (e.g., Bourgeois & Hay, 2003; Lambert 

& Bard, 2005). Common observations include age-related improvements in general 

information processing abilities - for example, changes in the ability to effectively 

integrate visual feedback with the motor system. However, of closer relevance to the 

present question is the body of information concerning specific use of visual information 

in action processing. Using a visual  (Ebbinghaus) illusion task with grasping, Hanisch et 

al. (2001) provided evidence for nonspecific use of an allocentric (ventral stream) and/or 

egocentric (dorsal stream) frame of reference while making perceptual judgments or 

planning motor acts during childhood. That is, children were relying on both visual 

streams during perceptual and visuomotor activities; therefore suggesting that these 

pathways are not

In a later paper, using the Duncker illusion with a pointing task, Rival et al. 

(2004) found that the different type of spatial information (location versus distance) 

 functionally segregated during childhood. The researchers did note that 

the reliance on visual feedback decreased with increasing age (5- to 12 years).   
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encoded by the participants to program their motor responses matures early during 

childhood. Their data suggested that before 7 years of age, children use mainly 

egocentric object representations when performing motor tasks. On the other hand, when 

making only perceptual judgments, children preferentially use allocentric cues. 

Furthermore, the researchers contend that by 7 years, children use the same attentional 

strategy as adults. It was noted that the difference between their results and those of 

Hanisch and colleagues might lie in the task used.  

In essence, these findings beg the question and need for further study considering 

the developmental status of the visual pathways in children. The reports are somewhat 

conflicting –one notes that these pathways ‘are not’ functionally segregated (by age 12). 

The other concluded that the systems are relatively mature and segregated by 7 years of 

age.   

 An interesting approach to investigate the nature of visual representation in 

action control is to introduce a temporal delay between stimulus presentation and 

response. This paradigm has been used in pointing tasks (Bradshaw et al., 2004; 

Bradshaw & Watt, 2002; Elliot & Madalena, 1987; Heath et al., 2004, Westwood et al., 

2003) and prehension tasks (e.g., Hu et al., 1999). Experimentally, the use of a temporal 

delay has been shown to modify the features of visuomotor responses. For example, 

Bradshaw & Watt (2002) found that a 2s delay was sufficient to significantly disturb 

prehensile movement. They found that when presented with a delay, subjects exhibited 

reaches with lower peak velocities and lower peak apertures. Moreover, they used a 

perceptual-matching condition and found that accuracy, as well as variance, of a 
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pointing task remained unaffected after imposing a temporal delay. Other researchers 

report similar results ranging from a decrement in movement behavior at 1s (Graham et 

al., 1998) and 5s (Hu et al., 1999). Those findings support the notion that the visuomotor 

(dorsal) pathway has limited memory and that response after a temporal delay may be 

sustained by representation stored in memory through the perceptual stream (ventral). 

 As mentioned before, perceptual tasks (e.g. recognizing the color of a target) 

have been separated from action-based tasks (e.g. reaching for an object) and differences 

in performance have been explained by functional dissociations of two independent 

streams, the ventral and the dorsal stream located in the temporal and parietal lobes, 

respectively. Several behavioral experiments have demonstrated that some patients can 

perform perceptual tasks but not visually- guided behavioral tasks (see, Goodale et al, 

1994); on the other hand, others are capable of performing normally on visuomotor 

tasks, but not perceptual tasks (see Goodale et al, 1991).  

In regard to studies of children, Bradshaw and colleagues (2004) examined the 

effects of a pre-movement delay on the kinematics of prehension in middle childhood (5 

to 11 years of age). The participants performed visually open-loop reaches to two 

different sized objects at two different distances along the midline. Reaches took place 

either immediately, or 2s after the occlusion of the stimulus. With all age groups, reaches 

following the pre-movement delay were characterized by longer movement durations, 

lower peak velocities, larger peak grip apertures and longer time spent in the final slow 

phase of the movement. The results suggested that the representations that control the 

transport and grasp component are affected similarly by delay, and is consistent with the 
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results previously reported for adults. The researchers concluded that such 

representations appear to develop before the age of 5. 

 In regard to visual background (VB) information in the form of allocentric cues, 

research has shown that it facilitates visually-guided actions (Coello & Greally, 1997; 

Velay & Beaubaton, 1986) and enhances the kinematics of reach movements (e.g., peak 

velocity) to a memory-guided target (Carrozzo et al., 2002; Lemay et al., 2004). In 

essence, egocentric and allocentric visual frames can be integrated to facilitate the 

accuracy of goal-directed reach movements. One limitation of the studies cited is that 

none addressed whether or not VB facilitates or impedes the accuracy of visually-guided 

and memory-guided actions performed across different delay intervals. Diedrichsen et al. 

(2004) used a delay paradigm to address this issue in part by investigating the effect of 

scene-based (allocentric) information on memory-guided pointing actions.  The 

researchers concluded that “non-target landmarks” played an important role in the 

encoding of target position, resulting in better performance.  However, this study did not 

examine the affect of allocentric cues on visually-guided (i.e., real-time) actions. 

Krigolson and Heath (2004) addressed this problem by examining the kinematics and the 

endpoint accuracy in visually-guided and memory-guided reaching conditions (i.e., with 

delay) with and without background cues. Their results indicated that VB cues provide 

allocentric information about the target location that can be used in conjunction with 

egocentric limb, visual background, and visible or stored target information to facilitate 

online control processes. In 2005, Obhi and Goodale reported similar results after 

examining the effects of non-target landmarks on accuracy of immediate and delayed 
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target-directed pointing movements. Unique to this study was that the allocentric cues 

were present just prior to and during presentation of the target, never during movement 

execution. Results indicated that participants displayed significantly less error when 

landmarks were available during target presentation in delayed and immediate action 

conditions.  In regard to the precision of movements, landmarks improved performance 

in the delayed, but not in the immediate condition. The researchers concluded that the 

landmark effect appeared to be in the encoding of target position and that when 

available, this information is used to improve accuracy of the estimation of target 

location; a point that has direct implications for the present study. Moreover, it appears 

that dependence on landmark information becomes more critical as the movement is 

delayed. In a more current study involving reach actions, one that touched on the intent 

of the experiment presented here, Coello and Iwanow (2006) found that textured 

background influenced cognitive (distance estimation) and sensorimotor coding of target 

information. For distance estimation, responses were closer to actual reach in the 

textured, compared to darkness condition. The authors went on to conclude that visual 

processing for perception and action cannot be dissociated from contextual influence. 

However, that study did not include a delay condition. To our knowledge, no 

experiments with children have been reported. 

 Motor imagery is used with each of the three experiments described in this paper; 

a paradigm that we have tested and published using adults and children (see subsequent 

section). Our specific interest is the usefulness of imagery in understanding the 

programming of reach actions.  As noted earlier, one of the initial steps in programming 
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reach is to derive a perceptual estimate of the object's distance and location relative to 

the body. Motor imagery also known as kinesthetic imagery, has been described as an 

active cognitive process during which the representation of a specific action is internally 

reproduced in working memory without any overt motor output (Decety & Grezes, 

1999).  

 Jeannerod (1997, 2001) contends that MI provides a window into the process of 

action representation

 In addition to the reasonable case that MI is a reflection of action representation 

and motor planning, justifying the use of this technique are several reports suggesting 

that there is a high correlation between real and imaged movements (e.g., Gonzalez et 

al., 2005; Michelon et al., 2006; Sabate et al., 2004). Furthermore, evidence has been 

reported showing that MI follows the basic tenets of Fitts’ Law (Solodkin et al., 2004; 

Steven, 2005). Stevens (2005) contends that MI represents the kinesthetic and 

biomechanical constraints connected with action, associated with the dorsal stream. The 

; that is, it reflects an unconscious internal action representation, or 

internal model of volitional movements. And, perhaps more important, MI is therefore a 

conscious equivalent to a prediction and consequence for that action (e.g., Johnson, 

2001; Kosslyn et al., 2001). These representations, that are associated with forward 

models, are hypothesized to be an integral part of action planning (Choudhury et al., 

2007; Miall & Wolpert, 1996). Furthermore, Steenbergen et al. (2007) suggests that MI 

may be a necessary prerequisite for motor planning. From another view, MI represents a 

form of motor cognition. That is, the cognitive level of action processing. Motor 

cognition takes into account recognizing, anticipating, predicting and producing actions. 
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notion that MI elicits corticomotor excitability associated with action was supported by 

recent work of Filimon et al. (2007), Neuper et al. (2005), and Stinear et al. (2006). 

Furthermore, Holmes and Sholl (2005) and Milner & Goodale (2004) report that 

egocentric frames for visually guided action are coded within the dorsal stream.  

A form of MI is estimating (perceived) reachability, which involves the 

perceptual / cognitive judgment of whether an object is within or out of our grasp. Partial 

support for use of this tactic in understanding action representation and planning is found 

in an excellent treatise on the issue by Coello et al. (2007). Although considerable 

research has involved children in reaching studies, few reports have addressed action 

processing in the context of verbally estimating reachability. Several reports using 

infants hint at the suggestion of perceived reachability, however, the obvious inherent 

limitation of such studies is the problem with determining the level of cognitive 

processing involved in estimation of reachability. Arguably, the use of reaching contacts, 

forward lean, and gaze, are not ideal for addressing the issue of motor cognition. A 

review of work involving older children and adults reveals a common finding that both 

groups tend to overestimate their reaching abilities; that is, individuals tend to perceive 

that objects are within reach, when actually they are out of grasp (children: Gabbard et 

al.,  2007a; Rochat, 1995; Schwebel & Plumert, 1999; adults: Coello & Iwanow, 2006; 

Fischer, 2000; Gabbard et al., 2005b, c; Robinovitch, 1998; Rochat & Wraga, 1997). 

Furthermore, there is evidence that this overestimation bias is greater in children 

(Gabbard et al., 2007a).  
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Purpose of the Study 

The primary intent of the present study was to gain insight into children’s ability 

to use visual information in planning reaching movements. To this end, the study 

explored, from a developmental perspective, the use of visual information in action 

processing via estimating reachability among children ages 5- to 12 years and young 

adults. More specifically, the experiments addressed the following objectives:   

 To determine the age-related ability to use allocentric and egocentric cues with 

action planning (estimating reach).  

 To ascertain the effects of visual background (non-target landmarks) on 

estimation of reachability (combination of allocentric and egocentric cues).  

 To address these objectives, three experiments were designed using an immediate 

(visually-guided) and delayed (memory-guided) paradigm.   

 Experiments 1 and 2 explored the perception and action dynamics involved in 

action processing via estimating reach using egocentric and allocentric frames of 

reference. Although our attention focuses on the age-related ability to use allocentric and 

egocentric information in motor planning, we are also interested in the distinctiveness of 

each and perhaps most important, their interactive role in action processing. Research 

questions addressed were: How well do children (compared to adults) use allocentric 

cues to estimate the location of objects in a reaching paradigm? Is there a difference 

between immediate (visually-guided) and delayed (memory-based) responses? Can 

children use target information to establish egocentric coordinates in estimating 
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reachability? From these questions, some speculation may be established in regard to 

ventral and dorsal visual stream processing in motor (action) planning.  

 Experiment 3 examined the effect of visual background cues (non-target 

landmarks) on estimates of reach. In other words, we wanted to determine if additional 

allocentric information around a target improves visually-guided and memory-guided 

estimation accuracy. From another perspective, can egocentric and allocentric visual 

frames of reference be integrated to facilitate the accuracy of reachability [distance] 

estimation? Past work with adults in an actual movement paradigm has shown that 

introducing a visual structure around a target enhances the accuracy of goal-oriented 

actions. Research questions addressed were: Does visual background surrounding a 

target effect estimation of reach in children compared to adults? Is there a difference 

between visually-guided and memory-guided responses?  

 
General Method 

Participants  
 
 A total of 83 participants were used for all experiments (1-3) representing age 

groups of 5- (n=17), 7- (n = 14), 9- (n = 18), 11- (n = 17) year-olds and a group of adults 

(n = 17). The mean ages for each group were 5.61, 7.72, 9.47, 11.36, and 21.53 

respectively. All data collection took place at the Texas A&M University Motor 

Development Laboratory. Participants were recruited from Texas A&M University and 

the surrounding residential communities of Bryan / College Station TX via 

advertisements and personal communication with schools, guardians and summer camps 

held at the University. All participants were screened using a questionnaire (filled out by 
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the parent) to ensure normal vision and that none have a history of past or present 

sensorimotor impairment. For the purposes of this study, only participants identified as 

strong right-handers via manual performance were selected. That is, those for whom all 

items scored in the lateral direction using the Lateral Preference Inventory (Coren, 1993) 

were included in the investigation. All participants (and / or parent) signed the informed 

consent forms approved by our Institutional Review Board before beginning the 

experiment and were naïve to the hypotheses under investigation. 

General Procedures (Experiments 1-3) 

 Testing for Experiments 1-3 required three approximate 30-minute sessions on 

separate days within a 3-week period. The experiment order was counterbalanced 

between participants and conditions were counterbalanced within experiments.

 During the first session, hand preference and anthropometric measures were 

taken. Explanation of procedures was given at the beginning of each session along with a 

familiarization phase, which included either motor imagery or perceptual estimate 

training and practice trials. Prior to this study, pilot-testing was conducted to determine 

that the methodology used for each experiment was appropriate for the youngest 

children (5-year-olds). Testing was conducted during the spring and summer months.  
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CHAPTER II 

EXPERIMENT 1: ESTIMATION OF REACH VIA EGOCENTRIC CUES 

Introduction 

In Experiment 1, we examined the ability of children to use an egocentric frame 

of reference to plan reaching movements via estimation of reach. This process was 

explored using an immediate (visually-guided) and response-delay (memory-guided) 

paradigm. Response-delay refers to the delay between stimulus presentation (visual 

information) and a cue to respond. This tactic involved the manipulation of temporal 

(time) constraints on estimation of reach using motor imagery. More specifically, this 

experiment aimed to examine the influence of visually-guided and response-delay on 

estimation of reach.  

 Our research question addressed the ability of children to use target information 

to establish egocentric coordinates in estimating reach using an immediate (visually-

guided) and response-delay paradigm? According to Goodale et al. (2004), visuomotor 

processes responsible for action control (via egocentric cues as used in MI) seem to only 

retain information in real-time about the target. Therefore, our assumption was that at 

some point, delay should have an adverse affect on the perception of reach.  

 

Method 

Apparatus 

A general illustration of the testing apparatus used to solicit perceived and actual 

reaching behavior is shown in Figure 1 and has been reported elsewhere with adults 

(Gabbard et al., 2007b; Gabbard et al., 2006; Gabbard et al., 2005a, b, c) and children 
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(Gabbard et al., 2008, 2007a). Actual maximum reach (used as the comparison) and 

imaged reach responses were collected via a projection system linked to a PC 

programmed with Visual Basic. Visual images were systematically projected onto a table 

surface at midline (90o).  

actual reach

Imagined tr ial sites 

A

Fixation point

A

 

Figure 1. View of experimental set-up for Experiment 1.  
 
 
 

The table was constructed on a sliding bracket frame, allowing it be moved back and 

forward for adjustment to the participant. Participants sat in an adjustable ergonomics 

chair fixed to the floor, aligned with the midline of the projected image. Seatpan height 

(surface is metal and nondepressive) was set to 105% of participant’s popliteal height. 

Popliteal height was the distance from the underside of the foot to the underside of the 

thigh at the knees. Table height was then adjusted to the midpoint between seatpan 

height and seated eye height. Table and seatpan positioning were modified from Carello 

et al. (1989) and Choi and Mark (2004). To aid in establishing actual reach limitations 
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for a 1-df action (described in the next section), a commercial seatbelt system was 

modified and secured to the back of the chair. The room was darkened with the 

exception of light from the computer monitor and visual images (color varies with 

experiment and condition) projected onto the table programmed with a gray background 

surface. The fixation point was projected onto a rectangular box (with a 45 degree angle 

surface) placed at midline approximately 45 cm from the most distal target. 

Procedure 

To begin, participants were systematically positioned in the chair and introduced 

to the task for determining ‘actual’ maximum reach - full extension of the right limb and 

middle finger to slide a penny forward using a 1-df reach (Carello et al., 1989). A 1-df 

reach involved a comfortable effort of the hand, forearm, and upper arm acting as a 

single functional skeletal unit. Based on maximum reach, seven imagery targets (2 cm 

diameter-penny size) were randomly programmed with ‘4’ representing actual reach 

complemented with three image sites farther and three sites closer touching at the rims 

(Figure 1). In essence, actual reach is ‘scaled’ to individual arm lengths, therefore 

allowing acceptable comparison.   

Participants were asked to focus while kinesthetically ‘feeling’ themselves 

executing the movement with the right limb – therefore being more sensitive to the 

biomechanical constraints of the task (MI) (Johnson et al., 2001; Sirigu & Duhamel, 

2001; Stevens, 2005). The dominant (right) hand was placed within a drawn box on the 

table close to the torso at midline, while the nondominant limb rests on the participant’s 

upper left thigh under the table. Prior to final data collection, participants were trained in 
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the use of imagery techniques that we have reported in the literature (cited earlier for 

adults and children).  

Four blocks of trials (conditions) were administered: no-delay with MI (M0), 1s 

delay with MI (M1), 2s delay with MI (M2), 4s delay with MI (M4). Conditions were 

counterbalanced between participants and each condition began with three practice trials. 

Data collection started with a 5s verbal “Ready!” signal – immediately followed by a 

central fixation point lasting 3s, at the end of which the participant hears a tone. In the 

no-delay conditions, participants were instructed to respond immediately.  

Three trials at each of the seven target sites were presented randomly. No 

feedback was available to participants about the accuracy of performance. As a 

precaution for general and especially eye fatigue due to fixation, the experimenter 

provided breaks between trials (for all experiments). A second experimenter served to 

reinforce instructions regarding imagery technique and refocusing to the central fixation 

point with each trial (this procedure was also followed for all experiments). Testing 

required one approximate 30-minute session; four conditions. Each participant 

completed 84 trials in Experiment 1 (4 conditions X 21 trials = 84 trials). 

Data Analysis 

The focus of analysis was to determine each participant’s accuracy in estimating 

reachability (MI) at each of the randomly presented targets. The accuracy was based on 

their responses as to whether the target was reachable or not; as noted by a “Yes” or 

“No” response. The basis for being reachable was derived from the participant’s actual 

reach measurement. Given that the responses (yes or no) were categorical, frequency 
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data analysis and chi-square procedures were used to compare the four conditions in 

regard to total and distribution of error across targets. Total error is described as the 

percentage (proportion rounded to the nearest whole number) of wrong responses in 

relation to total trials for each condition. That is, when the participants responded “no” 

when actually, the target was within reach, or “yes” when in fact, the target was out of 

reach. The reader should keep in mind that there were seven target sites with target ‘4’ 

representing the participant’s actual maximum reach. Incorrect responses at the three 

targets above (distal to) actual reach (5 – 7) indicate an overestimation, while incorrect 

responses at any of the lower (proximal) targets (1 – 4) was an underestimation. For 

example, if a participant notes that target 5 was reachable (‘yes’) when in fact it was not, 

it is an overestimation.  

To determine the general direction of error in terms of mean bias (i.e., over- or 

underestimation), descriptive statistics and analysis of variance (ANOVA) procedures 

with Duncan’s post hoc tests (p < .05) were employed to determine estimates of error. 

That is, data was given a positive or negative sign and then summed to provide a signed 

mean. Zero on the y- axis represents no error, whereas a minus value corresponds to an 

underestimation and above zero an overestimation.  

 

Results  

Total Error (Within Group) 
 

The first step in the analysis was to look within each age group across conditions 

comparing total error. Chi-square analyses indicated a significant difference with the 5- 

and 7-year-olds (Figure 2). With 5-year-olds, the difference was between the M0 (20%), 
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M2 (36%), and M4 (43%) conditions; values were χ2
(1)

 = 5.58, p < .01 and χ2
(1)

 = 11.22, 

p < .001 respectively. The 5-year-olds were also different between M1 (24%) and M4 

(43%), with χ2
(1)

 = 7.27, p < .01. With 7-year-olds, the only difference was between M0 

(19%) and M4 (36%), χ2
(1)

 = 6.42, p < .05.  

There were no significant differences with the 9-year-olds, 11-year-olds and 

adults on any of the conditions. The values (%) ranged from 16 to 25 for the 9-year-olds, 

15 to 23 for 11-year-olds, and 14 to 20 for the adults (Figure 2).   
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Figure 2. Percentage of total error for egocentric task. M0 = no-delay, M1 = 1s delay, 
M2 = 2s delay, M4 = 4s delay. 
 
 

Distribution of Error (Within Group) 

To determine where the errors occurred, we analyzed the distribution of errors 

across targets within each condition. Profiles of the error distributions in Figure 3 show 

that most of the error occurred at target 5 for children. With adults, the highest frequency 

of error occurred at target 4 except in the M2 condition. A more detailed list of 

distribution values can be seen in Appendix A.   
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Figure 3. Percentage of distribution error for egocentric task. M0 = no-delay, M1 = 1s 
delay, M2 = 2s delay, M4 = 4s delay. 
 
 
 
Mean Bias (Within Group)   

 In regard to the general direction of error (mean bias in cm) within each of the 

conditions, the one-way ANOVAs indicated a significant main effect of age (M0, F(4,78) 

= 2.98, p <= .05; M1, F(4,78) = 8.91, p < .0001; M2, F(4,78) = 16.64, p < .0001; M4, F(4,78) 

= 20.77, p < .0001) (Figure 4). Post hoc analysis indicated that within the M0 condition, 

the 5- (M = 0.54; SD = 1.08) and 7-year-olds (M = 0.36, SD = 1.04) were different from 

the adults (M = -0.08; SD = 1.20). In M1, 5-year-olds (M = 0.81; SD = 1.5) were 

different from 9-year-olds (M = 0.40; SD = 1.07), 11-year-olds (M = 0.25; SD = 1.31) 

and adults (M = 0.06; SD = 1.06). Also within M1, analysis revealed that 7- (M = 0.66; 
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SD = 1.43) and 9-year-olds (M = 0.40; SD = 1.07) were different than 11-year-olds (M = 

0.25; SD = 1.31) and adults (M = 0.06; SD = 1.06).  

 

 

 

 

 

 

 

 

 

Figure 4. Mean bias by condition for egocentric task. M0 = no-delay, M1 = 1s delay, 
M2 = 2s delay, M4 = 4s delay. 

 
 
 
With the M2 condition, analysis revealed that 5- (M = 1.29; SD = 1.79) and 7-

year-olds (M = 0.97; SD = 1.72) were different from 9-year-olds (M = 0.54; SD = 1.53), 

11-year-olds (M = 0.26; SD = 1.13) and adults (M = 0.02; SD = 1.05). Also with the M2 

condition, 9-year-olds (M = 0.54; SD = 1.53) were different from adults (M = 0.02; SD = 

1.05) (Figure 4).  

In the M4 condition, results showed that 5- (M = 1.60; SD = 2.25) and 7-year-

olds (M = 1.11; SD =1.91) were different from each other and each were different from 
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the older groups (9-year-olds, M = 0.26; SD = 1.48, 11-year-olds, M = 0.08; SD = 2.01, 

and adults M = 0.05; SD = .91; (Figure 4)). 

Space (Within Group) 

Now our attention shifts to peripersonal (target 1-4, within reach) and 

extrapersonal (target 5-7, beyond reach) space within conditions. Chi-square analysis 

revealed that with the M0 and M1 conditions, 5-, 7-, and 9-year-olds had differences 

between peripersonal and extrapersonal space (Figure 5). The differences (χ2
(1) with ps < 

.01) for space in the M0 condition were as follow: 5-year-olds (peri- = 2%, extra- = 

44%) = 47.46; 7-year-olds (peri- = 7%, extra- = 35%) = 21.97; and 9-year-olds (peri- = 

12%, extra- = 40%) = 18.95. In the M1 condition, the differences (χ2
(1) with ps < .01) for 

space within age groups were: 5-year-olds (peri- = 0%, extra- = 60) = 82.88; 7-year-olds 

(peri- = 4%, extra- = 55%) = 60.10; and 9-year-olds (peri- = 4%, extra- = 33%) = 26.00.  

Analyses also showed that children were significantly different in the M2 and 

M4 conditions between peripersonal and extrapersonal space: M2 values were (χ2
(1)  with 

ps < .01); 5-year-olds (peri- = 1%, extra- = 82%) = 131.81; 7-year-olds (peri- = 5%, 

extra- = 71%) = 89.67; 9-year-olds (peri- = 12%, extra- = 41%) = 20.13; and 11-year-

olds (peri- = 11%, extra- = 30%) = 9.94. In the M4 condition, the chi-square values were 

(χ2
(1)  with ps < .01): 5-year-olds (peri- = 2%, extra- = 96%) = 173.05; 7-year-olds (peri- 

= 5%, extra- = 78%) = 106.77; 9-year-olds (peri- = 10%, extra- = 34%) = 12.27; and 11-

year-olds (peri- = 17%, extra- = 34%) = 6.74. 

Chi-square analysis revealed that there was no significant difference between 

conditions in peripersonal space. However, when viewing extrapersonal space, 
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differences emerged (Figure 6). The differences between conditions for 5-year-olds were 

(χ2
(1)  with ps < .01): M0 from M1 = 4.51, M2 = 29.37, and M4 = 61.93; M1 from M2 = 

10.71, and M4 = 35.69; and M2 from M4 = 8.63. For 7-year-olds, analysis revealed 

differences which were (χ2
(1)  with ps < .01): M0 from M1  = 7.29; M0 from M2  = 

24.59; M0 from M4  = 35.89; M1 from M2  = 4.83, and M1 from M4  = 10.86. 

 

 

 

 

 

 

 

 

 

 
Figure 5. Percentage of mean error by space for egocentric task. M0 = no-delay, M1 = 
1s delay, M2 = 2s delay, M4 = 4s delay. 
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Figure 6. Percentage of mean error by extrapersonal space for egocentric task. M0 = no-
delay, M1 = 1s delay, M2 = 2s delay, M4 = 4s delay. 
 
 
Total Error (Between Group) 

 
Regarding total error between groups, there were no differences between the M0 

(ranging from 19% to 23%) and M1 (ranging from 15% to 25%) conditions as shown in 

Figure 2. In other words, 5-year-olds were not different from the other age groups 

between the conditions just mentioned.  

In reference to total error between groups in the M2 condition, chi-square 

analysis revealed differences between 5-year-olds (36%), 11-year-olds (21%) and adults 

(14%); χ2 
(1) = 3.85, p <. 05; χ2 

(1) = 11.76, p < .001 respectively. Also, 7-year-olds 

(32%) were different from adults, (χ2 
(1)= 8.16, p < .01) (Figure 2). The analysis also 

showed differences between groups in the M4 condition; 5-year-olds (43%) were 

different from 9-year-olds (19%), 11-year-olds (23%) and adults (14%). The 

comparative results for 5-year-olds to the age groups just mentioned were (χ2
(1) with ps < 

.01): 12.37, 8.16 and 19.24 respectively. The analysis also revealed that 7-year-olds 

(36%) were different from 9-year-olds (χ2
(1)

 = 6.42, p < .05) and adults (χ2
(1)

 = 14.04, p 

< .001). 
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Distribution of Error (Between Group) 

Concerning distribution of error, only targets 4 (actual maximum reach) and 5 

will be addressed; at these targets most of the errors occurred with all groups. From 

another perspective, this area represents the commonly observed ‘critical boundary’ in 

regard to the perception of maximum reach. The distribution of error across age groups 

in the M0 condition showed that 5-year-olds were different from the rest of the age 

groups at target 4. The chi-square values for 5-year-olds and the other age groups were 

(χ2
(1) with ps < .01): 7-year-olds = 7.91, 9-year-olds  = 5.35, 11-year-olds  = 43.28, and 

adults = 46.54.  

Also with target 4, 7-year-olds were different from 11-year-olds χ2
(1)

 = 15.82, p 

< .0001 and adults χ2
(1)

 = 18.04, p < .0001. The results for the 9-year-olds showed that 

they were different from 11-year-olds (χ2
(1)

 = 19.91, p < .0001) and adults (χ2
(1)

 = 22.36, 

p < .0001). Examining target 5, analysis showed that 5-year-olds were different from all 

other groups; values were (χ2
(1)  with ps < .01): 7-year-olds  = 18.21; 9-year-olds = 

19.38; 11-year-olds  = 32.50; and adults  = 73.16. Finally in the M0 condition, results 

showed that 7-year-olds were significantly different from adults (χ2
(1)

 = 21.82, p < 

.0001). 

The distribution of error across age groups in the M1 condition showed that at 

target 4, 5-year-olds were different from the rest of the age groups; values were (χ2
(1)  

with ps < .01): 7-year-olds  = 12.98; 9-year-olds = 9.62; 11-year-olds = 31.62; and 

adults  = 446.00. Also with target 4, 7-year-olds were different from 11-year-olds χ2
(1)

 = 
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5.81, p < .05 and adults χ2
(1)

 = 14.79, p < .0001. The 9-year-olds were also different 

from 11-year-olds χ2
(1)

 = 9.03, p < .01 and adults χ2
(1)

 = 19.44, p < .0001.  

Examining target 5, the results showed that 5-year-olds were different from the 

other groups; values were (χ2
(1)  with ps < .01): 7-year-olds = 21.28; 9-year-olds  = 

38.59; 11-year-olds  = 109.40; and adults = 111.83. Also for target 5, results revealed 

that 7-year-olds were different from 11-year-olds (χ2
(1)

 = 50.25, p < .0001) and adults  

(χ2 
(1)= 52.21, p < .0001). The results also showed that 9-year-olds were different from 

11-year olds and adults (χ2 
(1)= 27.48, p < .0001; χ2

(1)
 = 29.02, p < .0001 respectively). 

Concerning target 4 in M2, results showed that 5-year-olds were different from 

the rest of the age groups; values were (χ2
(1)  with ps < .01): 7-year-olds  = 10.32 , 9-

year-olds = 45.88; 11-year-olds = 25.81; and adults  = 24.51. The 7-year-olds were also 

different from 9-year-olds χ2
(1)

 = 16.25, p < .05 and 11-year-olds χ2
(1)

 = 4.13, p < .05 at 

target 4. With 9-year-olds, the difference was with 11-year-olds χ2
(1)

 = 4.28, p < .05.  

Examining target 5 in M2, the analysis revealed that 5-year-olds were different 

from all age groups; values were (χ2
(1)  with ps < .0001 unless otherwise noted): 7-year-

olds = 4.57, ps < .05; 9-year-olds  = 32.67; 11-year-olds  = 62.59; and adults = 64.52. 

Also for target 5, results showed 7-year-olds to be different (χ2
(1)  with ps < .0001) from 

9-year-olds, 11-year-olds, and adults, values were: 9-year-olds = 13.59; 11-year-olds = 

36.91; and adults = 38.52. The 9-year-olds were also different from 11-year-olds and 

adults (χ2 
(1)= 5.79, p < .05; χ2

(1)
 = 6.50, p < .05 respectively). 

For the last condition, M4, the results showed 5-year-olds to be different from the 

other groups, values were (χ2
(1)  with ps < .01): 7-year-olds  = 7.21; 9-year-olds = 20.72; 
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11-year-olds = 19.50; and adults  = 42.78 concerning target 4. The 7-year-olds were also 

different from 9-year-olds χ2
(1)

 = 3.93, p < .05 and adults χ2
(1)

 = 18.49, p < .0001. The 9-

and 11-year-olds were different from adults χ2
(1)

 = 5.09, p <. 05 and χ2
(1)

 = 5.84, p < .05 

respectively.  

Examining target 5 in M4, analysis revealed that 5-year-olds were different from 

all age groups except for 7-year-olds; values were (χ2
(1)  with ps < .0001): 9-year-olds  = 

71.26; 11-year-olds  = 86.98; and adults = 93.36. Also results for target 5 showed 7-

year-olds were different (χ2
(1)  with ps < .0001) from 9-year-olds, 11-year-olds, and 

adults, values were: 61.34; 76.67; and 82.91 respectively. 

Mean Bias (Between Group) 

 In regard to mean bias (cm), the 4 x 5 (Condition [M0, M1, M2, M4]) x Age 

groups [5-, 7-, 9-, 11-year-olds, and adults]) ANOVA results revealed a main effect 

for Condition by Age groups (F(19, 309) = 12.19, p < 0.0001). Post hoc analysis showed 

that within the 5-year-olds, condition M4 and M2 were different from the M0 and M1 

(Figure 7). Concerning 7-year-olds, the M0 condition was different from M2 and M4.  

 

 

 

 

 

Figure 7. Mean bias between groups for egocentric task. M0 = no-delay, M1 = 1s delay, 
M2 = 2s delay, M4 = 4s delay.  
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Discussion 

Our intent with Experiment 1 was to investigate the ability of children to use an 

egocentric frame of reference to plan reaching movements via estimation of reach. 

Stated differently, how well do children use target information to establish egocentric 

coordinates in estimating reach in real-time (visually-guided) and response-delay 

(memory-guided) conditions? Our assumption was that at some point, delay should have 

an adverse affect on the perception of what is within reach based on work from Goodale 

et al. (2004) and Bradshaw et al. (2002, 2004).  

Our findings support the notion that delay affects the perception of what is within 

or out of reach. The first key finding showed clearly that introducing a response-delay 

(M2 and M4) affected estimation of reach (total error) among the two younger age 

groups (5- and 7-year-olds) concerning total error (Figure 2). Our second key finding 

revealed that children overall, displayed the most error at target 5, and as delay increased 

(M2 and M4), error increased, while with adults, most error occurred at target 4 (Figure 

3).  

In regards to what amount of delay hinders performance, our data indicated that a 

2s delay (M2) was sufficient for decrements to be seen for 5- and 7-year-olds but not for 

the older children (9- and 11-year-olds) and adults with total error. The older children 

and adults had similar percentage of total error with the ≥ 2s. With the shorter delays 

(no-delay and 1s delay) there were no differences among age groups, indicating that 

children and adults have similar estimation responses in real-time and when target 

information was relatively still available, via egocentric frame (dorsal stream).  
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As regards to the first finding, our data supports previous studies (Goodale et al., 

2004; Bradshaw et al., 2002, 2004) that indicated a delay affects visuomotor responses. 

Although previous studies used an actual reaching paradigm and our study used a motor 

imagery (MI) paradigm, literature indicates that there is a high correlation between 

motor imagery and movement execution. Therefore, similarities between MI and actual 

movement execution were evident. Our results support previous data showing that 

delays have an affect on movement execution (Bradshaw et al., 2002, 2004) and confirm 

the high correlation between MI and actual movement execution.  

In Bradshaw and colleagues study, children (5- 11 years) made visually open-

loop reaches either immediately or after a 2s occlusion, to two different sized objects at 

two varying distances along the midline. The study concluded that the visuo-motor 

system performance was affected by a 2s delay, just as our MI data showed for the 

younger children (5- and 7-year-olds). However, our older age group data (9- and 11-

year-olds and adults) did not support Bradshaw’s findings (not an expectation). Why 

were there no differences for the older age groups as response-delay increased? The 

answer maybe that the results just mentioned are overall error, a more in-depth look is 

needed to illustrate where the errors are occurring (second key finding).  

In regard to the second key finding, children had considerably more error at 

target 5, supporting previous studies showing that children in general overestimate in 

real-time (visually-guided responses) (Gabbard et al., 2007a; Rochat & Wraga, 1997; 

Schwebel et al., 1997). Previous studies with adults revealed an overestimation in 

visually-guided estimates; however, our adult data revealed an underestimation as delay 
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increased (Fischer, 2005; Gabbard et al., 2005a, c). One possible explanation for what 

appears to be conflicting results with previous reports is that our adults may have used a 

more conservative strategy resulting in under- rather than over-estimation in the 

planning phase. Keep in mind that motor imagery is thought to be in the planning 

aspects of movement execution (pre-reflective). It has been suggested that individuals 

will underestimate in the planning phase and compensate as movement execution takes 

place (Coello et al., 2007; Lemay et al., 2004).  

Mean bias data was supportive to the general observation that children were 

more likely to overestimate than adults. Why were there differences in the estimates of 

children and adults? One possibility may be explained by the visual information 

processing. It appeared that children were more accurate in ‘real time’ (egocentric 

frame) referencing as opposed to response-delay (allocentric frame) referencing. This 

finding suggests that children were unable to hold target information. There seems to be 

a developmental difference in the use of visual information via egocentric reference 

associated with dorsal stream processing.  

In regards to space (peripersonal and extrapersonal), the adult data did not reach 

any level of significance across conditions. However, the childrens’ data revealed 

differences with space in each of the conditions. Children had considerably more error in 

extrapersonal space compared to peripersonal space as delay increased and as delay 

increased, the younger age groups (5- and 7-year-olds) became significantly different 

from the older age groups (9-year-olds, 11-year-olds and adults). These results suggest 
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that younger children had difficulty in perceiving reachability after target information 

was no longer affordable.  

In conclusion, these data indicate that children rely on an egocentric frame of 

reference for making estimates of reach and therefore are more susceptible to delay 

(Bradshaw et al., 2002, 2004; Rival et al., 2004). Speculatively, children as young as 5 

years of age were capable of using egocentric cues via dorsal stream to make functional 

judgments of reachability in peripersonal space with minimal delay (M0 and M1), but as 

delay increased, differences emerged. One key explanation for the difference may lie in 

the fact that the perceptual system of children is not as mature for body scaling estimates 

in extrapersonal space, compared to adults (Hanisch et al., 2001; Rival et al., 2004). 

Another possible reason for the errors in extrapersonal space may be level of experience, 

confidence and spatial movement awareness (Coello et al., 2007). It appears from our 

data that children relied more on an egocentric frame of referencing and therefore after a 

2s delay, there was a major temporal constraint on the representation of movement 

through the visouomotor stream (Goodale et al., 2004). Are children limited to only 

using egocentric frame of referencing? Can children use another form of referencing? 

Experiments 2 and 3 addressed these questions? 
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CHAPTER III 

EXPERIMENT 2: PERCEPTUAL TASK 

Introduction 

In Experiment 2(abc) we examined the perceptual (object and location) 

properties associated with estimation of distances. These properties were explored via 

allocentric (perceptual) cues in real-time (visually-guided) and response-delay (memory-

guided) conditions (as in Experiment 1). As mentioned earlier, theory suggests that the 

vision-for-perception and the vision-for-action processing streams operate under very 

different temporal constraints. The perceptual representation of the target and its 

surroundings are predominately memory-based and derived from allocentric cues. In 

other words, allocentric representation relates to targets coded as a function of the 

surrounding visual cues that are presumed to be independent from the participant’s 

position (Blouin et al., 1993; Lemay & Porteau, 2003). This frame of referencing allows 

target location to be represented as a function of the surrounding visual cues and not to 

the relatively transient position of the body. In this respect, as long as the relation 

between the target and the context remains the same, the position of the observer may be 

changed because body position relative to the target is not important.  

Some studies that have investigated the features of the allocentric frame of 

reference have used visual illusion paradigms. In these illusion studies, a target was 

embedded within a visual illusion like the Roeloff effect (Bridgemand, 1991) or the 

Müeller-Lyer effect (Gentilucci et al., 1996; Westwood, et al., 2000). In these illusion 

studies, participants are asked to remember the target position for a few seconds and 
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subsequently point or grasp it. If target information is encoded in an egocentric frame of 

reference, the surrounding context and pointing accuracy should not be affected by the 

visual illusion. However, if the target is encoded with the surrounding context, 

allocentric frame of reference, a biased response should be observed (Rival et al., 2004; 

Hanisch, et al., 2001; Bridgemand et al., 2000; Gentilucci et al., 1996). It has been 

proposed by some that short recall delays (< 1s) are not (or is less) affected by visual 

illusions (Bridgemand, et al., 1997; Gentilucci et al., 1996) because target information is 

still available for an egocentric frame of reference (Glover & Dixon, 2001, 2002). 

However, for longer recall delays (> 2s), a context-dependent representation is 

remembered and possibly used to control movement (Bridgemnad et al., 1997) and the 

visual illusion emerges.  

 We intended to answer the following questions: How do children (compared to 

adults) use allocentric cues to estimate the location of objects in a perceptual estimation 

paradigm? Is there a difference between immediate (visually-guided) and delay 

(memory-based) responses? Based on the idea that the perceptual stream (via allocentric 

cues) has a memory component, we predicted performance after a delay would be 

constant for some period. In other words, there should be no differences after a 2s delay.  

Method 

Apparatus 

The apparatus for this experiment was identical to the apparatus in Experiment 1 

with the exception of the visual presentation (to be explained in the procedure section of 

this experiment) (Figure 2).  
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Procedure 

In these experiments (abc), the use of visual imagery (VI) was required. In order 

to facilitate the use of VI, the participant’s limbs rested on their laps under the table. 

This position minimizes engagement of the effector (hand) when instructing the 

participant to give a ‘visual estimate’ of whether the target was reachable or not. That is, 

a visual estimate based on general location rather than in reference to the effector (hand). 

We hypothesized that thinking about one's own hand prompts motor simulation (MI) and 

an egocentric reference (mapping) to the target (wanted to disengage MI).  Conversely, 

visual estimation with hands placed under the table will more likely activate ventral 

pathways via allocentric reference (the objective) and hence be less sensitive to 

biomechanical considerations (adopted from Sirigu & Duhamel, 2001; Stinear et al., 

2006). We wish to emphasize that in contrast to MI, VI is linked with the spatial 

component of the perceived environment via the ventral stream. Furthermore, theory 

suggests that MI operates in real-time, whereas VI has a memory component; which is 

relevant to our delay paradigm.  

With these experiments (abc), participants were asked to identify the location of 

the projected target (red) in reference to a cue target (blue target). For example, after the 

designated delay or no-delay, the participant would state “+2,” which is two targets 

above the cued target (see Figure 8 for this example). More specifically, in experiment 

2a, three targets were presented distally (above) to the cued target (out of reach) and 

three were projected proximally (below) to the cued target (within reach). Experiment 2b 

had the same possible distances from blue target to red, but all target positions were 
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within reach (peripersonal) whereas in experiment 2c, all target positions were out of 

reach (extrapersonal space).   

Four blocks of trials (conditions) were administered in each of the variations of 

Experiment 2(abc) with the following delays: no-delay with PT (P0), 1s delay with PT 

(P1), 2s delay with PT (P2), and 4s delay with PT (P4). Conditions were 

counterbalanced between participants and each condition began with three practice trials. 

In general, data collection was similar to Experiment 1.  

The participant’s responses were an estimate of the remembered location to a 

target; for example, -2 or +2 from cue target-blue. To begin, the blue target (max reach) 

appeared for 1s, then according to the specified delay (or no delay) a red target appeared 

for 1s, after which the participant responded. Three trials at each of the seven target sites 

were presented randomly. No feedback was available to the participants about the 

accuracy of performance as with the previous experiment. Testing required three 

approximate 30-minute sessions on separate days within a 2-week period; four 

conditions per session. Each participant completed 252 trials (12 conditions X 21 trials = 

252 trials). 
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Figure 8. View of experimental set-up for Experiment 2. There were three variations, 2a 
represents four targets within reach and three out of reach; 2b represents all targets 
within reach; and 2c represents targets all out of reach. 
 
 
 
Data Analysis 

The focus of analysis was to determine each participant’s accuracy in estimating 

remembered location at each of the randomly presented targets. Responses corresponded 

to the numbered value ranging from –3 to +3. For comparative purposes with 

Experiment 1, total mean error was computed, that is, frequency data of wrong estimates 

(responses) for each of the target presentations. Also, chi-square procedures were used to 

compare the twelve conditions in regard to total error and distribution of error across 

targets.  

As with the data analysis of Experiment 1, descriptive statistics and analysis of 

variance (ANOVA) procedures were employed. These values were derived from mean 
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error (cm) - from actual distance (cue target-target).  As appropriate, post hoc analyses 

using Duncan’s Multiple Range tests were performed (p < .05). 

Results 

 The results for each of the variations (abc) in Experiment 2 were not different 

from each other; therefore, for simplicity of presentation, the variations were combined. 

For example, the no-delay conditions in each of the variations were combined into one 

no-delay condition, and the same for the other conditions.  

 
Total Error (Within Group) 
 

As in the previous experiment, the first step of the analyses was to look within 

each age group across conditions comparing total error. Chi-square analyses indicated 

differences within all age groups (Figure 9). The difference (χ2
(1) with ps < .001 unless 

otherwise noted) within the age groups were between the shorter delays (no-delay and 1s 

delay) to the longer delays (2s and 4s delays). For 5-year-olds, P0 (9%) was different 

from P2 (52%) and P4 (64%); values were: 41.61 and 62.91 respectively. Also with 5-

year-olds, P1 (7%) was different from P2 and P4, values were: 46.54 and 68.48 

respectively. With 7-year-olds the results showed that P0 (6%) was different from P2 

(56%) and P4 (64%); values were 56.12 and 71.41 respectively. The 7-year-olds also 

showed differences between P1 (10%), P2 and P4; values were 45.79 and 60.25 

respectively. The 9-year-olds, 11- year-olds and adults had similar results as the younger 

age groups. The results for 9-year-olds were: P0 (9%) from P2 (39%) 24.33 and P4 

(54%) 44.86; and P1 (12%) from P2 17.79 and P4 38.01. The results for 11-year-olds 

were: P0 (7%) from P2 (40%) 28.48 and P4 (45%) 35.58; and P1 (7%) from P2 28.48 
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and P4 35.58. The results for adults values were: P0 (4%) from P2 (20%) 10.65 (p <. 01) 

and P4 (29%) 20.90; and P1 (7%) from P2 6.17 (p <.01) and P4 14.94. 

 

 

 

 

 
 

Figure 9. Percentage of total error for the perceptual task. P0 = no-delay, P1 = 1s delay, 
P2 = 2s delay, P4 = 4s delay). 
 
 
 
Distribution of Error (Within Group) 

 
The distribution of error across targets as evident in Figure 10 shows that most 

error occurred at the most distal targets from the cued target (target 4) in the two 

conditions with the longest delays (P2 and P4). There were no significant differences 

with age groups in the P0 and P1 conditions except for the 9-year-olds in the P0 and P1 

condition (χ2
(1) = 5.50, p < .05). Table 1 shows the chi-square with the significance 

values within age groups across P2 and P4. A more detailed list of distribution values 

can be seen in Appendix B.   
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Figure 10. Percentage of distribution error for the perceptual task. P0 = no-delay, P1 = 
1s delay, P2 = 2s delay, P4 = 4s delay. 
 
 
 

 
Table 1. Chi-square values within age groups across targets for P2 and P4. 
    Targets 

  1 2 3 4 5 6 7 

A
ge

 

5 64.46 
***  24.97 

***  20.48 
***  37.74 

*** 

7 5.896 * 9.82 * 12.85 
**  19.3 

*** 
11.48 

**  

9   16.93 
*** 

21.33 
*** 

12.92 
**   

11   10.86 
**     

Adults        

 
*p < .01 
**p < .001 
***p < .0001 
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 In regards to the general direction of error (mean bias in cm), the one-way 

ANOVAs indicated a significant main effect of age within each of the following 

conditions (P0, F(4,78) = 3.70, p <= .01; P2, F(4,78) = 42.31, p < .0001; P4, F(4,78) = 20.82, p 

< .0001) (Figure 11). Post hoc analysis indicated that within the P0 condition, 5-year-

olds (M = 0.07; SD = 0.36) were different from 9- (M = -0.05, SD = 0.33) and 11-year 

olds (M = -0.03, SD = 0.37) and adults (M = -0.04; SD = 0.31). In the P1 condition, 7-

year-olds (M = 0.05; SD = 0.38) were different from adults (M = -0.05; SD = 0.52).  

 

 

 

 

 

 

 

Figure 11. Mean bias by condition for the perceptual task. P0 = no-delay, P1 = 1s delay, 
P2 = 2s delay, P4 = 4s delay. 
 
 
 

Within the P2 condition, post hoc analysis revealed that 5-year-olds (M = -0.82; 

SD = 0.95) were different from 7-year-olds (M = 0.33; SD = 1.38), 9-year-olds (M = -

0.20; SD = 1.01), 11-year-olds (M = 0.05; SD = 0.94) and adults (M = -0.09; SD = 0.57). 

Also with the P2 condition, 7-year-olds (M = 0.54; SD = 1.53) were different from the 
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rest of the age groups. The 9-year-olds were also different from 11-year-olds (M = 0.05; 

SD = 0.94) (Figure 11).  

With the P4 condition, results showed that 5-year-olds (M = -0.02; SD = 1.43) 

were different from 7-year-olds (M = -0.57; SD =1.68), 9-year-olds (M = -0.66; SD = 

1.02), 11-year-olds (M = -0.26; SD = 1.06), and adults (M = -0.33; SD = 0.63). The 

results also showed that 7- and 9-year-olds were different from 11-year-olds and adults 

(Figure 11). 

Total Error (Between Group) 
 
Regarding total error between groups, there were no differences in the P0 

(ranging from 4% to 9%) and P1 (ranging from 7% to 12%) conditions as shown in 

Figure 9. In other words, the 5-year-olds were not different from the other groups in the 

PO and P1 conditions.  

Concerning total error between age groups in the P2 condition, chi-square 

analysis revealed differences between 5-year-olds (52%) and adults (20%); χ2 
(1) = 20.86, 

p <. 0001.  Also, the 7-year-olds (56%) were different from 9-year-olds (39%); 11-year-

olds (40%) and adults (20%); with chi-square values 5.13; 4.507; and 26.00 respectively 

(Figure 9). There were differences between the 9- and 11-year-olds and adults; values 

were 7.789 and 8.60 respectively. The analysis also showed differences between age 

groups in the P4 condition; 5- and 7-year-olds (64%, similar percentage) were different 

from 11-year-olds (46%) (χ2
(1)

 = 5.84, p <.05) and adults (29%) (χ2
(1)

 = 23.23, p <  
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.0001). The analysis also revealed that 9-year-olds (54%) and 11-year-olds (46%) were 

significantly different from adults; values were 11.86 and 5.46 respectively. 

Distribution of Error (Between Group) 

In reference to the distribution of error between groups across targets, the 

difference (χ2
(1) with ps < .05 unless otherwise noted) in the P0 condition was between 5-

year-olds and 7-, 9-year-olds and adults; values were 4.14, 4.14, and 10.32 (p < .01) 

respectively at target 6 (Figure 10). At target 7 in the P0 condition, the differences were 

between 7-year-olds (χ2
(1) = 5.73, p < .05) and adults (χ2

(1) = 7.07, p < .05). In P1, the 

differences between age groups were the 9-year-olds to 5- (χ2
(1) = 12.78, p < .001), and 

11-year-olds (χ2
(1) = 10.96, p < .001) and adults (χ2

(1) = 7.91, p < .01). For simplicity of 

presentation, Table 2 provides the age groups that were different in the P2 and P4 

conditions. 

 

 

 

 

 

 

 

 

 

 



 43 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T
ab

le
 2

. C
hi

-s
qu

ar
e 

va
lu

es
 b

et
w

ee
n 

ag
e 

gr
ou

ps
 fo

r P
2 

an
d 

P4
. 

  *p
 <

 .0
5 

  
**

*p
 <

 .0
01

 
**

p 
< 

.0
1 

**
**

p 
< 

.0
00

1 

 



 44 

-1

-0.5

0

0.5

1

5 7 9 11 21

Age Groups

M
ea

n 
Bi

as
 (c

m
)

P0

P1

P2

P4

Mean Bias (Between Group)  

In regard to mean bias (cm), the 4 x 5 (Condition [M0, M1, M2, M4]) x Age 

groups [5-, 7-, 9-, 11-year-olds, and adults]) ANOVA results revealed a significant main 

effect for Condition by Age group (F(19, 1896) = 31.79, p < 0.0001). Post hoc analysis 

showed that with P0 and P1, there were no differences with the age groups (Figure 12). 

The 11-year-olds and adults performed similarly in the P2 and P4 condition with the 

other age groups in the P1 and P0 conditions. The 5- and 7-year-olds in the P2 condition 

were different from all other age groups across conditions. The 11-year-olds and adults 

in P4 performed similarly to the 9-year-olds in the P2 condition. The 7- and 9-year-olds 

performed similarly in the P4 condition.  

 

 

 

 

  

 

Figure 12. Mean bias between groups for the perceptual task. P0 = no-delay, P1 = 1s 
delay, P2 = 2s delay, P4 = 4s delay). 
 
 
 
Discussion 

Our intent with Experiment 2 was to investigate the ability of children to use 

allocentric cues to estimate the location of objects in a perceptual estimation paradigm 
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using a response-delay. Our assumption was that since the perceptual stream (allocentric 

cues) has a memory component, performance after a delay would be constant. 

 Contrary to our assumption that performance would be constant after a delay, 

the findings clearly showed that introducing a response-delay (M2 and M4) affected the 

estimation of distance (total error) among all age groups (Figure 9) and more 

specifically affected the 5-year-olds.  

 Previous work by Lemay et al., (2004) suggested that when participants pointed 

to a remembered target, they had a more stable retention of target information due to the 

memory component associated with the frame of reference. Others have stated that if 

information is coded in an egocentric frame, the information is prone to decay over time 

(Vindras, et al., 1998; Wann & Ibrahim, 1992; Desmurget, et al., 2000). In comparison 

of the two types of referencing, when target information is maintained in an egocentric 

frame of reference, information might decay more rapidly than when information is kept 

in an allocentric frame of reference.  

Our assumption was that if participants were to give perceptual estimates of how 

far one target was from another, estimates would be similar in increased delays. Our data 

contradicts this line of thought. Our data revealed that all age groups were affected by 

the longer delays (Figure 9 and 10). One possible explanation for the result is that 

participants were operating in an egocentric frame even though the task required a 

perceptual estimate. The task required participants to estimate distances from a cued 

target to another target. The experiment was set-up in a way that removed any 

referencing back to the individual (Carrozzo et al., 1999; McIntyre et al., 1998; 
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Soechting & Flanders, 1989a, 1989b; Vindras & Viviani, 1998). One can conclude that 

the task was indeed set-up for object to object (allocentric frame) comparisons. Another 

possible and likely explanation for the differences was that the task asked individuals to 

estimate distances, which according to the literature, operates in the dorsal stream 

(egocentric frame of reference). This might account for our data seeming to be 

contradictory to previous work. If this is the case and if children primarily operate in an 

egocentric frame (see previous experiment), it is understandable for the memory trace to 

be weak and/or decaying in longer delays. However, to our knowledge, no study 

comparing the decay of allocentric and/or egocentric information in children has been 

conducted to date.  

Our distribution results indicated that more error was displayed with targets 

farthest away from the reference point. In other words, estimates for targets near the 

reference point were more accurate than the targets located farther from the reference 

point. It is reasonable that participants had a harder time determining the distance of a 

target that was farther away than one that was closer to the reference point. In addition, 

our distribution data showed that children as young as 5 years of age are capable of 

estimating distances as accurate as adults in real (no-delay) and 1s-delay. Previous work 

has shown that if a movement was initiated quickly following target extinction (< 2s), 

movement accuracy was less affected than when longer recall delays were used. It was 

likely that accuracy was not affected by the short delays because target information 

remained available in memory (Elliot & Calvert, 1990; Elliott & Madalena, 1987; 

Lemay & Poteau, 2002).  
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Our mean bias data also revealed that as delay increased, most participants 

underestimated the distance from targets to the cue target. More specifically, the results 

showed that as delay increased, the 5-year-olds became significantly different from the 

other age groups. It seems that they had the hardest time holding target information to 

make perceptual estimates of distances. Keep in mind that we only recorded estimates of 

distance from target to target, no actual reaching took place. It has been proposed by 

some (Glover & Dixon, 2001, 2002) that movement planning is based on a context-

dependent visual representation. In other words, our task involved the planning phase 

and therefore it is reasonable that participants underestimated distances, a strategy that 

emerged in Experiment 1.  

In conclusion, it appears that our major assumption was incorrect. Children and 

adults were susceptible to decay of memory in a perceptual task that asks participants to 

estimate distances. Children as young as 5 years of age, like adults, displayed similar 

error in minimal delays when giving verbal estimates. However, more research is needed 

to compare the decay of allocentric and egocentric information in children and adults 

(Experiment 3).   
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CHAPTER IV 

EXPERIMENT 3: VISUAL BACKGROUND 

 

Introduction 

 The aim of Experiment 3 was to test whether a visual background (VB) 

surrounding a target affected the estimation of reach in children. In other words, will 

combining egocentric and allocentric visual frames of reference facilitate the accuracy of 

goal-directed reaching movements - in our case, accuracy in estimating reach. As noted 

in the review of literature, with actual movement tasks, VB information (allocentric 

cues) facilitated memory-guided actions. The study presented here builds on this work 

by examining the effects of non-target landmarks on estimation of reach via motor 

imagery. More specific, our intent was to examine whether or not VB information can 

facilitate visually-guided and memory-guided estimations of reach. Is there a difference 

between visually guided and memory-guided responses? For the delay conditions, we 

predicted that participants would perform better (less error) with a VB compared to no 

VB (Experiment1). That is, by providing additional allocentric information about target 

location, overall motor performance would be enhanced. In the real-time (visually-

guided) conditions, we expected that the presence of VB would have minimal effect. 

That is, participants would be able to estimate reach effectively using an egocentric 

reference.  
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Method 

Apparatus 

In addition to the basic apparatus and stimulus presentation as in Experiment 1, a 

background was displayed, modified from Krigolson & Heath (2004). In this 

experiment, the target (2cm circle) was presented within an illuminated 20 x 20cm 

square composed of four 4cm red circles. An important note is that the VB frame always 

moved with the target – keeping it in the center. The focal point was projected onto a 

rectangular box (with a 45 degree angle surface) placed at midline approximately 15cm 

from most distal target (Figure 13).  

Procedure  

Actual and simulated reach (MI) was determined as described in Experiment 1. 

Participants completed four blocks of trials (delay conditions): no-delay, 1s, 2s and 4s 

delay and conditions were counterbalanced between participants and each condition 

began with three practice trials. Each block of trials began with a 5s “Ready!” signal – 

immediately followed by a central fixation point lasting 3s, at the end of which the 

participant heard a tone. The image appeared immediately thereafter and lasted for 1s 

(adopted from Bradshaw & Watt, 2002). All targets were presented in a random order. A 

second tone then provided the signal for the participant to respond. In the no-delay 

condition, participants were instructed to respond immediately with a “yes” or “no” in 

reference to whether the stimulus was “reachable” or not.  More specific, participants 

were instructed (and trained) to ‘hold’ the location of the target for the duration of the 

delay and then use imagery to respond at the second tone, using MI.  A second 
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Visual Background
Target
Focal point

experimenter served to reinforce instructions regarding MI and refocused the attention of 

participants to the central fixation point with each trial (as in the previous experiments). 

Testing required a single session, approximately 30-minutes. Each participant completed 

84 trials (4 conditions X 21 trials = 84 trials). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. View of experimental set-up for Experiment 3. 
 
 
 
Data Analysis 

See Experiment 1 data analysis. Briefly, chi-square and ANOVA procedures 

were used to compare the four conditions in regards to total error, distribution of error, 

mean bias, and age.  

 
Results 
 
Total Error (Within Group) 
 

As in the previous experiments, the analysis was to look first within each age 

group across all conditions comparing total error. Chi-square analyses indicated a 
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significant difference with 5- and 7-year-olds (Figure 14). For the 5-year-olds, the 

differences were between the V0 (24%) condition and the V2 (40%) and V4 (39%) 

conditions; values were χ2
(1)

 = 5.17 p < .01 and  χ2
(1)

 = 4.54, p < .05 respectively. With 

7-year-olds, differences were between V0 (16%) and V2 (32%) and V4 (34%) condition; 

values were χ2
(1)

 = 5.30, p < .05 and χ2
(1)

 = 6.74, p < .01 respectively.  

There were no significant differences found in the 9-year-olds, 11-year-olds and 

adults concerning total error. The values (%) ranged from 19 to 23 for 9-year-olds, 18 to 

24 for 11-year-olds, and 16 to 22 for adults (Figure 2).   
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Figure 14. Percentage of total error for visual background task. V0 = no-delay, V1 = 1s 
delay, V2 = 2s delay, V4 = 4s delay. 
 
 
 
Distribution of Error (Within Group) 

To determine where the errors occurred, we analyzed the distribution of error 

across targets within each condition. Figure 15 shows the profiles of the distribution. As 

evident, most error occurred at target 5 for the children, whereas with adults, the highest 
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frequency occurred at target 4. A more detailed list of distribution values can be seen in 

Appendix C.   

 

 

 

 

 

 

 

 

 

 

Figure 15. Percentage of distribution of error for visual background task. V0 = no-delay, 
V1 = 1s delay, V2 = 2s delay, V4 = 4s delay. 
 
 
 
Mean Bias (Within Group) 

 In regard to the general direction of error (mean bias in cm) the one-way 

ANOVAs indicated a significant main effect of age (V0, F(4,78) = 6.18, p <= .001; V1, 

F(4,78) = 9.67, p < .0001; V2, F(4,78) = 20.17, p < .0001; V4, F(4,78) = 18.63, p < .0001). 

Post hoc analysis indicated that within the V0 condition, all children age groups were 

different from adults, adults underestimated while children overestimated (Figure 16). In 

the V1 condition, 5- (M = 0.82; SD = 1.45) and 7-year-olds (M = 0.46; SD = 1.31) were 
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different from adults (M =-0.44 ; SD = 1.19). Also, 5-year-olds were different from 9- 

(M = 0.35; SD = 1.54) and 11-year-olds (M = 0.19; SD = 1.65).  

 

 

 

 

 

 

 

 

 

Figure 16. Mean bias by condition for visual background task. V0 = no-delay, V1 = 1s 
delay, V2 = 2s delay, V4 = 4s delay. 
 
 
 

Within the V2 condition, post hoc analysis revealed that 5-year-olds (M = 1.46; 

SD = 2.13) were different from the other age groups (7-year-olds M = 0.72; SD = 1.88; 

9-year-olds M = 0.32; SD = 1.39; 11-year-olds M = 0.02; SD = 1.43; and adults M = -

0.26; SD = 1.02). Also with the V2 condition, 7-year-olds were different from 11-year-

olds and adults. The results also revealed that 9-year-olds were also different from adults 

in the V2 condition (Figure 16).  

In the V4 condition, 5-year-olds (M = 1.42; SD = 2.12) and 7-year-olds (M = 

1.04; SD =1.82) were different from the older groups (9-year-olds, M = 0.53; SD = 1.31, 
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11-year-olds, M = 0.04; SD = 1.34, and adults M = -0.16; SD = 1.31; (Figure 16). 

Furthermore, 9-year-olds were different from all age groups in the V4 condition. 

Space (Within Group) 
 

Our attention now shifts to peripersonal (target 1-4, within reach) and 

extrapersonal (target 5-7, beyond reach) space within conditions. Analysis revealed that 

in the V0, V1, and V2 conditions, there were differences between peripersonal and 

extrapersonal space in all age groups (Figure 17). In the V4 condition, the difference in 

space was not found for the adults, but was found for all other age groups.  

 

 

 

 

 

 

 

 

 

 

Figure 17. Percentage of distribution error by space for visual background task. V0 = 
no-delay,V1 = 1s delay, V2 = 2s delay, V4 = 4s delay. 
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Total Error (Between Groups) 
 
There were no differences between age groups in the V0 (ranging from 16% to 

24%) and V1 (ranging from 20% to 30%) conditions illustrated by Figure 14. In other 

words, 5-year-olds were not different from the other groups in the V0 and V1 conditions 

concerning total error.  

However concerning total error between age groups in the V2 condition, analysis 

revealed differences between 5-year-olds (40%) and  9-year-olds χ2 
(1) = 9.62, p < .01; 

11-year-olds (24%) χ2 
(1) = 5.17, p < .05; and adults (16%); χ2 

(1) = 13.12, p <  .001 

(Figure 14). The analysis also revealed differences between age groups in the V4 

condition. The analysis showed that 5-year-olds (39%) were again different from 9-year-

olds (23%) χ2 
(1) = 5.26, p < .05; 11- year-olds (21%) χ2 

(1) = 4.29, p < .05; and adults 

(17%) χ2 
(1) = 6.74, p < .01. Also, in the V4 condition, 7-year-olds were different from 

11-year-olds χ2 
(1) = 4.29, p < .05 and adults χ2 

(1) = 6.74, p < .05. 

Distribution of Error (Between Groups) 

As in Experiment 1, only targets 4 (actual maximum reach) and 5 will be 

addressed in this section. The distribution of error across age groups in the V0 condition 

showed that adults were significantly different from the rest of the age groups at target 4. 

The chi-square (χ2
(1) with ps < .01) values for adults compared to the other age groups 

were: 5-year-olds = 40.88; 7-year-olds = 40.88; 9-year-olds  = 35.02; and 11-year-olds  

= 28.10.  

In regards to target 5, analysis showed that 11-year-olds were different from the 

other children groups; values were (χ2
(1)  with ps < .01): 5-year-olds  = 25.14; 7-year-olds 



 56 

= 12.55; and 9-year-olds  = 13.59. Also, in the V0 condition, adults were different from 

5-year-olds = 38.91; 7-year-olds = 23.14; and 9-year-olds = 24.51. 

The distribution of error across age groups in the V1 condition showed that at 

target 4, adults were different from the rest of the age groups; values were (χ2
(1)  with ps 

< .01): 5-year-olds  = 43.58; 7-year-olds = 50.02; 9-year-olds = 29.12; and 11-year-olds 

= 26.05. Also with target 4, 7-year-olds were different from 11-year-olds χ2
(1)

 = 4.27, p 

< .05.  

Results of target 5 revealed that 5-year-olds were different from all age groups; 

values were (χ2
(1) with ps < .01): 7-year-olds = 8.37; 9-year-olds  = 27.68; 11-year-olds  

= 37.72; and adults = 82.69. Also for target 5, 7-year-olds were different to 9-year-olds 

(χ2
(1)

 = 5.84, p < .05); 11-year-olds (χ2
(1)

 = 11.48, p < .001); and adults  (χ2 
(1)= 44.25, p 

< .0001). The results also revealed that adults were different from 9-year-olds, (χ2 
(1)= 

18.31, p < .0001 and 11-year-olds χ2
(1)

 = 11.02, p < .001. 

In reference to target 4 in the V2 condition, 5-year-olds were different (χ2
(1) with 

ps < .01) from 7-year-olds  = 4.14; 11-year-olds = 38.01; and adults  = 56.12. The 7-

year-olds were also different from 11-year-olds χ2
(1)

 = 18.49, p < .0001 and adults χ2
(1)

 = 

39.03, p < .0001 at target 4.  

Results at target 5 in the V2 condition, 5-year-olds were different (χ2
(1) with ps < 

.0001) from 9-year-olds  = 13.43; 11-year-olds  = 32.15; and adults = 93.52. Also for 

target 5, 7-year-olds were different (χ2
(1)  with ps < .0001) from 11-year-olds, and adults, 

values were: 11-year-olds = 15.50 and adults = 68.10. The 9-year-olds were also 

different from 11-year-olds and adults (χ2 
(1)= 4.40, p < .05; χ2

(1)
 = 44.18, p < .0001 



 57 

respectively). The results also revealed that 11-year-olds were different from adults; χ2
(1)

 

= 20.95, p < .0001. 

In regards to the distribution of error for the last condition, V4, 5-year-olds were 

different (χ2
(1)  with ps < .01) from 9-year-olds = 5.82; 11-year-olds = 38.65; and adults  

= 51.37 at target 4. The 7-year-olds were also different from 9-year-olds χ2
(1)

 = 4.50, p < 

.05; 11-year olds χ2
(1)

 = 36.05, p < .0001; and adults χ2
(1)

 = 48.55, p < .0001. While the 

9-year-olds were different from adults χ2
(1)

 = 26.35, p < .001 and 11-year-olds were 

different from adults χ2
(1)

 = 16.59, p < .0001.  

Concerning target 5 in the V4 condition results revealed that 5-year-olds were 

different (χ2
(1)  with ps < .0001) from 9-year-olds  = 33.96; 11-year-olds  = 44.32; and 

adults = 125.31. Also for target 5, the 7-year-olds were different (χ2
(1)  with ps < .0001) 

from 9-year-olds, 11-year-olds, and adults, values were: 31.22; 41.41; and 121.70 

respectively. The adults were also different from 9-year-olds (χ2
(1)

 = 39.87, p < .0001) 

and 11-year-olds (χ2
(1)

 = 30.49, p < .0001) 

Mean Bias (Between Groups) 

In regard to mean bias results of the 4 x 5 (Condition [V0, V1, V2, V4])  x Age 

groups [5-, 7-, 9-, 11-year-olds, and adults]) ANOVA, results revealed a significant main 

effect for Condition by Age Groups (F(19, 310) = 13.19, p < .0001). Post hoc analysis 

showed that within the 5-year-olds, condition V0 and V1 were different from the V2 and 

V4 (Figure 18). Concerning 7-year-olds, the V0 condition was different from V2 and 

V4.  
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Figure 18. Mean bias between groups for visual background task. V0=no-delay, V1 = 1s 
delay, V2 = 2s delay, V4 = 4s delay. 

 
 

Space (Between Groups) 

 Results for peripersonal space showed no differences between conditions. 

However, when viewing extrapersonal space, differences emerged (Figure 19). The 

differences between conditions for the 5-year-olds were as follows (χ2
(1)  with ps < 

.0001): V0 from V2 = 37.74 and V4 = 35.55; V1 from V2 = 18.80, and V4 = 17.13. For 

7-year-olds, chi-square analysis revealed differences as following (χ2
(1)  with ps < .01): 

V0 from V2  = 19.29, and V4  = 38.91; V1 from V4  = 8.85.      

 

 

 

 

 

Figure 19. Mean error by extrapersonal space for visual background task. V0 = no-
delay, V1 = 1s delay, V2 = 2s delay, V4 = 4s delay. 
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Motor Imagery Without and With Background 
 
 Comparing motor imagery without background (Exp 1) to motor imagery with 

background (Exp 3), the ANOVAs analyses revealed differences only for mean bias. For 

the 5-year-olds (F(7, 816) = 6.27, p < .0001), 7-year-olds (F(7, 666) = 4.51, p < .0001), and 

adults (F(7, 810) = 4.30, p < .0001). For the 5-year-olds, the 2s and 4s delays (M2, M4, V2, 

and V4) were different from the no-delay and 1s delay (M0, M1, V0, and V1). For 7-

year-olds, M1, V1, M0 and V0 were different from M2, M4 and V4. Also with 7-year-

olds, the post hoc analysis revealed that M4 V4, and M2 were different from V1, M0 and 

V0. For the adults, the differences were between M4 to V4, V2, V0, and V1. Also, the 

M2 condition was found different to V0 and V1, while the V1 condition was different 

from M1, M0, V4, V2, and V0.   

Discussion 

 The aim of Experiment 3 was to test whether a visual background (VB) 

surrounding a target affected the estimation of reach in children. In other words, would 

combing egocentric and allocentric visual frames of reference facilitate the accuracy of 

goal-directed reaching movements - in our case the accuracy in estimating reaching 

distances. Our assumption was that having additional cues (allocentric information in the 

form of a VB) would enhance judgments of estimates of reach. In addition, our intent 

was also to investigate if there would be differences between visually guided and 

memory-guided responses (response-delays). We had predicted that delays would not 

have an effect on estimating reach when targets have a VB.  
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 The first key finding was that VB did not facilitate estimations of reach. It 

appears from our data that children had similar judgments of what is within and out of 

reach when no VB was provided and when VB was provided. Our second key finding 

was that delay did have an effect on judgments of estimation of reach even in the 

presences of a VB and younger children (5- and 7-year-olds) were most affected by the 

longer delays.  

To address the first significant outcome we compared Experiment 1 and 3. In 

regards to the visually-guided conditions (no-delays, M0 and V0), results indicated that 

responses for M0 and V0 were not different. In addition, when viewing the response-

delay in both experiments, the results indicated no differences between M1, M2, M4 and 

V1, V2, and V4 among total error. An interesting and relevant finding was the 

differences seen in regards to mean bias. It appears that for the younger children (5- and 

7-year-olds), there is an enhanced judgment with a VB of what was within reach in the 

shorter delays (no- and 1-s delays) compared to the longer delays (2- and 4-s delays). 

The adults with a VB slightly underestimate more than when no background (MI) was 

provided. It appears that our adult data seemed to contradict previous findings. Previous 

studies had shown that a VB improved accuracy of responses in movement execution 

(e.g. Krigolson & Heath, 2004; Lemay et al., 2004; Obhi & Goodale, 2005). However, in 

the context here, estimates of reach, adults with a VB change their strategy, and adopted 

a more conservative strategy by saying ‘no’ to targets that are indeed within reach 

(Figure 16, 17 and 18).  
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 Concerning our second finding, it appears that the influencing factor was the 

response-delay introduced and not the VB. Previous studies of actual movement had 

suggested that with a VB, accuracy of responses improved because the additional 

(allocentric) information strengthened the egocentric representation (e.g. Carrozzo et al., 

2002; Krigolson & Heath, 2004). However, based on the childrens’ data, those previous 

results were not replicated. This is contrary to work by Bradshaw and Watt (2002, 2004) 

that found that with a perceptual-matching task, pointing performance remained 

relatively unaffected after imposing a delay for adults and children. The key difference 

between Bradshaw and Watt’s work to ours is that their work involved actual movement 

execution (grasping) where cues could be used to update movement execution as it takes 

place (on-line). In our task, no feedback was provided to aid in the estimation of 

reachability, therefore perceptual judgments could not be updated and corrected. Could it 

be that children cannot use additional cues (allocentric) to aid their egocentric frame of 

reference? Illusion studies (Hanisch et al., 2001; Rival et al., 2004) have concluded that 

both visual systems are intact in young children; however, different explanations of use 

were given. Hanisch and colleagues found that children rely on both visual streams 

during perceptual and visuomotor activities; therefore suggesting that these pathways 

‘are not’ functionally segregated. Complementing this finding is the notion that children 

exhibit nonspecific use of an allocentric and/or egocentric frames of reference, which 

were linked to ventral and dorsal streams, respectively. On the other hand, Rival and 

colleagues concluded that these systems are relatively mature and segregated by 7 years 

of age. Their data suggested that children use mainly egocentric object representations 
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when performing motor tasks and allocentric cues when making only perceptual 

judgments. Our results seem to fit better with the Rival et al. work in that children 

favored using egocentric representation when both cues were provided. Our work also 

adds to Rival and colleagues work in that children even with a VB primarily rely on 

egocentric representation. It is as if children disregard or are unable to use the additional 

cues provided for planning reachability.  

 Studies with adults have shown that a VB facilitated visually-guided actions 

(Coello & Greally, 1997; Velay & Beaubaton, 1986) and enhanced the kinematics of 

reaching movements to a memory-guided target (Carrozzo et al., 2002; Lemay et al., 

2004). Others have shown that VB cues provided allocentric information about the target 

location that can be used to facilitate online control processes (Krigolson & Heath, 2004; 

Obhi & Goodale, 2005). An interesting note is that our adults had a slight tendency to 

have more error in peri- compared to extra-personal space (difference from Experiment 

1). It appears that as more cues were provided, adults tended to be influenced by them 

and underestimated. Speculatively, adults adopted a more conservative strategy (Figures 

16 and 17).  

 In conclusion, it appears that adults changed their estimation of reach slightly 

when cues were provided, while children did not. The influencing factor for the 

estimation of reach was a response-delay, specifically after a 2s delay. The work 

presented here adds to previous work suggesting that children primarily rely on 

egocentric representations when planning a reach (Rival et al., 2004). 
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CHAPTER V 

DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

 

General Discussion 

 The primary purpose of this study was to gain insight into children’s ability to 

use visual information in planning reaching movements. More specifically, we examined 

the use of visual information in regard to the age-related ability to use a) egocentric cues, 

b) allocentric cues, and c) a combination of cues, in the form of a visual background 

around a target.  

 Three experiments were designed to address the aims of this study. Experiment 1 

examined the ability of children to use an egocentric frame of reference to plan reaching 

movements via estimation of reach. In other words, how well do children use target 

information to establish egocentric coordinates in estimating reach in an immediate 

(visually-guided) and response-delay (memory-guided) paradigm using a motor imagery. 

Our assumption was that at some point, delay should have an adverse affect on the 

perception of what is within or out of reach (Goodale et al. 2004; Bradshaw et al. 2002, 

2004). With Experiment 2, we investigated the ability of children to use perceptual 

properties via allocentric cues in visually-guided and response-delay conditions. As 

theory suggests, allocentric memory representation relates to targets coded as a function 

of the surrounding visual cues, which are independent from the participant’s position 

(Blouin et al., 1993; Lemay & Porteau, 2003; and Lemay et al., 2004). Therefore, our 

assumption was that performance after a delay would be constant. The aim of 



 64 

Experiment 3 was to examine whether a visual background, VB, surrounding a target 

would affect the estimation of reach in children. Stated differently, will combining 

egocentric and allocentric referencing facilitate the estimation of reach? Our assumption 

was that participants would perform better with additional cues than when only one type 

of referencing was available.  

In regard to our aim in Experiment 1, can children use an egocentric frame of 

reference to plan reaching movements in visually-guided and response-delay paradigm, 

our results showed that children and adults had similar estimates in real-time (visually-

guided) and in minimal delay (1s). Results are supportive of previous studies in that they 

suggest children operate in an egocentric frame of reference (Rival et al., 2004; Hanisch 

et al., 2001; Gabbard et al., 2007a). In this type of referencing, children were able to 

have target information represented in relationship to them while operating in real-time 

and presumably, having target information processed in the dorsal stream (Bradshaw et 

al., 2004; Goodale & Humphrey, 1998; Goodale et al., 1997; Graham et a., 1998; Hu et 

al., 1999). Previous studies had shown that a delay, specifically a 2s delay, produced an 

adverse affect on the movement performance (Goodale et al., 2004 and Bradshaw et al., 

2002, 2004). In our data, when a response-delay of 2s was introduced, the two younger 

age groups were most affected in their estimation of reach. In addition, as delay 

increased to 4s, the 5-year-olds became significantly different from the other age groups. 

However, our older children and adults did not show any delay effect with total error. To 

view why there seems to be some conflicting results of our data to previous data, we 

needed a more in-depth view of where the errors occurred. When viewing the 
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distribution of where errors occurred, results showed that children overestimated 

significantly, as delay increased. Adults on the other hand, underestimated as delay 

increased. It seems that the perception of reach was affected by delay, but the children 

and adults handled it differently. Adults were more cautious in their responses as to what 

was within reach as target information decayed. Adults tended to say ‘no’ to targets that 

were indeed within reach, children on the other hand, tended to respond less 

conservatively. Children perceived targets that were indeed out of reach to be within 

reach; perception of reach had expanded into extrapersonal space. Our results were 

consistent with our assumption, that delay would affect estimation of reach.  

 In regards to Experiment 2, our intent was to compare how children and adults 

use allocentric cues to estimate the location of objects in a perceptual estimate paradigm. 

We examined the perceptual properties associated with estimation of distance in real-

time (visually-guided) and response-delay (memory-guided) conditions. Contrary to our 

assumption, our findings showed that when a response-delay of ≥ 2s was presented, the 

delay affected the estimation of distance among all groups, with 5-year-olds being most 

affected. Our assumption, delay at a certain point (2s) should not have an effect on 

estimates of distance, was based primarily on the work from Lemay and colleagues 

(2004). Lemay and colleagues stated that when an allocentric frame of reference is 

presented, a more stable representation of the information is encoded and is less likely to 

decay because of the memory component of the ventral stream. In visually-guided and 

minimal delay conditions (1s) our results revealed that children and adults performed 

similarly in estimates of target distances. Keep in mind that participants were to estimate 
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the distance of targets to a cued target. Our other finding in Experiment 2 showed that 

most of the errors occurred at the most distal targets from the cued target. Estimates of 

distance for targets near the reference point were more accurate than targets that 

appeared farther away from the reference point. It appears from our data that children 

and adults are susceptible to decay of memory in a perceptual estimation task.  

 The aim of Experiment 3 was to investigate if adding a visual background (VB) 

to a target would affect the estimation of reach. Stated differently, would combining 

egocentric and allocentric visual frames of reference facilitate the accuracy of estimates 

of reachable distances? We tested our hypotheses with a visually-guided and response-

delay paradigm and compared the results from Experiment 1 to Experiment 3. We 

compare the results of both experiments because both were similar except for the 

addition of a VB (Experiment 3). The results comparing Experiment 1 (egocentric cues 

only) to Experiment 3 (egocentric and allocentric cues) showed that having additional 

allocentric cues around a target did not change the perception of what was reachable 

with children concerning total error. In regard to mean bias, results showed that with a 

VB, younger children (5- and 7-year-olds) had more accurate judgments in shorter 

delays than when longer delays (2s and 4s) were used. The adults tended to slightly 

underestimate more with the additional cues (VB) as delay increased. Unlike our study, 

previous studies with adults had shown that a VB improved the accuracy of movement 

execution (Krigolson & Heath, 2004; Lemay et al., 2004; Obhi & Goodale, 2005). 

Speculatively, our adults adopted a conservative strategy in their planning phase. Our 

results from Experiment 3 indicated that a VB did not facilitate visually-guided and 
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memory-guided estimations of reach for children. It seems that children did not attend to 

the additional cues. Could it be that children could not use the additional cues to estimate 

reach? It has been proposed by some that information held in memory using both an 

egocentric and an allocentric representation is not the easiest way to hold target 

information. Holding the information in both frames requires more processing, since two 

concomitant representations have to be created and possibly compared (Clounin et al., 

1993; Carrozzo et al., 2002). Perhaps, children are unable to hold both representations 

and use them accordingly. Therefore, children (as a default) relied on an egocentric 

representation. Our comparative results from Experiment 1 and 3 seem to hint that 

children could not use the additional cues to aid in their estimation of reach.  

 Taken together, these results show that children and adults were affected by a ≥ 

2s delay in their judgments of reach and estimates of distances. Our results reaffirm what 

theory has suggested, that the vision-for-perception and the vision-for-action visual 

processing streams operate under very different temporal delays. It appears that when 

motor imagery was used (Experiment 1 and 3) it was affected by an egocentric frame of 

reference. Our results collectively showed that children tend to operate primarily in an 

egocentric frame, reaffirming what others have proposed with illusion paradigms (Rival 

et al., 2004, Hanisch et al., 2001).  

Providing information in an egocentric, allocentric or a combination thereof 

might not be the simplest way of holding target information to make pre-reflective 

estimates of reach. It would appear that there is a vision-for-perception and vision-for-

action, (two-visual-system hypothesis; Goodale et al., 2005). It would be advantages to 
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present object information in the mode the stream of reference operates. In other words, 

if estimates are desired, then it would be advantages to present information in real-time 

rather than having information stored in memory. In addition, it seems from our results 

that it would be advantages to present object information in an egocentric frame to 

children.  

 

Conclusions 

 Based on the collective results and limitations of this investigation, the following 

conclusions seem warranted.  

1. Children as young as 5 years of age seem to have the same responses of 

estimation of reach as adults do in real-time (visually-guided) and in minimal delay 

(1s) but are most affected by ≥ 2s delay. Our results showed that with longer delay (≥ 

2s); target information was susceptible to decay in the planning phase of reaching. It 

appears that based on this decay of information in memory, children and adults change 

their strategy on responding to estimates of reach. Children tended to overestimate, 

while adults tended to underestimate. These results reaffirm movement execution 

studies and the correlation between motor imagery and movement execution.  

2. There seems to be a major temporal constraint on the representation of 

movement through the visoumotor stream for children and adults (Goodale et al., 

2004). Children and adults seem to be susceptible to information decay that is held in 

memory. Children’s responses hint that their perception of reach and estimation of 

distances tend to increase as information is stored for ≥ 2s in memory. Adults on the 
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other hand, were more conservative in their estimates of reach and distances. The 

results seem to indicate that while in the planning phase, information is susceptible to 

time.  

3. Children as young as 5 years of age relied on an egocentric frame of 

reference for making perceptual estimates of reach and distances regardless if 

additional cues via visual background were provided. Our comparative results from 

Experiment 1 and 3 clearly showed that providing additional cues in the form of a visual 

background did not enhance the judgments of reach for children. It seems that children 

were unable to process the additional cues perhaps because they could not or perhaps 

because they decided not to. The results do confirm previous work that suggest children 

primarily rely on an egocentric frame of reference. However, more research is needed to 

compare the decay of allocentric and egocentric information in children and adults.  

4. Overall, our attempts to gain insight into children’s ability to use visual 

information in planning reaching movements revealed that children primarily use an 

egocentric frame of reference in the planning phase of movement. We also were able to 

conclude speculatively that information stored in memory is vulnerable to decay, 

especially if it is encoded with an egocentric frame of reference. Finally, our data 

suggest that having a visual background around a target did not enhance the estimation 

of reach for all our participants.  

 

 

 



 70 

Limitations and Recommendations 

 Although the present study addressed significant objectives, our conclusions 

were limited on some aspects. There remains a slim possibility that participants in every 

trial did not follow protocol (i.e. used egocentric in Experiment 1, used allocentric in 

Experiment 2 and used ego- and allo-centric frame of reference for Experiment 3). This 

study was also limited in the context that perceived reach rather than actual reach and its 

kinematic parameters were not analyzed. Finally, our paradigm, due to its behavioral 

nature, could not depict the areas of the brain involved in each experiment.  

 In regard to the extension of this work, future studies should investigate the 

extent to which visual structures (different backgrounds) around a target might affect 

perceived reach. More developmental work is needed to investigate the roles of 

egocentric and allocentric frames of referencing have in the planning of movements.  
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APPENDIX A 

 
 
 

  Target 
  1 2 3 4 5 6 7 

M0 

5 0 0 2 7 91 40 2 
7 0 0 6 22 65 21 19 
9 0 7 21 19 64 48 9 

11 0 5 13 50 54 20 10 
21 0 0 32 52 31 23 3 

                

M1 

5 0 0 0 0 100 62 17 
7 0 0 0 14 79 67 21 
9 0 0 3 11 66 30 3 

11 4 8 4 29 28 19 14 
21 0 0 13 39 27 12 11 

                

M2 

5 0 0 0 2 93 98 56 
7 0 0 3 16 82 88 43 
9 0 0 7 43 57 47 18 

11 0 4 9 29 39 43 8 
21 0 3 17 28 38 7 9 

                

M4 

5 0 2 2 2 100 94 95 
7 0 3 3 13 97 79 58 
9 0 10 4 25 46 32 14 

11 7 16 19 24 38 36 27 
21 0 0 4 41 35 16 4 

Appendix A. Distribution of error given in percent: Motor imagery (M0=no-delay, 
M1=1s delay, M2=2s delay, M4=4s delay) 
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APPENDIX B 

 

  Target 
  1 2 3 4 5 6 7 

P0 

5 10 9 3 10 3 16 14 
7 7 8 5 5 2 6 6 
9 17 7 4 0 9 6 18 

11 14 9 2 0 1 11 12 
21 9 5 1 1 2 2 5 

                

P1 

5 11 10 6 10 4 4 8 
7 9 12 8 9 11 11 10 
9 9 11 11 5 22 13 14 

11 9 9 8 3 5 8 12 
21 11 8 6 8 7 5 4 

                

P2 

5 29 62 90 37 34 62 49 
7 48 61 59 53 37 81 52 
9 74 57 31 12 28 33 36 

11 62 46 30 26 26 42 47 
21 27 26 14 12 25 22 12 

                

P4 

5 86 61 58 29 67 55 90 
7 66 82 83 44 69 50 52 
9 74 70 61 42 54 37 41 

11 65 60 54 21 39 39 43 
21 41 39 26 20 32 29 15 

Appendix B. Distribution of error given in percent: Perceptual task (P0=no-delay, 
P1=1s delay, P2=2s delay, P4=4s delay) 

 

 

 

 

 

 

 



 83 

APPENDIX C 

  Target 
  1 2 3 4 5 6 7 

V0 

5 2 0 4 16 76 57 14 
7 0 0 5 16 66 19 8 
9 0 0 12 19 68 27 17 

11 0 5 13 23 40 33 14 
21 4 5 40 61 31 4 0 

                

V1 

5 0 0 4 18 92 75 24 
7 0 0 14 15 76 36 18 
9 0 9 4 27 59 44 21 

11 13 4 12 28 52 35 20 
21 4 4 46 65 28 0 0 

                

V2 

5 0 0 6 6 94 88 86 
7 0 3 6 16 85 63 41 
9 0 8 0 13 74 31 15 

11 0 6 26 45 59 25 13 
21 0 3 25 56 26 0 0 

                

V4 

5 0 3 2 4 98 86 82 
7 0 5 0 5 97 85 47 
9 0 0 0 15 65 48 21 

11 0 16 4 42 58 19 10 
21 3 8 16 50 19 16 4 

Appendix C. Distribution of error given in percent: Visual background (V0=no-
delay, V1=1s delay, V2=2s delay, V4=4s delay) 

 

 

 

 

 

 

 

 



 84 

VITA 

 

Name: Alberto Cordova 

Address: 13335 Deer Falls Drive 
 San Antonio, TX 78249 
 
Email Address: alberto.cordova@utsa.edu 
 
Education: B.S., Exercise and Sport Studies, Tarleton State University, 2002 
 M.S., Health and Kinesiology, Texas A&M University, 2005 
 
Research Interest: The role of perception and action planning in motor behavior 
 Development of action representation and motor planning in children 
 Lifelong motor development 
 
Publications: Gabbard, C., Cordova, A., & Lee, S., (in-press). A question of 

intention in motor imagery. Consciousness and Cognition. 
 
 Gabbard, C., Cordova, A., & Lee, S., (in-press). Do children perceive 

postural constraints when estimating reach (Action planning)? 
Journal of Motor Behavior. 
 
Gabbard, C., & Cordova, A. (2008). Estimating reach via visual 
imagery and motor imagery. Journal of Imagery Research in Sport 
and Physical Activity, 3(1), 1-4. 
 
Gabbard, C., Cacola, P., & Cordova, A., (2008). Does general motor 
imagery ability (via questionnaire) predict estimation of reachability 
in children? Journal of Imagery Research in Sport and Physical 
Activity, 3(1), 4-7.  
 
Gabbard, C., Cordova, A., & Ammar, D. (2007).  Estimation of reach 
in peripersonal and extrapersonal space: A developmental view. 
Developmental Neuropsychology, 32(3), 749-756.  
 
Gabbard, C., Cordova, A., & Lee, S. (2007). Examining the effects of 
postural constraints on estimating reach. Journal of Motor Behavior 
29(4), 242-246.  

 
 
 


	Data Analysis
	The focus of analysis was to determine each participant’s accuracy in estimating reachability (MI) at each of the randomly presented targets. The accuracy was based on their responses as to whether the target was reachable or not; as noted by a “Yes” ...
	Data Analysis
	The focus of analysis was to determine each participant’s accuracy in estimating remembered location at each of the randomly presented targets. Responses corresponded to the numbered value ranging from –3 to +3. For comparative purposes with Experimen...
	Method

