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ABSTRACT 

 

Investigating Cell Adhesion via Parallel Disk Rotational Flow: A 

Biocompatibility Study.  (December 2008) 

Aracely Rocha, B.S., The University of Texas-Pan American 

Chair of Advisory Committee: Dr. Hong Liang 

 

The major impact of this research lies in the aspect of improved design and long 

term biocompatibility of materials used for implants. There are two goals in this 

research. The first goal is to develop a methodology to quantitatively measure cell-

material adhesion. The second goal is to obtain fundamental understanding of cell-

material adhesion mechanisms. A rotating parallel disk is used to measure cell adhesion. 

The rotational system applies a controlled shear stress to the cultured cells. The shear 

stress experienced by the cells varies with radial location, being highest at the edge and 

zero at the disk’s center. There is a critical point along the radius where the shear stress 

experienced by the cells equals their adhesion strength. The cells outside it are removed 

and the cells inside it remain attached to the surface.  

NIH 3T3 Swiss mouse fibroblasts and chick retina neuron cells from 6-day 

embryos are used in this study. The fibroblasts were cultured on poly(methyl 

methacrylate) (PMMA), polycarbonate (PC), and on gold coated poly(vinylidene 

fluoride) (Au/PVDF). The critical shear stress for fibroblasts was the lowest for PC with 

5.09 dynes/cm2 and highest for PMMA with 21.0 dynes/cm2. This four-fold difference is 
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mainly due to the chemical structure of PMMA which promotes higher cell adhesion 

when compared to PC.  

Neurons were cultured on poly-D-lysine coated glass to promote cell adhesion. 

The critical shear stress of neuron cells varied from 3.94 to 27.8 dynes/cm2 these values 

are directly proportional to the applied shear stress. The neuron adhesion plateau at ~27 

dynes/cm2 which indicates the maximum adhesion strength of the neuron/poly-D-lysine 

coated glass pair. 

This thesis contains six chapters. Chapter I describes the importance of cell 

adhesion for biocompatibility. Chapter II describes in more detail the goals of this 

research and the expected results. Chapter III lists all the materials, equipment, and 

methods used in this study. The most significant results are summarized in Chapter IV. 

The observations and results obtained are explained in detail in Chapter V and Chapter 

VI describes the key outcomes as well as proposes questions for the advancement of this 

research.  
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NOMENCLATURE 

 

ASTM  American Society for Testing and Materials 

NIH  National Institutes of Health 

FDA  Food and Drug Administration 

ISO  International Organization for Standardization 

ECM  Extra Cellular Matrix 

PDL  Poly-D-Lysine 

AFM  Atomic Force Microscope 

PMMA  Poly(methyl methacrylate)  

PS  Polystyrene 

PCL  poly ε-carprolactone 

PLLA   poly(L-lactide) 

PLGA  poly(lactic-co-glycolic acid) 

PC  Polycarbonate 

PBS   Phosphate buffered saline solution 

PVDF  Polyvinylidene Fluoride 

UHMWPE Ultra high molecular weight polyethylene 

RS-100 Ceramic fiber reinforced alumina composite 

Si   Silicon 

NiCu  Nickel copper 

Ag  Silver 
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Au  Gold 

ω Angular velocity 

μ viscosity 

H Distance between disks (gap) 

τa applied shear stress for testing 

τC Calculated critical shear stress = cell adhesion strength 

ρ density  

Ra Average surface roughness 

R Spindle or rotating disk radius 

r Radial axis  

Rc Critical radius. Equivalent to cell adhesion strength.  

FL Lateral force 

FN  Normal force 

Re Reynolds number 

 velocity vector 

SEM  Scanning electron microscope 

p pressure gradient 

g  gravitational acceleration 
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CHAPTER I 

INTRODUCTION 

Advances in materials science have lead to the development of a wide variety of 

materials to be used in the body, such as implants. Nevertheless, the biocompatibility of 

the materials and cells remain to be critical for successful and long lasting implants. The 

key to address the issue of compatibility lies in the fundamental aspects of cell adhesion. 

Cell adhesion is essential for normal cell communication and function and it plays an 

important role in defining the shape of the tissues it forms. When a foreign material is 

introduced to the body, like an artificial implant, cell function is greatly affected if cell 

adhesion to the surface is changed. This chapter provides necessary background of cells 

and cell adhesion followed by a thorough review of the state-of-art techniques used in 

cell-adhesion measurements.   

1.1. Background 

Appropriate cell adhesion to biomaterials is an important aspect of 

biocompatibility. Biomaterials are used in a wide variety of applications including 

sensors, artificial implants, wound treating, and drug delivery systems [1-3] to name a 

few. The degree of biocompatibility required for any material depends on its application. 

A material used for artificial joints requires good cell adhesion and must stay in the body 

for an extended period of time. On the other hand, a material used for wound treating 

should promote cell reproduction and is only in contact with the skin for a short period 
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of time. The American Society for Testing and Materials (ASTM), the National 

Institutes of Health (NIH), the Food and Drug Administration (FDA), and the 

International Organization for Standardization (ISO) have specific guidelines for testing 

materials for potential bioapplications [1-3]. With the increase of applications and 

available materials, assessing biocompatibility is a critical point in the design and 

development of materials and devices for biological applications. Biocompatibility is 

defined as the ability of a system or component to perform its intended design with no 

undesirable effects while preventing local and systematic responses in the host [2, 4]. 

Because of the wide variety of applications, the development of a single test to assess 

biocompatibility is a challenging task.  

Materials must follow a thorough examination to assess their biocompatibility 

before they can be introduced to the body. The tests are divided in four phases. The first 

phase consists of studying the physical, chemical, and biological properties of the 

material. Phase two is designed to assess the biocompatibility of the material. The in 

vitro tests that must be performed in this phase are specific to the application. These tests 

must simulate the conditions the material will have to withstand in the body and 

analyzes its durability as well as its positive or negative effect on the body. Phase three 

is designed to verify the material processing and how this affects the end result. Finally, 

phase four consists of carrying in vivo tests along with monitoring of the implanted 

systems [1, 2]. Biomaterial applications are classified as: surface contact devices, 

communication devices, and long term implant devices [2, 3]. An artificial joint is an 

example of a long-term implant device. Good cell adhesion is critical in long term 
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implant devices since the device is expected to stay in the body without affecting its 

function for over 20 years. 

1.2. Importance of cell adhesion 

Cell adhesion is considered the single most important aspect of cytotoxicity [5] 

because it mediates cell-cell and cell-substrate interaction [3, 6-11], cell shape, and cell 

function [3, 5, 7-9, 11, 12]. Cytotoxicity tests are conducted to understand how materials 

affect cell growth, shape, function, and adhesion. Cytotoxicity tests consist of exposing 

the material to live cells and biofluids that would surround it in the body. The live tissue 

or biofluids are closely examined to verify for signs of damage caused by the material 

and/or its byproducts [1-3, 5]. Measuring the adhesion strength between the cells and a 

biomaterial is the most reliable and desirable method to assess biocompatibility in vitro. 

If the adhesion between the cells and the implant is equal or similar to those present in 

the body, it is an indication that the material is suitable for the application and cell 

function will not be greatly affected. Therefore, understanding how biomaterials affect 

cell response and behavior, independent of the material’s potential application, is a 

critical aspect of biocompatibility.  

In order to allow easier handling of tissues, it is separated into its individual cells 

by chemical and mechanical processes. The separated cells are called a cell culture. The 

cell culture is placed on the material and it is carefully observed under controlled 

environmental conditions (temperature, humidity, and %CO2 concentration) for a given 

period of time. Obtaining a cell culture is a critical process since cell behavior and 

function must not be affected. Extensive behavior and characterization tests are 
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conducted to cell cultures before they are used for in-vitro cytotoxicity evaluation. The 

cultured cells, because they are no longer protected by the extra cellular matrix (ECM), 

are maintained in culture media which is made of proteins and antibiotics [5]. Two 

common cell cultures used for in vitro tests are fibroblast and neurons. Fibroblasts are 

connective cells found around other highly organized structural tissues and organs. 

Neurons are cells of the nervous system that send information to the brain through 

electrochemical processes [13, 14]. 

1.2.1. Cell adhesion proteins 

Cell attachment is mediated by the extracellular matrix (ECM), which is made of 

polysaccharides (sugars) and collagen (proteins) that provide structural support and 

protection to cells. The proteins in the ECM are also responsible for carrying all 

necessary electrochemical processes and control tissue elasticity, humidity, and adhesion 

[14, 15] and are key elements in the cell/biomaterial interface [1]. 

Proteins are made up of amino acids and are made of one carboxyl group 

(COOH), one amino group (H2N), one hydrogen atom (H), and one functional group (R). 

Figure 1 shows the structure of the amino acids. The functional group dictates whether 

the amino acid is non-polar, polar, positively charged, or negatively charged [1, 14, 15]. 

The H2N group of one amino acid reacts with the COOH of another to form proteins [1]. 

The structure of proteins is similar to that of polymers. Protein chains are long and can 

be highly coiled with some branching (like an amorphous polymer) and are also able to 

form highly oriented molecules (similar to crystalline polymers). 
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Figure 1 Structure of an amino acid, the protein building block.  

The structural arrangement of proteins can be described in four levels as shown 

in Figure 2. The primary structure considers the connection between amino acids; 

analogous to the chain growth in polymers. The secondary structure is due to weaker 

hydrogen bonds within the molecules causing the protein chain to coil and form a helix. 

The tertiary structure represents the 3D arrangement of a single protein chain while the 

quaternary structure refers to the interaction between different protein chains [1, 15]. 

  
Figure 2 The four levels of protein structure [1]. 
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The proteins that participate in cell-cell adhesion and cell-substrate adhesion vary 

by cell type. In the case of fibroblasts, cytokines are the main proteins that mediate cell-

cell adhesion and fibronectin is the main protein that controls cell-substrate adhesion in 

the ECM [12, 16-18]. Bipolar neuron cells need the assistance of poly-d-lysine (PDL), a 

synthetic protein, to attach to an external surface [13].  

1.2.1.1. Fibronectin 

Fibronectin is the most studied adhesion molecule, although many others 

participate in the cell-substrate adhesion of fibroblasts. It is found in bone, skin, and 

connective tissues and it is made of two linear chains of fibrin, collagen, and heparin (all 

amino acids). The chains are connected at one end with disulfide bonds and have 

carboxylic ends; this is the side that bonds to the cells. The opposite ends of the 

fibronectin chains have amide groups. The molecular weight of fibronectin is typically 

220,000 Daltons [1]. Figure 3 shows the structure and components of fibronectins. The 

two chains are connected by disulfide bonds and have carboxylic ends that attach to the 

cell. The opposite ends have amide groups which attach to the material’s surface. 

 
Figure 3 Structure of fibronectin molecule [1]. 
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1.2.1.2. Poly-d-lysine 

Poly-D-lysine (PDL) is an artificial protein designed to promote neuron adhesion 

to any surfaces. It is engineered to promote cell adhesion without affecting normal cell 

function.  Figure 4 is the amino acid that forms poly-d-lysine. The amide group (NH2) of 

one amino acid reacts with the alcohol (OH) of another to polymerize and forms water 

(H2O) as a byproduct of the reaction [19]. Since this is an engineered protein, it can be 

manufactured to any desired length.  

 
Figure 4 Building block of poly-D-lysine. 

Proteins have one electropositive and one electronegative end. In general, the 

negative side attaches to the cell and the positive end attaches to the material. Therefore, 

electronegative surfaces help promote cell adhesion and cell proliferation.  

1.3. Measuring cell adhesion 

Cell adhesion is the main factor that controls cell function, the main aspect of 

cytotoxicity and a key element of material biocompatibility. Cell adhesion to foreign 

surfaces is a fundamental factor when studying a material’s biocompatibility. Several 

methods to assess cell-cell and cell-substrate adhesion have been developed but are only 

designed to provide qualitative results [17, 20-22]. However, quantitative results, like 
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adhesion strength, provide a better comparison of the biocompatibility of every material 

and of any surface-treated material [6-9, 12, 18, 20, 23, 24].  

Previous works on cell adhesion were performed to assess other aspects of cell-

biomaterial interaction and are not always focused on studying the biocompatibility of 

the materials. The work of Bushman et al., Ono et al., and Reutelingsperger et al. 

addresses the effect of blood flow on the adhesion of endothelial cells to the interior 

walls of arteries, veins, and blood vessels [25-27]. Their observations are focused on % 

cell adhesion to internal walls as a function of shear flow and time. LaPlaca and Thibault 

studied the effect of impact in a collision on the communication of neural systems [28]. 

The methods developed to measure cell adhesion strength to a surface can be divided in 

two general groups: single cell and cell network measurements. 

1.3.1. Single cell adhesion tests 

In a single cell adhesion test, the adhesion strength is measured by attaching or 

detaching a single cell from the substrate with an atomic force microscope (AFM) or by 

micromanipulation with a pipette. An AFM or a modified AFM is used to measure the 

force required to pull [29, 30] or shear [12, 31] one cell from the substrate. Benoit et al. 

used an AFM to measure the required force to separate a single cell from the substrate 

[29]. This measuring system has been used for a variety of cell lines and materials.  

Figure 5 demonstrates Benoit’s and colleagues work and it is an example of an AFM 

used to measure the force required to separate a cell from the surface. Figure 6 shows the 

work of Sagvolden and colleagues; they used a modified AFM tip used to measure the 

force required to shear one cell from the surface.  
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Figure 5 Measuring cell adhesion with AFM. The AFM tip measures 

the force necessary to pull the cell from the substrate [29].  

 

 
Figure 6 Measuring cell adhesion with a modified AFM. The cantilever 

is used to shear the cell from the surface [31].  

Shao and Hochmuth measured the force necessary to separate a single cell from a 

plastic bead with a pipette. The plastic bead (top sphere), have a larger diameter than the 

pipette opening and is held under vacuum. They measured the required vacuum pressure 

to pull the cell from the bead as shown in Figure 7 [32]. Table 1 summarizes some of the 

single-cell adhesion measurements previously performed along with the adhesion 

strength.  
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Figure 7 Measuring cell adhesion with a pipette. The sphere on top is 

the target material and the cell is the sphere at the bottom [32].  

Table 1 Cell-cell and cell-substrate adhesion studies where the adhesion 
strength of only one cell is measured.  

Year 
[Ref] Test Summary Cell Substrate Adhesion 

1999 
[31] 

Modified AFM to 
measure cell-

substrate 
adhesion 

NHIK3025 
carcinoma 

Hydrophilic and 
hydrophobic PS 

Maximum 204 
nN 

2000 
[12] 

Modified AFM to 
shear cells with 

cantilever 

L929 murine 
fibroblast 

Glass, PS, and 
fibronectin (F) 

and collagen (C) 
coated PS 

Glass=300nN 
PS = 300nN 

F-coated =550nN 
C-coated=900nN 

2000 
[29] 

AFM to measure 
cell-cell adhesion 

Dictyosteliu
m 

discoideum 
cells 

csA glycoprotein 
coated glass 23±8pN 

2003 
[20] 

Micropipette 
manipulation. 
Pull force at 

8,12,24 h, &5 
days 

Pig 
chondrocytes 

PCL, PLLA, 
PLGA polymers 

At 5 days 
PCL=45nN 

PLLA=41nN 
PLGA=55 

2006 
[30] 

AFM to measure 
cell-nanoparticle 

substrate 
adhesion 

L929 
fibroblast, 

Caco2 human 
colon cancer, 

B16F10 

Silica 
nanoparticles 

L929 @ 
4d=12nN, Caco2 

@ 10d=2nN, 
B16F10 

@4d=10nN 

2006 
[6] 

AFM to measure 
cell-cell adhesion 

WM115 
melanoma 

cells 

Human umbilical 
cord endothelial 

cells 
48 ±7pN 
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Although single cell adhesion tests are effective methods to measure cell 

adhesion, materials for bioapplications requires the interaction of the material with tissue 

or a cell network instead of a single cell. Therefore, measuring the adhesion of a cell 

network on a material provides a better representation of the tissue response to a 

material.  

1.3.2. Cell network adhesion tests 

The most common method for analyzing the average cell adhesion strength on a 

material involves the application of defined levels of shear stress. The average cell 

adhesive force is generally taken to be the shear force at which the majority of cells are 

removed from the surface. Four different methods for shear stress testing have been 

reported syringing [33, 34], centrifugation [18, 23, 35], channel flow [22, 36, 37], and 

rotational flow which includes rotational flow between cone and plates [25, 37-40], 

between parallel disks [26, 28], or rotational flow over a plate [9, 27]. Figure 8 shows 

the four most common methods. The red arrows indicate plate motion and the black 

arrows indicate flow motion. 

   
 Figure 8 Diagram of shear flow systems used to study the adhesion of 

cells on external substrates.  

Cone and-plate

Channel 

Rotating parallel disk 

Rotating flat plate 
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Adhesion studies by syringing, centrifugation, channel flow, rotating flat plate, 

and cone and plate rotational flow have only been used to provide qualitative results of 

remnant cells on the surface after shear flow exposure. The results are usually reported 

as % cells remaining on the surface versus applied shear stress and do not provide the 

actual cell-substrate adhesion strength. In the cone and plate rotational flow systems the 

applied shear stress depends on the radius and the cone angle [25, 37-39] and for parallel 

rotational disk it depends on distance between plates and distance from center. 

 Ono et al. used the rotating parallel disk to study how shear flow affects the 

adhesion mechanisms of endothelial cells. Endothelial cells line the internal walls of 

veins and arteries. They observed the how cells adhered to surfaces under a controlled 

shear flow. The system was designed to feed cells into the rotating flow and counting the 

% cells that attached to the surface after a given time period, from 3 hours up to 8 days 

[26]. The results obtained by Ono et al. are summarized in Figure 9. These results are 

qualitative and do not provide the cell adhesion strength.  

 
Figure 9 Endothelial cells adhesion study as a function of static and 

shear stress after 3 hours of cell seeding [26].  
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LaPlaca et al. applied the rotating parallel disk system to observe the effect of 

impact on neuron cells. A diagram of this system is illustrated in Figure 10. The flow 

was used to simulate an impact injury. The shear flow was introduced as a pulse, high 

shear flow for a short time period (only fractions of a second). Their observations were 

focused on observing how an impact affected neuron elasticity and communication. 

Neuron elasticity was assessed by measuring the strain [28].  

 
Figure 10 Parallel disk rotational flow diagram. The flow is generated 

on the media by rotating the top plate.  

Rotational flow systems are the most widely used method to study cell behavior 

under a shear flow [37]. The parallel disk rotating system has been used to study many 

aspects of the cell including cell communication and their ability to attach to a surface 

when exposed to a shear flow. The work of Ono et al. and LaPlaca et al. demonstrate the 

system is suitable for multiple cell lines since they worked on endothelial and neural 

cells respectively [26, 28].  

Table 2 summarizes some of the cell adhesion studies performed between a cell 

network to various substrates. In general, tests are generally performed with shear flow 

and the results are qualitative because they only present the percent number of cells that 

Fixed plate

Media

Rotating 
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remain on the surface after hours or days. Specific details about the cell type and 

substrate are also given. It is important to note that the shear values reported indicate the 

shear stress at which 0% of cells are attached to the surface.  

Table 2 Adhesion studies between cell network and substrate. 
Year 
[Ref] Test Summary Cell Substrate Results 

1986 
[17] No shear flow Human 

fibroblasts 
Fibronectin 
coated glass 

Maximum 80% cell 
adhesion 

1989 
[18] 

Shear flow by 
centrifugal force 

NIL cell 
fibroblasts 

 

Fibronectin (F) 
& Tenascin (T) 

coated glass 

F=max 40 dynes/cell x10-5 

T=max 2 dynes/cell x10-4 

1991 
[26] 

Rotating parallel 
disk shear flow 

Endothelial 
cells 

Tissue culture 
plate 

Max 3x104 cells 
attached after 7days 

1993 
[40] 

Cone and plate 
rotational flow 

Endothelial 
cells 

Gelatin coated 
glass 

Cell detachment begins 
at 40s of applied stress 

1994 
[27] 

Shear flow by 
rotating plate 

Endothelial 
cells 

Fibronectin 
coated PC 

Visual observation of 
cells. No measurements

1997 
[23] 

Shear flow by 
centrifugal force 

HT1080 
human 

fibrosarcoma 

HIV-1 coated 
glass 

~10% cell attachment, 
independent of shear 

flow 

1997 
[28] 

Impulse shear 
flow in rotating 
parallel disks 

Neurons Glass 0.53 cell strain at 800 

dynes/cm
2 shear stress 

1997 
[9] 

Shear flow by 
rotating plate 

Rat 
osteosarcoma 

cells 

Fibronectin 
coated glass 

% remnant cells on 
surface 

1998 
[36] 

Shear flow in 
channel 

3T3 
fibroblasts Glass 0% cell attachment at 

0.0068 dynes 

2001 
[33] 

Jet impingement 
(impulse) 

3T3 & L929 
fibroblasts 

Termanox, 
Stainless steel,  

Max 3T3=1060 dynes/cm
2 

in thermanox 
Max 929=1060dynes/cm

2 
on Stainless steel 

2004 
[22] 

Shear flow in 
channel 

WT NR6 
fibroblast 

Fibronectin 
coated glass 

Minimum 5% cell 
adhesion after 12 min at 

4000 dynes/cm
2 

2004 
[7] 

Shear flow in 
channel 

Rat epitenon 
fibroblasts PMMA 

Flat surface ~190 cells 
Rough surface ~ 100 

cells attached 
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CHAPTER II 

MOTIVATION AND OBJECTIVES 

As discussed in the Chapter I, incorporation of implants by the host is an 

important aspect in their success. Poor biocompatibility may develop into serious health 

complications. A study conducted in 1994 by Hakim et al. reported up to 75% mortality 

rate in patients with renal failure caused by poor biocompatibility of the material used 

for dialysis [41]. A study by Lang and Schiffl in 2000 showed a 21% improvement in the 

biocompatibility of  dialyzer materials with a 54% mortality rate due to biocompatibility 

failure [42]. In 2008, Alonso et al. reported no significant difference in biocompatibility 

failure between patients with a biocompatible and non-biocompatible dialysis materials 

[43] even though biomaterials must undergo a rigorous cytotoxicity assessment prior to 

their use in patients. This biomaterial application had some improvements over the last 

years but failure due to poor biocompatibility is still an issue that should be addressed. 

Therefore, in vitro assessment of biocompatibility is a critical step.  

The long term objective of this research is to understand and improve 

biocompatibility of materials. The first aim of this thesis research is to develop a 

methodology to assess the cell-material adhesion quantitatively. The second aim is to 

obtain fundamental understanding of cell-material adhesion mechanisms. Until now, all 

proposed systems to measure the adhesion between cell network and substrate have only 

been used for few cell types and a narrow material selection. For this reason, it is 

impractical and impossible to compare the level of biocompatibility of each material. 

Experimental approach will be used to accomplish the research goals. A parallel disk 
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rotating system will be employed because it has been extensively used to study 

biological systems and qualitatively understand the effect of substrate chemistry, surface 

roughness, and surface coatings on cell adhesion. The system, however, has not been 

used to quantitatively measure the cell adhesion strength to external surfaces. 

Cells will be cultured on various surfaces and secured to the fixed disk of the test 

system. The shear stress generated by the system varies with radial position and is 

highest at the outer diameter and it decreases with decreasing radius. The maximum 

applied shear stress (τa) will be selected such that it exceeds the adhesion strength 

between the cells and the substrate. If the applied shear stress exceeds the cell-substrate 

adhesion strength, the cells will detach from the surface. Because the shear stress 

decreases with decreasing radius, it is expected that the shear stress will reach a critical 

point along the radius where the shear stress will be equal to the cell-substrate adhesion 

strength leaving a well-defined radius of cells on the surface. Any cells inside this 

critical point will remain unaffected because the shear stress experienced by them is 

lower than their adhesion strength.  

The radius of cells left on the surface after testing is called the critical radius (RC) 

and the shear stress experienced by the cells at this point is called the critical shear stress 

(τC). Figure 11 illustrates the expected results, a well defined RC. The black arrow 

indicates the shear flow generated by the rotating disk.  
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Figure 11 Test objectives. Cells are cultured on substrate and tested 

with parallel rotating disk to generate a shear flow.  

It is expected that the proposed method will allow accurately measuring the 

adhesion strength at the cell-material interface. Analysis of the flow properties could 

provide significant and reliable information about the cell adhesion mechanisms. The 

significance for this research lies in the area of artificial implants and could allow 

considerable improvement in their design and lifetime.  

 

Increasing 
shear 

Culture cells on 
substrate 

Apply rotational 
shear flow

Critical cell diameter 
remains on surface 

Rc  
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CHAPTER III 

EXPERIMENTS 

This chapter discusses materials, equipments, and procedures for the research. 

Basic information of cells is provided. 

3.1. Materials  

3.1.1. Cell culture 

3.1.1.1. Cells 

As discussed in Chapter I, fibroblasts and neurons are two common cell types 

used for in-vitro studies. The fibroblasts and neurons are secondary and primary cultures 

respectively. A primary culture is one that is used after extracting and dissociating. A 

secondary culture is obtained after the first passage. Primary culture cells multiply over 

time and must be separated into at least 2 cultures. This separation process is called a 

passage and it is necessary to control cell growth and ensure all cells obtain the required 

nutrients from the cell culture media.  

The NIH 3T3 Swiss mouse fibroblast cell culture used in this study was 

purchased as a primary culture from ATCC. This cell line is obtained from 13 to 16 day 

old Swiss mouse embryos as extracted by Todaro and Green in 1963. This cell line is 

widely used because cells maintain their structure and activity over extended periods of 

time and over many passages [44]. The 3T3 stands for 3-day transfer with a cell density 

of 3x105 cells for a 20cm2 culture dish [44]. This cell line must be maintained at 37oC 

with a controlled 5% CO2 environment and a pH of 7.4 [44-46]. The 3T3 fibroblasts 



19 

 

have an average cell diameter of 40µm and a 1 µm cell height. The 3T3 fibroblasts used 

in this research are a secondary culture at their 12th to 15th passage. Figure 12 shows an 

attached fibroblast and lists the main components of these cells. Figure 13 shows an NIH 

3T3 fibroblast cell culture.  

 
Figure 12 3T3 Swiss mouse fibroblast originally extracted by Todaro 

and Green. Image by Nikon MicroscopyU [47]. 

 
Figure 13 3T3 mouse fibroblasts at 3 days of culture on 2, 6 Bis(3 

amino phenoxybonzo nitrile) (β-CN APB) at 10X magnification with 
an Axiovert A200 inverted transmission microscope (Carl Zeiss). 
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The neurons used in this work are bipolar neurons which are found in sensory 

systems like the eye, nose, and ear. The main characteristic of bipolar neuron cells is 

their shape; they have the body cell and one axon. The axon is a fiber that transfers 

information to other cells or to other parts of the nervous system. The extraction 

procedure was first implemented by Moscona in 1960 [48]. This cells are widely used 

for neuron communication analysis because they allow easy comparison of in-vivo and 

in-vitro results [49]. The cell culture was directly extracted from 6-day chick embryos 

obtained from the Poultry Science Department at Texas A&M University in College 

Station, TX. This cell line must be maintained at 39oC with a controlled 5% CO2 

environment and pH of 8.2 [13]. Chick retina neuron cells are approximately 10µm 

diameter.  

Figure 14 shows a diagram of a bipolar neuron and three bipolar neurons 

extracted from the retina of a 6day chick embryo. Figure 15 shows a bulk cell culture of 

the 6 day chick embryo neurons after 24 hours of cell seeding.  

 
Figure 14 Bipolar neurons extracted from the retina of 6day chick 

embryos taken after 5 days of culture.  Courtesy of Dr. Subrata Kundu. 



21 

 

 
Figure 15 Bipolar neuron cells from 6-day chick retina cultured on PDL 

coated glass with 1000X under a VHX-600 3D digital microscope 
(Keyence Microscope). 

3.1.1.2. Cell preparation and activation 

Fibroblast cell cultures are pelletized and stored at cryogenic temperatures to 

allow shipping and storage for extended periods of time. The cells must be re-activated 

prior to use. Re-activation is a thermal and chemical process. Trypsin is used in NIH 3T3 

mouse fibroblast cultures to re-suspend the cells and was purchased from Cell 

Applications, Inc. Trypsin can be extracted from the pancreas of animals and it is easily 

purified. It must be stored at -20oC [11].  

The chick retina neurons are a primary culture and do not require storage. 

However, the extracted retina tissue must be dissociated prior to seeding. Culture 

dissociation is an electrochemical process. The retina is dissociated in a mixture of a 

saline solution and trypsin and are minced manually [50].  
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3.1.1.3. Culture media 

Cell cultures are vulnerable to bacteria in the environment because they are not 

protected by the ECM, which also provides nutrients to the cells. For this reason, cell 

cultures must be maintained under a controlled media that provides the nutrients and 

protection against bacteria. The media used for the 3T3 fibroblast culture was 

Dubelcco’s modified Eagle’s medium and the media used for the chick neuron culture 

was Eagle’s medium. Eagle’s medium is made of L-amino acids, vitamins, salts, 

glucose, serum and antibiotics. Dubelcco’s modification to Eagle’s medium consists of 

adding 6-parts horse serum and 3 parts chick embryo extract to 8 parts Eagle’s medium 

[51]. Table 3 lists all the components used to prepare Eagle’s medium. The antibiotics 

used and the serum vary with cell culture to allow optimal results. 

Table 3 Components of Eagle’s medium.  
L-Amino acids Vitamins Miscellaneous 

mg/L mg/L %  
Arginine 17.4 Biotin  10-6 Glucose 0.1 
Cystine 9.6 Choline 10-6 Human serum 5.0 

Glutamine 292.0 Folic acid  10-6 Penicillin  0.005 
Histidine 6.2 Nicotinamide  10-6 Streptomycin 0.005 
Isoleucine 26.0 Pantothenic acid  10-6 Phenol red 0.0005
Leucine 20.0 Pyridoxal  10-6 Salts 
Lysine 22.0 Thiamine   10-6  % 

Methionine 7.4 Riboflavin   10-7 NaCl 0.68 
Phenlalanine 13.2   KCl 0.04 

Threonine 18.0   NaH2PO4•H20 0.014 
Tryptophan 3.0   NaHCO3 0.22 

Tyrosine 18.1   CaCl2 0.02 
Valine 17.5   MgCl2 0.008 

 

The serum and antibiotics used depends on the cell culture. NIH 3T3 mouse 

fibroblasts medium was supplemented with 10% bovine calf serum and 
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penicillin/streptomycin. The Dubelco’s modified Eagle’s medium was purchased from 

Cell Applications, Inc. Chick retina neurons are maintained under Eagle’s medium, 

enhanced with 10% heat-inactivated horse serum, both from BioWhittaker, with 2 mMol 

glutamine, 50 U/ml penicillin, 50 g/ml streptomycin, and 20 ng/ml recombinant rat 

ciliary neurotrophic factor all form R&D Systems [49, 50]. 

3.1.1.4. Substrates for cell culture 

Polymers, metals, semiconductors, and ceramic materials were selected as 

substrates for cell culture. Most of the materials selected are already being used or have 

the potential of being used as biomaterials as summarized in Table 4.  

Table 4 Materials used as substrates for cell culture experiments.  
Substrate Material Biocompatible Application Ref 

PMMA Yes Dental cement [12] 
UHMWPE Yes Artificial joints [52] 

PC Yes Renal dialysis material 
Surgical instruments [43] 

Epoxy Yes Dental sealer [53] 
PVDF Yes Suture [54] 

NiCu coated PVDF Not tested Potential for cell electrical 
characterization  

Ag coated PVDF Silver – no Potential for cell electrical 
characterization [55] 

Au coated PVDF Gold – yes Potential for cell electrical 
characterization  

Si Wafer No Potential for cell electrical 
characterization  

RS 100 Not tested Ceramic material, potential 
for implants  

Glass Yes Cell culture dishware  
 

Some materials were selected to test the possibility for use in cell 

characterization; to measure elastic, chemical, and electrical properties of the cell. Glass 
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substrates were only used for the chick neuron cultures and all other materials were used 

in the fibroblast cultures. The glass substrates are microscope slides purchased from 

Fisher Scientific. The substrates were coated with poly-D-lysine purchased from Sigma 

Aldrich.   

3.1.1.5. Cell culture dishware 

The 3T3 fibroblasts were cultured for passage in a T75 (75cm2 surface area) 

flask. The fibroblast cultured samples were prepared and maintained in a 6-well culture 

plate (Falcon). The wells have a diameter of 34.8mm each. The chick retina neuron cells 

were cultured in 25mm diameter glass microscope slides. The cultures were maintained 

in individual Petri dishes of 50mm diameter.  

3.1.2. Materials for testing 

The fluid used to generate the rotating flow was a phosphate buffered saline 

solution (PBS) purchased from Sigma-Aldrich. PBS contains NaC1, KC1, Na2HPO4, 

KH2PO4, CaC12, MgCl2•6H20 in distilled water [51]. There are some slight variations in 

the quantities used depending on the cell culture it is used for. A high strength double-

sided tape is used to secure the sample to the fixed disk. The tape is selected with 

adhesive strength of at least one order of magnitude higher than the expected adhesion 

strength between cells and substrates.   

3.1.3. Cell fixatives 

Fibroblast cultures were stained with Calcein AM from BD ™ Fluorescent Dyes 

prior to testing. The tested cell samples were fixed in formalin for 24 hours and 
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dehydrated with increasing concentrations of ethanol. Chick neuron cultures were fixed 

with Zamboni’s fixation from Newcomer Supply.  

3.2. Equipment 

3.2.1. Imaging equipment  

Optical microscopes are used to analyze cell cultures before and after testing. 

Imaging before testing is essential to determine the quality of cell culture. Imaging after 

testing is required to observe if the critical diameter of cells was left on the surface.  

 An Axiovert 200 inverted transmission microscope with fluorescent light source 

was used to observe 3T3 fibroblast cultures before and after testing. The 3T3 fibroblast 

culture samples were also imaged using a JEOL JSM-6400 Scanning Electron 

Microscope (SEM) after testing, fixing and dehydrating. The chick retina cell cultures 

were imaged before and after testing with VHX-600 3D digital image microscope from 

Keyence. Figures 16, 17, and 18 show the Axiovert 200, the Keyence VHX-600 

microscope and the JEOL JSM-6400 SEM respectively.  

 
Figure 16 Carl Zeiss inverted transmission microscope (Axiovert 200). 

Imag e from Carl Zeiss [56].  
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Figure 17 VHX-600 3D microscope from Keyence.  

 

 
Figure 18 JEOL JSM-6400 Scanning Electron Microscope in the 
Microscopy & Imaging Center at Texas A&M University [57]. 

3.2.2. Cell culture equipment 

Cell cultures are handled inside a laminar flow fume hood equipped with a UV 

light. This helps maintain the cultures free of bacteria. The cell cultures are maintained 

in an incubator with controlled temperature and % CO2 environment. The fibroblasts are 

maintained at 37oC and the chick neurons are maintained at 39oC. Other equipment 

necessary for cell culture are a centrifuge, and a hemacytometer. The centrifuge is used 

to pelletize the cells prior to dispersion and the hemacytometer is a microscope slide 
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with a standard size grid to help count the number of cells/volume. Figure 19 shows an 

incubator used to control temperature and %CO2 environment for cells. 

 
Figure 19 Cell culture incubator from Lab Line.  

3.2.3. Surface measuring equipment 

The surface roughness of all the samples was measured with a TR200 

Profilometer from Qualitest, shown in Figure 20. The stylus moves in a straight line for 

0.5 in. It measures the average pore size and calculates the average surface roughness 

(Ra). The Ra is the average of the peaks and valleys over the measured distance.  

 
Figure 20 TR200 Profilometer from Qulitest.  
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3.2.4. Rheometer 

A rheometer is used to measure the flow properties of liquids. Rheometers are 

capable of measuring stress and deformation of a liquid [58]. An AR-G2 Rheometer 

with parallel disk geometry from TA Instruments was used for this research. The basic 

components in a rheometer are the motor, spindle (rotating disk), and a fixed disk. The 

motor is torque driven and allows for easy control of rotational velocity, and oscillation 

frequency. Figure 21 illustrates the basic components of a parallel disk rotational 

rheometer. Figure 22 is the AR-G2 parallel disk rheometer from TA Instruments used in 

this work.   

 
Figure 21 Diagram of parallel plate rotational rheometer with basic 

components.  

   
Figure 22 AR-G2 Rheometer from TA Instruments. 

Fixed plate 

Rotating 
disk
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 The parallel plate rotational rheometer was selected for this research because it 

applies a controlled shear stress throughout the test. The instrument is torque driven, 

however, any parameter can be controlled through a feed-back loop that adjusts the 

motor’s torque. The instrument controls the temperature of the sample during testing, 

which is essential when working with live cell cultures. It measures the rotational 

velocity, torque, and viscosity of the media and allows to accurately control the distance 

between plates during the test. These parameters are necessary to the analysis of the 

rotational flow. The rheometer has been extensively used to study the factors affecting 

blood flow and some other properties of biofluids [59]. 

3.2.5. Surface cleaning and cell storage 

Other miscellaneous equipment includes a short wave UV light, Autoclave, 

refrigerators and freezers. The UV light is used to maintain working surfaces in the 

laminar fume hood and culture materials free of bacteria. An autoclave is used to 

sterilize any instruments used during cell culture like tweezers and culture dishes. 

Refrigerators and freezers are required to store trypsin and cell culture media.  

3.3. Methods 

3.3.1. Cell cultures 

3.3.1.1. Solutions for fibroblast culture 

PBS prepared by mixing 

a. Mix then autoclave 8.0g NaCl, 0.2g KC1, 1.15g Na2HPO4, and 800 mL 

of distilled water.  
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b. Mix then autoclave 0.1g CaC12 in 100mL of distilled water.  

c. Mix then autoclave 0.1g MgCl2•6H20 in 100mL of water. 

d. Mix a, b, and c, solutions after autoclaved and cooled.  

e. Add distilled water to complete 1L of solution.  

Dissociating solution, used to separate tissues into cells 

a. Heat the PBS and trypsin separately to 37oC. 

b. Mix PBS and 0.25% trypsin and syringe repeatedly to mix the solution. 

Cell culture media 

a. Made by mixing all ingredients listed in Table 3. With 10% bovine calf 

serum and penicillin/streptomycin. 

3.3.1.2. Fibroblast culture substrates 

a. All materials used for culture substrates were cut in 3x3cm2 squares with 

thickness as received.  

b. The substrates were cleaned by rinsing in alcohol, allowed to air dry, and 

placing under shortwave UV light in laminar flow fume hood for 24 hours 

prior to cell seeding.   

c. The substrates were placed in a 6-well plate (Falcon). One substrate per well.  

d. A sterilized UHMWPE ring with 2.5cm internal diameter was used to hold 

samples down and avoid sample flotation.  
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3.3.1.3. Fibroblast culture 

Original or primary cells are those obtained directly from 16-day Swiss mouse 

embryos. Transfer or secondary cells are those obtained by cell mitosis from pre-

cultured cells.  

Primary cell culture [44] 

a. Pulverize the Swiss mouse embryo. 

b. Mix with dissociating solution (PBS and trypsin). Wait 10 to 15 minutes to 

allow trypsin to separate the cells. 

c. Centrifuge the mixture. The cells will pelletize at the bottom of the test tube. 

Remove all the mixture. 

d. Rinse with PBS 3 times. Use twice as much PBS per rinse than trypsin used 

to stop the trypsin reaction.  

e. Add 10mL of culture media and pipette vigorously to dissociate the pellet 

and allow cells to float in media.  

f. Pipette 0.1μL of the suspended cells to count the #cells/volume with a 

hemacytometer. Repeat this step two or three times to verify cell dispersion. 

g. Add media to achieve the desired #cells/volume in the solution.  

h. Cells are placed in T75 culture flask or similar container.  

o Cells can also be placed directly on substrate materials if a 

primary culture is required for testing.   

i. Maintain the cultured cells in incubator with 5% CO2 environment at 37oC. 
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Secondary cultures are obtained from passage of primary cultures after 3 days of 

original culture the number of cells in the culture multiply threefold in approximately 3 

days. Therefore, the culture from one flask can be transferred into 3 every 3 days.  

Seeding cells onto substrate materials 

a. From the T75 cell culture flask with cells, remove cell culture media. 

Perform this step carefully to not disturb the cells, which are attached at the 

bottom of the flask.  

b. Prepare the dissociating solution (PBS and trypsin at 37oC).  

c. Pipette approximately 3mL of solution to the flask to detach cells from the 

flask wall. Pipette several times to ensure all surface has been covered.  

d. Wait 10 to 15 minutes until all cells seem mobile (detached).  

e. Pipette cells in dissociating solution from container and centrifuge to 

pelletize the cells. Remove all dissociating solution.  

f. Rinse with PBS 3 times. Use twice as much PBS per rinse than trypsin used 

to stop the trypsin reaction. 

g. Add 10mL of culture media and pipette vigorously to dissociate the pellet 

and allow cells to float in media.  

h. Pipette 0.1μL of the suspended cells to count the #cells/volume with a 

hemacytometer. Repeat this step two or three times to verify cell dispersion. 

i. Add media to achieve the desired #cells/volume in the solution.  

j. Seed 5,000 cells/cm2 over each substrate and place in incubator with 5% CO2 

environment at 37oC.   
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k. Allow 24 hours prior to testing to allow cells to attach to the substrate.  

3.3.1.4. Prepare fibroblast samples for imaging 

Samples are dyed with Calcein AM prior to testing to allow fluorescent imaging 

and are fixed in formalin for 24 hours after testing. The samples cell seeded substrates 

are dehydrated in increasing concentration of ethanol, starting from 75% to 100% and 

allowed to air dry. The samples are then coated with palladium for SEM imaging.  

3.3.1.5. Solutions for neuron culture 

PBS for chick neuron culture is prepared by mixing then autoclaving 123mMol 

NaCl, 5.36mMol KCl, 9.51mMol Na2HPO4, 1.48mMol NaH2PO4  , 0.1 gm/ml glucose in 

1L of distilled water. The dissociating solution is prepared the same as for the 3T3 

fibroblast culture with 05mg/mL of trypsin. The cell culture media is made by mixing all 

ingredients listed in Table 3 with 10% heat-inactivated horse serum, 2 mMol glutamine, 

50 U/ml penicillin, 50 g/ml streptomycin, and 20 ng/ml recombinant rat ciliary 

neurotrophic factor. 

3.3.1.6. Neuron culture substrates 

The glass substrates must be cleaned and coated with PDL prior to cell seeding. 

Glass microscope slides with 25mm diameter are used for substrates in the chick embryo 

neuron culture. 

a. Clean glass microscope slides in HNO3 for 2 days.  

b. Rinse substrate in water for 6 hours and dry individually. 

c. Prepare a mixture of borate buffer: 0.682g boric acid, 0.858 g sodium 

tetraborate, add to 100 ml distilled water, and adjust the pH to 8.4.  
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d. Add 1 mg/mL of poly-D-lysine and stir for 15 minutes.  

e. Place 5 to 10 substrates in a 35mm Petri dish and fill with 5mL of borate 

buffer and poly-D-lysine mixture. Make sure substrates do not overlap.  

f. Let sit in mixture for at least 1 to 2 hours. 

g. Rinse 7 times with distilled water and let sit in distilled water for 1 hour.  

h. Place substrates in individual 35mm Petri dishes. 

i. Leave in laminar fume hood under UV light overnight.  

j. Close each Petri dish and store in refrigerator for up to 3 weeks.  

3.3.1.7. Neuron culture 

For the case of chick retina neuron cells, only primary cultures are used [50].  

a. Incubate the fertilized eggs for at 39oC for 6 days. 

b. Remove chick from egg and sacrifice the chick. 

c. Remove and open the eye to extract the retina.  

d. The retina is placed in dissociating solution of PBS and trypsin for 25 

minutes and pulverized with a pipette.   

e. Centrifuge the mixture. The cells will pelletize at the bottom of the test tube. 

Remove all the mixture. 

f. Rinse with PBS 3 times. Use twice as much PBS per rinse than trypsin used 

to stop the trypsin reaction. 

g. Add 10mL of culture media and pipette vigorously to dissociate the pellet 

and allow cells to float in media.  
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h. Pipette 0.1μL of the suspended cells to count the number of cells per volume 

with a hemacytometer. Repeat this step two or three times to verify cell 

dispersion. 

i. Add media to achieve the desired number of cells per volume in the solution.  

j. Calculate the required cell number to cover approximately 70% of the 

substrate surface.  

k. Place neuron seeded substrates in incubator with 5% CO2 environment at 

39oC.   

l. Allow 24 hours prior to testing to allow cells to attach to the substrate.  

3.3.1.8. Prepare neuron samples for imaging 

Samples are placed for 10 minutes in Zamboni’s fixation after testing and are 

then rinsed 3 times with PBS for five minutes each and allowed to air dry.  

3.3.2. Testing conditions 

The cell cultured substrate is secured to the lower fixed disk. The rotating disk is 

lowered to a controlled distance from the lower plate. The gap is filled with PBS. The 

upper plate rotates generating a shear flow with the PBS on the cells. The diameter of the 

rotating disk is 25mm. The sample is secured on the lower fixed disk with high strength 

double sided tape. The adhesion strength of the tape was selected such that it would be 

one or two orders of magnitude higher than the expected adhesion strength of cells to the 

selected substrates. Figure 23 shows a schematic of the test set up. 
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Figure 23 Experimental set up. The cell cultured substrate is secured to 

the lower disk.  

The cell adhesion test procedure consists of applying a constant maximum 

rotational shear stress (τa), which is maximum along the outside diameter. The sample 

was inspected after testing to verify the presence of a critical radius of cells left on the 

surface (RC). The RC is measured and used in a rotational flow analysis to calculate the 

critical shear stress (τC) of bulk cell adhesion to the substrate.  

A creep test procedure was used in this work. This test procedure applies a 

controlled maximum shear stress and measures the sample deformation as a shear strain. 

The temperature and distance between rotating and fixed disk is controlled during 

testing. The test has a duration of 10 minutes, this time is selected to guarantee the flow 

conditions have reached equilibrium. The AR-G2 Rheometer measures the viscosity, 

angular velocity, and shear strain among many other parameters. Once the test is 

complete, the cell seeded sample is fixed and imaged accordingly.  

 

PBS Rotating 
disk

Substrate 
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CHAPTER IV 

RESULTS 

The objective of this research is to develop a methodology to evaluate cell 

adhesion strength quantitatively. A parallel disk system is used here to study the 

adhesion mechanisms of fibroblast cells. The fluid shear is analyzed for the cells 

cultured on various materials having different surface properties. This chapter presents 

the most relevant and significant results obtained for the proposed method.  

4.1. NIH 3T3 Swiss mouse fibroblasts  

The adhesion of NIH 3T3 Swiss mouse fibroblasts to several substrates was 

measured to determine if the system could be used to distinguish the adhesion between 

materials. The τa is the maximum controlled shear stress applied. These values are 

selected for shear testing based on values reported in the literature for polymeric 

materials. The values of τa varied from 5 to 45 dynes/cm2. Table 5 lists all tests 

performed; the numbers in parenthesis specify the number of tests repeated at the given 

τa. For example, the PMMA 35 (4X) indicates that 4 PMMA samples were tested at 

35dynes/cm2. The testing conditions were 480μm gap for 10 min with 37oC temperature 

for all samples.  
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Table 5 Test conditions for NIH 3T3 Swiss mouse fibroblasts.  
Substrate τ a (dyne/cm

2) 

PMMA 35 (4X), 20 (2X), 
25 (3X) 

UHMWPE 35, 25, 20, 15 
(2X), 5 (2X) 

PC 25 (2X), 15, 20 
(2X), 10 

Epoxy 20, 35 (3X), 25 
(3X), 30, 40, 45 

PVDF 35, 15 
NiCu coated 

PVDF 35, 15 (2X), 25 

Ag coated 
PVDF No cell adhesion 

Au coated 
PVDF 30 (2X), 20 

Si Wafer No cell adhesion 
RS 100 25, 15(2X), 5 

  

A total of 47 tests were completed on NIH 3T3 Swiss mouse fibroblasts. There 

are three factors found to affect the cell adhesion, such as staining solution, substrate 

materials, and SEM preparation. In addition, 7 samples were discarded due to low cell 

density because the cells on these samples attached to the Petri dish instead of the 

substrate. Sample damage can be separated into damage before testing and damage after 

testing. Table 6 shows 27 samples damaged before testing.  
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Table 6 NIH 3T3 Swiss mouse fibroblasts samples damaged before 
testing.  

Sample τ applied 
(dyne/cm

2) Observations 

Epoxy_25_01 25 ~80% cell death – high staining concentration 
Epoxy_25_02 25 Ibid 
Epoxy_35_01 30 Ibid 

NiCu/PVDF_35_01 35 Ibid 
PC_25_01 25 Ibid 

PMMA_20_01 20 Ibid 
PMMA_25_01 25 Ibid 
PMMA_25_02 25 Ibid 
PMMA_35_01 35 Ibid 
PMMA_35_02 35 Ibid 
PVDF_35_01 35 Ibid 
RS-100_25_01 25 Ibid 

UHMWPE_20_01 20 Ibid 
UHMWPE_25_01 25 Ibid 
UHMWPE-35_01 35 Ibid 

NiCu/PVDF_15_02 15 Cells not attached 
NiCu/PVDF_25_01 25 Ibid 
NiCu/PVDF_15_01 15 Ibid 

Si wafer_15_01 15 Ibid 
Si wafer_25_01 25 Ibid 
Epoxy_20_01 20 Low cell density. The cells collected at bottom 

PC_15_01 15 Ibid 
PMMA_20_02 20 Ibid 
PMMA_35_03 35 Ibid 
PVDF_15_01 15 Ibid 

UHMWPE_15_01 15 Ibid 
UHMWPE_5_01 5 Ibid 

 

One of the damages was due to excess concentration of the staining solution 

applied before testing which caused death on more than 80% of the cell culture. Five 

samples showed that cell adhesion strength to the nickel copper (NiCu) coated PVDF 

and the silicon (Si) wafer samples was weak. The cells on these samples detached during 

sample transfer. Seven samples had very low cell density which made it difficult to 
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measure the cell adhesion. The remaining 20 samples showed an Rc after testing. Since 

some samples were opaque, they could not be imaged with the Axiovert transmission 

microscope. Therefore, the samples were prepared for SEM imaging. The samples were 

fixed and dehydrated after testing for SEM imaging. Some of the chemicals used for 

these steps damaged the surface of 17 samples and the Rc could not be measured as 

listed in Table 7.  Testing conditions were 480μm gap for 10 min with 37oC temperature. 

Table 7 3T3 Swiss mouse fibroblasts samples damaged after testing.  

Sample τ applied 
(dyne/cm

2) Observations 

Epoxy_25_03 25 Rc observed. Damaged during SEM preparation 
Epoxy_30_01 30 ibid 
Epoxy_40_01 40 ibid 

Au/PVDF_30_01 30 ibid 
Au/PVDF_30_02 30 ibid 

Epoxy_45_01 45 ibid 
PC_20_01 20 ibid 
PC_25_02 25 ibid 

PMMA_35_04 35 ibid 
PC_20_02 20 ibid 

Epoxy_35_03 35 ibid 
Epoxy_35_02 35 ibid 
RS100_05_01 5 Opaque sample. Cannot see cells in SEM 
RS100_15_01 15 ibid 
RS100_15_02 15 ibid 

UHMWPE_05_02 5 ibid 
UHMWPE_15_02 15 ibid 

 

The samples that allowed for cell adhesion measurements are listed in Table 8. 

Here the samples are named as follows: substrate, applied shear stress in dynes/cm2 and 

the test number. The critical radius (RC) measured after testing is also listed in the table.  
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Table 8 The NIH 3T3 Swiss mouse fibroblasts shear strength adhesion.  
Sample τ a (dyne/cm

2) RC (cm) 
PMMA_25_03 25 1.05 ±0.015 

Au/PVDF_20_01 20 0.70 ±0.025 
PC_10_01 10 0.636 ±0.008 

 

Figures 24 to 26 show the well-defined RC for the NIH 3T3 Swiss mouse 

fibroblasts tested on various substrates. Figure 24a-f show the Rc of PMMA_25_03 and 

Figure 24g illustrates the imaging points. Figure 25 shows the RC of Au/PVDF_20_01 

and. Figure 26a-f show the Rc of PC_10_01 and Figure 26g illustrates the imaging 

points. All samples show cell detachment along a well-defined critical diameter. 

 

 
Figure 24 SEM images of Ra = 0.636cm of PMMA_25_03. The 

imaging points are shown in 2g. The line scale is equivalent to 30 μm.  
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Figure 25 Rc = 0.70 cm for Au/PVDF_20_01. Image obtained with 

Axiovert inverted transmission microscope. 

 

 
Figure 26 SEM images of Ra = 1.05 cm for PC_10_01. The imaging 

points are shown in 2g. The line scale is equivalent to 30 μm.  

4.2. Chick embryo retina neurons 

A total of 25 chick embryo neuron cell samples were tested. The substrate used 

was poly-D-lysine coated glass. The samples were simply numbered in increments of 

one along with the applied shear stress in dynes/cm2. An example is S15_10; this 
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indicates that it was sample (S) number 15 in the series with τa=10 dyne/cm2. Table 9 

lists all samples and test conditions used for chick neurons on PDL coated glass samples. 

 

Table 9 Test conditions for chick embryo neuron cells.  
Sample τa 

(dyne/cm
2) 

Gap 
(μm) 

Time 
(min)

Temp 
(oC) 

Observations 

S01_10 10 950 10 39 Poor cell dispersion 
S02_10 10 950 10 39 Ibid 
S03_05 5 780 10 39 Ibid 
S04_15 15 780 10 39 Ibid 
S05_10 10 780 10 39 Ibid  
S06_10 10 500 10 39 Sample broke after test 
S07_ - - - - Sample broke before test 
S08_ - - - - Ibid 

S09_10 10 800 10 39 Poor cell dispersion 
S10_10 10 1000 10 39 Ibid 
S11_10 10 1500 10 39 Ibid 
S12_05 5 500 10 39 Ibid 
S13_30 30 500 10 39 Ibid 
S14_25 25 500 10 39 Ibid 
S15_10 10 500 10 39 Test OK. Well-defined Rc
S16_25 25 500 10 39 Ibid 
S17_40 40 500 10 39 Ibid 
S18_55 55 500 10 39 Sample broke after tests 
S19_55 55 500 10 39 Test OK. Well-defined Rc
S20_70 70 500 10 39 ibid 
S21_10 10 700 10 39 Sample broke after test 
S22_25 25 500 10 39 Ibid 
S23_30 30 500 10 39 Ibid 
S24_25 25 500 05 39 Test OK. Well-defined Rc
S25_30 30 500 05 39 Ibid 
 

Glass is a control surface in cell culture studies. It is generally used as a substrate 

when cell behavior is analyzed. In this study, the glass substrate is used to verify the 

reliability of the proposed shear flow system. The τa ranged from 10 dynes/cm2 up to 70 

dynes/cm2 in increments of 5 or 10 dynes/cm2 for the samples tested. A total of 11 
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samples were discarded due to uneven cell dispersion and excessive cell agglomeration, 

and 7 samples broke before or after testing. Table 10 summarizes the results of chick 

neuron cells on PDL coated glass substrates. The samples are named as follows: 

Sample#_τa. 

Table 10 Results of chick embryo neuron cells on poly-D-lysine coated 
glass substrates. 

Sample τ applied 
(dyne/cm

2) 
Rc (cm) 

S15_10 10 1.158 ±0.004 
S16_25 25 0.976 ±0.006 
S17_40 40 0.663 ±0.020 
S19_55 55 0.631 ±0.050 
S20_70 70 0.483 ±0.075 
S24_25 25 0.933 ±0.005 
S25_30 30 0.394 ±0.005 

 

Figures 27 through 33 show a well-defined Rc for the neuron cell cultures. The 

images of the Rc are presented in the same order as in Table 10.  

  

 
Figure 27 Rc=1.158cm for S15_10. With VHX-600 Keyence 

microscope. The scale bar indicates 500μm. 
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Figure 28 Rc=0.976cm for S16_25. With VHX-600 Keyence 

microscope. The scale bar indicates 500μm. 

 
Figure 29 Rc=0.663cm for S17_40. With VHX-600 Keyence 

microscope. The scale bar indicates 500μm. 

 
Figure 30 Rc=0.631cm for S19_55. With VHX-600 Keyence 

microscope. The scale bar indicates 500μm. 
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Figure 31 Rc=0.483cm for S20_70. With VHX-600 Keyence 

microscope. The scale bar indicates 500μm. 

 
Figure 32 Rc=0.933cm for S24_25. With VHX-600 Keyence 

microscope. The scale bar indicates 500μm. 

 
Figure 33 Rc=0.394cm for S25_30. With VHX-600 Keyence 

microscope. The grid is 50μm/div. 
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Variations in Rc are due to a “paperclip effect” where if one paperclip is pulled 

from a box, it is very likely that several will be entangled with it and come out too. If the 

cell density is too high (>70% surface coverage), the connections between cells will pull 

other cells that are still attached on the surface. This results in an uneven or rough Rc 

edge on some parts of the sample. However, it was the connections between cells that 

detached the other cells inside the Rc.    

The RC of remnant cells after testing is inversely proportional to the applied shear 

stress. As more shear stress is introduced to the cells, more cells detached leaving a 

smaller radius of cells on the surface. This trend can be observed in the critical radius vs. 

applied shear stress diagram shown in Figure 34. The values seem to converge to a 

radius of approximately 0.50cm. All values follow a smooth trend except for the critical 

radius measured for S25_30, which is highlighted with a circle. One likely reason for 

this test is that the scale bar, which is set manually for the Keyence microscope used, 

was not set correctly yielding a lower RC when measured.  

 
Figure 34 Results of chick neurons on PDL coated glass. The RC is 

inversely proportional to τa.  
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The results demonstrate that the parallel disk system can be used to measure the 

cell adhesion strength. A well-defined critical radius of cells remains on the surface after 

testing. The critical radius is measured and used to calculate the adhesion strength of the 

cells, which ranged between 9.26 and 27.8 dynes/cm2 depending on the applied shear 

stress.  

The results obtained for the NIH 3T3 Swiss mouse fibroblasts on PMMA, PC, 

and gold coated PVDF demonstrate that the parallel disk rotational system can be used 

to quantitatively measure the cell adhesion strength of cells to various substrates. The 

experiments conducted on the chick embryo neurons adhered to poly-D-lysine coated 

glass are used to demonstrate the repeatability of the system and to further understand 

the interaction at the cell-substrate interface.  

In general, the proposed methodology to measure and quantify the cell adhesion 

strength has shown to be effective for two different cell lines and on various substrates. 

Additionally, the chick embryo neuron samples S16_25 and S24_25, which were tested 

at 25dynes/cm2 shear stress, show critical radii of 0.976 and 0.933 cm respectively. 

There is a 4.41% difference between the measured critical radii between these two 

samples. This demonstrates that reproducible results can be obtained with this system.  
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CHAPTER V 

MECHANISMS OF CELL ADHESION 

 Results in Chapter IV showed that the fluid shear of a rotational disk reflects the 

cell adhesion. In this chapter, analysis of fluid flow, elastic and adhesion properties of 

cells, and factors affecting cell adhesion are conducted. 

5.1. Analysis of parallel disk rotational flow 

Understanding the flow properties of the parallel disk geometry used in this study 

is necessary to analyze the critical shear stress, which indicates the adhesion strength of 

cells onto substrates. The flow properties of the rotating parallel disk have been 

extensively studied because it is a standard geometry of the rheometer and has been used 

in biological systems and well as in other fields as discussed in Chapter I.  

The results obtained for the 3T3 fibroblasts on PMMA, PC, and Au/PVDF are 

summarized in Table 8 in the previous chapter. The well-defined radius of cells that 

remains after the test demonstrate that the adhesion shear stress can be calculated. The 

Rc for each sample is shown in Figures 24 to 26. The results demonstrate that the 

adhesion strength of fibroblasts is highest for PMMA followed by Au/PVDF and PC 

with an Rc of 1.05cm, 0.70cm, 0.636cm and respectively. The results of chick neurons 

on PDL coated glass are summarized in Table 10 and indicate that the Rc varies with 

applied stress. A shear stress ranging between 10dynes/cm2 and 70 dynes/cm2 was 

applied resulting in a measured RC from 1.158 cm to 0.483 cm respectively. The RC 

obtained for chick neurons on PDL coated glass are shown in Figures 27 to 33. The 
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results demonstrate that the shear flow generated by the rotating parallel disk can be 

used to measure cell adhesion and that the RC can be clearly measured after testing.  

It has been reported by LaPlaca & Thibault, Oztekin & Brown, Shouvelier & 

colleagues, and Shipman & colleagues that the shear flow generated by the rotating disk 

creates an inconsistent flow [28, 59-61]. It has been speculated that the irregularities in 

the flow would yield poor results and being unable to measure a well-defined radius of 

cells after testing. Their observation is based on the fact that the shear flow generated by 

the system used in this research is considered unstable. The identified instabilities are 

introduced secondary flows [28, 59-61] and the free energy at the PBS/air interface [61].  

The primary flow is the one generated by the rotating disk, which is the one 

under study. A secondary flow is one that is superimposed on the primary flow. The 

work of Shouveiler and colleagues and that summarized by Oztekin and Brown 

demonstrated that a secondary flow forms at the fixed disk and travels upward in a spiral 

form [59, 60]. A secondary flow is undesirable because it affects the primary flow and in 

the case of cell adhesion would result in inconsistent critical radii. Several numerical 

solutions have been developed to correct the shear stress when a secondary flow is 

observed in the rotating parallel disk system [59-62].  

The instability introduced by the free energy at the PBS/air interface was studied 

by Shipman and colleagues [61]. The flow properties depend on the shape of the liquid 

between the plates. The liquid can be concave (Figure 35a), convex (Figure 35b), or 

perfectly aligned with the disks (Figure 35c). This effect of free surface can be 

accounted for with a modification to the flow analysis [61]. However, the defects of the 
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edge shape can be ignored if the ratio of the disk gap to the disk radius is less than one 

(H/R <<1) for laminar or turbulent conditions. For the system under study, the highest 

H/R ratio is 0.04 for the chick embryo neuron cells on PDL coated glass. Therefore, the 

effect of the free energy at the PBS/air interface can be ignored in the analysis. Figure 35 

illustrates the basic free surface geometries studied by Shipman and colleagues [61]. The 

shape used for this study is in the one shown in Figure 35b. 

 
Figure 35 The instability introduced by the free energy at the PBS/air 

interface depends on the shape of the fluid (PBS).  

Both instabilities have only been observed for turbulent flow and when the flow 

transitions from laminar to turbulent. A laminar flow is one where the particles in the 

flow move in smooth paths, in well defined concentric radius. The center of the flow is 

the same as the disks. Turbulent flow, however, has chaotic flow patterns [63].  

In order to avoid instabilities, the flow required for the success of this study is a 

laminar flow. A laminar flow simplifies the analysis and calculation of the critical shear 
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stress of cell adhesion and ensures that no instabilities affect the flow. The Re, the 

Reynolds’ number, for the rotational disk is defined as follows, where the ρ is the fluid 

density, ω angular velocity, H distance between disks, and μ viscosity [59-62].  

                                                           Equation 1 

The transition from laminar to turbulent flow is determined when the 

dimensionless Reynolds (Re) number is less than 10 [26, 28, 59-62, 64-66]. The Re for 

all results presented in Chapter III are calculated and summarized below. The density of 

the PBS is approximately 1.0 g/ml and the other values are obtained from the test results 

of the rheometer. Table 11 summarizes the Re of the stable flow during testing of 3T3 

fibroblasts and Table 12 lists the Re of the stable flow of the chick neuron cell culture.  

Table 11 Reynolds number for test procedure used in NIH 3T3 Swiss 
mouse fibroblasts.  

Sample ω (rad/s) H (μm) μ (Pa.s) Re 
PMMA_25_03 22.0 480 0.026 0.195 

Au/PVDF_20_01 18.5 480 0.006 0.710 
PC_10_01 9.0 480 0.053 0.039 

 

Table 12 Reynolds number for test procedure used in chick embryo 
retina neurons.  

Sample ω (rad/s) H (μm) μ x 10-3 (Pa.s) Re 
S15_10 10.1 500 3.958 0.638 
S16_25 20.6 500 4.854 1.061 
S17_40 36.7 500 4.854 1.891 
S19_55 50.5 500 4.358 2.897 
S20_70 47.0 500 6.017 1.953 
S24_25 21.7 500 4.609 1.177 
S25_30 27.5 500 4.356 1.578 
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Figure 36 shows the Re for a S15_10 for the entire test. The plot indicates that 

the Re increases with time and all the values reported in Tables 11 and 12 are the 

maximum number. The Re changed throughout the test but was maintained below 10. 

This indicates that the rotational flow used in this analysis is entirely laminar. 

Additionally, the possibilities of having instabilities in the system due to turbulent flow 

or due to laminar to turbulent transition are null. 

 
Figure 36 Reynolds number throughout test for S15_10. This shows the 

Re increases with time.  

 Another factor that disrupts the laminar flow is the surface roughness of the disks 

[60]. The disks used in this study are ground and polished to minimize the effects of 

surface roughness. The cells that are attached to the lower fixed plate introduce a 

roughness to the lower surface and might cause instabilities in the flow. Studies reported 

by Safran et al., however, indicate that the effects of surface roughness introduced by the 

cells attached to the fixed plate can be ignored since the cell height (~1 to 3 μm) is 
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smaller than the distance between disks (500μm maximum). The results reported by 

Safran and colleagues demonstrated that cells can be considered part of substrate and 

have an insignificant effect on the properties of the flow [67]. The present results 

showed that the laminar flow is not disrupted, not only because the Re<10 throughout 

the test but because a well-defined RC was measured after testing which indicate that the 

flow moves in well-defined circles as required for laminar flow.  

Additionally, the measured μ is different for a cell cultured substrate and for a 

substrate with no cells, even if both are tested with the same τa. This variation in μ 

between cells and no cells on the substrate might already be accounting for the surface 

roughness introduced by the cells on the system but the introduced roughness is not 

enough to disrupt the laminar flow. Figure 37 shows the difference in measured viscosity 

for PMMA tested at τa = 25 dynes/cm2 with and without cells. The PMMA with cells 

shows higher viscosity values than the PMMA sample without cells even though both 

samples were tested with the same controlled shear stress of 25 dyes/cm2. 

 
Figure 37 Difference in viscosity for sample of PMMA tested with and 

without cells at τa=25 dynes/cm2.  
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5.2. Critical shear stress 

The results summarized in Tables 8 and 10 in Chapter IV demonstrate that the 

test provides a well-defined RC. Except measuring the RC only is not enough information.  

The same RC can be obtained for samples with different cells and different substrate 

material when tested with different applied shear stress (τa). This can be observed in the 

results of PC_10_01 (3T3 fibroblasts on PC) and S19_55 (chick neurons on PDL/glass) 

which show 0.636cm and 0.631cm radii respectively. It is then necessary to calculate the 

shear stress at which the cells detached from the surface, the critical shear stress (τC). 

This can be accomplished by studying the flow properties.  

The classical method for analysis of the laminar rotational flow is with the exact 

or the numerical solution of the Navier-Stokes equation in cylindrical coordinates. This 

equation represents the motion of a liquid or gas in time and space and is derived from a 

conservation of mass, flow, and energy in a system [28, 63]. Where, v is the velocity 

profile in vector form, p is the pressure gradient, and g is the gravitational acceleration.  

                        v · v v  Equation 2 

Assuming constant density and that PBS is Newtonian, meaning its viscosity is 

constant for all applied shear strains, and the flow has reached steady state, the Navier-

Stokes equation in cylindrical coordinates (r, θ, z) simplifies to Equation 3. Figure 38 

shows the directions of the r, θ, z directions.  

                         v θ θ v θ v θ θ θ θ    Equation 3 

1.5 
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Figure 38 Schematic of parallel disk rotational flow in cylindrical 

coordinates (r, θ, z). The total gap is H and the maximum radius is R. 

Numerical solutions of this equation have been obtained [59-62, 65]. The exact 

solution to this partial differential equation has been found by LaPlaca and Thibault, 

Papadaki and McIntire, Ando et al., and Ono et al. [26, 28, 64, 66]. The exact solution is 

then used to find the shear stress at the fixed disk, which is the shear stress experienced 

by the cells. The shear stress in a laminar flow is a function of the viscosity (μ) of the 

system and the velocity gradient (∂v/∂z) between the disks.   

         Equation 4 

The velocity gradient is obtained from the Navier-Stokes equation in cylindrical 

coordinates. The equation can be simplified and substituted into equation 4 and results 

in: 

                                                        Equation 5 

Where ω is the angular velocity and is equal to vθ, H is the distance between 

fixed and rotating disk and r is the radius. This equation can also be used to calculate the 

critical shear stress (τc). The μ, ω, and H are constant once the system reaches the steady 

state. Therefore, replacing the r for the Rc (critical radius) would provide the τc.   
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                                                           Equation 6 

Equation 6 was used to calculate the τc of the samples with a well-defined Rc. 

The values of τc calculated for the 3T3 fibroblasts and the chick embryo neurons are 

summarized in Tables 13 and 14 respectively. The results of the chick embryo neurons 

are also shown graphically in Figure 39. The results indicate that the τc increases with 

increasing τa as well as with increasing radius. The results of S17_40 and S25_30 are the 

only two points that do not follow the curved trend. It was pointed out in the previous 

chapter that there was likely an error when measuring the RC of S25_30 while the 

discrepancy in S17_40 was probably due to a miscalculation of the µ in the instrument. 

This will be further investigated in future study. 

Table 13 The τc of NIH 3T3 Swiss mouse fibroblast on various 
surfaces. 

Sample Rc 
(cm) 

ω 
(rad/s) 

H 
(μm) 

μ 
(Pa.s) 

τC (dyne/cm
2) 

PMMA_25_03 1.05 22.0 480 0.026 21.02 
Au/PVDF_20_01 0.70 18.5 480 0.006 11.08 

PC_10_01 0.636 9.0 480 0.053 5.09 
 

Table 14 The τc of chick embryo neuron cells on poly-d-Lysine coated 
glass. 

Sample Rc 
(cm) 

ω 
(rad/s) 

H 
(μm) 

μ x 10-3 
(Pa.s) 

τC 
(dyne/cm

2) 
S15_10 1.158  10.1 500 3.958 9.26 
S16_25 0.976  20.6 500 4.854 19.52 
S17_40 0.663  36.7 500 4.854 23.62 
S19_55 0.631  50.5 500 4.358 27.76 
S20_70 0.483  47.0 500 6.017 27.29 
S24_25 0.933 21.7 500 4.609 18.66 
S25_30 0.394  27.5 500 4.356 4.72 
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Figure 39 Results of chick embryo neurons on poly-D-lysine coated 

glass with traditional flow analysis. 

Equation 6 can only be used if the system has reached a steady state and only if 

the fluid is Newtonian. The PBS used in this study is not Newtonian because the 

measured viscosity changes with varying shear strain. However, the measured μ remains 

constant once the flow is fully developed; this is at least the last 2 or 3 minutes of 

testing. For these reasons, a Newtonian fluid could be assumed for the analysis. Figures 

40 and 41 show the viscosity and the angular velocity approach a constant value with 

increasing time for all samples.  
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Figure 40 Viscosity vs. shear strain of PBS during S25_30 test. The 
changing viscosity with shear strain indicates PBS is not Newtonian.  

 
Figure 41 Angular velocity vs. test time of PBS during S25_30 test. 

The ω approaches a constant value. 

Although the value measured for μ and ω change during the test, the 

instantaneous μ and ω are the same at all points along the radius. Using this principle the 
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μ, ω, and H are instantaneously the same for all points on the radius, including the 

maximum (R) and the critical (Rc).  Solving for 
R

 from equation 3, 

   
 

             Equation 7 

This is true at any time during the test not only when the system reached 

equilibrium flow. This is equivalent to  

                                       
R R  

   Equation 8 

Finally, solving equation 6 for τc yields a function that is only dependent on Ra, 

R, and τa.  

                                              τ τ R
R

    Equation 9 

Whenever a rotating parallel disk system is used, the shear stress is traditionally 

calculated with Equation 6 ( . This equation requires that μ, ω, H, and Rc be 

known to solve the shear stress at the fixed wall, or in this case the τc. On the other hand, 

finding τc with equation 9, τ τ R
R

, only requires measuring Rc. The two results are 

compared to verify if simplified equation 9 can be used to determine the τc for the 

proposed cell adhesion method. Tables 15 and 16 summarize the τc calculated with 

Equation 9 for 3T3 fibroblasts and chick neurons respectively. Figure 42 shows 

graphically the results obtained for the chick neuron samples. It is important to note that 

S17_40 follows the increasing trend like the other samples, unlike in Figure 39 because 

the µ is not used to calculate the τc. The results are in good agreement with those 

obtained with the traditional flow analysis shown in Tables 13 and 14.  
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Table 15 The τc of 3T3 fibroblast on various surfaces with proposed 
analysis.  

Sample τ applied 
(dyne/cm

2) 
Rc 

(cm) 
τC 

(dyne/cm
2) 

PMMA_25_03 25 1.05 21.0 
Au/PVDF_20_01 20 0.70 11.2 

PC_10_01 10 0.636 5.088 
 

Table 16 The τc of chick neuron cells on PDL coated glass with 
proposed analysis.  

Sample τ applied 
(dyne/cm

2) 
Rc 

(cm) 
τC 

(dyne/cm
2) 

S15_10 10 1.158 9.26 
S16_25 25 0.976 19.53 
S17_40 40 0.663 21.2 
S19_55 55 0.631 27.76 
S20_70 70 0.483 27.05 
S24_25 25 0.933 18.66 
S25_30 30 0.394 3.935 

 

 
Figure 42 Results of chick embryo neurons on poly-D-lysine coated 

glass with simplified equation.  
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The results obtained with both flow analysis methods must be compared to assess 

the reliability of the proposed and simplified analysis. These values are compared in 

Tables 17 and 18 for 3T3 and in Figures 43 and 44 for fibroblasts and chick neurons 

respectively. The discrepancy of the two methods is quantified with a % difference 

between the calculated τc.  

 

Table 17 The % difference between traditional and proposed analyses  
for 3T3 fibroblast. 

Sample     
Eq. 9 (dyne/cm

2) 
  

Eq. 6 (dyne/cm
2) 

% difference 

PMMA_25_03 21.02 21.0 0.10% 
Au/PVDF_20_01 11.08 11.2 1.07% 

PC_10_01 5.09 5.088 0.04% 
 
 

 
Figure 43 Comparison of traditional flow analysis and simplified flow 

analysis for 3T3 fibroblasts. 
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Table 18 The % difference between traditional and proposed analyses  
for chick neurons on PDL coated glas. 

Sample     
Eq. 9 (dyne/cm

2) 
  

Eq. 6 (dyne/cm
2) 

% difference 

S15_10 9.26 9.26 0% 
S16_25 19.53 19.52 0.05% 
S17_40 21.2 23.62 10.25% 
S19_55 27.76 27.76 0% 
S20_70 27.05 27.29 0.92% 
S24_25 18.66 18.66 0% 
S25_30 3.935 4.72 16.63% 

 

Figure 44 Comparison of traditional flow analysis and simplified flow 
analysis for chick embryo neuron samples.  

 

With the exception of S17_40 and S25_30, the proposed analysis of τc closely 

agrees with the traditional fluid analysis method. However, it was previously noted that 

S25_30 has the possibility of incorrect RC measurement and S17_40 has the possibility 

of incorrect µ measurement by the rheometer. Furthermore, the proposed analysis has 

the advantage that only one variable must be measured after the test (RC) and that the 
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flow system does not need to reach equilibrium for the equation to apply. This 

simplification, however, only applies if the applied shear stress is the controlled variable 

during the test.  

5.3. Effects of cell elasticity on Rc and τc 

Many cell and tissue properties can be imitated by biomaterials but there is still 

more work to be done to fully imitate the tissue and cell response. This is because cells 

are live organisms that adapt and respond to their environment and the aspect of cell 

adhesion is not the exception. The internal components of a cell control its elastic 

properties by rearranging into different structures [24, 67, 68].  

Cells that attach to a surface experience normal and lateral forces. The normal 

forces (FN) are due to van der Waals interaction between the cell and the substrate, 

which means they are weaker than lateral forces (FL). The FL are due to stretching of the 

fibroblast as it attaches to the substrate. The FN is measured with AFM by pulling the 

cell from the substrate material. The measured values are in the order of a few 

picoNewtons to nanoNewtons. The FL controls cell size and shape. The cells can easily 

adjust their FL depending on the stimulus from the environment [24, 67]. The FN and FL 

of neuron cells are lower than those of fibroblasts [68]. Measuring the shear stress 

necessary to detach the cells from the substrate (τc) is analogous to measuring the FL of 

the cell-substrate pair. Figure 45 shows the diagram of the FN and FL on an attached cell. 

Other factor that affects the FN is gravity but its contribution is minimum and can be 

ignored [61]. 
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Figure 45 Schematic of normal (FN) and lateral forces (FL) acting on an 

attached cell.  

The cell response to external stimulus was observed for the chick embryo neuron 

cells in this study. The calculated critical shear stress increased with increasing applied 

shear stress as can be observed in Figure 42. This increase is due to the cell response to 

the applied deformation from the shear flow. This indicates that the FL increase due to 

the forces applied to the cells by the flow. It can also be observed that the critical shear 

stress reaches a plateau and stabilizes after an applied shear stress of 55 dynes/cm2 

which translates to a critical shear stress of approximately 27 dynes/cm2. The plateau 

indicates that the cell’s elastic limit has been reached. The cell adhesion strength cannot 

be adjusted any more and the cells detach from the surface.  

According to the results shown in Table 18 and in Figure 42, as well as 

observation of the critical radii for all samples, a cell detachment process is proposed in 

Figure 46. Once the cell elastic limit has been reached, the proteins that connect the cell 

to the substrate begin to break off. Figure 46 illustrates how the cells begin detachment 

from the substrate when a flow is applied. The protein connections begin breaking 

slowly until the entire cell is removed. This would indicate that the cells behave 

elastically. As a matter of fact, Zhu et al. and Safran et al. reported that due to the elastic 

response of cells, an applied deformation would align the cells in the direction of 

-FN 

FL Cell 

Substrate 
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deformation [24, 67]. Each cell type has different elastic behavior and, depending on the 

cell and the strength of applied deformation, the cells may align in the direction of 

applied deformation, change in shape, or detach. 

 
Figure 46 Steps for cell detachment when exposed to a shear flow.  

In the case of 3T3 fibroblasts, no cell alignment or shape change was observed. 

For the studies conducted on chick neurons, no cell shape or density change was 

observed before and after testing. Figure 47a shows the cell culture on S15_10 before 

testing and Figure 47b shows the cell culture after testing. Both images show the same 

cell size, similar size cell groups, and similar cell density on the surface and were taken 

with the same magnification. Cell culture images of chick neuron cultures from before 

and after testing are shown in Appendix A for other samples.  

 

 
Figure 47 Images of S16_25 before and after testing. Cell shape and 

density inside the Rc was not affected by the shear flow.   

b) a) 
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Cell alignment was reported in several adhesion studies. Never the less, in the 

present research, cell alignment was not observed for either cell culture because the 

testing time was only 10 minutes and because the cells are tested after 24 hours of cell 

seeding. This makes a difference because cells generally attach in 2 hours. Alignment 

was only observed for PDL proteins on the glass substrate. Figure 48 shows protein 

alignment on S16_25 in the direction of the flow. The radius of the sample is on the far 

right and the edge is on the left as shown.  

 
Figure 48. The poly-D-lysine proteins show alignment after testing in 

the flow direction.  

5.4. Effect of substrate material on RC and τC 

Surface energy, surface roughness, chemistry, and elastic properties of the 

substrate material also play an significant role in the adhesion strength of cells. Surface 

energy is a way to quantify for the open bonds of the molecules on the substrate’s 

surface. High surface energy promotes cell adhesion [46, 69, 70] because cell adhesion 

proteins will create stronger connections between the substrate and the cell.  
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High surface roughness has been shown to promote cell adhesion for polymers, 

metals, and ceramic materials [46, 69-72]. Surface roughness promotes cell adhesion for 

two reasons. The first reason is if the vertical deviations of the surface (peak-to-valley) 

are higher than the cell height, the cells will fall inside the valleys and be protected from 

any external flow or forces applied on the surface. The second, and the most important 

reason, is that having a high surface roughness indicates extra surface area, which show 

increased surface energy. Table 19 lists the surface roughness of the substrates used in 

this study for 3T3 fibroblasts and chick neuron cells. The surface roughness (Ra) was 

measured with a TR200 Profilometer from Qulitest.  

Table 19 The average surface roughness (Ra) of materials.  
Substrate Cells Ra (μm) Std Dev 
PMMA Fibroblasts 0.005 0.0007 

Au coated PVDF Fibroblasts 1.113 0.0778 
PC Fibroblasts 0.017 0.0064 

Glass Chick neurons 0.037 0.0315 
 

Substrate chemistry also plays an important role in cell adhesion. As mentioned 

in the Chapter I, cells attach to external surfaces through adhesion proteins. The 

adhesion proteins for fibroblasts are mainly fibronectin and the adhesion protein for the 

chick neurons is PDL. In general, proteins have electropositive open ends. Therefore, a 

more electronegative surface will have a tendency to show higher adhesion strength. 

Metallic materials show an adhesion strength of 1 or 2 orders of magnitude higher than 

polymeric materials [46]. This is due to the electron cloud in the material which makes 

the surface more electronegative. The polymer chemical structure and the adhesion 

proteins used in this study are shown in Table 20.  



69 

 

Table 20 Chemical structure of the polymers used as substrates for NIH 
3T3 Swiss mouse fibroblast cultures. 

Substrate / 
Cell Chemical structure Adhesion Protein 

PMMA / 
Fibroblast Fibronectin   

PC / 
Fibroblast Ibid  

Au-PVDF / 
fibroblasts Ibid  

Glass / 
chick 

embryo 
neurons 

-- 

Poly-D-lysine

 
 

PMMA has an electron pump in the CH3 of the carboxylic (COOH) side that 

travels through the carboxylic structure and helps open one oxygen bond (Figure 49a). 

The released electron then reacts with the NH3 at the end of the fibronectin which gives 

up an electron and becomes NH2
+ (Figure 49b). The open oxygen bond from the PMMA 

then connects with the NH2
+ from the fibronectin forming a primary bond between the 

PMMA substrate and the fibronectin. The electron pump in PMMA makes it more 

electronegative which promotes cell adhesion. Figure 49 shows the reaction mechanisms 

for the attachment of fibronectin to PMMA.  
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Figure 49 Reaction mechanisms for fibronectin and PMMA. 

For PC, unlike PMMA, there is no electron pump in the structure. In addition, 

any electrons are free to travel through the backbone due to the oxygen links. This gives 

PC a lower surface electronegativity than PMMA. This helps explain why PMMA has a 

critical shear stress of 21.0 dynes/cm2 while PC only have adhesion strength of 5.09 

dynes/cm2, almost four times lower.  

Based on the results the effect of surface roughness on cell adhesion is not as 

dominant as that of the substrate chemistry. Surface roughness can help fine-tune 

adhesion to the required value but surface chemistry is a key factor.   

The adhesion strength of gold coated PVDF is 11.1 dynes/cm2. Since the coating 

is metallic, a high adhesion strength would be expected as shown in the literature for 

other metallic materials. This behavior was also observed by McMillan and colleagues 

for a gold coated polyurethane sample [73]. Gold gets contaminated within milliseconds 

of exposure to the environment which lowers cell adhesion. In addition, liquid solutions, 

such as the cell culture media and the PBS used for testing tend to form microcracks in 

the gold coating exposing the cells to the polymer, in this case PVDF [73]. Therefore, 

PMMA Fibronectin 

a) 
b) 

c) 
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parts of the cells attach to the PVDF and parts of the cells attach to the gold and the 

measured value is a mixture of the adhesion of cells on gold and of the adhesion of cells 

on the PVDF. All this yields a lower cell adhesion value than for most metallic 

materials.  

The adhesion molecule for chick embryo neuron cells is PDL. The glass 

substrates were coated prior to cell culture. PDL was specifically engineered to promote 

neuron adhesion to any substrate. Therefore, any surface coated with PDL guarantees 

good adhesion.  

 Another factor that affects cell adhesion is the mechanical properties of the 

substrate. When a force or deformation is applied to a material, the material will tend to 

deform. This would affect the cell adhesion because the applied force on the material 

would be translated to the cell [24]. This, however, is not an issue in this study since the 

substrate material remains intact throughout the test. No external forces are applied on 

the substrate and therefore the cells are not affected by the elastic response of the 

substrate.  
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CHAPTER VI 

CONCLUSIONS 

This research investigated the adhesion mechanisms between cells and materials. 

A rotating parallel disk was used to measure cell adhesion. One disk is fixed while the 

other rotates generating a shear flow. Results showed that the shear stress experienced 

by the cells varied with radial location, being the highest at the edge and zero at the 

disk’s center. There was a critical point along the radius where the shear stress 

experienced by the cells equals their adhesion strength. The cells outside this radius were 

removed and the cells inside it remained attached to the surface. The proposed 

methodology was proven to provide reliable adhesion measurements to a wide variety of 

cell types and material substrates. This allows to quantify and compare the 

biocompatibility of many materials in vitro.  

The flow analysis to calculate the adhesion shear stress is simplified with the 

proposed methodology because the shear stress generated by the rotating disk can be 

precisely controlled. This simplified analysis is in good agreement with the traditional 

flow analysis. The proposed analysis applies only to laminar flow conditions which can 

be controlled by adjusting the angular velocity of the rotating disk, by adjusting the 

distance between disks, or by using a testing media with different viscosity. In addition, 

optimum results are obtained when approximately 70% of the substrate material is 

covered with cells. 

The proposed methodology for measuring cell adhesion to substrates showed 

repeatable results. Cell adhesion is a key aspect of cell communication and function and 
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could be used to quantify the biocompatibility of materials.  There are two major 

conclusions in this research; cell adhesion strength greatly depends on the substrate 

material and cells adjust their adhesion strength depending on the environment that 

surrounds them.   

 Cell adhesion depends on the chemistry and the surface energy of the material. 

Material chemistry plays in important role because a more electronegative material 

shows higher cell adhesion. This behavior is due to the electropositive nature of the 

adhesion proteins that connect the cells to the materials. These results were observed 

from the NIH 3T3 Swiss mouse fibroblasts cultured on PMMA, PC and gold coated 

PVDF. The adhesion shear stress for fibroblasts was 21.0 dynes/cm2 on PMMA, 5.09 

dynes/cm2 on PC, and 11.1 dynes/cm2 on gold coated PVDF. It was shown in Chapter V 

that PMMA is more electronegative than PC resulting in fibroblast adhesion to PMMA 

four times higher than the adhesion to PC. It would be expected that a metallic material, 

such as the gold coating on PVDF, would be higher; however, gold is contaminated 

within fractions of a second of contact with the environment resulting in lower adhesion 

strengths. Higher surface energy of the material also increases the adhesion strength of 

the material because higher surface energy allows more adhesion proteins to attach to the 

surface. More adhesion proteins indicate a stronger connection between the cells and the 

material’s surface.    

The internal components of cells realign to adjust the adhesion strength of the 

cell. This is a natural cell response to external stimulus. In this study, the external 

stimulus is generated by the shear stress and cell adhesion strengthens when the applied 
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shear stress increases. This behavior was observed for the chick embryo neuron cells 

cultured on poly-D-lysine coated glass. The critical shear strength of adhesion was 9.26 

dynes/cm2 with an applied 10 dynes/cm2 and the critical shear strength of adhesion was 

27.0 dynes/cm2 when the applied shear stress was 70 dynes/cm2. The cells, however, 

reach an elastic limit and do not strengthen any further. The elastic limit of cell adhesion 

for chick embryo neurons was reached after an applied 55 dynes/cm2 or higher which 

resulted in ~27 dynes/cm2 adhesion shear stress.  

Additionally, the results obtained for the NIH 3T3 Swiss mouse fibroblasts 

cultured on PMMA, PC and gold coated PVDF demonstrate that the system can be used 

to quantify and compare the cell adhesion to different materials. The results obtained for 

the chick embryo neuron cells on poly-D-lysine coated glass demonstrate the reliability 

and repeatability of the system.  

The results of this research indicate that higher adhesion strengths will be 

obtained for materials with higher electronegativity. The adhesion strength can also be 

adjusted by controlling the surface energy of the material, which can be fine-tuned by 

controlling the surface roughness where higher surface roughness gives more surface 

and consequently more surface energy.   

The cell adhesion method proposed in this study could significantly impact the 

design and fabrication of artificial implants and could allow considerable improvement 

in their design and lifetime. Knowing the cell-material adhesive strength can help in 

material selection for specific biological applications. If the adhesive strength between a 

healthy bone and the tissue surrounding it is known, the material selected for an artificial 
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joint can also be selected or optimized to achieve the same adhesive strength between 

the biomaterial and the healthy tissue. Because the tissue behavior is less disrupted, this 

might result in improved biocompatibility and increase the life of the implant. 

Ultimately, this methodology could be used to quantify how material processing and 

surface treatment of finished or nearly finished artificial implants affect cell adhesion 

and their biocompatibility. 

6.1. Future recommendations 

Future studies are recommended to further understand the effect of surface 

roughness on cell adhesion. Other polymeric surfaces with higher polarities than 

PMMA, as well as metallic and ceramic materials should be used. For the case of protein 

coated surfaces, the effect of protein molecular weight and % surface coverage should be 

assessed.  
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APPENDIX A 

Images taken before and after testing for chick embryo neuron cells on poly-D-

lysine coated glass. These images demonstrate no cell shape and density before and after 

testing.  

 
S15_10 chick embryo neuron cells on poly-d-lysine coated glass. Image before 

testing (left) and image after testing (right). 
 

 
S16_25 chick embryo neuron cells on poly-d-lysine coated glass. Image before testing 

(left) and image after testing (right). 
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