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ABSTRACT  

 

Technology and Economics Affecting Unconventional Reservoir Development.  

(December 2008) 

Cecilia Patricia Flores Campero, B.Eng., Universidad de Oriente, Venezuela 

Chair of Advisory Committee: Dr. Stephen A. Holditch 

 

 

Worldwide, unconventional resources are important sources of oil and gas when 

most conventional resources are declining and demand for hydrocarbons is growing. The 

Masters’ (1979) concept of the energy resource triangle suggest that the exploitation of 

unconventional reservoirs is particularly sensitive to both technology and commodity 

price parameters.  

   

 In the United States, production from unconventional reservoirs has been stimulated 

by a combination of Federal tax credits, technical development programs -supported by 

government agencies and private organizations- and high commodity prices. In this work, 

the effect of technology and different economic events for selected unconventional oil 

and gas plays in the United States was evaluated according to the concept of the Re-

source Triangle Theory (RTT).  

 

 Studies conducted in the Austin Chalk -our textbook case- and other seven uncon-

ventional plays in the United States have supported the RTT concept that high prices and 

better technologies do result in more drilling activity and more oil and gas production 

from unconventional reservoirs. For instance, two approaches were employed to support 

RTT concept: Correlation study and Forecasting graphs.  
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 On the first one, correlations of commodity prices and technology with drilling activ-

ity demonstrated that periods of high commodity prices coincide with increase in uncon-

ventional producing wells approximately 75% from selected plays in this study.   

 

 The second one shows that high prices and technological advances also translate into 

additional oil and gas production and reserves. This behavior was observed through the 

analysis of a series of decline production curves using a VBA program in Excel that 

compute oil and gas production volumes and their corresponding economic values under 

specific conditions. The results indicated that maximum value of approximately $50 bil-

lion oil plus gas would have been possible using conventional hydraulic fracturing tech-

nology only. Moreover, subsequent episodes of high commodity allow the introduction 

of new technologies that have boosted even more oil and gas production from the plays. 

Great examples are the use of horizontal and multilateral wells which has opened up ad-

ditional areas for development, such as the Barnett Shale and the Bakken Shale. Using 

horizontal wells has also revived older plays, such as the Austin Chalk. The combination 

of horizontal well technology and water fracturing technology has led to a dramatic in-

crease in the development of both oil and gas from shale reservoirs. Current production 

schemes suggest that the plays could produce an additional of $320 billion when produc-

ing at rates higher than 5 BOE/day.  

 

Our results confirm the concept of the resource triangle that natural gas and oil re-

sources can be produced from low quality resources when either product prices increase 

or when better technology is available. The seven oil and gas plays studied in this re-

search are demonstrative examples.  
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1 

CHAPTER I 

INTRODUCTION 

 

The exploitation of unconventional reservoirs in the United States (US) has been a sus-

tained practice for more that 50 years (Holditch, 2006). Today, we have a large production da-

tabase that allows us the opportunity to analyze the impact of political, economical, and tech-

nological events on the development of unconventional oil and gas reservoirs. The develop-

ment of these reservoirs in the US has shown a strong correlation between prices and techno-

logy achievements.  

 

The development of the oil industry began in the United States with success of the first 

well by Drake in Pennsylvania in the late 1800s. Later, in the 20th century, along with the in-

vention of the combustion engine to power automobiles and airplanes, the US developed into a 

great industrial power based on oil. Major discoveries were found in East Texas in 1930s, and 

even larger reserves discovered in the Middle East, Iraq and Saudi Arabia ensured the supply 

of energy to the largest oil consumer nation, the US.  

 

When World War II ended in 1945, oil had replaced coal as the principal source of energy. 

Worldwide, the oil production growth reached 3 billion barrels per year in 1947, 7.7 billion 

barrels per year in 1960, and 20.3 billion barrels at the end of 1973. The oil market continued 

growing with sustained supply and low, stable oil prices until the two oil crises in 1973 and 

1979. The Yom Kippur War and the Iranian Revolution shocked oil-dependant economies as 

oil prices increased from $3.29 per barrel in 1973 to $36.83 per barrel in 1980 (Spangar, 1996). 

Subsequently, other events such as the natural gas shortage in the 1980s, and the economic 

growth in developing countries demanding more energy led to more development activity in 

unconventional reservoirs. 

 

______________________ 

This thesis follows the style of SPE Production & Facilities. 



   

  
  
  
  

2 

During this study, we reviewed eight (8) different unconventional formations in the US to 

understand the impact of oil and gas prices and technology on the development of unconven-

tional reservoirs.  We demonstrated that political-economical events contributed to increasing 

production volumes by up to 5 times and technologies have increased production up to 12 

times in some formations. The impact of technologies and political-economical events have a 

greater influence in unconventional reservoir management since these type of resources are 

more sensitive to increases in recovery and reductions in the finding and development costs.  

 

1.1 The Resource Triangle Theory  

The Resource Triangle Theory (RTT) suggests that natural resources are distributed in a 

log-normal manner (Fig. 1.1). According to this theory, introduced by Masters (1979), oil and 

gas resources range from small, high-quality to large, low-quality accumulations distributed as 

in a log-normal fashion; as such, small volumes of high-quality resources are located near the 

apex of the triangle and much larger volumes of low-quality resources occur near the base. 

This theory also proposes that huge, low-quality deposits may be developed as commodity 

prices increase and better technologies become available. Low-quality deposits are commonly 

known as unconventional resources and high-quality deposits are grouped in the conventional 

resources category.  

 

A conventional reservoir has rock properties such as high permeability that, combined with 

natural energy, will yield high production rates and rapid payout of the investment. In contrast, 

unconventional reservoirs must be stimulated to improve rock or fluid properties so that the 

wells can be produced at economic flow rates. In general, these poor reservoir conditions are 

associated with low permeability or high oil gravities, either of which will cause the wells to 

produce al low flow rates.  
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Fig. 1.1—Improved technology and high price parameters characterizing unconventional reservoirs are 
more sensitive to certain type of resources such as oil shales and gas hydrates (from NPC, 2007a). 
 

1.2 Unconventional Resources (UCR)  

As depicted in the RTT, the unconventional resources include tight gas sands, oil and gas 

shales, heavy oil, coal seams and low permeability oil formations. In the United States, uncon-

ventional discoveries are recorded as early as the 1800s; however, their commercial production 

was reached during the 20th century. 

 

Heavy oil was commercially produced in the early 1900s from the San Joaquin basin in 

California. Production from shales and tight gas sands began in the 1950s and 1960s from the 

Appalachian and San Juan basins in the eastern and western US, and gas from coalbed meth-

ane were commercially produced in the 1970s. All types of unconventional resources have 

been produced in the US; however, in some cases, their development has been limited to pilot 

testing and research projects, such as the oil shales in Colorado.  

 

Unconventional production in the US has been accelerated in response to a combination of 

federal tax credits, technical development programs supported by government agencies and 

private organizations, and high commodity prices (Reeves et al., 2007). These efforts have led 

to successful commercial projects as several Devonian-Mississippian gas shales in the US and 

other attempts that can be classified more as research projects such the oil shales of the Green 

River formation in Colorado. 
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In 1917, the construction of the first oil-shale retort brought the idea of potential oil pro-

duction from the Green River oil shale formation to the attention of the industry (Fig. 1.2). Af-

ter World War I, the oil supply was scarce, and oil production from shales had already been 

tested; however, exploitation of the Green River oil shale formation in Colorado was delayed 

because of huge discoveries of conventional oil found in East Texas in 1930. Between the 

1930s and 1960s, the ample supply of conventional oil removed incentives to produce oil from 

oil shales. In 1967, the US Department of the Interior began several research projects to find 

commercial ways to produce the Green River oil shales. Along with this initiative, the oil crisis 

during the 1970s fostered oil-shale activities in several areas in Colorado, Utah and Wyoming 

without commercial success. In the early 1980s, with high oil prices, Unocal Oil Company 

built an oil-shale plant to retort oil from the Green River oil shale formation. Production 

reached 5,900 BOPD. Although the oil price collapsed in 1986, Unocal produced more than 

600,000 bbl by the end of 1987, and between 1988 and 1989, its cumulative production 

reached 1 million bbl. The plant and its operations were shut down in 1990 under to unfavo-

rable economic conditions (Spangar, 1996). 

 
Fig. 1.2—Oil shale resources in the Green River formation are giant accumulations waiting for eco-
nomical exploitation (From NPC, 2007b). 
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The Devonian-Mississippian black shale deposits in the eastern and northern United States 

are other low-quality reservoirs with a long history of production. Production from the frac-

tured shales in the Bakken formation (Fig. 1.3) started in the early 1960s, and since then, tech-

nologies such as horizontal drilling and hydraulic fracturing, along with high commodity 

prices, have supported its development. Beginning in the late 1980s, the use of horizontal drill-

ing made possible the first oil production peak in 1991 and the most recent peak in 2007.  
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Fig. 1.3—The productive Bakken Shale formation of the Williston basin is located in the northern United 
States (after Hill and Nelson, 2000). 

 

Through the years, operators and service companies have gained valuable knowledge from 

previous research and practical experience. Reeves et al (2007) concluded that improvements 

in drilling technologies reduced the drilling time by 50% and increased the estimated ultimate 

recovery (EUR) per well as much as 60% in tight gas sand reservoirs. These advances in tech-

nology that helped to reduce drilling costs and increase the EUR per well have encourage 

companies to invest in unconventional reservoirs. At the end of 2004, unconventional gas res-

ervoirs contributed 40% of the total US gas production (Fig. 1.4). 
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Fig. 1.4—The overall US natural gas production decreased from 2000 to 2004; however, unconven-
tional gas production increased, accounting for 40% of the total gas produced in 2004 (from Kuuskraa, 
2006). 

 

1.3 Federal Tax Credits and the Importance of the Section 29 Legislation 

Section 29 of the Internal Revenue Code for Non-Conventional Fuel Credits was esta-

blished by the US Congress through the Crude Oil Windfall Profit Tax Act of 1980 to promote 

production of domestic hydrocarbons and reduce dependence upon imported oil after the oil 

crises experienced during the 1970s (Hass and Goulding, 1992).  

 

Currently redesignated to IRS Section 45J and IRS Section 45K, Section 29 is a produc-

tion-based tax credit that originally applied to qualified fuels from wells drilled or facilities 

placed in service between January 1, 1980, and December 31, 1992. The code specified the 

following as qualified fuels: (1) oil produced from shale and tar sands; (2) natural gas pro-

duced from geopressurized brine, Devonian shale, coal seams, tight formations, or biomass; (3) 

liquid, gaseous, or solid synthetic fuels produced from coal liquefaction and pressurization; (4) 

fuel from qualified processed wood; and (5) steam from solid agricultural byproducts.  
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The value of the Section 29 credit is determined by a formula which varies with the price 

of oil and the inflation (EIA, 2007). The Section 29 credit was a major stimulus to developing 

unconventional and high-cost gas resources. From 1980 through 1992, operators accelerated 

drilling from unconventional areas in Texas, Alabama, Colorado, New Mexico, and the Appa-

lachian region. The Devonian shales increased their annual contribution from 70 Bcf to 250 

Bcf between the years of 1986 to 1991 (Haas and Goulding, 1992). The tax credits also sup-

ported research projects finding suitable technologies for better drilling, and production prac-

tices for the specific plays, such as the Antrim Shale (Fig. 1.5). The US government, through 

the Department of Energy (DOE), has been encouraging unconventional initiatives for more 

than 35 years through different R&D projects. 

 

 
Fig. 1.5—Gas production from the Antrim shale formation in the eastern US was favored by the tax 
credits under the Crude Oil Windfall Profit Tax Act of 1980 (from Reeves et al., 2007). 
 

The Antrim shale in the Michigan basin experienced a combination of reduced drilling 

costs, and better completion and stimulation methods that led to higher production rates (Fig. 

5). R&D projects helped to develop confidence that the industry could develop and produce 

unconventional reservoirs economically. 
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1.4 US Energy Consumption by Source According to Technology Developments 

In the long view of American history (Fig. 1.6), wood served as the pre-eminent form of 

energy for about half of US history. Around 1885, coal surpassed wood usage; however, the 

tremendous and rapid expansion of coal was overtaken by petroleum (oil) in the middle of the 

20th century. Natural gas also experienced a rapid development into the second half of the 

20th century, and coal began to expand again. Late in the 20th century another form of ener-

gy, nuclear electric power, was developed and made significant contributions (EIA, 2007). 

 

 
Fig. 1.6—The chronology of the US energy consumption by source and its relation with technological 
developments worldwide (after WEC and EIA, 2007). 

 

The changes in US energy history were possible as new forms of energy in nature were 

available, accessible, affordable, and made economic by specific technological developments. 

Important developments in technology during the 20th century were possible thanks to hydro-

carbons supporting the use of combustion engines and the generation of electrical power. Du-

ring the early 20th century, the mass production of the car increased the use of oil and reduced 
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the use of coal during the second half of the century. In 2006, two-thirds of the oil consumed 

in the US went to the transportation sector. 

 

The growing demand for oil, as a result of higher per capita incomes in developing coun-

tries like China, India, Brazil, and Russia, and the recent demands for cleaner energies have 

created a recent multi energy scene that involves fossil fuels (petroleum, natural gas, and 

coal), renewable resources, and moderate generation from nuclear electric power, and the 

competition for energy has driven prices higher. Today, the dynamic of the worldwide energy 

share has benefited the production of oil and gas from unconventional sources in the US.  

 

1.5 Technological Advancements Driving Up Production from Unconventional Resources 

Unconventional reservoirs by definition cannot be produced at economic flow rates unless 

the wells are stimulated by massive stimulation treatments or special recovery processes and 

technologies, such as steam injection. Technology and the continuous search for improvement 

have made possible production of large oil and gas accumulations overlooked in the past for 

being difficult to evaluate and costly to produce (Reeves et al., 2007). In 2003, the National 

Petroleum Council (NPC) identified new technologies as one of the essential factors affecting 

natural gas prices and production volumes (RPSEA, 2005).   

 

Fig. 1.7 shows the US government research and development (R&D) funding in recent 

years. Although oil and natural gas prices have grown recently, government spending on oil 

and gas research has been decreasing. In the early 1980s, small oil and natural gas companies 

preferred to buy new technology. Historically, independent companies have spent little on 

R&D. Even major oil and gas producing companies cut back on R&D spending during the 

1990s. As such service companies had to fill the gap. The oilfields service companies have 

been major drivers in technology development during the past 20 years (NPC, 2007c).  
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Fig. 1.7—Oil and natural gas R&D funds provided by the US government (from NPC, 2007c). 

 

An example of R&D investment’s output is shown by Revees et al (2007). Fig. 1.8 illus-

trates the R&D spending and its influence on unconventional gas production from 1980 to 

2005 using data from 29 major US-based energy producing companies.  

 

During the 1980s and the early 1990s, a strong level of R&D investment helped to develop 

technologies for unconventional gas development. Subsequently, during part of the early 

1990s, the R&D investment was stimulated by “cost share” projects sponsored by the Gas Re-

search Institute (GRI) and the Department of Energy (DOE). The Multi-Well Experiment was 

an important project that helped to define the foundations for hydraulic fracturing diagnostic 

technology. During the mid-1990s, gas production increased at commercial scale as the results 

of the realization of R&D investments when technology passed from conception to commer-

cial adaptation. Revees et al., mention the importance of high gas prices during the 2000s to 

ensure advancements in technology and gas production. 
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Fig. 1.8—Investments in oil and gas recovery R&D and unconventional gas production. Data from 29 
major US-based energy producing companies (from Revees et al., 2007). 
 

The efforts by operators, private organizations, and government agencies working together 

proved successful. GRI, the Energy Information Administration (EIA), the National Petroleum 

Council (NPC), the United States Geological Survey (USGS) and others supported directly or 

indirectly by the Department of Energy (DOE) led to new specialize well drilling, completion, 

and stimulation technologies, improving the productivity of unconventional oil and gas wells. 

The unconventional oil and gas industry has benefited from technologies because of the 29 tax 

credits on for non conventional fuel production in the 1980s and early 1990s. Following the 

expiration of the tax credits in 1992, drilling budgets decreased and R7D spending continued 

to decline in real terms (Fig. 1.8). New alliances between the DOE and universities and indus-

try, and more recently the Energy Policy Act of 2005 passed by the US Congress, will be nec-

essary to ensure continuous support for advances in technology. 
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1.6 Research Objectives 

 The objective of this research is to evaluate the effect of technology and distinct economic 

events on selected unconventional oil and gas plays in the United States to evaluate the con-

cept of the Resource Triangle Theory (RTT).  

 

 Studies conducted in the Austin Chalk play, as the pilot area, and other unconventional 

plays have supported the RTT concept that high prices and better technologies do result in 

more drilling activity and more oil and gas production from unconventional reservoirs (UCRs).  

 

 Worldwide, unconventional resources represent an important source of oil and gas in times 

when most conventional resources are declining and demand for hydrocarbons is growing. 

Production from unconventional reservoirs in the United States has been stimulated by a com-

bination of federal tax credits, technical development programs supported by government 

agencies and private organizations, and high commodity prices.  

 

 Our research includes different types of UCR sources –tight sands, shales, CBM, and 

heavy oils– present in the United States to quantify the impact of new technologies and prices 

on field development activity. The analysis of produced volumes and additional recovery will 

help us to identify the impact of certain technologies or a period of high commodity prices on 

the development of UCRs. 
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CHAPTER II 

METHODOLOGY 

 

 The primary purpose of this research has been to evaluate the effects of technology and 

commodity prices on production performance for selected unconventional oil and gas plays in 

the United States. We used the parameters of technology and oil and gas prices to verify and 

quantify the concept of the Resource Triangle Theory (RTT).  

 We identified several stimulation technologies from the literature, built a production data-

base, and developed a computer program to help us evaluate the effect of a certain technology 

or/and a period of high commodity price affecting each of the selected plays.  

 

 In this research, we have performed the following tasks: 

 

1. Performed a literature review to (a) identify episodes of fluctuations in commodity price 

and major technological breakthroughs in the oil industry affecting the development of 

UCR and (b) select cases of study considering data availability in different type of UCR.  

2. Identified the different stimulation technologies used to produce each of selected cases. 

We classified the different stimulation technologies according to the type of UCR. 

3. Identified the use of Arp’s hyperbolic function as the appropriate method to estimate ulti-

mate recovery (EUR) from unconventional reservoirs. 

4. Built an Excel database to compile all required production (oil, gas, and water production 

rates, drilled and active wells) and economic (nominal oil and gas prices, consumer index 

price) data needed to compute EUR and revenues. 

5. Developed a program, using the VBA programming language, to perform a series of de-

cline curve analyses to compute the EUR. The program includes the value of the revenue 

adjusted by inflation at year 2006. 

6. Quantified the impact of technology breakthroughs and periods of high commodity price 

in each of the selected cases of study in terms of both EUR and revenues. We compared 

all the selected cases against our pilot example (the Austin Chalk formation). 
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2.1 Literature Search / Documentation 

The literature review formed an important part of this research effort. The review was di-

vided into two parts. The first part was to identify the most important events historically driv-

ing the oil and gas prices and the technology breakthroughs making production from UCR 

reservoirs possible. The second part of the review considered the use of information available 

in the literature and production databases to select representative cases of study.  

 

We obtained most of the information from sources such as papers from the SPE elibrary, 

AAPG, USGS and DOE, and production/drilling data from HPDI database and IHS Energy.  

 

2.2 Stimulation Technologies 

The literature search identified the different technologies used to stimulate production in 

each of the selected cases of study. We found six relevant technologies adding value to the 

final recovery (EUR). We chose the hydraulic fracturing technology as the base case since it 

is the common stimulation method present in each of the selected formations (Table 2.1).  

 

TABLE 2.1—STIMULATION METHODS IN SELECTED FORMATIONS IN THE UNITED STATES 

Formation UCR type Acidizing 
Hydraulic 

Fracturing 

Steam 

Injection 

Horizontal 

Drilling 

Improved 

Waterfracs 

Multi-

laterals 

Austin Chalk 

(AC) 

Low Perm. 

(Carbonates) 
• •  • • • 

Antrim (AS)  •   •  

Barnett (BS)  •  • •  

Lewis (LS) 

Gas Shales 

 •   •  

Bakken (BKS) Oil Shales  •  • •  

Cotton Valley 

(CVG) 
 •   •  

Mesaverde 

(MVG) 

Tight Gas 

Sands 
 •   •  
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2.3 Excel Database / VBA Programming 

The Excel database includes production data from the eight selected cases for this study 

(Austin Chalk, Antrim Shale, Barnett Shale, Lewis Shale, Bakken Shale, Cotton Valley Group, 

Mesaverde Group, and Kern River formations) as well as the economic parameters such as 

consumer price index (CPI) and nominal commodity prices. We created a VBA program in 

Excel to compute EUR and revenues through two procedures. 

 

The first procedure includes the use of Arp’s hyperbolic equation to obtain the best history 

match, and then forecasting the oil and gas production rates (Fig. 2.1). The input parameters 

are the constant initial rate (Qi) and the initial decline rate (Di), and the production rate versus 

time. The input parameters in the program are used to find the best production history match-

ing by testing different values of the hyperbolic exponent (b) in a given range from 0 to 1 

value. The best match is attained when the difference of error between the historical and cal-

culated production rate reach its minimum value. The best b value is plugged into the hyper-

bolic equation to forecast oil and gas production rates until the economic limit is reached. The 

economic limit for both oil and gas was arbitrarily selected to 5 STB/d and 15 MSCF/d, re-

spectively. The output data are the estimated ultimate recover (EUR), the remaining reserves 

(RR), and the abandonment time (tA). 

 

The second procedure computes the revenues associated to the volumes of oil and gas 

produced as output data from the first procedure. The nominal price of oil and gas with time 

(EIA, 2007; BP, 2007) is adjusted for inflation using the consumer price index (CPI). The CPI 

was obtained from the Bureau of Labor Statistics (BLS) of the US Department of Labor. The 

adjusted values of oil and gas are used to compute revenues comparable on the same basis. 

The program is able to adjust prices and compute revenues at money of year 2006. 
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Fig. 2.1—History matching and forecasting for a natural gas producer reservoir as example. The initial 
decline rate (Di) of 4% and the initial rate (Qgi) of 28,439 Mcf/mo yield a value of ‘b’ exponent of 0.19. 
The economic limit (Qge) of 15 Mcf/day is reached after seven years of production. 
 

The VBA program (Appendix A) quickly performs a series of decline curve analyses 

(DCA) to have as much history matching and production forecasting as we required for evalu-

ating the changes of EUR under different scenarios of technology or/and price. The steps fol-

lowed in this study are summarized in Fig. 2.2.  
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Fig. 2.2—Methodology used to define ultimate recovery (EUR) and revenues adjusted for inflation after any episode of technological ad-
vances or/and higher prices. 
 



 

  
  
  
  

18 

CHAPTER III  

EVENTS AFFECTING PRODUCTION FROM UNCONVENTIONAL RES ERVOIRS 

 

Political, economical, or social events are, among other parameters, responsible for oil 

price fluctuations (Fig. 3.1). In the case of unconventional reservoirs, the oil and gas price 

fluctuations are very important. Historically, periods of high prices have benefited the exploi-

tation of unconventional reservoirs since these types of reservoirs require stimulation methods 

to produce. The link between periods of high price and developments in unconventional res-

ervoirs illustrated by Masters’ triangle concept is the core. Thus, it is important to review the 

major events affecting oil and gas prices during the past 40-50 years. 

 

 
Fig. 3.1—Major critical petroleum-related events were greatly responsible for the oil price fluctuations 
during the period of 1861-2006 (from BP, 2007). 
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Traditionally, commodity prices have been the result of the supply and demand in the mar-

kets. On occasion, organizations such as the Texas Railroad Commission or OPEC have re-

stricted production to try to affect prices. The efforts to control the market were first domi-

nated by the actions of the Standard Oil Trust (1870s-1911), later by the Texas Railroad 

Commission (1928-41 and 1948-59), the Federal government (1942-47), and more recently by 

the OPEC cartel (since its foundation in 1960).  

 

BP (2007) highlights the major critical petroleum-related events from 1861 to 2006 to ex-

plain the fluctuations in oil prices (Fig. 3.1). Data available in both the money of the day 

(nominal terms) and the money in 2006 dollars after considering inflation (real terms) allow us 

to compare the value of the barrel of oil at different times.  

 

Fig. 3.1 shows that the Pennsylvanian oil boom in the 1860s saw prices reaching a peak of 

$104.35 per barrel (in real terms) until the oil boom began in Texas with the discovery of 

Spindletop (1901) and East Texas (1930) fields. The boom in Texas originated a period of 

stable low prices sustained by product availability (briefly described below). In 1931, the oil 

prices fall to a low of $8.66 per barrel (real) continuing relatively stable until the oil crises in 

the Middle East during the 1970s. The Yom Kippur war (1973), the Iranian revolution (1978-

79), and the Iraq invasion of Kuwait (1991-92) caused spikes of $14.99 per barrel (real), 

$88.13 per barrel (real) and $29.71 per barrel (real), respectively. The Asian financial crisis 

saw prices fall in 1998 to $16.22 per barrel (real) but in 2006 prices quadrupled, reaching 

$65.14 per barrel. The high price tendency has continued until today with prices around $74 

per barrel in 2007 (nominal), an equivalent to $70 per barrel considering prices at 2006. What 

follows is a brief description of significant events affecting oil prices since 1861. 

 

3.1 Oil Commodity Prices 

� 1861-1950 Period (the product-availability period). This period is mainly marked 

by the US discoveries ensuring abundant product supply and low prices in a small 

market. The discovery of Spindletop field in Texas in 1901, the growth of production 
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in Venezuela in the 1920s, and the reserves added by the discovery of the East Texas 

oil fields in the 1930s secured the energy supply for most of the 20th Century. During 

this period, domestic production was enough to fulfill the country’s energy needs. In-

deed, the US was a net exporter of oil until 1944, and net imports were slightly differ-

ent from zero until 1949 (Spangar, 1996).  

 

The product availability period from 1861 to 1950 is characterized on average, by low, 

stable prices below $2 bbl (nominal) that remained until 1957, except for peaks ob-

served in 1876-77 and 1919-20 when fears of shortage increased oil prices. 

 

� 1973 Oil Crises (The Yom Kippur War). In 1973, several Arab nations, angered at 

US support of Israel in the 1973 Arab-Israeli War, instituted an oil embargo against 

the United States and Holland. The Arab-Israeli Yom Kippur War was accompanied 

by decreases in OPEC production by 25%. The minimal global excess production ca-

pacity available outside OPEC created a short-term oil shortage and prices increased. 

World crude oil prices in 1974 had quadrupled from the 1973 average to about $12 per 

barrel (nominal), and OPEC was firmly in control of the world oil market.  

 

From 1973 to 1975, when OPEC restored output to pre-embargo levels, consumers 

were paying approximately 57% more for regular gasoline and 91% more for home 

heating oil (EIA, 2007). The Arab oil embargo stimulated exploration and production 

operations in non-OPEC countries, prolonged the productive life of marginal wells, 

and made secondary and tertiary production techniques profitable.  

 

� 1979 Oil Crises (The Iranian Revolution). The Iranian Revolution began in the late 

1978 and resulted in a drop of 3.9 million bbl/D of crude oil production from Iran from 

1978 to 1981. Saudi Arabia and other OPEC nations increased production to offset the 

decline, and the overall loss in production was about 4%; however, fears of shortage 

increased the oil prices.  
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In 1980, after the revolution, Iraq invaded Iran, causing a reduction in oil production of 

6.5 million bbl/D less than in 1979, and also a worldwide crude oil reduction of 10%. 

By 1981, OPEC production declined to 22.8 million bbl/D, 7.0 million bbl/D below its 

level for 1978. In 1981, crude oil prices almost tripled from the 1978 value of $14 bbl 

(nominal).  

 

From 1980 to 1985, limitations on production by OPEC kept prices high, at an average 

of $32 bbl (nominal). Also, high prices reduced the demand for oil. For example, cars 

became smaller, using less gasoline and many around the world began to look at ways 

to reduce energy consumption. The decrease in oil consumption also made oil produc-

tion from Saudi Arabia decrease from 9.9 million bbl/D in 1980 to 3.4 million bbl/D in 

1985. 

 

� 1986 Oil Price Collapse. In 1986, Saudi Arabia and other OPEC countries increased 

oil production to regain market share. The overproduction in 1986 caused an oil glut 

that reduced the prices by 47% compared to 1985. The decrease in prices provoked an 

increase in oil consumption that eventually led oil exporters such as Mexico, Nigeria, 

and Venezuela expanded to increase production capacity. 

 

The collapse of crude oil prices in 1986 reversed the upward trend in US production of 

the first half of the decade. Many high-cost wells, which became productive after the 

oil crisis of 1978-1980, became unprofitable in 1986 and were shut in. Domestic crude 

oil production began decreasing in 1986.  

 

� 1990 Persian Gulf Crisis (Iraq invaded Kuwait). The Iraqi invasion of Kuwait in 

1990 caused crude oil prices to increase suddenly and sharply. The United Nations 

(UN) limited the oil purchases from these countries, increasing prices more. Between 

July and September 1990, the world price of crude oil increased from $16 per barrel to 

$36 per barrel. However, this crisis ended as soon as UN troops began seeing military 
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successes in Iraq. Concerns about long-term supply problems vanished and oil prices 

dropped again. 

 

� 1997 Asian Financial Crisis: The Asian financial crisis occurred in 1997 when Asian 

economies shrank and their demand for oil declined. The OPEC cartel declined to cut 

its production quotas and oil prices dropped in 1998 ($12.72 bbl at nominal price). 

After the oil price collapse in 1986, the global economy expanded at a faster pace in 1987 

and 1988. Low petroleum prices stimulated the growth in industrial production, and the con-

servation measures instituted during crisis times were discontinued. The US decline in domes-

tic production beginning in 1970 resulted in an increase in crude oil imports (Fig. 3.2).  

 

Fig. 3.2—US petroleum production peaked at 11.3 million barrels per day in 1970. Low prices in 1986 
increased consumption and net imports. By 1996, net imports exceeded production. In 2006, produc-
tion was 6.9 million barrels per day, and net imports were 12.3 million barrels per day (from EIA, 2007). 

From 1985 to 2000, US consumption of oil climbed from 15.7 million barrels per day to 

19.5 million barrels per day. Most of this oil came from OPEC, whose share of total US crude 

oil imports rose from 41% in 1985 to 60% in 1990, before dropping to 46% in 1995-1997. 

Since 1998, the OPEC share has continued to increase, reaching 51% in 2000. 
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Observe a sustained decrease in US oil production after the 1986 price drop (Fig. 3.1). Oil 

company investments began shifting to foreign oil exploration and production after the 1986 

price drop since new fields in many parts of the world are generally much larger than in the 

United States and average production costs are lower. Changes in policy in the former Soviet 

Union since 1991 have increased US investment there, and recent moves toward foreign in-

vestments in Mexico have attracted American exploration and production companies (EIA, 

2007). Currently, the OPEC cartel control on prices is not as powerful as in the 1970s, consid-

ering the discovery and development of large oil reserves in the Gulf of Mexico and the North 

Sea, the opening up of Russia, and the market modernization in terms of foreign trading. Also, 

with less excess capacity OPEC does not have the flexibility it once had over the supply of oil. 

3.2 Natural Gas Commodity Prices 

Natural gas, once considered an associated product of oil wells, became a tradable com-

modity after the US deregulation process in the mid 1990s. In 1981, one-fifth of gas produced 

in the US was associated gas from oil wells (Spangar, 1996). Similar to oil, the consumption of 

natural gas has steadily increased since 1986 as gas prices decreased. Controversially, natural 

gas consumption in the US began to outpace production after domestic operators could not 

find attractive to produce at these low prices.  

  

The growth of natural gas imports in the US required to satisfy the domestic demand is il-

lustrated in Fig. 3.3. In 2005, US natural gas consumption reached 22.2 Tcf, down 1% from 

2004. The historical peak in US natural gas consumption occurred in 2000 when 23.3 Tcf was 

consumed (EIA, 2007). By 2006, the US had to import around 16% of the consumed gas to 

meet the requirements for fuel in the country.  
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Fig. 3.3—Natural gas overview during the period of 1950 to 2006 (from EIA, 2007). 

  

The interstate US natural gas market experienced controls and regulations by the Federal 

government until the early 1990s. The full decontrol of interstate in 1993 opened the market 

and gas became a tradable commodity. Fig. 3.4 illustrates the historical milestones for the US 

natural gas industry. 

 

Historically, natural gas prices can be analyzed in three periods: when gas prices were not 

regulated (1950s to early 1970s), during government regulations since the early 1970s and 

after deregulation in the early 1990s. In 1938, the US Congress through the Natural Gas Act 

(NGA) implemented principles and regulations to protect gas as a public interest. The regula-

tions drove the prices for more than 20 years.  
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Fig. 3.4—Historical milestones for the US natural gas industry and its impact on gas prices during the 
period 1950-2006 (after EIA, 2007). 
 

The NGA created the Federal Power Commission (FPC), known later as the Federal Ener-

gy Regulatory Commission (FERC), to control almost all aspects of the interstate natural gas 

industry (transportation, storage, and gas value). The wellhead prices imposed by FERC du-

ring the 1960s were low, shrinking operators’ interest for new exploration; however, reserves 

continued growing until the end of 1967 (Spangar, 1996). Reserves eventually decreased and 

a shortage in gas supply, FERC regulations, and the oil crisis provoked by the Yom Kippur 

war increased the gas prices during the 1970s. The oil crisis encouraged the use of alternative 

fuels but new regulations by FERC in 1978 reserved gas for households. During this period 

the wellhead prices increased more than 260% from $0.89 Tcf (real) in 1970 to $3.28 Tcf 

(real) in 1979.  
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In 1978, Congress passed the Natural Gas Policy Act (NGPA) to reform wellhead prices 

by partially deregulating them, foster competition and support exploration and production ac-

tivities. During the mid 1980s, the new FERC policies stimulated production; higher prices 

reduced demand, creating a surplus of gas (gas bubble) in the 1980s. The wellhead price 

peaked at $5.24  Tcf (real) in 1983 and the gas bubble effect provoked decreases in prices 

over 50% by the end of 1991 (Fig. 3.3). 

 

The process of deregulation started with the Wellhead Decontrol Act of 1989 and was 

completed in 1993 with the separation of transportation, storage and merchant services. The 

FERC removed all the price regulations for natural gas production, and gas became a tradable 

commodity. Since deregulation started, prices have been steadily growing until disruptions in 

natural gas supply caused by hurricanes along the US gulf coast in 2005. As a result of these 

disruptions, natural gas price reached $7.56 Tcf (real) in many spots by the end of 2005, an 

increase of 270% compared to gas prices in 1995. Fluctuation in prices reflected the uncer-

tainty over supplies. Today, most of the US unconventional gas activity is oriented to satisfy 

the nation’s demand.  
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Table 3.1 summarizes the oil industry major events and technologies since the discovery 

of the rotary drilling in the 1930s. The effects of each event identified in Table 3.1 are linked 

to the fluctuations of oil prices affecting the development of unconventional reservoirs.  

 

TABLE 3.1—OIL INDUSTRY MAJOR EVENTS SINCE THE DISCOVERY OF ROTARY DRILLING 

Period Global Event Effect 

1930s 
Rotary drilling. 

Acidizing. 

Rotary drills become standard technique (1930s). Acidizing is born 

(1932). 

Openhole completion, nitroglycerine fracture development. 

1950s 
Hydraulic fractur-

ing. 

Development of hydraulic fracturing (1949) and widespread use in the 

1950s. 

1973 
The Yom Kippur 

war. 

1st  Oil Crisis: Arab Oil Embargo (1973). Oil price increment from $3 (1973) 

to $12 (1974) per barrel. Better hydraulic fracturing technologies. 

1978 
The Iranian revo-

lution. 

2nd Oil Crisis: Oil price increment from $14 (1978) to $36 (1981) per barrel.  

Seismic technology to locate fractures, sweet spots. 

1980s 
Horizontal drilling 

developments. 

Horizontal wells and water treatment fractures. First horizontal well in the 

Austin Chalk, Texas (1985) 

Oil price Collapse (1986) reduces prices from $37 (1980) to $14 (1986) 

per barrel.  

1990s 
Better technol-

ogy. 

3D seismic horizontal drilling and better hydraulic fracturing technology 

improve flow rates and recoveries. 

2000s 
Oil price increase 

and multilaterals. 

Oil price increment from $29 (2000) to $65 (2006) per barrel to $120 

(2008) and the widespread use of multilateral drilling improves well per-

formance. Continued improvements in stimulation. 
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CHAPTER IV 

TECHNOLOGY BREAKTHROUGHS 

 

Technologies to overcome high drilling costs in complex areas and improve recovery in 

mature areas are used in tight gas sandstones (TGS), gas shales (GS), coalbed methane (CBM), 

and other types of unconventional resources (UCR) to increase production at the lowest possi-

ble cost. A common factor in all the UCR wells is the fact that they need to be stimulated after 

completion to achieve commercial production flow rates. Hydraulic fracturing in the 1950s, 

horizontal and extended reach wells, multilaterals and seismic advances in the 1990s, better 

reservoir characterization, and better information technology (IT) to process higher volumes 

of data coming from seismic have contributed to developing UCR (Table 3.1). 

 

4.1 Acidizing 

The main purpose of acidizing is to enhance the permeability of the reservoir near the 

wellbore and, thereby, the  productivity of the well. Originally, acidizing was limited to car-

bonate formations to dissolve the rock itself; however, special acid formulations were later de-

veloped to stimulate sandstone formations as well.  

 

4.1.1 History of Development 

The use of acids was first attempted in 1895 to stimulate or improve oil production from 

carbonate reservoirs. Several well treatments were conducted, but severe corrosion problems 

in the well casing and other metal equipment failure forced the technique to be discontinued. 

The next efforts to use acid occurred between 1925 and 1930. These efforts consisted of using 

hydrochloric acid (HCl) to dissolve scale in wells in the Glenpool field of Oklahoma and to 

increase production from the Jefferson limestone in Kentucky. No success was reported and 

acidizing was again abandoned until the development of arsenic inhibitors during the 1930s 

(Williams et al., 1979).  
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Arsenic inhibitors to protect the metal well equipment from HCl corrosion revitalized the 

interest in the acidizing technique. Williams et al., (1979) refer to this period as the modern 

era of acidizing. In 1932, the Pure Oil Company in cooperation with the Dow Chemical Com-

pany, which developed an effective acid corrosion inhibitor for mineral acids (Rae and di 

Lullo, 2003), stimulated a well in Michigan with positive results. The test used HCl acid to 

stimulate a limestone included an arsenic acid inhibitor to reduce corrosion in the tubing. By 

1934, acidizing was commonly used to stimulate carbonate reservoirs. Acidizing and shooting 

with nitroglycerin were the only two known methods for well stimulation until fracturing was 

developed in 1948. 

 

During the 1930s, acidizing was also tested with mixed results in sandstones by injecting 

mixtures of HCl and hydrofluoric (HF) acids. In the 1960s, when the chemical interaction be-

tween HF and sandstones were better understood (Rae and di Lullo, 2003) and better additives 

were developed, the results from sandstone acidizing treatment were improved.  

 

4.1.2 Applications 

The primary goal of an acid treatment is to increase the flow rate from the well by remov-

ing near wellbore damage. There are three fundamental acidizing techniques: (1) acid washing, 

(2) matrix acidizing, and (3) acid fracturing.  

 

(1) Acid Washing or wellbore cleanup aims to remove any acid-soluble scales that may be 

present in the wellbore or in the perforations. Acid washing can be used to dissolve inorganic 

scales such as metal carbonates, sulfates, sulfides in the wellbore, debris, fines, solids and ma-

terial that precipitated out from the crude oil during production and plugged perforations and 

the near-wellbore.  

 

(2) Matrix Acidizing  is applied to remove near well bore damage and to improve formation 

permeability near the well bore by dissolving acid-soluble solids or removing products that 

coat the rocks. Acid is injected into the formation pore space (intergrannular, vugular, or frac-
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ture) below the hydraulic fracturing pressure. The acid dissolves products near the wellbore 

that are restricting flow, thus connecting the wellbore with the undamaged portion of the re-

servoir (Fig. 4.1).  

 
Fig. 4.1—Formation damage after drilling fluid invasion. Observe how the mud displaced the formation 
water and clog the pores (from Sengul and Remisio, 2002). 

 

Removal of severe plugging materials in carbonates or sandstones near the wellbore zone 

can increase the well productivity.  

 

Matrix acidizing in carbonates normally uses hydrochloric acid (HCl) followed by a suffi-

cient after flush of water or hydrocarbon to clear all spent acid from the wellbore. A corrosion 

inhibitor must be added to the acid to protect the steel casing, tubing and packers from corro-

sion.  

 

Hydrochloric acid, pumped at pressures below the fracture pressure, reacts with the car-

bonate minerals (calcite or dolomite) to dissolve the carbonates. The acid will flow preferen-

tially into the highest permeability regions (largest pores, vugs, or natural fractures), creating 

pathways that are known as wormholes. The wormholes are large, highly conductive flow 

channels that create a high-permeability network (Fig. 4.2). The creation of wormholes is re-

lated to the rate of chemical reaction of the acid with the rock; high reaction rates tend to cre-

ate longer wormholes. 
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Fig. 4.2—Formation of wormholes in carbonates (From Sengul and Remisio, 2002). 

 

Economides et al., (1994) suggested that weak acid concentrations should be used for per-

foration cleanup and perforating fluid, and high acid concentrations for matrix treatments. All 

models of wormhole propagation predict deeper penetration for higher acid concentrations. 

 

Matrix acidizing in sandstones to remove damage is often treated with a mixture of hydro-

fluoric and hydrochloric (HF-HCl) acids at low injection rates to prevent fracturing. The HF-

HCl mixture, commonly refers as mud acid, is used to dissolve the clays found in drilling mud 

and to react with minerals naturally present in sandstones, including silica and feldspar. 

 

A typical acidizing treatment in sandstones includes three fluids: the preflush, the HF-HCl 

mixture, and the postflush. The preflush volume is usually a weak HCl that contains a corro-

sion inhibitor and other additives injected at 50 gal/ft into the formation. Next, the injection of 

50 to 200 gal/ft of HF-HCl mixture will follow. In the mixture, the HF reacts with clays, and 

drilling mud or cement filtrate to improve the near-wellbore permeability, while the HCl will 

remain inert, controlling the pH to low values and preventing precipitation of HF reaction 

products. Finally, a postflush of diesel, brine, or HCl displaces the HF-HCl from the wellbore. 
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In some cases, the optimum acid selection would require analyses in a laboratory because 

the responses of cores to different acid concentrations will be different depending upon the 

specific mineralogy of the core. Fig. 4.3 shows that although some of these formations have 

approximately the same acid (HF-HCI) solubility, permeability, and porosity, the response to 

acid is different. Initial reduction in permeability is a common occurrence observed with 

many formation core flow tests. It is attributed to sloughing particles (clays, silica, fines, etc.) 

that apparently bridge in the flow channels and restrict flow, before their further reaction with 

the acid. An inadequate acid volume treatment could lead to a restricted permeability in a 

formation, if the bridging is severe. 

 

 
Fig. 4.3—Response of cores from producing formations to mud acid (from Coulter et al., 1962). 

 

(3) Acid Fracturing  is used to achieve productivity or injectivity beyond the natural capabili-

ties of the reservoir (Coulter et al., 1962). The technique, used only in carbonates, aims to cre-

ate a fracture conductivity zone pumping usually HCl at a pressure above the formation frac-

turing pressure. Ideally, the flowing acid tends to etch the fracture faces in a nonuniform pat-

tern, forming conductive channels that remain open without a propping agent after the fracture 
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closes (Fig. 4.4). Acid fracturing is only applied in carbonate formations to either bypass 

damage around the wellbore or alter the flow pattern in the reservoir. 

 
Fig. 4.4—Acid fracturing process in carbonate reservoirs (from Al-Anzi et al., 2003/2004). 

 

4.2 Hydraulic Fracturing 

Hydraulic fracturing is a stimulation treatment performed to increase the productivity of a 

well by changing the flow pattern in the formation. Hydraulic fracturing typically aims to im-

prove well productivity from low-permeability formations. More recently treatments have con-

sidered wells producing from high-permeability formations with sanding problems or high 

damage by drilling fluids. 

 

The fracturing process consists of pumping of fluid (liquid or gel) into the formation at a 

pressure sufficiently high to cause tensile failure of the rock, fracture initiation pressure or 

breakdown sufficient to open the rock, injection of additional fluid to extend the opening and 

propagate the fracture, and placement of an effective proppant agent to prevent the fracture 

from closure (Fig. 4.5). 

 

A successful treatment will create a path of considerably higher permeability (five to six 

orders of magnitude) than the original reservoir permeability. The path will connect produc-

tion from the formation to the well. Average widths of a propped hydraulic fracture are on the 

order of 0.25 inches or less, with effective lengths up to 3,000 ft., tip to tip (Economides et al., 
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1994). The direction of the maximum normal stress component and the reservoir’s properties 

will define the type of the induced fracture (longitudinal or transversal). 

 

Propping agents, such as quartz sand, ceramic beads, or resin-coated sand, are particles 

that are mixed with the treatment fluid to prop open the fracture after the pumping operation 

ceases. Some of the factors involved in the selection of propping agents include density, 

strength, shape, size, susceptibility to erosion, susceptibility to embedment, and conductivity. 

 

 
Fig. 4.5—The hydraulic fracturing stimulation process includes several steps. A viscous fluid containing 
a proppant is injected under high pressure until the desired fracturing is achieved. The pressure is then 
released, allowing the fluid to return to the well. The proppant remains within the fractures to prevent 
closing. 
 

4.2.1 History of Development 

The first fracturing experimental treatments in the US were performed in carbonates in the 

Hugoton gas field in western Kansas in 1947. The test, with no propping agents, did not report 

increases in the well production. Operators did not trust the technique until fracturing in the 

Woodbine sands in the East Texas proved successful (Economides and Nolte, 2000). The 
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treatment in the Woodbine sands consisted of 23 bbl of gelled lease crude, 160 lbm of 16-mesh 

sand at 0.15 ppa, and 24 bbl of breaker (Economides and Nolte, 2000). In 1949, hydraulic frac-

turing was a stimulation method commercially available.  

 

During the 1950s, the technique of hydraulic fracturing proliferated due to its success in 

increasing oil and gas flow rates. By the end of 1955, the industry was pumping 3,000 fracture 

treatments per month. The 1960s and the early 1970s was a period characterized by the under-

standing and the optimization of the technique. In the late 1970s, the increase in natural gas 

prices stimulated the development of tight gas sands and other unconventional reservoirs 

where massive hydraulic fracturing (MHF) treatments could be used to improve flow rates. 

The period saw the development of more viscous fluids able to carry higher concentrations (5 

to 6 lb/gal) of proppants (Holditch and Tschirhart, 2005). The service companies continues to 

design sophisticated fluids (crosslinked gels) and harder materials (bauxite and lower density 

ceramics), as well as large-volume pumping equipment and proppant handling capacity. Op-

erators in the US developed large-scale hydraulic fracturing technology that boosted gas pro-

duction from tight-gas reservoirs by 10-fold or more (Stevens et al., 1998). 

 

The 1980s were characterized by the need to better control the outcomes of a fracturing 

treatment with real-time engineering and monitoring processes. Cross-linked polymer fluids 

allowed the industry to pump treatments carrying as much as 10 to 12 lb/gal of proppant 

(Holditch and Tschirhart, 2005). The purpose of more proppants was to create long, conduc-

tive fractures needed to optimize production. First attempts to fracture stimulate horizontal 

wells occurred during the late 1980s. The 1990s were marked by better fracturing technologies 

and better fracture design models.  

 

As explained by Holditch and Tschirhart (2005), some cross-linked treatments in low tem-

perature reservoirs did not effectively stimulate TGSs, probably due to gel clean-up failures. 

As such, operators began experimenting with less expensive techniques such as the slick-water 

fracturing technique that used high volumes of water and low concentrations of proppant. Ini-
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tial results seemed to indicate that slick water fracs would provide stimulation, but at a lower 

cost than cross-linked gel treatments. Other technological advances, such as the coiled tubing 

fracturing technique, allows for treating of multiple zones with one trip in the hole instead of 

pulling out every time to go to the next zone.  

 

4.2.2. Applications 

Hydraulic fracturing is a successful technique in almost all low to moderate permeability 

formations. Sand, limestone, dolomitic limestone, dolomite, conglomerates, granite washes, 

hard or brittle shale, anhydrite, chert, and various silicates can be stimulated by hydraulic frac-

turing. (Fig. 4.6). 

 

 
Fig. 4.6—Comparison of flow streamlines for fractured and non fractured wells (from Holditch and 
Tschirhart, 2005). 
 

4.3 Waterfracture Treatments 

Mayerhofer and Meehan (1998) defined “waterfracs” as fracture treatments that use a 

polymer-free fracturing fluid or a very low polymer concentration composed of water, clay 

stabilizers, surfactants and friction reducer with low proppant concentrations to reduce costs.  
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The success of waterfracture treatments or slickwater fracturing (LSF) in formations like 

the Austin Chalk or the Barnett Shale has been attributed to the waterfracture treatments ability 

to open existing natural fractures. As water imbibes into the matrix blocks, it expels the oil or 

gas into the natural fractures (Tschirhart, 2005). Furthermore, the fracture growth in naturally 

fractured reservoirs is usually different from the conventional concept that fracture stimulation 

predominately creates two single fracture wings extending from the well (Fig. 4.7a). Instead, 

waterfracture treatments create large fracture networks that increase the surface area of the 

fractures. The concept of multiple fractures has been supported by fracture mapping (micro-

seismic and tiltmeter) experiments. Fig. 4.7 shows the difference between a simple conven-

tional fracture geometry and a complex fracture network expected from stimulating a forma-

tion like the Barnett Shale (Tschirhart, 2005). 

 

a

b

Conventional, Simple Fracture

Complex Fracture Network

a

b

Conventional, Simple Fracture

Complex Fracture Network

 
Fig. 4.7–Conventional and complex fracture growth systems (from Tschirhart, 2005). 

 

4.4 Horizontal Drilling Technology 

According to the Energy Information Administration (EIA) Office of Oil and Gas, US De-

partment of Energy, a “unified” definition of horizontal drilling does not exist. Based on dif-

ferent sources, the Department of Energy, defines horizontal drilling as “the process of drilling 

and completing, for production, a well that begins as a vertical or inclined linear bore which 



 

  
  
  
  

38 

extends from the surface to a subsurface location just above the target oil or gas reservoir 

called the kickoff point, then bears off on an arc to intersect the reservoir at the entry point, 

and, thereafter, continues at a near-horizontal attitude tangent to the arc, to substantially or en-

tirely remain within the reservoir until the desired bottom hole location is reached.” Shelkhole-

siami et al., (1991) define a horizontal well as the result of a drilling and completion technique 

in which the wellbore remains in a high-angle trajectory roughly parallel to the formation, 

thereby exposing significantly more pay to production than would be exposed by a vertical 

wellbore. 

  

Horizontal wells came to play an important role in enhancing the productivity of the wells 

in the reservoir and subsequently the recovery factor. Usually, horizontal wells will reach ar-

eas not contacted by verticals and will solve problems associated with thin zones, fractured 

reservoirs, water and gas coning, gas reservoirs, waterflooding, heavy oil production, thermal 

processes and CO2 flooding.  

 

4.4.1 History of Development 

Horizontal drilling activities have been documented as early as 1927; however, the first 

recorded true horizontal oil well was completed in 1929, near Texon, Texas. Later, a horizon-

tal well of 500 ft was drilled in the heavy oil field of Franklin, Pennsylvania. After World War 

II, horizontal drilling benefited from jet perforating, casing the drilled hole, and the perfora-

tion or targeted intervals (EIA, 1993).  

 

By the early 1980s with oil prices around $35 and improvements in downhole drilling mo-

tors and downhole telemetry equipment, horizontal drilling was commercially viable. Litera-

ture review suggests (EIA, 1993; Joshi, 2003) three different horizontal drilling stages de-

pending on both technology and prices: early 1980s, late 1980s-early 1990s, late 1990s-today.  

  

During the early 1980s, the development stage of horizontal drilling, many test wells were 

drilled in Europe and the US. In Europe, Elf Aquitaine tested the technique to produce heavy 



 

  
  
  
  

39 

oil from a carbonate reservoir in the Rospo Mare oilfield, located offshore Italy in the Medite-

rranean Sea. Also, Elf drilled other wells in the Lacq Superieur and Castera Lou oil fields in 

southwestern France. Experiments in the US at the same time were carried out to reduce gas 

coning in the Abo Reef in New Mexico; to intersect fractures in carbonate reservoirs in Okla-

homa, Kansas, and Texas; and to minimize water and gas coning into the Sadlerochit reservoir 

in Alaska’s Prudhoe Bay field. 

  

In the late 1980s-early 1990s, the growth of horizontal drilling or the acceptance of the 

technique in the industry was marked by important drilling campaigns worldwide, with North 

America having the greatest number of drilled wells. Many efforts to reduce costs used me-

dium radius technology. In 1990, worldwide, more than 1,000 horizontal wells were drilled 

and more than 80% of them targeted the Upper Cretaceous Austin Chalk formation in Texas 

(EIA, 1993). Noticeable impact on the production of crude oil in certain regions was reported, 

and in the mid-1990s, crude oil production from horizontal wells in Texas had reached more 

than 70,000 BOPD. 

 

 From the late 1990s to today, many new technologies have been developed to improve 

horizontal drilling practices. Cost reductions, re-entry wells, coiled tubing drilling, improve-

ments in drilling monitoring, logging while drilling (LWD), measurement while drilling 

(MWD), and geo-steering to drill straight horizontal holes, as well as formation damage reduc-

tion and under-balanced drilling are examples of recent stages of horizontal drilling improve-

ments. 

 

4.4.2 Well Configurations 

The radius of the arc described by the wellbore as it passes from the vertical to the horizon-

tal defines the horizontal well classification. In all cases, the classification will be related to 

both the technology involved and the application or the purpose of the well. Some authors 

(EIA, 1993; Fritz et al., 1991) consider four horizontal methods: short radius, ultrashort radius, 

medium radius, and long radius. Joshi (2003) added one more configuration, intermediate 
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short radius, based on the arc of curvature. Table 4.1, after Joshi (2003), constitutes a sum-

mary of these five different configurations. In general, the required horizontal displacement, 

length of the horizontal section, position of the kickoff point, and completion limitations are 

considered when selecting a radius of curvature.  

 

TABLE 4.1—HORIZONTAL DRILLING TECHNIQUES (after Joshi, 2003) 

Type 

Radius of 

curvature, 

R (ft) 

Build rate 

(°/foot drilled) 
Length (ft) Applications 

Ultra-short 

radius (a) 
1-2 ft 

45°-60°/ft 

drilled 
100-200 ft 

Commonly used when re-entering exist-

ing vertical well (Sidetrack). 

Short  

radius (b) 
20-70 ft 

150°-350°/100 

ft drilled 
100-800 ft 

Commonly used when re-entering exist-

ing vertical well (Sidetrack). Favorable in 

small lease blocks. 

Intermediate 

short  

radius (c) 

120-150 ft  1,000 ft 
Commonly used when re-entering exist-

ing vertical well (Sidetrack). 

Medium 

radius (d) 
300-800 ft 

6°-30°/100 ft 

drilled 

1,000- 

4,000 ft 

Favorable for more complex completion 

methods in leases as small as 20 acres. 

Used when re-entering existing vertical 

well (Sidetrack). 

Long 

radius (e) 
>1,000 ft 

Up to 6°/100 ft 

drilled 

1,000- 

4,000 ft 

Favorable for leases of more than 160 

acres. Usually new well. 

 

4.4.3 Completion Techniques 

The appropriate completion scheme will be controlled by taking into account the existing 

conditions from the drilling to the abandonment of the well to achieve borehole stability and 

sand control. Joshi (2003) defined four completion schemes for horizontal wells to illustrate 

those conditions:  (1) openhole wells, (2) slotted liner completions, (3) liners with partial iso-

lations, and (4) cased-hole cemented completions.  
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For openhole wells, the formation type represents the major limitation, and stimulation 

process become very difficult to perform if wells are unstable. In the case of slotted liner com-

pletions, the purpose is to control the hole collapse and at the same time insert different tools 

such as coiled tubing (Fritz et al., 1991). Three types of liners have been used: perforated lin-

ers (holes drilled in the liner), slotted liners (slots of various width and depth are milled along 

the liner), and prepacked liners. The gravel pack is an option to help to control sand production 

using slotted liners. The option of liner with partial isolations allows certain types of isolation 

for stimulation or production control along the well. Finally, cased-hole completions allow 

cementing and perforation of the liner. Cased-hole completion will be very useful to stimulate 

wells, such as medium and long radius wells, that have been exposed to drilling fluids for long 

periods of time and wells that have been drilled in tight formations or low permeability forma-

tions.  

  

Short radius wells are limited to openhole or slotted liners. Although in the past the slotted 

liner completion scheme was a problem to stimulate a well, technological advances such as 

liquid fracs (acid or water fracs) have become a solution. In fact, today most of the wells in the 

US are liquid frac. On the other hand, medium to long radius wells have more flexibility since 

they can support all possible completion types. 

 

4.5 Multilateral Wells 

A multilateral well consist of several wells drilled off a single borehole (parent well) to the 

surface. Multilaterals can produce several horizontal or even vertical sections from a common 

borehole. The advantage of multiple wells drilled from a single main well is that they elimi-

nate costly rig days and reduce environmental foot print by initiating several new wells from 

the same surface location.  

  

Some of the earliest development toward horizontal and multilateral drilling took place 

during the early 1940s when John Eastman and John Zublin drilled between four and eight 

laterals in the same formation in various directions around the wellbore to increase the pro-
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ductivity of oil wells in California. However, the recognized father of multilateral technology 

is Alexander Grigoryan. “In 1949, Grigoryan proposed branching the borehole in the produc-

tive zone to increase surface exposure” In 1953, Grigoryan completed the world’s first truly 

multilateral well in Bashkiria field (former USRR). The well with nine producing laterals and 

a maximum horizontal reach from kickoff point of 136 m (446.1 ft) produced 17 times more 

oil per day than any other well in the field. The Soviets drilled an additional 110 multilateral 

wells in their oil fields during the next 27 years.  

 

Multilateral techniques range from simple to complicated configurations. Multilaterals 

have been classified into six levels depending on the sophistication of the junction. The Tech-

nological Advancement of Multilaterals (TAML) organization classifies the level of a multi-

lateral junction by its composition and hydraulic integrity, as illustrated in Fig. 4.8. Levels 1 

and 2 are the most simple (they do not guarantee mechanical and hydraulic integrity), levels 3 

and 4 guarantee only mechanical integrity, and levels 5 and 6 deliver both mechanical and hy-

draulic integrity.   

  

 
Fig. 4.8—Multilateral complexity levels one to six represent progressive levels of mechanical and hy-
draulic integrity (from Charlez and Bréant, 1999). 
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According to Charlez and Bréant (1999), the most common applications of multilaterals 

include exploration delineation, increasing well productivity and reserves, and revitalizing a 

depleted mature field. Typical uses of multilateral wells include naturally fractured carbonates 

such as the Austin Chalk play in Texas and heavy oil reservoirs such as the Orinoco Belt in 

Venezuela and similar heavy oil reservoirs in Alberta, Canada. The use of multilateral wells in 

naturally fractured reservoirs increases the probability of productivity improvement by inter-

secting several fractures and draining them efficiently. The heavy oil deposits in Venezuela 

benefit from multilaterals increasing contacted area during thermal processes (such as steam 

injection).  

 

4.6 Steam Injection 

Steam injection includes cyclic steam stimulation (CSS) and steamflooding. In areas with 

low-gravity crude, steam is used to heat and reduce the viscosity of the oil to allow the oil to 

move more easily to the wellbore.  

  

In the 1960s, operators began to inject steam to reduce the heavy oil viscosity and increase 

recovery. In CSS, steam is injected into a well for a time period from several days to several 

weeks. The heat is allowed to soak into the formation surrounding the well for an additional 

time (weeks), and the oil is produced (possibly up to a year) until the rate drops below an eco-

nomic limit. The steamflood technique may follow CSS to sweep oil between wells. Steam is 

injected in one well and oil is produced in another well, for example in a 5-spot pattern. 

Steamflooding operations have produced recovery factors of over 70%, such as in the Duri 

field in Indonesia and in several fields in the San Joaquin Valley in California. 

  

The NPC (2007d) explains CSS in three phases: injection, soaking and production. First, 

high-temperature/high-pressure (HT/HP) steam is injected for up to one month. Second, the 

formation is allowed to soak for one or two weeks while heat diffuses to decrease oil viscosity. 

Third, heavy oil is pumped out of the well (artificial lift is required) until an economic rate 

(Fig. 4.9). The production phase may take up to a year. Then the cycle is repeated, as many as 
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15 times, until production can no longer be recovered. Typical recovery factors for CSS are 

20% to 35% with steam-to-oil ratios (SOR) of 3:5 (NPC, 2007d).  

 

Cyclic Steam Stimulation (CSS) ProcessCyclic Steam Stimulation (CSS) Process

 
Fig. 4.9—Three steps are required to decrease oil viscosity in the reservoir allowing the well to pro-
duce. During cyclic steam stimulation (CSS), the well will be first an injector (steam-injection step) and 
later the producer after the soaking period (from Stevens et al., 1999). 

 

The steamflood technique may follow CSS to recover the heavy oil between wells. Steam-

flooding usually is arranged in patterns. A common configuration is a five-spot pattern with 

four producing wells surrounding a central steam-injection well. The well spacing can be less 

than 2 acres for a field in steamflood. The steam heats the oil to lower its viscosity and pro-

vides pressure to drive the heavy oil toward the producing wells (Fig. 4.10). Most steamflood 

operations consider well steam-stimulation at the beginning of the flood. CSS is the beginning 

phase of a steamflood, and in some cases even the steamflood injection wells are put on pro-

duction for one or two CSS cycles to help increase initial project production and payout the 

high steamflood capital and operating costs (NPC, 2007d). 
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CSS and steamfloods are used in United States, Western Canada, Indonesia, Oman, and 

China. In the US, California’s Kern River production rose from less than 20,000 barrels per 

day in the late 1950s before CSS to over 120,000 barrels per day by 1980 after the introduc-

tion of CSS. The world’s largest steamflood, the Duri field in Indonesia, produces 230,000 

BOPD with an estimated ultimate recovery factor of 70% in some locations. 

 

Steamflooding ProcessSteamflooding Process

 
Fig. 4.10—The steamflooding technique usually is anteceded by a CSS process and characterized by 
a continuous steam injection process (from Stevens et al., 1999). 
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CHAPTER V 

SELECTED CASES IN THE UNITED STATES 

 

Unconventional reservoirs in the US have been developing for more than 50 years. For the 

purpose of this study, we have selected eight formations from different types of unconven-

tional reservoirs as illustrated by Masters’ Resource Triangle Theory (RTT).  

 

Fig. 5.1 indicates the location of the selected formations and their associated basin systems. 

In red shading are the shale formations (Lewis, Bakken, Barnett and Antrim), and in grey the 

sandstones (Kern River, Mesaverde and Cotton Valley) and carbonate formations (Austin 

Chalk formation). For the purpose of this study, we have divided the formations into two 

groups: natural gas producers and oil producers. 

   

 
Fig. 5.1—Selected cases and their location in the United States territory. Red shading indicates the 
shale formations and in grey indicates the sandstones and carbonate formations under study. 
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5.1 Oil and Heavy Oil Producing Formations 

 

TABLE 5.1—OIL AND HEAVY OIL FORMATIONS 

UCR Formation Np*, MMSTB Oil*, MMBOE Basin States 

Low Permeability 

Oil (LPO) 

Austin Chalk 

(1955♦) 
961 1,786 

East Texas,  

Gulf Coast 
TX, LA 

Oil Shale (OS) 
Bakken Shale 

(1961♦) 
85 101 Williston ND, MT 

Heavy Oil (HO) 
Kern River 

(1977♦) 
42 42 San Joaquin CA 

* Cumulative Oil (Np) and Oil Equivalent (million BOE) values at Dec. 2006 from HPDI database 

♦ Production data available from this date. 

 

5.1.1 Low-Permeability Oil (Chalk Reservoirs) 

According to Fritz et al., (1991), “Although classified as a carbonate, chalk is actually be-

tween a limestone and a source rock in that it is a pelagic unit.”  Schlumberger’s glossary oil-

field (2008) defines chalk as “a porous marine limestone composed of fine-grained remains of 

microorganisms with calcite shells, coccolithophores”. Chalks are characterized by high poros-

ity (up to 80%, but diagenesis and pore-water chemistry can reduce this porosity to less than 

1%), low permeability (less than 1 md), and soft matrix (composed mainly of calcite). This 

combination of high porosity and low permeability requires stimulation methods to make a 

chalk reservoir commercially producible.  
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5.1.1.1 Austin Chalk Formation  

The Austin Chalk formation extends from Laredo Texas through eastern Louisiana (Fig. 

5.2) and it is the largest low permeability carbonate play in the US territory (RPSEA, 2005). 

The Cretaceous Austin Chalk formation depth goes from less than 1,000 ft to greater than 

15,000 ft in areas of east Texas and Louisiana (Kyte and Meehan, 1998). The porosity ranges 

from 2% (deeper gas reservoirs) to more than 15% (shallowest oil reservoirs) with permeabil-

ity values from microdarcies to hundreds of millidarcies. Productive thickness ranges from less 

than 50 ft to more than 800 ft. Fig. 5.2 shows the three main producing fields in Texas, the 

Pearsall, Giddings, and Brookeland fields.  

 

TX

GULF OF MEXICO

LA

BROOKELAND

GIDDINGS

PEARSALL

TX

GULF OF MEXICO

LA

BROOKELAND

GIDDINGS

PEARSALL

 
Fig. 5.2—The Austin Chalk formation is the largest carbonate play in the United States, extending from 
Mexico to Mississippi. The map shows the three major producer fields (HPDI, 2007). 
 

The Austin Chalk formation has been a niche for stimulation technologies in the United 

States. From acidizing to horizontal drilling, the Chalk represents an excellent example of  
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how technologies for low-permeability reservoirs can lead to increase drilling activity and in-

creased oil and gas production. 

 

5.1.1.1.1 Production History 

The development of the Austin Chalk formation had been the result of increasing oil 

prices coupled with improved stimulation techniques (Rose et al., 1992). They recognized five 

periods of production that began with its discovery in 1933 (Fig. 5.3) mention that: 

 

� Early activity or the first period of development in the Austin Chalk formation was 

mainly in the Pearsall field. Approximately 30 wells were drilled between 1933 and 

1941. 

� The second period took place from 1948 to 1956, when 99 wells were drilled and the 

selling price of oil went from $1.50 to $2.44 per barrel (nominal).  

� The third period of development beginning in 1974 was characterized by oil prices 

moving towards $10 per barrel. 

� The fourth period occurred in the early 1980s when oil prices were over $30 per barrel. 

� The fifth period began in the late 1980s with the use of horizontal drilling completions, 

further stimulated by the increase in prices after the collapse of oil prices in the mid 

1980s. Oil prices went from $15 per barrel in 1988 to $24 per barrel in 1990. 

 

Discovered in the early 1930s, the early Austin Chalk wells were first stimulated by shoot-

ing nitroglycerin. Later acidizing was used to provide additional stimulation but drilling activ-

ity declined because the low reserves per well caused the average well to be marginal. The de-

velopment of hydraulic fracturing in the late 1940s restarted activities between 1948 and 1956 

(Hill et al., 1978). Hydraulic fracturing was successful in stimulating the Austin Chalk, but at 

the low oil prices in the 1950s, the play was still marginal and drilling activity slowly declined. 

 

In the 1970s, a better understanding of the naturally fractured system present in the forma-

tion explained the different values of productivity index along the Chalk and improved the 
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results of stimulation treatments. However, the real reason that activity in the Austin Chalk 

increased rapidly in the 1970s was the rapid increase in the price of oil.  

 

During the mid 1980s, horizontal drilling was introduced in the Austin Chalk. The late 

1980s marked the beginning of an intense water fracturing treatment program that, along with 

horizontal drilling, increased production. By year-end 1991, the play reached the maximum 

oil rate of 60 million STB/year, increasing 1988 oil production by almost four-fold.   

 

Historically, oil and gas production has peaked twice. In 1981, after the oil crises in the 

Middle East, the formation reached a maximum rate of 74 million BOE/year (52 million 

STB/year and 135 Bcf/year) from more than 5,000 producing wells. The second peak reached 

its maximum value of 110 million BOE/year (41 million STB/year and 418 Bcf/year) in 1995 

mainly as the result of an intense horizontal drilling activity, an increase of almost 50% com-

pared to the first oil peak (Fig. 5.3). 
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1993: As of September 1993; there were 2,834 producing wells in Giddings field. Horizontal wells constitute 29% of this total with 816 wells contributing with more than 70% 
of field production (Meehan, 1995).

Late 1908s: Fifth period of development. First horizontal wells drilled in Pearsall field (Kyte and Meehan, 1996). In 1988, Horizontal drilling activity began in the Giddings field. 
Production in 1990 increased in Giddings field to 26.4 MBO/D, extreme  active drilling increased production in June 1993 to 81 MBO/D and 365 MMCF/D (Meehan, 1995). In 
1986, water fracturing began in Giddings.

1980s: Four period of development. Oil prices were over $30.0 per barrel (nominal). 

1992: 427 horizontal wells were producing in Giddings (Meehan, 1995).

1948-1956: Second period of development. 99 wells were drilled. Oil prices from $1.50 to $2.44 per barrel (nominal) (Rose, Austin and Pike, 1992).

1974: Third period of development. More than 500 wells drilled at the end of 1976. Oil prices moved toward $10.0 per barrel (nominal) (Rose, Austin and Pike, 1992).
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Production in 1990 increased in Giddings field to 26.4 MBO/D, extreme  active drilling increased production in June 1993 to 81 MBO/D and 365 MMCF/D (Meehan, 1995). In 
1986, water fracturing began in Giddings.

1980s: Four period of development. Oil prices were over $30.0 per barrel (nominal). 

1992: 427 horizontal wells were producing in Giddings (Meehan, 1995).

1948-1956: Second period of development. 99 wells were drilled. Oil prices from $1.50 to $2.44 per barrel (nominal) (Rose, Austin and Pike, 1992).
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Fig. 5.3—The development of the Austin Chalk is driven by the fluctuations of oil price (data from HPDI and IHS, 2007). 
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Oil and gas production from the Austin Chalk is available since 1955 (HPDI, 2007). Fig. 5.3 

provides an overview of the history of production in the trend. 

 

The main producer fields in the Austin Chalk formation are Giddings, Pearsall, and 

Brookeland, but there are many other smaller fields. The Giddings has accumulated to date 

(2007) 51% of the total oil produced and 84% of the total gas, as shown in Table 5.2.  

 

TABLE 5.2—PRODUCTION COMPARISON AMONG THE MOST PROLIFIC FIELDS  

IN THE AUSTIN CHALK FORMATION (data from HPDI, December 2007). 

      FIELD 
Cum. Oil, 

MMSTB 

Cum. Gas, 

Tcf 

Cum. Oil Equiv., 

million BOE 

Cum. Water, 

MMSTB 

Active 

wells 

Giddings 516 4.3 1,228 296 2,461 

Pearsall 150 0.1 167 512 265 

Brookeland 42 0.4 115 58 218 

Other fields 304 284 351 5,540 1,898 

TOTAL 1,012 5.1 1, 861 6,406 4,842 

 



 

  
  
  
  

53 

Much of the Austin Chalk development can be attributed to the success of hydraulic frac-

turing, that create a permeability system of near-vertical fractures that run parallel to the struc-

tural strike and connect the low- permeability matrix with the wellbore. A horizontal well will 

encounter fracture swarms otherwise not producible by vertical wells (Fig. 5.4).  

 

 
Fig. 5.4—The geological model of Giddings field shows normal faulting and horst and graben struc-
tures as characteristic patterns of Austin Chalk structural style. Production benefits from horizontal 
wells by connecting fractures along the reservoir to the well (from Kuich, 1989). 
 

From the 1930s to the middle 1980s, the productivity of the wellbore drilled into the frac-

ture system faced many uncertainties. A well must be able to intercept the natural fracture sys-

tem to economically produce from the Chalk (Rose et al., 1992). Usually, the productivity of a 

well drilled into the natural fracture system will successfully increase its productivity after the 

fracturing treatment. The use of horizontal drilling increased the possibility to encounter more 

natural fractures achieving better production rates. 

 

5.1.2 Oil Shale 

5.1.2.1 Bakken Shale Formation  

The Bakken formation in the Williston basin covers parts of the states of Montana and 

North and South Dakota in the US, and the provinces of Manitoba and Saskatchewan in Can-

ada. Deposited during the Upper Devonian and Lower Mississippian periods, the Bakken for-

mation can vary in depth from a few thousand ft in Canada to more than 10,000 feet in the 
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deeper areas in North Dakota. This study only includes the US production available in our da-

tabase (HPDI, 2007) as depicted in Fig. 5.5.  

 

The upper Devonian lower Mississippian Age Bakken shale is a naturally fractured forma-

tion that is both a source and a reservoir rock. The Bakken shale consists of three sub intervals, 

the Upper Bakken Shale, the Middle Bakken member, and the Lower Bakken Shale. The Up-

per and Lower Bakken intervals are similar black shales with an average thickness of 15 ft and 

30 ft, respectively. In general, the Upper Shale has higher total organic carbon content (TOC) 

than the Lower Shale; however, in areas like the Richland County in Montana, TOC values 

may reach 40% (Wiley et al., 2004). The Middle Bakken, a dolomitic shaley siltstone, is the 

main productive interval. Located above the Bakken shale is the Lodgepole (dense lime), and 

below is the Three Forks sand.  
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Fig. 5.5—The Bakken Shale in North Dakota (ND) and Montana (MT) has experienced two horizontal 
campaigns since production started in 1953. According to the HPDI database, by year-end 2007 about 
30% of the total oil production came from horizontal completions. 
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The Middle Bakken member is an oil-wet reservoir with oil saturations ranging from 75 to 

90%. The interbedded siltstones and sandstones of the Middle Bakken are found at depths of 

9,500 to 11,000 ft and produce sweet oil of 44 °API. The thickness ranges from 40ft to75ft. 

Porosity ranges from 4 to 10%, and permeabilities will vary depending on the field area from 

0.05 md to 0.5 md.   

 

5.1.2.1.1 Production History 

Oil production from the Bakken shale started in 1953 and included only production from a 

few vertical wells. From 1953 to 1987, the production from the shale came from less than 100 

vertical wells accumulating almost 6 Million STB of oil and 5.4 Bcf of gas. The production 

from vertical wells during this period contributed 5.4% of the total oil produced by year-end 

2007. The Bakken can be seen as an oil play that increased production after horizontal drilling 

revitalized the play in the late 1980s.  

 

The first horizontal well in the Bakken was completed in September 1987 by Meridian Oil 

Inc. in Richland County, North Dakota. At the beginning, horizontal wells on the order of 

1,000 long were drilled. These horizontal wells were not stimulated until improvements in 

technology during the 1990s allowed operators to drill and stimulate longer wells (average of 

3,000 to 4,000 ft). The early success of horizontal drilling made possible a second period that 

is currently developing.  

 

The production history of the Bakken in Montana and North Dakota can be divided into 

three phases: 1) early development using vertical well production prior to 1987, 2) the first cy-

cle of horizontal well production up to the early 2000s, and 3) recent development through the 

second cycle of horizontal production, which has had a huge impact credited to improvements 

in technology in the 1990s (ability to drill longer horizontal and multilateral wells from a sin-

gle vertical wellbore and improvements in hydraulic fracturing technology). Table 5.3 shows 

information from these three phases. The proportion of horizontal wells (including the use of 
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multilateral wells) as a percentage of the total producing wells has increased from zero percent 

in 1980 to 20% in 1988 and 67% in 1998 according to our database (HPDI, 2007).  

 

More recent values from our database recorded about a 30% decrease in number of hori-

zontal wells; although the values look lower than expected, we can assume that better tech-

nologies probably allow drilling longer laterals to reduce the final number of horizontal well-

bores. Note that total number of horizontal wells has continued increasing (Table 5.3). 

 

TABLE 5.3—DRILLING ACTIVITY IN THE BAKKEN SHALE 

1961-1987 1987-2001 2001-2007 

PHASES 

Vertical, frac-

tured wells. 

Stable to high 

prices. 

Low to high prices; more drilling 

activity increased well number 

by over 100 including horizon-

tals. 

Increasing prices, more drilling 

activity with better technology 

to stimulate horizontal wells. Im-

proved waterfracs. 

Cumulative Oil, 

MMSTB/period 
5.9 26.8 77.5 

Horizontal wells’ 

contribution to 

production 

 1988: 32%; 1998: 71%; 2007: 30% 

 

Early development of the Bakken shale using hydraulic fracturing to stimulate vertical 

wells used propping agents concentrations per treatment. However, the play was not really im-

portant until the first horizontal well was completed in 1987. At the beginning, the use of hori-

zontal wells increased the gas production but it was limited by the lack of stimulation treat-

ments until improvements in technology during the 1990s made possible to drill and stimulate 

longer horizontal and multilateral wells possible.  

 

Only an approximately 6% of total accumulated oil by year-end 2007 was produced dur-

ing the period of vertical well development from 1961-1987 (Table 5.3). Since 1987, the Bak-

ken has experienced the benefits of horizontal drilling while facing the challenges of stimulat-
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ing the laterals. During the last four years the Bakken has produced almost 60% of the total oil 

accumulated since 1961.  

 

Fig. 5.6 shows that the Bakken shale produced from less than 10 wells during almost 20 

years. By 1980, after the second oil embargo raised oil prices, Bakken rig activity increased 

the number of producing well from 12 in 1980 to 87 in 1987, and the oil production grew by a 

factor of 9. Oil rates from 1980 to 1987 went from 0.11 million STB/year to 1.01 million 

STB/year. After horizontal drilling began, the Bakken shale experienced its first oil peak of 

4.4 million STB/year in 1991, when 230 wells were producing. The 1990s was marked by 

great decline in production, and by year-end 2000 the oil rate decreased to 0.77 million 

STB/year; however, production during the 2000s has been revitalized by the second horizontal 

drilling campaign that increased rates to 21.29 million STB/year in 2006. By 2007, the Ba-

kken shale had produced a total of 110 million STB oil and 118 Bcf gas. 

 

According to the PTTC (2000), the horizontal wells in the Bakken shale have decreased 

drilling costs by 26%. The cost of drilling a horizontal well is about 1.5 times the cost of drill-

ing a vertical well, but the horizontal will be able to drain an area that would require two ver-

tical wells. Economically the payout of a horizontal well is around 1 to 2 years instead of 3 to 

4 years for vertical wells. 



 

      
  

58
 

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

10000.000

1960 1970 1980 1990 2000 2010 2020

Hydraulic Fracturing Stimulation
Only Vertical Wells

1987-2001: First Horiz. 
Campaign. Most wells 

are non-stimulated

Bakken Shale Formation Of Williston Basin

2001: Second Horiz. 
Campaign. Stimulated wells

Wells<10 10>Wells>100 Wells>100

Oil rate MMstb/year Producing Wells, #count/year Oil Prices @ 2006, $/bbl

Oil Peak (1991): 
4.4 MMstb

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

10000.000

1960 1970 1980 1990 2000 2010 2020

Hydraulic Fracturing Stimulation
Only Vertical Wells

1987-2001: First Horiz. 
Campaign. Most wells 

are non-stimulated

Bakken Shale Formation Of Williston Basin

2001: Second Horiz. 
Campaign. Stimulated wells

Wells<10 10>Wells>100 Wells>100

Oil rate MMstb/year Producing Wells, #count/year Oil Prices @ 2006, $/bbl

Oil Peak (1991): 
4.4 MMstb

 

Fig. 5.6—The Bakken Shale formation of Williston basin in North Dakota and Montana has been producing since 1953. The shale has 
accumulated 95% of 2007 produced oil since the start of horizontal drilling in 1987. 
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5.1.3 Heavy Oil 

Heavy oil is generally accepted to have API gravity ranging from 10 to 20°. At API gravi-

ties less than 10°, it is called extra heavy oil and bitumen. It is produced commercially in many 

areas; more than one-half of the United States EOR (Enhanced Oil Recovery) production is 

heavy oil. The predominant production technique is steamflooding because heavy oil’s high 

viscosity is very effectively reduced by heating, and is produced mainly in Venezuela and 

Canada (Stosur, 1999). 

 

5.1.3.1 Kern River Formation 

The giant Kern River field in California produces heavy oil of 13°API from the Miocene 

to Pleistocene Age Kern River formation (Fig. 5.7).  

 

CaliforniaCalifornia

 
Fig. 5.7—The Kern River formation from California produces from more than 15,000 wells. 
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The sands of the Kern River formation in the San Joaquin basin have an average porosity 

of 31% and permeability ranging from 1 to 10 darcies. Cold-production techniques yielded 

low primary recovery until the introduction of steam injection in the 1960s. Currently, steam-

flooding is the dominant method of stimulation used to produce Kern River heavy oils. Ope-

rating ratios of injected steam to enhanced oil recovery of 2.47 bbl steam/bbl oil –the most 

critical technical/economical variable– are considered efficient (Stevens et al. 1999). Since 

1986, the production decline has been controlled by significant reduction in operating costs, 

continued technological advances, and notably improved reservoir characterization. 

 

The Kern River was not included in the final analysis in this study since this play has 

mainly produced by a single technique (steamflooding technique). We proposed additional 

work to identify another heavy oil example in the world in order to compare different produc-

tion scenarios under different technologies through the life of the reservoirs.  

 

5.2 Natural Gas Producing Formations 

The Cotton Valley Group, the Mesaverde Group, the Antrim Shale, the Barnett Shale and 

the Lewis Shale are the natural gas producing formations in this study. According to the RTT, 

the selected natural gas producing formations can be classified as tight gas sand (TGS) reser-

voirs and gas shale (GS) reservoirs. Table 5.4 provides details about the formations we have 

studied and the cumulative gas and oil equivalent volumes at year-end of 2006.  
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TABLE 5.4—SELECTED NATURAL GAS FORMATIONS 

UCR Formation Gp*, Tcf 
Oil Equiv.*,  

million BOE 
Basin States 

Cotton Valley 

(1962♦) 
4.36 759 Arkla, East Texas TX, LA 

Tight Gas 

Sands (TGS) Mesaverde  

(1951♦) 
12.25 2,091 San Juan CO, NM 

Antrim Shale 

(1982♦) 
2.27 379 Michigan MI 

Barnett Shale 

(1982♦) 
2.54 431 Fort Worth MT, ND, SD 

Gas Shales 

(GS) 

Lewis Shale 

(1957♦) 
0.87 159 San Juan NM, CO 

* Cumulative Gas (Gp) and Oil Equivalent values at Dec. 2006 from HPDI database. 

♦ Production data available from this date. 

 

Note that the TGS of the Mesaverde Group and the Cotton Valley Group have produced 

almost 17 Tcf of natural gas while the GS of the Antrim, Barnett, and Lewis formations have 

produced around 6 Tcf of natural gas by year-end 2006. In general, commercial production 

from most of the GS started later in time compared to production coming from the TGS forma-

tions. 
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5.2.1 Tight Gas Sands (TGS) 

Tight gas sands are formations with an expected average permeability of 0.1 md or less 

that will not be economically viable to produce without the aid of massive stimulation treat-

ments. The low permeability prevents a tight gas reservoir from draining much of its gas over 

its economic lifetime. As a result, producing tight gas reservoirs economically requires com-

mingling as many zones as possible and fracture stimulating every zone, creating long frac-

tures in each zone.  

 

The low permeability is primarily attributed to the fine-grained nature of the sediments and 

diagenesis caused by compaction, and infilling of pore spaces by carbonate or silicate cements 

precipitated from water within the reservoir. Gas production rates from TGS reservoirs are low 

because of the poor permeability; however, the reservoirs are generally known for containing 

significant volumes of natural gas (Centre for Energy, 2008). Wells completed in TGS reser-

voirs experience relatively high decline rates during initial production, and then stabilize at 

low decline rates. Most hydraulically fractured tight gas wells can be matched using a hyper-

bolic decline curve model. 

 

According to the Centre for Energy (2008), the production of gas from tight gas sands are 

found everywhere there is production from conventional reservoirs, in the deeper portions of 

hydrocarbon-bearing basins. Currently, natural gas is being produced from tight sands in Can-

ada, the United States, Australia, and Argentina. 

 

Stevens et al., (1998) recognize the Appalachian basin as the birthplace for tight gas devel-

opment in the United States. Today tight gas remains the principal target in this mature region. 

Haines et al., (2006) lists the Cotton Valley of East Texas; the Mersaverde in New Mexico’s 

San Juan Basin; the Canyon Sands in the Permian basin of West Texas; the Wasatch in Utah’s 

Uinta Basin; the South Texas Wilcox/Lobo play, and the Lance, Dakota and Frontier forma-

tions in Wyoming’s Green River basin as the major tight gas plays in the United States.  
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5.2.1.1 The Tight Sands of Cotton Valley Group 

In 1980, the Federal Energy Regulatory Commission (FERC) officially classified low-

permeability Cotton Valley sandstones of the East Texas and North Louisiana basins as tight 

gas sands, qualifying them for additional price incentives or tax credits (Fig. 5.8). In combina-

tion with development of improved stimulation technology during the 1990s and price deregu-

lation through the Natural Gas Policy Act (NGPA) of 1978, the drilling for gas in low-

permeability Cotton Valley sandstones has increased dramatically (Bartberger et al., 2002).  

 

Texas

Louisiana

Texas

Louisiana

 
Fig. 5.8—The tight sands of the Cotton Valley Group of the East Texas and North Louisiana basins 
(HPDI, 2007). 
 

The tight sands of the Cotton Valley, also referred to as massive sandstones to the south 

and extending westward across the Sabine uplift into eastern Texas, exhibit porosities from 6 

to 10%, and average permeabilities less than 0.1 md. Cotton Valley sands occur at depths 

from about 8,400 to 10,500 ft or more. Reservoir temperature in these sands ranges from 225 

to 275°F. Depending upon the area, Upper Cotton Valley deposits or Lower Cotton Valley or 

a combination may be deposited on top of the Bossier Shale, which serves as the sealing 

member. The Cotton Valley Sandstone is a consolidated, fine-grained sandstone with well-

sorted quartz particles and varying amounts of feldspars (Bartberger et al., 2002). 
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Hydraulic fracturing has helped to increase the productivity of the wells in the Cotton Val-

ley sands. The USGS (Bartberger et al., 2002) reported the average flow rate prior to stimula-

tion is usually 50 Mcf/day with post-stimulation flow rates generally in the range of 500 to 

2,500 Mcf/day; however, rates as high as 10,000 Mcf/day and 11,700 Mcf/day have been re-

ported from Bethany field and Carthage field, respectively. The best reservoir potential has 

been identified from the Taylor sandstone member in the lower part of the Cotton Valley in-

terval by Wescott (Bartberger et al., 2002). Tindall et al. in 1981 reported that Taylor sand-

stones in the Oak Hill field supply more than the 80% of the gas production while the sand-

stones in the middle and upper Cotton Valley section contribute some gas but most of the wa-

ter production (Bartberger et al., 2002). Most of the drilling for tight Cotton Valley sandstones 

has occurred in northeastern Texas.   

 

5.2.1.1.1 Production History 

The development of the Cotton Valley has been encouraged because of improvements in 

hydraulic fracturing technology. The first Cotton Valley wells in east Texas were drilled in the 

late 1950s. Jennings et al. in 2006 reported that hydraulic fracturing stimulations began in the 

1960s using linear water-based fluids gelled with guar gum; however, only marginal success 

was achieved since the fracturing treatments faced challenges such as well depths, formation 

temperatures, and fracture closure pressures difficult to overcome at that time (Bartberger et 

al., 2002). The average gas rates were less than 500 Mcf/day and the low gas prices made 

production not commercial (Fig. 5.9). 

 

During the 1970s, wells in the Cotton Valley sandstones became commercial because of 

technical advances in hydraulic fracturing techniques and significantly higher gas prices dur-

ing the 1970s. In 1972, Texaco successfully increased the rate of production from one well in 

Cotton Valley sandstones in the Bethany field on the Sabine uplift in eastern Texas, from 500 

Mcf/day to a sustained rate of 2,500 Mcf/day through hydraulic fracturing (Bartberger et al., 

2002). The high gas prices reached during the period of 1973-1978 caused an increase in rig 

activity and therefore in gas production from plays such as the Cotton Valley. Gas production 
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from Cotton Valley sandstones, from the Carthage field in eastern Texas, increased from 2.2 

Bcf in 1976 to 70.9 Bcf in 1980 (Bartberger et al., 2002). The production from the entire Cot-

ton Valley tight sands during the same period increased by 21-fold with expensive massive 

hydraulic fracturing (MHF) and cross-linked gelled treatments (Fig. 5.9). 

 

In 1980, the Federal Energy Regulatory Commission (FERC) officially classified low-

permeability Cotton Valley sandstones as tight gas sands, qualifying them for additional price 

incentives. In the early 1990s, the use of limited amounts of propping agents in the fracturing 

fluid offered lower treatment costs, less fracture damage, and the possibility to increase pro-

ductivity. Lower treatment costs using water and friction reducers, high injection rates, and 

minimal amounts of 40/70 sand as proppant became known as waterfracs. Lower-cost water-

frac stimulations and gas price deregulation through the Natural Gas Policy Act (NGPA) of 

1978 supported the intense drilling activity in the low-permeability Cotton Valley sandstones 

(Bartberger et al., 2002). 

 

Data from 1962 to 2007 shows the cumulative gas and condensate from the tight gas sands 

of the Cotton Valley (Table 5.5). Note that more than the 80% of the oil and gas produced 

from the Cotton Valley has been produced from the Carthage field, the largest field in the area. 

The TGS of the Cotton Valley group have produced 4.5 Tcf of gas and 34 million STB of 

condensate at year-end 2007. 
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1960s: Gas prices were very low and gas production from low-permeability sandstones to the south in Louisiana and to the west in northwestern Louisiana and eastern
Texas flowed gas at rates less than 1,000 MCFD was considered not commercial.  

1970s: Gas prices increased after the oil crisis events. Advances in stimulation techniques such as massive hydraulic fracturing (MHF) helped to develop the play. 
At Carthage field in eastern Texas production increased from 2.2 BCF of gas in 1976 to 70.9 BCF of gas in 1980. 
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Fig. 5.9—Tight sands of Cotton Valley had benefited from high prices during the 1970s oil crisis. Production rates in 1980 grew dramati-
cally by 21 times compared to rates at the end of year 1976. 
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TABLE 5.5—CUMULATIVE PRODUCTION FROM THE TIGHT GAS SANDS  

OF COTTON VALLEY GROUP (data from HPDI, December 2007). 

 
Cum. 

Gas, Tcf 

Cum. Oil, 

MMSTB 

Cum. Water, 

MMSTB 

Cum. Oil 

Equiv., MMBOE 
Active wells 

Carthage 

field 
3.8 27 345 658 2,835 

All fields 4.5 34 399 787 3,599 

 

 

5.2.1.2 Mesaverde Group in the San Juan Basin 

The naturally fractured Mesaverde formation of San Juan basin, located in northern New 

Mexico and southern Colorado, as shown in Fig. 5.10, was the first western US basin produc-

ing gas from tight sand formations (Stevens et al., 1998).  

 

CO

NM

Ignacio Blanco Field

Blanco Field

Other Fields

Ignacio Blanco Field

Blanco Field

Other Fields

CO

NM

Ignacio Blanco Field

Blanco Field

Other Fields

Ignacio Blanco Field

Blanco Field

Other Fields

 
Fig. 5.10—The tight sands of Mesaverde Group in the San Juan basin produces mostly from the 
Blanco field in New Mexico and the Ignacio Blanco field in Colorado (HPDI, 2007). 
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The Mesaverde Group reservoirs were the most important producing reservoirs in the San 

Juan basin region. Economic gas production from Mesaverde is dependent on the presence of 

natural fractures that enhance the overall permeability from 0.01 to 1.4 md. Matrix permeabil-

ity in the formation is between 0.001 and 0.1 md. Natural fractures are present in most of the 

gas reservoirs, but it is only when natural fractures form an interconnected network that their 

effect on fluid flow becomes important. The production from the tight sands of the Mesaverde 

Group represents an important source to increase the ultimate recovery from the basin since 

the prolific Fruitland coal started to decline in the late 1990s. 

 

The Mesaverde Group was deposited in the Upper Cretaceous period and is present 

throughout many of the Rocky Mountain basins. The Mesaverde Group consists of three ma-

jor tight formations,  the Cliffhouse, Menefee, and Point Lookout sandstones from top to bot-

tom; and it is bounded by the overlying Lewis Shale and the underlying Mancos Shale. The 

Mesaverde is typically 600 to 800 ft in gross thickness. The mid-point depth of the Mesaverde 

formation ranges from 5,000 to 5,500 ft.  

 

The principal gas reservoirs in the Mesaverde interval are the Point Lookout and Cliff 

House marine sandstones. The Point Lookout is the most prolific interval. Smaller amounts of 

dry, nonassociated gas are produced from thin, lenticular channel sandstone reservoirs and 

thin coal beds of the Menefee. In the Mesaverde, the Blanco Mesaverde and Ignacio Blanco 

fields account for almost half of the total nonassociated gas and condensate production from 

the San Juan Basin. Within these two fields porosity averages about 10% and permeability 

less than 2 md; total pay thickness is 20 to 200 ft. Smaller Mesaverde fields have porosities 

ranging from 14 to 28% and permeabilities from 2 to 400 md, with 6 to 25 ft of pay thickness. 

 

5.2.1.2.1 Production History 

Although the Mesaverde in the San Juan basin was discovered in 1927, production data 

for this study was only available since 1951 (HPDI, 2007). Having accumulated a total of 12.5 

Tcf gas and 49.3 million STB of or condensate by 2007, the Mesaverde Group is the largest 
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producer of natural gas from the selected cases for this study. The Blanco Mesaverde and Ig-

nacio Blanco fields are the main producers from the Mesaverde.  

 

The Blanco Mesaverde reservoir was discovered in 1927, growing in response to pipeline 

capacity, decreased well spacing, and price increases. Extensive development took place on 

320-acre spacing during the 1950s the early drilling helped to define the areas of high initial 

gas flow rate potential and the areas with thick net pay. A 160-acre infill development pro-

gram was approved in 1974 for the Blanco Mesaverde reservoir and in 1979 for the Ignacio 

Blanco Mesaverde reservoir. Prior to January 1975, approximately 2,000 wells were produc-

ing on the 320-acre spacing. By 1997, pilot tests were initiated to determine the feasibility of 

reducing spacing to 80 acres. A simulation study revealed the significance of permeability 

anisotropy to the location of infill wells (Engler, T.W., and Brister, B., 2004).  

 

Mesaverde development has been the result of improvements in hydraulic fracturing 

treatments and reservoir characterization to improve infill drilling strategies. Fig. 5.11 shows 

three different periods of well activity since 1951. The first two (1951-1973 and 1974-1991) 

are characterized by a sharp positive slope followed by stabilization while the third period is 

still developing. During the 1950s, the number of wells increased from 99 wells in 1951 to 

1,785 wells in 1959. The 1960s and 1970s showed an increased in well number less than 10%, 

from 2,182 wells in 1964 to 2,345 wells in 1974. The second period started in 1974. The mid-

late 1970s marked by the oil and gas price increases from 1973 to 1978 led to an increase in 

the number of wells by almost 80%, from 2,345 wells in 1974 to 4,157 wells in 1982, fol-

lowed by a stable period of growth in wells number around 5%, from 4,157 wells in 1982 to 

4,348 wells in 1992. The oil and gas price increases the use of MHF techniques both led to 

more drilling activity in the 1970s.  
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Fig. 5.11—The tight sands of the Mesaverde Group of San Juan basin are very prolific. Gas production has peaked three times since 
production started in 1951. Declining production suggests a new form of technology or better characterization model to increase wells 
productivity and final recovery.
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The Mesaverde formation has experienced a steady growth in well activity after gas price 

deregulation in 1993. The most recent period has been characterized by stable growth and the 

use of better hydraulic fracturing technologies. From1992 to 2007, the play has grown almost 

80% from 4,348 wells in 1992 to 7,768 wells in 2007. 

 

Cumulative gas production to date from the Mesaverde formation is greater than 12 Tcf. 

At year-end of 2007 more than 7,700 completions yielded 295 Bcf/year. So far production 

rates in the Mesaverde have been increased by adding more wells and infill drilling on tighter 

well spacing.  

 

During the 1950s the gas rate increased 21 times from 11 Bcf in 1951 to 229 Bcf in 1957, 

when the play reached its first peak. The following two decades, the 1960s and 1970s, are 

characterized by two positive slopes, the first from 1962 to 1972, when production grew al-

most 72%; and the second from 1975 to 1980, when production went from 226 Bcf to 313 Bcf, 

an increase of almost 40%. Mesaverde reached its second peak in 1980 when gas rates 

reached 313 Bcf/year. In 2001, gas production reached its peak of 322 Bcf/year, increasing the 

1992 rate by 47%. Since 2001 the play has been declining. Ault et al., (1997) have reported 

that the Mesaverde in the San Juan basin is close to its maximum production with an esti-

mated ultimate recovery (EUR) of 13 Tcf of natural gas.  
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5.2.2 Gas Shales 

Shale is a very fine grain sedimentary rock that has low permeability. Unlike conventional 

gas sands or carbonates, shale can be both the source rock and the reservoir rock in a gas res-

ervoir. Typically, the methane in organic shales was created in the rock itself. Gas from shales 

can be biogenic or thermogenic in origin. Thermogenic gas forms when organic matter left in 

the rock breaks down under rising temperature; the generated gas is then adsorbed onto the 

organic material, expelled through leaks in the shale, or captured within pores of the shale. In 

some shallow shale formation, an influx of water and the presence of bacteria will cause the 

generation of biogenic gas. 

 

The presence of natural fractures in the shale formation may allow the gas to migrate in 

the shale and eventually be produced in a wellbore. If large fracture swarms are encountered 

in a shale gas reservoir, the recovery of gas can be enough to make the project economically 

possible. Usually, however, the shale must be hydraulically fracture treated to both create new 

fractures in the rock and link up the existing natural fractures to the hydraulic fracture and 

eventually the well bore. The only place for the gas to flow is either through natural fractures 

in the rock or through fractures created by injecting high rates of fluids and proppant into the 

formation under high pressure. In 2000, 28,000 shale gas wells were producing in the United 

States, with a combined production of more than 700 Bcf/year. Given the recent activity in 

Texas, Oklahoma and Arkansas, there are many more gas shale wells producing today (2008). 

 

 

 

 

 

 



 

  
  
  
  

73 

5.2.2.1 Antrim Shale Formation  

The organic-rich marine shale of Devonian age in the Michigan basin known as the Antrim 

Shale formation is located in the eastern United States (Fig. 5.12).  

 

 
Fig. 5.12—Antrim Shale of the Michigan basin in the eastern United States was the most active natural 
gas producer during the 1990s (after Hill and Nelson, 2000). 
 

The Devonian Antrim Shale has been commercially productive since 1982. The Antrim 

Shale was the most active natural gas play in the country during the 1990s. Antrim is a water-

saturated naturally fractured shale that needs to be dewatered to produce natural gas. The An-

trim, as a common source and reservoir rock as any other productive shales, produces natural 

gas of biogenic or microbial origin as the result of metabolic activity by methanogenic bacteria. 

Strong evidence of bacterial methanogenesis has been identified by deuterium isotopic compo-

sitions (δD) of methane and coproduced formation waters (Curtis, 2002). The origin of this 

biogenic gas is also linked to the Antrim’s shallow productive depths between 400 and 2,200 ft. 

A typical production profile in the Antrim will show low gas flow rates at the beginning of 

production, follow by a peak and a slow decline. The fracture system in the Antrim is a key 

parameter to produce gas; however, hydraulic fracturing stimulations are needed to keep the 

fractures open and to connect the matrix to the wellbore for the longest time possible. 
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The Antrim has been divided into two main zones, the Upper and the Lower members. 

Typically, the wells are completed in the Lower Antrim, and production comes from the two 

black-shale intervals, the Lachine and the Norwood. The Lachine layer is thicker (80 to 120 ft) 

than the Norwood (10 to 30 ft) and both are separated by the gray Paxton shale (20 to 50 ft). 

The total organic carbon (TOC) content in Lachine and Norwood ranges from 0.5 to 24% by 

weight. The remaining Paxton unit, a mixture of lime, mudstone, and gray shale lithologies, 

contains values of TOC between 0.3 to 8% by weight.   

 

5.2.2.1.1 Production History 

The Antrim Shale has produced gas since the 1940s; however, the activity increased 

sharply in 1982 (Fig. 5.13). Hydraulic fracturing technology and better understanding of the 

production mechanisms, along with Federal-tax credits, have helped to develop this uncon-

ventional reservoir. During the 1990s, the Antrim was the most active gas shale play in the US. 

By the end of year 1992, more than 1,200 wells had been drilled in this play; later in 1998, 

454 wells were drilled in the shale; and the following year of 1999, the 75% of the total wells 

drilled in the Michigan basin targeted the Antrim play. According to Hill and Nelson (2000) 

the 55% of the total annual natural gas production from shales by the end of 1996 came from 

the Antrim shale in Michigan. 

 

Between 1982 and 2006, the Antrim formation has produced a total of 2.27 Tcf of gas. The 

9,184 wells producing at the end of 2006 are the result of intensive drilling campaigns in the 

play to stop the production decline. Production data shows that although drilling has continued, 

gas production continues declining since it peaked in 1998 (Fig. 5.13).   
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Fig. 5.13—Production in the Antrim Shale is declining since 1998 although the play has experienced a 
great increase in number of producing wells.   

 

5.2.2.2 Barnett Shale Formation  

The Barnett Shale formation, located in north central Texas, occurs in a 38-county area of 

the Fort Worth Basin. The main producing areas are north and south of Fort Worth, Texas as 

shown in Fig. 5.14. Currently, the Barnett is the most active drilling play in the United States. 

The first well was completed in 1981; however, the play has grown dramatically in recent 

years with more than 2,000 wells drilled from 2000 to 2005. The Barnett Shale in the Fort 

Worth basin has been the most active gas field in the US since 2000. 

 

Important increases in gas production have been fostered by higher natural gas prices, bet-

ter understanding of gas shale systems, and the use of technologies such as horizontal drilling 

and better stimulation technology. Hydraulic fracturing in horizontal wells results in produc-

tion increases of two to three times that in vertical wells for the first 180 days (NPC, 2007d). 
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Wells usually start off with a rapid decline of about 50% in the first year, stabilize, and then 

follow a slow decline to the end of their lives. 

 

 
Fig. 5.14—The Barnett Shale of the Fort Worth basin is today the most prolific gas shale play in United 
States (after Hill and Nelson, 2000). 
 

The Barnett shale is an organic-rich, petroliferous black shale of middle-late Mississippian 

age that serves as source, seal, and reservoir to the natural gas accumulations in the Fort Worth 

basin of north-central Texas. The Barnett lies above the Ordovician Age Viola Lime-

stone/Ellenburger group and is overlain by the Pennsylvanian Age Marble Falls Limestone, 

both of which when present enable induced fractures to be confined during well completion 

and recovery method implementations in the Barnett. 

 

The Shale is divided into the Upper and Lower Barnett intervals, which are respectively 

150 ft and 300 ft thick. The two shale members are separated by the Forestburg Limestone that 

is about 10 to 20 ft thick. The Lower Barnett is the primary productive interval. Gas of ther-

mogenic origin is produced from the Barnett from greater depths compared to other gas-shale 

plays in the US. The productive interval thickness in Barnett ranges from 100 to 750 ft at an 

average depth of 6,500 to 8,500 ft. The shale is characterized by very low permeability in the 
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micro to nanodarcy range (0.0007 to 0.005mD) and low porosity in the 4 to 6% range (Fisher 

et al., 2004).  

 

The Newark East Barnett Shale Field located within the Fort Worth Basin of North Texas 

has now developed into the largest gas field within the state of Texas. In December 2007, the 

field was producing more than 3 Bcf/day of gas, with an annual production growth substan-

tially higher than 20%. Technically recoverable gas resource estimates for the Barnett Shale 

range from 3.4 Tcf to 10 Tcf (Pollastro et al., 2003). Wells in the Newark East field, the main 

producing play in the area, typically produce from depths of 7,500 ft at rates ranging from 0.5 

to more than 4 MMcf/day with estimated ultimate recoveries per well range from 0.75 to as 

high as 7.0 Bcf (Montgomery et al., 2005).  

 

5.2.2.2.1 Production History 

We have identified three periods of development in the Barnett Shale. The recent period 

from 2000 to 2006 has been the most prolific and it has accumulated 2.5 Tcf of gas.  

 

The first Barnett Shale well, the C.W. Slay#1, was completed by Mitchell Energy & De-

velopment Company (today Devon Energy) in 1981 in south eastern Wise County in Texas 

(Hill and Nelson, 2000). Initial production came from the Newark East field in Wise and 

Denton Counties, Texas. In 1997, AFE Oil and Gas Consultants added new areas in the south 

of the Newark East field, with discoveries in Dallas and Tarrant Counties in Texas.  

 

Fig. 5.15 shows the current distribution of vertical, horizontal, and deviated wells produc-

ing from Barnett shale (HPDI, 2007). Note the Wise-Denton County area which is the core 

area of production in the Barnett. Gas production from the Barnett Shale is mainly centered in 

the Newark East field in the Wise-Denton County area which produces more than the 99% of 

the total gas in the Barnett Shale formation.  
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Fig. 5.15—The Barnett shale in Texas has mainly grown to the south of the core area of Wise and 
Denton Counties. The distribution by type of well shows intense horizontal drilling activity (HPDI, 2007). 
 

The Newark East gas field, located in the Fort Worth Basin, Texas, is defined by a ther-

mogenic gas producer from low-porosity and low-permeability Barnett Shale. Annual produc-

tion from the Newark East field grew from less than 1 Bcf from 19 wells in 1985 to 20 Bcf 

from 244 wells in 1995. After the expansion of the play in 1997, production grew significantly. 

By 2005, annual production reached 498 Bcf from 4,564 wells (HPDI, 2007).  
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The periods of development in Barnett shale are characterized by the evolution of technol-

ogy and high gas prices. Technology and prices have driven production from the Barnett 

Shale (Fig. 5.16). Well stimulation techniques in the Barnett shale have also evolved through-

out the history of the play.  

 

In the early 1980s, moderate fracture stimulations with typical values of 300,000 gals of 

fluid and 300,000 lbs of proppant (sand) were used to stimulate vertical wells in the Barnett 

shale. MHF treatments then began to be implemented and this later went on to evolve into wa-

ter fracturing or light sand fracturing (LSF) treatments. Through early 1997, LSF was applied 

to tight sands for Cotton Valley sand the application was also tried in the Barnett shale where 

MHF completion costs were very high. In 1998, the Mitchell Energy & Development Com-

pany found that using a new stimulation technique that employed water as the fracturing fluid 

and required significantly less proppant reduced the stimulation treatment cost by 60% (Hill 

and Nelson, 2000). The most recently introduced technique has been the use of Ultra Light 

Weight proppant (ULW). Integrated fracture mapping technologies have been also applied to 

optimize stimulation. These fracture diagnostic technologies are based on the use of tiltmeters 

(surface and downhole) as well as microseismic mapping to evaluate fracture placement effec-

tiveness and orientation.  
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Fig. 5.16—The Barnett shale in the Fort Worth basin in Texas has been producing since 1982; however, well activity and production rates 
remained low during the 1980s but picked up during the mid 1980s with the use of MHF techniques. Barnett reached gas production rates 
greater than 1 Bcf in 1986. The MHF period increased 1986 rates by almost 30 times producing up to 41 Bcf at year-end 1999. Recently, 
the use of horizontals increased rates by more than 700 Bcf/year. 
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Technology and prices have driven production from the Barnett Shale. Starting production 

in 1982, the Barnett Shale of Fort Worth basin experienced a period of decrease in gas prices 

during the 1980s when the oil crises of 1986 reduced gas prices as low as $1.67/Mcf of gas in 

1987. A reduction of 32% compared to gas prices in 1982. Well activity remained low during 

the 1980s as well as production rates that started to peak up during the mid 1980s with the use 

of MHF techniques and more stable prices around the $2/Mcf of gas. Barnett reached gas pro-

duction rates greater than 1 Bcf in 1986. The MHF period increased 1986 rates by almost 30 

times producing up to 41 Bcf at year-end 1999. However, it is the use of horizontal wells that 

has greatly increased rates. During the 2000s, gas prices have growth dramatically; as a result, 

increases in gas prices have increased the number of producing wells as shown in Fig. 5.16. 

From 2000 to 2005, when more than 2,000 wells were drilled, the gas production rate in-

creased by more than 6 times going from 79 Bcf/year to 501 Bcf/year. 

 

Table 5.6 summarizes the three different periods of development historically observed in 

the Barnett Shale. The impact of these three periods is reported in terms of produced gas.  

 

TABLE 5.6—DRILLING ACTIVITY IN THE BARNETT SHALE 

1982-1990 1991-1999 2000-2006 

PERIOD 
Decrease in 

prices. Fracturing 

vertical wells 

Stable prices, low drilling 

activity, massive hydraulic 

fracturing (MHF) 

Increase in prices, high drilling 

activity with mainly horizontal 

wells. Improved waterfracs. 

Produced Gas, 

Bcf/period 
12 187 2,341 

Drilled Activity Wells<100 100<wells<1,000 Wells>1,000 

Horizontal wells’ 

contribution 
 

Production from horizon-

tals less than 1% 

2003:  5.0%        2004: 20.3% 

2005: 45.0%       2006: 66.0% 
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By year-end 2006, more than the 90% of the total gas produced from Barnett came from 

the 2000-2006 period of development when prices and technology supported more drilling 

and the increased use of horizontal wells. The majority of the horizontal wells in Barnett have 

been drilled since 2002.  

 

Technology advances in Barnett Shale have progressively increased the EUR per well (Fig. 

5.17). The estimated ultimate recovery (EUR) for Barnett Shale wells ranges from about 1.0 to 

3.0 Bcf/well depending on whether a well is vertical or horizontal although a reasonable aver-

age is about 1.75 Bcf/well. The EUR of gas from horizontal wells drilled in the core producing 

areas (counties with the highest production to date) has been reported between 2.5–3.5 Bcf of 

gas (Jarvie et al, 2007).  
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Fig. 5.17—Technology advances in Barnett Shale have progressively increased the EUR per well 
(From Quicksilver, 2005). 
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Pollastro et al (2003) reported the historical changes of EUR per well at Newark East field 

as follows: (1) 0.3-0.5 Bcf before year-end 1990; (2) 0.6-1.0 Bcf between 1990 and 1997; (2) 

0.8-1.2 Bcf between 1998 and 2000; and (4) 1.25 Bcf more recently experienced by Devon 

energy as the mean EUR value for Newark East Barnett gas wells. 

 

5.2.2.3 Lewis Shale Formation  

The Cretaceous Lewis Shale of the central San Juan basin of Colorado and New Mexico is 

primarily a quartz-rich, sandy mudstone with total organic carbon (TOC) content ranging 

from about 0.5 to 2.5% (Fig. 5.18). 

 

NM

CO

UT

NM

CO

UT

 
Fig. 5.18—The Lewis Shale of the San Juan basin in the western US (after Hill and Nelson, 2000). 

 

The Lewis Shale porosity ranges from 2 to 8% with water saturation values ranging from 

50 to 80%. From 1950 to 1990, only a few completions were reported from the Lewis; how-

ever, the late 1990s marked the startup of this shale gas formation. Operators target the shale 

as either a secondary completion zone in new wells or a recompletion zone in existing well-

bores to support the decline in gas production from the prolific Fruitland Coal during the late 
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1990s. Production from conventional reservoirs such as the Mesaverde (MVG), Dakota (DK) 

sandstones, and Lewis and Manco shales represent important source to increase the ultimate 

recovery from the basin.  

 

The Lewis Shale is 1,000 to 1,500 ft thick and lies above the Mesaverde formation and be-

low the Pictured Cliffs formation. The Lewis has been divided into four geologic members, 

the Ute/Huerfanito Bentonite, Navajo City/Chacra, Otero/First Bench, and Otero/Second 

Bench. Similar to the underlying Mesaverde formation, the Lewis is naturally fractured. Al-

though geologically different, the Lewis Shale is often considered to be part of the Mesaverde 

Group, given that in most of the cases it produces commingled with these reservoirs.  

 

The common practice in completing the Lewis involves perforating the casing of existing 

wells, hydraulically fracturing the shale, and commingling Lewis production with existing 

Mesaverde or Dakota production. The commingling strategy makes the Lewis Shale ex-

tremely economic with an incremental cost of only about $0.30/Mcf (Dube at al., 2000). 

However, quantifying the incremental production rates, reserves and corresponding value 

from the Lewis as a reservoir is difficult.  

 

In 1998 Burlington Resources characterized the Lewis Shale across the basin after observ-

ing production increases from commingled wells. Focusing its study on the Navajo City and 

the First and Second Otero members, Burlington estimated that average daily Lewis produc-

tion from these areas would likely range between 100 and 130 Mcf/day initially, with average 

estimated ultimate recoveries between 0.3 and 0.5 Bcf per well (Dube et al., 2000). Hill and 

Nelson (2000) estimated production averages of about 100 to 200 Mcf/day of gas, exhibiting 

stabilized annual decline rates of about 6% with very little water or condensate production. 

The projected economic recoverable reserves go around 0.05 to 2.0 Bcf of gas per well. Lewis 

in San Juan contains considerable behind-pipe reserves indicate a value of shale gas-in-place 

resource of 97 Tcf and data from Hill and Nelson in 2000 show a range of recovery factor 

from 5 to 15% (Curtis, 2002).  
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Lewis production is achieved by hydraulic fracturing treatments. Stimulation fluids used 

to perform these fracturing treatments include slickwater, linear gel, crosslinked gel, liquid 

CO2, foamed ClearFRAC (trade name of Schlumberger), foamed linear gel, and foamed 

crosslinked gel; and fracture treatment jobs sizes of proppant range from over 400,000 lb of 

sand to only about 50,000 lb (Teufel et al., 2004). Most of the wells (280) have been hydrauli-

cally fractured with foamed linear or foamed crosslinked gels and only a few with slickwater, 

straight linear gel, CO2, or ClearFRAC.  

 

We considered the Lewis as a study case for this project because it represents a challenge 

since its development has not been address directly; however, Lewis in San Juan basin con-

tains considerable behind-pipe reserves that are attractive to produce economically. 

 

5.2.2.3.1 Production History 

The development of the Lewis Shale has been the result of commingled production with 

sandstone intervals to sustain the decline of the prolific Fruitland Coal of the San Juan basin. 

The gas production rates of the Lewis have supported production from the San Juan basin and 

encouraged producers to develop the Shale. Currently, the Lewis is considered a developing 

play with sustained well activity (Fig. 5.19). 

 

Historically, the Cretaceous shales of the Lewis formation were rarely completed in the 

San Juan Basin. From 1950 through 1990, only 16 wells that encountered extensive natural 

fracture systems while drilling for deeper Mesaverde and Dakota objectives were completed 

and produced from the shale (Dube et al., 2000). Production rates from those 16 wells ranged 

from one to 10 Mcf/day/well, and ultimate recoveries ranged from five to 70 Bcf. In 1991, BR 

began adding the Lewis to existing Mesaverde completions in specific areas. Through 1997 

approximately 101 Lewis completions had been made in existing and new wells, commingled 

with Mesaverde or Dakota production. Actual data used for this study coincide with the fact 

that the 1990s was the startup of Lewis shale development.  
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Fig. 5.19—Production profile showing the three times when gas production from the Lewis shale peaked (1959, 1967, and 1980). Produc-
tion peaks that occurred before 1980 are the result of increases in well number supported by hydraulic fracturing technology, while the 
third peak is derived from high prices during the oil crises. The Lewis is currently a developing shale play. 
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Data available in our database (HPDI, 2007) indicate four periods of development since 

production started in 1952 (Fig. 5.19). Production data also show that the previous three peri-

ods peaked in 1959, 1967, and 1980, respectively. Production peaks that occurred before 1980 

are the result of increases in well number supported by hydraulic fracturing technology while 

the third peak is derived from high prices during the oil crises. The Lewis is currently a devel-

oping shale play. 

 

The play experienced its first gas peak in 1959 (0.978 Bcf/year) when on average 10 wells 

were producing. A second peak observed in 1967 is basically attributed to an increment in well 

number from 16 (1962) to 34 wells (1967). During these periods the gas production increased 

by almost six-fold. From 1967 to 1977 and regardless increasing number of wells from 34 to 

50, the gas rate declined to 2.52 Bcf/year by the end of 1977, a reduction of almost 30%. The 

following year was marked by the second oil embargo, which helped speed up production 

when gas prices went up. Gas production in 1978 increased about 10-fold compared to the 

previous year. At the end of 1978, the gas rate reached 23.87 Bcf/year as the number of pro-

ducing wells increased around 3 times.  

 

In 1980, the Lewis saw its third production peak when 32.12 Bcf/year of gas was produced. 

The effect of oversupply of gas in the mid 1980s decreased gas prices, and production went as 

low as 14.52 Bcf/year by 1987. From 1980 to 1987 production declined by 55%. The late 

1980s brought better gas prices and increases in production. From 1987 to 1988 production 

increased by two-fold after increasing in well number by a factor of 1.7.  

 

The formation has experienced more activity when operators realized that significant be-

hind-pipe reserves can be produced from the Lewis. Well activity has increased from 236 pro-

ducing wells in 1987 to 355 in 1997 to 688 at the end of 2006. The cumulative gas increased 

by 246% from 1987 to 2006. Cumulative gas of 869 Bcf (2006) has brought in revenues of 

$3,261 million. In terms of oil, the shale has produced 14 million STB, and produced gas ac-

counts for almost 160 million BOE.  
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CHAPTER VI 

ANALYSIS METHODS 

 

In this work, we have used production data from entire formations or plays to forecast the 

estimated ultimate recovery of gas or oil for a variety of situations. These situations can be 

defined by a change in either technology or oil and gas prices. Whenever, there is a technol-

ogy breakthrough or a sudden change in product prices, the situation changes. 

 

We then took our estimates of ultimate recovery and correlated these estimates with fac-

tors that could possibly change the situation. Thus, our work encompasses both production 

forecasting and the correlation of those forecasts to events at the time that altered the situation.  

 

The Spearman's Rank Correlation Coefficient technique helped to determine the depend-

ence between the active wells, the rig count, and the commodity price variables. The decline 

curve analyses allowed us to estimate the increase in production from different scenarios or 

situations of high price or technology assuming hypothetically that no subsequent changes 

would have happened. 

 

6.1 Spearman's Rank Correlation Coefficient (Dependence between Variables) 

Spearman's Rank Correlation Coefficient (SRCC) is a technique that can be used to sum-

marize the strength and direction (negative or positive) of an association between variables. An 

association between variables means that the value of one variable can be predicted, to some 

extent, by the value of the other. A correlation is a special kind of association where the rela-

tion between the values of the variables is linear; however, data reliability is related to the size 

of the sample. As you collect and analyze more data you collect, the results should be more 

reliable. 
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SRCC is used to test for correlations between data sets based on relative rankings of ele-

ments in data sets, rather than on values of the elements. In this way SRCC ranges from values 

of -1.0 (perfect negative correlation) to +1.0 (perfect positive correlation), the value 0 (zero) 

being that of indifference or no correlation at all. The plus or minus sign of the correlation 

value determines the trend of the dependent value given an independent value. However, the 

strength of the relationship is measured through the absolute value or magnitude of the number. 

That is to say, the closer the absolute value is to 1, the stronger the relationship (whether it is 

positive or negative).  

 

For a set of variable pairs, the SRCC gives the strength of the association between the vari-

ables. Fig. 6.1 shows the most typical arrangements observed once the two sets of data are 

plotted: the example in plot (a) shows a total linear positive dependence; an increase or de-

crease in the value of the independent variable will have the similar effect on the dependent 

variable. The example in plot (b) refers to total but nonlinear negative dependence. Plot (c) 

shows a diffused positive dependence pattern; this type of correlation can be either positive or 

negative but, as the figure shows, the correlation will not be as perfect or direct as desired, 

while plot (d) shows a plot of uncorrelated variables, meaning the variables are completely in-

dependent. 
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Fig. 6.1—Scatter diagrams showing typical correlations between two variables (from Mian, 2002b). 

 

The square of the size of the correlation coefficient is the fraction of the variance of the 

one variable that can be explained from the variance of the other variable. The relation be-

tween the variables is called the regression line which is defined as the best fitting straight line 

through all value pairs. The relationship between dependent and independent variables can be 

quantified by fitting a linear trend line in the scatter plot. Establishing a simple linear regres-

sion, an equation for the trend line can be worked out in the form of: 

 

bXaY += ,   ……………………………………………………….…… (1) 

 

where a is the Y intercept of the line, and b is the slope of the trend line, defined as: 
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The graphical representation of dependence gives us a good qualitative assessment be-

tween two data variables; however, to reach any conclusions it is necessary to establish a quan-

titative relationship between the variables. This allows us to have a certain value on how 

strong the relationship is between the analyzed variables. The correlation coefficient (rXY) is a 

numerical summary measure, given by the following equation: 

 
YX

n

i
ii

XY ss

n

YYXX

r
)1(

))((
1

−

−−

=

∑
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  ……………………………………………. (3) 

where  Sx is the standard deviation of the X variable (independent), 

 Sy is the standard deviation of the Y variable (dependent), 

 X  is the average (mean) of the independent variable, 

Y  is the average (mean) of the dependent variable, and,  

 n = number of elements in data sets.  

 

6.1.1 Using Excel to Compute the Correlation Coefficient 

SRCC can be calculated using standard statistical software such as Microsoft Excel. A 

typical way of showing the graphical correlation between variables is through a scatter dia-

gram. A scatter diagram plots one variable in a function to the other on a Cartesian plot. The 

independent variable is typically placed in the x-axis while the dependent variable becomes the 

y-axis. 

 

Excel has a convenient function to quickly compute the correlation coefficient. The Excel 

built-in function CORREL returns the correlation coefficient of the cells in RANGE1 and the 

cells in RANGE2 
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=CORREL(RANGE1, RANGE2) 

 

The correlation factor analysis has helped us to examine the relationship between oil and 

gas prices and the number of operational drilling rigs or producing wells at any given time. 

Our hypothesis suggests that, based on the basic economic principles of supply and demand, as 

product prices rise supply should increase in response to the new economic incentives to pro-

duce more oil and gas. We expect a positive correlation between oil prices and active drilling 

rigs. The more profitable a barrel of crude oil will be to the supplier, the more drilling the sup-

plier will engage in, contracting drilling rigs to create producing wells. We would expect a 

time lag associated with this correlation because of the contractual nature of drilling rigs; that 

is to say, once a company has leased a drilling rig, they will use it to the fullest until the end of 

the lease time. We developed our hypothesis from the apparent relationship among certain fac-

tors. The determination of the correlation factor can help quantify the extent to which these 

assumptions are true or not true. 

 

6.1.2 Estimation of Time Lag between Correlations 

The time lag is the difference of time that can be expected between the moment the value 

of the independent variable (oil and gas price) changes and the moment it actually impacts the 

dependent variable (active drilling rigs or producing wells). This can be estimated by shifting 

the data series of the dependent variable with respect to time while maintaining the independ-

ent variable fixed. The number of notches in the time scale that the series need to be moved to 

find a match between dependent and independent variables will yield a time lag estimate in 

years. 

 

6.2 Decline Curve Analysis 

The production decline curve analysis method is based on the relationship between the 

production characteristics of a reservoir and the amount of oil and gas that has been produced. 

The reservoir’s bottomhole pressure (BHP) decreases as petroleum is produced. As a result, 

the reservoir’s production rate will also decrease. 
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Decline curve analysis assumes that all estimates of ultimate recovery by extrapolation of a 

performance trend fundamentally follow a predictable pattern. Decline curve analysis helps us 

to determine the remaining productive life (reserves) of a reservoir. The decline curve analysis 

depends on the well’s past performance. Therefore, finding the curve that approximates the 

past production history of the well is fundamental to have a reliable prediction. 

  

Mian (2002a) cited two conditions required to properly perform a decline curve analysis. 

These were (1) sufficient past production performance available to make a reasonable match of 

the performance, and therefore, prediction of future behavior, and (2) production history that is 

based on capacity production with no operational changes. It is assumed that the well will con-

tinue to be operated in the same manner in the future. 

  

There are three types of decline analysis commonly used in industry: exponential, hyper-

bolic and harmonic. Hyperbolic decline analysis is the common type for tight formations, and 

it is especially used in tight gas formations. The hyperbolic decline curve has a concave up-

ward shape when plotted on semilog coordinates, and the curvature is defined by the exponent 

b, which is constant with time. Equations used to calculate hyperbolic declines are character-

ized by three parameters at a specified time, to, in the production life; the parameters are: pro-

duction rate, qo, nominal decline rate, Do, and hyperbolic exponent, b. Equations to interpret 

hyperbolic decline curves are shown in Table 6.1. 
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TABLE 6.1—EQUATIONS TO PREDICT PRODUCTION USING THE HYPERBOLIC FUNCTION 
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=  
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Decline rate 
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oi

q

qq
d

−
=  

Hyperbolic exponent b 

 

Normally, the b value ranges between 0 (exponential decline) and 1.0 (harmonic decline); 

however, for fractured formations and low permeability, such as the Austin Chalk formation, 

values of b larger than 1.0 may be calculated. Mian (2002a) recommends checking the b value 

to avoid “unrealistic low decline rate late in the well life.” Several methods are available to 

evaluate the hyperbolic exponent b; however, the most commonly used are the French curve 

method, shifting the curve on a log-log graph, and type-curve fitting. We developed a program 

to compute the b value and forecast production assuming the conservative scenario. We de-

fined the value of b in a range from 0 to 1.  

 

6.3 Economic Analysis 

The economic model used in this study considers the calculation of revenues for every 

production case. We used the Consumer Price Index (CPI) to adjust the values of these reve-

nues for inflation. 

 

The Bureau of Labor Statistics of the US Department of Labor defines the CPI as a meas-

ure of the average change over time in the prices paid by urban consumers for a market basket 
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of consumer goods and services. The major uses of the CPI are as an economic indicator, as a 

deflator of other economic series, and as a means of adjusting dollar values.  

 

The CPI and its components are used to adjust other economic series for price changes and 

to translate these series into inflation-free dollars. In our case, the series adjusted by the CPI 

include the nominal price of oil and gas at different dates. We included the CPI and its compo-

nents as a procedure within our VBA program (the second procedure) to adjust nominal oil 

and gas price series (from 1950 to 2006). Translating these price series into inflation-free dol-

lars allowed comparison of price changes over time. 
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CHAPTER VII 

RESULTS 

 

7.1 Performed Analyses 

We have used the Spearman's rank correlation coefficient technique to find dependence be-

tween the active wells, the rig count, and the commodity price variables. We have used decline 

curve analyses to estimate the increase of production from different scenarios of high price or 

technology, assuming hypothetically that subsequent changes would not have happened. 

 

The two analyses in this study were used to identify the effect of increasing prices and 

new technologies, evaluating their effect in terms of EUR, productivity and revenue. The cor-

relations indicated how periods of high oil and gas price have historically increased the num-

ber of drilled wells and thus the number of producing wells in a given formation. The study of 

production forecasting provided quantitative information about additional oil and gas reserves 

and revenues after evaluating periods of high prices or technology breakthroughs.  

 

In this study, the Austin Chalk formation in Texas is our textbook case. The Austin Chalk 

is a low-permeability formation that clearly shows how changes in product prices and technol-

ogy increased its production and its reserves since the play was discovered in the 1930s. Based 

on previous experience from the Austin Chalk formation, we identified major politi-

cal/economical events and breakthrough technologies historically affecting the development of 

the Austin Chalk and other selected formations in the US. We demonstrated with examples 

that the development of unconventional formations follows the Resource Triangle Theory; that 

is, the increasing in reserves from unconventional plays is strongly correlatable to changes in 

prices and technologies.  

 

Table 7.1 shows, in chronological order, the major discoveries in technology and different 

events affecting the oil industry since the development of rotary drilling.  
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TABLE 7.1—OIL INDUSTRY MAJOR EVENTS SINCE THE DISCOVERY OF ROTARY DRILLING 

Period Global Event Effect 

1930s 
Rotary drilling. 

Acidizing. 

Development of rotary drilling (1930). Acidizing is born (1932). 

Openhole completion, nitroglycerine fracture development. 

1950s 
Hydraulic  

fracturing. 

Development of hydraulic fracturing (1949) and widespread 

use in the 1950s. 

1973 
The Yom  

Kippur war. 

1st Arab Oil Embargo (1973). Oil price increase from $3.3 (1973) 

to $12.8 (1976) per barrel. Better hydraulic fracturing technolo-

gies. 

1978 
The Iranian Revolu-

tion. 

2nd Arab Oil Embargo (1978). Oil price increase from $14 (1978)  

to $36 (1981) per barrel.  

Seismic technology to locate fractures, sweet spots. 

1980s 
Horizontal  

drilling development. 

Horizontal wells and water treatment fractures.  

First horizontal well in the Austin Chalk, Texas (1985). 

Oil price collapse (1986) reduces prices from $36.8 (1980)  

to $14.4 (1986) per barrel.  

1990s 
Better technologies 

development. 

3D seismic horizontal drilling and better hydraulic fracturing  

technology improve flow rates and recoveries. 

2000s 
Oil price increase.  

Multilaterals. 

Oil price increment from $28.5 (2000) to $65 (2006) per barrel to 

$120 (2008). Widespread use of multilateral drilling improves 

well performance. Continued improvements in stimulation. 

  

Acidizing technology was the most widely used stimulation method for low productivity 

formations during the 1930s until the hydraulic fracturing technology was invented in the 

1950s (Table 7.1). Critical events such as the Yom Kippur War in 1973 and the Iranian Revo-

lution in 1978 created oil shortages which resulted in large increases in oil prices. The devel-

opment of horizontal drilling in the mid 1980s, the use of better technologies in the 1990s, and 

the recent period of high prices during great energy demand of the 2000s are also included in 

Table 7.1.    
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Fig. 7.1 shows the evolution of technologies through time and the fluctuation in oil prices 

from 1920 to 2006 as the result of political and economical events.  
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Hydraulic
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1st Oil Emb.

(Yom Kippur War )
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(Iranian revolution )

1990s: 
Better 
technology
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Better 
Prices, 
Multilat.

1980s: 
Horizontal 
drilling
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2nd Oil Emb.
(Iranian revolution )
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1980s: 
Horizontal 
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Fig. 7.1—Technological and economic events considered in this study in chronological order. Better 
technologies in the 1990s are supported by prices greater than $30 per barrel. 

 

The Texas oil boom during the 1930s allowed a period of stable to low oil prices sustained 

by product availability. Fig.7.1 shows how in 1931, the oil prices fell to a low of $8.66 per 

barrel (real, $2006), continuing relatively stably until the oil crises in the Middle East during 

the 1970s. The Yom Kippur war (1973) and the Iranian revolution (1978-79) caused spikes of 

$14.99 per barrel and $88.13 per barrel, respectively. On the contrary, the Asian financial cri-

sis provoked a decreased in prices in 1998 to $16.22 per barrel; however, the oil price quadru-

pled by the end of 2006, reaching $65.14 per barrel. The high price tendency has continued 

until today with prices above $70 per barrel in 2007.  
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7.2 Cases of Study 

Our textbook case, the Austin Chalk formation, started to produce in 1933 but was not 

considered a commercial play until the 1950s. Fig. 7.2 shows the selected cases of study ac-

cording to their initial production date available in the HPDI database (2007).  
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Fig. 7.2—Start of commercial production for selected cases in the United States (from HPDI, 2007). 

 

In the HPDI database, production data from the Cotton Valley in East Texas and North 

Louisiana, the Mesaverde Group and Lewis Shale in the San Juan basin, the Austin Chalk in 

Texas, and the Bakken Shale in the northern US was available since the 1950s. Production 

data are available from the Kern River field in California since the 1970s, while the Antrim 

Shale in the Eastern US and the Barnett Shale in Texas have data available since 1982. 

 

 As mentioned previously, commercial oil and gas production from unconventional forma-

tions requires some type of stimulation technology. Our review indicates, in general, six dif-

ferent stimulation methods to produce oil and gas from the selected formations. Table 7.2 

shows the different stimulation techniques used to produce oil and gas from the selected cases 

in this study. The textbook case, the Austin Chalk formation, has gone through different 

stimulation methods such as acidizing, fracturing, horizontal wells, and multilaterals. Also 

note that hydraulic fracturing is the common stimulation technology for all the formations but 

the Kern River in California, which has been producing from steam injection.  
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TABLE 7.2—STIMULATION METHODS IN SELECTED FORMATIONS IN THE UNITED STATES 

Formation UCR type Acidizing 
Hydraulic 

Fracturing 

Steam 

Injection 

Horizontal 

Drilling 

Improved 

Waterfracs 

Multi-

laterals 

Austin Chalk (AC) 
Low Permeability 

(Carbonates) 
• •  • • • 

Antrim (AS)  •   •  

Barnett (BS)  •  • •  

Lewis (LS) 

Gas Shales 

 •   •  

Bakken (BKS) Oil Shales  •  • •  

Cotton Valley 

(CVG) 
 •   •  

Mesaverde (MVG) 

Tight Gas Sands 

 •   •  

Kern River (KR) Heavy Oil   •    

 

Tables 7.1 and 7.2 were used in this study as input information to define how certain tech-

nologies or prices have influenced the development of the formation. Thus, we observed that 

the Barnett and the Antrim shale formations have followed different development patterns al-

though these two plays started to produce at the same time. Horizontal drilling in the Barnett 

has sped up well productivity while the Antrim has produced only from vertical wells.  

 

7.3 Study of Correlation (Dependence between Variables) 

Traditionally, rig count records in the US have been considered a primary measure of the 

health of the oil and gas industry (Inikori et al., 2001). Rig count data from Baker Hughes 

(2008) shows that, among other parameters, the number of drilled wells engaged in the US 

strongly depends on oil prices (Fig. 7.3). US rig count data were used to exemplify the impor-

tance of prices in the development of gas and oil reservoirs.  
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Fig. 7.3—Rig count records in the US from 1970 to 2006 show strong dependence on variable oil price. 
Increase in oil prices translates into increases in rig activity (data from Baker Hughes, 2008). 
 

 The US rig count data have been historically related to oil prices. Fig 7.4 shows a strong 

Spearman's rank correlation coefficient (SRCC) of 0.7 between the oil price and the rig count. 

The SRCC indicates that 70% of the wells drilled from 1970 to 2006 depended on the variable 

oil price.  

 

 The strong linear correlation of 0.7 supports the hypothesis that as oil prices increase, rigs 

currently operating will also increase. Also, the correlation suggests that on average, for every 

dollar increase in the oil price, the number of drilled wells increases on average by 31. 
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Fig. 7.4—Rig count records in the US show a relatively strong linear correlation of 0.7 with the variable 
oil price (data from Baker Hughes, 2008) 
 

 Oil price fluctuations from 1970 to 2006 have been the result of events such as the oil cri-

ses of the 1970s, the depression of oil prices in the mid 1980s, and more recently the increases 

in prices since the late 1990s (Fig. 7.5).  

  

 Two events during the 1970s, the Yom Kippur war in 1973 and the Iranian Revolution in 

1978, produced shortages of oil production during the 1970s that increased the price of oil. 

During the 1970s, a period of high prices, the price of oil went from $14.49 per barrel in 1973 

to $88.13 per barrel in 1979 (real terms, $2006), an increase of almost 6 times. These two 

events in the 1970s were responsible for high oil prices, and an upward trend from 1970 to 

1979. 
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Fig. 7.5—Worldwide political/economical events have affected the price of oil and influenced the US 
rig count records from 1970 to 2006 (data from Baker Hughes, 2008). 
 

 In 1980, after the Iranian revolution, Iraq invaded Iran, causing a worldwide crude oil re-

duction of 10% in production compared to 1979. In 1981, OPEC reduced its oil production, 

increasing oil market prices. From 1980 to 1985, prices remained high until a reduction in 

consumption forced oil prices to decrease; this period is characterized by a downward trend of 

relatively high oil prices that lasted until 1986.    

  

 Overproduction of oil in 1986 reduced oil prices by 47% compared to 1985. The oil price 

collapse of 1986 created a greater demand for energy, increasing again the consumption of oil 

worldwide. From 1986 to 1997, the oil price profile went from stable to low. The next period, 

from 1998 to 2006, is marked by an upward trend characterized by the growth of developing 

countries and greater market activity.  
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 Table 7.3 distinguishes the tendency of five periods of oil price change from 1950 to 2006. 

Available rig count data between 1970 and 2006 were correlated with oil prices based on the 

observed periods. 

 

 TABLE 7.3—OIL PRICE TENDENCY CHANGES AND THE US RIG COUNT ACTIVITY 

Period Event Tendency 

US Rate of 

growth  

(rig count/$) 

SRCC  

(rig count  

vs. oil price) 

I (Up to 

1969) 
Product availability. 

Stable to low 

prices. 
316 0.75 

II (1970-

1979) 

The Yom Kippur war and Iranian 

Revolution created the 1970s oil 

crises. 

High prices,  

upward trend. 
16 0.67 

III (1980-

1985) 

OPEC production cut’s kept 

prices high. 

High prices,  

downward trend. 
34 0.52 

IV (1986-

1997) 

Consumption decrease caused 

the oil price collapse of 1986. 

Prices kept stable until demand 

for oil regained market.  

Stable to low 

prices. 
14 0.35 

V (1998-

2006) 

Consumption increased. More 

demand for energy from devel-

oping countries. 

High prices,  

upward trend. 
18 0.83 

 

 In general, periods of low oil price coincide with decreased rig activity, whereas periods 

of high price with times of greater rig activity. US rig count data from 1970 to 2006 shows 

better correlation factors for periods of high commodity prices compared to periods of low 

commodity prices. Note that periods of high oil price, from 1970 to 1979 and from 1998 to 

2006, exhibit an upward trend and strong SRCC of 0.67 and 0.83, respectively.   
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For instance, during Period IV of low oil prices, for every dollar added to the oil price, the 

number of rigs added to the active list was 14 on average; a reduction of 60% in rig count re-

garding previous Period III of high oil prices when the rate of growth in rig count went from 

34 to 14 rigs. Data shows that periods of high price for US rig count versus oil price in Fig. 

7.6 have exhibited increments of rig count up to 113%. 

  

 According to the correlation between US rig activity and oil prices in Fig. 7.6, the greatest 

increment in number of wells occurred during Period III, when on average, for every dollar 

added to the oil price, 34 rigs were added. On the contrary, only 14 rigs were added in Period 

IV when oil prices went on average from stable to low. Fig. 7.6 shows graphically the correla-

tion between rig count and oil prices for the established periods in Table 7.3. 

 

 The rate of growth of rig count in each period indicated in Table 7.3 is given by the slope 

of the linear function between the variables rig count and oil price. Data in Fig. 7.6 shows that 

on average, the number of active rigs for every dollar added to the price of oil in the early 

1980s doubled the number of active rigs in the 1970s. Baker Hughes (2008) data indicates that 

rig count records in the US from 1970 to 2006 show different trends during high or low com-

modity price periods. 
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Fig. 7.6—Rig count records in the US from 1970 to 2006 show different trends according to their rate 
of increases or decrease during high or low commodity price periods (data from Baker Hughes, 2008). 
 

 Rig count versus oil price data in Fig 7.6 show a positive trend for each of the four dataset. 

On average, the number of active rigs in the early 1980s doubled the number of active rigs in 

the 1970s for every dollar added to the price of oil. 
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7.3.1 Oil Producing Formations 

Table 7.4 shows the periods of oil price changes until year end 2006. Periods of stable to 

low prices are supported by enough product supply or decrease of consumption rates. On the 

contrary, high prices are the result of increase in the demand for oil or periods of product 

shortage.  

 

 TABLE 7.4—OIL PRICE TENDENCY CHANGES 

Period Event Tendency 

(I) Up to 1969 Product availability. Stable to low prices. 

(II) 1970-79 
The Yom Kippur war and Iranian Revolution  

created the 1970s oil crises. 
High prices, upward trend. 

(II) 1980-85 OPEC production cut’s kept prices high. High prices, downward trend. 

(IV) 1986-97 

Consumption decrease caused the oil price col-

lapse of 1986. Prices kept stable until demand for 

oil regained market.  

Stable to low prices. 

(V) 1998-06 
Consumption increased. More demand for  

energy from developing countries. 
High prices, upward trend. 
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7.3.1.1 Austin Chalk Formation  

 As depicted by the resource triangle, prices and technologies are important parameters that 

control the development of unconventional reservoirs. Annual wells drilled and oil price data 

between 1950 and 2000 from the Austin Chalk formation in Texas show, in general, that as oil 

prices increase, the wells drilled count also increases (Fig. 7.7). Since 2000, the increase in oil 

price has not affected the number of wells drilled. 
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Fig. 7.7—Historical drilled wells records from the Austin Chalk formation between 1950 and 2006 show 
great dependence on the oil price variable (data from Baker Hughes, 2008). 
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Wells drilled data available from the Austin Chalk formation between 1950 and 2006 

show that after the oil crises in the 1970s, the price of oil increased from $12/bbl (real, $2006) 

in 1972 to $90/bbl in 1980; during this period, the number of wells drilled sharply increased. 

The number of wells drilled in 1981 was 60 times greater than the number of wells drilled in 

1970. In 1981, a historical record of 2,068 new wells was registered. 

 

 The oil price collapse of 1986 reduced the number of wells drilled in the Austin Chalk 

formation. At the end of 1989, the number of wells drilled went down to 206. Increases in oil 

price and technologies such as horizontal drilling and water fracture treatments revitalized the 

Austin Chalk during the early 1990s when oil prices were around $25/bbl; the number of 

wells drilled in 1991 was greater than 1,000 (Fig. 7.7).  

  

 Although oil prices have increased sharply since 1998, the rig activity in the Austin Chalk 

has shown a stable to low trend with small variations in the number of wells drilled. Accord-

ing to Holditch (2008), drilling activity in the Austin Chalk has been limited because the main 

productive areas have been drilled and produced. There is not much room left for infill drill-

ing. As a result, there is an inverse relation between the number of wells drilled and the oil 

prices after year 1998 (Fig. 7.7). 

 

 The Austin Chalk wells drilled data plotted versus the oil price in $2006 shows a diffused 

positive dependence pattern (Fig. 7.8a). This pattern means that other factors, such as tech-

nology breakthroughs, are also important in the Austin Chalk. 

 

 The SRCC of 0.41 between the wells drilled and the oil price data indicates that 41% of 

the wells drilled from 1950 to 2006 depended on the variable oil price. Data in Fig. 7.8a sug-

gest that approximately 12 additional wells were added when the price of oil increased by one 

dollar. Fig. 7.8b shows the shadow area in Fig. 7.8a; the correlation improves to 0.75. 
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Fig. 7.8a—Austin Chalk wells drilled data shows that 41% of the wells between 1950 and 2006 de-
pended on oil prices. Shaded area includes data from the main trend (data from Baker Hughes, 2008). 
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Fig. 7.8b—Shaded data in Fig. 7.8a improves the SRCC correlation value up to 75%. The variability in 
number of wells drilled between 1950 and 2006 can be explained with the variability of oil prices (data 
from Baker Hughes, 2008).  
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 Fig. 7.9 shows the strength of the oil price and the number of wells drilled correlation for 

different periods of historical oil price fluctuation. Data from 1950 to 1979, Periods I to II, 

show the strongest SRCC of 0.8; followed by data from 1980 to 1997, Periods III to IV, with 

an SRCC of 0.54; and a last period from 1998 to 2006, Period V, with an SRCC of 0.33. 
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Fig. 7.9—A strong positive correlation was observed for the Austin Chalk data between 1950 and 1997. 
Recent data, from 1998 to 2006, show a decrease in number of drilled wells although the oil prices 
were increasing. 
 

 The relationship between the oil prices and the drilled wells is reasonably proportional 

when observing data during Periods I to IV. On the contrary, data from Period V show an in-

crease in oil prices while the number of drilled wells decreases (Fig. 7.9). Again, there is not 

much infill drilling opportunity in the Austin Chalk fields; thus the number of wells drilled 

has not increased in the 2000s. 
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 Please observe that Periods I to II, data from 1950 to 1979, show that on average for every 

dollar added to the oil price, the number of wells drilled increased by 12. Similarly, Periods III 

to IV, data from 1980 to 1997, show an increase in number of wells drilled around 16; how-

ever, Period V, from 1998 to 2006, shows that for every dollar added to the oil price, the 

number of wells drilled goes around one well on average; the rate of growth of the number of 

wells drilled decreased by 91% from Periods III to IV to Period V. 

 

  7.3.1.1.1 Relation between the Variables Rig Count and Producing Wells 

 We have observed how periods of high commodity price encourage higher rig activity in 

the Austin Chalk. In general, the variable wells drilled will exhibit a higher growth during pe-

riods of high commodity price, while during periods of low commodity price; the variable 

wells drilled will either stabilize or decrease (Fig. 7.10).  
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Fig. 7.10—The Austin Chalk formation drilling activity has been driving the number of producing (active) 
wells in the play. 
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 Wells drilled data from our textbook case, the Austin Chalk formation, is shown in Fig. 

7.10. We studied the correlation between the rig count data and the number of producing (ac-

tive) wells with time. We found that data describing the wells drilled and the number of pro-

ducing wells from 1950 to 2006 from the Austin Chalk formation follows a similar trend 

when plotted against time, as shown in Fig. 7.10.  

 

 In general, the number of producing (active) wells will always increase with time whether 

prices increase or decrease. In the Austin Chalk, periods of high drilling activity have in-

creased the number of producing wells while periods of low drilling activity have shown a 

slight decrease in the number of producing wells; we have used the rate of growth of produc-

ing (active) wells to illustrate this tendency. Fig. 7.11 shows the variation of the number of 

wells drilled as oil prices increases or decreases. Data from 1950 to 2006 illustrate that the 

variation in number of wells drilled.  
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Fig. 7.11—The rate of increase in the number of wells drilled is a measure of the oil price market. 
Sharp changes in oil prices provoke great rate of increase, whereas stable price periods level off the 
rate of growth in the number of wells. 
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 Periods I to IV show a similar tendency of decrease/increase in rate of growth for the 

number of wells drilled and the number of producing (active) wells. On the contrary, Period V 

follows a different pattern since the drilling activity during this period decreased although oil 

prices increased, producing a reduction in the rate of growth for the number of producing 

wells. 

 

 The variation of the number of producing (active) wells with time is observed in Fig. 7.11. 

Please note how the rate of growth of the number of producing (active) wells sharply in-

creases or decreases as oil prices sharply increase or decrease. Data from Periods II to V show 

that the increase in oil price has increased the rate of growth of producing (active) wells 

around 170% while decreasing oil price has decreased the rate of growth around 100%. Also, 

please observe the peaks in the price of oil (Periods II, III, and IV) show higher values in the 

rate of growth of the number of producing wells. 

  

 The variation in the number of wells drilled with time is presented in Fig. 7.11. The rate of 

growth for in drilling activity decreases on average 60% during periods of stable to low oil 

prices, Period IV, and increases about 440% for periods of high oil prices, Period III, from 

data between 1950 and 2006. 
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7.3.1.2 Bakken Shale  

The Bakken Shale of the Williston basin was initially developed using vertical wells but 

operators have recently turned to horizontal wells with spectacular success. Fig. 7.12 shows 

the correlation between producing wells and oil prices for data available since 1961.  
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Fig. 7.12—Historical data from the Bakken Shale formation show similar tendency between producing 
wells and oil prices for data available since the late 1990s. 
 

The number of producing wells for the Bakken Shale formation (BKS) of Williston basin 

from 1961 to 1988 was less than 100. Periods IV and V (from 1986 to 2006) showed greater 

activity in the Bakken Shale with production from more than 100 wells and the application of 

horizontal drilling. 

The graph of producing wells versus oil price for the Bakken Shale, from 1961 to 2006 

shows no correlation (Fig. 7.13). However, since 2000, the activity in the Bakken Shale has 

increased rapidly due to both the use of horizontal wells and higher oil prices. 
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Fig. 7.13—Producing wells and oil price data from the Bakken Shale formation showing three different 
patterns and better correlation since the 1980s. 

 

Producing well data since 1986 show more well activity in the play with a stronger corre-

lation factor between the number of active wells and oil prices (Period V). Horizontal drilling 

in the Bakken Shale started during Period V, increasing the rate of growth in number of pro-

ducing wells by more than 270% for every dollar added to the oil price. 
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7.3.2 Natural Gas Producing Formations 

Based on the historical US gas price data, we identified four periods of correlation for 

natural gas formations (Table 7.5).  

 

The following cases in this section are natural gas producing formations with Table 7.5 as 

input data to analyze periods of high or low price tendency and its influence over the variation 

of the number of producing wells during the development of the tight gas sand formations of 

the Cotton Valley and Mesaverde groups and the gas shale formations of the Antrim, Barnett, 

and Lewis shales. 

 TABLE 7.5— GAS PRICE TENDENCY CHANGES 

Period Event Tendency 

I (Up to 1969) Product availability. 
Stable to low 

prices. 

II (1970-83) 
The Yom Kippur war and Iranian Revolution created the 

1970s oil crises and intrastate gas prices increased. 

High prices, up-

ward trend. 

III (1984-92) 
OPEC production cut’s kept prices high, plus there was 

excess gas supply. 

High prices, 

downward trend. 

IV (1993-2006) 

Full gas price deregulation allowed gas to behave as a 

tradable commodity. Gas supply bubble is eliminated. 

More market demand for natural gas. 

High prices, up-

ward trend. 
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7.3.2.1 Cotton Valley Group 

The tight sands of the Cotton Valley Group had substantial development after the oil cri-

ses in the 1970s and more recently in the 2000s with stable to high gas prices. From 1973 to 

1978, the number of producing wells dramatically increased by more than 340% (Fig. 7.14). 
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Fig. 7.14—Cotton Valley correlation factors between parameters “total wells drilled per year” and 
“commodity prices” show better results during the period 1958-1995 during the oil crises and the oil 
price collapse events. 
 

Although drilling rig activity decreased in the US during period III, the number of produc-

ing wells from the tight sands of the CVG continued increasing around 10% per year until the 

early 1990s. The reason more Cotton Valley wells were drilled in the late 1980s and early 

1990s was that these wells were classified as tight gas and they could earn federal income tax 

credits for every Mcf produced. Thus, like high prices and better technology, tax incentives 

also result in more wells being drilled to produce gas from the lower portion of the resource 

triangle. 
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 The general SRCC of 0.49 between producing wells and gas price data from the Cotton 

Valley indicates that 49% of the producing wells from 1962 to 2006 depended on the variable 

gas price. Data also suggest that around 434 new producing wells were added when the price 

of gas increased by one dollar. Fig. 7.15 shows the producing well data versus the price of gas 

in 2006 dollars between 1962 and 2006 from the tight sands of the Cotton Valley Group. 

 

0

4

8

12

16

20

0.0 2.0 4.0 6.0 8.0 10.0

Gas Prices @ $2006, $/Mcf

P
ro
d
u
c
in
g
 W
e
lls
 a
t 
th
e
 

E
n
d
 o
f 
th
e
 Y
e
a
r

0

1000

2000

3000

4000

5000

P
ro
d
u
c
in
g
 W
e
lls
 a
t 
th
e
 

E
n
d
 o
f 
th
e
 Y
e
a
r

Producing Wells versus Gas Prices
The Cotton Valley Formation (1962-2006)

Period I= -13.16x+14.85

R
2
 =0.46

Period II= 149.15x-176.76

R
2
 =0.95

Period III= -158.45x+1376.29

R
2
 =0.52

Period IV= 351.12x+939.84

R
2
 =0.79

Period I (1962-69)

Period II (1970-83)

Period III (1984-92)

Period IV (1993-2006)

Linear Correlation

(Period II)
Linear Correlation

(Period III)
Linear Correlation

(Period IV)
Linear Correlation

(Period I)

Gas Price at $2006 is 6.42 $/Mcf

0

4

8

12

16

20

0.0 2.0 4.0 6.0 8.0 10.0

Gas Prices @ $2006, $/Mcf

P
ro
d
u
c
in
g
 W
e
lls
 a
t 
th
e
 

E
n
d
 o
f 
th
e
 Y
e
a
r

0

1000

2000

3000

4000

5000

P
ro
d
u
c
in
g
 W
e
lls
 a
t 
th
e
 

E
n
d
 o
f 
th
e
 Y
e
a
r

Producing Wells versus Gas Prices
The Cotton Valley Formation (1962-2006)

Period I= -13.16x+14.85

R
2
 =0.46

Period II= 149.15x-176.76

R
2
 =0.95

Period III= -158.45x+1376.29

R
2
 =0.52

Period IV= 351.12x+939.84

R
2
 =0.79

Period I (1962-69)

Period II (1970-83)

Period III (1984-92)

Period IV (1993-2006)

Linear Correlation

(Period II)
Linear Correlation

(Period III)
Linear Correlation

(Period IV)
Linear Correlation

(Period I)

Gas Price at $2006 is 6.42 $/Mcf
 

Fig. 7.15—Historical data from the Cotton Valley Group shows that, in general, 49% of the wells de-
pend on the gas price variable. 
 

In the Cotton Valley Group, periods of high commodity price are characterized by a strong 

SRCC factor. The data, in Fig. 7.15, show an SRCC factor of 0.95 during the oil crises period 

(II) and a value of 0.79 during the recent period of high gas prices (IV). Also, the Cotton Val-

ley Group play data shows that the growth of producing wells have been driven by fluctua-

tions in gas price since commercial production started in 1962 (Table 7.6).    
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TABLE 7.6—CORRELATION FACTORS FOR THE COTTON VALLEY GROUP 

 Period 
SRCC (Producing Wells 

vs. Gas Price @ $2006) 

Annual Growth of  

Producing Wells (wells/yr) 

I Up to 1969: Stable low prices 0.46 1 

1970-1974 1 
II High prices  

1975-1983 
0.95 

87 

1984-1988 25 
III Low prices 

1989-1992 
0.52 

118 

1993-2002 134 
IV High prices 

2003-2006 
0.79 

355 

 

High gas prices reached during the oil crises period (II) increased the growth in producing 

wells in 1046% and also gas production increased by 21-fold with the use of MHF treatments. 

In the 1990s, better fracture treatment technology, higher gas prices, and federal income tax 

credits fostered intense drilling activity in the play and the rate of growth of producing (active) 

wells continued increasing.  

 

Data in table 7.6 indicate that the growth of producing wells have been driven by fluctua-

tions in gas prices. For instance, during period II the Cotton Valley play was reporting a rate 

of growth in number of producing wells of 1.0 well/yr, on average; however, after prices 

peaked up in 1974, the rate of growth sharply increased by 87 wells/yr, on average. On the 

contrary, note that period III when prices went down, the rate of growth in number of produc-

ing wells decreased around 25 wells/year, until prices stabilized in the early 1990s and the rate 

of growth increased reaching around 118 wells/yr.  

 

Fig. 7.16 shows the variation of the rate of growth of the number of producing wells 

through time and the fluctuations in gas price. As reference, we have also included the per-

centage of variation of the rate of growth. 
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 Fig. 7.16—Historical data from the Cotton Valley Group shows great dependence between the growth 
in number of producing wells and gas prices. 
 

Please observe the major changes in rate of growth of the number of wells with time from 

the 1960s to the 1970s, and after full gas price deregulation in 1993. During the 1970s, Period 

II, the rate of growth was 8,600% and more recently, Period IV, up to a maximum of 165%. 

On average, after year-end 1988, the Cotton Valley play has been experienced increases in the 

number of producing wells; Fig. 7.16 shows these values. 

 

Gas prices have impacted the rig activity in the tight sands of the Cotton Valley Group 

(CVG); however, the second episode, from 1993 to 2006, saw the most activity doubling the 

rate of growth in number of producing wells on average for every dollar added to the gas price.  

Period III, from 1985 to 1993, was characterized by a reduction in gas price to values lower 

than $2/Mcf (nominal price). 
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7.3.2.2 Mesaverde Group  

The tight sands of the Mesaverde, the major producer of gas in the San Juan basin, have 

been under development since 1951. Historically, the rig activity in the Mesaverde has closely 

followed the fluctuations of commodity price. The growth of producing wells from 1951 to 

2006 in Fig. 7.17 illustrates this fact.  

 

It can be observed that high gas prices during the 1970s caused an increase in the number 

of producing wells in the play until that the collapse in prices in the 1980s stabilized this 

growth. During the 1990s, after the US government deregulated gas prices and the federal in-

come tax credits for tight gas sand was enacted, the number of wells drilled to the Mesaverde 

formation began to increase substantially.  
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Fig. 7.17—Historical data from the Mesaverde Group show similar tendency between producing wells 
and gas prices. 
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The increase of gas prices during the 1970s supported the development of massive hydrau-

lic fracturing (MHF) techniques in the play. The combination of higher gas prices and better 

stimulation technology increased the number of producing well from 2,317 in 1973 to 3,580 

in 1979. The 1980s is, in most of the period, a decade marked by stabilization in well activity 

and production as well; the number of producing wells on average was around 4,000 (Fig. 

7.17).  

 

More recently, the formation has experienced a steady growth in the number of producing 

wells, especially after the gas price deregulation in 1993. Since the 1990s, the number of pro-

ducing wells has grown almost 40%, increasing from 4,283 producing wells in 1993 to 7,605 

wells in 2006.  

 

Fig 7.18 shows the correlation between the number of producing wells and the fluctuation 

of the gas price adjusted for inflation in 2006 dollars. In general, a strong SRCC of 0.73 is ob-

served. The correlation also suggests that for every dollar added to the price of gas, more than 

900 wells came to production.  

 

Table 7.7 shows the historical relationship between the gas price and the number of pro-

ducing wells since production started in the early 1950s for the gas price correlation periods in 

Table 7.4. Data show an SRCC factor greater than 0.9 during the oil crises (II) period and a 

value of 0.8 during the recent period of high gas prices (IV).  The analysis also shows no cor-

relation at all between 1984 and 1992 (III) when the growth of producing wells in the play 

leveled off during low gas prices. 
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Fig. 7.18—Historical data from the Mesaverde Group suggest that, on average, more than 900 were 
open to production for every dollar added to the gas price. 
 

The correlation analysis shows the variation of the rate of growth for producing wells in 

Fig 7.19. The greatest increase in rate of growth during Period IV increased the number of 

producing wells by 122 times. 

 

TABLE 7.7—CORRELATION FACTORS FOR THE MESAVERDE GROUP 

 Period 
SRCC (Producing Wells vs. 

Gas Price @ $2006) 

Annual Growth of  

Producing Wells (wells/yr) 

I Up to 1969: Stable low prices 0.86 4,762 

II 1970-1983: High prices 0.96 462 

III 1984-1992: Low prices No Correlation  5 

IV 1993-2006: High prices 0.80 11 
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Fig. 7.19—Strong SRCC factor for the Mesaverde formation indicating the dynamic of gas price fluc-
tuations affecting rig activity in the play since the 1950s.  
 

7.3.2.3 Antrim Shale  

From 1982 to 2006, the Antrim Shale formation of the Michigan basin has produced more 

than 2 Tcf of gas. The SRCC analysis shows two tendencies when plotting the number of pro-

ducing wells and the gas price since production from the Antrim Shale (Periods III and IV) 

started in 1982 (Fig. 7.20).  
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Fig. 7.20—Historical data from the Antrim Shale formation shows two tendencies of correlation be-
tween producing wells and annual fluctuations in gas prices. 

 

The number of producing wells in the Antrim Shale from 1986 to 1993 (Period III) in-

creased although gas prices were decreasing. The Antrim Shale was being developed due to 

both improvements in technology fostered by the Gas Research Institute and the federal in-

come tax credits for producing gas from shales. 

Period III for the Antrim Shale exhibits an SRCC of 0.69. Haas and Goulding (1992) noted 

that Section 29 credits stimulated the development of unconventional and high-cost gas re-

sources like the Antrim Shale. From 1980 through 1992, when gas prices remained low, opera-

tors accelerated drilling from unconventional plays in the US and drilling activities in the An-

trim Shale experienced great demand. On the contrary, from 1993 to 2006 or Period IV, a 

stronger and positive SRCC was observed, reaching on average a value of 0.72. The drilling 
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activity during the 1990s was a sustained activity; more than 400 wells were drilled in 1998, 

and the following year about 75% of the wells drilled in the Michigan basin targeted the An-

trim Shale play.  

 

According to our review, the stimulation treatments performed in the Antrim Shale fol-

lowed two stages with the use of MHF during the 1980s and early 1990s, and the use of light 

sand fracturing (LSF) treatments or waterfracs from the mid 1990s to the present. All these 

treatments have been performed in vertical wells. Horizontal wells have not been used in the 

Antrim. 

7.3.2.4 Barnett Shale  

The Barnett Shale has been one of the most prolific gas producing formations in the US in 

2008. Historical data show that gas production has increased almost 10 times after operators 

began drilling horizontal wells, began applying better characterization technologies using mi-

croseismic, and using waterfracture stimulation treatments in the horizontal wells. The use of 

these technologies has increased the recovery factor per well through time from the Shale as 

reported in Chapter V (Fig. 5.14). 

 

We have identified two different methods of stimulation that have been used in the Barnett 

Shale. MHF treatments (1991-1999) were used mostly in vertical wells and water fracture 

treatments (2000-2006) have mainly been applied to horizontal wells. Fig. 7.21 shows the ef-

fect of technologies and gas price deregulation increasing activity in the play. 
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Fig. 7.21—Historical data from the Barnett Shale show the effect of technologies and higher gas prices 
after deregulation increasing well activity in the play. 

 

Data from the Barnett Shale, Periods III and IV, show an overall SRCC of 0.52 (Fig 7.22). 

Note that producing wells data after gas price deregulation in 1993 is affected by increases in 

gas prices since the 1990s and the evolution of stimulation technologies. Prices and better 

technologies have been driving the rig activity in the Barnett Shale and therefore increasing the 

number of producing wells as depicted in Fig. 7.23.  

 

Fig. 7.23 shows a stronger and positive SRCC factor of 0.82 when plotting the number of 

producing wells at the end of the year and the gas price for Period IV. 
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Fig. 7.22—Historical data from the Barnett Shale show how prices and the use of improved methods of 
stimulation have been driving the well activity in the play. 
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Fig. 7.23—Historical data from the Barnett Shale formation from 1994 to 2006 showing how technology 
and better gas prices support rig activity. 
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7.3.2.5 Lewis Shale  

The variation in the number of producing wells for the Lewis Shale formation and its rela-

tion with gas price fluctuations is shown in Fig. 7.24.  
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Fig. 7.24—Historical data from the Lewis Shale formation greater well activity since the late 1970s.  

 

The correlation coefficient between the number of producing wells and gas price variables 

was calculated for the distinct periods since production from the Lewis Shale started in 1952. 

Historically, data from the Lewis Shale show that the play was not very active until after 1978 

when the prices for natural gas increased. Historical data show that many of the producing 

wells in the Lewis Shale have been usually commingled with gas sandstone formations in the 

San Juan basin. As such, data from wells completed only in the Lewis Shale are not easily at-

tainable. 
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A general correlation for the Lewis Shale of the San Juan basin shows a strong correlation 

of 0.7 between the producing wells and the gas prices in 2006 dollars. On average, around 92 

wells are incorporated to production for every dollar added to the price of gas; however, a 

careful analysis of the data suggests four different patterns (Fig. 7.25). Please, observe that gas 

prices not always drive the change in number of producing wells. Data from period’s I-II and 

periods III-IV follow a similar tendency. 
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Fig. 7.25—Historical data from the Lewis Shale show positive tendencies of correlation between pro-
ducing wells and annual fluctuations in gas price during periods of high gas prices. Data from 1984 to 
1995 (Periods III-IV) is characterized by number of producing wells leveling off. 

 

Fig. 7.26 shows the variation of number of producing wells for the defined four periods of 

gas price fluctuation. At the beginning of production with low stable prices from 1952 to 1970 



 

  
  
  
  

132 

(Period I), the growth of the play was very slow with less than 35 wells producing at the end of 

1969. During Period I, the rate of growth in well number of 2 is probably marked for commin-

gled completion strategies with sandstones present in the San Juan basin. 
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Fig. 7.26—Historical data from the Lewis Shale showing the variation in rate of growth in producing 
wells since 1952. 
 

During the 1970s when gas prices went from $0.89/Mcf (adjusted at 2006 dollars) in 1970 

to $3.28/Mcf in 1979, the number of producing wells in the Lewis shale increased almost 

eight-fold. The 1970s period (II) of high prices encouraged high well activity resulting in a 

strong SRCC factor of 0.94. The period from 1984 to 1992 (III) is characterized by a decrease 

in prices after the oil price collapse in the mid 1980s; however, since the Lewis shale contin-

ued its drilling activity, the SRCC factor shows a value of 0.68. More recently, from 1993 to 
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2006 period (IV), the Lewis Shale has experienced a sustained growth in number of wells sup-

ported by high gas prices; the number of producing wells increased around 31 wells/year, on 

average. Please, note in period IV, the SRCC correlation was 0.84 and the increase of the rate 

of growth in number of producing wells was 2.4 times (Fig. 7.26).  

 

7.4 Forecasting Graphs 

We developed a software to perform a series of decline curve analyses (DCA) required to 

evaluate the changes of Estimated Ultimate Recovery (EUR) under different scenarios of 

technology or/and price. Unconventional wells in low-permeability formations are always 

stimulated to increase productivity to commercial levels. Hydraulic fracturing is the most 

common stimulation treatment for the low-permeability formations and it is a common tech-

nology in each of our cases of study. We also consider that horizontal well bores are a form of 

formation stimulation. 

 

7.4.1 Austin Chalk  

As described in Chapter V, the Austin Chalk has experienced different periods of devel-

opment that have been labeled as events in our study. The impacts of each of these events as 

defined in Table 7.2 are quantified in this section of my thesis to show how different tech-

nologies and periods of high commodity price have historically altered the production of the 

Chalk since 1955.  
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Fig. 7.27 shows the DCA results for the combined oil and gas production in Barrels of Oil 

Equivalent (BOE) using an economic limit of 5 BOE/day as well as the cumulative revenues 

at the end of each event. For convenience, we labeled the recognized periods of development 

in the Austin Chalk as acidizing, fracturing, oil crises, and new technologies. Five recognized 

events have affected the recovery in the Austin Chalk formation through time and the results 

from the decline curve analyses suggest that more than 500 million BOE could be produced 

over the next 30 years. 

 

Cumulative values of combined oil and gas production in Table 7.8 show the effect of dif-

ferent periods of production that have occurred in the Chalk. Acidizing and hydraulic fractur-

ing treatments contributed 77 million BOE until the first oil embargo in 1973 doubled the 

number of producing wells and the production from these wells. The second oil embargo 

quadrupled the number of producing wells by year-end 1999, increasing the oil and gas pro-

duction eight-fold compared to the fracturing event.  

 

The results of the decline curve analyses performed for the Austin Chalk are also reported 

in Table 7.8. The estimated ultimate recovery (EUR), remaining reserves (RR), and gross 

revenues (adjusted for inflation at year-end 2006) by period were calculated. 
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Fig. 7.27—Five recognized events have affected the recovery in the Austin Chalk formation through time. Decline curve analyses suggest 
that more than 500 million BOE could be produced over the next 30 years. 
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TABLE 7.8—OIL EQUIVALENT ESTIMATES FOR THE AUSTIN CHALK FORMATION 

EVENT  PERIOD 
Cum., 

MMBOE 

Producing 

Wells 

Reserves, 

MMBOE 

EUR, 

MMBOE 

∆EUR, 

MMBOE 

Cum. Gross 

Revenues. 

∆Gross 

Revenue 

ACIDIZING  1955-1960 13 252 14 27 - 0.36 - 

FRACTURING  1960-1974 77 1,237 62 139 112 4.22 3.9 

1st OIL EMB.  1974-1979 147 2,593 170 317 178 12.76 8.5 

2nd OIL EMB.  1978-1990 641 5,279 249 890 573 40.30 27.5 

NEW TECH.  1990-2005 1,718 4,729 522 2,240 1,350 95.14 54.8 

Gross revenues in billion dollars at $2006 

 

The two oil embargoes that occurred in 1973 and 1978 led to the higher oil prices and had 

a large effect on drilling in the Austin Chalk. Before the two oil crises occurred in the 1970s, 

production had increased by a factor of 6 when hydraulic fracturing was introduced but the 

absolutely value was relatively small. We computed that if the two oil crises had not occurred 

during the 1970s, the Austin Chalk formation would have reached a maximum recovery value 

of only 139 million BOE. The increased activity during the two oil crises raised the value of 

ultimate recovery by more than 6 times, reaching 890 million BOE for an economic limit of 5 

BOE/day. 

 

More recently, the use of new technologies such as horizontal and multilateral drilling, 

along with improved fracture treatment technology has increased production by more than 3 

times. The new technology period or period of current development could result in a maxi-

mum value of 2,240 million BOE in ultimate recovery if no other technology is implemented 

or better characterization studies do not help to increase the value of recovery factor from the 

producing reservoirs in the Austin Chalk in the future. Our forecast predicted current remain-

ing reserves of 523 million BOE recoverable in a 30-year span when producing at rates higher 

than 5 BOE/day.  
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If we considered the hydraulic fracturing case in the Austin Chalk, with no effects from 

the two oil crises, we could have expected an EUR of 139 million BOE. When the two oil cri-

ses increased prices above $30/bbl, EUR went to 890 million BOE, an increase of more than 6 

times the earlier estimate. The additional production would translate to $36 billion in gross 

revenues considering a value of $65/bbl after year 2006. 

 

The period following the two oil crises is labeled as new technology because of the im-

provements mainly in fracturing technology and horizontal drilling. The historical cumulative 

production at the end of this period is 1,786 million BOE and represents the coupling of im-

provements in technology with stable to high commodity prices. Our forecast shows a EUR 

value of 2,240 million BOE producible in a span of 30 years (Table 7.8). This value represents 

an incremental volume of 1,350 million BOE or 16 times more oil and gas production than 

expected from the fracturing alone. This greater volume would increase the gross revenue by 

$90.92 billion calculated in 2006 dollars and assuming the price of oil at $65.14/bbl after year 

2006.  

 

7.4.2 Bakken Shale  

The forecasting analysis performed for the Bakken Shale (BKS) shows the effect of the 

different development periods since commercial production started in 1961. Please observe in 

Fig. 7.28 that the Bakken Shale is a developing play that was reactivated by horizontal drilling 

activity in the 2000s.  

 

The Bakken Shale is characterized by two periods of horizontal drilling, the nonstimulated 

period from 1988 to 2002 and the stimulated period from 2002 to date. Historical data in Fig. 

7.28 shows the growth in producing wells and production from this play.  
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Fig. 7.28—The Bakken Shale formation of the Williston basin was revitalized by the use of stimulated horizontal wells.  
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The forecasting results were computed in both barrels of oil and barrels of oil equivalent 

and they are summarized in Table 7.9 and Table 7.10. Forecasting results indicate the impact 

of horizontal drilling technology during the 1990s in terms of estimated ultimate recovery 

(EUR) and gross revenues calculated in 2006 dollars and assuming the price of oil at 

$65.14/bbl after year 2006.  

 

TABLE 7.9—OIL ESTIMATES FOR THE BAKKEN SHALE FORMATION 

EVENT  
Cum., 

MMSTB 

Producing 

wells 

Reserves, 

MMSTB 

EUR, 

MMSTB 

∆EUR, 

MMSTB 

Cum. Gross 

Revenue 

∆Gross 

Revenue 

Fractured Vertical  

Wells (1961-1988) 
6.3 88 20 26 - 1.23 - 

Nonstimulated  

Horizontals (1988-2002) 
32 212 4 37 11 1.25 0.02 

Gross revenues in billion dollars at $2006 

 

As depicted in Table 7.9, the cumulative oil during the fracturing activity from 1961 to 

1988 is 6.3 million STB. The introduction of horizontal wells increased the cumulative value 

five-fold; however, the results in Table 7.9 only show the figures from nonstimulated, hori-

zontal wells. Chapter V explained in detail the performance of horizontal wells drilled after 

year 2002. Table 7.10 shows the DCA results for the produced oil and gas in terms of oil 

equivalent as a reference since the BKS is mainly an oil producer. 
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TABLE 7.10—OIL EQUIVALENT ESTIMATES FOR THE BAKKEN SHALE FORMATION 

EVENT  
Cum.,  

MMBOE 

Producing 

wells 

Reserves, 

MMBOE 

EUR,  

MMBOE 

∆EUR, 

MMBOE 

Cum. Gross 

Revenue 

∆Gross 

Revenue 

Fracturing Verticals 

Wells (1961-1988) 
7.11 88 24.51 32 - 1.50 - 

Nonstimulated  

Horizontals (1988-2002) 
41.4 212 10.05 52 20 1.80 0.3 

Gross revenues in billion dollars at $2006 

 

Our analysis shows the results for the base case, hydraulic fracturing vertical wells, and 

the results for the first horizontal drilling campaign of nonstimulated wells only. The Bakken 

play is developing so that the forecasting analysis for the more recent period of 2002-2006 is 

not available. The DCA shows that if no horizontal drilling had occurred in the Bakken, the 

maximum recovery would have been 26 million STB; in other words, under this scenario the 

Bakken would have produced only 30% of the historical cumulative oil reported by year-end 

2006. The results of the DCA for oil production from the nonstimulated horizontal wells shot 

EUR to 37 million STB, an increase of 42% compared to the base case. 

 

Current data published in 2008, indicate another increase in drilling activity for the Bak-

ken Shale occurring as a result of improvements in horizontal well technology and increasing 

oil prices. In Fig. 7.28, it is clear that the production from the Bakken Shale will increase sub-

stantially during the next 5-10 years.  
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7.4.3 Cotton Valley  

Cumulative values of produced gas from the Cotton Valley are reported in Table 7.11 and 

show the effect of different events or production scenarios that occurred in the shale since 

1962. The DCA results as well as the cumulative gross revenues in Table 7.11 were computed 

at an economic limit of 15 Mcf/day.  

 

TABLE 7.11—NATURAL GAS ESTIMATES IN THE COTTON VALLEY GROUP 

EVENT  PERIOD 
Cum. 

Gas, Bcf 

Reserves, 

Bcf 

EUR, 

Bcf  

∆EUR, 

Bcf 

Cum. Gross 

Revenues 

∆Gross 

Revenue 

FRACTURING 1962-1970 0.91 0.50 1.40 - 0.002 - 

1st Oil 

Emb. 
1970-1975 2.33 1.16 3.49 2.09 0.006 0.004 

OIL 

CRISES 
2nd Oil 

Emb. 
1975-1990 1,009 604 1,613 1,610 6.0 5.9 

NEW TECH. 1990-2007 4,040 1,593 5,633 4,020 25.0 19.0 

Gross revenues in billion dollars at $2006 
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Historical data show how the first fracturing treatments performed during the 1960s con-

tributed around 1.0 Bcf until oil and gas shortage problems derived from the first embargo in 

the Middle East increased gas prices from $0.17/Mcf in 1970 to $0.30/Mcf in 1974. The in-

crease in gas prices doubled both the number of producing wells and the production in the 

Cotton Valley. The cumulative gas reached the 2.33 Bcf by year-end 1974.  

 

The second embargo had a greater impact and by the end of 1980 the Cotton Valley Group 

had produced more than 200 Bcf of gas from 400 wells. Gas prices in 1990 reached 

$1.71/Mcf and the play accumulated its first Tcf of gas, producing from more than 1,000 

wells.  

 

More recently the use of lower-cost water fracturing treatments, labeled as new technol-

ogy in Table 7.11, starting in the early 1990s have increased gas production by drilling more 

wells. The use of new technologies tripled the cumulative gas reached in the 1990s and the 

play reached 3.0 Tcf in 2000. The rate of gas production from 1990 to 1998 has increased by 

33% to 40% from 2000 to 2006. Fig. 7.29 shows the results of the DCA for the natural gas 

production. 
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Fig. 7.29—The new technology period, the period of current development, could recover up to 6.0 Tcf if no other technology such as hori-
zontal drilling is implemented for the tight sands of the Cotton Valley Group. 



 

  
  
  
  

144 

Fig. 7.29 shows the results of the DCA for the natural gas production. For convenience, 

we have labeled the recognized periods of development in the Cotton Valley as fracturing, 

first and second oil embargoes, and new technologies.  

 

Please note in Fig 7.29 that the increase in natural gas prices that occurred in the 1970s in-

creased production by a factor of 1,000. The increase in drilling was caused by a cycle of high 

gas prices until the mid-1980s when the well activity reached a plateau. In the 1990s and 

2000s, more drilling occurred due to higher gas prices and the use of better fracturing tech-

nology.  

 

The use of better fracturing technology defines the period of new technology in the play. 

The new technologies evolved with improvements in hydraulic fracturing techniques that have 

reduced costs and increased well activity. We found that if no new technologies had been im-

plemented, the tight sands of the Cotton Valley Group could only have reached a EUR of 1.6 

Tcf, or around 40% of the historical cumulative gas by year-end 2006. 

 

Our forecasting shows that the new technology period could result in an EUR of 5.6 Tcf if 

no other technology such as horizontal drilling is implemented in the play or better characteri-

zation studies do not reveal ways to increase the value of the recovery factor (RF) in the res-

ervoirs of the Cotton Valley Group. We found an additional 2.0 Tcf recoverable in a 24-year 

span, using an abandonment rate of 15 Mcf/day. This volume would increase revenue by $25 

billion calculated in 2006 dollars and assuming the price of gas at $6.42/Mcf after year 2006.  
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7.4.4 Mesaverde Group  

We have identified three periods of development in the Mesaverde Group formation of 

San Juan basin driven by the combination of advances in hydraulic fracturing treatments and 

reservoir characterization to improve infill drilling strategies. The three periods were charac-

terized by the use of conventional hydraulic fracturing technologies in 320-acre spacing, the 

use of MHF during the oil crises period in 160-acre spacing, and the use of batter fracturing 

technology after the gas wellhead decontrol process was completed and gas prices started to 

increase. The third period is currently developing and is focused on searching for better infill 

strategies to improve the final recovery factor from the producing wells.  

 

Cumulative values of produced gas in Table 7.12 show the effect of different periods of 

production that occurred in the MVG. Fracturing treatments (the base case) performed during 

the first 20 years of exploitation contributed about 4.0 Tcf. When the oil crises in the Middle 

East increased stable low gas prices from $0.17/Mcf in 1970 to $1.18/Mcf in 1979, the num-

ber of producing wells in the Mesaverde increased by 60% and made possible the production 

of an additional 2.0 Tcf of gas. New technologies such as the use of better fracturing treat-

ments and better characterization models to increase recovery factors in the reservoirs since 

the 1990s have been responsible for the production of about 4.0 Tcf of gas. The technological 

breakthroughs have been supported by increases in the commodity price; the price of gas by 

year-end 2006 increased 144% compared to its value in 1990.  

 

The DCA results for the natural gas indicate the impact of new technologies increasing the 

final recovery from the reservoirs (Table 7.12). Initial fracturing treatments performed in the 

wells have produced around 4.0 Tcf of gas. Observe that if the oil crises had not occurred dur-

ing the 1970s, the Mesaverde Group would have reached an EUR value of only 6.0 Tcf of gas, 

a volume that represents half the cumulative production to date from the Mesaverde Group 

formation. The oil crises period produced 8.0 Tcf of gas, and our forecast analysis showed 

that with no changes in production conditions at the end of the period, the Mesaverde Group 

would have reached a maximum value of 9.0 Tcf of gas, an addition of 45% more gas than the 
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fracturing event alone. The search for better hydraulic fracturing treatments and better infill 

drilling strategies characterize the new technologies period. 

 

TABLE 7.12—NATURAL GAS ESTIMATES FOR THE MESAVERDE GROUP 

EVENT  PERIOD 
Cum.  

Gas, Bcf 

Producing 

Wells 

Reserves, 

Bcf 

EUR,  

Bcf 

∆EUR, 

Bcf 

Cum. Gross 

Revenues 

∆Gross 

Revenue 

FRACTURING 1951-1973 3,786 2,306 2,374 6,160 - 10 - 

1st Oil 

Emb. 
1976-1980 5,290 3,148 2,431 7,721 1,561 15 5 

OIL 

CRISES 2nd Oil 

Emb. 
1978-1991 8,010 3,766 894 8,904 1,183 19 4 

NEW TECH. 1992-2006 11,954 7,352 3,220 15,174 6,270 53 34 

Gross revenues in billion dollars at $2006 

 

Our DCA model in Fig. 7.30 indicated that the Mesaverde play could reach a maximum 

EUR of 15 Tcf if no other technology is implemented after year-end 2006. The EUR value for 

the new technology period is 246% greater than the calculated EUR value for the fracturing 

period from 1951 to 1973 as indicated in Table 7.12. 

 

If we considered hydraulic fracturing treatments occurred from 1951 to 1973 as the base 

case with no effects from the oil crises, we could have expected a total revenue of $10 billion; 

however, when the gas prices increased above $1.0/Mcf, EUR reached around 9.0 Tcf, an in-

crease of 1.4 times the earlier estimate. The increase of gas prices during the 1970s almost 

doubled the calculated gross revenues; our calculations showed a maximum of $20 billion at 

year- end of 1991.  

 

The new technology period, currently developing, shows that the tight sands of the Me-

saverde Group in the San Juan basin could recover more than 3.0 Tcf of gas and generate an 

additional of $19 billion in a 20-year span using an abandonment rate of 15Mcf/day. 
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Fig. 7.30—An additional of more than 3 Tcf of natural gas could be recovered from the Mesaverde 
Group in the San Juan basin and generate almost $20 billion in gross revenues in a 20-year span. 
 

Ault et al., (1997) estimated a EUR for the Mesaverde Group in the San Juan basin of 13 

Tcf of natural gas. By year-end 2007 the play had reached 12.5 Tcf while operators continued 

developing the play, increasing the number of producer wells. The cumulative gas at the end of 

2006 and the results of this study suggest that the value of EUR proposed by Ault et al., (1997) 

could be underestimated. At year-end 2007, more than 7,700 completions yielded 295 Bcf of 

gas.  
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7.4.5 Antrim Shale  

The Antrim Shale formation of the Michigan basin which began commercial production in 

1982 has been developed by using massive hydraulic fracturing during the 1980s and early 

1990s and lower-cost treatments since the mid 1990s.  

 

The values of estimated ultimate recovery (EUR), remaining reserves (RR), and gross 

revenues (adjusted for inflation at year-end 2006) by period were obtained using the decline 

curve analyses technique provided by the VBA code (Fig. 7.31). For convenience, we have 

labeled the massive hydraulic fracturing (MHF) as the fracturing event and the use of light 

sand fracturing (LSF) or waterfracs as the new technology event.  

 

Our analyses showed that if the use of waterfracs had not occurred during the mid 1990s, 

the Antrim Shale would have reached an EUR of 2.6 Tcf and corresponding revenues of $12 

billion at $6.42/Mcf after 2006. The use of improved waterfracs or LSF treatments in the An-

trim Shale fostered rig activity increasing the number of producing wells about 3 times by 

lowering costs of completion in the wells. Fig. 7.31 shows that the Antrim Shale of the Michi-

gan basin has increased cumulative gas production five-fold after the use of waterfracs started 

in the mid 1990s. Squares in the plot represent the historical data while the red and the orange 

lines are the forecasting of gas for the fracturing and the new technology events, respectively.  
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Fig. 7.31—The Antrim Shale of the Michigan basin has increased cumulative gas production five-fold after the use of waterfracs started in 
the mid 1990s. Squares represent the historical data while the red and the orange lines are the forecasting of gas for the fracturing and 
the new technology events, respectively. The black line represents the historical gas price.   
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If we considered fracturing as a base case with no effects from the use of lower-costs wa-

terfracs or LSF, we could have expected an EUR of 2.5 Tcf, but the use of better fracturing 

technology coupled with increasing gas prices after the gas price deregulation in 1993 in-

creased EUR to almost 6 Tcf. The additional production using better fracturing technology 

would translate to $31 billion, an increase of 2.5 times the earlier revenue. The RR for the lat-

est period would be produced in a 40-year span when producing at rates higher than 15 

Mcf/day (Fig. 7.31). 

 

For convenience, we have labeled the MHF as the fracturing event and the use of better 

fracturing technology as the new technology event. Tables 7.13 and 7.14 show the results for 

the natural gas and the oil equivalent after the DCA analysis.  

 

TABLE 7.13—NATURAL GAS ESTIMATES FOR THE ANTRIM SHALE 

EVENT PERIOD 
Cum. 

Gas, Bcf 

Producing 

Wells 

Reserves, 

Bcf 

EUR, 

Bcf 

∆EUR, 

Bcf 

Cum. Gross 

Revenues 

∆Gross 

Revenue 

FRACTURING  1982-1996 422 3,362 2,137 2,559 - 12.4 - 

NEW TECH.  1997-2007 2,271 9,184 3,367 5,638 3,079 30.5 18.1 

Gross revenues in billion dollars at $2006 

 

TABLE 7.14— OIL EQUIVALENT ESTIMATES FOR THE ANTRIM SHALE 

EVENT PERIOD 
Cum., 

MMBOE 

Producing 

Wells 

Reserves, 

MMBOE 

EUR, 

MMBOE 

∆EUR, 

MMBOE 

Cum. Gross 

Revenues 

∆Gross 

Revenue 

FRACTURING  1982-1996 72 3,127 301 373 - 15.9 - 

NEW TECH.  1996-2007 379 9,184 203 582 209 25.0 9.1 

Gross revenues in billion dollars at $2006 
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The impacts of these two events are quantified in this section to show the improvements in 

recovery factors when using better technologies supported by better commodity prices such as 

the case of the new technology period from 1997 to 2007. 

 

Cumulative values of produced oil and gas in Tables 7.13 and 7.14 show the effect of these 

two periods of production in the Antrim Shale since 1982. MHF treatments contributed 422 

Bcf from more than 3,000 wells until the introduction of new stimulation technology in the 

mid 1990s, which increased the gas production five-fold, producing from more than 9,000 

wells. Table 7.14 shows the corresponding values for oil and gas production in terms of oil 

equivalent as reference. 

 

7.4.6 Barnett Shale  

Natural gas production data from 1991 to 2006 in Fig. 7.32 indicate that the Barnett Shale 

of the Fort Worth basin has experienced the use of two different methods of stimulation, the 

MHF treatments used mostly in vertical wells (1982-1999), and the use of water fracturing 

technology in both vertical and horizontal wells (2000-2006). 

 

From 1982 to 1999, gas production was achieved using mostly MHF treatments to stimu-

late vertical wells completed mostly in the lower member present in the Barnett Shale forma-

tion. Our DCA study showed that MHF treatments would have produced a maximum of 390 

Bcf of gas if the use of horizontal wells and water fracture treatments had not been imple-

mented (Fig. 7.32). Historically, the developing Barnett Shale has increased gas production by 

almost 8 times after operators introduced water fracture treatments, horizontal wells and better 

characterization technologies. 
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Fig. 7.32—The developing Barnett Shale has historically increased gas production by almost 8 times 
when operators introduced LSF treatments, horizontal wells, and better characterization technologies.  
 

Considering the use of stimulated vertical wells (initial phase of production), we could 

have expected an EUR of 390 Bcf, but the introduction of horizontal drilling (second phase of 

production) shot EUR to almost 7.0 Tcf, an increase of more than 17 times the earlier estimate. 

The additional production would translate into $42 billion at $6.42/Mcf after year 2006 (Fig. 

7.32).  

 

The second phase of production started in 2000 and has been characterized by intense 

drilling activity including the use of waterfracture treatments as common stimulation method 

and the use of horizontal wells to increase the effectiveness of the fracturing by contacting 

more reservoir area to the wellbore. The use of stimulated horizontal wells could recover a 
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maximum EUR of about 7.0 Tcf. Our forecast predicted a final RR of about 6.0 Tcf recover-

able in 30-year span when producing at rates higher than 15Mcf/day.  

 

Table 7.15 summarized the DCA estimations for the natural gas production from the Bar-

nett Shale formation. 

 

TABLE 7.15—NATURAL GAS ESTIMATES FOR THE BARNETT SHALE 

EVENT PERIOD 
Cum. 

Gas, Bcf 

Producing 

Wells 

Reserves, 

Bcf 

EUR, 

Bcf 

∆EUR, 

Bcf 

Cum. Gross 

Revenues 

∆Gross 

Revenue 

FRACTURING  

(MHF in verticals) 
1982-1999 170 476 220 390 - 1.6  

NEW TECHNOLOGY  

(Waterfracs in  

Vertical and  

Horizontal Wells) 

1999-2005 1, 394 3,820 5,802 6,802 6,412 41.7 40.1 

Gross revenues in billion dollars at $2006 

 

Table 7.16 shows the calculations done for gas and oil produced from the BS in terms of 

oil equivalent. 

 

TABLE 7.16—OIL EQUIVALENT ESTIMATES FOR THE BARNETT SHALE 

EVENT PERIOD 
Cum., 

MMBOE 

Producing 

Wells 

Reserves, 

MMBOE 

EUR, 

MMBOE 

∆EUR, 

MMBOE 

FRACTURING  

(MHF in verticals) 
1982-1999 28 476 39 67 - 

NEW TECHNOLOGY  

(Waterfracs in Verticals 

and Horizontal Wells) 

1999-2005 232 3,820 902 1,134 1,067 

 

Please observe in Fig. 7.33 the average gas flow rate versus time, showing the increase of 

the gas rate values since production started in 1982. On average, daily gas production rates per 
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well reached the 200 Mcf/day during the 1980s to 300 Mcf/day during the 1990s to more than 

400 Mcf/day during the 2000s.  

 

The Barnett Shale Of Fort Worth Basin

Average Gas Rate vs Time
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Fig. 7.33—The average gas rate shows that the production of an average well has increased with time. 
Maximum rates during the 1980s reached 200 Mcf/D, increasing to 300 Mcf/D during the 1990s and 
more than 400 Mcf/D during the 2000s. 
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7.4.7 Lewis Shale  

We have identified four periods of development in the Lewis Shale characterized by stable 

growth (1952-1964), intense growth (1964-1978), intense growth and stabilization (1977-

1987), and intense stable growth (1987-2007) in terms of either number of producing wells or 

production. For convenience, we have labeled these periods as fracturing, first oil embargo, 

second oil embargo, and new technologies. 

 

Fig. 7.34 shows the amount of gas produced during major events that occurred in the 

Lewis Shale and the history of producing wells from 1952 to 2006. Note the big impact in 

number of wells during the oil crises period trying to stabilize towards the year 1990; however, 

better prices and technologies after this period allow a steady growth in number of wells and 

production. The historical cumulative gas clearly shows these changes; Fig. 7.34 includes the 

results from the DCA performed to the natural gas case.  

 

Considering fracturing as a base case in the Lewis Shale formation, with no effects from 

the higher gas prices of the 1970s, we could have expected an EUR of 10 Bcf. However, the 

oil crises period during the 1970s increased gas prices and fostered rig activity as shown in 

Fig 7.34, increasing the EUR to more than 400 Bcf (only half of the total gas produced by 

year-end 2007). The new technology event characterized by the use of waterfracture treat-

ments could produce 1.6 Tcf, which translates into $7 billion in revenues. 
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Fig. 7.34—Aggressive growth in number of wells during the oil crises period stabilized towards the year 1990; however, better prices and 
technologies after this period have sustained the steady growth in number of wells as well as gas production. 
 



 

  
  
  
  

157 

Table 7.17 shows the results from the DCA technique for the natural gas. The forecasting 

analysis for the Lewis Shale shows the effect of different development periods since 1952. We 

have estimated an EUR of 1.6 Tcf to be produced in a 50-year span if no other technology is 

implemented in the play. Currently, the Lewis Shale of the San Juan basin produces from 

more than 600 stimulated vertical wells.  

 

TABLE 7.17—NATURAL GAS ESTIMATES FOR THE LEWIS SHALE 

EVENT  Period 
Cum. 

Gas, Bcf 

Produc. 

wells 

Reserves, 

Bcf 

EUR, 

Bcf  

∆EUR, 

Bcf 

Cum. Gross 

Revenues 

∆Gross 

Revenue 

Fracturing 1952-64 6 27 4 10 - 0.01 - 

1st OIL  

EMB. 
1964-78 46 52 61 107 97 0.32 0.31 

2nd OIL 

EMB. 
1977-87 284 180 132 416 309 1.62 1.3 

New Tech. 1987-07 867 652 699 1,565 1,149 6.97 5.4 

Gross revenues in billion dollars at $2006 

 

Based on the shale gas-in-place value of 97 Tcf estimated by BR (1997) and the EUR 

computed in this study, we found a maximum recovery factor of 1.6% and an average EUR of 

2.4 Bcf/well. Data from the literature suggest a range of EUR per well from 0.05 to 2.0 

Bcf/gas per well and higher ranges of recovery factors for the Lewis between 5 and 15%. The 

Lewis shale is considered a developing play, so our EUR calculated for the last event, new 

technologies, could be underestimated.  
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The oil equivalent results in Table 7.18 are reported as reference since Lewis Shale is ba-

sically a natural gas producer play. 

 

TABLE 7.18—OIL EQUIVALENT ESTIMATES FOR THE LEWIS SHALE 

MMBOE 

EVENT  Period 
Cum., 

MMBOE 

Producing 

wells Reserves EUR ∆EUR 

Cum. Gross 

Revenues 

∆Gross 

Revenue 

Fracturing 1952-64 1.0 17 0.4 1.5 - 0.019 - 

1st Oil Emb. 1963-78 11 50 7 18 16.5 0.553 0.53 

2nd Oil Emb. 1977-87 55 225 19 71 53 3.535 2.98 

Gross revenues in billion dollars at $2006 
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CHAPTER VIII 

DISCUSSION OF RESULTS 

 

8.1 The Spearman's Rank Correlation Coefficient – The Study of Correlation 

We used the Spearman's Rank Correlation Coefficient (SRCC) to measure dependence be-

tween the variables, commodity price, rig count, and producing wells. The correlation study 

indicated that periods of high commodity prices have supported the growth in drilling activity 

in the country and vice versa.  

 

US rig count data since 1970 indicated that periods of high commodity price caused the 

rate of growth of active rigs to increase by 113%. In contrast, we observed from US rig count 

data that periods of low commodity price reduced the rate of growth of the number of active 

rigs around 60%.  

 

Periods of high commodity price encourage higher rig activity in the oil and gas reservoirs. 

In general, the variable rig count will be linearly proportional to the commodity price; in other 

words, rig activity shows higher growth during periods of high commodity price while during 

periods of low commodity price the variable rig count will either stabilized or decrease.  

 

For the case of producing (active) wells, greater rig activity will always increase the num-

ber of producing (active) wells while periods of low rig activity have slightly increase the 

number of producing (active) wells. We used the rate of growth of producing (active) wells to 

illustrate this tendency; in general, we observed that the rate of growth of the number of pro-

ducing (active) wells, similarly to the rig count, will sharply increase or decrease as oil prices 

sharply increase or decrease. 
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8.1.1 Producing Wells versus Commodity Prices. 

Fig. 8.1 shows the dependence between gas prices and producing wells for the selected 

unconventional formations in this study during periods of high gas price.  
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Fig. 8.1—Number of producing wells increases linearly with commodity price for selected gas forma-
tions.  

 

Fig 8.1 shows data for the periods of high gas prices. In general, the selected formations in 

this study showed strong SRCC factors; however, the cases could vary as much as 30%. On 

average, the tight gas sands of Cotton Valley (CVG) and Mesaverde Group (MVG) and the 

shales of the Lewis formation (LS) showed SRCC values greater than 0.9. 

 

Fig. 8.2 shows producing wells data after the US full deregulation of gas prices in 1993, 

the plays with higher rate of growth in producing wells were the Barnett (BS) and the Antrim 
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shales (AS) followed by the tight sand formations of Mesaverde Group (MVG) and Cotton 

Valley Group (CVG).  
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Fig. 8.2—Higher values for the rate of growth in producing well number was observed in the gas shales 
followed by the tight sand formations when gas price became deregulated in 1993. 
 

Fig. 8.2 shows on average the rate of growth for every dollar added to the price of gas af-

ter the gas price deregulation in 1993; the gas shales of Antrim (AS) and Barnett (BS) show a 

rate of growth around 1,000 producing wells followed by the tight sands of Mesaverde Group 

(MVG) and Cotton Valley Group (CVG) with a growth rate between 300 and 500 producing 

wells. The Lewis Shale (LS) of San Juan basin has the slowest rate of growth with less than 

100 producing wells.  
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Without question high oil prices cause an increase in rig activity; however, we have re-

cognized that rig activity not only follows periods of high commodity prices but also limita-

tions inherent to geographic spacing to locate more wells such as the case of the Austin Chalk 

formation. In general, data for oil producing wells show a proportional linear correlation with 

positive tendency for periods of high oil prices (Fig. 8.3).  
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Fig. 8.3—The rate of growth in the number of producing wells was usually higher for the Austin Chalk 
until spacing problems reduced the rig activity in the play. 
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8.1.2 Rate of Growth of Producing Wells versus Commodity Prices 

The correlation study indicated that periods of high commodity prices have supported the 

increase in well activity while periods of low commodity prices diminish this tendency.  

 

Production data from 1950 to 2006 show the variation of the number of producing (active) 

wells with time for the tight sands and the gas shale formations cases of study in this research. 

Fig. 8.4 shows the variation of the number of producing (active) wells with time for the tight 

sands of Cotton Valley Group and Mesaverde Group. 
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Fig. 8.4—The variation of the number of producing (active) wells with time for the tight sands of Cotton 
Valley (CVG) and the Mesaverde Group (MVG) is driving, in general, by gas price fluctuations. 

 

The variation of the number of producing (active) wells for the Cotton Valley Group data 

from 1962 to 2006 with time shows, in general, how periods of high commodity prices result 
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in greater increments in the number of wells for every dollar added to the commodity price. 

On the contrary, periods of low prices produce lower increments in the number of producing 

wells. Please observe that the rate of growth of producing wells for periods of high prices was 

as much as 8,600% while during periods of low prices the growth in number of wells de-

creased by 25% (Fig. 8.4). 

 

Fig. 8.5 shows the variation of the number of producing (active) wells with time for the 

gas shale formations. The three cases include the Antrim, Barnett and Lewis Shale. 
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Fig. 8.5—Variation of the number of producing wells with time for the gas shales has been affected not 
only by prices but also by technology, especially for the Lewis Shale (LS) and the Barnett Shale (BS). 
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The rate of growth of producing wells for the Lewis Shale formation from 1952 to 2006 

shows greater increments in the number of wells for periods of high prices while slighter in-

crements during periods of low prices (Fig. 8.5). Periods of high commodity prices contribu-

ted with increments in the rate of growth of producing wells up to 1,100% while periods of 

low commodity prices decreased the rate of growth of producing wells by 47%. 

 

Fig. 8.6 shows the variation of the number of producing (active) wells with time for the oil 

producing formations of Austin Chalk and Bakken Shale.  
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Fig. 8.6—Variation of the number of producing (active) wells with time for the oil formations of Austin 
Chalk (AC) and the Bakken Shale (BKS). 
 

For the Austin Chalk formation in Fig 8.6, data shown that periods of high commodity 

prices increased the rate of growth of producing wells by 180% while periods of low prices 

decreased the rate of growth of producing wells by almost 100%. The Bakken Shale case 

shows similar tendencies. 
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8.2 Decline Analysis Study-Forecasting Graphs 

We used Arp’s equations to evaluate production performance under different scenarios 

and compute the estimated ultimate recovery (EUR), the remaining reserves (RR) and the re-

maining time of production (tR) in every case. Hydraulic fracturing technology in vertical 

wells represents the base case for almost all the cases of study labeled for our convenience as 

“fracturing”.  

 

Our study compared the effect of increasing prices during the oil crises of the 1970s and 

the effect of breakthrough technologies in the 1990s against the fracturing case. The EUR 

analysis considered an economic limit rate of 15 Mcf/day and 5 STB/day for gas and oil, res-

pectively. The results of the DCA analyses for all the cases of study are compiled in Appendix 

B. 

 

Historical data have showed how is possible to move progressively develop resources from 

the bottom of the Resource Triangle as technology improves and product prices increase. We 

found that the Austin Chalk, Cotton Valley, and Mesaverde formations increased their produc-

tion when the oil crises caused prices to increase from $3.29/bbl in 1973 to $36.83/bbl in 1980. 

Well activity in these formations increased by 26-fold, by the end of 1981. Production grew 

313 times compared to pre-oil crises periods. The Austin Chalk increased gas production from 

3.4 Bcf/year in 1973 to 135 Bcf/year in 1981; the Cotton Valley went from 0.27 Bcf/year in 

1974 to 84.6 Bcf/year in 1980; and production from the tight sands of the Mesaverde rose from 

218 Bcf/year in 1970 to 313 Bcf/year in 1980. 

 

The forecasting analysis allowed us to quantify the impact of periods of high commodity 

price or better technologies over production in the selected plays. We consider the selected 

formations in this study, in general, good examples to quantify the RTT; however, our EUR 

values could be underestimated since the Barnett Shale formation has not peaked yet.  
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During this study, we evaluated how production was affected by three major events: the 

use of conventional technologies (1950-1969), the increase in drilling activity caused by the 

oil crises (1973-1978), and the use of new technologies (late 1990s to date). In general, we 

can relate these three major events to timeframes; however, some of the plays such as the 

Barnett shale and the Antrim shale have been developed as the result of better technologies 

and experiences in other plays.  

 

The use of conventional technologies mainly refers to the use of hydraulic fracturing flu-

ids with low concentrations of propping agents and the use of vertical wells as a unique drill-

ing type of well. The well drilling activity during the 1970s is referred to a period of high 

prices and the evolution of the hydraulic fracturing technology; this period was characterized 

by the development and use of more viscous fluids able to carry higher concentrations of 

proppants.  

 

The use of new technologies includes the use of horizontal wells, the improvements of hy-

draulic fracturing technology and the ability to stimulate horizontal wells, as well as better 

characterization models to optimize spacing in the reservoirs, the use of multilaterals and the 

better understanding of the production mechanisms in shales and tight gas sands.  

 

8.2.1. The Estimated Ultimate Recovery (EUR) 

Observing that the recovery factor (RF) and estimated ultimate recovery (EUR) can be-

have as proportional variables; an increase in the value of EUR will normally increase the RF 

in the reservoir.  

 

Assuming that the value of the original oil in place (OOIP) and the original gas in place 

(OGIP) remain constant over time, we considered two options: (1) the RF remains constant 

over time, and (2) the RF increases over time. For the first option, there is either no use of 

technology to increase the value of ultimate recovery (EUR) or the technology is just acceler-

ating production but not really affecting the value of EUR. The second option assumes that 
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the use of technology successfully increase the value of both EUR and RF. We found the re-

covery per well (EUR/well) as a good variable to measure the effect of technology or prices 

through time.  

 

Our results show how different production scenarios through time (events) have changed 

the average value of EUR per well. Fig. 8.7 shows the change in EUR per well in selected 

natural gas formations in our study. In most cases, the play has gone through a process of ac-

celeration in production with slight changes or no changes in the value of recovery factor (RF). 
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Fig. 8.7—EUR growth per well in selected natural gas formations has gone through a process of ac-
celeration in production with slight changes or no changes in the value of the recovery factor (RF). 

 

Fig. 8.7 shows the tendency of five natural gas producing formations in our study. The 

tight sands of the Cotton Valley Group (CVG) and the Mesaverde Group (MVG) have fol-

lowed a similar tendency marked by periods of decrease and increase; however, the MVG has 
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shown greater recovery values per well than the CVG formation. A decrease of EUR per well 

for the MVG and the CVG during the first oil embargo is the result of an intense drilling activ-

ity. On average, this study reports that the tight sands on CVG and MVG have recoveries 

around 2.4 Bcf/well. Note that the tight gas sands of CVG and MVG have mainly accelerated 

production while the recovery factor kept stable.  

 

The wells producing from gas shale formations are characterized by initial recoveries 

around 0.8 Bcf/well. Please note that the recovery per well in the Barnett Shale (BS) has sig-

nificantly benefited from drilling horizontal wells, increasing the EUR/well by more than 2 

times the earlier value, and therefore, its recovery factor value. On the contrary, the Antrim 

Shale (AS) has only experience an acceleration in recovery per well.  

 

Fig 8.8 shows the recovery per well in million BOE per well calculated for the textbook 

case of Austin Chalk formation. Our estimates were performed assuming that 1Mcf gas is 

equivalent to 6 bbl of oil. 

 

Please observe that the value of EUR per well for our the textbook case, the Austin Chalk 

(AC) formation, has continuously increased over time as events such as hydraulic fracturing, 

oil embargoes, or new technologies came into play to increase productivity from this low per-

meability play.  
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Fig. 8.8—EUR growth per well in the Austin Chalk Formation has gone through a process of accelera-
tion with the advent of better prices and technologies since fracturing was used as the unique stimula-
tion technique. 

 

The Austin Chalk (AC) play shows the growth of EUR per well since the 1950s when hy-

draulic fracturing became a commonplace technique. Although data from the AC shows values 

of well recovery on average lower than 0.11 MMBOE/well, the play is the only formation 

showing a clear upward tendency since hydraulic fracturing was adopted as stimulation tech-

nology in the play.  

 

Note that the Austin Chalk (AC) formation has increased well recovery in more than 190% 

since the fracturing event. In general, the data show that the value of EUR per well in the Aus-

tin Chalk (AC) have increased significantly through time. The effect of technology and price 

has helped to increase the recovery factor from the AC formation through time.   
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8.2.2. Well Potential 

The analysis performed on the production of gas coming from the Cotton Valley Group 

(CVG), Mesaverde Group (MVG), and Lewis Shale (LS) has been to evaluate the effects of (1) 

hydraulic fracturing; (2) the first oil embargo; (3) the second oil embargo; and (4) new tech-

nologies such as horizontal and multilateral drilling, and new fracturing technologies.  

 

Fig. 8.9 shows the estimated values of natural gas production rate (Mcf/day) calculated for 

the four events.  
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Fig. 8.9—Well potentials from tight sands (CVG and MVG) are the greatest values, followed by the 
shale formations (LS). 

 

Note in Fig. 8.9 that the tight sand formations of CVG and MVG show gas rates around 

145 Mcf/day followed by the gas shale formation of LS with 93 Mcf/day.  
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8.2.3. Horizontal Wells 

Only three formations in this study have significant production from horizontal wells: the 

Austin Chalk (AC), the Barnett Shale (BS), and the Bakken Shale (BKS). The oil and gas 

plays of the AC and BS have benefited substantially from the use of horizontal technology.  

 

Fig 8.10 shows that after the use of horizontal wells were implemented the recovery per 

well reached values greater than 0.3 MMBOE/well. The Bakken Shale experienced an oppo-

site behavior when operators could not stimulated horizontal wells. 
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Fig. 8.10—EUR per well in the AC and the BS has growth through time, benefiting form the use of 
horizontal wells which at least doubled the recovery per well in both plays. 
 

The Barnett Shale (BS) had a dramatic increase in production since horizontal drilling 

started. In 2006, the use of horizontal drilling sped up production by a factor of 2.3 compared 

to production in 1999. The Barnett shale is today a developing play; therefore, our estimates in 

this study are considered conservative estimates.  
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The Austin Chalk (AC) formation anteceded the Barnett Shale (BS) drilling its first hori-

zontal well in the late 1980s. Increase in prices after the collapse of oil prices in the mid 1980s 

along with the use of horizontal drilling completions stimulated production from the AC. Re-

sults in Fig. 8.10 shows that horizontal drilling sped up production by a factor of 2.6 compared 

to the use of only verticals hydraulic fracturing stimulated (the fracturing event).  

 

The horizontal drilling in the Bakken Shale (BKS) formation shows in Fig. 8.11 a decrease 

of 56% in terms of recovery per well (MMBOE/well). The Bakken Shale of the Williston ba-

sin is an oil producer where stimulation of horizontal wells did not began until the early 2000s. 

Data in Fig 8.11 show this effect on EUR values per well. 
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Fig. 8.11—In contrast to the Bakken Shale (BKS), the EUR per well in the Austin Chalk has grown 
through time. In fact, the use of nonstimulated horizontals in the Bakken Shale has reduced the recov-
ery per well by 50%. 
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CHAPTER IX 

CONCLUSIONS 

 

 

In response to higher commodity prices, oil and gas rig activity will always increase. We 

can evaluate both rig activity and the number of producing wells to evaluate the effects of 

higher commodity prices. 

 

1. Our results confirm the concept of the resource triangle that natural gas and oil re-

sources are distributed log normally in nature and we can produce more oil and 

natural gas from the low quality resources when either product prices increase or 

when better technology is available to drill and produce these low quality reservoirs. 

 

2. Our analyses clearly show that periods of high commodity prices support the in-

crease in drilling rig activity. 

 

3. The increase in oil and gas prices during the 1970s led to both an increase in rig 

count and the development of new technologies, such as massive hydraulic fractur-

ing. 

 

4. The use of horizontal and multi-lateral wells has opened up additional areas for de-

velopment, such as the Barnett Shale and the Bakken Shale. Using horizontal wells 

has also revived older plays, such as the Austin Chalk. 

 

5. The combination of horizontal well technology and water fracturing technology has 

led to a dramatic increase in the development of both oil and gas from shale reser-

voirs.    
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APPENDIX A 

VBA CODE — FORECASTING AND REVENUES CALCULATION COD E 
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SUB HYPERBOLICFIT_DI() 

 

DIM NEWWB AS WORKSHEET 

DIM ACHART AS CHART 

DIM ANEWSERIES AS SERIES 

 

'================================================== 

CURRENT_WORKBOOK = APPLICATION.ACTIVEWORKBOOK.NAME 

PATH = APPLICATION.ACTIVEWORKBOOK.PATH 

WORKBOOKS(CURRENT_WORKBOOK).SHEETS("DATA").ACTIVATE 

'================================================== 

INIROW_T = 7 

INICOL_T = 1 

INIROW_QB = 7 

INICOL_QB = 2 

INIROW_QAV = 7 

INICOL_QAV = 3 

INIROW_FORC = 7 

INICOL_FORC = 4 

NUMPAR = 100 

DELTA_B = 1 / NUMPAR 

'================================================== 

LIMIT = CELLS(9, 7) 

NUMWELLS = CELLS(10, 7) 

MLR = LIMIT * NUMWELLS * 30.4 

QINI = CELLS(INIROW_QAV, INICOL_QAV) 

 

DI = CELLS(11, 7) 

 

ERROR_MIN = 0 

 

    'D_II = ((QINI - QEND) / DROW_HH) / (0.5 * (QINI + QEND)) 

    FOR II = 1 TO NUMPAR 

        B_II = II * DELTA_B 

        SUMA = 0 
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        DROW = 0 

        DO 

            'T_JJ = ROUND(CELLS(INIROW_T + DROW, INICOL_T), 0) 

            T_JJ = DROW + 1 

            QB_JJ = CELLS(INIROW_QB + DROW, INICOL_QB) 

            QBF = QINI * (1 + DI * B_II * T_JJ) ^ (-1 / B_II) 

            SUMA = SUMA + (QBF - QB_JJ) ^ 2 

            DROW = DROW + 1 

        LOOP UNTIL CELLS(INIROW_QB + DROW, INICOL_QB) = "" 

        IF II = 1 THEN 

            NUMDATHIST = DROW 

        END IF 

        IF II = 1 OR SQR(SUMA) < ERROR_MIN THEN 

            ERROR_MIN = SQR(SUMA) 

            BI = B_II 

        END IF 

    NEXT 

 

CELLS(19, 7) = MLR 'MONTHLY LIMIT RATE 

CELLS(20, 7) = DI 

CELLS(21, 7) = QINI 

CELLS(22, 7) = BI 

'================================================== 

DROW = 0 

QGE = MLR 

'QGE = 3180 

QGE_II = 2 * QGE 

DO 

    IF NUMDATHIST - 1 < DROW THEN 

        MYMONTH = MONTH(CELLS(INIROW_FORC + DROW - 1, INICOL_T)) 

        MYYEAR = YEAR(CELLS(INIROW_FORC + DROW - 1, INICOL_T)) 

        IF MYMONTH < 12 THEN 

            MYMONTH = MYMONTH + 1 

        ELSE 

            'IF MYYEAR = 2000 THEN 



 

  
  
  
  

183 

            '    WW = 1 

            'END IF 

            MYMONTH = 1 

            MYYEAR = MYYEAR + 1 

        END IF 

        'MYDATE_STRING = LTRIM(STR(MYMONTH)) + "/1/" + LTRIM(STR(MYYEAR)) 

        MYDATE_STRING = LTRIM(STR(MYMONTH)) + "/" + LTRIM(STR(MYYEAR)) 

        MYDATE = DATEVALUE(MYDATE_STRING) 

        'CELLS(INIROW_T + DROW, INICOL_T) = FORMAT(MYDATE, "MMM D YY") 

        CELLS(INIROW_T + DROW, INICOL_T) = FORMAT(MYDATE, "MMMM YY") 

    END IF 

    'T_II = ROUND(CELLS(INIROW_T + DROW, INICOL_T), 0) 

    T_II = DROW + 1 

    QGE_II = QINI * (1 + DI * BI * T_II) ^ (-1 / BI) 

    IF QGE_II >= QGE THEN 

        CELLS(INIROW_FORC + DROW, INICOL_FORC) = QGE_II 

        DROW = DROW + 1 

    END IF 

LOOP UNTIL QGE_II < QGE 

NUMDATFORC = DROW 

'================================================== 

'GRAPHICS 

'================================================== 

NUMCURVES = 3 

CHART_NAME = "FORECASTING" 

XLABEL_CHART = "TIME" 

YLABEL_CHART = "G" 

TITLETEXT = "FORECASTING" 

NUMDATAVG = NUMDATHIST 

 

FOR II = 1 TO NUMCURVES 

    SELECT CASE II 

        CASE 1 

           LTEXT_II = "HISTORIC DATA" 

           NUMDAT_II = NUMDATHIST 
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           '-------------------------- 

           INIROW_X_II = INIROW_T 

           INICOL_X_II = INICOL_T 

           '-------------------------- 

           INIROW_Y_II = INIROW_QB 

           INICOL_Y_II = INICOL_QB 

           'INICOL_Y_II = INICOL_QB 

           '-------------------------- 

        CASE 2 

           LTEXT_II = "AVG DATA" 

           NUMDAT_II = NUMDATAVG 

           '-------------------------- 

           INIROW_X_II = INIROW_T 

           INICOL_X_II = INICOL_T 

           '-------------------------- 

           INIROW_Y_II = INIROW_QAV 

           'INICOL_Y_II = INICOL_QAV - 1 

           INICOL_Y_II = INICOL_QAV 

           '-------------------------- 

        CASE 3 

           LTEXT_II = "FORECASTING" 

           NUMDAT_II = NUMDATFORC 

           '-------------------------- 

           INIROW_X_II = INIROW_T 

           INICOL_X_II = INICOL_T 

           '-------------------------- 

           INIROW_Y_II = INIROW_FORC 

           'INICOL_Y_II = INICOL_FORC - 1 

           INICOL_Y_II = INICOL_FORC 

           '-------------------------- 

    END SELECT 

    '------------------------------------- 

    ENDROW_X_II = INIROW_X_II + NUMDAT_II - 1 

    ENDCOL_X_II = INICOL_X_II 

    '------------------------------------- 
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    ENDROW_Y_II = INIROW_Y_II + NUMDAT_II - 1 

    ENDCOL_Y_II = INICOL_Y_II 

    '------------------------------------- 

    IF II = 1 THEN 

        SET ACHART = CHARTS.ADD 

        ACHART.NAME = CHART_NAME 

    ELSE 

        WORKBOOKS(CURRENT_WORKBOOK).SHEETS(ACHART.NAME).ACTIVATE 

    END IF 

    WITH ACHART 

         

            .CHARTTYPE = XLXYSCATTERLINES 

             

            XRANGE = "=DATA!R" + LTRIM(STR(INIROW_X_II)) + "C" + LTRIM(STR(INICOL_X_II)) + _ 

            ":" + "R" + LTRIM(STR(ENDROW_X_II)) + "C" + LTRIM(STR(ENDCOL_X_II)) 

            YRANGE = "=DATA!R" + LTRIM(STR(INIROW_Y_II)) + "C" + LTRIM(STR(INICOL_Y_II)) + _ 

            ":" + "R" + LTRIM(STR(ENDROW_Y_II)) + "C" + LTRIM(STR(ENDCOL_Y_II)) 

             

            SET ANEWSERIES = .SERIESCOLLECTION.NEWSERIES 

            'ANEWSERIES.CHARTTYPE = XLXYSCATTERLINES 

            SELECT CASE II 

                CASE 1 

                    ANEWSERIES.MARKERSIZE = 7 

                CASE 2 

                    ANEWSERIES.MARKERSIZE = 1.5 

                CASE 3 

                    ANEWSERIES.MARKERSIZE = 1.5 

            END SELECT 

             

            WITH .AXES(XLCATEGORY) 

                .MINIMUMSCALE = SHEETS("DATA").CELLS(12, 7) 

            END WITH 

             

            ANEWSERIES.XVALUES = XRANGE 

            ANEWSERIES.VALUES = YRANGE 
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            ANEWSERIES.NAME = LTEXT_II 

             

            .AXES(XLCATEGORY, XLPRIMARY).HASTITLE = TRUE 

            .AXES(XLCATEGORY, XLPRIMARY).AXISTITLE.CHARACTERS.TEXT = XLABEL_CHART 

            .AXES(XLVALUE, XLPRIMARY).HASTITLE = TRUE 

            .AXES(XLVALUE, XLPRIMARY).AXISTITLE.CHARACTERS.TEXT = YLABEL_CHART 

            .HASTITLE = TRUE 

            .CHARTTITLE.TEXT = TITLETEXT 

            ACTIVECHART.HASLEGEND = TRUE 

         

    END WITH 

NEXT 

'================================================== 

'GENERATING THE REVENUE 

WORKBOOKS(CURRENT_WORKBOOK).SHEETS("DATA").ACTIVATE 

INIROW = INIROW_T 

INICOL = 11 

INIROW_PRICE = 29 

INICOL_PRICE = 7 

DX_II = 0 

QG = 0 

FOR II = 1 TO NUMDATFORC 

    MYDATE = CELLS(INIROW_T + II - 1, INICOL_T) 

    MYMONTH = MONTH(MYDATE) 

    QG_II = CELLS(INIROW_FORC + II - 1, INICOL_FORC) 

    QG = QG + QG_II 

    IF II = 1 THEN 

        IF MYMONTH >= 1 AND MYMONTH < 12 THEN 

            INIDATE = MYDATE 

        ELSEIF MYMONTH = 12 THEN 

            INIDATE = MYDATE 

            ENDDATE = INIDATE 

            CELLS(INIROW + DX_II, INICOL) = FORMAT(INIDATE, "MMMM YY") 

            CELLS(INIROW + DX_II, INICOL + 1) = FORMAT(ENDDATE, "MMMM YY") 

            CELLS(INIROW + DX_II, INICOL + 2) = CELLS(INIROW_PRICE + DX_II, INICOL_PRICE) 
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            CELLS(INIROW + DX_II, INICOL + 3) = QG 

            CELLS(INIROW + DX_II, INICOL + 4) = QG * CELLS(INIROW_PRICE + DX_II, INICOL_PRICE) 

            DX_II = DX_II + 1 

            QG = 0 

        END IF 

    ELSE 

        IF MYMONTH = 1 THEN 

            INIDATE = MYDATE 

        ELSEIF MYMONTH = 12 OR II = NUMDATFORC THEN 

            ENDDATE = MYDATE 

            CELLS(INIROW + DX_II, INICOL) = FORMAT(INIDATE, "MMMM YY") 

            CELLS(INIROW + DX_II, INICOL + 1) = FORMAT(ENDDATE, "MMMM YY") 

            CELLS(INIROW + DX_II, INICOL + 2) = CELLS(INIROW_PRICE + DX_II, INICOL_PRICE) 

            CELLS(INIROW + DX_II, INICOL + 3) = QG 

            CELLS(INIROW + DX_II, INICOL + 4) = QG * CELLS(INIROW_PRICE + DX_II, INICOL_PRICE) 

            DX_II = DX_II + 1 

            QG = 0 

        END IF 

    END IF 

NEXT 

 

'================================================== 

 

END SUB 
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APPENDIX B 

DCA FIGURES FOR THE SELECTED FORMATIONS 
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TABLE B1— NATURAL GAS ESTIMATIONS FOR THE AUSTIN CHALK FORMATION OF THE EAST TEXAS 

from to MMcf/year Mcf/day

Fract. 1955 1974 11          1,288 11          0.00 0.01                   0.49             1.34        

1st Emb. 1973 1979 48          2,593 48          0.00 0.03                   4.69             13           

2nd Emb. 1978 1990 1,114     5,279 1,221     107        3 0.44                   29                80           

Stimulated horiz. 1992 2000 3,881     5,114 6,449     2,568     32 1.02                   26                70           

Recovery, 

Bcf/well

Well Potential

AVERAGEHISTORICAL FORECAST

Period
Cum.,      

Bcf
Wells

EUR,       

Bcf

RR,         

Bcf

tR, 

years
AC - Austin Chalk 

Natural Gas 

Figures

EVENT

 

 

 

TABLE B2— OIL EQUIVALENT ESTIMATIONS FOR THE AUSTIN CHALK FORMATION OF THE EAST TEXAS 

from to BOE/year BOE/day

Fract. 1955 1974 77 1,237 139 62.0 16 0.11                   3,211           9             

1st Emb. 1974 1979 147 2,593 317 170 19 0.13                   5,470           15           

2nd Emb. 1978 1990 641 5,279 890 249 16 0.21                   7,619           21           

Stimulated Horiz. 1990 2005 1718 4,729 2240 522 30 0.29                   6,344           17           

HISTORICAL FORECAST

Period
Recovery, 

MMBOE/well

Well Potential

AVERAGE

Cum., 

MMBOE
Wells

EUR, 

MMBOE

RR, 

MMBOE

tR, 

years
AC - Austin Chalk     

Oil Equivalent 

Figures

EVENT
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TABLE B3— NATURAL GAS ESTIMATIONS FOR THE COTTON VALLEY FORMATION OF THE EAST TEXAS AND LOUISIANA BASINS 

from to MMcf/year Mcf/day

Fract. 1962 1970 0.91          2 1.40       0.50       12 0.70                   35                96           

1st Emb. 1970 1975 2.33          6 3.49       1.16       10 0.52                   35                95           

2nd Emb. 1975 1990 1,009        890 1,613     604        20 1.82                   52                143         

Imp. waterfracs 1990 2007 4,040        3,793 5,633     1,593     26 1.38                   33                90           

CVG - Cotton 

Valley Group                  

Natural Gas    

Figures

Recovery, 

Bcf/well

Well Potential

AVERAGE

EVENT

HISTORICAL FORECAST

Period
Cum.,      

Bcf
Wells

EUR,       

Bcf

RR,         

Bcf

tR, 

years

 

 

 

TABLE B4— OIL EQUIVALENT ESTIMATIONS FOR THE COTTON VALLEY FORMATION OF THE EAST TEXAS AND LOUISIANA BASINS 

from to BOE/year BOE/day

Fract. 1962 1970 0.25 2 0.33 0.08 9 0.16                   9,588           26           

1st Emb. 1970 1975 0.50 6 0.65 0.15 7 0.08                   6,750           18           

2nd Emb. 1976 1990 177 890 238 61 13 0.27                   9,961           27           

Imp. waterfracs 1991 2007 709 3,731 947 238 22 0.25                   6,559           18           

FORECAST

EUR, 

MMBOE

RR, 

MMBOE

tR, 

years

HISTORICAL

Period
Cum., 

MMBOE
Wells

Recovery, 

MMBOE/well

Well Potential

AVERAGE

CVG - Cotton 

Valley Group        

Oil Equivalent 

Figures

EVENT
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TABLE B5— NATURAL GAS ESTIMATIONS FOR THE MESAVERDE FORMATION OF THE SAN JUAN BASIN 

from to MMcf/year Mcf/day

Fract. 1951 1973 3,786     2,306 6,160     2,374     27 2.67                55                149         

1st Emb. 1976 1980 5,290     3,148 7,721     2,431     21 1.85                74                203         

2nd Emb. 1978 1991 8,010     3,766 8,904     894        11 1.91                80                219         

Imp. waterfracs 1992 2006 11,954   7,352 15,174   3,220     21 1.75                50                137         

Recovery, 

Bcf/well

Well Potential

AVERAGEHISTORICAL

Period
Cum.,      

Bcf

MVG - Mesaverde                  

Natural Gas Figures

EVENT

FORECAST

EUR,       

Bcf

RR,         

Bcf
Wells

tR, 

years

 

 

 

TABLE B6— OIL EQUIVALENT ESTIMATIONS FOR THE MESAVERDE FORMATION OF THE SAN JUAN BASIN 

from to BOE/year BOE/day

Fract. 1951 1975 752        2,343 1,012     260 19 0.432              10,045         28           

1st Emb. 1976 1980 946        3,130 1,245     299 17 0.30                14,098         39           

2nd Emb. 1980 1990 1,334     3,523 1,501     167 14 0.65                27,142         74           

Imp. waterfracs 1990 2006 2,040     7,352 3,132     1092 45 0.43                6,983           19           

FORECASTHISTORICAL

Period
Recovery, 

MMBOE/well

Well Potential

AVERAGE

MVG - Mesaverde                  

Oil Equivalent 

Figures

Cum., 

MMBOE
Wells

EVENT
EUR, 

MMBOE

RR, 

MMBOE

tR, 

years
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TABLE B7— NATURAL GAS ESTIMATIONS FOR THE LEWIS SHALE FORMATION OF THE SAN JUAN BASIN 

from to MMcf/year Mcf/day

Fract. 1952 1964 6            27 10          4            15 0.37                  14                37           

1st Emb. 1964 1978 46          52 107        61          56 3.88                  55                152         

2nd Emb. 1977 1987 284        180 416        132        52 2.42                  39                107         

Imp. waterfracs 1987 2007 867        652 1,565     699        53 2.43                  33                91           

Period
Cum.,      

Bcf
Wells

EUR,       

Bcf

RR,         

Bcf

tR, 

years

HISTORICAL

LS - Lewis Shale 

Natural Gas 

Figures

EVENT

FORECAST AVERAGE

Recovery, 

Bcf/well

Well Potential

 

 

 

TABLE B8— OIL EQUIVALENT ESTIMATIONS FOR THE LEWIS SHALE FORMATION OF THE SAN JUAN BASIN 

from to BOE/year BOE/day

Fract. 1952 1964 1.09 17 1.5 0.4 8 0.088                4,412           12           

1st Emb. 1963 1978 10.67 50 18 7 32 0.50                  10,638         29           

2nd Emb. 1977 1987 51.6 225 70.7 19 22 0.30                  9,411           26           

AVERAGE

Recovery, 

MMBOE/well

Well PotentialPeriod
Cum., 

MMBOE
Wells

HISTORICAL FORECAST
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EVENT
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Oil Equivalent 

Figures
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TABLE B9—NATURAL GAS ESTIMATIONS FOR THE ANTRIM SHALE FORMATION OF THE MICHIGAN BASIN 

from to MMcf/year Mcf/day

HISTORICAL FORECAST

Period
Cum.,      

Bcf
Wells

EUR,       

Bcf

RR,         

Bcf

tR, 

years

AS - Antrim Shale                 

Natural Gas Figures

EVENT

1996 422 3362
Fractured 

vertical wells
1982

3367

2559 2137 0.7640

432007 2271 9184 5638
Imp. 

Waterfracs
1997 0.53 10 27

3914

AVERAGE

Recovery, 

Bcf/well

Well Potential

 

 

 

TABLE B10—OIL EQUIVALENT ESTIMATIONS FOR THE ANTRIM SHALE FORMATION OF THE MICHIGAN BASIN 

from to BOE/year BOE/day

27

11

AS - Antrim Shale                 

Oil Equivalent 

Figures

EVENT

Fractured 

vertical wells

HISTORICAL

Period
Cum., 

MMBOE
Wells

FORECAST

EUR, 

MMBOE

RR, 

MMBOE

tR, 

years

AVERAGE

Recovery, 

MMBOE/well

Well Potential

373 3011982 1996

2007 379 9184

72 3127

Imp. 

Waterfracs
1996 203.50 0.03                 1,568          

0.12                 2,909          

4                 582

8                 
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TABLE B11— NATURAL GAS ESTIMATIONS FOR THE BARNETT SHALE FORMATION OF THE FORT WORTH BASIN 

from to MMcf/year Mcf/day

HISTORICAL FORECAST

Period
Cum.,      

Bcf
Wells

EUR,       

Bcf

BS - Barnett Shale                 

Natural Gas Figures

EVENT
RR,         

Bcf

tR, 

years

AVERAGE

Recovery, 

Bcf/well

Well Potential

Fractured 

vertical wells
1982 1999 170 476 390 220 0.82                 22                 20 61             

Stimulated 

horizontals
1999 2005 1394 3820 6802 5408.00 1.92                 49                 135           33

 

 

 

TABLE B12— OIL EQUIVALENT ESTIMATIONS FOR THE BARNETT SHALE FORMATION OF THE FORT WORTH BASIN 

from to BOE/year BOE/day

HISTORICAL FORECAST

Period
Cum., 

MMBOE
Wells

EUR, 

MMBOE

RR, 

MMBOE

tR, 

years
BS - Barnett Shale                 

Oil Equivalent 

Figures

EVENT

AVERAGE

Recovery, 

MMBOE/well

Well Potential

Fractured 

vertical wells
1982 1999 28 476 67 39 0.14 3,804             1020

Stimulated 

horizontals
1999 2005 232 3820 1134 902 0.32 8,182             2233
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TABLE B13— OIL ESTIMATIONS FOR THE BAKKEN SHALE FORMATION OF THE WILLISTON BASIN 

from to STB/year STB/day

59

9 10             

0.30 5,977        16             

0.09

1988 6.3 88

AVERAGE

Recovery, 
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Well Potential

26 20

3,717        2002 32.5 212 37 4
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years

 

 

 

TABLE B14— OIL EQUIVALENT ESTIMATIONS FOR THE BAKKEN SHALE FORMATION OF THE WILLISTON BASIN 

from to BOE/year BOE/day

FORECAST

Period
Cum., 

MMBOE
Wells

EUR, 

MMBOE

RR, 

MMBOE

tR, 

yearsBKS - Bakken 

Shale                 

Oil Equivalent 

Figures

EVENT

HISTORICAL AVERAGE

Recovery, 

MMBOE/well

Well Potential

Fractured vertical 

wells
1961 7.10 88 32 25 0.361988 7,182          20              68

Non-stimulated 

horizontal wells
1988 2002 42.01 212 52 9 0.16 5,349          15              16
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Arab Oil Embargo of 1973: In 1973, several Arab nations, angered at US support of Israel in 

the 1973 Arab-Israeli War, instituted an oil embargo against the United States and Holland. 

The Arab oil embargo came at a time of declining domestic crude oil production, rising de-

mand, and increasing imports. The embargo was accompanied by decreased OPEC production, 

and with minimal global excess production capacity available outside OPEC, created short-

term shortages and price increases. When Arab production was restored and the embargo 

lifted six months later, world crude oil prices in 1974 had quadrupled from the 1973 average 

to about $12 per barrel, and OPEC was firmly in control of the world oil market. 

 

Brent Crude Oil : Brent Blend is actually a combination of crude oil from 15 different oil 

fields in the Brent and Ninian systems located in the North Sea. Its API gravity is 38.3 degrees 

(making it a “light” crude oil, but not quite as “light” as WTI), while it contains about 0.37 

percent of sulfur (making it a “sweet” crude oil, but again slightly less “sweet” than WTI). 

Brent blend is ideal for making gasoline and middle distillates, both of which are consumed in 

large quantities in Northwest Europe, where Brent blend crude oil is typically refined. How-

ever, if the arbitrage between Brent and other crude oils, including WTI, is favorable for ex-

port, Brent has been known to be refined in the United States (typically the East Coast or the 

Gulf Coast) or the Mediterranean region. Brent blend, like WTI, production is also on the de-

cline, but it remains the major benchmark for other crude oils in Europe or Africa. For exam-

ple, prices for other crude oils in these two continents are often priced as a differential to 

Brent, i.e., Brent minus $0.50. Brent blend is generally priced at about a $4 per-barrel pre-

mium to the OPEC Basket price or about a $1 to $2 per-barrel discount to WTI, although on a 

daily basis the pricing relationships can vary greatly (EIA, 2007). 

 

Carbon dioxide (CO2): A non-toxic gas produced from decaying materials, respiration of 

plant and animal life, and combustion of organic matter, including fossil fuels; carbon dioxide 

is the most common greenhouse gas produced by human activities (www.centreforenergy.com, 

2008). 
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Cubic foot (Natural Gas): The amount of natural gas contained at standard temperature and 

pressure (60 degrees Fahrenheit and 14.73 pounds standard per square inch) in a cube whose 

edges are one foot long. 

Crude oil price collapse of 1986: Faced with declining world oil demand and increasing non-

OPEC production, OPEC cut output significantly in the first half of the 1980s to defend its of-

ficial price. Saudi Arabia, which played the role of swing producer in the cartel, bore most of 

the production cuts. Saudi Arabia crude oil product, which peaked at over 10 million barrels 

per day for the period October 1980 through August 1981, fell to just 2.3 million barrels per 

day by August 1985. In late 1985, Saudi Arabia abandoned its swing-producer role, increased 

production, and aggressively moved to increase market share. Saudi Arabia tried a netback-

pricing concept, which tied crude oil prices to the value of refined petroleum products. This 

reversed traditional economic relationships by guaranteeing specific margins to refiners, 

thereby transferring risk from the crude oil purchaser to the producer. In response, other OPEC 

members also increased production and offered netback-pricing arrangements to maintain 

market share and to offset declining revenues. These actions resulted in a glut of crude oil in 

world markets, and crude oil prices fell sharply in early 1986.  

Estimated Ultimate Recovery (EUR): Also called ‘‘ultimate resource’’ and ‘‘resource 

base,’’ and defined as the total amount of the material expected to be produced during its life-

time; it is the sum of the amount of the material already produced (cumulative production), 

the current reserves, and the amount expected to be discovered and produced in the future.  

 

The Energy Policy Act of 2005: is a statute that was passed by the United States Congress on 

July 29, 2005 and signed into law by President George W. Bush on August 8, 2005 at Sandia 

National Laboratories in Albuquerque, New Mexico. The Act, described by proponents as an 

attempt to combat growing energy problems, provides tax incentives and loan guarantees for 

energy production of various types. 
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Federal Energy Regulatory Commission (FERC): The Federal agency with jurisdiction 

over interstate electricity sales, wholesale electric rates, hydroelectric licensing, natural gas 

pricing, petroleum pipeline rates, and natural gas pipeline certification. FERC is an independ-

ent regulatory agency within the Department of Energy and is the successor to the Federal 

Power Commission. 

 

Federal Power Commission (FPC): The predecessor agency of the Federal Energy Regula-

tory Commission. The Federal Power Commission was created by an Act of Congress under 

the Federal Water Power Act on June 10, 1920. It was charged originally with regulating the 

electric power and natural gas industries. It was abolished on September 30, 1977, when the 

Department of Energy was created. Its functions were divided between the Department of En-

ergy and the Federal Energy Regulatory Commission, an independent regulatory agency. 

 

Henry Hub Spot: The Henry Hub is the largest centralized point for natural gas spot and fu-

tures trading in the United States. The New York Mercantile Exchange (NYMEX) uses the 

Henry Hub as the point of delivery for its natural gas futures contract. The NYMEX gas fu-

tures contract began trading on April 3, 1990 and is currently traded 72 months into the future. 

NYMEX deliveries at the Henry Hub are treated in the same way as cash-market transactions. 

 

Inflation:  Process by which general prices increase and money loses value. 

 

Iranian Revolution of 1978-1979: The Iranian Revolution, which began in late 1978, re-

sulted in a drop of 3.9 million barrels per day of crude oil production from Iran from 1978 to 

1981. World supplies appeared to be tight, although much of this lost production was offset 

initially by increases in output from other OPEC members, particularly from Iran's Persian 

Gulf neighbors. In 1980, the Iran-Iraq War began, and many Persian Gulf countries reduced 

output as well. OPEC crude oil prices increased to unprecedented levels between 1979 and 

1981. By 1981, OPEC production declined to 22.8 million barrels per day, 7.0 million barrels 

per day below its level for 1978. 
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Natural Gas: A gaseous mixture of hydrocarbon compounds, primarily methane, used as a 

fuel for electricity generation and in a variety of ways in buildings, and as raw material input 

and fuel for industrial processes. 

 

NGA (The Natural Gas Act of 1938): was the first instance of direct Federal regulation of 

the natural gas industry. Concern about the exercise of market power by interstate pipeline 

companies prompted the NGA, which gave the Federal Power Commission (FPC) (subse-

quently the Federal Energy Regulatory Commission (FERC)) the authority to set "just and 

reasonable rates" for the transmission or sale of natural gas in interstate commerce 

 

NGPA (Natural Gas Policy Act of 1978): From 1938 to 1978, the Federal government regu-

lated only the interstate natural gas market. The Natural Gas Policy Act of 1978 (NGPA) 

granted the Federal Energy Regulatory Commission (FERC) authority over intrastate as well 

as interstate natural gas production. The NGPA established price ceilings for wellhead first 

sales of gas that vary with the applicable gas category and gradually increase over time. Sec-

ond, it established a three-stage elimination of price ceilings for certain categories: the price 

ceilings for certain "old" intrastate gas were eliminated in 1979, for certain "old" interstate gas 

and "new" gas in 1985, and for certain other "new" gas in 1987. 

 

Nominal Price: The price paid for a product or service at the time of the transaction. Nominal 

prices are those that have not been adjusted to remove the effect of changes in the purchasing 

power of the dollar; they reflect buying power in the year in which the transaction occurred. 

 

OPEC: The Organization of the Petroleum Exporting Countries (OPEC) is a large group of 

countries made up of Algeria, Angola, Indonesia, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, 

Saudi Arabia, the United Arab Emirates, Venezuela, and Ecuador (rejoined OPEC in 2007). 

The OPEC was founded in Bagdad in1960 to unify and coordinate members' petroleum poli-

cies. OPEC headquarters are located in Vienna since 1965. 
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Pelagic: Referring to open water marine habitats free of direct influence of the shore or ocean 

bottom. Pelagic organisms are generally free-swimming (nektonic) or floating (planktonic). 

 

Pelagic Sediment: An ocean sediment that accumulates far enough from land that detrital ma-

terials are a minor component. These sediments are largely composed of the tiny shell debris 

of radiolarians and foraminifera. 

 

Rig count: The rig count is one of the primary measures of the health of the exploration seg-

ment of the oil and gas industry. The Rotary Rig Count is the average number of drilling rigs 

actively exploring for oil and gas. Drilling an oil or gas well is a capital investment in the ex-

pectation of returns from the production of crude oil or natural gas (Baker Hughes, 2008). 

 

Rotary Drilling:  Rotary drilling was developed in the late 1800s and became commonplace 

by the early 1900s. In rotary drilling, a bit is attached to a drill string which consists of joints 

of drill pipe. The drill string is rotated at the surface. The bit turns and breaks up the formation. 

A fluid is circulated to lift the drill cuttings back to the surface. The rotary drilling rig consists 

of the derrick, drill string, draw works, rotary table, kelly, drill collars and bits, mud systems, 

engines, and various other parts (Baker Hughes, 2008). 

 

Spindletop: Spindletop is a salt dome oil field located in south Beaumont, Texas in the United 

States. On January 10, 1901, a well at Spindletop struck oil ("came in"), marking the birthdate 

of the modern petroleum industry. At 100,000 barrels (16,000 m³) of oil a day, the gusher tri-

pled US oil production overnight, ensuring the second industrial revolution would be fueled 

not by wood and coal but by oil and its byproducts. Some of the companies chartered to ex-

ploit the wealth of Spindletop are some of today's largest and well known corporations such as 

Chevron Corporation. 
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Stripper well:  A term used to describe wells that produce natural gas or oil at very low rates 

– less than 10 barrels per day of oil or less thank 60 thousand cubic ft per day of gas (NETL, 

2007). 

 

WTI crude oil : West Texas Intermediate (WTI) crude oil is of very high quality and is excel-

lent for refining a larger portion of gasoline. Its API gravity is 39.6 degrees (making it a 

“light” crude oil), and it contains only about 0.24 percent of sulfur (making a “sweet” crude 

oil). This combination of characteristics, combined with its location, makes it an ideal crude 

oil to be refined in the United States, the largest gasoline consuming country in the world. 

Most WTI crude oil gets refined in the Midwest region of the country, with some more refined 

within the Gulf Coast region. Although the production of WTI crude oil is on the decline, it 

still is the major benchmark of crude oil in the Americas. WTI is generally priced at about a 

$5 to $6/bbl premium to the OPEC Basket price and about $1 to $2/bbl premium to Brent, al-

though on a daily basis the pricing relationships between these can vary greatly (EIA, 2007). 
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