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ABSTRACT

The Weakest Failure Detector for Solving Wait-Free,

Eventually Bounded-Fair Dining Philosophers. (December 2008)

Yantao Song, B.S., Beijing Institute of Technology;

M.S., Chinese Academy of Sciences

Chair of Advisory Committee: Dr. Scott M. Pike

This dissertation explores the necessary and sufficient conditions to solve a vari-

ant of the dining philosophers problem. This dining variant is defined by three prop-

erties: wait-freedom, eventual weak exclusion, and eventual bounded fairness. Wait-

freedom guarantees that every correct hungry process eventually enters its critical

section, regardless of process crashes. Eventual weak exclusion guarantees that every

execution has an infinite suffix during which no two live neighbors execute over-

lapping critical sections. Eventual bounded fairness guarantees that there exists a

fairness bound k such that every execution has an infinite suffix during which no

correct hungry process is overtaken more than k times by any neighbor. This dining

variant (WF-EBF dining for short) is important for synchronization tasks where even-

tual safety (i.e., eventual weak exclusion) is sufficient for correctness (e.g., duty-cycle

scheduling, self-stabilizing daemons, and contention managers).

Unfortunately, it is known that wait-free dining is unsolvable in asynchronous

message-passing systems subject to crash faults. To circumvent this impossibility

result, it is necessary to assume the existence of bounds on timing properties, such

as relative process speeds and message delivery time. As such, it is of interest to

characterize the necessary and sufficient timing assumptions to solve WF-EBF dining.

We focus on implicit timing assumptions, which can be encapsulated by failure
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detectors. Failure detectors can be viewed as distributed oracles that can be queried

for potentially unreliable information about crash faults. The weakest detector D for

WF-EBF dining means that D is both necessary and sufficient. Necessity means that

every failure detector that solves WF-EBF dining is at least as strong asD. Sufficiency

means that there exists at least one algorithm that solves WF-EBF dining using D.

As such, our research goal is to characterize the weakest failure detector to solve

WF-EBF dining.

We prove that the eventually perfect failure detector 3P is the weakest failure

detector for solving WF-EBF dining. 3P eventually suspects crashed processes per-

manently, but may make mistakes by wrongfully suspecting correct processes finitely

many times during any execution. As such, 3P eventually stops suspecting correct

processes.
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CHAPTER I

INTRODUCTION

This chapter defines the wait-free, eventually bounded-fair dining philosophers

problem (WF-EBF dining for short) and provides an overview of this dissertation,

including the motivation, background, research goal, methodology, and outline.

1.1. Motivation and Problem Statement

This section will motivate and define the WF-EBF dining problem. In short, the

WF-EBF dining problem is motivated to implement wait-free, eventually bounded-

fair daemons, which are necessary for self-stabilizing protocols in environments where

daemons are subject to crash faults. The WF-EBF dining problem is a dining philoso-

phers variant that satisfies three properties: wait-freedom, eventual weak exclusion,

and eventual bounded fairness.

1.1.1. Self-Stabilization

Self-stabilization is a technique for developing fault-tolerant systems [1, 2]. Start-

ing from any configuration, a self-stabilizing algorithm always converges to a closed

set of safe configurations from which correct behaviors follow. Transient faults, such

as memory corruptions, are repairable, but can drive systems into arbitrary configu-

rations. Self-stabilizing algorithms can tolerate finitely many transient faults, since

the algorithms are able to recover the system autonomously from any configuration

The journal model is IEEE Transactions on Computers.
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resulting from transient faults.

Self-stabilizing systems are specified by two properties: closure and conver-

gence [3]. Every self-stabilizing system defines a set of safe configurations. Closure

guarantees that, starting from any safe configuration, every action in fault-free execu-

tions results in a safe configuration. Transient faults can drive a system into an unsafe

configuration. However, convergence guarantees that starting from an arbitrary (un-

safe) configuration, every fault-free execution eventually yields a safe configuration.

Self-stabilizing systems are guaranteed to tolerate finitely many transient faults.

In an infinite execution with finitely many transient faults, there exists an infinite

fault-free suffix during which the system is guaranteed to converge to a safe con-

figuration. Self-stabilization, however, is not guaranteed to tolerate infinitely many

transient faults, since a system recovering from a transient fault may always be in-

terrupted by another transient fault.

A fundamental assumption for self-stabilization is that every live process executes

sufficiently many steps (for future references, we name this assumption as the fairness

assumption). This assumption is necessary to establish the convergence property. By

contradiction, suppose that a live process p executes only finitely many steps. There-

after, a transient fault occurs at process p. If p is unable to execute subsequent steps

that are necessary for detecting and correcting the transient fault, then the system

might not recover from the transient fault. Hence, to tolerate transient faults, if live

processes need to take steps, these processes must be scheduled to take sufficiently

many subsequent steps eventually.

1.1.2. Process Scheduling

In distributed systems, process scheduling is often subject to some constraints,

which are usually imposed by actions that cannot be executed concurrently. These
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actions are said to be in conflict with each other. The conflicts are usually caused

by resources that are exclusively shared by processes. Two examples of conflicting

actions are given below.

The first example is an algorithm in which processes communicate via shared

read/write registers. If two processes execute write operations simultaneously to a

shared register, then the write operations may produce an invalid value in the shared

register. As such, the write operations are in conflict with each other, and the conflict

is caused by the exclusively shared resource, the shared register.

The second example is an algorithm in which processes communicate via message

passing on a shared wireless channel. If two or more processes send messages simul-

taneously via the same channel, then the messages could be corrupted or lost due to

channel jamming. As such, the send operations are in conflict with each other, and

the conflict is caused by the exclusively shared resource, the communication channel.

Violations of scheduling constraints are considered scheduling mistakes. In the

above examples, the scheduling mistakes are the simultaneous write operations and

the simultaneous send operations. These mistakes introduce faults (e.g., invalid reg-

ister values and corrupted messages, which may be viewed as transient faults) into

systems and might prevent systems from behaving correctly. Therefore, concurrency

control is necessary to avoid violations of scheduling constraints imposed by conflict-

ing actions.

Concurrency control is often coordinated by a distributed daemon, which continu-

ally selects a non-empty subset of processes to execute a set of non-conflicting actions

concurrently [2, 4]. In other words, a distributed daemon should be able to schedule

process actions so that conflicting actions cannot be executed simultaneously. Also,

the fairness assumption for self-stabilization becomes a requirement for daemons to

support self-stabilizing protocols: if live processes need to take steps, daemons must
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be able to schedule these processes to take all subsequent steps eventually.

1.1.3. Self-Stabilizing Daemons

If daemons are also subject to transient faults, then the daemons must be self-

stabilizing as well to support self-stabilizing protocols. This is necessary for the

following reasons.

First, transient faults to variables in a non-stabilizing daemon could result in a

deadlock, by which some processes may be prevented from taking steps in the protocol

being scheduled. If processes cannot take steps when they need to, they may not be

able to take necessary steps to converge after transient faults.

Second, a non-stabilizing daemon may stay forever in unsafe configurations after

a transient fault. In unsafe configurations, the daemon may make infinitely many

scheduling mistakes, which may prevent the protocols from self-stabilizing. Although

a scheduling mistake in some cases may be viewed as a transient fault to self-stabilizing

protocols, the protocols are not guaranteed to tolerate infinitely many transient faults,

which may be caused by infinitely many scheduling mistakes. Hence, self-stabilizing

daemons are necessary to support self-stabilizing protocols.

1.1.4. Wait-Free Daemons

Crash faults may occur to daemons as well. A crash fault occurs when a process

ceases execution without warning and never recovers [5]. Unlike transient faults, crash

faults are permanent. We say that a process p is correct if p never crashes. Otherwise,

p is faulty and eventually crashes. Additionally, a faulty process is live only prior to

its crash, but a correct process is live forever.

Unfortunately, many daemons [4, 6, 7, 8, 9] are designed to tolerate transient

faults only, and most of them do not address the pragmatic possibility of crash faults.
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When a process crashes, these daemons may prevent correct processes from taking

steps and cannot establish the fairness assumption for self-stabilization. As a result,

self-stabilization cannot be guaranteed for the protocols being scheduled.

When a distributed daemon is subject to crash faults, the daemon is required to

be wait-free to guarantee self-stabilization of the protocols being scheduled. Wait-free

daemons guarantee that when a correct process needs to take steps, the process will

eventually be scheduled to take such steps [10]. As such, wait-freedom establishes

the fairness assumption for self-stabilization, and hence, wait-freedom is necessary

for daemons to support self-stabilizing protocols.

Daemons are usually implemented by solutions to dining philosophers. Therefore,

we will introduce dining philosophers in the next section.

1.1.5. Dining Philosophers

Dining philosophers [11, 12] (or dining for short) is a classic model of static

resource-allocation scenarios, in which diners (processes) potentially need to access

a fixed subset of shared resources periodically. The term “static” means that every

time a diner needs to utilize shared resources, the diner always requests the same

subset of shared resources. If two processes p and q have overlapping resource needs,

then we say that there is a potential conflict between p and q. There is no restriction

on when diners need to access shared resources. In some executions, some diners do

not even need to access shared resources at all.

Each dining instance can be modeled as a conflict graph G = (Π, E), where

each vertex p ∈ Π represents a diner (process), and each edge (p, q) ∈ E indicates a

potential conflict between p and q. Hence, no two neighbors in a conflict graph can

utilize shared resources simultaneously. Also, the topology of conflict graphs can be

arbitrary. Thereafter by default, neighbors stand for neighbors in conflict graphs.
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For a diner, its critical section is a segment of code that should be executed

atomically and exclusively. A critical section usually includes operations on some ex-

clusively shared resources. In the examples from Section 1.1.2, the code that updates

shared registers and the code that sends messages via shared wireless channels are

critical sections. As such, no two neighbors execute their critical sections simultane-

ously.

At any time, each diner is either thinking, hungry, eating, or exiting . These four

states correspond to four basic computation phases of a diner: executing indepen-

dently, requesting access to a critical section, executing a critical section, and exiting

a critical section, respectively.

Diners cycle through these four states periodically as shown in Figure 1. Initially,

every process is thinking. Processes can think forever, but they can become hungry

at any time. Hungry processes are scheduled to eat by dining algorithms. Correct

processes can eat only for a finite period of time. As such, correct eating processes

eventually finish eating and exit their critical sections. After they successfully exit

their critical sections, they transit back to thinking.

State transitions of diners can be further classified as input actions and output

actions [13] as shown in Figure 1. Input actions are activated by diners themselves and

include the state transitions from thinking to hungry and from eating to exiting. The

transition from thinking to hungry indicates that the diner wants to enter a critical

section, and the transition from eating to exiting indicates that the diner wants to

exit a critical section. By contrast, dining solutions decide when an output action

can be executed. The code to execute output actions is a part of dining solutions.

There are two output actions: the state transitions from hungry to eating and from

exiting to thinking. When a dining solution decides that a hungry diner can enter

its critical section, the diner transits from hungry to eating. When a dining solution
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decides that an exiting diner can transit back to thinking, the diner transits from

exiting to thinking.

Fig. 1. State Transitions of Diners

Dining philosophers can also be viewed as a model of process scheduling, and

hence, dining algorithms can be used to implement distributed daemons. Each pro-

cess in a distributed system is represented as a diner in the dining problem. Local

algorithms to be scheduled at each process are modeled as a set of actions. Conflicting

actions can be represented as critical sections. To implement distributed daemons, a

dining solution usually guarantees two properties: (1) every hungry process eventu-

ally eats, and (2) no two neighbors eat simultaneously. The first property guarantees

that if a process needs to execute a conflicting action, the process will be eventually

scheduled to do so. The second property guarantees that no conflicting actions can

be scheduled concurrently.
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1.1.6. Wait-Free, Eventually Bounded-Fair Dining Philosophers

Our research is motivated by implementing wait-free, eventually bounded-fair

daemons (WF-EBF daemons) [14] in distributed message-passing systems. We as-

sume that WF-EBF daemons are subject to crash faults only for the following rea-

sons. First, most daemons [4, 6, 7, 8, 9] were designed to tolerate transient faults, not

crash faults. As discussed before, it is necessary to address the pragmatic possibility

of crash faults. Second, it would be ideal to tolerate both transient faults and crash

faults. However, this is not necessary in some applications. For example, in wireless

sensor networks, nodes are guaranteed to crash because of limited power supply, but

the probability of transient faults may be very low. In this case, it is necessary to

deal with crash faults; otherwise, a crashed node may prevent other nodes behaving

correctly. However, it is unnecessary to deal with transient faults because it is highly

unlikely that transient faults will occur.

In the context of dining philosophers, WF-EBF daemons are defined by three

properties as follows.

• Eventual Weak Exclusion: For each execution, there exists an unknown time

after which no two live neighbors eat simultaneously.

• Wait-Freedom: Every correct hungry process eventually eats, regardless of

how many processes crash.

• Eventual k-bounded Waiting: There exists a natural number k, such that for

each execution, there exists a time t after which no live process can be overtaken

more than k times by any neighbor. A hungry process p is overtaken by a

neighbor q each time that q gets scheduled to eat while p remains continuously

hungry [15, 16].
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Eventual Weak Exclusion(3WX ) [17, 18] allows live neighbors to eat simul-

taneously finitely many times. Intuitively, 3WX defines a class of unreliable daemons

that can make finitely many mistakes during any execution by wrongfully schedul-

ing live neighbors to eat simultaneously. However, 3WX eventually stops making

mistakes. As such, each execution under 3WX eventually converges, after which no

scheduling mistake can be made. The convergence time is unknown and may vary

from execution to execution.

Although 3WX seems too permissive to be useful, 3WX is actually a mean-

ingful abstraction for process scheduling. We argue that 3WX is still sufficient for

underlying daemons to support self-stabilizing protocols.

First, self-stabilizing daemons already support 3WX implicitly. Transient faults

can drive self-stabilizing daemons into unsafe configurations in which the daemons

may make scheduling mistakes. For example, consider a ring-based mutual exclusion

algorithm [1] in which a process can eat only when it holds a unique token that

circulates in the ring. Mutual exclusion is a special case of dining philosophers on a

completely connected conflict graph. If a transient fault duplicates the token, then

two live neighbors might eat simultaneously, and hence scheduling mistakes occur.

However, self-stabilizing daemons recover from unsafe configurations in finitely many

steps. Given that transient faults are finitely many, self-stabilizing daemons can make,

at most, finitely many scheduling mistakes. Hence, self-stabilizing daemons already

imply 3WX .

Second, if a daemon wrongfully schedules two processes to utilize shared resources

simultaneously, then such a scheduling mistake might be viewed as a transient fault

to the self-stabilizing protocols being scheduled. The two examples in Section 1.1.2

(i.e., two processes simultaneously execute write operations to a shared register and

communicate via a shared wireless channel) already illustrate the potential impact
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of scheduling mistakes when a daemon wrongfully schedules two processes to utilize

exclusive resources simultaneously. Given that there can be only finitely many such

scheduling mistakes, there can be only finitely many transient faults on the protocols.

The protocols can correct these transient faults. Thus, for systems in which scheduling

mistakes can be considered transient faults, 3WX is still sufficient for underlying

daemons to support self-stabilizing protocols.

Wait-Freedom [10] is designed to tolerate crash faults. In the context of dining

philosophers, wait-freedom guarantees that every correct hungry process eventually

eats, regardless of how many processes crash. In the worst case, where n−1 processes

crash in a system of n processes, the remaining correct process can still make progress

to eat. However, wait-freedom does not impose an upper bound on how many steps

are needed for a correct hungry process to eat.

As discussed before, for a daemon subject to crash faults, wait-freedom is neces-

sary for the daemon to support self-stabilizing protocols. Without wait-freedom, the

daemon may never schedule correct processes to take steps in the presence of crash

faults. When a transient fault occurs in protocol layers, correct processes may not be

able to take necessary steps to tolerate the transient fault.

Eventual k-Bounded Waiting(3k-BW) is a form of bounded fairness. We say

that a hungry process p is overtaken by a neighbor q, if q goes to eat while p remains

continuously hungry [15, 16]. Note that “q goes to eat” differs from “q is eating” and

“q eats”. The expression “q goes to eat” emphasizes the moment when q enters its

critical section, while “q is eating” and “q eats” emphasize the time periods during

which q executes its critical section. Eventual k-bounded waiting(3k-BW) guarantees

that for each execution, there exists a time t after which no live process goes to eat

more than k times, while any live neighbor is waiting to eat. The fairness bound k is

a natural number for all executions, and k may or may not hold during finite prefixes
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of each execution. However, each execution eventually converges at some time after

which the fairness bound k holds. The convergence time t is unknown and may vary

from execution to execution.

Introducing 3k-BW into daemons is more about practical concerns to improve

the convergence speed of stabilizing protocols. The convergence speed of a tran-

sient fault is usually measured by asynchronous rounds necessary to recover from

the transient fault. In each asynchronous round, every process takes at least one

step [2]. When a transient fault occurs, some processes should take actions to correct

the transient fault. Wait-freedom only guarantees that these correcting actions will

eventually be scheduled, but 3k-BW can further guarantee that during an infinite

suffix, while a process is waiting to execute a correcting action, no other neighbor can

execute more than k actions. Hence, during this infinite suffix, when the system is

recovering from transient faults, the number of steps in each asynchronous round is

reduced in the worst case.

Non-correcting actions may propagate the effects of previous transient faults

to other parts of the underlying systems. With 3k-BW , correcting actions may

be scheduled earlier and even before non-correcting actions propagate the effects of

previous transient faults. Hence, the effect of transient faults may not be propagated

as fast as it would have otherwise. Thus, the convergence speed of transient faults in

the worst case can also be improved from this perspective.

A natural question is: why not introduce perpetual k-bounded waiting (2k-BW)?

2k-BW guarantees that for all executions, no live process can be overtaken more than

k times by any neighbor ever. We argue that it is useless to ensure 2k-BW under

3WX . 3WX can make scheduling mistakes during finite prefixes. As such, 3WX

may wrongfully schedule actions during finite prefixes of any execution; thus, guaran-

teeing fairness during these finite prefixes is meaningless. Also, implementing 2k-BW
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requires stronger assumptions on underlying systems than 3k-BW .

1.2. Background

To establish our research goal, this section will briefly review the necessary back-

ground about solvability of wait-free dining. Solvability of wait-free dining depends

on the synchronism of underlying systems. In short, wait-free dining cannot be solved

in asynchronous systems, may or may not be solved in partially synchronous systems,

and can be solved in synchronous systems.

Asynchronous message-passing systems assume nothing about timing proper-

ties [19], such as message delivery time and relative process speeds. In such a system,

messages can be arbitrarily delayed, and processes can be arbitrarily slow. As such,

algorithms designed for asynchronous systems (i.e., asynchronous algorithms) cannot

utilize any timing assumptions.

It is known that wait-free dining cannot be solved deterministically in asyn-

chronous message-passing systems subject to crash faults [20]. This impossibility

result is based on the intrinsic difficulty of reliable fault detection in asynchronous

systems. Assume that there exists a wait-free asynchronous dining algorithm. For a

system of two neighbors p and q, where q is correct, let us consider a configuration

C in which p is eating and q is hungry. In one future extension from C, p crashes

immediately. According to wait-freedom, q eventually eats at a time t. In another

extension, p is also correct and never crashes. By asynchrony, messages can be ar-

bitrarily delayed. Hence, it is possible that q receives no messages before time t in

both extensions. As such, from the perspective of process q, both extensions are in-

distinguishable before time t, and q does not know whether p is crashed or still live.

Because the algorithm is deterministic, q has to behave the same in both extensions,
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and hence has to eat at time t in both extensions. If p is still eating at time t in

the later extension, then the mutual exclusion property is violated. Therefore, wait-

freedom is impossible for asynchronous dining algorithms because processes cannot

reliably detect crash faults in asynchronous systems.

Wait-free dining can be solved in synchronous message-passing systems, which

have the strongest timing assumptions. Synchrony assumes that there exist a known

upper bound ∆ on message delivery time and a known upper bound Φ on relative

process speeds [21, 22]. As such, we can design a timeout mechanism with known

timeout durations, and during each duration, each correct process p is guaranteed

to receive a message from each correct process. By this mechanism, processes can

reliably detect and consequently react to crash faults, and wait-free dining can be

solved. However, synchrony is overkill for wait-free dining; completely reliable fault

detection is sufficient but unnecessary.

Most real systems fall into the category of partial synchrony between pure syn-

chrony and pure asynchrony. Partially synchronous systems still satisfy some timing

assumptions, but those assumptions are not as strong as those of pure synchrony. For

example, a partially synchronous system M1 may assume that the upper bounds on

both message delivery time and relative process speeds are unknown.

Wait-free dining may or may not be solvable in a partially synchronous system.

The solvability of wait-free dining depends on the fault detection implementable in the

underlying system. A partially synchronous system usually assumes limited knowl-

edge on timing assumptions (i.e., the bounds on timing properties are unknown and/or

hold after some unknown time). The limited knowledge prevents us from implement-

ing completely reliable fault detection. For a partially synchronous system, its timing

assumptions decide the strength of implementable fault detection. For example, the

system M1 can be used to implement eventually reliable fault detection, which guar-



14

antees that every crash fault will be detected by all correct processes eventually and

permanently, and each execution has an infinite suffix during which no correct process

is suspected by any correct process. As such, solvability of wait-free dining eventually

depends on the underlying timing assumptions. We will explore the necessary and

sufficient timing assumptions to solve WF-EBF dining.

1.3. Research Goal

Our research goal is to explore the necessary and sufficient timing assumptions

to solve WF-EBF dining in distributed message-passing systems. Specifically, even-

tually reliable fault detection encapsulates the minimal synchronism required to solve

WF-EBF dining. That is, WF-EBF dining can be solved if and only if eventually

reliable fault detection can be implemented in the underlying system.

We also explore limitations of eventually reliable fault detection on the solvability

of wait-free dining. First, eventually reliable fault detection cannot deterministically

solve wait-free, perpetually bounded-fair dining under eventual weak exclusion. Per-

petual bounded fairness guarantees that there exists a fairness bound k such that

during every execution, no live process goes to eat more than k times, while any of its

neighbors waits to eat. Second, there does not exist a thinking-quiescent algorithm

that uses eventually reliable fault detection to deterministically solve WF-EBF din-

ing. Thinking quiescence guarantees that if a process remains thinking permanently

after some time, then this process eventually stops sending and receiving messages.

This impossibility result implies that to achieve bounded fairness, an intrinsic perfor-

mance penalty is unavoidable, so that if a correct process eats infinitely often, then

its correct neighbors must send and receive infinitely many messages.
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1.4. Methodology

Explicit timing assumptions are not suitable for exploring our research goal.

Recall that explicit timing assumptions ensure the existence of bounds on timing

properties. Assume that we encode an explicit timing assumption (e.g., bounds on

message delivery times) into an algorithm to solve WF-EBF dining. This explicit

timing assumption is sufficient to solve WF-EBF dining, but is not necessary. We may

also be able to use another explicit timing assumption (e.g., bounds on relative process

speeds) to solve WF-EBF dining. The solvability of WF-EBF dining indeed depends

on the failure detection that can be implemented in the underlying system. Explicit

timing assumptions tend to obscure the fundamental properties of fault detection

necessary or sufficient to solve a given problem. Also, an algorithm that explicitly uses

a timing assumption (e.g., bounds on message delivery times) may not be applied to

the systems with another timing assumption (e.g., bounds on relative process speeds).

As such, we will not use explicit timing assumptions to explore our research goal.

We explore our research goal by augmenting asynchronous systems with failure

detectors, which can be used to encapsulate implicit timing assumptions. Informally,

an unreliable failure detector can be viewed as a distributed oracle that can be queried

for (potentially unreliable) information about process crashes [23]. Most failure de-

tectors cannot be implemented in asynchronous systems. In general, their implemen-

tations rely on timing assumptions of underlying systems. Therefore, failure detectors

can be viewed as an encapsulation of implicit timing assumptions necessary to im-

plement abstract detection properties. Instead of dealing with the actual operational

features of partial synchrony (e.g., bounds on timing properties), algorithms using

failure detectors need only consider the axiomatic features of the failure detectors.

As such, failure detectors provide an essential separation of concerns between fault
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detection properties and their underlying implementation mechanisms.

We consider the local eventually perfect failure detector 3P1 (“diamond P sub

1”) as the detector that encapsulates the necessary and sufficient timing assumptions

to solve WF-EBF dining. 3P1 is defined with respect to the underlying communica-

tion graph in which each node represents a process, and each edge (p, q) represents a

bidirectional communication channel between processes p and q. Also, communica-

tion neighbors represent neighbors in the communication graph. The failure detector

3P1 is specified as follows [24, 25]:

• Local Perpetual Strong Completeness: Every crashed process is eventually

and permanently suspected by all of its correct communication neighbors.

• Local Eventual Strong Accuracy: For every execution, there exists an un-

known time after which no correct process is suspected by any correct commu-

nication neighbor.

Informally, 3P1 suspects crashed communication neighbors eventually and per-

manently, but may make mistakes by wrongfully suspecting each correct communi-

cation neighbor finitely many times during any execution. However, 3P1 eventually

stops suspecting correct communication neighbors. The time for 3P1 to converge

(i.e., 3P stops wrongfully suspecting correct communication neighbors) is unknown

and may vary from execution to execution.

3P1 is a locally scope-restricted refinement of the eventually perfect failure de-

tector 3P . The failure detector 3P suspects crashed processes eventually and per-

manently, but may make mistakes by wrongfully suspecting correct processes finitely

many times during any execution. 3P1 satisfies the properties of 3P , but only with

respect to immediate neighbors in the communication graph. The difference between

3P1 and 3P will be discussed further in Chapter III.
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Our ultimate research goal then becomes to prove that the failure detector 3P1

is the weakest failure detector for solving WF-EBF dining. That is, 3P1 is both

sufficient and necessary for solving WF-EBF dining. This ultimate goal is achieved

by two steps. First, to prove that 3P1 is sufficient to solve WF-EBF dining, we will

construct an algorithm that solves WF-EBF dining using 3P1. Second, to prove that

3P1 is also necessary, we will show that every failure detector that solves WF-EBF

dining is at least as strong as 3P1. That is, 3P1 can be implemented in every system

in which WF-EBF dining can be solved.

To prove that a failure detector D is necessary to solve a problem B, a commonly-

used technique is to construct a reduction of D to the problem B itself. Such a

reduction algorithm implements D using any solution to B. The proof technique is

shown in Figure 2. Consider a failure detector D′ and a black-box solution A′ that

uses D′ to solve problem B. Next, suppose there exists a reduction algorithm T that

implements D using any solution to B. As shown in Figure 2, the failure detector D′

can implement the solution A′, and A′ can, in turn, implement D. By transitivity,

D′ can be used to implement D. Therefore, D′ is at least as strong as D. Thus, D is,

in fact, necessary to solve the problem B.

Fig. 2. The Diagram to Prove Necessity by Reduction

In our case, we will construct a reduction algorithm that uses any WF-EBF

dining solution to implement 3P1. WF-EBF dining solutions are simply used as a
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black box, and the reduction algorithm does not know or utilize any internal feature of

such solutions. The reduction only utilizes the properties (i.e., wait-freedom, eventual

weak exclusion, and eventual k-bounded waiting) of the black-box solutions.

1.5. Outline

The remaining chapters are organized as follows:

Chapter II describes the underlying system from three aspects: the distributed

system model, fault model, and timing assumptions. This chapter also defines many

system-related notations, such as configurations, actions, and fault patterns.

Chapter III formally defines failure detectors and many related notations, such

as solvability, reducibility, schedules, and executions. This chapter also introduces

many important failure detectors, such as the Chandra-Toueg failure detectors. Ad-

ditionally, we discuss implementations of failure detectors in this chapter.

Chapter IV introduces dining variants with different safety and progress proper-

ties. This chapter also reviews solvability of wait-free dining with respect to different

safety properties and systems. Finally, we briefly introduce other classic paradigms

of resource allocation problems.

Chapter V presents a wait-free dining algorithm under 3WX using 3P1. This

relatively simple algorithm gives some insight into how to design wait-free dining

algorithms using failure detectors and how to prove correctness.

Chapter VI formally defines bounded-fairness properties and proves that 3P

cannot deterministically solve wait-free, perpetual k-bounded waiting dining under

eventual weak exclusion. As such, we are forced to consider a weaker fairness property,

eventual k-bounded waiting, in the next chapter.

Chapter VII presents a WF-EBF algorithm using 3P1. Hence, this chapter
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demonstrates that 3P1 is sufficient to solve WF-EBF dining. This algorithm is based

on the asynchronous doorway algorithm of Choy and Singh [26].

Chapter VIII proves that there does not exist a thinking-quiescent algorithm

that uses 3P to deterministically solve WF-EBF dining. This impossibility result

demonstrates a limitation of 3P on solving wait-free dining, and implies an intrinsic

performance penalty on achieving bounded fairness such that correct processes might

need to send and receive infinitely many messages.

Chapter IX constructs a reduction algorithm that can use any WF-EBF solution

to implement 3P1. Therefore, 3P1 is necessary for solving WF-EBF dining, and

3P1 is the weakest failure detector for solving WF-EBF dining.

Finally, Chapter X summarizes our research contributions and presents several

open problems.
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CHAPTER II

UNDERLYING SYSTEMS

This chapter describes the underlying systems upon which the algorithms and

proofs in this dissertation are built. The underlying systems can be modeled from

three aspects: the distributed system model, fault model, and timing assumptions.

We begin by presenting the distributed system model, which is a distributed message-

passing system with reliable first-in-first-out(FIFO) communication channels. Next,

we introduce the underlying fault model, by which only crash faults can occur. Fi-

nally, we assume that timing assumptions in the underlying system are sufficient

to implement the failure detector 3P1. However, these timing assumptions are not

necessarily required in all layers of the system.

2.1. Distributed System Model

The underlying system is modeled as a distributed message-passing system com-

posed of a set of n processes Π = {p1, p2, . . . , pn} that communicate only by message

passing. A process is modeled as a finite set of local variables, together with a finite

set of actions that may read or write these variables. All variables are local; that is,

no process can access or modify variables at any other process.

We assume that processes communicate through reliable bidirectional FIFO

channels only. As such, messages are neither lost, duplicated, nor corrupted. Also,

every message sent to a correct process p via a channel is eventually received by p

in the order the message was sent. We use a communication graph to model inter-

process connections created by communication channels. In a communication graph,
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each node represents a process, and each edge (p, q) represents a bidirectional FIFO

channel between processes p and q. We also assume that for a dining instance, its

conflict graph is a subgraph of the underlying communication graph. In other words,

each pair of neighbors in the conflict graph must be connected by at least one FIFO

channel.

Configurations of the underlying system are a combination of the local state of

all processes, and the state of all communication channels [19]. The local state of a

process is determined by the values of its local variables. The state of a communication

channel is expressed as the set of messages which is in transit in this channel.

An action φ transforms a system from one configuration C to another configu-

ration C ′, where configurations C and C ′ are allowed to be the same. We use φ(C) to

denote the configuration resulting from the action φ, and hence, C ′ = φ(C). An action

is performed by a single process p and can be expressed as a guarded command,

〈guard〉 → 〈command〉

where 〈guard〉 is a predicate on the local state of process p, and 〈command〉 is a

finite sequence of executable statements [27]. We say that an action is enabled in

(or applicable to) a configuration if and only if its 〈guard〉 evaluates to true in that

configuration. Only enabled actions can be scheduled to execute their 〈command〉.

We also assume that the underlying system satisfies weak fairness so that if an action

is continuously enabled, then this action will eventually be scheduled. Furthermore,

we assume that all actions are atomic; that is, action commands must either be

finished completely or not be executed at all.

To simplify our presentation, we posit a discrete global clock, a conceptual device

which cannot be accessed by processes in Π. The range of clock ticks is the set of

natural numbers, denoted as T.
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2.2. Fault Model

We assume that only crash faults can occur in the underlying system. Recall

that a crash fault occurs when a process ceases execution without warning and never

recovers [5]. Also, processes cannot crash at will and have no prior knowledge about

where and when crash faults occur in executions.

Faults can be modeled by augmenting the set of program actions with a supple-

mental set of fault actions [28]. In our case, crash faults can be modeled by adding a

local boolean variable upp and a fault action to each process p, where upp is initially

true. The fault action is shown as follows:

true → upp := false

This fault action occurs if and only if process p crashes. Unlike program actions,

fault actions are not required to satisfy weak fairness; otherwise, every process must

crash eventually. Because processes cannot crash at will, upp cannot be modified by

program actions. 1 Because crashed processes cannot execute any action, program

actions are enabled only when up is true, and they can be remodeled as

〈guard〉 ∧ up → 〈command〉

We use fault patterns to model the occurrence of crash faults in a given run.

Formally, a fault pattern F is defined as a function from the range T of the global

clock to the powerset of processes 2Π (i.e., the set of all subsets of Π). For example,

F (t) represents the subset of processes that has crashed by time t in fault pattern

F . Since crash faults are permanent, F (t) is monotonically non-decreasing; that is,

∀t ∈ T : F (t) ⊆ F (t + 1).

1The variable up is introduced here only for modeling crash faults. It will not be
used in the following chapters.
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In a given run, a process is either faulty or correct . Formally, a process p is faulty

in a fault pattern F if and only if p crashes at some time t; that is, ∃t ∈ T : p ∈ F (t).

The set of faulty processes is denoted faulty(F ), where faulty(F ) = ∪t∈TF (t). By

contrast, a process p is correct in F if and only if p never crashes; that is, ∀t ∈ T :

p /∈ F (t). We denote the set of correct processes as correct(F ), where correct(F ) =

Π − faulty(F ). Additionally, we say that p is live at time t (i.e., p ∈ live(t)) if and

only if p has not crashed by time t (i.e., p /∈ F (t)). Thus, correct processes are always

live, and faulty processes are live only prior to crashing.

2.3. Timing Assumptions

We consider the underlying system as a partially synchronous system in which

the failure detector 3P1 can be implemented. The failure detector 3P1 cannot be

implemented in purely asynchronous systems, in which messages can be arbitrarily

delayed and process speeds can be arbitrarily slow. As such, using 3P1 implies that

the underlying system must satisfy some timing assumptions (e.g., bounded message

delays or bounded relative process speeds).

The underlying system can also be viewed as an asynchronous system augmented

with 3P1. As such, no explicit timing assumptions can be directly used in our

algorithms and proofs. Hence, our research can focus on axiomatic features of failure

detectors, instead of operational features of timing assumptions.

Using 3P1 does not necessarily mean that the timing assumptions must hold on

all layers of the underlying system. We argue that some layers in systems augmented

with 3P1 may still be purely asynchronous. For example, while the layer to implement

3P1 must be partially synchronous, application layers may still be asynchronous.

This argument can be clarified from two aspects: message delivery time and relative
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process speeds.

Failure-detector messages (i.e., messages used to detect crash faults) and applica-

tion messages can be treated differently by the communication medium. For example,

failure-detector messages are essentially control messages for implementing a system

service for crash-fault detection. As such, failure-detector messages may be routed

with higher priorities to satisfy prerequisite assumptions on partial synchrony. By

contrast, application messages may be routed with lower priorities and subject to

arbitrary delays arising from such factors as lower bandwidth, load-balanced routing,

queuing delays, and unfavorable quality-of-service guarantees. Therefore, application

messages are allowed to be arbitrarily delayed in asynchronous systems augmented

with 3P1.

Similarly, fault-detection tasks and applications can be treated differently by

processes as well. Processes may give higher priorities to fault detection tasks and

lower priorities to applications. Applications may experience arbitrary step delays

due to such factors as cache misses, page faults, server loads, and preemptive priority-

based CPU scheduling. Applications, therefore, may be executed arbitrarily slowly.
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CHAPTER III

FAILURE DETECTORS

This chapter introduces failure detectors, a concept originally defined by Chandra

and Toueg [23]. Recall that we already gave an intuitive definition of failure detectors

in Chapter I. An unreliable failure detector can be viewed as a distributed oracle that

can be queried for possibly incorrect information about crash faults. This chapter

will give the formal definition and introduce related concepts, including algorithms,

schedules, executions, solvability, reducibility, and weakest failure detectors. This

chapter will also introduce the hierarchy of Chandra-Toueg failure detectors [23], the

local eventually perfect failure detector 3P1 [14, 18], and the trusting failure detector

T [29]. Finally, we will also discuss implementations of failure detectors.

3.1. Formal Definition

For each failure detector, there is a range R of values output by the failure

detector. In this dissertation, failure detectors output a set of processes currently

suspected of having crashed. Hence, R is the powerset 2Π. 1

A failure detector history H with range R is a function that maps Π× T to the

range R. For example, H(p, t) denotes the output of the failure detector module at

process p at time t, and q ∈ H(p, t) means that process p suspects process q at time

1Not all failure detectors output a set of suspected processes. Some failure de-
tectors output a set of trusted processes, such as the failure detector Ω in [30] that
outputs only one trusted process. Some failure detectors do not even provide binary
information about crashes (i.e., suspected or trusted), such as the accrual failure
detector [31] that provides a suspicion level on a continuous scale for processes.
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t in H. The failure detector modules at two different processes need not output the

same value. Hence, for two processes, p and q, H(p, t) may or may not be equal to

H(q, t).

Informally, a failure detector provides (possibly incorrect) information about the

fault pattern in a given execution. Formally, a failure detector D is a function that

maps each fault pattern F to a set of failure detector histories D(F ) with range RD,

where D(F ) is the set of all possible failure detector histories permitted by D for

the fault pattern F , and RD is the range of values output by failure detector D.

During each execution, D outputs only one failure detector history. During two or

more executions with the same fault pattern, D may be permitted to output different

failure detector histories from the set D(F ). Also, a failure detector class can be

specified by a set of properties that every failure detector in this class must satisfy.

3.2. Algorithms, Schedules, and Executions

An algorithm A is defined by a set of automata, one for each process in Π. For

algorithms, computation proceeds in steps. Each step is an action in which a process p

may (1) receive a message to p, and/or (2) get a value from its failure detector module,

and/or (3) send a message, and/or (4) change its variable values. We assume that

each step is executed atomically.

An algorithm is deterministic if and only if for each process, its state transition is

determined totally by its current state and received messages. For a deterministic al-

gorithm, its behaviors are completely determined by the input and the current system

configuration. Given a particular input and a particular configuration, deterministic

algorithms always produce the same output.

A schedule is a finite or infinite sequence of actions (steps). A schedule S is
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denoted S = S0, S1, S2..., where S0, S1, S2... are actions. If the first action S0 is

enabled in a configuration C, and each action Si+1 is also enabled in the configuration

resulting from the previous action Si, then we say that the schedule S is applicable

to the configuration C. For deterministic algorithms, applying a finite schedule S to

a configuration C uniquely determines the final configuration, denoted S(C).

An execution (or run) of an algorithm A using a failure detector D is expressed as

a 5-tuple R = 〈F, HD, I, S, T 〉, where F is the fault pattern of this execution, HD is the

failure detector history output by D in this execution, I is the initial configuration,

S is an infinite schedule which is applicable to I, and T is an infinite sequence of

increasing time values denoting when each action in S occurs.

An execution segment of an algorithm A using a failure detector D is also ex-

pressed as a 5-tuple R = 〈F, HD, C, S, T 〉, where C is the starting configuration of

this segment (and may or may not be the initial configuration of this execution), S is

a finite schedule which is applicable to the configuration C, T is a finite sequence of

increasing time values denoting when each action in S occurs, and |S| = |T |. If C is

the initial configuration of this run, then R is called a partial run or a finite prefix of

this run. For deterministic algorithms, applying a finite schedule S to a configuration

C uniquely determines an execution segment, denoted exec(C, S) = 〈F, HD, C, S, T 〉.

3.3. Solvability

A problem B is defined by a set of properties that every run must satisfy. An

algorithm A solves problem B using a failure detector D if and only if all runs of A

using D satisfy the properties that define B, and we say that D is sufficient to solve

the problem B. Consequently, B can be solved in every system in which D can be

implemented.
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We say that a class of failure detectors C is sufficient to solve problem B (or B

can be solved using C) if, for every failure detector D ∈ C (i.e., D is in the class C),

there exists an algorithm that solves B using D. However, there may or may not

exist an algorithm A that uses every failure detector D ∈ C to solve B. If such an

algorithm A exists, then we say that algorithm A solves problem B using C.

In some cases, whether a failure detector is sufficient to solve a problem depends

on the underlying environment , which is defined by a set of possible fault patterns [30].

Some publications [23, 29] explore solvability with respect to a specific environment,

and hence, they say that a failure detector class C is sufficient for solving a problem

B in an environment E . This dissertation, however, explores solvability of wait-free

dining problems in any environment. To simplify the presentation, we just say “C is

sufficient for solving problem B” rather than “C is sufficient for solving problem B in

an environment E”.

3.4. Reducibility

Given two failure detectors D and D′, if there exists an algorithm TD′→D that

transforms D′ to D, then we write D′ � D and say that D is weaker than or reducible

to D′, or D′ is stronger than D. The algorithm TD′→D is called a reduction algorithm

and uses D′ to maintain a local variable outputp at each process p. The variable

outputp emulates the output of D at p. Consequently, every problem that can be

solved using D can also be solved using D′.

Based on reducibility, the following relationships exist between two failure detec-

tors D and D′:

If D′ � D, then we say that D′ is stronger than D, or D is weaker than D′.

If D′ � D and D 6� D′, then we write D′ � D and say that D′ is strictly stronger
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than D, or D is strictly weaker than D′.

If D′ � D and D � D′, then we write D′ ∼= D and say that D′ and D are

equivalent.

If D′ 6� D and D 6� D′, then we say that D and D′ are incomparable.

The relational operators � and � are transitive. For example, given three failure

detectors D1, D2, and D3, if D1 � D2 and D2 � D3, then D1 � D3. If D1 � D2 and

D2 � D3, then D1 � D3.

For two classes of failure detectors C and C ′, if, for every failure detector D′ ∈ C ′,

there exists a failure detector D ∈ C such that D′ � D, then we write C ′ � C and say

that C ′ is stronger than C, or C is weaker than C ′. Consequently, every problem that

can be solved using C can also be solved using C ′. The following relationships exist

between two failure detector classes C and C ′:

If C ′ � C, then we say that C ′ is stronger than C, or C is weaker than C ′.

If C ′ � C and C 6� C′, then we write C ′ � C and say that C ′ is strictly stronger

than C, or C is strictly weaker than C ′.

If C ′ � C and C � C ′, then we write C ′ ∼= C and say that C ′ and C are equivalent.

If C ′ 6� C and C 6� C ′, then we say that C and C ′ are incomparable.

The relational operators � and � are also transitive for failure detector classes.

3.5. Weakest Failure Detectors

Formally, a failure detector D is the weakest failure detector for solving a problem

B if and only if D is necessary and sufficient for solving B [30].

• Necessity: Every failure detector that is sufficient to solve B is stronger than

D.

• Sufficiency: There exists at least one algorithm that solves B using D.
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The weakest failure detector D for a problem B encapsulates the necessary and

sufficient timing assumptions to solve B [30]. That is, D can be implemented in all

distributed systems in which B can be solved, and B can be solved in all systems in

which D can be implemented. In other words, D represents the minimal requirements

on synchronism needed to solve the problem B.

There are many important weakest failure detector results [29, 30, 32, 33]. These

results will be introduced later when the corresponding failure detectors are intro-

duced.

3.6. The Chandra-Toueg Hierarchy

When Chandra and Toueg introduced the concept of failure detectors in [23],

they also defined a hierarchy of eight failure detectors. These failure detectors were

introduced to circumvent the impossibility result of consensus in faulty environ-

ments [19, 23]. To do so, several algorithms using Chandra-Toueg failure detectors

were developed to solve consensus in faulty environments. Also, the Chandra-Toueg

failure detector 3W was proved to be the weakest oracle for solving consensus with a

majority of correct processes [30]. We introduce the Chandra-Toueg failure detectors

here not only because they are the most frequently-used failure detectors, but also

because they characterize fundamental properties of crash fault detection.

Chandra-Toueg failure detectors are characterized by the kinds of mistakes they

can make. Mistakes include false negatives and false positives, where the former

define the mistakes by which crashed processes are not suspected, and the latter

define the mistakes by which correct processes are wrongfully suspected. As such,

failure detector classes are usually defined by two properties: completeness which

restricts false negatives, and accuracy which restricts false positives.
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We will first define two completeness properties and four accuracy properties.

Next, we will define eight classes of Chandra-Toueg failure detectors by combining

these completeness and accuracy properties. The relationships among these failure

detectors are also discussed.

3.6.1. Completeness

Completeness is either strong or weak. These properties are defined as follows.

Strong Completeness: Every faulty process is eventually and permanently sus-

pected by all correct processes. Formally, if a failure detector D satisfies strong

completeness, then

∀F,∀H ∈ D(F ),∃t ∈ T,∀p ∈ faulty(F ),∀q ∈ correct(F ),∀t′ ≥ t : p ∈ H(q, t′).

Strong completeness prohibits false-negative mistakes. If a process crashes, then

it will be suspected by every correct process eventually and permanently. However,

strong completeness does not specify when a faulty process will be suspected. Faulty

processes might be suspected even before they actually crash.

Weak Completeness: Each faulty process is eventually suspected by some correct

process permanently. Formally, if a failure detector D satisfies weak completeness,

then

∀F,∀H ∈ D(F ),∃t ∈ T,∀p ∈ faulty(F ),∃q ∈ correct(F ),∀t′ ≥ t : p ∈ H(q, t′).

Weak completeness permits (some) false-negative mistakes. However, for each

faulty process p, there exists some correct process q that eventually suspects p per-

manently. Similarly, weak completeness does not specify when process p will be

suspected by q.
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3.6.1.1. Transformation from Weak Completeness to Strong Completeness

In environments where the underlying communication graph cannot be parti-

tioned by crash faults, a failure detector with weak completeness can be transformed

into a failure detector with strong completeness. This transformation algorithm [23]

is called the gossip protocol and works as follows. Every process maintains two set

variables, where suspect is the output of the failure detector with weak completeness,

and output emulates the output of the failure detector with strong completeness. Ev-

ery live process p periodically sends its suspect list suspectp to all other processes.

When a live process q receives the list suspectp from p, q adds all processes of suspectp

into outputq, and q removes p from outputq. The emulated output output satisfies

strong completeness, and this transformation preserves the perpetual and eventual

accuracy properties defined in the next section [23].

However, this transformation does not work when the underlying communication

graph can be partitioned by crash faults. In such an environment, messages are not

guaranteed to arrive at their destinations, and hence the transformation does not

work correctly.

3.6.2. Accuracy

Accuracy is either perpetual or eventual, and is either strong or weak. Hence,

there are four accuracy properties: perpetual strong accuracy, perpetual weak accuracy,

eventual strong accuracy, eventual weak accuracy.

Perpetual Strong Accuracy: No live process is suspected by any live process.

Formally, if a failure detector D satisfies perpetual strong accuracy, then

∀F,∀H ∈ D(F ),∀t ∈ T,∀p, q ∈ live(t) : p /∈ H(q, t).

Perpetual strong accuracy prohibits false-positive mistakes. Correct processes
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cannot be suspected at any time, and faulty processes cannot be suspected before

they actually crash. If a process is suspected, then this process must have already

crashed.

Perpetual Weak Accuracy: There exists some correct process that is never sus-

pected by any live process. Formally, if a failure detector D satisfies weak accuracy,

then

∀F,∀H ∈ D(F ),∃p ∈ correct(F ),∀t ∈ T,∀q ∈ live(t) : p /∈ H(q, t).

Perpetual weak accuracy permits (some) false-positive mistakes. However, at

least one correct process cannot be suspected by any other process at any time.

Eventual Strong Accuracy: For each execution, there exists an unknown time t

after which no correct process is suspected by any correct process. Formally, if a

failure detector D satisfies eventual strong accuracy, then

∀F,∀H ∈ D(F ),∃t ∈ T,∀t′ ≥ t,∀p, q ∈ correct(F ) : p /∈ H(q, t′)

Eventual strong accuracy guarantees that false-positive mistakes can occur at

most finitely many times in any given run. Correct processes can wrongfully suspect

other correct processes finitely many times before time t, but correct processes even-

tually stop suspecting other correct processes. For a faulty process p, while p is still

live, p may wrongfully suspect any other live process, including correct and faulty

processes. However, faulty processes eventually crash, and thereafter they cannot

make false-positive mistakes.

Eventual Weak Accuracy: For each execution, there exists an unknown time t

after which some correct process is not suspected by any correct process. Formally,

if a failure detector D satisfies eventual weak accuracy, then

∀F,∀H ∈ D(F ),∃t ∈ T,∃p ∈ correct(F ),∀t′ ≥ t,∀q ∈ correct(F ) : p /∈ H(q, t′)

Eventual weak accuracy guarantees that correct processes cannot wrongfully sus-

pect some correct process p infinitely many times. After time t, p must be trusted by
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all correct processes.

3.6.3. The Chandra-Toueg Detectors

As shown in Table I, Chandra and Toueg [23] defined eight classes of failure

detectors by combining the two completeness properties and the four accuracy prop-

erties defined in the previous section. These detectors can be partially ordered based

on their reducibility as shown in Figure 3. For two neighboring detector classes in

Figure 3, the higher detector class is stronger than the lower detector class.

Table I. The Chandra-Toueg Failure Detectors
Accuracy

Completeness perpetual strong perpetual weak eventual strong eventual weak
strong Perfect P Strong S Eventually

Perfect 3P
Eventually
Strong 3S

weak Quasi-Perfect Q Weak W Eventually
Quasi-Perfect
3Q

Eventually
Weak 3W

Fig. 3. The Chandra-Toueg Hierarchy
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The perfect failure detector P is defined by perpetual strong completeness

and perpetual strong accuracy. P does not make any false-positive or false-negative

mistakes. As such, every faulty process will be suspected eventually and permanently,

and suspected processes must have already crashed. P is the strongest failure detector

among all Chandra-Toueg detectors.

The eventually perfect failure detector 3P is defined by perpetual strong

completeness and eventual strong accuracy. 3P cannot make any false-negative mis-

takes, but is permitted to make only finitely many false-positive mistakes by wrong-

fully suspecting correct processes. However, 3P eventually converges to an infinite

suffix during which 3P does not make any false-positive mistakes. The convergence

time is unknown and may vary from execution to execution.

The failure detector 3P is sufficiently powerful to solve many crash-tolerant

distributed problems, such as consensus [23], stable leader election [34], and failure-

locality-1 dining philosophers [17, 35]. The failure detector 3P is also the weakest

failure detector with bounded outputs to solve quiescent reliable communication [32].

However, 3P may not be the weakest failure detector in the universe to solve qui-

escent reliable communication. Also, this problem can be solved in asynchronous

systems using the heartbeat failure detector with unbounded outputs.

The failure detector 3P is also the weakest failure detector for solving wait-free

contention managers in shared-memory systems [33]. Wait-free contention managers

ensure that every process has “enough time” in isolation to complete its operation,

even in the presence of high contention and crash faults. In [33], wait-free con-

tention managers are used to boost any obstruction-free algorithm to a wait-free

algorithm. Obstruction freedom guarantees progress for every process only if every

process executes its own operation in isolation for sufficiently long time. There-

fore, any obstruction-free algorithm can be converted into a wait-free algorithm by
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a wait-free contention manager. Also, contention management provides an excellent

application of eventual weak exclusion, insofar as the manager essentially regulates

access to trying (rather than critical) sections. While eventual weak exclusion can

schedule two processes to eat simultaneously (i.e., both are inside critical sections)

finitely many times, a contention manager may schedule two processes to be hungry

simultaneously (i.e., both are inside trying sections) finitely many times.

The strong failure detector S is defined by perpetual strong completeness

and perpetual weak accuracy. In each execution, S can make infinitely many false-

positive mistakes. However, S cannot wrongfully suspect all correct processes. There

exists some correct process that is never suspected by S. By definition, S is strictly

weaker than P , but incomparable with 3P [23].

The eventually strong failure detector 3S is defined by perpetual strong

completeness and eventual weak accuracy. 3S can wrongfully suspect every correct

process, but eventually, some correct process will never be suspected by 3S. By

definition, 3S is strictly weaker than 3P , S, and P .

The failure detectors Q, W , 3Q, and 3W are the Chandra-Toueg failure detec-

tors with weak completeness. As shown in Table I, each failure detector with weak

completeness has a corresponding failure detector with strong completeness, and they

only differ on completeness. For example, Q corresponds to P . By the gossip pro-

tocol discussed previously, Q, W , 3Q, and 3W can be transformed into P , S, 3P ,

and 3S, respectively, in networks that are not partitionable, and the accuracy prop-

erties can be preserved in the transformation. Figure 3 illustrates the relationships

between any pair of corresponding failure detectors: P � Q, S � W , 3P � 3Q, and

3S � 3W . We also know Q � W , Q � 3Q, W � 3W , and 3Q � 3W . Therefore,

3W is the weakest failure detector among all Chandra-Toueg failure detectors.

It is worth pointing out that the failure detector 3W is the weakest detector
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for solving consensus with a majority of correct processes in asynchronous message-

passing systems [30]. 2 This was the first weakest-failure-detector result. However,

when a majority of processes is faulty, 3W is still necessary but insufficient.

3.7. The Local Eventually Perfect Failure Detector 3P1

The failure detector 3P1 is specified by local strong completeness and local even-

tual strong accuracy [24, 25] as follows, where communication neighbors are neighbors

in communication graphs, and CN(p) denotes the set of communication neighbors of

process p.

• Local Perpetual Strong Completeness: Every faulty process is eventually

and permanently suspected by all of its correct communication neighbors. For-

mally,

∀F,∀H ∈ 3P1(F ),∃t ∈ T,∀p ∈ faulty(F ),∀q ∈ (CN(p) ∩ correct(F )),∀t′ ≥

t : p ∈ H(q, t′).

• Local Eventual Strong Accuracy: For every execution, there exists an un-

known time after which no correct process is suspected by any of its correct

communication neighbors. Formally,

∀F,∀H ∈ 3P1(F ),∃t ∈ T,∀t′ ≥ t,∀p ∈ correct(F ),∀q ∈ (CN(p)∩correct(F )) :

p /∈ H(q, t′)

The detector 3P1 is allowed to suspect correct communication neighbors finitely

many times in any execution. However, 3P1 must converge at some point after which

the detector provides reliable information about neighbor crashes. Unfortunately, the

2In this paper [30], the eventually weak failure detector 3W is denoted W .
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convergence time is unknown and may vary from run to run. Also, 3P1 is defined

with respect to communication neighbors; for other processes, 3P1 is permitted to

behave arbitrarily.

Recall that for a dining instance, its conflict graph is a subgraph of its commu-

nication graph. Hence, for a process p, its conflicting neighbors (i.e., its neighbors

in the conflict graph) are also its communication neighbors. Let N(p) be the set of

conflicting neighbors of p; then we can conclude N(p) ⊆ CN(p). As such, every faulty

process is eventually and permanently suspected by all correct conflicting neighbors;

for every execution, there exists an unknown time after which no correct process is

suspected by any correct conflicting neighbor. Thus, local strong completeness and

local eventual strong accuracy also hold for conflicting neighbors.

The detector 3P1 can be transformed to its global version 3P if the underlying

communication graph cannot be partitioned by crash faults. In such an environment,

any two live processes can communicate at any time directly or indirectly via mes-

sage relay. As such, for a process p, its communication neighbors can broadcast the

information about p (i.e., p is alive or has crashed) to all other processes, and the in-

formation will be delivered eventually and correctly via reliable channels. Therefore,

3P1 can be transformed to 3P in unpartitionable communication graphs.

However, this transformation cannot be applied to environments where the com-

munication graph is partitionable. 3P1 may be implemented in such environments,

but 3P cannot. Figure 4 shows a communication graph that is partitioned by pro-

cess q crashing. As a result, processes p and r cannot communicate with each other,

and hence, p and r cannot monitor the status of each other. Meanwhile, it is still

possible for processes p and r to detect the status of q. This example illustrates that

implementations of 3P1 require fewer assumptions on underlying systems than those

of 3P . Thus, 3P1 is weaker than 3P .
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Fig. 4. A Partitionable Communication Graph

3.8. The Trusting Failure Detector

The trusting failure detector T was defined by Delporte-Gallet et al. [29] and

is characterized by three properties: strong completeness, eventual strong accuracy,

and trusting accuracy. Because T satisfies strong completeness and eventual strong

accuracy, T eventually suspects crashed processes permanently, and eventually stops

suspecting correct processes. The trusting accuracy property requires that if a previ-

ously trusted process is suspected, then that process must be crashed. Delporte-Gallet

et al. [29] also proved that T is strictly stronger than 3P , but strictly weaker than

the perfect failure detector P .

Delporte-Gallet et al. [29] showed that T is the weakest failure detector to solve

fault-tolerant mutual exclusion (i.e., wait-free mutual exclusion) under perpetual weak

exclusion (2WX ), given a majority of correct processes. 2WX requires that no

two live neighbors eat simultaneously ever. Mutual exclusion is a special case of

dining philosophers on a completely connected conflict graph. The detector T is

both necessary and sufficient to solve wait-free mutual exclusion under 2WX with

a majority of correct processes. Hence, T is the weakest. However, if a majority of

processes are faulty, then T is necessary but may be insufficient.

To solve wait-free mutual exclusion under 2WX in any environment, a more

powerful composition of the failure detectors T + S is introduced [29]. Recall that

the strong failure detector S [23] is defined by strong completeness and perpetual

weak accuracy. For strong completeness, S eventually suspects crashed processes

permanently. For perpetual weak accuracy, there exists some correct process that
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is never suspected by S. The composition of T + S outputs two independent sets

of suspected processes. T + S is sufficient to solve wait-free mutual exclusion under

2WX in any environment.

3.9. Implementations of Failure Detectors

There are three commonly-used methods to implement failure detectors: timeout-

based, lease-based, and ping-ack implementations. In practice, most implementations

adopt some sort of timeout mechanism to utilize timing assumptions in the underly-

ing system. We will introduce these three implementation techniques and review the

system models in which 3P can be implemented.

3.9.1. Timeout-Based Implementations

Timeout-based implementations (or heartbeat-based implementations) are the

most commonly-used method to implement failure detectors [23, 36, 37, 38]. 3 Given

two processes p and q, without loss of generality, let p monitor q. The monitored

process q periodically sends heartbeat messages to all other processes, including p.

When such a message arrives at process p, p trusts q, resets its corresponding timer,

and starts to count down on q again. If p times out on q, then p suspects q and adds

q into its suspect list. If p later receives a heartbeat message from q, then p realizes

that it made a mistake. To fix this mistake, p removes q from the suspect list. Also,

p attempts to prevent such mistakes in the future by increasing the timeout duration.

This method usually assumes the existence of bounds on timing properties and

guarantees that there exists an infinite suffix, during which the timeout durations

are larger than inter-arrival durations of two consecutive heartbeat messages. In this

3In some publications [37, 38], this method is also called the push model.
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suffix, if q and p are correct, heartbeat messages from q always arrive at p before

the timer times out, and hence, q will not be suspected. After a process crashes, no

message can be sent, and hence the timer eventually times out. Therefore, crashed

processes will be eventually and permanently suspected.

3.9.2. Lease-Based Implementations

Lease-based implementations are another way to detect crash faults [39]. For

process p to monitor process q, process q (the lessee) submits a lease to p (the lessor).

Process q should renew the lease before the lease expires. If the lease expires without

being renewed, p suspects q and sends q a notification. If q is not crashed, then q

receives the notification. As a response to the notification, process q resubmits a new

lease with a longer lease term to prevent such mistakes from occurring in the future.

Upon receiving the new lease, p realizes that it made a mistake, and p removes q

from its suspect list to fix the mistake. If q actually crashes, then p eventually stops

receiving messages from q, and hence, suspects q permanently.

There are many commonalities between lease-based implementations and timeout-

based implementations. For example, in both implementations, the monitoring pro-

cesses (i.e., process p) are passively waiting for messages, and p holds a timer for the

monitored process (i.e., process q).

Lease-based implementations differ from timeout-based implementations on who

controls the timeout durations. In lease-based implementations, the monitored pro-

cess (i.e., process q) controls the timeout durations (i.e., the length of lease terms).

In timeout-based implementations, the monitoring process (i.e., process p) controls

the timeout durations.
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3.9.3. Ping-Ack Implementations

In ping-ack implementations [36], processes actively send messages to detect

crash faults. 4 For process p to monitor process q, when p wants to know the status of

q, process p actively sends a ping message to q. Meanwhile, p sets the corresponding

timer and starts to count down on q. When q receives this ping message, q replies by

sending an ack message to p. Process p expects to receive this ack message before the

timer times out. If p times out on q before this message arrives, then p suspects q. If

p later receives the ack message, then p removes q from the suspect list and attempts

to prevent such mistakes in the future by increasing the length of timeout durations.

3.9.4. Models to Implement 3P

The ability of a model to implement 3P usually depends on two factors. One

factor is timing assumptions. As we discussed before, 3P cannot be implemented in

asynchronous systems. Hence, all models sufficient to implement 3P must assume

some known or unknown, eventual or perpetual bounds on message delays and/or

relative process speeds. Another important factor is the reliability of communication

channels. Although most models assume reliable communication channels, there do

exist some models [40] in which messages can be lost.

Many system models [23, 34, 36, 40, 41, 42, 43, 44] are sufficient to implement 3P .

This section will introduce several important models, including M1, M2, M3 [22,

23], the finite average-response-time model [36], and the average delayed/dropped

model [40].

4In some publications [37, 38], this method is also called the pull model.
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3.9.4.1. Model M1, M2, and M3

Among all the models,M1,M2, andM3 are the first and most important models

used to implement 3P [23]. These three classic models of partial synchrony assume

reliable communication channels and are defined as follows.

Model M1 guarantees that for each execution, there exist unknown bounds

on message delays and relative process speeds [22]. These bounds are unknown and

perpetual. Systems modeled byM1 behave synchronously, but since the actual bounds

are not known, they cannot be used to advantage for reliable failure detection.

Model M2 guarantees that for each execution, there exist known bounds on

message delays and relative process speeds, but these timing bounds hold only after

a finite and unknown prefix of the execution [22]. These bounds are known but

eventual. Systems modeled by M2 eventually conform to known bounds, but they

may exhibit highly asynchronous behaviors during any finite prefix of each run.

Model M3 guarantees that for each execution, there exist unknown bounds on

message delays and relative process speeds, and these bounds hold only after a finite

and unknown period of time [23]. The bounds are unknown and eventual. M3 can be

considered a weak union of M1 and M2, where the bounds exist, but are unknown

and only hold after some unknown stabilization time.

The general approach to implementing 3P in such models is to use an adaptive

timeout mechanism that increases the estimated timeout threshold after each false

positive. For model M1, the estimated threshold will eventually surpass the de facto

bounds after a finite number of false positives. For model M2, the initial threshold

can be calculated based on the known bounds, and the system will eventually converge

to the known bounds, after which false positives cease. For model M3, the estimated

threshold will eventually surpass the eventual bound after a finite number of false
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positives.

3.9.4.2. Finite Average-Response-Time Model

Another important model for implementing 3P is presented by Fetzer et al. [36],

called the finite average-response-time model (FAR model for short), which does not

assume any upper bound on message delays or relative process speeds. Instead of

using reliable channels, the FAR model adopts acknowledged stubborn channels: if a

correct process p sends a message m to a correct process q, and p delays sending other

messages until p receives an acknowledgment (ack) from q, then the message m and

the ack message are eventually delivered to q and p, respectively. The FAR model

assumes that there exists a lower bound on time to increment an integer variable.

Response times are time durations from the time p sends a message to the time

the ack message arrives. The FAR model also assumes that the average response

time is finite but unbounded. A ping-ack protocol is used to implement 3P in the

FAR model such that the estimated timeout period is eventually larger than the next

response time. However, the implementation is impractical, because computation

over an unbounded number of messages is required.

3.9.4.3. Average Delayed/Dropped Model

Recent research [40] discovered that 3P can be implemented in systems in which

infinitely many messages can be lost, and there is only limited knowledge about the

pattern of message losses. Sastry and Pike [40] introduced Average Delayed/Dropped

channels (ADD channels). To our knowledge, the ADD model is weaker than other

models sufficient for implementing 3P using bounded memory. On an ADD channel,

every message is either privileged or non-privileged, but it is unknown whether any

specific message is privileged. There is no guarantee about non-privileged messages;
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they can be arbitrarily delayed or dropped. As such, infinitely many messages can be

dropped, and ADD channels are unreliable. For each run, however, there exists an

unknown time window w ∈ N and two unknown bounds d and r, where d is an upper

bound on the average delay of the last w privileged messages, and r is the upper

bound on the ratio of non-privileged messages to privilege message in per window w.

These assumptions guarantee that each sufficiently long window contains at least one

privileged message, which has an average upper bound on message delays. Hence,

there exists an upper bound on inter-arrival times of messages. Therefore, an adaptive

timeout method can be used to implement 3P .



46

CHAPTER IV

DINING PHILOSOPHERS

Dining philosophers is usually characterized by the two properties: progress and

safety . A progress property guarantees that some “good thing” eventually happens;

for every partial execution, there always exists an infinite extension such that the

“good thing” eventually occurs in this extended execution [45]. A safety property

guarantees that some “bad thing” never happens; if this safety property is violated

in an execution, then there exists a finite prefix during which the “bad thing” can

be recognized at some point [45]. In decreasing order of strength, this chapter will

introduce three progress properties (i.e., wait-freedom, lockout freedom, and deadlock

freedom) and three safety properties (i.e., perpetual strong exclusion, perpetual weak

exclusion, and eventual weak exclusion).

This chapter also reviews solvability of wait-free dining. Solvability of wait-free

dining depends on both synchronism of underlying systems and dining specifications.

Therefore, we discuss solvability of wait-free dining with respect to different safety

properties and different systems. In particular, solvability of wait-free dining under

perpetual weak exclusion will be discussed in detail.

Dining philosophers is only one of many paradigms for resource allocation prob-

lems. Other classic paradigms include mutual exclusion, drinking philosophers, and

job scheduling. We will also give a brief introduction to these paradigms and discuss

the relationships among these paradigms.
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4.1. Progress Properties

In this section, three progress properties are defined in decreasing order of strength:

wait-freedom, lockout freedom, and deadlock freedom. These properties mainly differ

on two aspects: whether progress is global or local, and whether crash faults are

considered. Their definitions are shown as follows.

• Wait-Freedom: Regardless of how many processes crash, every correct hungry

process eventually eats [10].

• Lockout Freedom: In every fault-free execution, every correct hungry process

eventually eats [15, 46].

• Deadlock Freedom: In every fault-free execution, if some correct process is

hungry, then some correct process eventually eats [15, 46].

Wait-freedom guarantees progress locally for individual processes and considers

crash faults. Originally, wait-freedom guarantees that every correct process finishes

any operation within finitely many steps, regardless of execution speeds of other

processes [10]. In the context of dining, wait-freedom guarantees that every correct

hungry process goes to eat within finitely many steps, regardless of process crashes.

As such, every correct hungry process can make progress to eat. Hence, progress is

ensured locally for individual processes.

By contrast, lockout freedom guarantees progress locally for individual processes,

but only in fault-free environments. In the absence of crash faults, every process is

correct, and lockout freedom is equivalent to wait-freedom. However, in the presence

of crash faults, lockout freedom does not guarantee that every correct hungry process

eventually eats. In the worst case, all correct hungry processes may starve.
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Deadlock freedom only guarantees progress globally in fault-free environments. If

a set of processes is hungry, then at least some process in this set will eventually eat.

However, there is no guarantee that every hungry process eventually eats. As such,

deadlock freedom only excludes the possibility of global starvation (i.e., all hungry

processes starve), and hence, it is a global progress property. Similar to lockout

freedom, deadlock freedom is defined with respect to fault-free environments. In the

presence of crash faults, all hungry processes may starve in the worst case.

Because this dissertation mainly explores the dining problem in the presence of

crash faults, the following sections will focus on wait-free dining only.

4.2. Safety Properties

In this section, three safety properties are defined in decreasing order of strength:

perpetual strong exclusion, perpetual weak exclusion, and eventual weak exclusion.

Since eventual weak exclusion has already been discussed in Chapter I, this section

will mainly focus on perpetual strong exclusion and perpetual weak exclusion.

• Perpetual Strong Exclusion: No two neighbors eat simultaneously.

• Perpetual Weak Exclusion: No two live neighbors eat simultaneously.

• Eventual Weak Exclusion: For each execution, there exists a time after

which no two live neighbors eat simultaneously.

4.2.1. Perpetual Strong Exclusion

Perpetual strong exclusion is defined with respect to all processes, including live

and crashed processes. Therefore, processes are prohibited to eat simultaneously with

any neighbors, even crashed neighbors.
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Perpetual strong exclusion is used to model unrepairable shared resources that

can be corrupted permanently by process crashes. For example, every hard disk has

a partition table to store partition records. If a process p crashes while p is updating

this table, then it is possible that the table is permanently corrupted. As a result,

data in the hard disk may be permanently lost. Hence, data stored in hard disks can

be considered as an unrepairable shared resource (assume that there is no backup

disk for the data).

However, perpetual strong exclusion is needlessly restrictive for practical appli-

cations in which shared resources are recoverable. For example, transient corruptions

on shared memory are usually recoverable. Consequently, it is necessary to consider

weaker exclusion models from a practical perspective, such as perpetual weak exclu-

sion and eventual weak exclusion.

4.2.2. Perpetual Weak Exclusion

Perpetual weak exclusion (2WX ) guarantees that no two live neighbors eat

simultaneously. 2WX is defined with respect to live processes. As such, a live

process p is prohibited from eating simultaneously with any of its live neighbors, but

p is not prohibited from eating simultaneously with its crashed neighbors.

Perpetual weak exclusion is used to model repairable shared resources. For ex-

ample, wireless channels are such a repairable shared resource. At any time, only one

process can send messages via a wireless channel. If a process p crashes while p is

communicating via a channel, then the channel may be left in an unusable state for a

short period of time. However, this channel eventually recovers from the crash fault

and becomes available again for other processes.

Perpetual weak exclusion is weaker than perpetual strong exclusion. In fault-free

environments, all processes are correct, and hence, 2WX is equivalent to perpetual
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strong exclusion. In the presence of crash faults, 2WX allows live processes to eat

concurrently with crashed neighbors, but perpetual strong exclusion does not. Hence,

perpetual strong exclusion impose more constraints on dining algorithms than 2WX .

4.2.3. Eventual Weak Exclusion

Eventual weak exclusion (3WX ) is even weaker than 2WX . Recall that 3WX

guarantees that for each execution, there exists a time after which no two live neigh-

bors eat simultaneously. Similar to 2WX , 3WX does not prohibit a live process

from eating simultaneously with its crashed neighbors as well. However, unlike 2WX ,

3WX does allow live processes to eat with their live neighbors simultaneously finitely

many times.

4.3. Solvability of Wait-Free Dining

This section discusses solvability of wait-free dining under perpetual strong ex-

clusion and perpetual weak exclusion. Solvability of wait-free dining depends not

only on synchronism of underlying systems, but also on dining specifications (e.g.,

safety properties). This section reviews several solvability or unsolvability results

with respect to both safety properties and synchronism of underlying systems.

4.3.1. Perpetual Strong Exclusion

Wait-free dining is unsolvable under perpetual strong exclusion simply by its

definition. Perpetual strong exclusion guarantees that no two neighbors eat simulta-

neously. Therefore, if a process crashes while it is eating, then no hungry neighbor

can be scheduled to eat. Thus, wait-free dining under perpetual strong exclusion is

unsolvable in all distributed systems.
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4.3.2. Perpetual Weak Exclusion

In short, wait-free dining under 2WX is unsolvable in asynchronous systems,

may or may not be solvable in partially synchronous systems, and is solvable in

synchronous systems.

4.3.2.1. Asynchronous Systems

Wait-free dining is unsolvable in asynchronous message-passing systems. This

impossibility result is based on the intrinsic difficulty of reliable fault detection in

asynchronous systems. Choy and Singh [20] proved this impossibility result by show-

ing that failure locality 1 is impossible for asynchronous dining algorithms under

2WX . Failure locality (FL) is defined as the maximal geographic radius (in conflict

graphs) of processes which could be affected by a single crash fault [20]. FL1 means

that in the worst case, a crash fault can only cause the immediate neighbors of the

crashed process to starve. Wait-freedom implies failure locality 0. Hence, wait-free

dining under 2WX is impossible in asynchronous systems.

With respect to crash tolerance, failure locality 2 (FL2) is the best result achiev-

able by asynchronous dining solutions under 2WX [20, 47, 48, 49, 50]. FL2 means

that in the worst case, a crash fault can starve processes within at most two-hop

neighborhood of the crashed process in conflict graphs.

4.3.2.2. Partially Synchronous Systems

Partial synchrony can be encapsulated by failure detectors. Therefore, we study

solvability of wait-free dining under 2WX with respect to failure detectors. Solvabil-

ity of wait-free dining under 2WX depends on the strength of failure detectors.

The eventually perfect failure detector 3P is insufficient to solve wait-free dining
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under 2WX . Pike and Sivilotti [35] proved this impossibility result by showing

that no dining algorithm can achieve FL0 using 3P . Clearly, any failure detector

weaker than 3P is also insufficient to solve wait-free dining under 2WX . The same

paper [35] also presents three dining algorithms that achieve FL1 under 2WX using

3P . Therefore, the optimal failure locality is 1 for dining under 2WX using 3P .

As discussed in Chapter III, the trusting failure detector T has been used to

explore solvability of wait-free dining under 2WX in the context of mutual exclu-

sion [29]. The detector T is both necessary and sufficient to solve wait-free mutual

exclusion under 2WX in environments with a majority of correct processes. Hence, T

is the weakest in such environments. The composition of T + S is sufficient to solve

wait-free mutual exclusion under 2WX in any environment, but it is not known

whether or not T + S is necessary.

This dissertation can be viewed as an extension of the work by Pike and Sivilotti [35].

To circumvent the unsolvability result in [35], we could either (1) use stronger failure

detectors, or (2) explore weaker exclusion models and still use 3P . Delporte-Gallet

et al. [29] explored the first option by using the stronger failure detector T . This dis-

sertation pursues the second option by exploring a weaker exclusion model, eventual

weak exclusion (3WX ).

4.3.2.3. Synchronous Systems

Wait-free dining under 2WX is solvable in synchronous systems. In such a

system, reliable fault detection can be implemented. Hence, crashed processes will

be suspected eventually and permanently, and suspected processes must have already

been crashed. Once a crash fault is reliably detected, correct processes stops waiting

on the crashed process, and the resources being occupied by the crashed process can

be reallocated. As such, correct processes cannot be permanently blocked from eating
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by crashed processes.

4.4. Hierarchy of Resource Allocation Problems

Dining philosophers is related to three other resource allocation problems: mu-

tual exclusion, drinking philosophers, and job scheduling. Including dining, these four

problems are related in a way such that the problems are generalized in the following

order: mutual exclusion, dining philosophers, drinking philosophers, and job schedul-

ing. Mutual exclusion is a special case of dining, dining is a special case of drinking,

and drinking is a special case of job scheduling. Their solutions are correlated as well.

Solutions to a problem can be directly applied to solve its special cases, and solutions

to a special case are often used as a basic block (or subroutine) to build solutions to

the generalized problem.

4.4.1. Mutual Exclusion

Mutual exclusion is a model of static resource-allocation scenarios, where every

pair of processes has overlapping resource needs [51, 52, 53]. The term “static” means

that each process always requires a fixed (i.e., statically determined) set of resources

every time the process becomes hungry. Each mutual exclusion instance can be

modeled as a conflict graph of a clique in which every pair of processes is neighboring

to each other. As such, concurrency is minimized such that at any time, at most one

process can utilize shared resources.

Many algorithms have been proposed to solve mutual exclusion [29, 52, 54, 55,

56, 57, 58]. The first mutual exclusion algorithm was given by Dijkstra and only uses

read/write registers [52]. Lamport [55] presented the bakery algorithm, which consid-

ers processes that wish to enter critical sections as customers in a bakery. Customers
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are served according to the time they arrive to the bakery. If two or more customers

arrive the bakery at the same time, then the customer with the lowest id is served

first (process ids are static and unique). Burns and Lynch [54] also gave a lower

bound on the number of read/write registers to solve deadlock-free mutual exclusion.

Since our dissertation mainly focuses on dining philosophers, we only mentioned a

few important mutual exclusion algorithms. For readers who are interested in this

topic, the book by Michel Raynel [53] is a good coverage until 1986, and the paper

by James et al. [51] provides a recent survey of this topic in shared-memory systems.

4.4.2. Dining Philosophers

Dining philosophers is a generalization of mutual exclusion. Dining differs from

mutual exclusion on the topology of conflict graphs. Dining conflict graphs can be

arbitrary topologies, but conflict graphs for mutual exclusion must be a clique. Hence,

mutual exclusion is a special case of dining philosophers where the conflict graph is

always a clique.

Many algorithms have been developed for the dining philosophers problem [12,

26, 35, 59, 60, 61, 62, 63, 64, 65]. These algorithms are developed for different pur-

poses; they may focus on improving failure locality [20, 26, 35, 47, 48, 50], self-

stabilization [4, 47, 66], response time [26, 59, 63, 65] (i.e., the time delay between

a process becoming hungry and the process going to eat), or message complex-

ity [26, 63] (i.e., in the worst case, the number of messages sent or received by a

process during any response times). Some algorithms are developed under shared-

memory systems [4, 62, 65], while others are developed under message-passing sys-

tems [14, 26, 35, 63].

Dining solutions often utilize several techniques, including doorways [14, 26, 35],

dynamic partial orders [18, 35, 60], distributed queues [12, 59, 63], randomization [67,
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68], and modular constructions [48, 69]. Chapter V and VII will give a detailed

description on dynamic partial orders and doorways.

It is worth to point out that dining can be solved by a modular construction using

mutual exclusion solutions as a black-box subroutine [69]. In this algorithm, each

shared resource r is associated with a mutual exclusion instance, which is composed

of proxies of all processes sharing r. All shared resources are statically and totally

ordered. A hungry process p requests its shared resources one by one according to

the total ordering of resources. Only after p holds a shared resource, p can request

the next one. Hungry processes do not relinquish shared resources until after they

finish eating. Competition for a shared resource is solved by the associated mutual

exclusion instance.

4.4.3. Drinking Philosophers

Drinking philosophers [70] is a dynamic resource allocation problem. For the

drinking problem, the topology of conflict graphs can be arbitrary. Each pair of

neighbors in conflict graphs shares a number of distinct bottles (resources). Each

drinker (analogous to diners) cycles through four states: tranquil, thirsty, drinking,

and exiting, which are analogous to four diner states: thinking, hungry, eating, and

exiting, respectively. Each time a tranquil process becomes thirsty, it requests a

dynamically determined subset of bottles shared with its neighbors. Therefore, the

drinking problem allows neighbors to drink simultaneously when they require disjoint

subsets of bottles. Comparing with dining, drinking philosophers increases potential

concurrency and resource utilization. Dining is a special case of drinking where each

drinker always requests all of its shared bottles.

The drinking problem can be solved by modular construction using dining solu-

tions. Chandy and Misra [70] constructed a drinking solution directly based on the
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hygienic dining algorithm. Welch and Lynch [13] also gave a modular drinking algo-

rithm in which any dining solution can be used as a black-box subroutine. Welch and

Lynch’s algorithm uses the black-box dining subroutine to guarantee that a thirsty

drinker p eventually gets the priority to utilize all of its shared bottles. Because p

has the priority, p eventually holds all necessary bottles for this drinking session and

goes to drink. After that, p gives up the priority to release unneeded bottles. This

action potentially increases concurrency and resource utilization.

4.4.4. Job Scheduling

Job scheduling [59] further generalizes the drinking philosophers problem. In job

scheduling, jobs (analogous to critical sections) are created dynamically at processes.

Each job requires a set of resources. If two jobs have overlapping resource require-

ments, then these two jobs are incompatible. Since jobs are dynamically created,

the conflict graph of jobs is dynamic. As such, job scheduling extends drinking and

dining by allowing philosophers to be added into and removed from conflict graphs

dynamically. Drinking philosophers is actually a special case of job scheduling where

the conflict graph is static. Job scheduling algorithms guarantee that every job is

eventually executed, and no incompatible jobs can be executed concurrently.

Awerbuch and Saks [59] presented a modular job scheduling algorithm that uses

any dining algorithm as a black-box subroutine. This algorithm maintains a dis-

tributed priority queue in which each slot contains one or more compatible jobs.

Only jobs at the head of the priority queue can be scheduled to execute. New jobs

are added to the tail of the queue, and jobs move toward the head by using the

black-box dining algorithm to resolve conflicts among these jobs.
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4.5. Summary

This chapter outlines dining variants and other paradigms of resource allocation

problems. These dining variants are defined with respect to three progress properties

(wait-freedom, lockout freedom, and deadlock freedom) and three safety properties

(perpetual strong exclusion, perpetual weak exclusion, and eventual weak exclusion).

The paradigms include mutual exclusion, dining philosophers, drinking philosophers,

and job scheduling.

We also discussed solvability of wait-free dining under perpetual strong exclusion

and perpetual weak exclusion (2WX ). Wait-free dining is unsolvable under perpetual

strong exclusion. For 2WX , we introduced solvability of wait-free dining using two

failure detectors 3P and T . In particular, 3P is insufficient to solve wait-free dining

under 2WX . This intrigues one question: whether 3P can solve wait-free dining

under a weaker exclusion model, eventual weak exclusion? The next chapter will

answer this question by giving a wait-free dining algorithm under 3WX using 3P .
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CHAPTER V

A WAIT-FREE DINING SOLUTION USING 3P1

This chapter presents a wait-free dining algorithm under eventual weak exclu-

sion (3WX ) using 3P1 [18]. This algorithm is based on the classic hygienic dining

algorithm by Chandy and Misra [60, 70]. Therefore, we first describe the original

hygienic dining solution briefly. Next, we describe our algorithm in detail. Finally,

we prove that our algorithm satisfies eventual weak exclusion and wait-freedom.

5.1. Original Hygienic Dining Algorithm

The original hygienic dining algorithm was presented by Chandy and Misra [60,

70] in asynchronous fault-free systems. This dining algorithm satisfies lockout freedom

and perpetual weak exclusion (2WX ). Two key techniques are used in this algorithm:

forks for safety (i.e., 2WX ) and a dynamic partial ordering for progress (i.e., lockout

freedom). Note that in the original hygienic algorithm, a diner has only three states:

thinking, hungry, and eating.

A unique fork 1 is associated with each edge in the conflict graph. Neighbors

connected by a conflict edge share the corresponding fork, which is used to resolve

conflicts over the overlapping set of resources needed by both neighbors. In order to

Part of this chapter is reprinted from Proceedings of the 9th International Con-
ference on Distributed Computing and Networking (ICDCN), S. Pike, Y. Song, and
S. Sastry, Wait-Free Dining Under Eventual Weak Exclusion, pp. 135-146, Copyright
(2008), with permission from Springer.

1A popular misconception is that forks are resources. We emphasize that forks are
not resources. Note that forks are not even mentioned in the problem specification;
they are simply used as a technique to guarantee safety.
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eat, a hungry process must collect and hold all of its shared forks. This provides a

simple basis for safety, since at most one neighbor can hold a given fork at any time.

A fork is either clean or dirty. The forks held by eating processes are dirty. Dirty

forks remain dirty until they are cleaned. Dirty forks are cleaned only when they are

sent to other processes. 2 As such, processes always receive clean forks. A process

cannot relinquish clean forks. Clean forks are held only by hungry processes, and

they remain clean until they are used to eat. Initially, all forks are dirty.

A request token is associated with each fork. A hungry process p can request a

missing fork only when p holds the corresponding token. p requests a shared fork by

sending the token to the neighbor. A fork and the corresponding token are initially

located at different processes.

Processes can be partially ordered. This partial ordering can be represented as

a precedence graph, which is constructed by assigning directions to each edge in the

conflict graph. In a precedence graph, each edge (p,q) is directed from process p to

q if and only if (1) p holds the fork shared with q, and the fork is clean, or (2) q

holds the shared fork, and the fork is dirty, or (3) the fork is in transit from q to p.

The direction from p to q indicates that p has priority (or precedence in [70]) over q.

We say that process p has a higher priority, and q has a lower priority. When two

hungry processes are competing a shared fork, the conflict is always resolved in favor

of the higher-priority process. Also, the direction of an edge (p, q) can be changed

only when the higher-priority process p starts to eat. Initially, forks are dirty and are

assigned in a way such that the precedence graph is acyclic. When a process p starts

eating, all of its shared forks become dirty, and hence, all edges incident on p must

be directed toward p. By this way, the precedence graph is always acyclic.

2That is the reason why this algorithm is called hygienic.
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The hygienic dining algorithm works as follows. Initially, every process is think-

ing and may become hungry at any time. A hungry process p requests a missing

fork shared with its neighbor q only when p holds the corresponding token. When q

receives the request token, q grants the request only if q is not eating, and the fork

shared with p is dirty. Otherwise, q defers the request until after q eats. Therefore,

requests for a dirty fork are always granted, but requests for a clean fork are always

deferred. After p collects all of its shared forks, p goes to eat, and all of its shared

forks become dirty. This action makes all edges incident on p toward p, and hence,

maintains acylicity of the precedence graph. After eating, the deferred forks will be

sent out.

This algorithm satisfies perpetual weak exclusion. Each pair of neighbors shares

a unique fork, and hence, at most one neighbor can hold the fork at any time. Since

eating processes must hold all of their shared forks, no two neighbors eat simultane-

ously.

This algorithm satisfies lockout freedom. The proof is based on strong induction

on the depth of the partial ordering. If a process has no higher-priority neighbors,

then its depth is 0. For other process q, its depth is the maximum number of edges

along a path to q from some process with depth 0. The base case guarantees that

processes with depth 0 eventually eat, because such a process has priority over all

of its neighbors. The inductive step assumes that all hungry processes with depth

less than d eventually eat, and guarantees that processes with depth d eventually

eat. Given such a process q with depth d, q can be blocked from eating only by its

hungry higher-priority neighbors r. However, the depth of r must be less than d,

and by inductive hypothesis, r eventually eats and loses priority over q. Therefore, q

eventually collects all of its shared forks and goes to eat.
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5.2. Wait-Free Dining Algorithm Using 3P1

In the original hygienic solution [60], if a process crashes while holding a fork,

then the corresponding neighbor will never get the fork. If this neighbor is hungry,

then it starves. Thus, the original hygienic solution is not wait-free.

To achieve wait-freedom, we use suspicion from 3P1 as a proxy for permanently

missing forks [18]. That is, a process p is permitted to eat if and only if for each

neighbor q, p is either holding the fork shared with q or suspecting q. Although

processes that crash while holding a fork will never send that fork, the corresponding

neighbor is still able to eat by using suspicion in place of the missing fork. Since the

local strong completeness property of 3P1 guarantees that every crashed process will

be eventually and permanently suspected by all correct neighbors, no process starves

because its neighbor crashes.

Unfortunately, the local eventual strong accuracy property allows 3P1 to make

mistakes by wrongfully suspecting live neighbors finitely many times during any run.

Therefore, two live neighbors which suspect each other may both proceed to eating,

regardless of which neighbor actually holds the shared fork. Such violations of mutual

exclusion are caused by false-positive mistakes, which can occur only finitely many

times during the finite prefix. In the infinite suffix, because no two correct neighbors

can suspect each other, and because at most one of them can hold the shared fork,

eventually no correct neighbors eat simultaneously. Hence, eventual weak exclusion

is satisfied.

The local eventual strong accuracy property also has an impact on progress. In

the original hygienic algorithm, an eating process must reduce its priority below that

of all neighbors. This absolute reduction forms the basis for progress, because pro-

cesses cannot remain a higher priority after eating to overtake their hungry neighbors.
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More importantly, cycles cannot be formed in the precedence graph. This absolute

reduction is based on the fact that in the hygienic solution, eating processes know the

relative priority of all neighbors by holding all shared forks. However, the absolute

reduction does not hold when we use suspicion from 3P1 as a proxy for missing forks.

False-positive mistakes of 3P1 may enable a process p to eat without holding the fork

p should hold. In the worst case, two neighbors may suspect each other, and then

go to eat simultaneously even if neither holds the fork. If the fork is still in transit

when both neighbors complete eating, then neither neighbor knows the actual priority

ordering. As a result, it is impossible for both processes to reduce their own priority

below all neighbors, and even worse, cycles may be formed in the precedence graph.

Deadlock may be created. Hence, wait-freedom cannot be guaranteed.

To ensure wait-freedom, we store process priorities explicitly at each process. For

each process p, its priority priorityp can be expressed as an ordered pair (heightp, idp),

where heightp is a local integer-valued variable, and idp is a globally unique process

identifier. For two processes p and q, we say that process p has a higher priority than

q (i.e., priorityp > priorityq) if and only if:

(priorityp.height > priorityq.height)

or (priorityp.height = priorityq.height) ∧ (priorityp.id > priorityq.id)

Because process identifiers are unique, no two processes have the same priority at

any time, and processes can be totally ordered based on their priorities. As a result,

no deadlock can be formed. After eating, processes simply reduce their height by an

arbitrary integer number. As such, processes do not need to know the priority of any

neighbor to reduce its priority. After finitely many eating sessions, processes cannot

remain a higher priority to overtake their hungry neighbors. Therefore, Wait-freedom

is guaranteed.
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The algorithmic pseudocode is presented as an action system of guarded com-

mands shown in Algorithm 1.

5.2.1. Algorithm Variables

In addition to the failure detector module, each process has four types of local

variables: state, priority , fork , and token. Moreover, we use N(p) to denote the set

of process p’s neighbors and 3P1 to denote the set of processes being suspected by p.

The variable statep simply denotes the current dining phase of process p; it is

either thinking, hungry, eating, or exiting . Initially, every process is thinking.

The priorityp variable for each process p consists of two parts: a local integer-

valued variable heightp and a globally unique process identifier idp, where process

identifiers are static and can be totally ordered. Taken together as an ordered pair,

(heightp, idp) determines the priority of process p. When two hungry neighbors are

competing for a shared fork, the conflict is resolved in favor of the higher-priority

process. Since process identifiers are unique and static, no two processes have the same

priority at any time. Therefore, processes can be totally ordered lexicographically by

their priorities.

The local variable fork is introduced to implement forks. Each process p has a

Boolean variable fork pq associated with each neighbor q. Symmetrically, q also has a

Boolean variable fork qp associated with p. The variable fork pq is true exactly when

process p holds the unique fork shared with q. When the fork is in transit from one

neighbor to the other, both local variables fork pq and fork qp are false. Since the fork

is unique and exclusive, it is impossible for both variables to be true.

In addition to the forks, a request token is also introduced for each pair of

neighbors. Tokens are implemented the same as forks. For a process p, we associate a

Boolean variable tokenpq with each neighbor q. Symmetrically, q also has a Boolean
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Code for process p with its unique identifier idp and with the set of its neighbors N(p)

var statep : {thinking, hungry, eating, exiting} initially, statep = thinking
priorityp : (heightp, idp) initially, priorityp = (0, idp)

forkpq : boolean, for each neighbor q initially, forkpq = (idp > idq)
tokenpq : boolean, for each neighbor q initially, tokenpq = (idp < idq)
3P1 : local eventually perfect detector

1 : {statep = thinking} −→ Action 1
2 : statep := (thinking or hungry) Become Hungry

3 : {statep = hungry} −→ Action 2
4 : ∀q ∈ N(p) where (tokenpq ∧ ¬forkpq) do Request Missing Forks
5 : send-request 〈priorityp〉 to q
6 : tokenpq := false

7 : {receive-request 〈priorityq〉 from q ∈ N(p)} −→ Action 3
8 : tokenpq := true
9 : if (statep = thinking ∨ (statep = hungry ∧ (priorityp < priorityq)))

10 : then send-fork〈p〉 to q Send Forks or
11 : forkpq := false Defer Requests

12 : {receive-fork 〈q〉 from q ∈ N(p)} −→ Action 4
13 : forkpq := true Obtain Shared Forks

14 : {statep = hungry ∧ (∀q ∈ N(p) :: (forkpq ∨ q ∈ 3P1))} −→ Action 5
15 : statep := eating Enter Critical Section

16 : {statep = eating} −→ Action 6
17 : statep := exiting Exit Critical Section

18 : {statep = exiting} −→ Action 7
19 : Lower(priorityp)
20 : statep := thinking Transit Back to Thinking
21 : ∀q ∈ N(p) where (tokenpq ∧ forkpq) do
22 : send-fork〈p〉 to q Send Deferred Forks
23 : forkpq := false

24 : procedure Lower (x : priority) Reduce Priority
25 : x.height := x.height−m

Algorithm 1 A Wait-Free Dining Algorithm under Eventual Weak Exclusion
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variable tokenqp corresponding to p. A process cannot request a missing fork without

holding the corresponding token, and a process requests a missing fork by sending

the token to the corresponding neighbor. Similarly, the token is unique and exclusive,

and hence, it is never the case that both token variables tokenpq and tokenqp are true.

Initially, between each pair of neighbors, the fork is at the neighbor with the higher

identifier, and the token is at the neighbor with the lower identifier.

5.2.2. Algorithm Actions

Action 1 states that a thinking process can become hungry at any time or remain

thinking forever. Action 1 is actually not an internal action of the dining algorithm

and is formalized only for completeness of process behaviors.

Action 2 requests missing forks. This action is always enabled at hungry pro-

cesses. When executed, the hungry process p requests every missing fork for which no

previous request is currently pending. This is achieved by sending the request token

to the corresponding neighbor. Also, p encodes its current priority into the token

message. As a result, the token variable is set to false to indicate that a request has

been sent.

Action 3 decides whether or not to grant a fork request. Via Action 3, processes

receive a fork request. If the recipient is thinking, or hungry but has a priority lower

than the request sender, then the fork must be sent immediately. Otherwise, the

request is deferred until after the recipient exits eating. Eating and exiting processes

always defer requests, as do higher-priority hungry processes. Deferred requests are

represented by holding both the shared fork and the request token. Note that if a

hungry process loses a fork to a higher-priority neighbor in Action 3, the relinquished

fork will be re-requested by subsequently executing Action 2, which is always enabled

while hungry.
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Action 4 simply receives forks.

Action 5 determines when a hungry process can proceed to eat. A hungry process

p can go to eat, if for each neighbor q, process p either holds the shared fork or

currently suspects q. Action 5 is the only action that utilizes the failure detector

3P1. In this action, suspicion serves as a proxy for missing forks.

Action 6 transits an eating process to exiting. This action is not an internal action

of the dining solution and formalized only for completeness of process behaviors.

Action 7 transits a process from exiting back to thinking. Via this action, an

exiting process reduces its priority, transits back to thinking, and sends the forks that

were previously deferred while hungry, eating, or exiting. This action invokes a local

procedure Lower that reduces the height component of priority by some positive

integer m. The magnitude of the reduction m is up to the algorithm designer, and

can be either statically fixed or dynamically chosen at runtime.

Action 7 masks a deeper subtlety that arises from an intrinsic limitation on local

knowledge. After eating, a process p does not need to reduce its priority lower than

that of all the neighbors. p only needs to reduce its height by an arbitrary integer

number. Hence, p does not need to know the priority of its neighbors. Also, reducing

height by an arbitrary integer number is still sufficient for wait-freedom.

5.3. Correctness Proof

This section proves that Algorithm 1 satisfies the safety and progress properties.

5.3.1. Safety

Safety (3WX ) is guaranteed by uniqueness of forks and local eventual strong

accuracy of 3P1. We will first prove Lemma 1; that is, there exists exactly one fork
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for each pair of live neighbors. Next, we prove that Algorithm 1 satisfies eventual

weak exclusion by direct construction in Theorem 1.

Lemma 1 In Algorithm 1, there exists exactly one fork for each pair of live neighbors.

Proof. Initially, there exists exactly one fork for each pair of neighbors. Reliable

communication channels also guarantee that forks cannot be lost, duplicated, and

corrupted in transit. Therefore, we only need to concentrate on Action 3, 4, and 7,

in which fork variables are modified. By Action 3 and 7, no absent fork can be sent.

Hence, no fork can be duplicated. By reliable communication channels and Action 4,

forks in transit will be eventually received and stored at a local variable. Hence, no

fork can be lost. Thus, Lemma 1 holds. �

Theorem 1 (Safety): Algorithm 1 satisfies eventual weak exclusion. That is, for

every run, there exists a time after which no two live neighbors eat simultaneously.

Proof. The safety proof is by direct construction and depends on Lemma 1 and the

local eventual strong accuracy property. Local eventual strong accuracy guarantees

that for each run, there exists a time t after which no correct process is suspected by

any correct neighbor, where t is unknown and may vary from run to run.

First, faulty processes cannot prevent safety from being established. Since faulty

processes are live for only a finite prefix before crashing, they can eat simultaneously

with live neighbors only finitely many times in any run. Hence, we will restrict our

focus to just correct processes.

Second, correct neighbors cannot begin overlapping eating sessions after 3P1

converges. For each execution α, let t be the time after which 3P1 never suspects

correct neighbors. Let p be any correct process that begins eating after time t. By

Action 5, process p can transit from hungry to eating if for each neighbor q, p either
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holds the shared fork or suspects q. Since 3P1 never suspects correct neighbors after

time t, process p must hold all the forks shared with its correct neighbors in order to

begin eating.

So long as p remains eating, Action 3 guarantees that p will defer all fork requests.

Thus, p will not relinquish any fork while eating. Furthermore, 3P1 has already

converged after time t, so no correct neighbor can suspect p either. Because of

Lemma 1, there exists exactly one fork for each pair of live neighbors. Consequently,

Action 5 remains disabled for every correct hungry neighbor of p until after p transits

back to thinking. Thus, we conclude that no pair of correct neighbors can begin

overlapping eating sessions after time t.

Third, let us consider the eating sessions that begin before time t. After time t,

correct neighbors may still eat simultaneously because their current eating sessions

may begin before time t. For example, if two correct neighbors p and q start their

overlapping eating sessions before time t, then it is allowed that both of them remain

eating through time t. However, correct processes can eat only for a finite period of

time. There exists a time t′ after which all eating sessions that begin before time t

end. Since no pair of correct neighbors can begin overlapping eating sessions after

time t, no correct neighbors eat simultaneously after max(t′, t).

Suppose that all faulty processes crash by time t′′ in α. After time t′′, every live

process is correct. Thus, after the time max(t, t′, t′′), no live neighbors eat simulta-

neously. Theorem 1 holds. �

5.3.2. Progress

The progress (i.e., wait-freedom) proof is based on local strong completeness of

3P1 and a dynamic total ordering on process priorities. Local strong completeness

serves as a proxy so that a process does not need to wait for a fork shared with a
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crashed neighbor. The dynamic total ordering guarantees that no deadlock can be

formed, and also guarantees that no correct hungry process can be overtaken infinitely

many times by its neighbors. Hence, every correct hungry process eventually eats. We

will first define process depth in the ordering, and then prove the progress property

by complete induction on process depth.

Process Depth. The depth of a process p at time t is defined as the number of

processes in live(t) that have a priority greater than the priority of p, where live(t) is

the set of live processes at time t. Therefore, depth(p, t) is formally defined as follows:

depth(p, t) = |{∀q ∈ live(t) : priorityq > priorityp : q}| (5.1)

One example of the depth function is shown in Figure 5. Subfigure 5(a) shows a

conflict graph with priorities for each process. For example, process a has a priority

(2, a), in which 2 is its height, and a is its id. Process ids are represented by lowercase

letters, and process ids are ordered lexicographically as a < b < c < d · · · . At the

time t, process f is crashed, and all other processes are live.

Since no two processes have the same priority, the live processes in Subfigure 5(a)

can be totally ordered as shown in Subfigure 5(b) based on priority. Note that

the crashed process f is not included. Process d has the highest global priority,

so depth(d , t) = 0. Although process c has a relative depth 2 in the conflict graph,

its absolute depth is 3 in the global depth ordering. Process c is lower than process

g (i.e., depth(c, t) > depth(g , t)), because although both g and c have equal heights,

process g has the higher process id than c (i.e., g > c).

The depth of a process can increase only when the process exits eating and lowers

its priority. While a process is hungry, its depth cannot increase, but may decrease

when other higher-priority processes lower their priorities.
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(a) Conflict Graph (b) Depth Ordering

Fig. 5. Absolute Depth of Live Processes in A Conflict Graph

Theorem 2 (Progress): Algorithm 1 is wait-free so that every correct hungry process

eventually eats.

Proof. The proof is constructed after 3P1 converges. A hungry process may or may

not be scheduled to eat before 3P1 converges. However, we only need to prove that

after 3P1 converges, every correct hungry process is guaranteed to eat eventually.

Wait-freedom is proved by complete induction on process depth. The base case

shows that every correct hungry process with depth 0 eventually eats. The inductive

step assumes that every correct hungry process with depth < d eventually eats, and

then proves that correct hungry processes with depth d also eventually eat.

Base Case: depth = 0.

The base case states that for a correct hungry process p, if depth(p, t) = 0 at

time t, then p eats at a later time. To prove the base case, we must show that for each

neighbor, p eventually holds the shared fork continuously, or suspects that neighbor,
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or both (Action 5). We partition the neighbors of p into two disjoint sets: correct

and faulty.

First, let us consider the faulty neighbors. Every faulty neighbor eventually

crashes. By the local strong completeness property of 3P1, every crashed neighbor is

eventually and permanently suspected by p. Thus, p will eventually and permanently

suspect all faulty neighbors.

Note that process p may go to eat not necessarily by suspecting its faulty neighbor

q. Process p may already hold the shared fork when p becomes hungry, or p may get

the shared fork before the faulty neighbor q crashes. Thus, process p may proceed to

eat before p suspects q. However, p is not guaranteed to get the shared forks from its

faulty neighbors.

Second, let us consider the correct neighbors. We will show that process p even-

tually holds every fork shared with its correct neighbors continuously until after p

eats. After becoming hungry, p sends requests for all of its missing forks (Action

2). Since channels are reliable, each fork request sent to a correct neighbor q will

eventually be received, thereby causing q to execute Action 3. There are two possible

outcomes: (1) if q is thinking or hungry, then q sends the shared fork immediately

(recall priorityp > priorityq), or (2) if q is eating or exiting, then the fork request

is temporarily deferred. As a correct process, however, q will exit eating after a fi-

nite period of time (Action 6). As a result, q immediately or eventually sends the

requested fork back to p (Action 7).

Process p cannot lose its forks while hungry. The reason is that hungry processes

relinquish forks only to their higher-priority hungry neighbors (Action 3), and process

p has no higher-priority neighbors (depth(p, t) = 0).

At this point, we can conclude that p is guaranteed to collect every shared fork

from each correct neighbor, and that p either collects the shared fork or permanently
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suspects each faulty neighbor. Thus, p is guaranteed to eat by Action 5.

The base case also proves that a correct hungry process at any depth will not

wait indefinitely on its lower-priority neighbors. In the special case of depth 0, this

is enough to establish progress, because all neighbors have lower priority. This result

will be applied again in the inductive step.

Inductive Step: depth = d.

The inductive step states that if every correct hungry process with depth < d is

guaranteed to eat eventually, then every correct hungry process with depth d is also

guaranteed to eat eventually. Given such a correct hungry process p which depth is

d at time t, we will show that for each neighbor, p eventually holds the shared fork

continuously, or suspects that neighbor, or both.

Because no process reduces its priority while hungry, and no process increases

its priority at any time, the depth of p will never become deeper than d so long as

p remains hungry. Priority changes only when an eating process executes Action 7

to transit back to thinking. This change is achieved by invoking the local procedure

Lower(priorityp), which reduces the height component of priorityp by an arbitrary

positive integer. Therefore, while p remains hungry, its lower-priority neighbors al-

ways stay lower than p in the total ordering, but its higher-priority neighbor may not

always stay higher than p.

For each lower-priority neighbor, p eventually holds the shared fork continuously,

or suspects that neighbor, or both. This claim can be proved by applying the same

argument in the base case, because while p remains hungry, p always has a higher

priority than these neighbors.

Higher-priority neighbors are analyzed by two cases: (1) some higher-priority

live process is faulty, or (2) all higher-priority processes are correct.

Case 1: There exists a faulty process r and depth(r, t) < d at time t.
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Faulty processes eventually crash. Hence, there is a later time t′ at which r

crashes, where t′ ≥ t. Crashed processes are irrelevant to depth, so the crash of r

actually causes the depth of p to rise, even though the priority of p remains unchanged.

Consequently, we have depth(p, t′) < d at time t′, and so by applying the inductive

hypothesis, we conclude that p eventually eats.

Case 2: Every process that has a higher priority than p at time t is correct.

All future extensions after time t can be divided into two subcases: (a) futures

in which every higher-priority process eventually thinks forever, and (b) futures in

which some higher-priority process becomes hungry infinitely often.

Case 2(a) There exists a time t′′ > t after which all correct higher-priority

processes remain thinking forever.

We will show that p eventually acquires all forks shared with these correct higher-

priority neighbors. Suppose that q is a correct higher-priority neighbor that thinks

forever after time t′′, and suppose that p does not currently hold the fork shared with

q at time t′′. If the fork is already in transit from q to p, then it will arrive eventually.

Otherwise, Action 2 remains enabled while p is hungry, so the fork request has or

will be sent to q. Since q thinks forever after time t′′, the fork request will be granted

when q executes Action 3. Once the fork arrives at p, it will never be relinquished

again to q because q never becomes hungry in the future. Consequently, p will collect

and hold the shared fork for each of its higher-priority neighbors, and will collect the

shared fork or permanently suspect each of its lower-priority neighbors. This enables

Action 5, so p eventually eats.

Case 2(b) Some correct higher-priority process r becomes hungry infinitely often.

Recall that depth(p, t) = d at time t. Since r is correct and has a higher priority

than p at time t, we know that depth(r, t) < d. Every time that r becomes hungry

with depth less than d, we can apply the inductive hypothesis to conclude that r
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eventually eats. Since r is a correct process, it eventually transits from exiting back

to thinking by executing Action 7. This action reduces the integer-valued height

component of its priority by at least 1 every time it is executed. Because p does not

change its priority while p is hungry, r can go to eat finitely many times while p is

hungry before the priority of r must be lower than that of p. At this time, depth of

p is lower than d, and by the inductive hypothesis, p eventually goes to eat.

At this point, the inductive step has been proved. Based on the base case and

inductive step, we can conclude that Theorem 2 holds. �

It is worth to point out that the mistakes permitted by local eventual strong

accuracy may enable p to eat earlier. For example, 3P1 could initially suspect every

neighbor, and thereby enable p to proceed directly to eating. Although such mistakes

may have implications for safety, they cannot forestall progress.

5.4. Analysis

Algorithm 1 satisfies some useful properties. First, it requires only bounded ca-

pacity on channels (i.e., the number of messages on any channel at any given time is

upper bounded). Algorithm 1 has two types of messages: fork requests (tokens) and

forks. Because forks and tokens are unique between each pair of neighbors, there can

be at most two messages in transit between each pair of neighbors at any time. There-

fore, the number of messages is bounded on any channel. Note that although we do

not count the messages used to implement 3P1, some implementation of failure detec-

tors (e.g., ping-ack implementations) also requires only bounded capacity on channels.

Second, correct thinking processes are quiescent; they eventually stop communicating

with other processes. This property can be demonstrated as follows. Assume that a

correct process remains thinking forever after a time t. For each neighbor q, if q also
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remains thinking forever after some time t′, then eventually p and q do not need to

communicate according to the algorithm. If q becomes hungry infinitely often, then q

eventually has to hold the fork shared with p to eat, and eventually q will not return

the fork back because p will never request the fork after time t. Thereafter, neither q

nor p needs to request the fork, and there is no message between p and p.

Algorithm 1 also has some disadvantages. First, unbounded local memory is used.

If a process eats infinitely many times, then the height component of its priority

will decrease infinitely many times, and every time it is decreased by at least by

1. Therefore, priority variables are unbounded and need unbounded local memory.

Second, in order to eat, a process may need to send or receive a finite but unbounded

number of messages while hungry. The reason is that a process can be overtaken

by its neighbor finitely but unboundedly many times. For a process p, every time a

higher-priority neighbor becomes hungry, the neighbor can send a message to preempt

the fork from p. This can occur finitely many times until the neighbor decreases its

priority lower than p.
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CHAPTER VI

BOUNDED FAIRNESS

This chapter focuses on bounded fairness properties of dining philosophers. First,

we formally define two perpetual bounded fairness properties (i.e., perpetual bounded

waiting and perpetual k-bounded waiting) and two eventual bounded fairness prop-

erties (i.e., eventual bounded waiting and eventual k-bounded waiting). Second, we

explore the relationships among these fairness properties. Third, we prove that 3P

cannot deterministically solve wait-free, perpetual k-bounded waiting dining under

3WX . This impossibility result forces us to consider a weaker fairness property,

eventual k-bounded waiting, in the next chapter. Finally, we review research works

related to bounded fairness properties.

6.1. Bounded-Waiting Properties

Starting from technical terms such as hungry sections and wait functions, this

section formally defines bounded-waiting properties.

6.1.1. Hungry Sections and Wait Functions

A hungry section is an execution segment; it starts when a process i becomes

hungry, and ends when i goes to eat or crashes. Process i remains hungry during

its hungry sections. Because processes may become hungry more than once in an

execution, processes may have multiple hungry sections in an execution. We denote

the mth hungry section of process i in an execution α as HSα
i,m, and denote the

starting and ending time of HSα
i,m as tsα

i,m and teα
i,m, respectively. As such, process i
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must be alive before time teα
i,m. For algorithms that are not wait-free, teα

i,m may be

infinite.

A partial hungry section HSα
i,m(t1, t2) is a segment of the hungry section HSα

i,m.

The partial hungry section HSα
i,m(t1, t2) starts from time t1 and ends at time t2,

where tsα
i,m ≤ t1 < t2 ≤ teα

i,m. When t1 = tsα
i,m and t2 = teα

i,m, HSα
i,m(t1, t2) becomes

the hungry section HSα
i,m. Therefore, hungry sections are a special case of partial

hungry sections. In particular, if t1 = tsα
i,m, we say HSα

i,m(t1, t2) is a section prefix .

If t2 = teα
i,m, we say HSα

i,m(t1, t2) is a section suffix .

A wait function returns the number of times that a process goes to eat during

a (partial) hungry section. Hence, wait functions map from HS× Π to N, where HS

denotes a set of (partial) hungry sections, Π is the set of processes in the system, and

N is a set of natural numbers. WAIT(HSα
i,m(t1, t2), j) returns the number of times

that process j goes to eat during the partial hungry section HSα
i,m(t1, t2). Formally,

WAIT(HSα
i,m(t1, t2), j) = k if and only if

∃r ∈ N : t1 < teα
j,r < teα

j,r+1 < teα
j,r+2 · · · < teα

j,r+k−1 < t2

where teα
j,r represents the time when process j goes to eat in execution α for the rth

time. If processes i and j are neighbors, then WAIT(HSα
i,m(t1, t2), j) is the number

of times that i is overtaken by j while i remains hungry from t1 to t2.

6.1.2. Perpetual Bounded-Waiting Properties

Intuitively, perpetual bounded-waiting properties guarantee that wait functions

are upper bounded for every pair of live neighbors during each execution. If the upper

bound may vary from execution to execution, then it is perpetual bounded waiting

(2BW). If there exists an upper bound k for all executions, then it is perpetual

k-bounded waiting (2k-BW).
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Perpetual Bounded Waiting(2BW): for each execution, there exists a nat-

ural number r such that no live process goes to eat more than r times while any live

neighbor is waiting to eat. For a dining algorithm A, let EXECA be the set of all

possible executions of algorithm A, and express EXECA as {α1, α2, · · · }. Also, let

HSSα be the set of all hungry sections in an execution α, and let N(i) be the set of

process i’s neighbors. Formally, if A satisfies 2BW , then:

∀α ∈ EXECA,∃r ∈ N,∀i ∈ Π,∀HSα
i,m ∈ HSSα,∀j ∈ N(i) :

WAIT(HSα
i,m, j) ≤ r

Note that bounded waiting is defined with respect to neighbors; that is, processes

i and j are neighbors in the above definition. If processes i and j are not neighbors,

then WAIT(HSα
i,m, j) may not be bounded by r. Hence, 2BW guarantees that for

each execution, there exists an upper bound r on the wait function for every pair of

live neighbors.

The bound r may vary from execution to execution. Let us denote the bound

in execution αi as ri, then for all executions in EXECA, the bounds can be expressed

as a set RA = {r1, r2, · · · }. 2BW does not impose limits on ri; there may or may

not exist a maximum value in set RA. If such a value k does exist, then a stronger

bounded-waiting property, perpetual k-bounded waiting, can be defined as follows.

Perpetual k-Bounded Waiting(2k-BW): there exists a natural number k

for every execution such that no live process goes to eat more than k times, while

any live neighbor is waiting to eat. In other words, for all executions, there exists an

upper bound k on the wait function for every pair of live neighbors. Formally, if the

algorithm A satisfies 2k-BW , then:

∃k ∈ N,∀α ∈ EXECA,∀i ∈ Π,∀HSα
i,m ∈ HSSα,∀j ∈ N(i) :

WAIT(HSα
i,m, j) ≤ k
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6.1.3. Eventual Bounded-Waiting Properties

Intuitively, eventual bounded-waiting properties guarantee that wait functions

are eventually upper bounded for every pair of live neighbors during each execution.

For each execution α, there exists a convergence time t after which the bound holds. If

the bound may vary from execution to execution, then it is eventual bounded waiting

(♦BW). If there exists an upper bound k for all executions, then it is eventual

k-bounded waiting (♦k-BW).

For an execution α, the convergence time t may split some hungry sections into

two parts: the part before time t (i.e., a section prefix ending at time t) and the part

after time t (i.e., a section suffix starting from time t). For these splitted hungry

sections, bounded fairness holds only during the section suffixes that start from time

t. As such, we define two disjoint sets of (partial) hungry sections based on the time

t: HSSα(0, t) and HSSα(t,∞) as follows.

The set HSSα(0, t) consists of (1) all hungry sections ending before time t in

execution α, and (2) all section prefixes ending at time t in execution α.

The set HSSα(t,∞) consists of (1) all hungry sections starting after time t in

execution α, and (2) all section suffixes starting from time t in execution α.

Eventual Bounded Waiting(♦BW): for each execution, there exist a natural

number r and an unknown time t after which no live process goes to eat more than

r times, while any live neighbor is waiting to eat. In other words, for each execution,

there exists an upper bound on wait functions for every pair of live neighbors and for

all (partial) hungry sections in HSSα(t,∞). The convergence time t and the bound

r may vary from execution to execution. Formally, if a dining algorithm A satisfies

♦BW , then:

∀α ∈ EXECA,∃r ∈ N,∃t ∈ T,∀i ∈ Π,∀HSα
i,m(t1, t2) ∈ HSSα(t,∞),∀j ∈ N(i) :
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WAIT(HSα
i,m(t1, t2), j) ≤ r.

Eventual k-Bounded Waiting(♦k-BW): there exists a natural number k

such that for each execution, there exists a time t after which no live process goes to

eat more than k times, while any live neighbor is waiting to eat. In other words, for

all executions, there exists an upper bound k on wait functions for every pair of live

neighbors and all (partial) hungry sections in HSSα(t,∞), where the convergence

time t may vary from execution to execution. Formally, if a dining algorithm A

satisfies ♦k-BW , then:

∃k ∈ N,∀α ∈ EXECA,∃t ∈ T,∀i ∈ Π,∀HSα
i,m(t1, t2) ∈ HSSα(t,∞),∀j ∈ N(i) :

WAIT(HSα
i,m(t1, t2), j) ≤ k.

6.2. The Hierarchy of Bounded-Fairness Properties

This section explores the relationships among those bounded fairness properties

and establishes a simple hierarchy for those properties.

The relationship between two fairness properties is defined as follows. For two

fairness properties P1 and P2, if every algorithm that satisfies P1 also satisfies P2, we

say that P1 is stronger than P2 (i.e., P1 ≥ P2). Meanwhile, if P2 is not stronger than

P1 (i.e., P2 6≥ P1), then we say that P1 is strictly stronger than P2 (i.e., P1 > P2). If

P1 is stronger than P2, and P2 is also stronger than P1, then P1 is equivalent to P2

(i.e., P1 = P2).

Based on the definitions, we can directly conclude Lemma 2, 3, and 4 as follows.

Lemma 2 perpetual k-bounded waiting is stronger than eventual k-bounded waiting,

and perpetual bounded waiting is also stronger than eventual bounded waiting.

Based on their definitions, 2k-BW can be viewed as a special case of ♦k-BW



81

where the fairness bound k “eventually” holds from the beginning of executions.

Similarly, 2BW can be viewed as a special case of ♦BW where the fairness bounds

“eventually” hold from the beginning of executions. Hence, Lemma 2 holds. 2

Lemma 3 Eventual k-bounded waiting is stronger than eventual bounded waiting.

Based on the definitions, ♦k-BW is a special case of ♦BW where an eventual

fairness bound k exists for all executions. 2

Lemma 4 Given two natural numbers k1 and k2, if k1 < k2, then perpetual k1-

bounded waiting is stronger than perpetual k2-bounded waiting, and eventual k1-bounded

waiting is stronger than eventual k2-bounded waiting.

Clearly, every algorithm that satisfies perpetual/eventual k1-bounded waiting

also satisfies perpetual/eventual k2-bounded waiting. Hence, Lemma 4 holds. 2

Lemma 5 The perpetual bounded-waiting property (2BW) is equivalent to the even-

tual bounded-waiting property (♦BW).

Proof: Lemma 2 already shows that 2BW ≥ ♦BW . Hence, we only need to prove

♦BW ≥ 2BW . To do so, we will show that if an algorithm A satisfies ♦BW , then

for each execution α of A, there exists a perpetual fairness bound. That is, for each

execution α, there exists an upper bound on the wait function for every pair of live

neighbors and all hungry sections in α (i.e., the set HSSα).

Because algorithm A satisfies ♦BW , for execution α, there exists a bound r1

and a time t after which no live process can go to eat more than r1 times while other

live neighbors are waiting to eat. We partition HSSα into three subsets based on

time t: hungry sections starting after time t, hungry sections ending before time t,

and others. We will prove that for every pair of live neighbors, the wait function is

bounded for hungry sections in these three subsets one by one.
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First, the wait function is bounded for every pair of live neighbors and all hungry

sections starting after time t. Based on the definition of ♦BW , the wait function

is bounded for every pair of live neighbors and every (partial) hungry section in

HSSα(t,∞). Recall that HSSα(t,∞) consists of all hungry sections starting after

time t and all section suffixes starting at time t. Therefore, the wait function is

bounded by r1 for every pair of live neighbors and all hungry sections starting after

time t.

Second, the wait function is bounded for every pair of live neighbors and all

hungry sections ending before time t. According to ♦BW , the convergence time t

must be finite, and henceHSSα(0, t) contains finite elements (i.e., |HSSα(0, t)| < ∞).

Consequently, there must exist an upper bound r2 on the wait function for the set

HSSα(0, t). Recall that HSSα(0, t) consists of all hungry sections ending before time

t and all section prefixes ending at time t. Therefore, the wait function is also bounded

by r2 for all hungry sections ending before time t.

Finally, the wait function is bounded for every pair of live neighbors and all

hungry sections that are splitted by time t. Such a hungry section is splitted into two

parts by time t: the section prefix ending at time t and the section suffix starting at

time t. As discussed previously, for every pair of live neighbors, the wait function is

bounded by r1 for all section suffixes starting at time t and is also bounded by r2 for

all section prefixes ending at time t. Consequently, the wait function is bounded by

r1 + r2 for all such hungry sections and every pair of live neighbors.

Every hungry section in HSSα belongs to one of the three subsets. Hence, the

wait function is bounded by r1 + r2 for every pair of live neighbors and all hungry

sections in execution α. Thus, ♦BW ≥ 2BW , and ♦BW = 2BW . 2

Lemma 6 Eventual k-bounded waiting is stronger than perpetual bounded waiting.
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Proof: Lemma 3 already shows that 3k-BW ≥ 3BW , and Lemma 5 shows that

3BW = 2BW . Therefore, 3k-BW ≥ 2BW . 2

Based on the above lemmas, relationships among bounded fairness properties can

be expressed as a hierarchy in Figure 6, where P1 → P2 denotes that P1 is stronger

than P2.

Fig. 6. Hierarchy of Bounded-Fairness Properties

6.3. Impossibility of Wait-free, Perpetually Bounded-Fair Dining Using 3P1

Chapter V already demonstrated that 3P1 can solve wait-free dining under

3WX . This solvability result intrigues one question: can 3P1 be used to pursue

an additional bounded fairness property for wait-free dining under 3WX ? This sec-

tion proves that 3P1 cannot deterministically solve wait-free, perpetual k-bounded
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waiting dining under 3WX . Hence, we are forced to consider a weaker bounded

fairness property, eventual k-bounded waiting, in the next chapter.

We prove that 3P1 cannot deterministically solve wait-free, perpetual k-bounded

waiting dining under 3WX by two steps. First, we show that for any two different

fault patterns, 3P1 can provide the same information in finite prefixes of executions.

Next, we prove the impossibility by contradiction using the fact that even in asyn-

chronous systems augmented with 3P1, application layers may still be asynchronous.

Informally, 3P1 is not guaranteed to provide distinctly different information on

different fault patterns over any finite prefix of executions. Let F1 and F2 be any two

fault patterns on the set of processes Π. For an execution α, denote αt as the finite

prefix of α up through time t. Then we have Lemma 7 as follows.

Lemma 7 Given an execution α1 on the fault pattern F1, for any time t and every

live process p in Π, there exists an execution α2 on the fault pattern F2 such that 3P1

outputs the same information at process p in the finite prefixes αt
1 and αt

2.

Let us denote H1(p, t
′), H2(p, t

′) as the suspect lists of 3P1 at time t′ at process

p in the executions α1, α2 respectively. Lemma 7 states that at any time t′ ≤ t,

H1(p, t
′) is equal to H2(p, t

′).

Proof. This lemma is proved by direct construction. We show that at any time

t′ ≤ t, if a process q is added into or removed from H1(p, t
′), it is eligible for 3P1 to

do the same operation on H2(p, t
′).

Case 1. Suppose that process q is added into H1(p, t
′) at time t′. In the fault

pattern F2, process q is either faulty or correct. If q is faulty in F2, clearly 3P1 can

suspect q by adding q into H2(p, t
′). If q is correct in F2, 3P1 is still allowed to add

q into H2(p, t
′), because 3P1 can wrongfully suspect correct processes finitely many

times. Although 3P1 has to remove q from H2(p, t
′) at a later time, 3P1 can remove
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q after time t.

Case 2. Suppose that process q is removed from H1(p, t
′) at time t′. If q is

correct in F2, then it is clearly eligible for 3P1 to remove q from H2(p, t
′). If q is

faulty, 3P1 can still remove q from H2(p, t
′). Because 3P1 is not forced to suspect a

crashed process permanently from time t′, removing q from the suspect list does not

violate the strong completeness property of 3P1. Although 3P1 has to add q into

H2(p, t
′) at a later time, 3P1 can add q after time t.

Because 3P1 can perform the same operations in two finite prefixes αt
1 and αt

2,

H1(p, t
′) and H2(p, t

′) can be the same at any time t′ before t. Lemma 7 holds. �

Theorem 3 For asynchronous message-passing systems augmented with 3P1, there

does not exist a deterministic dining algorithm that satisfies both wait-freedom and

perpetual k-bounded waiting under eventual weak exclusion.

Proof. Theorem 3 is proved by contradiction, which is formed by two indistinguish-

able executions. By contradiction, assume that there exists a deterministic dining

algorithm A, which is wait-free and perpetual k-bounded waiting under 3WX using

3P1. The fairness bound k is a natural number. Consider a system of two processes,

p and q, and any execution prefix α resulting in a configuration C, in which both p

and q are hungry. Starting from C, we construct a finite reference extension γr, in

which p crashes and q eats k + 1 times. Also, we force another finite alternate exten-

sion γa, in which p and q are correct, and perpetual k-bounded waiting is violated.

The two executions are shown in Figure 7.

The finite reference extension γr is constructed as follows. Process q is correct,

and process p crashes in the next step at time tpc. Let C1 denote the configuration

at time tpc. Consider an infinite schedule σ applicable to the configuration C1. We

require that the execution exec(C1, σ) is admissible such that process q takes infinitely
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Fig. 7. Impossibility of Wait-Free, Perpetually Bounded-Fair Dining Using 3P1

many steps and does not think permanently. Since q does not think forever, if q is

thinking, then q eventually becomes hungry. Because the algorithm A is wait-free, q

eventually eats. Because correct processes can eat only for a finite period of time, q

eventually exits eating. As such, q becomes hungry infinitely often and also goes to

eat infinitely often. So let tk+1 denote the time when q finishes its k +1st eating since

p crashed, and let β be the finite execution segment from time tpc to time tk+1. Also

let schedule σβ be the finite schedule corresponding to β.

Now consider the alternate extension γa after α, where p and q are correct. γa is

constructed by applying the schedule σβ to the configuration C. As such, γa can be

expressed as exec(C, σβ). However, we have to show that the schedule σβ is applicable

to the configuration C.

First, since the schedule σβ only consists of actions of process q, we need to

show that process p is permitted not to take steps in the finite execution γa. Process
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p does not crash as it did in the reference execution. Also, because p is hungry

in configuration C, and algorithm A is wait-free, p must eat at some time. Recall

that in asynchronous systems augmented with 3P1, application layers may still be

asynchronous (Section 2.3). Hence, p is permitted to be very slow in application

layers. Additionally, any (application) message sent by process q in the execution γa

can be subject to arbitrary delays as well. In particular, all such messages sent by q

can be delayed until after time tk+1. Hence, p is permitted to stay hungry and not to

take any step in γa.

Second, we need to show that process q is still allowed to execute actions of the

schedule σβ in γa. By Lemma 7, 3P1 can provide the same information to process q

in the finite execution prefixes αγa and αγr. Meanwhile, any message sent by process

p in γa can be delayed until after time tk+1. Therefore, the execution segments γa and

γr are indistinguishable from the perspective of process q. Because the algorithm A

is deterministic, process q can still go to eat k + 1 times in execution γa.

Based on the above analysis, we conclude that the schedule σβ is applicable to

configuration C. At this point, we know that during the finite execution segment γa,

process p remains hungry, and process q goes to eat k +1 times. Therefore, perpetual

k-bounded waiting is violated in γa. This contradicts the initial assumption that the

algorithm A is perpetual k-bounded waiting. Thus, Theorem 3 holds. �

Note that this proof is established before 3P1 converges and uses the fact that

application layers may still be asynchronous. This implies that this impossibility

result is mainly due to unreliability of the information provided by 3P1. During the

finite prefixes, processes cannot distinguish a faulty process from a slow process based

on the information provided by 3P1. This proof demonstrates the limitation of 3P1

on achieving perpetual bounded fairness.
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6.4. Related Work

6.4.1. Bounded-Waiting Algorithms

Bounded waiting, also called bounded bypassing in the literature [46, 71], has

been studied mostly in the context of mutual exclusion [16, 56, 58, 72, 73]. Therefore,

most algorithms introduced here are designed for mutual exclusion.

Many bounded-waiting algorithms [16, 71, 72, 73, 74] are designed for shared-

memory systems. Burns [72] presented a linear-waiting mutual exclusion algorithm.

This algorithm uses n read/write shared variables and one test-and-set-high shared

variable in a system of n processes. Burns et al. [16] presented two bounded-waiting

algorithms for mutual exclusion with deadlock freedom. Burns et al. [16] also proved

a lower bound on shared memory needed to achieve perpetual k-bounded waiting.

If an algorithm solves mutual exclusion with both deadlock freedom and perpet-

ual k-bounded waiting, then this algorithm must use at least n distinct shared-

memory states. In the context of dining philosophers, Beauquier et al. [4] presented a

bounded-waiting algorithm in shared-memory systems. Since our dissertation focuses

on message-passing systems, we only mention a few algorithms under shared-memory

systems and skip the description.

Under message-passing systems, Lamport [56] presented a bounded-waiting algo-

rithm with reliable FIFO channels for mutual exclusion. This algorithm uses logical

clocks to order events, and when two events have the same timestamp, process ids

are used to break the tie. Hence, all logical events can be totally ordered. Mean-

while, each hungry process synchronizes its own timestamp with other processes by

a ping-ack protocol. As such, after a process becomes hungry at a timestamp T1, no

other process can have three consecutive hungry events (i.e., becomes hungry) with

timestamps earlier than T1. Therefore, this algorithm is perpetual 2-bounded waiting.
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Ricart and Agrawala [58] also presented a perpetual k-bounded waiting algorithm

for mutual exclusion in message-passing systems, where k = 2 under FIFO channels,

and k = n under non-FIFO channels. This algorithm also maintains a total ordering

of events by a similar way as in [56]. When two processes are competing for entering

critical sections, the conflict is always resolved in favor of the process which hungry

event is earlier in the ordering. As such, perpetual k-bounded waiting can be achieved.

6.4.2. Related Concepts

In some papers [55, 75, 76, 77], “bounded waiting” is defined with respect to

a subphase of hungry sections, and the subphase is defined by a particular solution

such as doorway algorithms. A doorway [26, 55, 75] is a piece of code such that a

process p inside the doorway (i.e., already started executing the code) prevents its

neighbors from entering the doorway until after p exits the doorway (i.e., finishes the

execution). Processes can eat only inside the doorway. In [75], “r-bounded waiting”

guarantees that while a hungry process p is inside the doorway, none of its neighbors

can goes to eat more than r times. However, before entering the doorway, p can

be overtaken finitely but unboundedly many times by its neighbor. Therefore, these

definitions [55, 75, 76, 77] are different from our definition.

Unison [78, 79] can be viewed as another form of fairness. In a unison system,

each process has a clock variable, and the clock is assigned to a value i + 1 if and

only if the clock value of every neighboring process is either i or i + 1. Note that

neighbors here are not neighbors in conflict graphs. As a result, while the clock of a

process stays at a value i, its neighbors can increment their clock values at most twice

(i.e., from i− 1 to i and from i to i + 1). Hence, unison can be considered a form of

perpetual 2-bounded waiting. Several self-stabilizing unison algorithms [78, 79] were

presented to tolerate transient faults, but not crash faults.
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CHAPTER VII

A WAIT-FREE, EVENTUALLY BOUNDED-FAIR DINING SOLUTION USING

3P1

This chapter demonstrates that 3P1 is sufficient to solve the wait-free, eventu-

ally bounded-fair dining philosophers problem (i.e., WF-EBF dining). The previous

chapter shows that 3P1 is sufficient for solving wait-free dining under 3WX . This

chapter takes the further step to show that 3P1 can be used to achieve an additional

property for wait-free dining: eventual k-bounded waiting. In particular, a wait-free,

eventual 2-bounded waiting dining algorithm is constructed [14]. 1

We present the 2-bounded waiting algorithm as follows. Because our algorithm

is related to the classic asynchronous doorway dining algorithm [26], we will briefly

describe the original doorway algorithm first. After that, we will describe the basic

idea, variables, and actions of our algorithm, and then give the correctness proof.

7.1. The Original Asynchronous Doorway Algorithm

The asynchronous doorway algorithm was presented by Choy and Singh [26] in

asynchronous message-passing systems. This doorway algorithm satisfies perpetual

weak exclusion and lockout freedom. Specifically, safety (i.e., perpetual weak exclu-

Part of this chapter is reprinted from Proceedings of the 37th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks (DSN), Y. Song
and S. Pike, Eventually k-Bounded Wait-Free Distributed Daemons, pp. 645-655,
Copyright (2007), with permission from IEEE.

1The solution presented here is different from the one published in [14], in which
diners have only three states: thinking, hungry, and eating. To be consistent with
this dissertation, we revised the algorithm in [14] with the additional exiting state.
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sion) is ensured by forks, and progress (i.e., lockout freedom) is guaranteed by static

process priorities, an asynchronous doorway, and the fork-collection scheme. How-

ever, this algorithm is not wait-free, and its failure locality is 3. We will first introduce

forks, colors, and doorways, and then briefly describe this algorithm. Note that in

the original doorway algorithm, diners have only three states: thinking, hungry, and

eating. For a detailed description and the correctness proof, we refer readers to the

original papers [26, 61].

Forks are used to guarantee safety as they are used in the hygienic algorithm.

Forks are unique between each pair of neighbors, and processes must hold all shared

forks to eat. Hence, perpetual weak exclusion can be guaranteed.

Colors represent static process priorities. Initially, every process is assigned a

color such that no two neighbors have the same color. Color assignment can be

done by applying node-coloring algorithms to conflict graphs. For example, a greedy

algorithm can color all nodes by δ + 1 colors in a conflict graph, where δ is the

maximum degree of the conflict graph. Process colors are static and never change,

and they are represented by integers.

For each pair of neighbors, the neighbor with a higher color has a higher priority. 2

When two neighbors are competing for the shared fork, the conflict is always resolved

in favor of the higher-color neighbor. Let color(p) denote the color of a process p. For

two neighbors p and q, if color(p) > color(q), then p has priority over q. As such, we

say that p is a high neighbor of q, and q is a low neighbor of p. For a process, the forks

shared with its high neighbors are called high forks, and the forks shared with its low

neighbors are called low forks. It seems that a process may be overtaken by its high

2In the original paper [26], a lower color represents a higher priority. The presen-
tation is changed here because it is easier for readers to associate higher colors with
higher priorities.
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neighbors infinitely many times and starve. However, this situation cannot happen

because an asynchronous doorway is used to prevent processes from overtaking their

low neighbors infinitely many times.

A doorway [26, 55, 75] is a piece of code with the following property: each process

p inside the doorway attempts to prevent its neighbors from entering the doorway

until after p exits the doorway. A doorway usually consists of an entry code and an

exit code. A process enters the doorway by executing the entry code, and exits the

doorway by executing the exit code. A process p is said to be inside a doorway if

and only if p entered the doorway but has not exited the doorway yet; otherwise, p

is outside the doorway. Eating processes must be inside the doorway.

To enter a doorway, a process p must get a permission from each neighbor q. How-

ever, processes inside the doorway attempt to prohibit their neighbors from entering

the doorway. As such, while q is inside the doorway, q refuses to give permissions

to p, regardless of their relative priorities (i.e., colors). Put otherwise, only when q

is outside the doorway, q can grant permissions to p. A simple implementation for

doorways is that process p checks the state of its neighbor q [26]. If p observes q is

outside the doorway, then p gets the permission from q.

A doorway is asynchronous if processes only need independent permissions to

enter the doorway. That is, after a process p becomes hungry, once p receives a

permission from a neighbor q, then p does not need permissions from q any more

before entering the doorway. By the above simple implementation, p just needs to

observe that q is outside the doorway once, and thereafter, p does not need to check

the state of q before entering the doorway. By contrast, to enter a synchronous

doorway, p must observe that all neighbors are outside the doorway simultaneously.

The asynchronous doorway algorithm works as follows. Initially, every process

is thinking and outside the doorway, and between each pair of neighbors, the higher-
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priority process holds the shared fork. In order to eat, a process must be inside the

doorway and hold all of its shared forks. Thus, a hungry process must go through two

phases to eat. At any time, a hungry process is either outside the doorway (Phase 1)

or inside the doorway (Phase 2). Only processes inside the doorway are allowed to

collect forks. Therefore, the goal for a process in Phase 1 is to enter the doorway. In

Phase 2, processes aim to collect all missing forks. Processes stay inside the doorway

until after they eat. Hence, no process can eat outside the doorway, and thinking

processes are always outside the doorway. These two phases are described as follows.

Phase 1. Once a process p becomes hungry, p begins to collect permissions from

all of its neighbors to enter the doorway. Its neighbor q grants a permission to p only

when q is outside the doorway. After p gets a permission from each neighbor, p enters

the doorway and proceeds to Phase 2.

Phase 2. Once process p enters the doorway, p executes a fork-collection scheme

to collect all of its missing forks. Process p first requests all missing high forks. 3 For

each high neighbor q, if q is outside the doorway, or q is also in Phase 2 but missing

some of q’s high forks, then q grants the fork request immediately. Otherwise, q

defers the fork request until q either exits the doorway or loses some of q’s high forks.

Meanwhile, while p is still missing some high forks, p will grant any fork request from

any neighbor.

Once p holds all the high forks, p begins to collect its missing low forks. For

each low neighbor q, if q is outside the doorway or has not collected all of its shared

forks, then q immediately grants the fork request. Otherwise, q defers the request

until after q eats. Meanwhile, while p holds all high forks, p defers all fork requests

from its low neighbors. However, p can be preempted by its high neighbors and must

3Note that we use higher colors for higher priorities. High forks actually are “low
forks” in the original algorithm.
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yield the forks requested by its high neighbors. As a result of losing high forks, p

yields all previously deferred forks and re-requests missing high forks again.

After p collects all forks, p goes to eat. While eating, p defers fork requests from

any neighbor. After eating, p transits back to thinking, exits the doorway, and sends

all previously deferred forks.

Safety is ensured simply by uniqueness of forks between each pair of neighbors.

Lockout freedom can be demonstrated by showing that hungry processes can

make progress in both Phase 1 and Phase 2. Every process inside the doorway

eventually goes to eat and exits the doorway (Phase 2), and every hungry process

eventually enters the doorway (Phase 1).

Hungry processes can make progress to eat in Phase 2. First, consider processes

with the highest color hc and inside the doorway. Such a process phc is guaranteed

to collect all forks and goes to eat, because phc has a higher priority than any of its

neighbors. Second, let us consider processes with color hc−1 and inside the doorway.

Given such a process phc−1, after processes with color hc exit the doorway, phc−1 will

prevent its neighbors with color hc from entering the doorway. Hence, phc−1 has a

higher priority than any of its neighbor inside the doorway, and phc−1 eventually eats

and exits the doorway. Continuing this reasoning, every process inside the doorway

eventually eats. The key issue is that processes inside the doorway attempt to prevent

their neighbors from entering the doorway. This prevents a lower-priority process from

being overtaken infinitely many times by its higher-priority neighbors.

Hungry processes can make progress to enter the doorway in Phase 1. By Phase

2, every process inside the doorway eventually exits the doorway. Thus, every hungry

process eventually gets permissions from all of its neighbors and is guaranteed to

enter the doorway eventually. Because hungry processes can make progress in both

Phase 1 and Phase 2, every hungry process is guaranteed to eat.
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The asynchronous doorway algorithm is not wait-free. For example, if a process

p crashes while eating, then none of its neighbors can get the fork shared with p, and

hence, its hungry neighbors starve.

The asynchronous doorway algorithm also does not satisfy bounded waiting.

Such an example is shown in Figure 8. While a hungry process q is waiting a per-

mission from its neighbor p to enter the doorway, another neighbor r can always get

permissions from q to enter the doorway, and then go to eats. This can occur finitely

many times, since q will eventually enter the doorway. However, there does not exist

an upper bound on how many times r can overtake q while q is hungry and outside

the doorway.

Fig. 8. An Illustrative Example of Unbounded-Waiting Properties

7.2. Wait-Free, Eventual 2-Bounded Waiting Dining Algorithm

To solve WF-EBF dining, we revise the original doorway algorithm as follows.

First, to achieve wait-freedom, we adopt suspicion from 3P1 as a proxy to replace both

missing forks and missing permissions from crashed neighbors. This change results

in eventual weak exclusion, because in finite prefixes of any run, two neighbors can

enter the doorway simultaneously and go to eat simultaneously both by wrongfully

suspecting each other. Second, to achieve bounded waiting, we modify the doorway

so that while a hungry process p is hungry, each neighbor q can receive at most

two permissions from p. However, during finite prefixes of any run, q can wrongfully

suspect p, and hence q can enter the doorway without the permission from p. As such,

eventual 2-bounded waiting is achieved. A ping-ack protocol is designed to implement
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this modified asynchronous doorway. We describe this algorithm based on the two

phases that a hungry process must go through to eat. The algorithmic pseudocode is

presented as an action system of guarded commands as shown in Algorithm 2.

Phase 1. When a process becomes hungry, it tries to enter the doorway. In

order to do so, we implement the asynchronous doorway by a ping-ack protocol. A

hungry process p sends ping messages to its neighbor q to request permissions to

enter the doorway. The neighbor q grants the permission to p by replying an ack

(i.e., acknowledgment) message.

This ping-ack protocol alone cannot guarantee wait-freedom. All crashed pro-

cesses stop sending messages, including ack messages. Consequently, if a process

crashes, its hungry neighbors are potentially blocked outside the doorway and starve.

To achieve wait-freedom, we use suspicion from 3P1 in place of missing acks

from crashed neighbors. A hungry process p enters the doorway if and only if for

each neighbor q, p suspects q or received an ack from q during the current hungry

section of p. The local strong completeness property of 3P1 guarantees that every

crashed process will be eventually and permanently suspected by all correct neighbors.

Therefore, crashed processes cannot block their hungry neighbors from entering the

doorway.

To achieve eventual k-bounded waiting, we require that while a process p is

hungry, it can grant at most one ack per neighbor q. We also require that while a ping

request is still pending (i.e., sent a ping, but has not received the corresponding ack

back), a process cannot send another ping message to the corresponding neighbor.

This mechanism ensures that during each hungry section of p, its neighbor q can

receive at most two ack messages. One ack might be sent while p was thinking, and

another ack might be sent while p is hungry. Hence, while a process is hungry, its

neighbor can enter the doorway by permissions at most twice.
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N(p) denotes the set of neighbors of process p Code for process p

1 : {statep = thinking} −→ Action 1
2 : statep := (thinking or hungry); Become Hungry

3 : {(statep = hungry) ∧ ¬insidep} −→ Action 2
4 : ∀q ∈ N(p) where (¬pingedpq ∧ ¬ackpq) do Request Acks
5 : send-ping〈p〉 to q; pingedpq := true;

6 : {receive-ping from q ∈ N(p)} −→ Action 3
7 : if (insidep ∨ repliedpq) Receive a Ping
8 : deferredpq := true; Defer Sending Ack
9 : else

10 : send-ack〈p〉 to q; repliedpq := (statep = hungry); Send an Ack

11 : {receive-ack from q ∈ N(p)} −→ Action 4
12 : ackpq := ((statep = hungry) ∧ ¬insidep) ; Receive an Ack
13 : pingedpq := false;

14 : {(statep = hungry) ∧ (∀q ∈ N(p) :: (ackpq ∨ (q ∈ 3P1)))} −→ Action 5
15 : insidep := true; Enter the Doorway
16 : ∀q ∈ N(p) do
17 : ackpq := false; repliedpq := false;

18 : {(statep = hungry) ∧ insidep} −→ Action 6
19 : ∀q ∈ N(p) where (tokenpq ∧ ¬forkpq) do Request Missing forks
20 : send-request〈colorp〉 to q; tokenpq := false;

21 : {receive-request〈colorq〉 from q ∈ N(p)} −→ Action 7
22 : tokenpq := true; Receive a Fork Request
23 : if (¬insidep ∨ ((statep = hungry) ∧ (colorp < colorq)))
24 : send-fork〈p〉 to q; forkpq := false;

25 : {receive-fork〈q〉 from q ∈ N(p)} −→ Action 8
26 : forkpq := true; Receive a Fork

27 : {((statep = hungry) ∧ insidep ∧ (∀q ∈ N(p) :: (forkpq ∨ (q ∈ 3P1))))} → Action 9
28 : statep := eating; Enter Critical Section

29 : {statep = eating} −→ Action 10
30 : statep := exiting; Exit Eating

31 : {statep = exiting} −→ Action 11
32 : insidep := false; statep := thinking; Exit the Doorway
33 : ∀q ∈ N(p) where (tokenpq ∧ forkpq) do
34 : send-fork〈p〉 to q; forkpq := false; Send Deferred Forks
35 : ∀q ∈ N(p) where (deferredpq) do
36 : send-ack〈p〉 to q; deferredpq := false; Send Deferred Acks

Algorithm 2 A Wait-Free, Eventually Bounded-Fair Dining Algorithm
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Finally, the revised ping-ack protocol works as follows. After becoming hungry, a

process p sends a ping message to each neighbor q if there is no pending ping request

from p to q. Upon q receiving the ping, q sends the ack if (1) q is thinking, or (2) q is

hungry, outside the doorway, and has not already sent an ack to p during the current

hungry session of q. Otherwise, q defers sending the ack until after q eats and exits

the doorway. A hungry process p enters the doorway if and only if for each neighbor

q, p suspects q or received an ack from q during the current hungry section of p.

Note that it is possible for two neighbors to enter the doorway simultaneously

at any time. If two neighbors suspect each other (before 3P1 converges), then both

can enter the doorway regardless of the ack messages from each other. Alternatively,

neighbors can receive acks from each other simultaneously while outside the doorway,

and then enter the doorway together. The symmetry between hungry neighbors inside

the doorway is resolved by the color-based priority scheme in Phase 2.

Phase 2. To achieve wait-freedom, we use suspicion from 3P1 in place of missing

forks shared with crashed neighbors. A hungry process p goes to eat if and only if for

each neighbor q, p holds the fork shared with q or suspects q.

Phase 2 adopts the following fork-collection scheme. After entering the doorway,

a hungry process p requests each missing fork by sending the token to the correspond-

ing neighbor q. Upon receiving this request, neighbor q grants the shared fork if (1)

q is outside the doorway, or (2) q is hungry, inside the doorway, but has a priority

lower than p (where process priorities are also represented by the static node colors).

Otherwise, q defers the fork request until after q exits the doorway.

Figure 9 shows the diner state transitions and the corresponding actions in Al-

gorithm 2, where the gray area indicates that the diner is inside the doorway. Notice

that while a process is hungry, it may or may not be inside the doorway.
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Fig. 9. Diner State Transitions in Algorithm 2

7.2.1. Algorithm Variables

In addition to the failure detector module, each process has nine types of local

variables: color , inside, state, pinged , ack , deferred , replied , fork , and token. These

local variables can be partitioned into three sets according to their usage: state

variables, ping-ack variables, and fork-collection variables.

State variables are used to represent the current status of a process. Each

process p has three state variables: colorp , insidep , statep .

The integer-valued variable colorp represents the color of process p. Upon initial-

ization, we assume that each color variable is assigned a locally unique value so that

no two neighbors have the same color. Recall that color assignment can be done by

node-coloring algorithms in polynomial time using only O(δ) distinct values. Color

values denote process priorities and are static after initialization. For each pair of

neighbors p and q, process p has a higher priority than q if and only if colorp > colorq .

Each process p also has two variables to describe its current status: a quadrivalent

variable statep and a Boolean variable insidep . Variable statep denotes the current

dining phase; it is either thinking, hungry, eating, or exiting. Variable insidep indicates

whether process p is currently inside the doorway. Initially, every process is outside
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the doorway and thinking.

Ping-ack variables are used to implement the ping-ack protocol. Each process

p has four Boolean variables associated each neighbor q: pingedpq , ackpq , deferredpq ,

and repliedpq . Initially, all of these variables are false.

The variable pingedpq is true if and only if there is a pending ping request from p

to q. Such a pending ping request covers the following three situations: a ping request

is on its way from p to q, or is being deferred by q, or a replied ack is on its way to p.

The ack variables are used to remember acks received during the current hungry

section. If a hungry process p receives an ack from its neighbor q while p is outside

the doorway, the variable ackpq is set to true to remember this received ack. Upon

entering the doorway, processes do not need to remember received acks, and hence

ack variables are reset to false. Therefore, variable ackpq is true if and only if the

hungry process p is outside the doorway and has received an ack from q during the

current hungry session of p.

The variable deferredpq is used to represent whether process p is deferring a ping

request from q. Variable deferredpq is true if and only if p is currently deferring a ping

request from q, and it remains true until p exits the doorway.

To achieve eventual 2-bounded waiting, process p can only send one ack to each

neighbor q while p is hungry. To do so, the variable repliedpq is used by p to record

ack messages sent to q. Variable repliedpq is true if and only if process p has sent an

ack to neighbor q during the current hungry session of p. Upon entering the doorway,

processes do not need to remember acks sent, then replied variables are reset to false.

Fork-collection variables are used to implement the fork-collection scheme.

Each process p has two local Boolean variables associated with each neighbor q:

forkpq and tokenpq . Symmetrically, q has variables forkqp and tokenqp associated with

p. The fork and token variables are implemented and interpreted the same as in
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the hygienic dining algorithm (Chapter V). Between each pair of neighbors, forks

and tokens are unique and exclusive. Initially, the fork is held by the higher-color

neighbor, and the token is held by the lower-color neighbor.

7.2.2. Algorithm Actions

There are eleven actions in Algorithm 2. These actions can be partitioned into

three sets: ping-ack actions, fork-collection actions, and other actions.

Action 1 states that a thinking process can become hungry at any time or remain

thinking forever. This action is not an internal action of Algorithm 2 and is formalized

only for completeness of process behaviors. Upon becoming hungry, processes are still

outside the doorway.

Ping-ack actions include Action 2, 3, 4, and 5. They are used to implement

the ping-ack protocol.

Action 2 sends ping messages. This action is always enabled while a process p

is hungry and outside the doorway. For each neighbor q, if the ack from q is missing,

and no ping request to q is pending, then process p sends a ping request to q. As a

result, pingedpq becomes true to indicate the existence of the pending ping request.

Action 3 decides whether a process p grants a ping request. The ping request

can be deferred for two reasons: (1) p is inside the doorway, or (2) p is outside

the doorway but has sent an ack during its current hungry session. Otherwise, p

sends an ack immediately. As a result, if p is hungry and outside the doorway, the

corresponding replied variable is set to true to remember the outgoing ack.

Action 4 simply receives an ack from a neighbor q. As a result, the variable

pingedpq variable is set back to false to indicate that no ping request is pending to q.

The variable ack pq needs to be set to true only when process p is hungry and outside

the doorway.
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Action 5 determines when a hungry process enters the doorway. If, for each

neighbor q, a hungry process p either received the ack or suspects q continuously, p

eventually enters the doorway. After p enters the doorway, since p does not need to

remember received acks, all of its ack variables are reset to false. Also, because p

always defers ping requests while inside the doorway, its replied variables are reset to

false as well.

Fork-collection actions include Action 6, 7, and 8. They are used to implement

the fork-collection scheme.

Action 6 requests missing forks. This action is always enabled while hungry

processes are inside the doorway. In this action, processes send tokens to request all

missing forks. Process colors are encoded in request messages as a parameter.

Action 7 decides whether a process p should grant a fork request when p receives

the fork request. If p is outside the doorway, or hungry but has a color lower than the

requesting neighbor, then p sends the shared fork immediately. Otherwise, process p

defers the fork request until after p exits the doorway.

Action 8 simply receives a fork.

Other actions are actions that cannot be classified into the above two sets.

Action 9 determines when a hungry process goes to eat. If a hungry process

p is inside the doorway, and for each neighbor q, p either holds the shared fork

continuously or suspects q, then p eventually eats.

Action 10 states that an eating process eventually transits to exiting. Correct

processes can eat only for a finite period of time. An eating process eventually

finishes eating and transits to exiting by executing Action 10. This action is also not

an internal action of Algorithm 2 and is formalized only for completeness of process

behaviors. Upon finishing eating, processes are still inside the doorway.

By executing Action 11, exiting processes transit back to thinking and exit the
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doorway. All deferred fork requests and deferred ping requests are granted.

7.3. Correctness Proof

The section proves that Algorithm 2 satisfies eventual weak exclusion (i.e., 3WX ),

wait-freedom, and eventual 2-bounded waiting.

7.3.1. Safety

The mechanism to guarantee 3WX is the same in both Algorithm 1 and Algo-

rithm 2. Recall that Algorithm 1 (in Chapter V) is also wait-free under 3WX . In

both algorithms, a hungry process p goes to eat if and only if for each neighbor q, p

either holds the shared fork or suspects q (Action 9 in Algorithm 2 and Action 5 in

Algorithm 1). Although Algorithm 2 requires that a hungry process must be inside

the doorway to eat, this cannot prevent the same safety proof from being applied to

both algorithms. The safety proof in Algorithm 1 relies on only two assumptions:

3P1 can wrongfully suspect its neighbors finitely many times (i.e., local eventual

strong accuracy of 3P1), and the fork between every pair of neighbors is unique and

exclusive. As such, we will focus on establishing the second assumption next. The

previous 3WX proof in Theorem 1 can be directly applied to Algorithm 2.

Lemma 8 In Algorithm 2, when a process receives a fork request, the process must

hold the requested fork.

Suppose that a process p is requested for a fork that it does not hold. If p is

outside the doorway or hungry but has a lower color, p would duplicate the fork

(Action 7). As a result, uniqueness of forks and the safety property are violated.

This lemma shows that the above situation never happens based on FIFO channels.
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Proof: This lemma is proved by direct construction in two steps. The first step

shows that when a process receives a fork, that process must not be holding the

corresponding token. The second step concludes the lemma based on the first step.

The first step is shown as follows. A process can send forks only in Action 7

and 11, in which the process must hold the corresponding token. After sending the

fork, the process may send the token to re-request the fork (Action 6). Because of

FIFO channels, the token must arrive to the recipient process after the fork arrives.

Consequently, when a process p receives a fork, or a fork is in transit to p, p must not

hold the corresponding token; the token must be either at the corresponding neighbor

or in transit to p.

The second step is shown as follows. Based on the first step, we can further

conclude that when a process p sends a token to its neighbor q, the fork cannot be

in transit to p. By contradiction, suppose that the fork is in transit to p. By the

conclusion in the first step, the corresponding token must be in transit to p or at

q. This contradicts that p sends the token to q. Hence, when p sends a token to

its neighbor q, the fork must be either at q or is intransit to q. Because of FIFO

channels, the token must arrive at q after the fork arrives. Also, q cannot relinquish

the fork without receiving the token. Thus, Lemma 8 holds; when a process receives

a token, the process must hold the corresponding fork. �

Lemma 9 The fork is unique between each pair of neighbors.

If two duplicated forks exist between two neighbors, both neighbors can eat

simultaneously infinitely often. Therefore, uniqueness of forks is necessary for 3WX .

Proof: Only when processes send a fork which they do not hold, could the fork be

duplicated. However, a process p sends a fork, only because p received a fork request

(Actions 7 and 10). By Lemma 8, when a process receives a fork request, the process
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must hold the fork. Therefore, processes cannot send a fork that they do not hold,

and hence, forks cannot be duplicated. Lemma 9 holds. �

Theorem 4 Algorithm 2 satisfies eventual weak exclusion: for each execution, there

exists a time after which no two live neighbors eat simultaneously.

The proof is the same as in Theorem 1. �

7.3.2. Progress

Theorem 5 Algorithm 2 satisfies wait-freedom: every correct hungry process even-

tually eats.

Proof: In order to eat, every hungry process must go through two phases: Phase

1 (outside the doorway) and Phase 2 (inside the doorway). Correspondingly, our

progress proof consists of two parts. The first part shows progress in Phase 2: every

correct hungry process inside the doorway eventually eats. The second part shows

progress in Phase 1: every correct process outside the doorway eventually enters the

doorway. We first prove progress in Phase 2 because progress in Phase 1 relies on

progress in Phase 2. Progress in Phase 2 is proved in Lemma 10, 11, and 12. Progress

in Phase 1 is proved in Lemma 13. �

Lemma 10 Let processes p and q be correct neighbors, where p is hungry and inside

the doorway, and colorp > colorq . If p does not suspect q, p eventually holds the fork

shared with q continuously until after p eats.

Proof: If process p has not sent a fork request to q, and the fork is missing, p will

request the fork shared with q (Action 6). Upon receiving the fork request, because

colorp > colorq , q defers the fork request only when it is eating or exiting (Action

7). Since q is correct, q eats only for a finite period of time. Thus, q eventually
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exits eating and sends all deferred forks, including the fork shared with p (Action

11). Thus, p eventually holds the shared fork. Next we show that p will hold the fork

continuously until after p eats.

Because colorp > colorq , while p is inside the doorway, p defers any fork request

from q (Action 7). Consequently, p will hold the fork continuously until after p eats.

Thus, Lemma 10 holds. �

Lemma 11 Between each pair of neighbors p and q, there exists at most one pending

ping request initiated by process p at any time.

Proof: While there is a pending ping request from p to q, the variable pingedpq

remains true until after p receives an ack from q. While pingedpq remains true,

process p cannot send another ping message to q (Action 2). Lemma 11 holds. 2

Lemma 12 (Progress in Phase 2): Every correct hungry process inside the doorway

eventually eats.

Proof: This lemma is proved by complete induction on the ordering of process colors.

The base case shows that every correct hungry process inside the doorway with the

highest color hc eventually eats. The inductive step assumes that every correct hungry

process inside the doorway with a color higher than a color d eventually eats, and

proves that every correct hungry process inside the doorway with color d eventually

eats.

We start our proof after 3P1 converges. Processes inside the doorway may or may

not eat before 3P1 converges, but every correct hungry process inside the doorway

is guaranteed to eat eventually after 3P1 converges.

Base Case: process color = hc.
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Let p be a correct hungry process inside the doorway, and colorp = hc. Because

no two neighboring processes have the same color, color p is higher than the color of

all neighbors. We partition all neighbors of p into two sets: correct and faulty.

All faulty neighbors eventually crash. By local strong completeness of 3P1, p

eventually and permanently suspects all faulty neighbors.

By contrast, p cannot suspect correct neighbors after 3P1 converges. Since

color p is higher than the color of any neighbor, by Lemma 10, p will hold the forks

shared with its correct neighbors continuously until after p eats. Thus, eventually

for each neighbor q, p either suspects q permanently or holds the fork shared with q

continuously. As such, Action 9 is enabled continuously at p, and p eventually eats.

Inductive Step: process color = d.

Assume that every correct hungry process inside the doorway with a color > d

eventually eats. The inductive step will prove that every correct hungry process inside

the doorway with color d eventually eats.

Consider a correct hungry process p inside the doorway with color d. We partition

all neighbors of p into three sets: faulty neighbors, Lowp (correct neighbors with a

color lower than d) and Highp (correct neighbors with a color higher than d). Because

no two neighbors have the same color, every correct neighbor belongs to either Lowp

or Highp.

By the same analysis in the base case, process p suspects all faulty neighbors

eventually and permanently, and p also eventually holds all forks shared with neigh-

bors in Lowp.

For each neighbor q in Highp, process p will eventually hold the fork shared with

q. If p is not holding the fork and has not requested the fork from q, p sends a fork

request to q (Action 6). Upon receiving the fork request, q defers it only when q is

inside the doorway (either hungry, eating, or exiting). By the inductive hypothesis
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(recall colorq > d), if q is hungry, q eventually eats. Because q is correct, q eventually

finishes eating and sends all deferred forks, including the fork shared with p.

While hungry and inside the doorway, process p may still lose forks to its neighbor

in Highp. This can happen only when the Highp neighbors are also hungry and inside

the doorway. Hence, we need to show that p eventually holds the forks shared with

Highp neighbors continuously until after p eats. In particular, after 3P1 converges,

p can lose the fork to each Highp neighbor at most once before p eats.

After 3P1 converges, p cannot be suspected by any Highp neighbor q. Thus, in

order to enter the doorway, q needs to collect acks from all of its correct neighbors,

including process p. It is possible that q receives an ack from p, which was sent before

p entered the doorway. However, by Lemma 11, there exists at most one pending

ping request from p to q at any time. Also, while p is inside the doorway, p defers any

ping request. Thus, while p is inside the doorway, q could receive at most one ack

from p, which was sent before p entered the doorway. Consequently, q can enter the

doorway at most once while p is inside the doorway. Hence, p may lose the fork to q

at most once before p goes to eat. By the inductive hypothesis, q eventually eats and

exits the doorway. After that, q is blocked outside the doorway until after p exits the

doorway. While q is blocked outside the doorway, process p cannot lose the fork to

q. Thus, p holds the fork shared with q continuously until after p eats.

For each neighbor q, p either suspects q permanently or holds the fork continu-

ously. Therefore, Action 9 is enabled continuously at p, and p eventually eats. The

inductive step is proved.

By the base case and the inductive step, Lemma 12 holds. 2

Lemma 13 (Progress in Phase 1): Every correct hungry process outside the doorway

eventually enters the doorway.
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This lemma is proved based on a set of processes H(t), where t denotes a time.

We say that a process p belongs to the set H(t) if and only if at time t, p is correct,

hungry, outside the doorway, and none of its correct hungry neighbors has been

outside the doorway longer than p. We denote tph as the time when process p started

its current hungry session. Hence, process p became hungry at time tph and remains

hungry through time t. Because neighbors can become hungry simultaneously, set

H(t) may include neighboring processes.

Proof: We only need to prove that every process in H(t) eventually enters the

doorway. For a correct hungry process q that is not in the set H(t), if q remains

outside the doorway for a sufficiently long time, q eventually joins in a set H(t′) at

a later time t′ and then enters the doorway. To show that every process p in H(t)

eventually enters the doorway, we need to prove that for each neighbor q, p either

suspects q permanently or eventually receives an ack from q.

We also start our proof after 3P1 converges. The progress in Phase 1 is guaran-

teed after 3P1 converges.

Every faulty neighbor eventually crashes. By strong completeness of 3P1, pro-

cess p suspects all faulty neighbors eventually and permanently.

For each correct neighbor q, we will show that p eventually receives an ack from

q. After process p becomes hungry, p starts to collect acks from all neighbors (Action

2). By Lemma 11, after executing Action 2, for each neighbor q, if the ack from q is

missing, then there exists exactly one pending ping request initiated by p. Note that

this pending ping request could be sent during the current hungry session, or perhaps

a previous hungry session. Suppose that neighbor q receives the ping message at time

tqr. Neighbor q will grant the ping request immediately except for two reasons as

shown next (Action 3, Line 7). However, we claim that q will send the deferred ack

eventually.
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(1) insideq = true. This condition indicates that q is inside the doorway (either

hungry or eating). If q is hungry, by Lemma 12, q eventually eats. Because correct

processes can eat only for a finite period of time, q eventually exits the doorway and

sends the deferred ack (Action 11).

(2) repliedqp = true. This condition indicates q must be hungry and outside the

doorway at the time tqr. Suppose that q sets its variable repliedqp as true at a time

tqs. Consequently, time tqs must be earlier than tqr (i.e., tqs < tqr), repliedqp remained

true from tqs through tqr, and q must be hungry and outside the doorway from time

tqs through tqr.

First, we claim that time tqs must be earlier than tph (i.e., tqs < tph). By contra-

diction, suppose that tph ≤ tqs, then tph ≤ tqs < tqr. That means that while p remains

hungry from time tph to time tqr, q received two ping messages at time tqs and tqr

from p, respectively. When a process sets its replied variable to true in Action 3 (line

10), an ack must be sent to the corresponding neighbor. In this case, q must send

an ack to p at time tqs because repliedqp was set to true at time tqs. Consequently, p

should receive this ack message after time tph. Because p only needs one ack to enter

the doorway, p never sends the second ping which is received by q at time tqr. This

forms a contradiction with the assumption that q receives a ping from p at time tqr.

Hence, time tqs must be earlier than tph.

Next, we claim that process q cannot remain hungry and outside the doorway

from time tqs to t. By contradiction, suppose that q remains hungry and outside the

doorway from time tqs to t. By the above conclusion, time tqs must be earlier than

tph. Hence, q would be hungry and stay outside the doorway longer than p at time

t. That contradicts to our assumption that p is in H(t). Therefore, q must enter the

doorway once between time tqs and time t. By Lemma 12, q will eventually eat and

thereafter send the deferred ack to p.
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Thus, for each neighbor q, p either suspects q permanently or eventually receives

an ack from q. Hence, Action 5 is enabled continuously, and process p enters doorway

eventually. Lemma 13 holds. 2

7.3.3. Eventual 2-Bounded Waiting

Theorem 6 Algorithm 2 satisfies eventual 2-bounded waiting: for each execution,

there exists a time after which no live process p goes to eat more than twice while any

live neighbor is hungry.

Proof: This theorem is proved by direct construction. We first conclude the conver-

gence time for each execution, and then prove that the 2-bounded waiting property

holds after the convergence time.

Suppose that 3P1 converges at time t1. Assume that there exists a set of correct

hungry processes at time t1, denoted as Hungry(t1). By Theorem 5, every correct

hungry process eventually eats. Therefore, there exists a time t2 after which all correct

processes in Hungry(t1) eat, where t1 ≤ t2. Thus, after time t2, no hungry session of

correct processes starts before 3P1 converges.

Faulty processes eventually crash. Thus, there exists a time t3 after which every

live process must be correct. Let time tc be max(t2, t3). We claim time tc is the

convergence time after which no live process p goes to eat more than twice while any

live neighbor q is hungry.

After tc, since 3P1 has already converged, no correct process wrongfully suspects

any correct neighbor. Thus, to enter the doorway, process p must receive an ack from

each correct neighbor. If process p goes to eat more than twice, then its live neighbor

q must send at least three acks to p. While q is hungry and outside the doorway, after

q sends the first ack message, repliedpq is set to true. When q receives the second
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ping message, q will defer the ping message (Action 3). Thus, while q is hungry, q

can send at most one ack message to p.

Although q can send at most one ack message to p while q is hungry, p still

can receive two acks from q. It is possible that q sent an ack to p just before q

became hungry. When q became hungry, the ack message was still in transit to p.

Consequently, p could enter the doorway at most twice while q is hungry. Thus, after

time tc, p can go to eat at most twice while q is hungry. Theorem 3 holds. 2

7.4. Analysis

Algorithm 2 needs only bounded local memory at each process. Each process

p has nine types of local variables. The variables statep and insidep need a fixed

size of local memory, and variable color p needs log2(δ) bits of local memory, where

δ refers to the maximal degree of the conflict graph. Process p also has six Boolean

variables associated with each neighbor q: fork pq, tokenpq, pingedpq, ack pq, repliedpq,

and deferredpq. Putting them together, each process needs log2(δ) + 6δ + c1 bits of

memory, where c1 is a constant value. In the worst case where δ = n (i.e, the conflict

graph is clique), each process needs O(n) bits of local memory.

Algorithm 2 requires only bounded capacity on communication channels. This

property means that both the size of messages and the number of messages at any

time are upper bounded. First, consider the size of messages. We need to encode

process id into fork messages and process color into token messages. Both process id

and color need at most log2(n) bits. So each message is upper bounded by O(log2(n))

bits. Second, consider the number of messages at any time. Algorithm 2 has four

types of messages: ping, ack, fork, and token. Because forks and tokens are unique,

at most one fork and one token are in transit simultaneously between each pair of
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neighbors. By Lemma 11, at any time, at most one ping or ack message initiated by

each process is in transit. Because both neighbors may initiate a ping/ack message,

at most two ping/ack messages are in transit between each pair of neighbors at any

time. Thus, at most four messages are in transit between each pair of neighbors at

any time. The number of messages in transit is also upper bounded at any time.

Algorithm 2 is not thinking quiescent. Thinking quiescence guarantees that

if a correct process remains thinking after some time, then this process eventually

stops sending and receiving messages. Consider a correct thinking process p. In

Algorithm 2, whenever any neighbor q becomes hungry, p needs to reply acks to

permit q to enter the doorway. Hence, Algorithm 2 is not thinking quiescent. Actually,

thinking quiescence is impossible for any WF-EBF dining algorithm using 3P . The

impossibility of thinking quiescence is a tradeoff to achieve bounded fairness for wait-

free dining under 3WX using 3P . We will prove this impossibility result in the next

chapter.
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CHAPTER VIII

IMPOSSIBILITY OF THINKING QUIESCENCE IN WAIT-FREE,

EVENTUALLY BOUNDED-FAIR DINING USING 3P1

This chapter proves the impossibility of a potential performance improvement

for WF-EBF dining: 3P1 cannot deterministically solve thinking-quiescent WF-EBF

dining. A thinking-quiescent dining algorithm guarantees that if a correct process

remains thinking forever from some time, then this process eventually stops sending

and receiving messages [32]. 1 The impossibility of thinking quiescence reveals an

intrinsic performance penalty on achieving bounded fairness. That is, to achieve

bounded fairness, if a correct process eats infinitely often, then its correct neighbors

must send and receive infinitely many messages, regardless of the dining state of the

neighbors.

We prove the impossibility of thinking quiescence in Theorem 7 by using the

same method as that in Theorem 3. Recall that Theorem 3 proves that 3P cannot

deterministically solve wait-free, perpetually bounded-fair dining. Theorem 7 is also

proved by contradiction formed by two indistinguishable executions, and also uses

the fact that in asynchronous systems augmented with 3P1, application layers can

still be asynchronous.

Theorem 7 For asynchronous message-passing systems augmented with 3P1, there

does not exist a deterministic thinking-quiescent algorithm that solves wait-free, even-

1A similar concept, non-cooperation, is studied for mutual exclusion in shared-
memory systems [80]. An algorithm is non-cooperative if thinking processes do not
need to write into shared objects to communicate with other processes [52, 55, 57].
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tually bounded-fair dining.

Proof: This theorem is proved by contradiction, which is formed by two indistinguish-

able executions. By contradiction, assume that there exists a deterministic thinking-

quiescent algorithm A that solves wait-free, eventual k-bounded waiting dining under

3WX using 3P1. The fairness bound k is a natural number. Consider a system of

two correct processes p and q. We construct a finite reference execution γr, in which

p remains thinking forever, and q eats k+1 times. Next, we force another finite alter-

nate execution γa, in which p becomes hungry at least once, and eventual k-bounded

waiting is violated. The two executions are shown in Figure 10.

The reference execution γr is constructed as follows. Consider any execution pre-

fix resulting in a configuration C1 at time t1, in which 3P1 and eventual k-bounded

waiting have already converged, and q are thinking. Also, assume that process p re-

mains thinking forever after time t1. Because the algorithm A is thinking quiescent,

then there exists a time t2 after which p stops communicating with q. The configura-

tion at time t2 is denoted as C2. Consider an infinite schedule σ applicable to C2. We

also require that exec(C2, σ) is admissible such that process q takes infinitely many

steps and cannot think permanently. Since q does not think forever, if q is thinking,

then q eventually becomes hungry. Because the algorithm A is wait-free, q eventually

eats. Because correct processes can eat only for a finite period of time, q eventually

exits eating. As such, q becomes hungry infinitely often and also goes to eat infinitely

often. Let time t3 be the time when q finishes its k + 1st eating since time t2. The

finite execution γr ends at time t3. Let β be the finite execution segment from time

t2 to t3, and let σβ be the finite schedule corresponding to β. As such, the schedule

σβ only consists of actions of process q.

Now consider the alternate execution γa, in which p does not think forever. γa
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Fig. 10. Impossibility of Thinking-Quiescent Algorithms For Wait-Free, Eventually

Bounded-Fair Dining

is constructed by extending from the configuration C2. At the next step immediately

after time t2, process p becomes hungry at time th. Let Ch be the configuration at

th. After that, the finite schedule σβ is applied to the configuration Ch. We need to

show that σβ is applicable to Ch.

First, process p is permitted not to take actions in the finite execution γa. Be-

cause p is correct and hungry at time th, p must go to eat at a later time. Recall that

in asynchronous systems augmented with 3P1, application layers may still be asyn-

chronous (Section 2.3). Hence, p is permitted to be very slow in application layers.

Additionally, any (application) message sent to process q after time t2 can be subject

to arbitrary delays as well. In particular, all such messages can be delayed until after

time t3. Hence, p is permitted to stay hungry and not to take steps until time t3.

Second, we need to show that process q is still allowed to execute actions of
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the schedule σβ in γa. Because the fault patterns are the same in both executions

γr and γa, clearly 3P1 can provide the same information to process q in γa and γr.

Meanwhile, any message sent by process p after time t2 can be delayed until after

time t3. Therefore, the finite executions γa and γr are indistinguishable from the

perspective of process q. Because the algorithm A is deterministic, process q can still

go to eat k + 1 times in execution γa.

Based on the above analysis, we conclude that the schedule σβ is applicable to

configuration Ch. At this point, we know that after time t2 in γa, process q goes to

eat k + 1 times while process p is hungry. Recall that 3k-BW has converged before

t2. Therefore, eventual k-bounded waiting is violated in γa. This contradicts the

initial assumption that the algorithm A satisfies eventual k-bounded waiting. Thus,

Theorem 7 holds. �

Theorem 7 does not utilize the fact that 3P1 can make finitely many false-

positive mistakes by wrongfully suspecting correct neighbors. Instead, the proof is

established after 3P1 converges. That suggests that stronger failure detectors, such as

the perfect failure detector P , still cannot solve thinking-quiescent WF-EBF dining.

Hence, using failure detectors, the performance penalty is unavoidable to achieve

bounded fairness for wait-free dining; correct processes might need to send and receive

infinitely many messages.

Chapter VII already shows that 3P1 is sufficient to solve WF-EBF dining. This

chapter suggests a limitation of 3P1 on solving WF-EBF dining. Hence, it is of

interest to explore whether 3P1 is also necessary for solving WF-EBF dining. The

next chapter answers this question positively by showing that 3P1 is also necessary.
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CHAPTER IX

THE WEAKEST FAILURE DETECTOR FOR SOLVING WAIT-FREE,

EVENTUALLY BOUNDED-FAIR DINING PHILOSOPHERS

This chapter demonstrates that 3P1 is necessary for solving wait-free, eventually

bounded-fair dining. Chapter VII has already shown that 3P1 is sufficient to solve

WF-EBF dining. Therefore, 3P1 is the weakest (and optimal) failure detector for

solving WF-EBF dining.

To prove that 3P1 is necessary, we construct a reduction algorithm that can use

any WF-EBF dining solution to implement 3P1 [81]. This reduction algorithm con-

verts the properties of WF-EBF dining algorithms to an eventually reliable timeout-

based mechanism to detect crash faults. In particular, wait-freedom is used to es-

tablish local strong completeness, and both 3k-BW and 3WX are used to establish

local eventual strong accuracy. Presumably, we cannot utilize any explicit timing

assumption. Therefore, we assume that there does not exist any bound on timing

properties. We also assume that the fairness bound k is unknown. Because 3P1 is

defined with respect to communication graphs, neighbors in this chapter stand for

communication neighbors, instead of conflicting neighbors.

This chapter will first design the timeout-based mechanism by stepwise refine-

ment. Thereafter, we describe the reduction algorithm in detail. Finally, we prove

that the implemented failure detector satisfies both local strong completeness and

local eventual strong accuracy.
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9.1. Basic Idea

This section designs the timeout-based mechanism by stepwise refinement based

on an example, in which a correct process p monitors the status of another process q

(i.e., whether q has cashed). We will start from a simple timeout-based mechanism

that guarantees local strong completeness only. Thereafter, we will refine this timeout-

based mechanism step by step until the fault detection is eventually reliable.

Step 1. Let us consider a simple timeout-based mechanism that guarantees

local strong completeness only. This mechanism constructs a dining instance M′

that consists of p and q only, and requires that correct processes cannot remain

thinking permanently. Process p has a counter and a timeout duration associated

with q. Every time q becomes hungry, q sends a renew message to p. When p receives

the message, p resets the counter to 0. Every time p eats, p increases the counter by

1. When the counter exceeds the duration, p suspects q.

This simple mechanism guarantees local strong completeness simply by wait-

freedom. Assume that p is correct and q crashes at some time. As a result, p will

eventually receive no renew messages from q, and hence the counter will eventually

be monotonically non-decreasing. Because correct processes cannot remain thinking

forever, if p is thinking, then p eventually becomes hungry. Because of wait-freedom, p

eventually eats. Hence, p will eat infinitely often, and the counter eventually exceeds

the timeout duration. As such, p suspects q.

Unfortunately, this simple mechanism cannot guarantee local eventual strong

accuracy. Assume that both p and q are correct. There must exist an infinite number

of execution segments during which q remains thinking. While q is thinking, p can

eat finitely but unboundedly many times. As such, p can eat unboundedly many

times during each renew interval (i.e., the execution segments between the times that
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p receives two consecutive renew messages). Hence, there is no upper bound on the

counter, and the counter might exceed the timeout duration infinitely many times.

As a result, p may suspect q infinitely many times.

Step 2. To establish local eventual strong accuracy, we will revise the timeout-

based mechanism so that the 3k-BW and 3WX properties can be utilized to estab-

lish an eventual upper bound on the counter. That is, there exists a time after which

p can eat boundedly many times during each renew interval. In order to do so, we

first reconstruct the dining instance as shown in Figure 11.

Fig. 11. Reconstructed Dining Instance

The instance M′′ comprises three threads: a witness thread p.w at process p and

two subject threads, q.s0 and q.s1, at process q. Each thread is modeled as a set of

actions which are executed by the underlying physical process. For example, p.w is

executed by p, and q.s0 and q.s1 are executed by q. Hence, their failure semantics are

correlated. Whenever a process crashes, all threads at this process crash as well. We

say a thread is correct, faulty, or live, if and only if the underlying process is correct,

faulty, or live, respectively.
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This reconstructed instance M′′ is used to guarantee that for each execution,

there do not exist an infinite number of execution segments during which both q.s0 and

q.s1 are thinking. The subject threads q.s0 and q.s1 behave like q in the instance M′

such that subjects send a renew message each time they become hungry. The witness

thread p.w also maintains a counter and a timeout duration associated with q, and p.w

behaves like p in M′. Also, no correct thread can remain thinking permanently. The

key part is that a subject thread can exit eating only when another subject thread is

hungry or eating. As such, each execution has an infinite suffix during which at least

one subject thread is in its hungry-eating session at any time (i.e., hungry or eating

at any time). A hungry-eating session is an execution segment that starts when a

diner becomes hungry and lasts until the diner finishes eating.

This reconstruction alone still cannot guarantee that the counter is eventually

upper bounded. Since we assume no bounds on any timing property, renew messages

may be arbitrarily slow. As a result, each renew interval may encompass finitely but

unboundedly many hungry-eating sessions of each subject thread. Therefore, 3k-BW

still cannot be used to establish an upper bound on the counter.

Step 3. Finally, we introduce a renew-ack protocol that can utilize 3k-BW and

3WX to establish an eventual upper bound on the counter. This protocol coordinates

the behaviors of subject threads so that each renew interval is encompassed by one

hungry-eating session of some subject thread q.si, where i ∈ {0, 1} (For simplicity,

we use q.si to represent “q.s0 or q.s1”, where i ∈ {0, 1}.). As such, during each renew

interval, the subject q.si remains continuously hungry and then continuously eating.

After both 3k-BW and 3WX converge, p.w can eat at most k times during each

renew interval. Therefore, the counter is eventually upper bounded.

The renew-ack protocol works as follows. As shown in Figure 12, every time

the witness p.w receives a renew message from a subject q.si (where i ∈ {0, 1}), p.w
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replies an ack message. Since q.si receives this ack message, q.si is being watched by

p.w until q.si finishes eating. The underlying dining algorithm alone decides when

a hungry subject goes to eat. However, a subject can exit its eating session only

when both q.s0 and q.s1 are being watched by p.w. As such, a subject exits eating

only when the ongoing (or current) renew interval has already been covered by the

current hungry-eating session of the sibling subject. Therefore, each renew interval is

encompassed by one hungry-eating session of some subject thread. By 3k-BW and

3WX , the counter is eventually upper bounded by an integer number related to the

fairness bound k.

Fig. 12. The Renew-Ack Protocol

Because the fairness bound k is unknown, we cannot set the initial timeout

duration above the eventual bound on the counter. As such, we assign any positive

integer to the initial timeout duration. If p wrongfully suspects q, p eventually receives
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a renew message from q and knows it made a mistake. As a response to this false-

positive mistake, p increases the timeout duration. Eventually, the counter cannot

exceed the duration. Consequently, local eventual strong accuracy can be established.

9.2. Algorithm Description

9.2.1. Structure

Each pair of neighbors p and q is associated with two symmetric WF-EBF dining

instances as shown in Figure 13. The instance Mpq is used for p to monitor the status

of q (i.e., whether q has crashed), and the instance Mqp is used for q to monitor the

status of p. Therefore, each process is associated with at most 2× δ dining instances,

where δ is the maximum degree of the conflict graph. Note that in the symmetric

instance Mqp, the witness versus subject roles of p and q would be reversed, as in

Mpq. Since the two instances are symmetric, we restrict our presentation only to the

instance Mpq in which process p monitors process q. Actions for subject threads and

witness threades are presented in Algorithm 3a and 3b, respectively.

Although logically distinct with respect to Mpq, the subject threads q.s0 and

q.s1 are implemented as a single stream of execution. More specifically, each subject

thread is a distinct set of actions, the union of which is executed under interleaving

semantics by process q.

We also require that no correct thread can remain thinking permanently. This

requirement is critical for local strong completeness. If p.w remains thinking perma-

nently after some time t, then the counter will never increase after time t. As such,

the counter may never exceed the timeout duration after time t. If q crashes after t,

p will never suspect q.

The above requirement is also critical for local eventual strong accuracy. Assume
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Fig. 13. Symmetric Failure Detection Between Processes p and q

that either q.s0 or q.s1 remains thinking permanently after some time. Consequently,

there exist an infinite number of execution segments during which both q.s0 and q.s1

are thinking. As discussed previously, p.w can eat finitely but unboundedly many

times while both q.s0 and q.s1 are thinking. Hence, there is no eventual upper bound

on the counter, and p.w may wrongfully suspect q infinitely many times.

Fortunately, thinking diners are permitted to become hungry at any time. Recall

that becoming hungry is an input action and is activated only by diners themselves.

As such, our reduction algorithm is able to control correct threads such that they

cannot remain thinking permanently, and the underlying dining solutions are still

used as a black-box subroutine.

9.2.2. Timeout-Based Fault Detection

Process p maintains a timer ωpq for each neighbor q. This timer is associated

with the instance Mpq. In particular, ωpq uses exiting events of the witness (i.e., p.w
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transits from eating to exiting) as an abstract time measurement. In other words, this

timer measures logical time based on a special type of logical events, exiting events

at p.w. We use exiting events to measure the logical time simply because exiting

events are input actions. As such, we do not need to modify the underlying dining

algorithm. Another state transition related to eating sessions, from hungry to eating,

is an output actions. To utilize output actions, we need to revise the underlying

dining algorithm. Thus, exiting events at p.w are used to measure logical time.

The fault-detection scheme works as follows. To implement the timer ωpq, process

p has two integer-valued variables: termpq and counter pq, where termpq represents the

current timeout duration, and counter pq counts the number of exiting events that have

occurred at p.w since the last time that the timer was reset. Every time a subject

q.si becomes hungry, the subject q.si sends a renew message to the witness p.w to

reset the timer ωpq. Upon receiving this message, p.w resets the variable counter pq

to 0. Every time p.w exits eating, counter pq gets incremented by one. If counter pq

ever exceeds termpq (the timeout duration), then p times out on q, and p.w starts to

suspect q. If p.w receives a renew message from q.s at a later time, then p.w knows

that it wrongfully suspected q. Consequently, p.w stops suspecting q and increases

the timeout duration termpq to respond the false-positive mistake.

Timers are self-adaptive. The timeout duration termpq is actually an estimate of

the eventual upper bound on the variable counter pq. Every time p wrongfully suspects

q (i.e., counter pq > termpq), the bound is reestimated by increasing the value of the

variable termpq.

9.2.3. Renew-Ack Protocol

The renew-ack protocol coordinates subject behaviors so that each renew interval

is encompassed by one hungry-eating session of some subject thread. To implement
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this protocol, a local Boolean variable called watched is introduced to each subject.

Initially, watched is false. The renew-ack protocol has been shown in Figure 12.

The protocol works as follows. When the witness p.w receives a renew message

sent by a hungry subject q.si, p.w resets the variable counter pq to 0 as usual, but

it also replies an ack message back to the subject q.si. This ack message serves as

confirmation that the timer has been reseted. Upon receiving this ack message, the

subject q.si sets its watched i variable to true. The hungry subject q.si may eventually

eat, but q.si cannot exit eating until the watched variables of both subjects are true.1

Upon exiting, the subject q.si sets its own watched i variable back to false, thereby

disabling the exit guard for the sibling subject. This simple synchronization scheme

guarantees that no eating subject can exit its critical section until both subject threads

have set their watched variables to true.

The renew-ack protocol establishes local eventual strong accuracy by implement-

ing an elastic clock that eventually synchronizes to regulate the relative progress of

the witness and subject threads. For each run, consider an infinite suffix during

which (1) 3k-BW has already converged, so that the fairness bound k holds, (2) the

timeout duration term is greater than the eventual upper bound on counter , and (3)

3WX has already converged so that no live threads eat simultaneously. During such

a suffix, correct subjects always reset the timer before it times out, and hence, no

correct process is suspected by its correct neighbors.

1Although subjects can read (and write) both watched variables, we do not require
auxiliary support for read/write atomicity. Recall that each subject is simply a set of
actions, the union of which is executed in some non-deterministic interleaving order
by process q. Since only one enabled action is executed by q at any given time, access
to watched variables is temporally exclusive.
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Actions of a subject thread q.si at process q in dining instance Mpq

where i ∈ {0, 1} and q.sj denotes the sibling subject of q.si

1 : {statei = thinking} −→ Action Sh

2 : statei := hungry; Becomes Hungry
3 : send 〈renew〉 to witness p.w;

4 : {upon receiving 〈ack〉 from witness p.w} −→ Action Sa

5 : watchedi := true; Receives acks

6 : {(statei = eating) ∧ watchedi ∧ watchedj} −→ Action Sx

7 : watchedi := false; Exits eating
8 : statei := exiting;

Algorithm 3a The Reduction Algorithm at Subjects

Actions of the witness thread p.w at process p in dining instance Mpq

1 : {statew = thinking} −→ Action Wh

2 : statew := hungry; Becomes Hungry

3 : {statew = eating} −→ Action Wx

4 : if (q /∈ suspect(p)) Exit Eating
5 : counterpq := counterpq + 1; Increments Counter by 1
6 : statew := exiting;

7 : {upon receiving 〈renew〉 from subject q.si} −→ Action Wr

8 : counterpq := 0; Resets the timer
9 : suspect(p) := suspect(p)− {q}; removes q from suspect(p)

10 : send 〈ack〉 to subject q.si;

11 : {counterpq > termpq} −→ Action Ws

12 : suspectp := suspectp ∪ {q}; Timer times out
13 : termpq := counterpq; Increases the term

Algorithm 3b The Reduction Algorithm at Witnesses
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9.2.4. Algorithm Variables

For each dining instance Mpq, there are four variables for the witness thread p.w,

and two variables for each subject thread q.si, where i ∈ {0, 1}.

Witness variables. The witness thread p.w in Mpq has four local variables:

statew, termpq, counter pq, and suspectp.

Variable statew is used to denote the current dining phase of witness p.w, which

is either thinking, hungry, eating or exiting. Initially, p.w is thinking.

The integer-valued variable counter pq measures the elapsed logical time since the

last time the timer ωpq was reset. Initially, counter pq is 0. Every time p.w exits eating,

the variable counter pq increases by 1. When p.w receives a renew message, counter pq

is reset to 0.

The integer-valued variable termpq represents the current timeout duration for

timer ωpq. Variable termpq is initially 1 and monotonically non-decreasing. Every

time the timer ωpq times out, termpq increases to the value of counter pq.

Variable suspectp denotes the set of processes that are currently suspected by

process p. This variable is a set variable and shared by all witnesses at process p.

Initially, suspectp can be any subset of Π− {p} .

Subject variables. Each subject thread q.si in Mqp has two local variables:

state i and watched i, where i ∈ {0, 1}.

Local variable state i denotes the current dining state of subject q.si, which is

either thinking, hungry, eating or exiting. Initially, subject q.si is thinking.

Each subject q.si has a Boolean local variable watched i, which is used to imple-

ment the renew-ack protocol. Initially set to false, variable watched i is set to true

only when the subject q.si receives an ack message. This ack message serves as a

confirmation that witness p.w has received the last renew message sent by q.si and
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has already reseted the timer ωpq. Thereafter, variable watched i remains true until

q.si exits eating. A subject can exit eating only when both watched0 and watched1

variables are true. Thus, hungry-eating sessions of two subjects always overlap each

other, and every renew interval is encompassed by some hungry-eating session of some

subject.

The true value of a watched variable indicates that the corresponding subject has

already reseted the timer ωpq during its current hungry-eating session. While subject

q.si is thinking or exiting, variable watched i must be false; but not vice versa. While

variable watched i is true, the subject q.si must be either hungry or eating; but not

vice versa. Subjects can have both false-valued watched variables only during finite

prefixes of an execution. Once a watched variable becomes true, at least one watched

variable is true thereafter at any time.

9.2.5. Algorithm Actions

Algorithm 3a has three actions for subject threads.

Action Sh states that a correct thinking subject eventually becomes hungry. As

such, no correct subject remains thinking permanently. Immediately after becoming

hungry, the subject sends a renew message to p.w.

Action Sa simply receives an ack message. As a result, the subject q.si sets its

watched i variable to true. This means that q.si is being watched by the witness p.w.

Action Sx coordinates the hungry-eating sessions of subjects q.s0 and q.s1. Action

Sx is enabled at an eating subject q.si only when both watched variables are true.

In Action Sx, subject q.si sets its own watched i variable to false before q.si exits

eating. Therefore, after q.si exits eating, this exiting action is disabled at the sibling

subject q.sj, and q.sj must stay in its current hungry-eating session until the variable

watched i becomes true again.
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Algorithm 3b has four actions for witness threads.

Action Wh simply states that a correct thinking witness eventually becomes

hungry. As such, no correct witness remains thinking permanently.

Action Wx indicates that a correct eating witness eventually exits eating. This

action is actually the exiting event that is used as an abstract time measurement for

timers. Every time witness p.w exits eating, if p does not suspect q, then the variable

counter pq increases by 1.

Action Wr is activated when witness p.w receives a renew message. Upon re-

ceiving this message, p.w resets the timer ωpq by resetting the variable counter pq to

0, and p.w sends an ack message to the subject who sent the renew message. Also,

q is removed from the suspect list suspectp.

Action Ws is enabled when the timer ωpq times out. As a result, p suspects q by

adding q into the suspect list suspectp. The timeout duration termpq increases to the

current value of counter pq.

9.3. Correctness Proof

This section formally proves that the implemented failure detection satisfies both

local strong completeness and local eventual strong accuracy.

9.3.1. Local Strong Completeness

Theorem 8 Every crashed process is eventually and permanently suspected by all

correct neighbors.

Without loss of generality, we consider the timer ωpq and the associated instance

Mpq, in which process p monitors process q. We need to show that for every execution

α in which p is correct and q is faulty, p suspects q eventually and permanently.
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Theorem 8 is proved by direct construction. Process q is faulty and eventually

crashes. Therefore, there exists a time t after which p never receives a renew message

from q. Consequently, after time t, Action Wr is disabled at witness p.w, and the

timer ωpq is never reseted. As a result, ωpq eventually times out, and p eventually and

permanently suspects q.

Proof. Since process q is faulty, it eventually crashes. After q crashes, both subject

q.s0 and q.s1 never send renew messages. Consequently, process q sends a finite

number of renew messages to p, and p can receive only a finite number of renew

messages from q. Thus, there exists a time t after which process p never receives a

renew message from q.

After time t, because witness p.w cannot receive renew messages, variable counter pq

will never be reset to 0 (i.e., Action Wr is permanently disabled at p.w). Therefore,

variable counter pq never decreases after time t. If p suspects q after time t, then p

will suspect process q permanently. Next, we will prove that if p does not suspect q,

then p will eventually suspect q.

By Action Wh, correct thinking witnesses eventually become hungry. Wait-

freedom guarantees that correct hungry witnesses eventually eat. Correct eating

witnesses eventually exit eating by executing Action Wx. Thus, witness p.w becomes

hungry infinitely often and exits eating infinitely often. Every time p.w exits eating,

if p is not suspecting q, then counter pq increases by 1. Consequently, counter pq

eventually exceeds termpq, timer ωpq times out, and p suspects q (Action Ws). Thus,

if p does not suspect q, p will eventually suspect q.

If p does not suspect q after time t, p will eventually suspect q. If p suspects q

after time t, p will suspect q permanently. Thus, Theorem 8 holds. �



132

9.3.2. Local Eventual Strong Accuracy

We also consider the timer ωpq and the instance Mpq. To prove local eventual

strong accuracy, we need to show that for every execution α in which both p and q

are correct, there exists a time after which p does not suspect q.

The proof is organized as follows. We will first introduce some notations that

will be used. Next, we will prove that every renew interval is encompassed by some

hungry-eating session of some subject (in Lemma 14). Finally, we prove local eventual

strong accuracy using Lemma 14.

An event is an execution of some action. We denote the nth execution of Action

A as the event An. For example, Wn
r denotes the nth execution of Action Wr by

witness p.w, and Sn
x,i denotes the nth execution of Action Sx by subject q.si, where

i ∈ {0, 1}. Also, to simplify the presentation, we say that a timer-resetting event

Wn
r is activated by a subject if and only if this event is enabled by receiving a renew

message from the subject.

For an execution α, α[φ1, φ2] denotes the execution segment that starts from event

φ1 and ends at event φ2 (including φ1 and φ2). Therefore, the nth renew interval in

execution α can be formally represented as α[Wn
r ,Wn+1

r ]. Let time tn be the nth time

that the timer ωpq is reseted (i.e., p.w executes the event Wn
r ). Clearly, tn < tn+1.

Lemma 14 Every renew interval α[Wn
r ,Wn+1

r ] is encompassed by some hungry-eating

session of the subject that does not activate the timer-resetting event Wn+1
r .

Proof. This lemma is proved by induction. Base case proves that the lemma holds

for the first renew interval. The inductive step assumes that the lemma holds for the

n− 1st interval, and then proves that the lemma holds for the nth renew interval.

Base Case: the first renew interval α[W1
r ,W2

r ].

The base case is shown in Figure 14. Without loss of generality, assume that
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event W1
r is activated by subject q.s0. We claim that the first interval α[W1

r ,W2
r ] is

encompassed by the first hungry-eating session of the subject q.s0. Also, the subject

q.s0 does not activate the event W2
r .

Fig. 14. Base Case in Lemma 14 Proof

When an event Wn
r occurs at time tn, the subject q.si that activates this event

must be hungry or eating. Event Wn
r is enabled by receiving a renew message sent

by the subject q.si. This renew message can be sent only when the subject q.si is

hungry (Action Sh). Also, q.si cannot exit eating until it receives the ack message

sent at the event Wn
r . Hence, q.si must be hungry or eating at time tn.

Since subject q.s0 enables the event W1
r , q.s0 must be hungry or eating at time

t1. Next, we will show that q.s0 stays in its hungry-eating session through time t2.

By Action Sx, subject q.s0 cannot exit eating until its sibling subject q.s1 sets

the variable watched1 to true. The variable watched1 is initially false and can be set

to true only after q.s1 sends a renew message and receives an ack message from p.w.
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Thus, the event W2
r must be activated by q.s1, and subject q.s0 cannot exit its eating

session up through time t2.

Since subject q.s0 cannot exit its eating session up through time t2, the first

renew interval is encompassed by the first hungry-eating session of q.s0, and q.s0 does

not activate W2
r . Lemma 14 holds for the base case.

Inductive Step: the nth interval α[Wn
r ,Wn+1

r ].

This inductive step is shown in Figure 15. Without loss of generality, assume that

subject q.s0 activates the event Wn+1
r . The inductive step assumes that the lemma

holds for the n-1st interval, and proves that the lemma also holds for the nth interval

α[Wn
r ,Wn+1

r ]. In particular, the subject q.s1 stays in its hungry-eating session from

time tn to tn+1. This is proved by two steps. First, q.s1 is hungry or eating at time

tn. Second, q.s1 remains in its hungry-eating session from time tn up through tn+1.

Fig. 15. Inductive Step in Lemma 14 Proof

Assume that q.si activates the event Wn
r , where i could be 0 or 1. By the analysis
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in the base case, q.si must be hungry or eating at time tn. Consider the sibling subject

who does not activate the eventWn
r . By inductive hypothesis, the n-1st renew interval

is encompassed by a hungry-eating session of the sibling subject. Hence, this sibling

subject must also be hungry or eating at time tn. Therefore, both subjects q.s0 and

q.s1 are hungry or eating at time tn.

We claim that subject q.s1 cannot exit eating from time tn up through tn+1. By

contradiction, assume that q.s1 exits exiting once at a time tsx, where tn < tsx ≤ tn+1.

Based on Action Sx, variable watched0 must be true at time tsx, and watched1 becomes

false after time tsx. Variable watched1 can become true again only after subject q.s1

resets the timer later after time tsx. Because the next timer-resetting event Wn+1
r is

not enabled by q.s1, variable watched1 stays false from time tsx through time tn+1.

Since variable watched0 is true at time tsx, subject q.s0 must already send a

renew message to p.w during its current hungry-eating session (the hungry-eating

session including time tsx), and received an ack back. Hence, there is no renew or

ack message in transit at time tsx between subject q.s0 and witness p.w. Meanwhile,

since watched1 is false during time period [tsx, tn+1], Action Sx is disabled at subject

q.s0. Thereafter, subject q.s0 stays in its hungry-eating session during time period

[tsx, tn+1]. As such, subject q.s0 cannot send a renew message to activate the event

Wn+1
r at time tn+1. This contradicts the initial assumption that subject q.s0 activates

the event Wn+1
r . Thus, subject q.s1 must stay in its hungry-eating session from tn to

tn+1. The inductive step is proved.

Based on the base case and the inductive step, Lemma 14 holds. �

Theorem 9 For each execution, there exists a time after which no correct process is

suspected by any correct neighbor.

This theorem is proved by three steps. The first step shows that if p wrongfully
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suspects q, then p eventually stops suspecting q. The second step shows that for each

execution α, there exists a time t1 after which the variable counter pq is eventually

upper bounded by k+1. The final step shows that for execution α, there exists a time

t2 after which the variable counter pq never exceeds the variable termpq. Therefore,

after time t2, the timer ωpq never times out, and p never suspects q.

Proof. If p wrongfully suspects q during some finite prefix, p eventually stops sus-

pecting q. Because q is correct, q.s0 and q.s1 cannot remain thinking permanently.

Because of wait-freedom, correct hungry subjects eventually eat. Thus, subjects q.s0

and q.s1 become hungry infinitely often and send an infinite number of renew mes-

sages. Because communication channels are reliable, p.w receives infinitely many

renew messages. If p wrongfully suspects q, p.w eventually receives a renew message,

and p stops suspecting q.

There exists a time t1 after which counter pq is upper bounded by k + 1. After

3WX and 3k-BW converge in execution α, p.w still receives infinitely many renew

messages. Let p.w receives the first renew message at time t1 since 3WX and 3k-BW

converge. As such, counter pq is reset to 0 at time t1.

Because 3k-BW has already converged before time t1, witness p.w goes to eat

at most k times while any subject (q.s0 or q.s1) is hungry. Also, because 3WX has

already converged before time t1, witness p.w cannot eat while subjects are eating.

Thus, after time t1, witness p.w goes to eat at most k times while any subject is in its

hungry-eating session. Note that when a subject becomes hungry, the witness may

already be in its eating session. Thus, after time t1, while a subject remains in its

hungry-eating session, witness p.w can have at most k + 1 (partial) eating sessions.

By Lemma 14, every renew interval is encompassed by some hungry-eating session

of some subject. Thus, after time t1, each interval contains at most k + 1 (partial)

eating sessions of witness p.w. Consequently, after time t1, witness p.w can execute
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the exiting action (Action Wx) at most k + 1 times in each interval. Therefore, after

time t1, variable counter pq is upper bounded by k + 1.

Since time t1 is finite, there must exist a maximum value km for counter pq before

time t1. Therefore, in execution α, there exists an upper bound k′ = max(km, k + 1)

for the variable counter pq. Every time counter pq exceeds termpq, termpq is increased to

the value of counter pq (Action Ws). Because termpq is monotonically non-decreasing,

termpq eventually reaches to the bound k′ at some time t2, where time t2 may or may

not be earlier than t1. After time t2, timer ωpq never times out, and p never adds q

into the suspect list suspectp.

Therefore, any wrongfully suspected process is eventually removed from the sus-

pect list. After time t2, p never adds q into the suspect list. Thus, the implemented

failure detector satisfies local eventual strong accuracy, and Theorem 9 holds. �

9.3.3. 3P1 Is Necessary for Solving Wait-Free, Eventually Bounded-Fair Dining

Although underlying WF-EBF dining algorithms require some timing assump-

tions, this reduction algorithm itself does not utilize any explicit timing assumption.

This is a critical condition to prove the necessity of 3P1. If the reduction algorithm

itself works only with some explicit timing assumptions that are sufficient to imple-

ment 3P1, the methodology proving the necessity of 3P1 does not work. Fortunately,

our algorithm does not utilize any timing assumptions.

Theorem 10 The local eventually perfect failure detector 3P1 is necessary for solv-

ing wait-free, eventually bounded-fair dining.

Proof . The reduction algorithm can use any WF-EBF dining algorithm to implement

a failure detector that satisfies both local strong completeness and local eventual

strong accuracy. Also, this reduction algorithm does not utilize any explicit timing
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assumption. Thus, every failure detector that solves WF-EBF dining is stronger than

3P1. Hence, Theorem 10 holds. �

9.4. 3P1 Is the Weakest Failure Detector for Solving Wait-Free, Eventually Bounded-

Fair Dining

Chapter VII proves that 3P1 is sufficient for solving wait-free, eventually bounded-

fair dining. This chapter proves that 3P1 is also necessary. Therefore, we can con-

clude the following theorem.

Theorem 11 The local eventually perfect failure detector 3P1 is the weakest failure

detector for solving wait-free, eventually bounded-fair dining.

9.5. Analysis

This reduction algorithm needs finite local memory on each process. Every pro-

cess p has six types of local variables, among which only variables term and counter

are unbounded. Although variables term and counter are bounded by some value in

each execution of each dining instance, there does not exist an upper bound for all

executions of all dining instances. Thus, variables term and counter need finite but

unbounded space.

This reduction algorithm needs only bounded capacity on communication chan-

nels. That is, both the size of messages and the number of messages in transit are

upper bounded at any time. First, let us consider the size of messages. The process

id information needs to be encoded into the message and requires log2(|Π|) bits. Also,

the message type needs to be specified in all messages. The message type requires

a constant number of bits. Thus, every message needs log2(|Π|) + c bits, where c is

a constant. Second, let us consider the number of messages in transit between each
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pair of neighbors. Between a subject and a witness, at most one message can be in

transit at any time. The message in transit is either a renew or an ack message.

There are two dining instances for each pair of neighbors, and each instance includes

two subjects and one witness. Therefore, at most four messages can be in transit at

any given time between each pair of neighbors. Hence, the number of messages in

transit is also bounded at any time.
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CHAPTER X

SUMMARY OF CONTRIBUTIONS AND OPEN PROBLEMS

This chapter gives a retrospective review of the research contributions and elu-

cidates some open problems for the future research.

10.1. Summary of Contributions

Our research is related to two major research lines in distributed computing:

failure detectors and dining philosophers. Hence, our research contributes to these

two research lines. In summary, the contributions include four parts: (1) the definition

of the local failure detector 3P1, (2) solvability of wait-free dining using 3P1, (3)

the weakest failure detector 3P1 for solving wait-free, eventually bounded-fair dining,

and (4) the formal definition of bounded-fairness properties with respect to dining.

10.1.1. Defining 3P1

The local failure detector 3P1 is defined intuitively in Chapter I and formally

in Chapter III. Actually, 3P1 is a local refinement of the eventually perfect failure

detector 3P on communication graphs. 3P1 eventually and permanently suspects

all faulty communication neighbors, and eventually stops suspecting correct commu-

nication neighbors.

The local failure detector 3P1 is designed to solve the dining problem. Dining is

essentially an abstraction of overlapping mutual exclusion problems and also called

the local mutual exclusion problem in some paper [4]. As such, global information

about crash faults is not necessary for solving wait-free dining. The local failure
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detection 3P1 is sufficient to solve the wait-free dining problems under 3WX as

shown in Algorithm 1 and 2.

Another reason to use the local detector 3P1 is that 3P1 can be implemented

in more systems than 3P . Chapter III shows that 3P1 can be transformed into

3P by a gossip protocol in environments where communication graphs cannot be

partitioned by crash faults. However, the cost to build a non-partitionable system

is sometimes prohibitively high. In practice, many modern computer networks can

be partitioned by crashes on few critical nodes (e.g., routers, switches). As such,

3P cannot be implemented in such systems. By contrast, 3P1 is defined only with

respect to neighboring processes in communication graphs. Implementations of 3P1

impose fewer requirements on the underlying system. Also, dining does not require

global fault detection. Consequently, 3P1 is introduced into this dissertation.

10.1.2. Solvability of Wait-Free Dining Using 3P1

Section 4.3 shows that 3P1 cannot solve wait-free dining under perpetual weak

exclusion. To solve wait-free dining, we relaxed the dining safety constraint to even-

tual weak exclusion. Four chapters (Chapter V, VII, VI, and VIII) are devoted

to demonstrate what 3P1 can and cannot solve in the context of wait-free dining.

Clearly, one major contribution of this research is the solvability of wait-free dining

using 3P1 under 3WX .

Chapter V shows that 3P1 can solve wait-free dining under 3WX . This dining

algorithm (i.e., Algorithm 1) is based on the hygienic dining algorithm [60]. Essen-

tially, we use suspicion of 3P1 as a proxy to replace missing forks shared with crashed

neighbors. Safety (i.e., 3WX ) is guaranteed by uniqueness of forks and local eventual

strong accuracy of 3P1, and progress (i.e., wait-freedom) is guaranteed by local strong

completeness of 3P1. This algorithm is relatively straightforward. However, this al-



142

gorithm is the preliminary step to solve wait-free, eventually bounded-fair dining, and

provides valuable insight on designing and proving wait-free dining algorithms.

Chapter VI proves that 3P1 cannot achieve perpetual k-bounded waiting with

respect to wait-free dining under 3WX . This impossibility result is proved in the

finite prefix during which 3P1 can make finitely many false-positive mistakes, and

utilizes the fact that in asynchronous systems augmented with 3P1, some layers may

still be asynchronous. Therefore, this impossibility result may be avoided using a

stronger failure detector. This impossibility result also forces us to consider a weaker

bounded-fairness property, eventual k-bounded waiting.

Chapter VII shows that 3P1 can solve wait-free, eventually bounded-fair dining.

In addition to wait-freedom and eventual weak exclusion, 3P1 can be used to achieve

an important fairness property, eventual k-bounded waiting. This dining algorithm

(i.e., Algorithm 2) is based on the classic asynchronous doorway algorithm [61]. This

algorithm uses not only suspicion of 3P1 to replace missing forks and acks from

crashed neighbors, but also uses a modified asynchronous doorway to guarantee the

bounded-fairness property. Therefore, this algorithm proves that 3P1 is sufficient

for solving wait-free, eventually bounded-fair dining. This result is also the first step

to prove the weakest failure detector for solving wait-free, eventually bounded-fair

dining.

Chapter VIII proves that 3P1 cannot deterministically solve thinking-quiescent

WF-EBF dining. The proof actually does not use any feature of 3P1, but uses the

fact that in asynchronous systems augmented with 3P1, some layers may still be

asynchronous. Therefore, this impossibility result also applies to the perfect fail-

ure detector P . This impossibility result shows an intrinsic performance penalty to

achieve bounded fairness. That is, to achieve bounded fairness, if a correct process

eats infinitely often, then its correct neighbors must send and receive infinitely many
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messages.

10.1.3. The Weakest Failure Detector for Solving Wait-Free, Eventually Bounded-

Fair Dining

The failure detector 3P1 is the weakest failure detector for solving WF-EBF

dining. This is the most important contribution in this dissertation. We actually

establish a tight upper bound on synchronism needed to solve WF-EBF dining. That

is, 3P1 encapsulates the minimal synchronism required to solve WF-EBF dining.

Every message-passing system in which WF-EBF dining can be deterministically

solved must also be sufficient to implement 3P1, and vice versa.

The weakest failure detector 3P1 is proved by two steps. First, Chapter VII

constructs a doorway-based dining algorithm that uses 3P1 to solve WF-EBF dining.

Hence, 3P1 is sufficient for solving WF-EBF dining. Second, Chapter IX constructs

a reduction algorithm that can uses any WF-EBF solution as a black-box subroutine

to implement 3P1. Hence, 3P1 is also necessary. Because 3P1 is both sufficient and

necessary, 3P1 is the weakest one for solving WF-EBF dining.

10.1.4. Defining Bounded-Fairness Properties

Chapter VI formally defines two perpetual bounded-fairness properties (2BW

and 2k-BW) and two eventual bounded-fairness properties (3BW and 3k-BW). A

simple hierarchy is established for these fairness properties. A key feature of these

definitions is that crash faults are considered. These formal definitions not only help

us understand these fairness properties in faulty environments, but also establish a

solid ground for the future research.



144

10.2. Open Problems and Future Work

Our research also invokes several open problems for the future study. We will

outline some of these new problems and suggest the future directions of investigation.

10.2.1. Wait-Free, Self-Stabilizing Dining Algorithms

Transient faults are not considered in this dissertation. It is of interest to explore

dining algorithms that can tolerate both transient faults and crash faults. Clearly,

to tolerate crash faults, failure detectors are necessary; to tolerate transient faults,

transient fault detection and correction are also necessary. The key for an algorithm to

self-stabilize is that variable dependency cannot form a cycle. Therefore, an algorithm

with a simpler variable dependency may be easier to self-stabilize. Stronger failure

detectors may be needed to achieve a simple variable structure. Hence, stronger

failure detectors may be needed to solve wait-free and self-stabilizing dining.

10.2.2. In Search of Weakest Failure Detectors

Our work proves that 3P1 is the weakest failure detector for solving wait-free,

eventually bounded-fair dining. However, WF-EBF dining is only one variant of the

dining philosophers problem. There are many other dining variants, such as wait-free

dining under eventual weak exclusion and wait-free, perpetually bounded-fair dining.

It is of interest to explore the weakest failure detectors for these variants.

Chapter V shows that 3P1 is sufficient to solve wait-free dining under eventual

weak exclusion. However, 3P1 is also sufficient to solve a harder dining problem,

wait-free, eventually bounded-fair dining. This seemingly implies that the weakest

failure detector for wait-free dining under 3WX should be strictly weaker than 3P1.

To weaken 3P1, we could weaken either local strong completeness or local eventual
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strong accuracy. However, if local strong completeness is weakened, then correct

processes do not know which neighbor is really crashed. As such, correct processes

may wait for crashed neighbors permanently, and wait-freedom may not be achieved.

If local eventual strong accuracy is weakened, then correct processes do not know

which neighbor is really correct. As such, 3WX may not be achieved. Hence, our

conjecture is that 3P1 may be the weakest failure detector for wait-free dining under

3WX as well.

Chapter VIII proves that 3P1 cannot solve wait-free, perpetually bounded-fair

dining. This impossibility proof is constructed on finite prefixes during which 3P1 can

make finitely many false-positive mistakes. Hence, this impossibility result might be

avoided by using a stronger failure detector with perpetual accuracy properties. Using

the perfect detector P , Algorithm 2 can achieve perpetual weak exclusion, perpetual

k-bounded waiting, and wait-freedom. However, P is too strong, and we do not know

whether perpetual accuracy is necessary for solving this problem. The research on the

weakest failure detector for this problem may focus on whether perpetual accuracy is

necessary.

10.2.3. Hierarchy of Fairness Properties

Chapter IV constructed a simple hierarchy for bounded-fairness properties. This

hierarchy, however, is not complete. For example, we do not know the relationship

between eventual k1-bounded waiting (3k1-BW) and perpetual k2-bounded wait-

ing (2k2-BW), where k1 < k2. Intuitively, 3k1-BW does not guarantee any fair-

ness bound (either k1 or k2) during finite prefixes of executions. Hence, 3k1-BW

is not stronger than 2k2-BW . Intuitively, for 2k2-BW , the fairness bound k2 may

be reached infinitely often in some executions. Hence, 2k2-BW cannot guarantee

that each execution is eventually bounded by the fairness bound k1, and is also not
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stronger than 3k1-BW . Thus, our conjecture is that these two fairness properties are

incomparable.

Other questions include whether eventual k-bounded waiting (3k-BW) and per-

petual k-bounded waiting (2k-BW) are strictly stronger than eventual bounded

waiting (3BW) and perpetual bounded waiting (2BW), respectively. 3k-BW and

2k-BW specify the (eventual) fairness bound k for all executions, while 3BW and

2BW only guarantee that each execution has an (eventual) fairness bound. Hence,

our conjecture is that 3k-BW and 2k-BW are strictly stronger than 3BW and

2BW , respectively.
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