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ABSTRACT

Applications of the Generalized DDA Formalism

and

the Nature of Polarized Light in Deep Oceans. (August 2008)

Yu You, B.S., University of Science and Technology of China

Co–Chairs of Advisory Committee: Dr. George W. Kattawar
Dr. Ping Yang

The first part of this study is focused on numerical studies of light scattering

from a single microscopic particle using the Discrete Dipole Approximation (DDA)

method. The conventional DDA formalism is generalized to two cases: (a) inelastic

light scattering from a dielectric particle and (b) light scattering from a particle with

magnetic permeability µ 6= 1. The first generalization is applied to simulations of

Raman scattering from bioaerosol particles, and the second generalization is applied

to confirmation of irregular invisibility cloaks made from metamaterials.

In the second part, radiative transfer in a coupled atmosphere-ocean system is

solved to study the asymptotic nature of the polarized light in deep oceans. The rate

at which the radiance and the polarization approach their asymptotic forms in an

ideal homogeneous water body are studied. Effects of the single scattering albedo

and the volume scattering function are studied. A more realistic water body with

vertical profiles for oceanic optical properties determined by a Case 1 water model

is then assumed to study the effects of wavelength, Raman scattering, and surface

waves.

Simulated Raman scattering patterns computed from the generalized DDA for-

malism are found to be sensitive to the distribution of Raman active molecules in the

host particle. Therefore one can infer how the Raman active molecules are distributed
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from a measured Raman scattering pattern. Material properties of invisibility cloaks

with a few irregular geometries are given, and field distributions in the vicinity of

the cloaked particles computed from the generalized DDA formalism confirm that the

designated material properties lead to invisibility. The radiative transfer model calcu-

lation in deep oceans suggest that the underwater radiance approaches its asymptotic

form more quickly than the polarization does. Therefore, a vector radiative transfer

solution is necessary for asymptotic light field studies. For a typical homogeneous

water body whose scattering property is characterized by the Petzold phase function,

a single scattering albedo of ω0 > 0.8 is required in order that the asymptotic regime

can be reached before there are too few photons to be detected.
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CHAPTER I

INTRODUCTION AND BACKGROUND

This dissertation is mainly focused on numerical studies of light scattering from small

particles, which finds its applications in both science and engineering disciplines, such

as astronomy, atmospheric sciences, oceanography, biophysics, and material science,

just to name a few. Light scattering can be divided into two basic categories: single

scattering, i.e., light scattering associated with a single particle, and multiple scat-

tering, i.e., light scattering associated with a medium that consists of a collection of

scattering particles. In the single scattering approximation of a collection of randomly

positioned and widely separated particles, we assume that there is only a single scat-

tering from source to detector. Multiple scattering occurs when photons scatter more

than once from source to detector.

The first part of my research is on calculations of single scattering using the

Discrete Dipole Approximation (DDA) method. The second part is on simulations of

multiple scattering in a coupled atmosphere-ocean system and investigations on the

asymptotic nature of polarized light in deep oceans.

A. Light Scattering by a Single Particle

Visible light is electromagnetic radiation in the wavelength range 400 nm ≤ λ ≤

700 nm and is visible to the human eye. A single particle of arbitrary size, shape,

and composition, subject to the radiation from an external light source, scatters the

incident light into other directions. When all other scattering particles are assumed to

be sufficiently far away from the particle under investigation such that the scattered

 This dissertation follows the style and format of Optics Express.
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light will not be scattered again by another particle, we can study the distribution of

the light scattered by this single particle at a large distance from the particle. This

is called single scattering. Detailed discussions on single scattering by small particles

can be found in books by, for example, van de Hulst [1], Bohren and Huffman [2],

and Mishchenko et al. [3].

1. Phase Function

The most important property of the scattered light is its radiance I, which is what

is detected by the human eyes, or the power per unit area per unit solid angle. For

a general scattering particle, the radiance is a function I = I(θ, φ) of the scattering

angle θ and the azimuthal angle φ, as illustrated in Fig. 1.

x

y

z

!

"

Fig. 1. Geometry of the single scattering.

Let I0 be the radiance of the incident light, the radiance I(θ, φ) of the scat-

tered light along the direction specified by angles θ and φ at a large distance r from

the scattering particle must be proportional to I0 and inversely proportional to r2.
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Therefore, it can be written as

I(θ, φ) =
1

k2r2
F (θ, φ)I0, (1.1)

where k = 2π/λ is the wave number of the incident light of wavelength λ. Here k is

included to make F (θ, φ) dimensionless.

We define the scattering cross section Csca such that the total energy scattered

in all directions is equal to the energy of the incident light falling on the area Csca.

Evidently, Csca can be expressed in terms of F (θ, φ) as

Csca =
1

k2

∫
F (θ, φ)dΩ, (1.2)

where dΩ = sin θdθdφ is the element of solid angle, and the integral is over 4π

steradians. Similarly, the energy absorbed inside the particle is equal to the energy

incident on the absorbing cross section Cabs, and the energy removed from the original

beam is equal to the energy incident on the extinction cross section Cext. Energy

conservation requires that

Cext = Csca + Cabs. (1.3)

With the scattering cross section, we can also define another function of the

scattering direction, the phase function, as

p(θ, φ) =
F (θ, φ)

k2Csca

, (1.4)

which is also dimensionless and integrates to unity over 4π steradians. The phase

function conveniently describes how the scattered light is distributed in all directions

and is extensively used in studies of multiple scattering.
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2. Polarized Light

The scattered light, however, contains more information than is sensed by the hu-

man eye due to its polarization state, which is the direction of the oscillation of the

electromagnetic wave. In the studies of single scattering, we consider a plane wave

incident radiation characterized by the electric field

E = Eiei(k·r−ωt). (1.5)

It is convenient to choose a plane of reference through the direction of propagation

k̂, and decompose the electric field E of the incident light into parallel (E‖) and

perpendicular (E⊥) components with respect to the plane of reference

Ei = Ei
‖ê‖ + Ei

⊥ê⊥, (1.6)

where Ei
‖ and Ei

⊥ are both complex numbers. The sense is chosen such that ê‖ × ê⊥

is in the direction of propagation.

For a light beam scattered into the direction (θ, φ), we define the plane spanned

by the incident beam and the scattered beam as the scattering plane, which is a plane

of reference for both incident and scattered light beams. As shown in Fig. 2, we

can decompose the electric fields of the incident light (Ei) and the scattered light

(Es(θ, φ)) with respect to the scattering plane, and relate the two electric fields by a

2× 2 scattering amplitude matrix S(θ, φ) Es
‖

Es
⊥

 =
eikr

−ikr

 S2 S3

S4 S1

 ·
 Ei

‖

Ei
⊥

 , (1.7)

where we have suppressed the θ and φ dependences of Es
‖(θ, φ), Es

⊥(θ, φ), and Si(θ, φ).

The electric field E, however, is a complex number containing an arbitrary phase

factor, and would be difficult to measure directly. Therefore, the Stokes parameters
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x

y

z

!

"

E"

i

E
||

i

E"

s

E
||

s

Fig. 2. Illustration of the single scattering for a polarized light.

[4] were introduced and are defined by

I = E‖E
∗
‖ + E⊥E

∗
⊥,

Q = E‖E
∗
‖ − E⊥E∗⊥,

U = E‖E
∗
⊥ + E⊥E

∗
‖ ,

V = i(E‖E
∗
⊥ − E⊥E∗‖),

(1.8)

where an asterisk denotes complex conjugate. They are all real numbers and form

a four-component vector I = {I,Q, U, V }, also known as the Stokes vector. The I

component is just the sum of the squares of both parallel and perpendicular compo-

nents of the electric field, or the total energy carried by the electromagnetic radiation.

Obviously, it is the same as the quantity I defined in Eq.(1.1).

To understand what the other three components represent, note that they can
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be related to an elliptically polarized light beam as follows [1]

I = a2,

Q = a2 cos(2β) cos(2χ),

U = a2 cos(2β) sin(2χ),

V = a2 sin(2β),

(1.9)

where angles β and χ are as shown in Fig. 3. They are defined such that −π/4 ≤

β ≤ π/4 and 0 ≤ χ < π. Here | tan β| is the ellipticity, and χ is the clockwise angle

made by the semi major axis and the plane of reference.

"

||

"

asin"

acos"

Fig. 3. A general elliptically polarized light beam specified by three parameters, a, β,

and χ.

From Eqs.(1.9) and Fig. 3, it is evident that when V = 0, β = 0, the ellipse

reduces to a straight line, which corresponds to linear polarization. Under this condi-

tion, the Q component relates to the linear polarization of the light field with respect

to the plane of reference. A positive Q implies an electric field parallel to the plane

of reference, while a negative Q implies an electric field perpendicular to the plane

of reference. The U component relates the linear polarization with respect to the

planes that are rotated 45◦ and −45◦ from the plane of reference. Meanwhile, a

non-vanishing V component gives information about the circular polarization of the

electric field.
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For a simple wave, an examination of Eq.(1.8) or Eq.(1.9) reveals that the Stokes

parameters satisfy the relation

I2 = Q2 + U2 + V 2. (1.10)

However, incoherent light consists of many simple waves, each of which with an

independent phase factor. A measurable radiance is actually a superposition of the

radiance of all simple waves. In this case, the Stokes parameters should be understood

as the sums

I =
∑
i

Ii, Q =
∑
i

Qi, U =
∑
i

Ui, V =
∑
i

Vi,

where i is an index denoting each individual simple wave. The relation Eq.(1.10) now

becomes

I2 ≥ Q2 + U2 + V 2, (1.11)

where the equality holds only for fully polarized light.

The Stokes parameters are a complete set of quantities that are needed to char-

acterize the radiance and the state of polarization of a beam of polarized light. This

is sometimes referred to as the principle of optical equivalence.

Another useful quantity, the degree of polarization (DOP), can be derived from

the Stokes parameters as follows:

DOP =

√
Q2 + U2 + V 2

I
, (1.12)

with DOP = 1 corresponding to fully polarized light and DOP = 0 corresponding to

unpolarized or natural light. In all other cases, it is called partially polarized light.

Two other useful DOP’s are the degree of linear polarization (DOLP), defined by

DOLP =

√
Q2 + U2

I
, (1.13)



8

and the degree of circular polarization (DOCP), defined by

DOCP =
|V |
I
. (1.14)

A combination of Eqs.(1.7) and (1.8) implies that the the incident and scattered

Stokes vectors can be related by a 4× 4 scattering matrix F(θ, φ) as

Is

Qs

U s

V s


=

1

k2r2



F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44


·



I i

Qi

U i

V i


, (1.15)

where we have suppressed the θ and φ dependence of Is(θ, φ), Qs(θ, φ), U s(θ, φ),

V s(θ, φ), and Fij(θ, φ). Here the full 16 elements of the scattering matrix F can be

expressed in terms of elements of the amplitude matrix S (see, for example, Ref. [3]).

One can immediately recognize that Eq.(1.15) is a direct expansion of Eq.(1.1).

Similar to Eq.(1.2), the scattering cross section for polarized light is given by

Csca =
1

k2I i

∫
[F(θ, φ) · Ii]1dΩ. (1.16)

A normalized scattering matrix, or the phase matrix p(θ, φ), can then be defined as

p(θ, φ) =
F(θ, φ)

k2Csca

, (1.17)

where the scattering cross section is given by Eq.(1.16). Note here that in the polar-

ized case, p(θ, φ) depends not only on the scattering particle itself, but also on the

polarization state of the incident light. In most cases, however, effects of the incident

polarization can be neglected.
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3. Methods for Single Scattering Calculations

The dependence of the scattering matrix elements Fij on angles θ and φ can be

obtained by solving the Maxwell equations [5], first proposed by Maxwell in 1865, for

the electric field distribution. In SI units, the Maxwell equations can be written as

[6]

∇ ·D = ρ, ∇× E = −∂B
∂t
, (1.18a)

∇ ·B = 0, ∇×H = J +
∂D

∂t
, (1.18b)

where E and H are the electric and magnetic fields, respectively; D and B are the

electric displacement and the magnetic induction, respectively; and ρ and J are the

charge density and current density, respectively. In an electromagnetic medium, D

and H are related to E and B as

D = ε0E + P, H =
B

µ0

−M, (1.19)

where ε0 and µ0 are the vacuum permittivity and permeability, respectively, and the

electric polarization P and the magnetization M describe the response of the medium

to an external electromagnetic field.

Eqs.(1.18a) and (1.18b), along with Eq.(1.19), govern the interaction between

an incident electromagnetic field and a scattering particle characterized by its size,

shape and optical properties, under various boundary conditions. Maxwell’s equations

can be analytically solved using the separation of variables method, which requires a

simple boundary of the particle on which the boundary conditions can be conveniently

applied. To date, analytical solutions are only available for scattering particles with

a few simple shapes, such as spheres, infinite cylinders, and spheroids.

Several numerical techniques have also be developed to calculate single scattering.
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Compared with analytical methods, numerical techniques are more versatile as they

can be applied to particles with arbitrary shapes and compositions. The Finite-

Difference Time-Domain (FDTD) method [7, 8], the Discrete Dipole Approximation

(DDA) method [9], the T-matrix method [10, 11], and the Geometric Optics Method

(GOM) [12] are some of the most extensively used numerical methods. The numerical

methods, however, are more time-consuming compared with analytical methods.

B. Radiative Transfer

The discussions in the preceding section about single scattering are based on the as-

sumption that the incident light is scattered only once by a single scattering particle.

In the real world, however, this assumption does not necessarily hold. In most media,

such as the atmosphere and the ocean, there are so many scattering particles packed

in a small volume that the incident light will be scattered more than once before it

hits a detector. Therefore, the effects of multiple scattering cannot be neglected. An

integro-differential equation, the radiative transfer equation, is used to study the vari-

ation of radiance and polarization of a pencil of light in a turbid medium containing a

collection of scattering and absorptive particles. The radiative transfer theory is ded-

icated to solving the transfer of radiant energy via multiple scattering in these media.

Books by Chandrasekhar [13] and Mishchenko et al. [14] have given comprehensive

reviews on radiative transfer.

1. Radiometry

The science that defines and measures radiant energy is called radiometry, which is

the cornerstone of radiative transfer studies. Consider an element of area ds with

a normal vector n̂ and an amount of radiant energy dE within a wavelength range
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(λ − dλ/2, λ + dλ/2), which is transported across ds in directions confined to an

element of solid angle dΩ centered about the direction ξ̂ during a time interval dt, as

shown in Fig. 4.

n̂

"̂
d"

ds

Fig. 4. Definition of radiance.

The fundamental variable of radiometry is the spectral radiometric radiance Iλ,

defined by [13]

Iλ =
d4E

(n̂ · ξ̂)dλ dt dΩ ds

[
W ·m−2 · sr−1 · nm−1

]
, (1.20)

which specifies the spatial, temporal, directional, and spectral structure of the light

field, and can be used to derive all other radiometric quantities.

However, such complete information about the light field is not needed for many

applications. The most commonly measured radiometric quantities are various irra-

diances, which are the integrated radiance over a certain solid angle. The net flux or

irradiance with respect to the element of area ds is defined by

Eλ =
d3E

dλ dt ds
=
∫

4π
(n̂ · ξ̂)IλdΩ. (1.21)

An irradiance meter, however, will not measure Eλ in Eq.(1.21), but will instead

measure the forward and backward plane irradiances, defined by

E+
λ =

∫
2π+

∣∣∣n̂ · ξ̂∣∣∣ IλdΩ, (1.22a)
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E−λ =
∫

2π−

∣∣∣n̂ · ξ̂∣∣∣ IλdΩ (1.22b)

respectively, where the + refers to the same side of ds as n̂, while the − refers to the

opposite side. It is obvious that both E+
λ and E−λ are positive and that Eλ = E+

λ −E−λ .

2. Inherent Optical Properties of a Medium

Before we can write down the equation that governs the radiative transfer in a

medium, we need to find out what are the physical processes that transport the

light field and introduce the inherent optical properties (IOP) of a medium. Shown

in Fig. 5 is a pencil of light with power P incident on a small rectangular volume of

a medium with a small thickness dr. A part of the incident power Pa is absorbed by

the material in the volume, another part Ps is scattered out of the volume into other

directions. The transmitted power can then be expressed by P + dP , where

dP = −(Pa + Ps) (1.23)

is the difference of the radiance after it propagates through the small volume, due to

absorption and scattering of the incident radiance by the particles in the volume.

P
s

d"

P

P
t

P
a

"

d
r

Fig. 5. Diagram used to define IOPs of a scattering and absorptive medium.
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We introduce two useful IOPs of the medium, the absorption coefficient a and

the scattering coefficient b, as follows:

a = lim
dr→0

(Pa/P )

dr

[
m−1

]
, (1.24a)

b = lim
dr→0

(Ps/P )

dr

[
m−1

]
. (1.24b)

A third coefficient, the extinction coefficient c is defined as

c = a+ b
[
m−1

]
, (1.24c)

and characterizes the total fraction of reduction from the incident radiance due to

either scattering or absorption. What is more, to describe the fraction of the reduction

due to scattering in the total reduction of incident radiance, we introduce the single

scattering albedo of the medium, ω0, given by

ω0 = b/c. (1.25)

The quantity ω0 varies from 0 to 1, where ω0 = 0 characterizes a purely absorptive

medium, while ω0 = 1 characterizes a purely scattering medium.

To describe how the scattered radiance is distributed in the full 4π solid angle,

it is helpful to introduce the volume scattering function, defined by

p(θ, φ) = lim
dr→0

lim
dΩ→0

Ps(θ, φ)/P

drdΩ
. (1.26)

One can readily verify that the scattering function integrates to b over the 4π solid

angle, ∫ 1

−1

∫ 2π

0
p(θ, φ)d(cos θ)dφ = b.

Another useful IOP of the medium is the normalized scattering function, or the volume
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phase function p̃(θ, φ) of the medium, which can be obtained by

p̃(θ, φ) =
p(θ, φ)

b
. (1.27)

Thus far, we have discussed the IOPs for unpolarized light only. In a real medium,

the scattering particles are mixed and randomly oriented so that most of the polar-

ization effects average out. However, it is still necessary to consider the polarization

properties of the phase function. As in the single scattering studies, the 4-component

Stokes vector I is used to describe the polarization state of a light beam, and a 4× 4

Mueller matrix M is used to relate the incident and scattered Stokes vectors,

Is = M · Ii. (1.28)

Here we consider a more general case, where an incident light beam along the direction

ninc = (θ, φ) is scattered into the direction nsca = (θ′, φ′), as shown in Fig. 6. For

Fig. 6. Geometry of a scattering event for polarized light beams.

consistency, both Stokes vectors are referenced to the meridian plane, which is the

plane defined by the direction of propagation n and the z-direction. However, the

Mueller matrix is referenced to the scattering plane defined by the two directions of
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propagation ninc and nsca. Therefore, the planes of reference for the incident and

scattered Stokes vectors must be rotated to the scattering plane,

Is(θ
′, φ′) = L(π − Φ2)M(Θ)L(−Φ1)Ii(θ, φ), (1.29)

where L is a rotation matrix as follows

L(π − α) = L(α) =



1 0 0 0

0 cos 2α − sin 2α 0

0 sin 2α cos 2α 0

0 0 0 1


. (1.30)

A normalized Mueller matrix, or a volume phase matrix of the small volume of

medium, is given by

M̃(Θ) =
M(Θ)

b
. (1.31)

For a small volume of a homogeneous medium, the volume phase function Eq.(1.27) is

identical to the single scattering phase function Eq.(1.4), and the volume phase matrix

Eq.(1.31) is identical to the single scattering phase matrix Eq.(1.17). Therefore, they

can be conveniently obtained via single scattering studies.

3. The Equation of Transfer

With the three coefficients a, b, and c, the single scattering albedo ω0, and the volume

scattering phase function p̃(θ, φ), we can now write down the equation of transfer for

the radiance in a scattering and absorbing medium.

For a pencil of light with power P passing through a small rectangular volume of

medium normally as shown in Fig. 5, it is obvious from Eqs.(1.23), (1.24a), (1.24b),

and (1.24c) that the difference of the incident power due to absorption and scattering
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can be conveniently written in terms of c as

dP = −cP dr. (1.32)

Eq.(1.32) can be alternatively written in terms of radiance I. Since radiance is defined

to be power per area per solid angle, it is proportional to the corresponding power

given an equal area and an equal solid angle. Therefore, the difference of the incident

radiance is

dI = −cI dr. (1.33)

which is proportional to the incident radiance I and the thickness dr of the medium,

or the length of path that the radiance passes through.

Besides this reduction, there could also be contribution to the radiance from

some sources, such as the scattering of radiation from all other directions into the

direction considered in a scattering medium, or the thermal emission in a medium in

local thermodynamic equilibrium. This contribution can be accounted for by a source

term J . Therefore, the equation of tranfer can be formulated as

dI

c dr
= −I + J . (1.34)

Now we assume that the amount of radiance being absorbed and scattered are only

proportional to the length of path when the radiance passes through the volume, and

do not depend on the direction of the incident radiance. Therefore, for a pencil of

radiance that propagates along an arbitrary direction specified by angles (θ, φ) with

respect to the normal of the rectangular volume, Eq.(1.33) becomes

dI(θ, φ) = −cI(θ, φ)dr/µ, (1.35)

where µ = cos θ.
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A part of this difference, however, will reappear in other directions as sources. It

can be noticed that the scattered radiance associated with incident radiance in other

directions (θ′, φ′) also has contributions to the radiance in the direction (θ, φ), given

by the source term

J (θ, φ) = ω0

∫ 1

−1

∫ 2π

0
p̃(θ, φ; θ′, φ′)I(θ′, φ′)d(cos θ′)dφ′, (1.36)

where I(θ′, φ′) is the incident radiance along a direction specified by (θ′, φ′), and a

reference of the argument of the phase function (θ, φ; θ′, φ′) to angle Θ is understood.

A combination of Eqs.(1.34), (1.35) and (1.36) gives the equation of transfer for

a pencil of radiance passing through a small rectangular volume of a scattering and

absorbing medium

µ
dI(θ, φ)

dτ
= −I(θ, φ) + ω0

∫ 1

−1

∫ 2π

0
p̃(θ, φ; θ′, φ′)I(θ′, φ′)d(cos θ′)dφ′, (1.37)

where

dτ = c dr

is the optical thickness of the small volume. Eq.(1.37) is an integro-differential equa-

tion in terms of the radiance I(θ, φ).

To describe the radiative transfer of polarized light, it is necessary to replace the

source term Eq.(1.36) with its vector form

J (θ, φ) = b
∫ 1

−1

∫ 2π

0
M̃(θ, φ; θ′, φ′)I(θ′, φ′)d(cos θ′)dφ′, (1.38)

where

M̃(θ, φ; θ′, φ′) = L(π − Φ1)M̃(Θ)L(Φ2). (1.39)
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The vector form of Eq.(1.37) now assumes the form:

µ
dI(θ, φ)

dτ
= −I(θ, φ) + ω0

∫ 1

−1

∫ 2π

0
M̃(θ, φ; θ′, φ′)I(θ′, φ′)d(cos θ′)dφ′, (1.40)

Eq.(1.40) governs the transfer of polarized light through a small volume in a scattering

and absorbing medium. As can be seen in this equation, all information about this

small volume of medium are given by the single scattering albedo ω0 and the volume

phase matrix M̃(θ, φ; θ′, φ′).

This equation, however, can be very inconvenient to use in an inhomogeneous

medium, as both ω0 and M̃(θ, φ; θ′, φ′) could be a function of the position of the

small volume in the medium. Assumptions have been made to make things easier.

The most extensively studied radiative transfer model is the plane parallel model,

which assumes a medium that consists of stratified horizontal layers. Therefore, ω0

and M̃(θ, φ; θ′, φ′) are both functions of the accumulated optical depth τ measured

from the boundary of the medium, and Eq.(1.40) can be used as an equation of

transfer for the whole medium. This model has been widely used to simulate more

sophisticated scattering media, such as atmospheres and oceans, and has shown great

potential in giving reasonable results.

4. Methods for Radiative Transfer

A solution to the equation of transfer Eq.(1.40) is only available in a discretized fash-

ion. Several approaches have been reported for plane-parellel media. In his 1950 book,

Chandrasekhar [13] introduced the quadrature formulae, which solves Eq. (1.40) by

replacing the integro-differential equation with a system of linear equations, which can

be regarded as a matrix equation. Twomey et al. [15, 16] reported their studies on the

matrix method, which is later referred to as the adding-doubling method. Plass and

Kattawar [17, 18] gave a clear physical interpretation of this matrix method, which
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they called the matrix operator theory. These authors further improved the algorithm

and applied it to scattering media with larger optical depths and anisotropic scatter-

ing phase functions. Stamnes et al. [19] also developed an algorithm based on the

matrix method, which they referred to as the discrete-ordinate-method. A computer

code based on this method, the DIScrete Ordinate Radiative Transfer (DISORT)

[20] program, is publicly available, and has been widely used in the community of

atmospheric sciences and remote sensing.

An alternative method to study radiative transfer is the Monte Carlo (MC)

method, which simulates the multiple scattering of light in a scattering and absorbing

medium not by solving the equation of transfer Eq.(1.40), but instead by tracing the

trajectories of photons, or groups of photons, and their interaction with particles.

The MC method is a statistical method, which gives precise results when the number

of photons traced is large enough. The advantage of the MC method over other

methods is that the MC method is more versatile as it can conveniently handle media

with arbitrary boundaries and/or more variations of optical properties.
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CHAPTER II

APPLICATIONS OF THE GENERALIZED DDA FORMALISM

A. The Discrete Dipole Approximation Method

The Discrete Dipole Approximation (DDA) is a powerful numerical method for com-

putation of scattering and absorption of electromagnetic radiation by particles of

arbitrary shape and composition. Initially suggested by Purcell and Pennypacker [9]

in 1973, the DDA represents a scattering particle in terms of a collection of point-like

dipoles. Each dipole undergos forced oscillations in response to incident radiation and

the field induced by all other dipoles. Solution to a self-consistent set of linear equa-

tions gives all dipole moments, which in turn provide information for computations

of various quantities of interest.

The DDA method was popularized by Draine and Flatau [21, 22] in the late

1980’s, who developed and kept maintaining a publicly available computer code

DDSCAT [23], which has been widely used. Another computer code using the DDA

formalism, the ADDA (the Amsterdam DDA) [24], has been made public recently by

Yurkin et al. This code allows simulation of light scattering by larger particles due to

its ability to parallelize the DDA simulation of a single particle. A detailed compar-

ison between these two codes and two non-publicly-available DDA codes, the SIRRI

and the ZDD, has been presented [25]. Yurkin and Hoekstra [26] gave a review on the

DDA method and its recent developments.

1. The Discrete Dipole Scheme

A dielectric particle consists of a large number of molecules. The internal charge

distribution within each individual molecule will be altered once it is subject to an
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external electric field E. In other words, there will be a molecular dipole moment

Pmol

Pmol = ¯̄αmol · E

induced by the external electric field, where ¯̄αmol is the molecular polarizability ten-

sor. If the dielectric particle is subject to electromagnetic radiation, i.e., an oscillating

electromagnetic wave, the molecular dipole moments will also oscillate and radiate

electromagnetic fields. At the microscopic molecular scale, this is exactly how a dielec-

tric particle responds to electromagnetic radiation and scatters/absorbs the incident

radiation.

Following the molecular scenario comes the idea of simulating the response of

a dielectric particle, which in principle is a huge number of microscopic molecules,

by that of a collection of point-like dipoles. In the discrete dipole scheme, a solid

particle is replaced by a simple cubic array of N point-like dipoles undergoing forced

oscillations, as Fig. 7 illustrates.

Fig. 7. Representation of a spherical particle in the Discrete Dipole scheme.

In a real computation, the number density of DDA dipoles is much smaller than
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that of the real molecular dipoles. Therefore, each individual dipole effectively repre-

sents all molecules in the small cell in its immediate vicinity. The DDA dipole at the

jth occupied lattice site is characterized by a polarizability tensor ¯̄αj, which is the

averaged molecular polarizability tensor in its immediate vicinity. The DDA dipole

moment can then be written as

Pj = ¯̄αj · Eext,j, (2.1)

where Pj is the dipole moment of the DDA dipole at lattice site j, or the dipole

moment density of the molecular dipoles in the corresponding lattice cell, and Eext,j

is the electric field density at this lattice site due to the incident radiance as well as

all other N − 1 oscillating dipoles. Hereafter, we will refer to the DDA dipole and

the DDA dipole moment as the dipole and the dipole moment, respectively.

To make the discrete dipole scheme work properly, it is necessary to determine

the polarizability tensors ¯̄αj according to the material properties of the scattering

particle. In Purcell and Pennypacker’s study, the Clausius-Mossotti relation was

used to relate ¯̄αj with the macroscopic electric permittivity ¯̄εj of the dielectric:

¯̄α0
j =

3

4πn

¯̄εj − 1
¯̄εj + 2

, (2.2)

where n is the number density of dipoles. Eq.(2.2) holds exactly only at zero frequency

kd = 0, where k is the wavenumber of the incident radiation, and d is the inter-dipole

spacing. Draine [21] introduced a correction due to the radiative reaction [6] into the

discrete dipole calculation, and suggested the polarizability

¯̄αj =
¯̄α

(nr)
j

1− (2/3)ik3 ¯̄α
(nr)
j

, (2.3)

where the “nonradiative” polarizability ¯̄α
(nr)
j was assumed to be ¯̄α0

j . Draine and Good-
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man [27] further investigated the problem that, for what polarizability α(ω) will an

infinite lattice of polarizable points have the same dispersion relation as a continuum

of permittivity ε(ω), and proposed the lattice dispersion relation (LDR) which relates

the nonradiative polarizability ¯̄α(nr) and the Clausius-Mossotti polarizability ¯̄α0 as

follows:

¯̄α(nr) =
¯̄α0

1 + (¯̄α0/d3)(b1 + ¯̄εb2 + ¯̄εb3S)(kd)2
, (2.4a)

b1 = −1.8915316, b2 = 0.1648469, b3 = −1.7700004, (2.4b)

S =
3∑
j=1

(âj êj)
2 , (2.4c)

where â and ê are unit vectors of the propagating direction and the polarization state

of the incident radiation. Eq.(2.4a) is only valid in the low-frequency limit kd � 1.

The dipole moment Pj given by Eqs.(2.1), (2.3), (2.4a), (2.4b) and (2.4c) determines

the response of the jth dipole to the external radiation.

2. Formulation of the Scattering Problem

The desired self-consistant set of equations for Pj is obtained by writing Eext,j in

Eq.(2.1) explicitly, which gives

Pj = ¯̄αj ·

Einc,j −
∑
k 6=j

AjkPk

 , (2.5)

where Einc,j is the electric field at lattice site j due to the incident radiance, and

−AjkPk is the contribution from the oscillating dipole at the lattice point k, Pk,

given by

AjkPk =
exp(ikrjk)

r3
jk

{
k2rjk × (rjk ×Pk) +

(1− ikrjk)
r2
jk

[
r2
jkPk − 3rjk (rjk ·Pk)

] }
, (2.6)
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with rjk = rj − rk. We can then define an N × N matrix A, each element of which

is again a 3 × 3 matrix, with its off-diagonal elements determined by Eq.(2.6) and

diagonal elements given by

Ajj = ¯̄α−1
j . (2.7)

The scattering problem can now be formulated in a compact set of N linear equations

in terms of Pk:
N∑
k=1

AjkPk = Einc,j, (2.8)

where both Ajk and Einc,j are known variables.

The scattering problem now becomes a problem of solving for the unknown dipole

moments Pj in the matrix equation Eq.(2.8). Various numerical techniques, such as

the Complex Conjugate Gradient (CCG) [21] method and the Fast Fourier Transform

(FFT) [28], are used to expedite the solution of this matrix equation.

3. Applications of the DDA Method

Purcell and Pennypacker introduced the discrete dipole method in order to investigate

light scattering and absorption by intersteller dust grains with arbitrary shape in the

visible and ultraviolet wavebands. Draine and Flatau developed the DDSCAT code in

order to study intersteller graphite grains. This versatile method has also found its

applications in various disciplines. In nanotechnology, it has been used to calculate

surface enhanced Raman scattering [29]; in atmospheric sciences, it has been used to

simulate light scattering from ice and snow particles at high microwave frequencies

[30]; in biomedical sciences, it has been used to calculate light scattering from a single

erythrocyte (red blood cell) [31].

To date, however, applications of the DDA method have been limited to the

interaction between an incident plane wave and dielectric particles, i.e., particles that
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have only an electric response to the incident radiation. DDA calculations involving

incident radiation other than a plane wave have not been reported; nor has DDA

calculations involving scattering particles with both electric and magnetic responses

been reported. In the following sections, the conventional DDA formalism will be

generalized to cases involving an incident field from radiating dipoles or scattering

particles with magnetic responses. Applications of the generalized DDA formalisms

to calculations of inelastic scattering and simulation of invisibility cloaks will be pre-

sented.

B. Application of the DDA Method to Inelastic Scattering∗

In the process of light scattering, a major fraction of the incident photons are elas-

tically scattered, in which case there is no energy exchange between the incident

photons and the material molecules. Therefore, a scattered photon has the same

amount of energy as an incident photon. Meanwhile, a small fraction of the inci-

dent photons will be turned into scattered photons with shifted energy or frequency

as they lose a part of electromagnetic energy in the material molecules or gain ex-

tra electromagnetic energy from the material molecules. This is inelastic scattering

phenomena.

The two most studied and useful inelastic scattering processes are Raman scat-

tering and fluorescence. First discovered by and named after C. V. Raman [32],

Raman scattering involves interactions between a fraction of the incident light and

molecules in the target particle that move back and fourth around an equilibrium

location. The vibrational or rotational energy of a molecule may be changed upon

∗Part of the data reported in this section is reprinted with permission from “In-
ternal dipole radiation as a tool for particle identification”, Y. You, G. W. Kattawar,
C. Li, and P. Yang, Appl. Opt. 45, 9115-9124 (2006). Copyright 2006 by Optical
Society of America.
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the incident light, which leads to an excitation in the energy state of the molecule

and an energy shift in the Raman-scattered light. The fraction of the incident light

involved in Raman scattering, however, is on the order of 10−6. The Raman spec-

troscopy technique based on Raman scattering has been extensively used in a variety

of disciplines, e.g., chemistry and material analysis.

Fluorescence also involves an energy shift in the scattered light and excitation

of the material molecules. In this case, however, an incident photon is completely

absorbed by a molecule while the molecule is transferred to an excited state. The

excited molecule can then be transferred to lower states after a certain resonance

lifetime. Fluorescence has been used to identify host particles in various disciplines,

such as analytic chemistry, biochemistry, medicine, and mineralogy.

Most studies on angular dependence of light scattering have been focused on elas-

tic scattering. It has been shown that the elastic-scattering patterns contain useful

information about the scattering particle, such as its shape, size, and composition.

Therefore, it has been used as a diagnostic tool to identify various particles. angu-

lar dependence of inelastic scattering, on the contrary, has received less attention.

However, for particles with inclusions, the inelastic-scattering pattern provides addi-

tional information about the composite of the host particle. Therefore, simulation of

inelastic scattering is also of great interest.

1. Model for Inelastic Scattering

Based on the fact that the inelastic scattering is essentially light scattering from

oscillating molecules embedded in the host particle, Chew et al. [33] suggested a

model to study inelastic scattering quantitatively. Their idea was similar to that of

the DDA method, to represent an active molecule by a point-like dipole undergoing

forced oscillations characterized by an effective polarizability α according to the local
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exciting field at the incident frequency. Chew and colleagues have reported analytical

solutions to the radiation from a single internal dipole embedded in spherical host

particles [33, 34], cylindrical host particles [35] and spheroidal host particles [36].

Following this model, the angular dependence of inelastic-scattered light can be

simulated by a superposition of the scattered fields associated with a distribution

of oscillating point dipoles embedded in the host particle. Chew et al. [37, 38] re-

ported numerical results of inelastic scattering from a distribution of active molecules

embedded in dielectric spheres. Numerical results for spherical host particles with

a broader range of refractive indexes and larger size parameters were reported in a

later study [39]. The formulae used in these studies have been improved [40, 41], and

similar results have been obtained. In these studies, the probability that an active

molecule is raised to the excited state is assumed to be proportional to the square of

the magnitude of the local exciting field at the incident frequency and proportional

to the number density of active molecules at this location. It was also assumed that

the dipole moment of an active molecule is induced in the direction parallel to the

local exciting field.

There are two optical processes involved in the superposition of contributions

from individual active molecules. For spontaneous Raman emission and fluores-

cence, there is an arbitrary phase factor associated with the oscillation of each active

molecule. Therefore, the radiation from each individual excited molecules adds inco-

herently, i.e., the time averaged power over the particular distribution of molecules

should be added up, giving the total radiated power. On the contrary, in stimu-

lated Raman scattering, the radiation from each individual excited molecules adds

coherently, i.e., the radiated fields themselves should be added to obtain the total

radiated field, from which a time averaged power is easy to obtain. Numerical results

of both incoherent [37, 39] and coherent [38] inelastic scattering from homogeneously
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distributed active molecules embedded in a spherical particle have been reported.

Numerical solutions to the inelastic-scattering problem using other methods have

also been reported. Zhang and Alexander [42, 43] proposed a hybrid method for

spherical particles, in which the Lorenz-Mie theory was used to determine the exciting

field and the GOM was used to solve for the inelastic-scattered field. Velesco and

Schweiger [44] and Weigel et al. [45] reported a more efficient method to calculate

inelastic scattering by large spherical particles using the reversed-ray-tracing (RRT)

technique. The RRT technique was further used [46] to investigate the shape effect of

inelastic scattering by large particles. The GOM approach, however, gives accurate

results only for large scattering particles and does not work well for small particles

with size parameters (x = 2πa/λ where a is the effective radius or the radius of an

equal-volume-sphere and λ is the wavelength of the incident light) less than 20, which

are of great interest in particular cases. The spores of Bacillus megaterium, Bacillus

cereus, and Bacillus anthracis, for example, usually have size parameters less than 10

for 0.5 µm incident light [47].

One should realize that, in order to use this model to calculate real inelastic

scattering, the shift in the frequency must be prescribed by other means, as the

model itself provides no information about the energy shift.

2. DDA Formalism for Internal Dipole Radiation

Before we can simulate inelastic scattering using the DDA method, it will be helpful

to present how to calculate the radiation from a single internal oscillating dipole

(hereafter referred to as the source dipole) using the DDA formalism. As the current

DDA formalism treats a dielectric particle as an array of electric dipoles (hereafter

referred to as the induced dipoles) induced by an incident field, it may be the most

straightforward numerical technique for computation of internal dipole radiation with
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a source dipole embedded in a dielectric particle. Instead of a plane-wave incident

field for Einc,j in Eq.(2.8), now the incident field is the electric field radiated by an

electric dipole, given by [6]

Einc,j =
eikrj

r3
j

{
k2(rj ×P0)× rj +

1− ikrj
r2
j

[
3rj(rj ·P0)−P0r

2
j

]}
, (2.9)

where P0 is the dipole moment of the source dipole, and rj is the position vector

measured from the source dipole to the location where the electric field is observed.

The source dipole is assumed to be oscillating at the excited frequency.

This incident field being established, it is straightforward to apply the conven-

tional DDA formalism by solving Eq.(2.8) for dipole moments Pj of all induced

dipoles, with Einc,j given by Eq.(2.9). Notice here that, as the source dipole itself

is excited by external fields and is used to generate the incident field in this calcu-

lation, it is regarded as a hard source and its dipole moment P0 is not included in

the self-consistent system of dipole moments described by Eq.(2.8). Given all this

information, the resultant field is the superposition of fields radiated by the source

dipole and all induced dipoles, and the radiated power at a large distance can be

formulated as

dP

dΩ
=
c2Z0

32π2
k4

∣∣∣∣∣∣
N∑
j=0

[Pj − n̂ (n̂ ·Pj)] exp (−ikn̂ · rj)

∣∣∣∣∣∣
2

, (2.10)

where Z0 =
√
µ0/ε0 is the impedance of free space, and n̂ is the unit vector in

the direction of radiation. j = 0 is the contribution from the source dipole, and

j = 1, · · · , N collects the contribution from all induced dipoles.

As aforementioned, the DDA formalism models a continuous dielectric in terms

of an array of dipoles by relating the macroscopic dielectric constant of the medium

and the microscopic polarizabilities of the induced dipoles using the Clausius-Mossotti
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relation. This introduces the local-field effects [48] when applied to problems involving

internal sources. According to these effects, a dipole embedded inside a dielectric

medium changes the local field in its immediate proximity. Therefore, the electric

field that the dipole sees is not equivalent to the macroscopic field. Consequently, the

power P radiated by a dipole p considering the local-field effects and the power P0

radiated by the same dipole without the local-field effects can be related as P = L2P0

[49], where L is the local field cavity factor. To compensate these effects, it is necessary

to rescale the source dipole in the DDA calculations. For example, if we want a unit

dipole, we should specify the source dipole |p| = L−1 in the DDA computation.

To couple an extra source dipole with an array of induced dipoles in the DDA

computation, it is also important to specify the location of the source dipole with

proper consideration of symmetry. In the DDA formalism, the fields are computed

only at the lattice points of the 3D dipole array. These fields are supposed to be,

or close to, the averaged value of fields in the vicinity of the corresponding dipoles.

For an incident plane wave, the field is slowly varying within a scale smaller than

the wavelength. Therefore, this condition is always satisfied. The field radiated by

a dipole, on the contrary, varies dramatically in the proximity of itself. Thus in the

vicinity of the source dipole, the induced dipoles should be symmetrically distributed

around it so that a symmetric field can be properly approximated by the DDA dipoles.

Figure 8 shows the two schemes that satisfy this symmetry requirement. In the

interstitial scheme, the source dipole is surrounded by eight neighboring induced

dipoles. In the subsbitutional scheme, the location of the source dipole overlaps with

that of an induced dipole. For any scheme other than these two, the fields on DDA

lattice sites cannot give a symmetric approximation to the incident field in the vicinity

of the source dipole.

Furthermore, the conventional DDA formalism was developed to account for an
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Fig. 8. Two schemes of the coupling between the DDA dipole lattice and the source

dipole, where the shadowed circle represents the source dipole, and the open

circles represent the induced dipoles.

incident plane wave that does not have a singularity. However, it is obvious from

Eq. (2.9) that the field radiated by an electric dipole has a singularity that varies as

E ∝ r−3 as r → 0. As a result, the numerical computation can be unstable due to the

singularity of the incident field at the singularity point if there is an induced dipole

near the source dipole. Therefore, it is necessary not to locate the source dipole in the

immediate proximity of an induced dipole. In this sense it is necessary to exclude the

induced dipole right at the location of the source dipole if the substitutional scheme

is employed. This requirement essentially changes the morphology of the dielectric

particle by introducing a cubic cavity of a volume of d3 around the source dipole.

Before we continue to discuss the choice of schemes, a brief review of the cavity factor

L is necessary.

Böttcher [48] studied the local-field effects by assuming a cavity of radius r and

an oscillating dipole with polarizability α inside it. The microscopic radius r is given

by Onsager’s approximation (4π/3)nr3 = 1, where n is the number density of the

dielectric molecules. For this general case, the cavity factor is given by

L =
3ε

2ε+ 1− 2 α
r3

(ε− 1)
, (2.11)
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where ε is the relative permittivity, or the dielectric constant, of the dielectric particle.

For a homogeneous system [50] where the source dipole is the same as the induced

dipoles, the Clausius-Mossotti relation gives (4π/3)nα = (ε − 1)/(ε + 2), therefore

Eq.(2.11) reduces to the Lorentz virtual-cavity factor

Lvirtual =
ε+ 2

3
, (2.12)

which was proposed by Lorentz [51] who assumed a virtual cavity around the source

dipole, with the same refractive index m =
√
ε both inside and outside the cavity.

While for an inhomogeneous system [52, 53] where the polarizability density of the

excited molecule is much lower than that of the dielectric molecules, i.e., (4π/3)nα�

(ε− 1)/(ε+ 2), Eq.(2.11) reduces to the Onsager-Böttcher empty-cavity factor

Lempty =
3ε

2ε+ 1
. (2.13)

which was proposed by Böttcher who assumed a very small empty cavity around the

source dipole. In our dipole radiation, the oscillating dipole is the same as the media

dipoles, therefore the virtual-cavity model is appropriate to describe the situation.

So we chose the cavity factor Lvirtual in our calculations.

It is obvious that the interstitial scheme corresponds to the virtual-cavity model,

since in this case the source dipole is placed between the lattice of the induced dipoles,

thus it can be interpreted that around the source dipole there is a very small virtual

cavity, with refractive index m both inside and outside. So we choose the cavity factor

Lvirtual for the interstitial scheme. While for the substitutional scheme, by replacing

an induced dipole with the source dipole, we introduced a macroscopic cubic cavity

with a finite edge equal to the diameter of a lattice dipole d, which is not the same

situation as Eq.(2.11) was based on. However, we can approximate the cubic cavity

with an equal-volume-spherical cavity with radius r′3 = (6/π)r3. Substituting r′3 into
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Eq.(2.11), we have the cavity-factor associated with this computational scheme

Lsub =
3ε

2ε+ 1− π
3

(ε−1)2

ε+2

. (2.14)

To validate the efficacy of the DDA formalism for internal dipole radiation, we

first compared the DDA results with the analytical counterpart for spherical particles,

which has been given by Chew et al. [33]. In the comparison, the oscillating source

dipole is assumed to have a unit dipole moment. To compare with analytic results,

we want to locate the source dipole on the center of symmetry and also on an axis

of symmetry. Therefore, as can be seen in Fig. 8, in the interstitial scheme, we

want the center of a lattice cell at the center of symmetry, and then we would have

equivalent numbers of induced dipoles on both sides of the interstitial dipole, so

we need an even number of induced dipoles along each dimension. While, in the

substitutional scheme, we want a substitutional dipole at the center of symmetry,

and again equivalent numbers of induced dipoles on both sides, so we need an odd

number of induced dipoles along each dimension.

Firstly, to compare the two schemes shown in Fig. 8, we considered a source

dipole located at the center of the spherical particle and oscillating along the z di-

rection. We computed the normalized radiated power P/P0 (defined as the power

radiated by the source dipole in the presence of the host particle divided by that

radiated by the same source dipole in the absence of the host particle), where P0 is

given by [6]

P0 =
c2Z0k

4

12π
|P0|2. (2.15)

The simulated results for both schemes, as well as corresponding relative errors, are

shown in Fig. 9.

Figure 9(a) shows the results for a spherical particle with a size parameter of
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Fig. 9. Comparisons of the normalized radiated power computed from interstitial and

substitutional schemes in Fig. 8, with a unit source dipole located at the center:

(a) radiated power versus the refractive index of the host particle with a size

parameter ka = 4; (b) radiated power versus the size parameter of the host

particle with a refractive index m = 1.33.

ka = 4, where a is the radius of the spherical particle and a refractive index varying

from m = 1 to 3. Obviously the results computed from the interstitial scheme are

more accurate than those from the substitutional scheme. Both schemes give accurate

results for refractive index m < 1.4. The relative error associated with the interstitial

scheme is less than 1% for refractive index m < 2.0, and less than 5% for m ≤ 2.6.

While the relative error associated with the substitutional scheme increases to around

5% for m = 1.8, and continues to increase dramatically. Figure 9(b) shows the results

for a spherical particle with a fixed refractive index of m = 1.33, and a size parameter

varying from ka = 0.2 to 10. Again, we notice that the interstitial scheme gives

more accurate results than the substitutional scheme does. We feel that the larger

errors for the substitutional scheme come from approximating a spherical cavity by

a cubic cavity. Hereafter, we will only use the interstitial scheme in our studies. For
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the purpose of validation, in this section the refractive index of the particle for the

simulation is always chosen to be m = 1.33, which represents a moderately polarizable

and non-absorbing case.

Secondly, to show the effect of the location of the source dipole in the DDA

lattice, test cases are simulated pertaining to a spherical particle with a size parameter

ka = 8. A source dipole is placed on and oscillating along the z-axis. In the test

runs, the position of the source dipole is varied from the center of one cubic lattice

to the center of an adjacent cubic lattice as z = a/2 + αd, where 0 ≤ α ≤ 1, and d is

the inter-dipole spacing. A comparison between the DDA results and the analytical

results is shown in Fig. 10, where Fig. 10(a) shows the normalized radiated power

as a function of α, and Fig. 10(b) shows the radiated power per solid angle when the

source dipole is located at the midpoint of the two centers of the cube (α = 0.5).

Figure 10(a) reveals that the DDA gives a correct value of radiated power only

when the source dipole is located in the proximity of the center of a lattice cell.

When the source dipole is away from this point, the relative errors of the DDA

results are considerable and can be up to 66%. It can be found in Fig. 10(b) that,

however, the DDA simulation still gives a correct shape of the radiation pattern

although the simulated radiated power per solid angle is 65% − 67% lower than the

analytical solution. Again, the results shown in Figs. 9 and 10 confirm that the

interstitial scheme is appropriate for the application of the DDA method to internal

dipole radiation calculations.

3. Accuracy of DDA Results for Internal Dipole Radiation

To investigate the accuracy of the DDA formalism in more general cases, we com-

puted P/P0 for a source dipole located at various positions inside and at the surface

of spherical particles with size parameters of ka = 8 and 20. Since the particles are
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Fig. 10. Radiated power when the source dipole is located off the center of a cell, for a

spherical particle of size parameter ka = 8, a refractive index of m = 1.33, and

a source dipole located on and oscillating along the z direction: (a) normalized

radiated power when the source dipole is moved from the center of one cell to

the center of an adjacent cell, 0 ≤ α ≤ 1; (b) radiated power per solid angle

versus the scattering angle θ when the source dipole is at the midpoint of the

two centers of cell α = 0.5.

spherically symmetric, we can always choose a proper coordinate system such that

the source dipole is located on the z-axis. The source dipole is then specified to oscil-

late along either the z or the x direction, corresponding to radially and tangentially

oriented cases, respectively. Here, we use mkd = 0.3324 for the numerical simulation

in the case of ka = 8 and mkd = 0.5541 in the case of ka = 20. The results given by

both the analytical and the DDA methods are shown in Fig. 11, where the symbols

represent the results from the DDA calculation, and solid curves represent the results

from the analytical method. The corresponding relative errors are also shown in Fig.

11.

Evidently, for a source dipole embedded inside a spherical particle with a size
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Fig. 11. Normalized radiated power versus the location of the source dipole computed

from the DDA and analytic methods. The source dipole is located on the

z-axis and oscillates along either the z or x direction, corresponding to radially

or tangentially oriented dipoles. Size parameters (a) ka = 8 and (b) ka = 20,

and refractive index m = 1.33 are chosen for the spherical host particle.

parameter up to 20, the normalized radiated power computed from the DDA agrees

quite well with that predicted by the analytical approach. The relative errors are

within ±2.5%. However, if the source dipole is on the surface of the particle, the

DDA solution is substantially inaccurate, and the relative errors can be up to ±30%.

We also compared the radiated power per solid angle (dP/dΩ) as a function of

the scattering angle, i.e., the radiation pattern. For a source dipole in the absence of

the host particle, the result is well-known, and is given by [6]

dP

dΩ
=
c2Z0

32π2
k4|p|2 sin2 θ, (2.16)

where θ is measured from the direction of the dipole oscillation.

For the simulation, a source dipole is specified on the z-axis at z/a = 1/4, 1/2, 3/4,

and 1, oscillating along the z or x direction. For radially oriented cases, there is a
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rotational symmetry with respect to the z-axis, which implies that the radiation pat-

tern is the same for all values of angle φ. For tangentially oriented cases, there is

only a mirror symmetry with respect to the x-z plane, which means we only have

dP
dΩ

(θ, φ) = dP
dΩ

(θ, 2π − φ). Here we only present the radiated power at scattering an-

gles φ = 0 and 0 ≤ θ ≤ π for both cases. The results for ka = 8 are shown in Fig.

12, and those for ka = 20 are shown in Fig. 13, where “R” stands for the radially

oriented cases, and “T” for the tangentially oriented cases. The results of radiated

power per solid angle shown in the figures have units of (c2Z0/32π2) k4|p|2.

As evident from Fig. 12, the DDA can give quite accurate approximations to

the radiation pattern at all scattering angles as long as mkd < 0.5 and the source

dipole is embedded inside the host particle, i.e., z/a < 1. The relative errors at

most scattering angles are less than ±5%. Relatively larger errors at some scattering

angles are observed because the radiated power is low (4 orders lower than the power

at other angles), so that the relative errors become significant. While if the source

dipole is on the surface of the host particle, z/a = 1, the DDA results deviate from

the analytical results. However, the radiation pattern is quite similar to that of the

analytical solution. The DDA results are over/underestimated almost at the same

ratio (∼ 40% in the radial case and ∼ −18% in the tangential case) at most scattering

angles.

If mkd > 0.5, as shown in Fig. 13, the DDA gives less accurate results for the

radiated power per solid angle for a source dipole inside the host particle. The relative

errors can be as large as ±15% when z/a = 1/4 and 1/2 and ±30% when z/a = 3/4

at most scattering angles. However, the DDA still gives quite accurate radiation

patterns, even though there are many maxima and minima. For source dipole located

on the surface of the host particle, the radiated power was again over/underestimated,

although the overall radiation pattern is roughly correct.
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Fig. 12. Radiated power per solid angle versus the scattering angle θ when the source

dipole is located at various locations, for the spherical host particle of size

parameter ka = 8 and refractive index m = 1.33, given by the DDA and

analytic method.

Furthermore, we consider the radiation pattern in a more general case: a source

dipole embedded in a spherical particle with a size parameter of ka = 8 and a refrac-

tive index of m = 1.33. The source dipole is located on the z-axis at z/a = 1/2 and

oscillates along a direction specified by a unit vector of x̂+ẑ. In this case, the radiation
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Fig. 13. Same as Fig. 12, but for size parameter ka = 20.

pattern is symmetric with respect to the x-z plane so that dP
dΩ

(θ, φ) = dP
dΩ

(θ, 2π − φ).

Again, mkd = 0.3324 is used for the simulation. Figure 14 shows the results of the

radiation patterns computed from both the DDA and analytical methods in the re-

gion of 0 ≤ θ ≤ π and 0 ≤ φ ≤ π. Shown in Fig. 14 are also the DDA relative errors.

Evidently, the two results for the radiated power agree quite well at all scattering

angles, and the radiation pattern is accurately predicted by the DDA method. The
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relative errors are less than ±2.5% at most scattering angles, except those angles for

which the radiated power is low (∼ 10−4) then the relative errors are significant.

45

90

135

180

0

45

90

135

180

0.5

1.0

1.5

2.0

2.5

45

90

135

180

0

45

90
135

180

-7.5

0.0

7.5

15.0

φ

d
P

/d
Ω

θ φ

R
e

la
ti
v
e
 e

rr
o

r 
(%

)

θ

Red - DDA

Blue - Analytical

Fig. 14. Radiated power per solid angle, as well as corresponding relative error, versus

the scattering angles θ and φ, for a source dipole embedded in a spherical host

particle of size parameter ka = 8 and refractive index m = 1.33, located on

z-axis at z/a = 1/2 and oscillating along x̂+ ẑ.

Moreover, to check the accuracy of the DDA formalism for the internal dipole

radiation pertaining to non-spherical particles, we compute the radiate power distri-

bution of a single dipole embedded in a cubic particle and a cylindrical particle with

aspect ratio 1. The DDA results are compared with those computed from the FDTD

method. In the comparison, the refractive index is m = 1.33 and the effective size

parameters (the size parameter of a sphere that has the same volume as aspherical

particle) of the particles are kaeff = 8. The orientation of the host particle are shown

in Fig. 15. The source dipoles are located at the center of the particles, and oscillate

along the z direction. In the DDA computation, mkd = 0.2680 for the cubic case,

and mkd = 0.2901 for the cylindrical case. Shown in Fig. 15 are the results for



42

scattering angles 0 ≤ θ ≤ π and φ = 0. The radiated power computed from the

two numerical methods agree very well, although there are some minor discrepancies.

The radiation patterns for particles with different shapes are different, which implies

that the internal dipole radiation information can be used to detect the morphology

of host particles.
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Fig. 15. Radiated power per solid angle versus the scattering angle θ of internal dipole

radiation in cubic and cylindric particles with kaeff = 8, refractive index

m = 1.33, and a source dipole located at the center and oscillating along the

z direction.

4. Simulation of Inelastic Scattering

Having proved the accuracy of the DDA formalism in simulating radiation from a

single internal dipole, we can confidently use it to compute inelastic scattering. Sim-

ilar to Chew’s model, there will be two steps in simulating the inelastic scattering

light field using the DDA formalism. Firstly, an internal exciting field at the inci-

dent frequency should be established using either analytical or numerical approach.

This exciting field, along with a prescribed number density distribution of the active
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molecules, determines the distribution of the excited molecules, or, in the language

of the DDA calculation, the oscillating source dipoles.

From the numerical calculation perspective, the coherent scattering is easier to

simulate, as one only needs to sum up the radiated electric field associated with each

individual source dipole. Therefore, one can simply compute the sum of the radiated

electric field in one run with a collection of source dipoles, each of which with proper

dipole moment, orientation, and phase information. The total electric field computed

from the DDA formalism will automatically be the superposition of electric fields due

to all source dipoles as the electric field is additive. Simulation of the incoherent

scattering, on the other hand, requires more computational efforts, as in this case one

has to run a DDA simulation for each individual source dipole separately, calculate

the radiated power, i.e., square of the magnitude of the radiated electric field, due to

the specific source dipole being calculated, and then sum up the radiated power.

We first did several simulations for an incoherent scattering from a collection of

homogeneous distributed active molecules embedded in a spherical particle. Unlike

the spherical distribution of active molecules used in previous studies, we used a

cubic distribution as the DDA formalism uses a cubic array to represent the dielectric

particle. A total number of 2103 induced dipoles were used in each simulation. To

compare with results in previous studies, the inelastic scattering was assumed to occur

at λ′ = 1.196λ, where λ is the wavelength of the incident radiation. The incident light

was assumed to be linearly polarized and oscillating in the scattering plane, φ = 0.

A collection of homogeneously distributed source dipoles were used to represent the

homogeneously distributed active molecules. The dipole moment of each source dipole

was assumed to be induced in the direction parallel to the local exciting field. The

parallel component of the inelastic-scattered radiance, i.e., the component lies in the

scattering plane, Ir, is shown in Fig. 16.
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Fig. 16. The parallel component of the incoherent radiance, Ir, from homogeneously

distributed active molecules embedded in a spherical particle with a variety

of refractive indexes and size parameters. (a) m = 1.5 and x = 0.2, 1, 2 and

6; (b) m = 1.1, 1.2, 1.33 and 1.5, and x = 4.

Figure 16(a) shows the resultant Ir associated with a host particle with a fixed

refractive index m = 1.5 and a varying size parameter x = 0.2, 1, 2 and 6. Shown

in Fig. 16(b) are Ir associated with a host particle with a varying refractive index

m = 1.1, 1.2, 1.33 and 1.5, and a fixed size parameter x = 4. Results for similar

cases have been reported by Kerker and Druger [39] and by Veselovskii et al. [41].

Comparing Fig. 16(a) with Fig. 5 in Ref. [39], and Fig. 2(a) in Ref. [41], and

comparing Fig. 16(b) with Fig. 10 in Ref. [39], one can notice that the results given

by the DDA formalism agree with previous results.

Next we use the DDA formalism to simulate inelastic-scattered radiation from

a modeled spore-like particle. We consider a layered prolate spheroidal particle with
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a core and a coat, as shown in Fig. 17(a). The refractive index varying radially, as

Fig. 17(b) shows. This layered spheroid model provides an ideal representation of

the structural feature of spore particles of Bacillus megaterium and Bacillus cereus

observed via electron microscopes [47].
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Fig. 17. (a) Geometry and size of the spore particle model in this study; and (b)

radial variation of the refractive index.

We first simulate the exciting electric field distribution when an unpolarized plane

wave with wavelength λ = 0.5 µm is incident on the spore-like particle parallel to its

axis of symmetry from the left. The size parameter of the particle is x = 5.41. A unit

amplitude is assumed for the incident electric field. Figure 18(a) shows the resultant

distribution of the square of the magnitude of the exciting electric field, |E0|2, in the

vicinity of the spore particle, which is highly inhomogeneous. In this case, one can

notice a small region with significantly higher |E0|2 in the coat layer at the far end

of the spheroidal particle. The distribution of |E0|2 when the plane wave is incident

perpendicular to the axis of symmetry from the left is shown in Fig. 18(b). Again,

there is a small region with high |E0|2 in the coat layer at the far end. The maximum

value, however, is smaller than that in case (a).

All previous studies on angular dependence of inelastic scattering have assumed
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Fig. 18. Square of the magnitude of the exciting electric field |E0|2 in the vicinity of

the spore-like particle when an unpolarized plane wave is incident (a) parallel

to or (b) perpendicular to the symmetry of axis of the spheroidal particle from

the left. Shown here are the situations in the φ = 0 plane.

a homogeneous distribution of active molecules throughout the whole host particle.

In many cases, however, active molecules in the host particle will be inhomogeneously

distributed. In this study, we intend to investigate the effects of the distribution of

active molecules on the inelastic-scattering patterns. We assumed three distributions:

homogeneously distributed (i) everywhere throughout the full particle; (ii) only within

the core; and (iii) only within the coat. In our simulations, over 1, 500 source dipoles

were used to represent the distributions of the active molecules, and about 20, 000 in-

duced dipoles were used to represent the scattering particle. An unpolarized incident

plane wave with a wavelength of λ0 = 0.5 µm, and a inelastic scattering wavelength

of λ = 1.196λ0 were assumed. Shown in Figs. 19 and 20 are the inelastic-scattering

radiance associated with two orientations of the modeled spore particle. In these

figures, we show the component of the radiance parallel to the scattering plane Ipara,

the component of the radiance perpendicular to the scattering plane Iperp, as well as
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the total radiance I = Ipara + Iperp, respectively.

0 30 60 90 120 150 180
0

10

20

30

40

0 30 60 90 120 150 180
0

10

20

30

40

0 30 60 90 120 150 180
0

10

20

30

40

50

60

70

80

 

 

Ipa
ra

Scattering Angle (deg.)

 (i) Full
 (ii) Core
 (iii) Coat

x

y
z  

 

Scattering Angle (deg.)

Ipe
rp

Scattering Angle (deg.)

 

 

I

Fig. 19. Inelastic-scattering radiance as a function of the scattering angle θ associ-

ated with the modeled spore particle and the three distributions of the active

molecules. The incident light is propagating along the axis of symmetry of

the spheroid (end-on incidence).

Figure 19 shows the results when the incident field propagates along the axis

of symmetry of the spheroid. In this case, the system is azimuthally symmetric.

Therefore, the scattering patterns in all scattering planes are identical. It can be

noticed from Fig. 19 that all three quantities, Ipara, Iperp and I, give useful information

on how the active molecules are distributed within the host particle. Case (iii), in

which the active molecules are homogeneously distributed only within the coat, can

be easily discriminated from the other cases, as the corresponding inelastic-scattering

patterns feature a larger peak in the backscatter direction. Specifically, the Iperp

pattern associated with case (iii) is oscillating and differs substantially from patterns

associated with the other cases. The scattering patterns in the other two cases look

similar, but one can still discriminate them from each other by noticing that the Ipara

pattern associated with case (i) becomes flat when approaching the forward scatter
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Fig. 20. Same as Fig. 19, but for a spore particle with its axis of symmetry along

the x-direction (broadside incidence). The upper and lower panels show the

inelastic-scattering pattern in the scattering planes of φ = 0◦ and φ = 90◦,

respectively.

direction, while that associated with case (ii) keeps rising.

Figure 20 shows the same inelastic-scattering patterns, but for a spore particle

with its axis of symmetry along the x-direction. In this case, the system is no longer

azimuthally symmetric. Therefore, we show the resultant scattering patterns in scat-

tering planes φ = 0◦ and φ = 90◦, respectively. In this case, the inelastic-scattering
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patterns associated with case (iii) still have a larger peak at the backscatter direction.

Therefore, the distribution (iii) can again be easily discriminated from the other two.

The Ipara and I patterns associated with the other two cases look very similar. To

discriminate cases (i) and (ii), one can investigate the Iperp patterns, which differ

appreciably in the two cases.

The simulated results from DDA computations suggest that the inelastic-scattering

pattern contains useful information on the distribution of the active molecules inside

the host particle. Therefore, it can be used as a powerful tool to investigate the

distribution of the active molecules in host spore particles.

C. Application of the DDA Method to Invisibility Cloaks∗

Invisibility cloak using metamaterial has been a popular research topic in the recent

years. In this section, we will present an extension of the conventional DDA formalism

that can be conveniently used to study invisibility cloaks for irregular particles.

1. Invisibility Cloak Using Metamaterials

Controlling electromagnetic fields using material properties determined by the coordi-

nate transformation approach [54, 55, 56, 57, 58, 59, 60] has recently drawn extensive

attention in the research community. The coordinate transformation approach pio-

neered by Pendry and colleagues has been reported in a general coordinate system

[54, 55, 56] and in Cartesian coordinates [57]. A coordinate transformation method

in the form of optical conformal mapping [58, 59] in arbitrary coordinates has also

∗Part of the data reported in this section is reprinted with permission from “Zero-
backscatter cloak for aspherical particles using a generalized DDA formalism”, Y.
You, G. W. Kattawar, P.-W. Zhai, and P. Yang, Opt. Express 16, 2068-2079 (2008),
and “Invisibility cloaks for irregular particles using coordinate transformations”, Y.
You, G. W. Kattawar, P.-W. Zhai, and P. Yang, Opt. Express 16, 6134-6145 (2008).
Copyright 2008 by Optical Society of America.
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been reported. In Cartesian coordinates, for example, a point in space is described by

its Cartesian components xi, with i = 1, 2, 3. Consider a coordinate transformation

xi → xi
′
= xi

′
(xi), a rank 2 contravariant tensor density T ij of weight +1 transforms

as [61]

T i
′j′ =

∣∣∣det
(
Λi′

i

)∣∣∣−1
Λi′

i Λj′

j T
ij, (2.17)

where

Λi′

i =
∂xi

′

∂xi
(2.18)

is the Jacobian transformation matrix. The permittivity εij and the permeability µij

are both rank 2 contravariant tensor densities with weight +1 that describe material

properties. Therefore, they transform as

εi
′j′ =

∣∣∣det
(
Λi′

i

)∣∣∣−1
Λi′

i Λj′

j ε
ij, (2.19a)

µi
′j′ =

∣∣∣det
(
Λi′

i

)∣∣∣−1
Λi′

i Λj′

j µ
ij. (2.19b)

Pendry et al. [55] and Schurig et al. [57] suggested that the left hand sides of

Eqs.(2.19a) and (2.19b) be interpreted as either the properties of the same material

in the transformed coordinate system (the topological interpretation), or the prop-

erties of an another material in a flat Cartesian coordinate system (the material

interpretation).

It has been demonstrated that the transformation properties of Maxwell equa-

tions under certain coordinate transformations can yield material properties that have

interesting functionality, such as invisibility cloaks [55, 56, 57], perfect lens [56], and

magnification [56, 60], however, this study will focus on invisibility cloaks.

As has been discussed in Ref. [57], the material properties of an invisibility cloak

can be determined as illustrated in Fig. 21. Consider a closed domain that is to

be transformed (region (I) in Fig. 21(a)). The internal and external regions of this
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Fig. 21. Illustration of the coordinate transformation used to determine the material

properties of a cloak.

domain are assumed to be vacuum. Next, consider a coordinate transformation that

maps this region into a region (region (I′) in Fig. 21(b)) that has the same outer

boundary but contains a hole (region (III)) bounded by an inner boundary. Then,

determine the material properties εi
′j′ and µi

′j′ in region (I′), which no longer represent

a vacuum, using Eqs.(2.19a) and (2.19b). Meanwhile, the external region (region (II))

remains undistorted, therefore the material properties εi
′j′ and µi

′j′ in this region still

represent a vacuum. In this manner, we have defined a cloaking region. Subject to

radiation from outside sources, this object compresses the radiation field in region

(I) into region (I′), the cloaking region, and leaves region (III), the cloaked region,

radiation-free. This implies that there is no interaction between anything in the

cloaked region and sources in the outside domain. Outside of the cloaking region, the

radiation fields remain unchanged, as if neither the cloaking material nor any cloaked

object exists. In principle, regions (I), (I′), and (III) can be of arbitrary shapes,

although the transformation matrix Eq.(2.18) associated with irregular shapes may

be quite complicated.

The first invisibility cloak ever studied is a spherical one. Following the coordi-

nate transformation approach, and considering the coordinate transformation

r′ =
b− a
b

r + a, (2.20a)
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θ′ = θ, (2.20b)

φ′ = φ, (2.20c)

in the spherical coordinates (r, θ, φ) [55], or, equivalently

xi
′
=
b− a
b

xiδi
′

i + a
xi

r
δi
′

i , (2.21)

in Cartesian coordinates [57], it has be derived that the electric permittivity and

magnetic permeability tensors of a spherical invisibility cloak are given by

¯̄ε = εr(r)r̂r̂ + εt[θ̂θ̂ + φ̂φ̂], (2.22a)

¯̄µ = µr(r)r̂r̂ + µt[θ̂θ̂ + φ̂φ̂], (2.22b)

where

εt = µt = µ0
b

b− a
(2.22c)

are the tangential components, and

εr(r) = µr(r) = µt
(r − a)2

r2
(2.22d)

are the radial components of the permittivity and permeability, respectively, with a

and b the inner and outer radii of the spherical cloak, respectively.

The material properties for an infinite cylindrical invisibility cloak have also been

reported [56, 62, 63]. The resultant ε and µ tensors are given by

εr = µr =
r − a
r

, (2.23a)

εθ = µθ =
r

r − a
, (2.23b)

εφ = µφ =

(
b

b− a

)2
r − a
r

, (2.23c)

where a and b are the inner and outer radii of a cylinder, respectively. The invisibility
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predicted by the coordinate transformation approach has been verified by a variety of

analytical and numerical calculations for various geometries. Ray-tracing simulations

[55, 57] in the geometric optics limit have been reported for a cloaked sphere with

consistent results. Rigorous solutions to Maxwell’s equations have been reported in

the spherical case [64] and in the 2-D cylindrical case [65], confirming the cloaking

effects in both cases. Numerical simulations using the full-wave finite-element method

have been performed to study the effects of the cloaking material on the propagation

of the incident waves associated with 2-D invisibility cloaks of various shapes, such as

cylinders [62], squares [66], elliptical cylinders [67], and eccentric elliptical cylinders

[68]. In all of these numerical studies, simulated local field distribution outside of the

cloak is found to be the same as that of the incident radiation.

Materials with inhomogeneous, anisotropic, and continuously varying electric

permittivity and magnetic permeability specifications as given by Eqs.(2.19a) and

(2.19b) are not available in nature. They are also hard, if not impossible, to fabricate

using conventional materials. Fortunately, recent development of metamaterial tech-

nology [69] enables manipulations of material properties on small scales and makes it

possible to practically implement the required material specification in a discretized

fashion. 2-D cylindrical cloaking has been realized using artificially structured meta-

materials at microwave frequencies [63] and at optical frequencies with reduced cloak

material properties [70]. In the study reported in [63], ten layers of Cu films, each of

which with a proper ε and µ, were placed in a concentric arrangement. In the study

reported in [70], metal wires with varying material properties were aligned radially. In

both experiments, a reduced material property specification was used. Considerable

cloaking effects were observed in both studies, although the cloak material properties

are not perfect.
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2. Generalization of the DDA Method to Metamaterials

Due to its capability to simulate light scattering from particles with arbitrary mor-

phology, the DDA method can be another powerful tool to study the invisibility

cloak numerically. As aforementioned, however, application of the DDA formalism

has been limited to light scattering associated with dielectric particles, i.e., particles

with permeability µ = 1 and vanishing magnetic susceptibility χm = µ − 1 = 0,

since all natural scatterers of interest fall into this category. In this case, the null

magnetization M = χmH = 0 allows us to represent the scattering particle solely

by a collection of electric dipoles. For materials with nonzero magnetic susceptibil-

ities such as metamaterials, the magnetization M is non-vanishing. Therefore, as

has been reported by Lakhtakia [71], both electric and magnetic dipoles should be

included such that both electric and magnetic responses of the scattering particle to

the incident electromagnetic radiation are properly accounted for.

Following Lakhtakia’s steps, we still use a cubic array to represent the particle,

but locate both an electric and a magnetic dipole at each lattice site j in the cubic

lattice with j = 1, · · · , N running over all occupied lattice sites. As usual, each electric

dipole is characterized by the polarizability tensor ¯̄αj such that Eq.(2.1) is satisfied

with Eext,j being the electric field at position j due to electric and magnetic dipoles

at all other lattice sites and the incident radiation. Similarly, each magnetic dipole is

characterized by a magnetic susceptibility tensor ¯̄χm,j such that

Mj = ¯̄χm,jHext,j, (2.24)

where Mj is the magnetic dipole moment and Hext,j is the magnetic field at position

j due to the radiating electric and magnetic dipoles at all other lattice sites and the

incident radiation.
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For paramagnetic materials, there is an equation like the Clausius-Mossotti equa-

tion that relates the microscopic magnetic susceptibility of each magnetic dipole ¯̄χm,j

and the local macroscopic magnetic permeability ¯̄µj in the zero frequency limit kd = 0.

Similar to Eq.(2.2), the magnetic equation can be written as [6]

¯̄χ0
m,j =

3

4πn

¯̄µj − 1

¯̄µj + 2
. (2.25)

In the long-wavelength limit, kd � 1, the lattice dispersion relation (LDR) [27]

also holds for the magnetic susceptibility, giving a magnetic susceptibility at finite

frequency ¯̄χm(kd). The resultant relation is similar to Eq.(2.4a), with ¯̄α replaced by

¯̄χm and ¯̄ε replaced by ¯̄µ

¯̄χm =
¯̄χ0
m

1 + (¯̄χ0
m/d

3)(b1 + ¯̄µb2 + ¯̄µb3S)(kd)2
, (2.26)

where the parameters b1, b2, b3 and S have been given by Eqs.(2.4b) and (2.4c).

Knowing the polarizability ¯̄αj and the magnetic susceptibility ¯̄χm,j at all lattice

sites j, one can readily write down the self-consistent set of equations for electric and

magnetic dipole moments Pj and Mj (j = 1, · · · , N) as ¯̄α−1
j Pj

¯̄χ−1
m,jMj

 =

 Einc,j

Hinc,j

−∑
k 6=j

 A
(ee)
jk A

(eh)
jk

A
(he)
jk A

(hh)
jk

 ·
 Pk

Mk

 , (2.27)

where in the first term

Einc,j = E0 exp (ik · rj − iωt)

Hinc,j = H0 exp (ik · rj − iωt) (2.28)

are the electric and magnetic fields at position j due to the incident plane wave

electromagnetic radiation, with E0×H0 = k, the wave vector of the incident radiation.

For simplicity, we will always assume an incident plane wave throughout this section.
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In the second term, −A
(ee)
jk Pk and −A

(eh)
jk Mk are the contributions to the electric

field at position j due to the electric and magnetic dipoles at position k, which have

been conveniently given by Jackson in his classical textbook [6] (pp. 411 and pp.

413)

A
(ee)
jk Pk =

exp(ikrjk)

r3
jk

{
k2rjk × (rjk ×Pk) +

(1− ikrjk)
r2
jk

[
r2
jkPk − 3rjk (rjk ·Pk)

] }
, (2.29a)

A
(eh)
jk Mk =

exp(ikrjk)

r3
jk

(rjk ×Mk)
(
rjk −

1

ik

)
, (2.29b)

and −A
(he)
jk Pk and −A

(hh)
jk Mk are the contributions to the magnetic field at position

j due to the electric and magnetic dipoles at position k, given by [6]

A
(he)
jk Pk =

exp(ikrjk)

r3
jk

(rjk ×Pk)
(

1

ik
− rjk

)
, (2.30a)

A
(hh)
jk Mk =

exp(ikrjk)

r3
jk

{
k2rjk × (rjk ×Mk) +

(1− ikrjk)
r2
jk

[
r2
jkMk − 3rjk (rjk ·Mk)

] }
, (2.30b)

where rjk = rj−rk and rjk = |rjk|. It is evident here that the electric dipole moments

and magnetic dipole moments are coupled with each other.

Letting Ajk be the off-diagonal elements of A-matrices, and defining the diagonal

elements of these A-matrices as follows

A
(ee)
jj = ¯̄α−1

j , A
(eh)
jj = 0,

A
(he)
jj = 0, A

(hh)
jj = ¯̄χ−1

m,j,
(2.31)

one can reformulate Eq.(2.27) into a compact form as a set of 2N inhomogeneous
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linear complex vector equations

N∑
k=1

 A
(ee)
jk A

(eh)
jk

A
(he)
jk A

(hh)
jk

 ·
 Pk

Mk

 =

 Einc,j

Hinc,j

 . (2.32)

Here each element of the A-matrices, Ajk, is a 3 × 3 matrix, where A
(ee)
jk and A

(hh)
jk

are symmetric, while A
(eh)
jk and A

(he)
jk are anti-symmetric with respect to lattice site

indices i and j. We can still use the FFT and CCG methods used in the conventional

DDA formalism to solve for Pj’s and Mj’s in Eq.(2.32). However, the CCG algorithm

will need more iterations to converge in this case, since a 6N × 6N matrix is involved

instead of a 3N × 3N matrix.

Being generalized, the DDA formalism can be readily applied to calculations

of interaction between electromagnetic radiation and invisibility cloak with tensorial

permittivity and permeability. To validate our generalized DDA code, we first sim-

ulated the electric field in the vicinity of a cloaked sphere with a cloak described by

Eq.(2.22a). In the simulations, we chose an outer size parameter b = 8λ/2π, and two

inner size parameters a = 0.3b and 0.5b. The results for the two cases are shown

in Fig. 22(a) and Fig. 22(b), respectively. For comparison, we also show the cor-

responding field distribution associated with an uncloaked homogeneous sphere with

ε = µ = 1.21 and a = 8λ/2π in Fig. 22(c). A unit amplitude was assumed for the

incident electric field in all three cases. The plane wave is incident from the left.

A quick comparison between the cloaked and uncloaked results reveals that the

DDA calculation simulates the plane-wave fields outside of the cloaked particle and the

distorted fields in the cloaking material correctly. The same electric field distribution

associated with cloaked spheres can be found in previous studies [62, 64], where

Cummer et al. [62] presented a field distribution simulated by the finite-element

method, and Chen et al. showed the analytical results by solving Maxwell’s equations.
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Fig. 22. Electric field distribution in the vicinity of cloaked and uncloaked spheres,

with scales in unit of λ. (a) A cloaked sphere with b = 8λ/2π and a = 0.3b;

(b) A cloaked sphere with b = 8λ/2π and a = 0.5b. (c) An uncloaked homo-

geneous sphere with ε = µ = 1.21 and a = 8λ/2π. Black circles indicate the

inner and outer boundaries of the cloak, and the incident radiation propagates

from the left to the right.

Comparing the DDA simulation with these results, we found that the DDA gives

better plane-wave structure outside of the cloak than the finite-element method does.

The DDA simulation of the electric field inside the cloaked region, however, is not

exactly zero. In the a = 0.3b case, a maximum leakage of about 13% of the radiating
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field, or about 1.7% of the radiative energy, into the cloaked region is observed due to

the discretization of material properties in the DDA simulation. In the a = 0.5b case,

the maximum leakage is about 24% of the radiating field, or about 6% of the radiative

energy. This can be attributed to the fact that the inhomogeneous cloak represented

by the discrete array of dipoles is not a perfect cloak. Therefore, the cloaking effects

simulated by a DDA computation are not expected to be perfect. What is more, the

tangential component of the refractive index determined by Eq.(2.23b) could be very

large if the ratio a/b is close to 1. For example, a = 0.3b requires mt =
√
εtµt = 1.43,

which is a moderate value; while a = 0.5b requires mt = 2, which is much larger. In

the simulations, however, we used the same number of DDA dipoles, which means

that the quantity mkd is much larger in the a = 0.5b calculation. Therefore, a larger

error in this case is reasonable.

As a numerical method, the DDA is not expected to reproduce the exact zero

scattering of a cloaked object. The simulated scattering efficiencies

Qsca = Csca/(πb
2)

for the cases shown in Fig. 22 are on or below the order of 10−4 (6.13× 10−5 in case

(a) with a = 0.3b and 4.43 × 10−4 in case (b) with a = 0.5b), which are sufficiently

small to exhibit the nature of invisibility. For comparison, the scattering efficiency of

the uncloaked sphere in case (c) is Qsca = Csca/(πb
2) = 3.46. We use the outer radius

b in the calculation of Qsca as we are comparing cases with the same b. It can again

be noticed that the DDA calculations gave a better simulation of the zero scattering

for the cloak with a = 0.3b, in which case mt is smaller.

Finally, to study the capability of the DDA formalism in simulating the far

field scattering from a cloaked object, in Fig. 23 we show the simulated differential

scattering cross section P11 for a cloaked sphere with b = 5λ/2π, a = 0.2b, and various
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refractive indices in the cloaked region. The P11 for uncloaked cores are also shown for

comparison. The corresponding scattering efficiencies Qsca = Csca/(πa
2) are listed in

Table I. These results imply that the DDA formalism has its limitation in simulating

the zero scattering of cloaked object, as the simulated P11 and Qsca of the cloaked

spheres are only 3 orders lower than that of the uncloaked cores. However, it can be

noticed that as the refractive index of the cloaked region increases and the scattering

of the uncloaked core increases, the simulated scattering of the cloaked spheres stays

almost the same. This is a demonstration of the cloaking effects.
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Fig. 23. P11 for a cloaked sphere with b = 5λ/2π and a = 0.2b. Refractive indices for

the cloaked region n = 1.3, 1.5 and 1.7 were simulated. Dash lines are P11’s

for corresponding uncloaked spheres.

3. Invisibility Cloak for Irregular Particles

With the generalized DDA formalism ready to use, we now explore invisibility cloaks

for particles with irregular shapes. We will determine the ε and µ tensors for invis-

ibility cloaks of various morphologies using the coordinate transformation approach,

then simulate the interaction between a plane wave incident radiation and such cloaks
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Table I. Simulated scattering efficiencies of cloaked spheres and the corresponding un-

cloaked cores with various refractive indices n.

n = 1.3 n = 1.5 n = 1.7

Cloaked 1.12× 10−4 1.20× 10−4 1.27× 10−4

Uncloaked 0.77× 10−1 2.15× 10−1 4.12× 10−1

to confirm the cloaking effect.

The coordinate transformation used in the studies of spherical cloaks [55, 57] can

be readily generalized to ellipsoids. For an ellipsoid with its semi-axes lying along x-,

y-, and z-directions with lengths α1b, α2b, and α3b, respectively, its outer boundary

is described by (
x1

α1b

)2

+

(
x2

α2b

)2

+

(
x3

α3b

)2

= 1, (2.33)

where α1, α2, and α3 are positive numbers characterizing the aspect ratio of the

ellipsoid, and do not transform as vectors. Inside this boundary, we start with the

coordinate transformation for the spherical cloak Eq.(2.21),

xi
′
=
b− a
b

xiδi
′

i + a
xi

r
δi
′

i , (a < b) (2.34)

where δi
′
i is the Kronecker tensor, r =

√
(x1)2 + (x2)2 + (x3)2 is the distance between

the point and the origin. For an ellipsoid, we can still use this coordinate transfor-

mation. But it is necessary to re-define r as a scaled distance

r =

 3∑
i=1

(
xi

αi

)2
1/2

. (2.35)

This definition guarantees that r = b for any point xi on the outer boundary. There-

fore, xi
′
= xi, i.e., the outer boundary is not changed by the transformation.

By writing the coordinate transformation in the fashion of Eq.(2.34), we have a
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singularity at the origin. Therefore, to investigate how the origin transforms, we need

to avoid the singularity and study an infinitesimal ellipsoid bounded by the surface(
x1

α1b

)2

+

(
x2

α2b

)2

+

(
x3

α3b

)2

= ε2, (2.36)

where ε is a small positive number. In the limit when ε approaches 0, this surface

becomes the origin. A little algebra will show that this surface transforms to a surface(
x1

α1a

)2

+

(
x2

α2a

)2

+

(
x3

α3a

)2

= 1, (2.37)

which is the boundary of a smaller concentric ellipsoid. Therefore, the coordinate

transformation determined by Eqs.(2.34) and (2.35) transforms a closed ellipsoid with

lengths of the outer semi-axes α1b, α2b, and α3b into an ellipsoidal shell with the same

lengths of outer semi-axes and lengths of inner semi-axes α1a, α2a, and α3a. For the

external region, we assume the identity transformation. In the following discussions,

all equations apply only to the internal region.

In Fig. 24 we show the application of the transformation Eq.(2.34) to a closed

ellipsoidal region. The ellipsoid shown in Fig. 24 has a size parameter of x = 8, with

α1 = α2 = 1, and α3 = 2, i.e., b = 21/38λ/(2π). This ellipsoid is practically a prolate

spheroid with its axis of symmetry lying along the z direction.

Figure 24(a) shows the ellipsoidal region, along with Cartesian coordinate grid,

before the coordinate transformation. As we assume a vacuum everywhere, the coor-

dinate grid lines can also be interpreted as light rays and wave fronts (loci of points

having the same phase) if the incident plane wave propagates in the z-direction. A

coordinate transformation Eq.(2.34) with a = 0.5b transforms this closed region into

the cloaking region shown in Fig. 24(b). The grid lines in the region transform

accordingly, and the transformed grid lines, which are geodesics in the transformed

coordinates, can be interpreted as light rays and wave fronts in the presence of the
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Fig. 24. Application of the coordinate transformation to a spheroidal region subject

to a plane-wave radiation propagating in the z-direction. Shown in the figures

is the situation in the x-z plane, with the x- and z-axes as depicted in Fig.

(a). The scales are in unit of λ. Figure (a) shows the closed region (green

region) in Cartesian coordinates, with vacuum both inside and outside. The

light rays (dark red lines) and wave fronts (dark blue lines) of the incident

radiation are also shown. Figure (b) shows the transformed region according

to the transformation Eq.(2.34) with a = 0.5b, with the material properties in

the cloaking region determined by Eq.(2.19a) and Eq.(2.19b). The light rays

and wave fronts transform accordingly.

cloak. As expected, the radiation field never penetrates into the cloaked region. Ev-

idently, the light rays and wave fronts beyond the outer boundary remain the same,

as an identity transformation is applied in this region.

A nice feature of the coordinate transformation approach is that it does not

depend on the orientation of the incident radiation beam with respect to the cloak.

Actually, it works for incident radiance from an arbitrary direction. We just need to

do the coordinate transformation in the same Cartesian coordinates spanned by the

three semi-axes of the ellipsoid. Figure 25 shows the transformation applied to the

same ellipsoid, but subject to an incident plane wave in the x-z plane making an angle

of θ = 30◦ to the z-axis. Here, a rotated coordinate grid represents the light rays and

the wave fronts. Again, it is evident that the light rays and wave fronts inside the
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boundary are transformed accordingly such that the cloaked region is never reached.
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Fig. 25. Same as Fig. 24, but for an incident plane wave in the x-z plane making an

angle of θ = 30◦ to the z-axis.

To make sure the above prediction by the coordinate transformation approach is

true, we turn to DDA simulations, which require material properties of an ellipsoidal

cloak. The εij and µij in the cloaking region can be determined by substituting

Eqs.(2.34) and (2.35) into Eq.(2.18), which leads to a transformation matrix

Λi′

j =
r′

r
δi
′

j −
axixkδi

′
i δkj

αj2r3
(2.38)

in Cartesian coordinate, where the Einstein summation convention has been assumed

for indices i and k. For the vacuum, εij = µij = δij. Therefore, a combination of

Eqs.(2.17) and (2.38) gives the material properties in the cloaking region as follows:

εij = µij =
b

b− a

δij − xixj
 a

r3

(
αi
−2 + αj

−2
)
− a2

r̃2r4

3∑
k=1

(
x̃k
)2

αk4


 . (2.39)

As we take the material interpretation, we have dropped all primes and relabeled the

variables as follows: xi → x̃i, r → r̃, xi
′ → xi, and r′ → r, with r given by Eq.(2.35),

r̃ and x̃i given by

x̃i =
xi

b−a
b

+ a
r

and r̃ =
r − a
b− a

· b. (2.40)
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Therefore, we have obtained the permittivity and permeability tensors of an ellipsoidal

cloak. In the special case of spheres, αi = 1, Eq.(2.39) reduces to the simple results

described by Eqs.(2.22a) and (2.22b).

Next we turn to a cuboidal invisibility cloak. Rahm et al. [66] have studied the

application of the coordinate transformation approach to 2-D squares. The trans-

formation they used can be easily generalized to 3-D cases. This transformation,

however, involves discontinuities in the variance of material properties of the cloak.

We will present material properties of cloaks for rounded-cuboids with arbitrary as-

pect ratio, determined by an alternative coordinate transformation. In our approach,

discontinuities are not involved.

We seek the possibility of representing a cuboid approximately by a superellipsoid

[72, 73], bounded by the surface[(
x

α1b

)2/e

+
(
y

α2b

)2/e
]e/m

+
(
z

α3b

)2/m

= 1, (2.41)

which has been well known in computer graphics and widely used to model a wide

range of shapes, including rounded-cubes and rounded-cylinders [72]. Wriedt [73]

introduced this shape to the light scattering community in his study of the T-Matrix

method.

To approximate a cuboid, we let e = m = 2/n. Therefore, Eq.(2.41) becomes(
x1

α1b

)n
+

(
x2

α2b

)n
+

(
x3

α3b

)n
= 1. (2.42)

Eq.(2.42) is a direct generalization of Eq.(2.33) by replacing the exponent 2 with an

integer n. We call this shape the order-n-cuboid for convenience. As can be seen

in Fig. 26(a), an order-n-cuboid approaches a cube as the exponent n increases.

In Fig. 26(b) we show the scattering pattern associated with an order-10-cuboidal

scattering particle with α1 = α2 = α3 in comparison with that associated with a
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cubical scattering particle with the same size parameter. As can be seen in this

figure, an order-n-cuboid with n = 10 is already a good approximation of a cuboid

as far as light scattering is concerned.
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Fig. 26. (a) Approximations of a cube by order-n-cuboids with various n values,

and α1 = α1 = α3. (b) Comparison of phase functions pertaining to an

order-10-cuboidal scattering particle with α1 = α2 = 1, α3 = 2 and to a cu-

bical scattering particle. Both particles are homogeneous and have the same

size parameter x = 4 and the same permittivity ε = 1.44.

To determine the material property tensors of an order-n-cuboidal cloak, we can

still use the coordinate transformation Eq.(2.34), and redefine the scaled magnitude

r again as

r =

[
3∑
i=1

(
xi

αi

)n]1/n

. (2.43)

It can be easily verified that the outer boundary transforms to itself and the origin

transforms to an inner boundary with b replaced by a.

Substituting Eqs.(2.34) and (2.43) into Eq.(2.18), we obtain the transformation

matrix as follows:

Λi′

j =
r′

r
δi
′

j −
axi

(
xk
)n−1

δi
′
i δkj

αjnrn+1
, (2.44)

and a combination of Eqs.(2.17) and (2.44) gives the permittivity and permeability
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tensors for an order-n-cuboidal cloak

εij = µij

=
b

b− a

[
δij − xixj × a

r3r̃n−2

(x̃i)
n−2

αin
+

(x̃j)
n−2

αjn

− a2

r̃2(n−1)r4

3∑
k=1

(x̃k)
2n−2

αk2n

], (2.45)

with r given by Eq.(2.43), r̃ and x̃i given by Eq.(2.40).

In Fig. 27, we show a rounded cuboidal cloak, approximated by an order-10-

cuboid with α1 = α2 = 1, α3 = 2, and size parameter x = 8. Shown in the figure

is the situation in the x-z plane. The light rays and wave fronts in the vicinity

of the cloak predicted by the coordinate transformation are shown. Two particle

orientations were considered. Again, the light rays and wave fronts deviate from the

cloaked region. Therefore, any object in the cloaked region is hidden from outside

observers.
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Fig. 27. Same as Fig. 24(b), but for a rounded cuboidal cloak approximated by an

order-10-cuboid with x = 8, a = 0.5b, α1 = α2 = 1, and α3 = 2, subject

to an incident plane wave propagating in various directions. (a) The incident

plane wave is along the z-axis; (b) The incident plane wave is in the x-z plane,

making an angle of θ = 30◦ to the z-axis.

To approximate an elliptic cylinder of finite height, we start with Eq.(2.41), and



68

let e = 1 and m = 2/n. Therefore, Eq.(2.41) becomes

( x1

α1b

)2

+

(
x2

α2b

)2
n/2 +

(
x3

α3b

)n
= 1, (2.46)

which we will call an order-n-cylinder. As Fig. 28(a) shows, an order-n-cylinder

approaches a cylinder as the exponent n increases. The scattering patterns shown in

Fig. 28(b) imply that an order-n-cylinder with n = 10 gives a good approximation

to a cylinder as far as light scattering is concerned.
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Fig. 28. (a) Approximations of a cylinder by order-n-cylinders with various n values,

and α1 = α1 = α3. (b) Same as Fig. 26(b), but for an order-10-cylindrical

scattering particle of the same size parameter and aspect ratio, and a cylin-

drical scattering particle.

We can again use the same coordinate transformation Eq.(2.34) to determine

material property tensors of an order-n-cylindrical cloak by redefining the scaled

magnitude r as

r =


(x1

α1

)2

+

(
x2

α2

)2
n/2 +

(
x3

α3

)n
1/n

. (2.47)

Again, the outer boundary transforms to itself and the origin transforms to an
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inner boundary with b replaced by a. The corresponding transformation matrix will

then be

Λi′

j =
r′

r
δi
′

j −
a

rn+1
xiδi

′

i

xkδkjρn−2

αj2

(
δj1 + δj2

)
+

(xk)
n−1

δkj
αj2

δj3

 , (2.48)

and the permittivity/permeability tensor for an order-n-cylindrical cloak is a hybrid

of the corresponding tensors for an ellipsoidal cloak and for an order-n-cuboidal cloak,

given by

εij = µij

=
b

b− a

[
δij − xixj ×(

a

r3r̃n−2

[
ρn−2

(
1

αi2

(
δi1 + δi2

)
+

1

αj2

(
δj1 + δj2

))
+

(x̃i)n−2

αin
δi3 +

(x̃j)n−2

αjn
δj3

]
−

a2

r̃2(n−1)r4

[
ρ2n−4

(
(x̃1)

2

α1
4

+
(x̃2)

2

α2
4

)
+

(x̃3)
2n−2

α3
2n

])]
, (2.49)

with r given by Eq.(2.47), r̃ and x̃i given by Eq.(2.40).

Note that when z = 0, Eq.(2.46) and Eq.(2.33) are identical, and Eq.(2.47) and

Eq.(2.35) are identical; When x = 0 or y = 0, Eq.(2.46) and Eq.(2.42) are identical,

and Eq.(2.47) and Eq.(2.43) are identical. Namely, for an order-n-cylindrical cloak,

the wave fronts and light rays behave the same as that associated with an ellipsoidal

cloak in the x-y plane (similar to the situation shown in Fig. 24(b) and Fig. 25(b)),

and the same as that associated with an order-n-spherical cloak in the x-z plane and

the y-z plane (same as the situation shown in Fig. 27).

To conclude this section, in Fig. 29 we present 3-D views of light rays and wave

fronts associated with the three irregular invisibility cloaks we discussed.
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Fig. 29. 3-D views of light rays and wave fronts associated with the three irregular

invisibility cloaks: (a) ellipsoid, (b) rounded-cuboid, and (c) rounded cylinder.

4. DDA Simulations of Irregular Invisibility Cloaks

To confirm the predictions given by these coordinate transformations, we simulated

the light scattering pertaining to spheroidal cloaks, rounded cuboidal cloaks, and

rounded cylindrical cloaks with the permittivity and permeability tensors given by

Eq.(2.39), Eq.(2.45), and Eq.(2.49), respectively, using the DDA formalism discussed

in Section II.2. The situations shown in Fig. 24(b), Fig. 25(b), and Fig. 27 are

considered. Figure 30 shows the simulated electric-field distribution in the vicinity of

an ellipsoidal cloak. DDA simulations for electric field distribution in the vicinity of

a rounded cuboidal cloak are presented in Fig. 31. Both figures show the situation

in the x-z plane. The DDA simulations in the x-z plane for a rounded cylindrical

cloak look similar to Fig. 31. It can be noticed, in all three cases, that the plane-
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wave feature outside of the cloak is perfectly kept. The field in the cloaking region is

compressed into patterns that are consistent with the predictions of the coordinate

transformation approach as can be seen in Fig. 24(b), Fig. 25(b), and Fig. 27.

The field in the cloaked region is close to 0 with a leakage of about 10% of the

radiating field, or about 1% of the radiative energy, into the cloaked region due to

the discretization of material properties in the DDA calculations.
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Fig. 30. The DDA simulations of the electric-field distribution in the vicinity of an

ellipsoidal cloak in the x-z plane.
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Fig. 31. The DDA simulations of the electric-field distribution in the vicinity of an

order-10-cuboidal cloak in the x-z plane.

The simulated far field scattering is similar to that in the spherical case. In our
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calculations for the three cloaks with size parameter x = 8, cloak parameter a = 0.5b,

and two particle orientations, all simulated scattering efficiencies Qsca = Csca/(πa
2
eff)

are on the order of 10−3, which is 3 orders lower than that for a regular dielectric

particle. The simulated scattering efficiencies are on the order of 10−5 for smaller

cloaks (x = 5) applied to smaller cloaked regions (a = 0.3b).
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CHAPTER III

THE NATURE OF POLARIZED LIGHT IN DEEP OCEANS

In this chapter, we switch from single scattering to multiple scattering, specifically

multiple scattering in deep oceans.

Generally, the polarized light fields described by the radiance and the polarization

of light within a scattering and absorbing ocean depend not only on the optical

properties of the medium, but also on the incident polarized light fields. The light

fields vary as the optical depth from the surface increases. These complicated fields,

however, become asymptotic at a considerable optical depth below the surface, where

the photons have made enough collisions before they hit the detector, such that they

have lost memory of their initial state. Below a critical depth, patterns of the radiance

and the polarization depend only on the optical properties of the ocean and not on the

incident light field; The radiance in a given direction decreases exponentially as e−kτ

with k the diffuse attenuation coefficient and τ the optical depth; The radiance and

the polarization are azimuthally symmetric, and their dependence on the scattering

nadir angle θ is independent of the optical depth. The region below this depth is

called the diffusion regime (or the asymptotic regime).

The asymptotic light field underwater was first studied by Poole [74] for a medium

with isotropic scattering assuming unpolarized light. Preisendorfer [75] indicated the

possibility of extending the asymptotic field to a polarized case. Kattawar and Plass

[76] have studied the integral equation for the asymptotic radiance and polarization,

and have derived closed form solutions for scattering described by the Rayleigh phase

matrix and numerical solutions for scattering described by other phase matrices.

The rate at which the unpolarized underwater light field approaches its asymp-

totic form has been thoroughly studied by Mobley [77] using the invariant embedding
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method. In this study, the radiative transfer of a scalar light field was simulated

with various values of the single scattering albedo ω0 and various incident radiance

distributions. It has been reported that for a point sun at a fixed zenith angle, and

an ocean described by a Petzold scattering phase function and an albedo of ω0 = 0.8,

the k-functions (the local decay rates of the radiance) all converge to within ±0.2%

of the asymptotic value. And the larger ω0 is, the more quickly the k-functions reach

their asymptotic value.

In this chapter, we will investigate the asymptotic nature of the radiance and po-

larization in the underwater light field in an atmosphere-ocean system using a vector

radiative transfer code. We will study how quickly the radiance and the polarization

approach their asymptotic forms. We will find out how deep the asymptotic regime

is in water bodies with various optical properties, e.g., single scattering albedo and

phase function. Finally, we will discuss effects of wavelength, Raman scattering, and

surface waves.

A. Methods to Solve Asymptotic Radiance

1. The Integral Equation for Asymptotic Radiance

We start with the scalar case, where the light field in the medium is described only

by the radiance I(µ). As has been shown by van de Hulst [78], the integral equation

that describes the asymptotic radiance is

(1 + kµ)I(µ) =
1

2
ω0

∫ 1

−1
h(µ, µ′)I(µ′)dµ′, (3.1)
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where k is the diffusion exponent, µ = cos θ with θ as the scattering angle, ω0 is the

single scattering albedo, and h(µ, µ′) is the redistribution function defined by

h(µ, µ′) =
1

2π

∫ 2π

0
Φ
[
µµ′ + (1− µ2)1/2(1− µ′2)1/2 cos(φ− φ′)

]
dφ, (3.2)

where Φ is the phase function for single scattering.

For some simple phase functions, e.g., the Rayleigh phase function, Eq.(3.1)

can be solved analytically [76]. While for most phase functions with closed form

expressions, and for those phase functions only available in tabulated form, such as

the Petzold phase function, an analytical solution of Eq.(3.1) has not been achieved.

In these cases, we discretize the equation and write the integral as a summation using

the quadrature formulation

µ → µi,

µ′ → µj,∫ 1

−1
h(µ, µ′)I(µ′)dµ′ →

N∑
j=1

h(µi, µj)I(µj)wj, (3.3)

where µi and µj are abscissas for the Gauss-Legendre quadrature over the interval

[−1, 1], wj is the corresponding weight, and N is the order of the quadrature. With

this discretization, Eq.(3.1) can therefore be rewritten in a matrix form

h̃ · I = kI, (3.4)

where h̃ is an N by N matrix, and I is an N -component column vector, with elements

h̃ij =
1

µi

(
1

2
ω0h(µi, µj)wj − δij

)
,

Ij = I(µj). (3.5)

The solution to this eigensystem gives us the value of k as well as a discretized
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distribution of the radiance Pj.

To include the polarization, we use the {I,Q, U, V } Stokes vector representation.

We have both U = 0 and V = 0 in the diffusion regime since the asymptotic solution

is independent of the azimuthal angle. Therefore we can introduce a two-component

representation as follows,

I(µ) →

 I(µ)

Q(µ)

 ,

h(µ, µ′) →

 h11(µ, µ′) h12(µ, µ′)

h21(µ, µ′) h22(µ, µ′)

 . (3.6)

Using this notation, Eq.(3.1) becomes

(1 + kµ)

 I(µ)

Q(µ)

 =
1

2
ω0

∫ 1

−1

 h11(µ, µ′) h12(µ, µ′)

h21(µ, µ′) h22(µ, µ′)

 ·
 I(µ)

Q(µ)

 dµ′. (3.7)

The discretized form of Eq.(3.7) can also be easily obtained using the quadrature

formulation.

Kattawar and Plass have used the quadrature formulation to study asymptotic

radiance and polarization for phase functions with closed form expressions, such as

haze L and C3 cloud [76]. A twenty-one-point Gauss-Lobatto quadrature was used

in their calculation.

In this study, we developed a Fortran code to solve the above eigensystem for

phase functions that have closed-form expressions or only have tabulated values,

utilizing the LAPACK libraries [79]. We have been able to solve the eigensystem using

a Gauss-Legendre quadrature of as high an order as 1024 points.
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2. The Multi-Component Approach

A fast code RayXP [80] has been developed by Zege et al. to simulate the radia-

tive transfer of polarized light in a stratified plane-parallel atmosphere-ocean system.

This code uses a combination of analytical and numerical techniques. The most im-

portant technique used in this code is the multi-component approach (MCA), which

tremendously reduces the time consumption of simulations involving phase functions

with strong forward peaks. In the two-component version of the MCA, such a phase

function is decomposed into two components

p(µ) = A1p
(f)(µ) + (1− A1)p(d)(µ), (3.8)

where the first term gives the forward peak in the small angle region and the second

term gives the more diffuse remaining part of the phase function. The small-angle

part, p(f)(µ), is non-zero only when µ ≥ η,

p(f)(µ) =
1

A1

{
p(µ)− p(η), (µ ≥ η)

0, (µ < η)
, (3.9)

where A1 = 1
2

∫ 1
η [p(µ)−p(η)]dµ, and η = cos βc with βc ≤ 10◦−20◦ being an arbitrary

truncation angle. By this means, the radiative transfer equation associated with a

strongly anisotropic phase function is divided into a small-angle part and a diffuse

part, where the strong forward peak is limited within the small-angle part. The radia-

tive transfer associated with the small-angle part is solved assuming the small-angle

diffusion approximation [81]. Therefore, what is left for us to solve is the radiative

transfer equation associated with a fairly smooth phase function, which can be con-

veniently solved using the conventional adding-doubling method, where the reflection

and transmission matrices for each homogeneous layer are computed from matrices

for an element layer using the doubling procedure, and the resulting reflection and



78

transmission matrices for the whole inhomogeneous layer are computed from matrices

for all sub-layers using the adding procedure. Following the standard procedure, the

elements of Mueller matrix are expanded into series of Generalized Spherical Func-

tions (GSF) with a finite number M of terms; the phase matrix, the reflection and

transmission matrices are all expressed as Fourier series over the azimuthal angle φ.

By treating the strong forward peak specifically, precise results could be achieved

with much less run time. For the MCA scheme to be self-consistent, it is incumbent

that the results be independent of the truncation angle βc.

Polarized underwater light field computed by the MCA at various optical depths

has been compared [82] with results given by the Monte Carlo method, which has been

proven to give correct results. These comparisons showed that, for an atmosphere-

ocean system where the ocean is described by a Henyey-Greenstein (H-G) phase

function of g = 0.75 and has an optical thickness of τ = 1, the MCA gives accurate

results despite some minor discrepancies at a few scattering angles, however, the MCA

is orders of magnitude faster than the Monte Carlo method.

Due to its fast computing time and satisfactory accuracy, the multi-component

approach is capable of calculating radiance and polarization at optical depths in the

range of the asymptotic regime. Thus the MCA provides an alternative method to

compute the asymptotic radiance and polarization. Moreover, this method can show

us how the light fields approach the asymptotic form as the optical depth increases.

Before we can use the MCA to study the asymptotic radiance, however, it is necessary

to investigate the accuracy of this method for an atmosphere-ocean system where the

ocean is described by a strong anisotropic phase function (g > 0.75) and/or has a

large optical thickness (τ > 1).
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3. Applicability and Calibration of the MCA

To explore the applicability of the multi-component approach in extreme conditions,

we simulated the radiative transfer process in an atmosphere-ocean system where

the ocean has a large optical thickness and strong anisotropic hydrosol scattering

phase function. Our simulations reveal that for H-G phase functions with g greater

than 0.8, the MCA fails to give self-consistent results at large optical depths. The

computed radiance and polarization show appreciable dependence on the truncation

angle βc. To resolve this issue, we compared the MCA results at a sufficiently large

optical depth with the asymptotic radiance and polarization computed by the integral

equation method. This comparison can tell us which truncation angle gives the best

asymptotic results, by which means we can “calibrate” the MCA method.

In our comparisons, we used three scattering phase functions: (a) an H-G phase

function with g = 0.99; (b) an H-G phase function with g = 0.995; and (c) the Petzold

phase function, a real measurement off the California coast [83], with an asymmetry

factor of approximately g = 0.92. Monte Carlo simulations using this phase function

have been performed, and agreement between the Monte Carlo computations and

actual observations in the Mediterranean Sea have been reported [84]. In cases (a)

and (b), all components of the phase matrix other than P11 are determined by the

reduced Rayleigh phase matrix. In case (c), a reduced elastic fluctuation scattering

matrix [84] with depolarization ratio ρ = 0.047 was used to account for the asymmetry

of the ocean polarizability tensor.

Although vertical changes in the optical properties of the ocean have been re-

ported, in these comparisons we assumed a semi-infinite ocean with constant optical

properties for simplicity. The ocean has a refractive index of n = 1.338, a single scat-

tering albedo of ω0 = 0.5, and is infinitely deep. The atmosphere was described by
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the Rayleigh phase matrix, with an optical thickness τ = 0.15 and a single scattering

albedo ω0 = 1. A smooth surface was assumed in the simulation. The detector was

located at optical depth τ = 100 down from the surface. Through testing we have

verified that the light fields do not change any more beyond this optical depth. The

radiance given by the MCA is normalized such that

∫ 1

−1
p(µ)dµ = 2. (3.10)

Comparisons of the results given by both MCA and IEM are shown in Fig. 32. In

all calculations, we define the scattering nadir angle θ such that θ = 0 (µ = 1)

corresponds to the light traveling directly downward.

It is evident from Fig. 32 that the MCA gives accurate results at large optical

depth τ = 100 for phase functions with as large an asymmetry factor as g = 0.995,

provided that an appropriate truncation angle βc was used in the MCA computation.

The value of βc may vary for different phase functions. Therefore, to obtain correct

results for strong anisotropic phase functions using the MCA method, it is necessary

to calibrate the MCA to find out the truncation angle that worked best for the specific

phase function.

To validate the MCA method, we also compared the simulated radiance and

degree of polarization with in situ measurements made in 1971 in the Mediterranean

Sea [84]. In our simulations, we chose the same parameters as used in the previous

Monte Carlo calculations [84]. Again the Petzold phase function was used as the

hydrosol scattering function. The resultant radiance and degree of polarization at

two sites, J2A and A2, are shown in Fig. 33. It turns out that there is remarkably

good agreement between simulated results given by the MCA method and in situ

measurements.
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(a) H-G with g = 0.99 (b) H-G with g = 0.995 (c) Petzold

Fig. 32. Comparisons of the asymptotic radiance and polarization given by the MCA

and the IEM, for (a) an H-G phase function with g = 0.99, (b) an H-G phase

function with g = 0.995, and (c) the Petzold phase function with g = 0.92.

A single scattering albedo ω0 = 0.5 was assumed. In the MCA computation,

various βc were used. βc = 4◦, 5◦, and 10◦ give the best agreement for the

three cases, respectively.

B. Numerical Results

1. The Polarized Underwater Light Fields

Having been calibrated, the MCA is capable of studying the asymptotic nature of

the polarized underwater light fields. First of all, we need to get an idea of how the

underwater light fields change as the optical depth increases. Shown in Fig. 34 is the

underwater patterns of the Stokes parameters I,Q, U , as well as the degree of linear



82

-180 -120 -60 0 60 120 180
10-5

10-4

10-3

10-2

10-1

100

-180 -120 -60 0 60 120 180
10-5

10-4

10-3

10-2

10-1

 Measurements
 Simulation

 

 

R
ad

ia
nc

e

Nadir angle (deg.)
(a)

 Measurements
 Simulation

 

 

R
ad

ia
nc

e

Nadir angle (deg.)

(a)

(b)

-180 -120 -60 0 60 120 180
0.0

0.1

0.2

0.3

0.4

0.5

0.6

-180 -120 -60 0 60 120 180
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

 Measurements
 Simulation

 

 

D
eg

re
e 

of
 p

ol
ar

iz
at

io
n

Nadir angle (deg.)

(a)

 Measurements
 Simulation

 

 

D
eg

re
e 

of
 p

ol
ar

iz
at

io
n

Nadir angle (deg.)

(b)

Fig. 33. Comparison of the measured (solid dots) and simulated (curves) radiance and

degree of polarization at two sites, (a) J2A with solar zenith angle θs = 34◦

and physical depth z = 50 m, and (b) A2 with solar zenith angle θs = 21◦

and physical depth z = 100 m.

polarization P =
√
Q2 + U2/I, at selected optical depths for a unit solar spectral

irradiance 1 W/(m2nm). The computed radiance I is shown in units of W/(m2nm).

The Petzold phase function was used for the ocean, and a single scattering albedo

ω0 = 0.9 was assumed. The solar zenith angle was θs = 30◦.

Figure 34 shows that as the optical depth increases, all I,Q, U , and P approach

asymptotic and azimuthal-independent forms. It can also be noticed that I becomes

asymptotic faster than Q,U , and P .

Before going further, it is necessary to have an idea of the relation between

the “optical depth” τ , mostly used by physicists, and the “physical depth” z, mostly
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Fig. 34. Underwater Stokes parameters I,Q, U and the degree of linear polarization

P at selected optical depths. The Petzold phase function was used for the

ocean, and a single scattering albedo ω0 = 0.9 was assumed.

used by oceanographers. In the radiative transfer equation, what really matters is the

optical depth, while the real-world measurements are in terms of the physical depth,

which is related to the optical depth by z = τ/K, with K the extinction coefficient

or the attenuation coefficient. The attenuation coefficient varies substantially in the

ocean, and the correspondence between the optical depth and the physical depth vary

accordingly. Assuming a homogeneous water body with attenuation coefficients as

measured at various locations [84, 85, 86, 87, 88], the corresponding physical depths

are shown in Fig. 35.

To quantitatively study the underwater light fields as we approach the asymptotic
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Fig. 35. Physical depth z versus the corresponding optical depth τ for attenuation

coefficients measured at various locations.

regime, we show the radiance and polarization patterns in the principal plane at

selected optical depths in Fig. 36. In the principal plane, U = V = 0. Therefore, the

degree of polarization is defined as P = −Q/I. For comparison, the corresponding

asymptotic radiance and polarization patterns are also shown in gray dashed lines. We

assumed a unit incident solar spectral irradiance again, and the underwater radiance

is in units of W/(m2sr·nm). The asymptotic radiance pattern is normalized to have

the same value at nadir angle 0◦ as the computed radiance patterns at each optical

depth.

As can be seen in Fig. 36(a), for optical depths τ < 10, there is a radiance

maximum at the scattering nadir angle θrad = 22◦, which coincides with the directly

refracted solar beam at 21.94◦. As the detector moves deeper, θrad starts to move

and will finally approach 0◦. A visual comparison of this figure suggests that the

radiance at τ = 50 is almost identical to the asymptotic form. Figure 36(b) shows

that in water where τ ≤ 20, there is a local polarization minimum at the nadir angle
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Fig. 36. Underwater radiance and degree of polarization patterns in the principal

plane, computed from the MCA method at selected optical depths. The cor-

responding asymptotic radiance and polarization computed from the integral

equation method are also shown in gray dashed curves for comparison. The

Petzold phase function was used for the ocean, and a single scattering albedo

ω0 = 0.9 was assumed.

θpol = 22◦, which will also move to 0◦. At τ = 50, the polarization pattern is very

close to the asymptotic form. Since visual comparison could not provide us with a

precise asymptotic depth, we use the nadir angles θrad and θpol as indicators for the

asymptotic depths of the underwater radiance and polarization. When θrad and θpol

become 0◦, we say that we have reached the asymptotic regimes for the underwater

radiance and polarization, respectively.

We then show the movement of θrad and θpol as a function of the optical depth

τ in Fig. 37(a). Results for two cases, solar zenith angles θs = 30◦ and θs = 60◦,

are shown here. What is more, since the light in the ocean attenuates exponentially

as it propagates downward, it is possible that the radiance has become too small to
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be detected before the light field becomes asymptotic, in which case the asymptotic

regime will be out of the range of any practical experimental measurement. Therefore,

it is also important to show θrad and θpol as function of the spectral downward plane

irradiance, Ed =
∫ 2π

0 dφ
∫ π/2

0 dµ|µ|p(µ, φ), as the detector moves downward, which is

shown in Fig. 37(b).
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Fig. 37. Movement of θrad and θpol as the optical depth increases and the downward

plane irradiance decreases. The Petzold phase function was used for the ocean,

and a single scattering albedo ω0 = 0.9 was assumed. Two solar zenith angles

θs = 30◦ (curves with solid symbols) and θs = 60◦ (curves with open symbols)

are shown.

Figure 37(a) shows that when θs = 30◦, θrad starts to move at τ = 12.5 and

becomes 0◦ at τ = 60, which will be defined to be the top of the asymptotic regime

(TAR) for the radiance; and θpol starts to move at τ = 17.5◦ and becomes 0◦ at

τ = 70, the TAR for the polarization. When θs = 60◦, θrad and θpol start to move

at τ = 7.5◦ and τ = 12.5◦, respectively, and become 0◦ at the same optical depths

as before. It is interesting to note that, as the optical depth increases, the radiance
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reaches its asymptotic form more quickly than does the polarization. Therefore, the

TAR for the polarization is also the TAR for the polarized light fields. These results

also verify that the TAR’s are independent of the incident solar zenith angle.

In Fig. 37(b), it can be found that at the TAR for the polarized light field, the

downward plane irradiance Ed is on the order of 10−6 W/(m2nm) for a unit solar

spectral irradiance. Remember that the solar spectral irradiance around 500 nm is

roughly 2 W/(m2nm), therefore the irradiance at the TAR in this case is sufficient to

be detected.

2. Single Scattering Albedo Effects

The single scattering albedo in real oceanic waters varies a lot. To understand the ef-

fects of the single scattering albedo to the TARs, the same simulations were repeated,

but for an ocean with a smaller single scattering albedo ω0 = 0.5. The results are

shown in Fig. 38.
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Fig. 38. Same as Fig. 37, but with a single scattering albedo of ω0 = 0.5 for the

ocean.
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As can be seen in Fig. 38, for a smaller single scattering albedo ω0 = 0.5 the

TAR for the polarized light field is at optical depth τ = 100, which is a little larger

than before. However, at this depth we only have a downward plane irradiance of

10−27 W/(m2nm), which is far too small to be detected. This is reasonable since for

a smaller ω0, the photons are more likely to be absorbed rather than being scattered

by the scattering particles. Therefore, it needs more multiple scattering, i.e., larger

optical depth, for the light fields to reach the asymptotic forms, and the radiance

attenuates more quickly.

Shown in Fig. 39 are the optical depth of the TAR and the radiance maximum at

the TAR for the underwater radiance and polarization for a homogeneous ocean with

ω0 varying between 0.5 and 0.9. This is the range in which ω0 varies for wavelengths

from 400 nm to 600 nm according to the Case 1 water model [77, 89]. The Petzold

phase function was used in these simulations.
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Fig. 39. (a) The optical depth of the TAR and (b) the spectral downward plane

irradiance Ed at the TAR for the radiance and polarization, as ω0 varies from

0.5 to 0.9. A unit solar spectral irradiance was assumed.
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Figure 39(a) shows that, for a homogeneous water body with ω0 ≥ 0.8, the TAR

for the radiance is approximately at optical depth τ = 60, and the TAR for the

polarization is approximately at τ = 70. One can also see from Fig. 39(b) that Ed

at the TAR decreases exponentially as ω0 decreases. When ω0 ≥ 0.8, Ed at the TAR

for the polarized light fields could be on the order of 10−9 W/(m2nm), which is still

sufficient to be detected. However, when ω0 < 0.8, there are far too few photons at

this depth to give a meaningful measurement of irradiance.

3. Phase Function Effects

We next wanted to study how the asymmetry of the ocean phase function would

affect the asymptotic light fields. Here we used the Fournier-Forand (F-F) phase

function [90, 91], which is derived for an ensemble of hydrosol particles that have a

hyperbolic (Junge-type) particle size distribution. The two-parameter analytic F-F

phase function is determined by n, the refractive index of scattering particles relative

to water and ν, a Junge parameter in the size distribution of hydrosol particles, as

p(µ) =
A(1 + µ2)

(1− δ)2δw

{
[w(1− δ)− 1 + δw] +

2

1− µ
[
1− δw+1 − (1 + w)(1− δ)

]}
,

(3.11)

where A is a normalization factor and

w =
3− ν

2
, δ =

2(1− µ)

3(n− 1)2
. (3.12)

Mobley et al. have shown [92] that for an unknown water body, the F-F phase

function can provide a satisfactory substitute for the particle phase function, given a
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measured backscatter fraction

bp =
1

2

∫ 0

−1
p(µ)dµ. (3.13)

Since the backscatter fraction of the Petzold phase function is bp = 0.0183, we

simulated the ocean with two F-F phase functions: (i) the first was generated using

n = 1.09 and ν = 3.8, with bp = 0.02 and g = 0.92, representing a Petzold-like water

body; and (ii) the second was generated using n = 1.14 and ν = 4.6, with bp = 0.2

and g = 0.53, representing a water body with a much less anisotropic phase function.

The single scattering albedo was still ω0 = 0.9. The nadir angles θrad and θpol as a

function of the optical depth and the downward plane irradiance are presented in Fig.

40.
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Fig. 40. Movement of θrad and θpol as (a) the optical depth increases and (b) the down-

ward plane irradiance decreases, for F-F phase functions with (i) bp = 0.02

(curves with open symbols) and (ii) bp = 0.2 (curves with solid symbols).

Figure 40 shows that the results in case (i) are similar to those for the Petzold

phase function. While in case (ii), the underwater light fields become asymptotic
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much more quickly. The optical depth of the TAR in this case is less than half of

that in case (i), and the downward plane irradiance at the TAR is two orders larger.

These comparisons imply that if the ocean phase function were less anisotropic, the

asymptotic regime will be reached at a smaller optical depth, and it is possible that

the asymptotic regime could be reached experimentally for an ocean with a smaller

ω0.

4. More Realistic Water Model

Previously, we assumed a homogeneous water body with a constant single scattering

albedo ω0 and a constant attenuation coefficient K. In real oceanic waters, however,

the absorption coefficient a = a(λ, z) and the scattering coefficient b = b(λ, z) both

depend on the wavelength and the physical depth. For example, in phytoplankton-

dominated Case 1 waters, the optical properties of the water are mainly described

as a function of the wavelength and the chlorophyll concentration, which in turn is a

function of the physical depth. Therefore, the asymptotic nature of the underwater

light fields will vary accordingly. Firstly, the single scattering albedo ω0 = b/(a + b)

can be substantially different at different wavelengths. Secondly, the physical depth

corresponding to an optical depth would vary with wavelength, since the extinction

coefficient K = a+b varies. Shown in Fig. 41 is a contour plot of the single scattering

albedo ω0 as a function of the wavelength and the physical depth according to the

Case 1 water model, where the black lines are the contour lines for ω0 = 0.75 and

ω0 = 0.8. Here, we used a chlorophyll profile that gives a good fit to the measured

values of the fairly high chlorophyll concentration in coastal waters of the Celtic Sea

[77, 93]. This chlorophyll concentration profile has a maximum of Chl(z) = 6.6 mg/m3

at z = 17 m, and becomes less than 0.5 mg/m3 when z > 40 m. In this case, when

wavelength λ < 570 nm, ω0 is greater than 0.8 for physical depth up to 40 m; at
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physical depth greater than 40 m, ω0 becomes essentially constant, but is still greater

than 0.75 for wavelengths λ < 500 nm. Thus we can expect to reach the asymptotic

regime within this waveband.

Wavelength (nm)

P
hy

si
ca

l d
ep

th
 (

m
)

 

 

0.75

0.8

400 450 500 550 600 650 700

0

20

40

60

80

100

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 41. Single scattering albedo ω0 as a function of the wavelength and the physical

depth.

In Fig. 42, we show the optical depth τ as a function of the wavelength and the

physical depth. The two black curves are the contour lines for τ = 60 and τ = 70,

which correspond to the TAR for the radiance and the TAR for the polarization,

respectively, when ω0 ≥ 0.8. For wavelengths λ < 500 nm, the TAR for the radiance

varies from physical depth 130 m to 200 m, while the TAR for the polarization varies

from 180 m to 260 m.

As a consequence of the varying single scattering albedo and optical depth, the

downward radiance at the top of the asymptotic regime also varies with wavelength.

Specifically, due to the small single scattering albedo at longer wavelengths, the elasti-

cally scattered light would be extremely dark in deep water, whereas the contribution

due to Raman scattered photons plays an important role in the underwater light

field. Berwald et al. [94] have studied the effect of Raman scattering on the diffuse

attenuation coefficient k and the average cosine of irradiance in the ocean, assuming
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Fig. 42. The optical depth τ as a function of the wavelength and the physical depth.

a constant chlorophyll concentration. Here we want to show this effect for a water

body with varying chlorophyll concentrations.

We simulated the underwater light field at physical depths down to 250 meters,

with and without contributions from Raman scattering. Again, the solar zenith angle

was θs = 30◦, the Case 1 water model was used, and the Petzold phase function

was used as the hydrosol scattering phase function. A powerful code developed by

Mobley and Sundman, the HydroLight [95], was used to do this simulation, since

it has Raman scattering contributions conveniently built-in. Shown in Fig. 43 is

the simulated downward irradiance Ed at various wavelengths and selected physical

depths from above the ocean surface (z = ε) down to the TAR. Here the solid lines

are irradiance with Raman scattering, while the dashed lines are that without Raman

scattering.

A combination of Fig. 42 and Fig. 43 reveals that, for 480 nm ≤ λ ≤ 500

nm, the downward irradiance Ed at the TAR for the radiance (z = 200 m) is over

10−8 W/(m2nm). For λ = 400 nm, Ed at the TAR for the radiance (z = 130 m)

is about 10−7 W/(m2nm). When λ decreases from 480 nm to 400 nm, the physical
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Fig. 43. The downward irradiance Ed at various physical depths, as a function of the

wavelength. Solid lines are results with Raman scattering, while dashed lines

are results without Raman scattering.

depth of the TAR for the radiance goes from 200 m to 130 m, and the downward

irradiance is always above 10−8 W/(m2nm). The downward irradiance at the TAR

for the polarization is about one order of magnitude lower. What is more, Fig. 43

shows that at the TAR, the contribution from Raman scattering starts to show up in

the underwater light field at λ ≥ 550 nm, and becomes more and more important as

the wavelength increases.

To show more details on the angular distribution of the radiance, we plot the

underwater radiance patterns in the principal plane at various depths and selected

wavelengths in Fig. 44.

It is clearly shown in these plots that at shorter wavelengths λ ≤ 510 nm, Raman

scattering has little effect on the underwater light field, and the light field down to the

TAR is solely determined by the elastic scattering. At longer wavelengths λ ≥ 570 nm,

the contributions from Raman scattering significantly change the radiance patterns in
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Fig. 44. Underwater radiance patterns at various depths and selected wavelengths, for

a solar zenith angle of θs = 31◦. Dashed curves are results without contribu-

tions from Raman scattering, and solid curves are results with contributions

from Raman scattering.

the deep ocean, such that the asymptotic characteristics of the elastic-scattered light

field is destroyed. In the wavelength band 510 nm < λ < 540 nm, Raman scattering

does change the underwater light field appreciably, but the overall radiance pattern

remains the same, and could still give us some information on the asymptotic nature

of the elastic-scattered light.

In real oceanic waters, another factor affecting the underwater light field are

surface waves, which can substantially change the light field in shallow water. How-

ever, it remains unknown whether effects of the surface wave shows up down in the

asymptotic regime. To study this, we performed simulations involving roughed sur-

face associated with various wind speeds following the wave-slope wind-speed law

proposed by Cox and Munk [96]. The wavelength was λ = 510 nm. The resultant

radiance at various physical depths associated with wind speeds U = 0, 5, and 10

(m/s) are shown in Fig. 45.
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Fig. 45. Underwater radiance patterns at various depths associated with various wind

speeds, for a solar zenith angle of θs = 31◦. Solid curves, dashed curves, and

dotted curves correspond to wind speeds U = 0, 5, and 10 (m/s), respectively.

Figure 45 reveals that effects of surface waves only appear in shallow water. Just

below the surface, the radiance patterns differ substantially as the wind speed varies.

At depth z = 10 m, the radiance patterns show little difference. At depth z = 20

m, which is still far above the asymptotic depth, the radiance patterns are almost

identical for all wind speeds. This assures us that surface wave effects will be of no

consequence in the asymptotic regime.
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CHAPTER IV

SUMMARY AND CONCLUSIONS

In this study we have applied generalized Discrete Dipole Approximation formalisms

to simulations of inelastic scattering and studies of invisibility cloak. We have also

investigated the asymptotic nature of the polarized light in deep oceans.

A. Application of the DDA Formalism to Inelastic Scattering

We have generalized the conventional DDA formalism for an incident plane wave field

to the incident field induced by oscillating dipoles embedded in a host particle. Special

attention has been paid to the coupling of the diverging local field of an oscillating

dipole and the DDA dipoles in its immediate proximity. The local field correction

has been considered. Two schemes of locating the source dipoles were compared, and

the interstitial scheme, in which a source dipole is located at the center of a DDA

cell, was found to be superior to the substitutional scheme. Comparisons between the

DDA results and analytical results for a single embedded source dipole suggest that,

for scattering particle with refractive index m ≤ 2, DDA computations give accurate

solutions to total radiated power as well as the angular dependence of the radiated

power per solid angle, provided that mkd < 0.5. If mkd > 0.5, DDA computations

could still give reasonable results for angular dependence of the radiated power per

solid angle with relative errors within ±30% at most scattering angles and could

predict the shape of the radiation patterns with reasonable accuracy.

We have also applied the generalized DDA formalism to computations of inco-

herent Raman scattering. With simple assumptions on how the source dipole are

induced by the local exciting field, the DDA simulated inelastic-scattering patterns

pertaining to spherical host particles agree with corresponding analytic results. We
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also simulated the inelastic-scattering radiation from a spore-like particle represented

by a layered prolate spheroid, with various distributions of the active molecules within

the host particle. Our results suggest that the inelastic-scattering patterns provide

useful information on the distribution of the active molecules.

B. Application of the DDA Formalism to Invisibility Cloak

We have generalized the conventional DDA formalism for dielectric particles to par-

ticles with both non-unit electric permittivity and non-unit magnetic permeability.

Besides the electric part of the responses of the scattering particle to the incident

electromagnetic field, we also included the magnetic part in the generalized formal-

ism. We have used this formalism to simulate the scattering of a spherical invisibility

cloak made from metamaterial with inhomogeneous and anisotropic electric permit-

tivity and magnetic permeability, and the DDA simulations agree with theoretical

predictions.

We have explored the possibility of invisibility cloaks for particles with irregular

shapes. The electric permittivity and magnetic permeability tensors of invisibility

cloaks for ellipsoids, rounded-cuboids, and rounded-cylinders have been derived using

the coordinate transformation method. DDA computations have been performed for

an object embedded within invisibility cloaks with these geometries. The simulated

results have confirmed that particles with the designated permittivity and perme-

ability tensors keep the electromagnetic fields in the external region unchanged as if

neither the cloaked object or the cloak itself exists.

The DDA calculations, however, can not give an exact zero scattering, as the

material specifications realized in the DDA formalism is a discretization of the con-

tinuously varying material properties required for an invisibility cloak. The simulated
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scattering efficiencies of a cloaked object in various cases are three orders lower than

that of it when uncloaked, which partially shows the cloaking effects.

C. The Nature of Polarized Light in Deep Oceans

We have studied the asymptotic nature of the polarized light in deep oceans using a

fast multi-component approach. It has been found that the radiance of the light fields

approaches its asymptotic form more quickly than the polarization does. Therefore,

a vector radiative transfer solution is necessary for asymptotic light field studies.

Our simulations have also shown that the larger the single scattering albedo,

and the less anisotropic the oceanic scattering phase function, the more quickly the

asymptotic regime can be reached, and the larger irradiance there would be in the

asymptotic regime. For a typical water body whose scattering property is character-

ized by the Petzold phase function, a single scattering albedo of ω0 > 0.8 is required

in order that the asymptotic regime can be reached before there are too few photons

to be detected.

We have also investigated the effects of wavelength, Raman scattering and surface

waves for a scalar light field in a more realistic water body with high chlorophyll

concentration described by the Case 1 water model. It turned out that for wavelengths

λ < 540 nm, the contribution from Raman scattering can be reasonably neglected.

What is more, surface waves do not affect the radiance pattern in the asymptotic

regime.
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