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ABSTRACT 

 

Comparison of Picker and Stripper Harvesters on Irrigated Cotton on the High Plains of 

Texas. (August 2008) 

William Brock Faulkner, B.S., Texas A&M University; 

M.S. Texas A&M University 

Chair of Advisory Committee: Dr. Bryan W. Shaw 

 

Over a fourth of the cotton produced in the US since 2002 has been produced in 

Texas, with most coming from the High Plains.  In recent years, Texas has accounted for 

almost half of all US cotton production (USDA-NASS, 2008b).  Most cotton on the 

High Plains is of more storm-proof varieties that have traditionally been harvested using 

stripper harvesters.  However, improvements in irrigation technology and shifting 

markets for US cotton have increased interest in picker harvesters in the region. 

 A holistic comparison of picker and stripper harvesters in irrigated cotton on 

the High Plains of Texas was conducted focusing on differences in system efficiencies,  

the costs of ginning, fiber and yarn quality, and potential economic returns under 

comparable crop yields and conditions. 

Harvester performance was evaluated based on harvest efficiency, time-in-

motion, and fuel consumption.  Stripper harvesters left less cotton in the field, but most 

of the cotton left by the picker was of low quality.  While the time spent in each 

operation of harvest was highly dependent on the operator and support equipment 

available, in general, picker harvesters were able to harvest a unit area of high-yielding 

cotton more quickly than stripper harvesters.   

The cost of ginning picked and stripped cotton was evaluated considering current 

fee schedules from gins on the High Plains.  On average, it cost a producer $4.76 more 

per bale to gin stripped-and-field-cleaned cotton than picked cotton. 
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Fiber quality parameters were compared between harvest treatments based on 

results from High Volume Instrument (HVI) and Advanced Fiber Information System 

(AFIS) tests.  Samples were ring-spun into carded and carded-and-combed yarns.  

Differences in fiber quality between harvest treatments were more pronounced when 

growing conditions were less favorable.  Few differences were detected in carded yarn 

quality between harvest treatments, while more pronounced differences favoring picked 

cotton were seen in carded-and-combed yarns. 

A cost-benefit analysis was conducted to determine the production scenarios in 

which picker and stripper harvesters were most appropriate.  Results indicate that, if a 

producer has sufficient yields coupled with sufficient area to harvest per machine, picker 

harvesting is a more profitable alternative to producers of on the High Plains.   
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CHAPTER I 

INTRODUCTION 

 

Over a fourth of the cotton bales produced in the United States since 2002 have 

been produced in Texas with most of that cotton coming from the High Plains region, 

and in recent years, Texas cotton production has represented almost half of all the US 

cotton production (fig. 1).  Owing to the harsh weather conditions of the region, most of 

the cotton on the High Plains is of more storm-proof varieties that have traditionally 

been harvested with stripper harvesters. 

 

 

 
Figure 1. Percent of US cotton produced in Texas (USDA-NASS, 2008b). 

 

____________ 

This dissertation follows the format and style of Transactions of the ASABE. 
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Unlike picker harvesters, which use spindles to remove the seed cotton from the 

boll of the plant, stripper harvesters use brushes and paddles that indiscriminately 

remove seed cotton, bolls, leaves, and many branches from the stem of the plant.  As a 

result, stripper harvested cotton contains more foreign matter than cotton harvested with 

pickers.  This increased foreign matter leads to higher transportation costs per bale to 

haul modules to the gin as well as potentially higher costs of processing the cotton, due 

to the use of additional cleaning machinery at the gin.  The indiscriminate harvest by 

stripper harvesters also leads to increased harvest of immature bolls that would be left in 

the field by a picker harvester.  These immature bolls can lead to lower micronaire 

values, which may affect dye uptake, and subsequently lower strength, which can 

adversely affect spinning performance at the textile mill. 

Stripper harvesters have several advantages over picker harvesters, including 

significantly lower purchase prices, fewer moving parts in the row units leading to lower 

fuel consumption and maintenance requirements, and removal of more cotton from the 

plant.  Picker harvesters, however, pick cleaner cotton, are perceived to maintain fiber 

quality characteristics better than strippers, and may be able able to harvest cotton at 

higher speeds in high yielding stands.        

As irrigation technology has improved and new cotton varieties have been 

introduced and adopted on the High Plains, yields in the region have dramatically 

increased, sometimes reaching 9.8 to 12.3 bales/ha (4 to 5 bales/ac).  It is estimated that 

between 120,000 and 160,000 ha (300,000 and 400,000 ac) of drip irrigation has been 

installed on the High Plains in the past ten years for cotton production and over 450,000 

ha (1.1 million ac) are irrigated with center pivot systems equipped with high efficiency 

application packages.  Given these increases in yield, picker harvesters may be able to 

harvest irrigated cotton faster and more efficiently than stripper harvesters. 

Furthermore, as more US cotton is being exported to foreign markets, production 

of a high quality crop is imperative.  The base loan quality grade for cotton in the US is 

strict low middling 2.70 cm (1-1/16 in.) (41-4-34; i.e. color grade = 41, leaf grade = 4, 

staple = 34) compared to the Cotton Outlook A index (international base) of middling 
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2.78 cm (1-3/32 in.) (31-3-35) (table 1).  The international base also has a higher 

tenacity requirement, a tighter micronaire range, and a higher uniformity index. 

 
 

Table 1. Fiber quality base grades. 
 US Base International Base 
Staple[a] 34 35 
Tenacity (g/tex) 26 28 
Micronaire 3.5-4.9 3.8-4.6 
Uniformity Index (%) 80-82 82-83 
Color 41 31 
Leaf Grade 4 3 
[a] Staple = 0.79 mm (1/32 in) 

 
 

Foreign textile mills continue to raise their standards for fiber quality as cotton 

spinners are forced to compete with synthetic fibers that are not plagued with fiber 

contamination and degradation.  Currently, High Plains cotton is often discounted by 

textile mills because of perceived difficulties in spinning cotton grown in this region.  If 

the problems in spinning result from the low micronaire and strength contributed by 

immature bolls or the increased cleaning required to remove excess foreign material, 

picker harvested cotton from the High Plains may be more competitive with similarly 

graded cottons grown in other regions of the US cotton belt.   

Cotton harvest is a critical time for producers on many fronts.  Costs associated 

with harvest are a major portion of production costs; harvesting machinery is often the 

single largest cost of production; and the timing and method of harvest can dramatically 

impact crop quality and yield.  For these reasons, a significant amount of research has 

been conducted regarding harvester evaluation.  However, none of these studies 

individually has provided enough information to effectively compare harvest systems, 

particularly as they relate to the recent changes in production on the Texas High Plains. 
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OBJECTIVE 

The objective of this research is to comprehensively compare picker and stripper 

cotton harvesters in irrigated cotton on the High Plains of Texas.  Specifically, this 

research focuses on comparing: 

1.  Differences in system efficiency between picker- and stripper-based systems, 

  including harvest efficiency and time-in-motion,  

2.  Differences in the costs of ginning between picked and stripped cotton,  

including seed cotton transportation and energy costs during ginning, 

3. Differences in fiber and yarn quality between cotton harvested with different 

 harvest systems, and 

4. The potential economic returns for picker- and stripper-based systems on 

 comparable crop yields and conditions. 

Each of these components is used to perform a cost-benefit analysis to determine the 

production scenarios in which picker and stripper harvesters are most appropriate. 
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CHAPTER II 

FIELD SITE DESCRIPTIONS  

 

INTRODUCTION 

Field work was conducted in a total of six fields at four different sites on the 

High Plains in 2006 and 2007.  When possible, time-in-motion studies were conducted 

while harvesting on a typical field scale, while most of the seed cotton sampling and 

harvest efficiency tests occurred while harvesting smaller plots.  Observations were 

made during the 2006 and 2007 harvest seasons on the High Plains with a six-row John 

Deere 9996 picker harvester with Pro-16 row units and a John Deere 7460 brush 

stripper. 

 

SITE 1 

In 2006, sampling was conducted at a field approximately 24 km west of Plains, 

Texas.  The field was located on a Brownfield fine sand, and Stoneville 4554 Bollgard 

II® Roundup Ready Flex® (ST 4554 B2RF) was planted on 76 cm (30 in.) centers.  

Cotton was irrigated with a center-pivot irrigation system and had an average yield of 

5.4 bales/ha (2.2 bales/ac based on 220 kg [480 lbs] bales).  The picker was operated by 

employees of the producer and was equipped with scrapping plates on both front and 

rear drums.  A six-row stripper was operated by a custom harvester.    

Twelve plots, each 12 rows wide, were assigned one of three harvest treatments 

in a completely randomized design.  Row lengths were determined with a measuring 

tape.  Harvest treatments included picker harvesting, stripper harvesting with field 

cleaning, and stripper harvesting without field cleaning (fig. 2). 
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Figure 2. Sampling site 1. 

 

 

Harvest efficiency tests were conducted and seed cotton samples collected from 

the solid- colored plots (fig. 2).  Before being dumped into a module builder, a weigh 

wagon was used to determine the total mass of seed cotton from each harvester basket 

and from each plot.  A 1.0 kg sample of seed cotton was collected from each plot for 

fractionation analysis, and a 140 kg sample was collected from each plot for fiber quality 

and spinning tests.   
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Seed cotton moisture content samples were collected from all plots at the time of 

harvest.  Cotton was placed in sealed moisture cans, and seed cotton moisture was 

determined by a standard oven-drying method (ASTM, 2006).  An analysis of variance 

test was conducted on sample moisture contents with the General Linear Model function 

in SPSS (SPSS 14.0, SPSS Inc., Chicago, Ill.) with the null hypothesis (α = 0.05) that the 

moisture content of all samples was equal.  Means were compared with the Least 

Significant Difference (LSD) pair-wise multiple comparison test.  No significant 

differences were detected in moisture content samples between harvest treatments.  The 

average moisture content was 6.59%wb. 

After removing the 140 kg samples, a full-size module was also built from the 

remaining cotton from all plots within each harvest treatment.  Modules were ginned at 

New-Tex Gin in Plains, Texas, where the turnout, electrical consumption, and natural 

gas consumption were recorded for each module.   

Time-in-motion data for the stripper treatments were collected from the same 

plots as the harvest efficiency tests.  For the picker, additional time-in-motion data were 

collected from the southeast corner of the field (indicated by the striped green area in fig. 

2).  One Big 12 boll buggy and one module builder were included in each harvest system 

with a single harvester.   

 

SITE 2 

In 2007, sampling was conducted at three sites.  The first was a field 

approximately 6 km east of Wilson, Texas.  The field was located on an Amarillo loam, 

and FiberMax 9063 Bollgard II® Roundup Ready Flex® (FM 9063 B2RF) was planted 

on 102 cm (40 in.) centers.  Cotton was irrigated with a sub-surface drip irrigation 

system and had an average yield of 9.23 bales/ha (3.74 bales/ac).  The picker was 

operated by Texas A&M University (TAMU) personnel and was equipped with 

scrapping plates on the rear drums.  Scrapping plates on the front drums were removed 

due to excessive choke-ups during harvest.  An eight-row stripper was operated by the 

farm owner a week after picking.    
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Harvest efficiency and moisture content samples were collected and detailed 

time-in-motion and plant height data recorded for the picker at Site 2.  The average 

moisture content of the cotton at time of picking was 4.69%wb.  Plant height data were 

collected by measuring the distance from the cotyledon to the terminal node of ten plants 

in five different plots.  The average plant height at Site 2 was 72.0 cm (28.3 in.). 

One Sam Stevens boll buggy and one module builder were included in each 

harvest system with a single harvester.  The area that was picker harvested is shown in 

fig. 3.  Rows were laid out in an east-west configuration.  Due to time conflicts between 

stripper harvesting at Site 2 and harvesting at other locations, only a limited amount of 

time-in-motion data were collected for the stripper in the remainder of the field. 

 

SITE 3 

The second site where sampling was conducted in 2007 included two fields 

approximately 17 km northwest of Muleshoe, Texas.  Both fields were located on a 

Friona loam soil and planted on 76 cm (30 in.) centers.  Cotton was irrigated with a 

center-pivot irrigation system.   

Harvest efficiency tests were conducted and fiber samples collected from the first 

field, which was used for variety trials.  Four varieties were included in the harvester 

comparison study, including FiberMax 9058 Flex® (FM 9058 F), FM 9063 B2RF, 

PhytoGenTM 485 WidestrikeTM Roundup Ready Flex® (PHY 485 WRF), and ST 4554 

B2RF.  The field was planted in a randomized complete block fashion with three 

replications for each variety (fig. 4).  Each plot consisted of 12 rows of cotton.  The first 

240 m (800 ft) of six rows in each plot were harvested with a picker harvester while the 

remainder of each plot was harvested with a six-row stripper with a field cleaner.  The 

side of the plot that was picked was randomly selected for each plot.  The picker was 

operated by TAMU personnel and was equipped with scrapping plates on the rear 

drums.  The stripper was operated by a custom harvester.   
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Figure 3. Sampling site 2. 
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Figure 4. Sampling site 3 - variety trials. 
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Before being dumped into a module builder, a weigh wagon was used to 

determine the total mass of seed cotton from each harvester basket and from each plot.  

A 1.0 kg sample of seed cotton was collected for each harvest method in each plot for 

fractionation analysis, and a 140 kg sample was collected for both harvest methods in 

each plot for fiber quality and spinning tests.   

Seed cotton moisture content samples were collected for both harvest treatments 

within each plot at the time of harvest and analyzed by the same method as in 2006.  No 

significant differences were detected in moisture content samples between harvest 

treatments within a given variety or between varieties within a given harvest treatment.  

The average moisture content for all samples at Site 3 was 4.93%wb.  Plant height data 

were also collected from each plot for each harvest treatment.  No significant differences 

were detected in plant height between harvest treatments or variety at Site 3.  The 

average plant height at Site 3 was 57.4 cm, which was smaller than at Site 2 (p = 0.001) 

and Site 4 (p = 0.035).    

Time-in-motion data were collected from a second field at Site 3 planted in 

FiberMax 960 Bollgard II® Roundup Ready (FM 960 B2R).  The field was planted in a 

circular fashion (fig. 5) and had an average yield of 6.2 bales/ha (2.5 bales/ac).  The 

stripper was operated without the field cleaner, and both the picker and stripper were 

operated in 2nd gear.  The picker and stripper operated in tandem and shared the use of 

three KBH Mule Boy boll buggies and two module builders.  The boll buggies were able 

to take three basket dumps from the stripper before unloading into the module builder, 

but they were only able to take one dump from the picker basket.  Because the boll 

buggies were not equipped with a hydraulic vane packer, dumping from the picker into 

the boll buggy took substantially longer at Site 3 because the boll buggy operator had to 

tip the buggy half way through the transfer process to make additional room for cotton 

coming from the picker basket.  This required a break in the unloading operation, 

drastically increasing the dump time from the picker for this location.  GPS integrated 

with the time-in-motion data recording program were used to determine row lengths and 

the area harvested per basket dump.   
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Figure 5. Sampling site 3 - time-in-motion. 
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SITE 4 

The third site where sampling was conducted in 2007 included two fields 

approximately 19 km east of Plains, Texas.  Both fields were located on a combination 

of Amarillo fine sandy loam and Amarillo loamy fine sand planted on 102 cm (40 in.) 

centers.  Both fields were irrigated with center-pivot irrigation systems.   

Harvest efficiency tests were conducted and fiber samples collected from the first 

field, which was used for variety trials.  The same four varieties harvested from Site 3 

were included in the harvester comparison at Site 4.  Again, the field was planted in a 

randomized complete block fashion with three replications for each variety (fig. 6).  As 

at Site 3, each plot consisted of 12 rows of cotton.  The first 170 m (550 ft) of six rows in 

each plot were harvested with a picker harvester while the remainder of each plot was 

harvested with a six-row stripper with a field cleaner.  The side of the plot that was 

picked was randomly selected for each plot.  The picker was operated by TAMU 

personnel and was equipped with scrapping plates on the rear drums.  The stripper was 

operated by employees of the farm owner.   

Sampling at Site 4 was conducted in a similar manner to Site 3.  No significant 

differences were detected in moisture content samples between harvest treatments within 

a given variety, with the exception of FM 9063 B2RF, for which the moisture content of 

the picked cotton (4.63%wb) was lower (p = 0.041) than the stripped cotton (5.66%wb).  

Given the similarity in management practices and soil type combined with the lack of 

differences in all other varieties, the difference in moisture content between picked and 

stripped treatments of FM 9063 B2RF would likely dissappear with a greater sample 

population.  No differences were detected in moisture content between varieties within a 

given harvest treatment.  The average moisture content for all samples at Site 4 was 

5.62%wb, which was significantly higher (p = 0.01) than the moisture content of samples 

at Site 3.   

No significant differences were detected in plant height at Site 4 between harvest 

treatments within a given variety or between varieties at Site 4.  The average plant height  
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Figure 6. Sampling site 4 - variety trials. 
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at Site 4 was 79.8 cm, which was significantly higher (p < 0.0005) than the average plant 

height at Site 3.    

Time-in-motion data were collected from a second field at Site 4 (fig. 7) planted 

in FiberMax 955 LibertyLink® Bollgard II® (FM 955 LLB2).  Cotton was planted 

beyond the edge of the center pivot system, but most of the field was irrigated.  The field 

average yield was 8.15 bales/ha (3.3 bales/ac).  The stripper was operated with the field 

cleaner engaged.  The picker and stripper operated in tandem and shared the use of one 

boll buggy and one module builder.  Access to the boll buggy was the bottleneck in the 

harvest system.  Again, the boll buggy was able to take three basket dumps from the 

stripper before unloading into the module builder but only able to take one dump from 

the picker basket.  GPS integrated with the time-in-motion data recording program were 

used to determine row lengths and the area harvested per basket dump.   
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Figure 7. Sampling site 4, time-in-motion. 
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CHAPTER III 

HARVESTER PERFORMANCE 

 

INTRODUCTION 

Harvesting cotton efficiently in the modern era requires a complex system 

involving many machines and skillful machinery management.  Aerial or ground 

applicators are often used to apply one or more harvest aids, including desiccants and 

boll-openers.  Picker or stripper harvesters remove seed cotton from the plant, which is 

then transferred directly to a module builder or to a boll buggy for transport to the 

module builder.  Once a module is built and tarped, module trucks transport seed cotton 

to the gin.  To maximize the profitability of an operation, machinery must be selected 

and operated to maximize the utility of each component of the harvest operation.   

Harvester performance in the field is critical to ensure timely harvest for quality 

preservation and efficient use of labor and capital resources.  Harvester performance can 

be measured in many different ways, all of which affect the profitability of a production 

operation.   

 

Time-in-motion 

The time spent during each stage of harvest is a good indicator of the efficiency 

of a given system.  During a typical harvest, time may be spent harvesting, turning the 

harvester onto the next set of rows, waiting for the boll buggy to position to receive seed 

cotton from the harvester, dumping the basket, or in downtime for maintenance and 

repair.  Producers have a narrow window during which to harvest their crop to avoid 

quality degradation that comes with time and exposure to harsh weather conditions after 

the boll opens.  Harvest can be delayed for wet weather or field conditions; high wind; 

and, in the case of strippers, high relative humidity.  

Because producers face a limited time frame during which to harvest their crop at 

peak quality, it is desirable to increase the proportion of time spent harvesting versus the 

other necessary tasks enumerated above.  Limited data exists on the time spent during 
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each segment of the cotton harvest.  Chen et al. (1992) developed a model to predict the 

overall cost of harvest for different equipment combinations in the Mississippi Delta 

region, but the conditions in this region are significantly different than for the High 

Plains, and stripper harvesters were not included in the evaluation.  Willcutt and Barnes 

(2008) reported that traditional six-row harvesters utilizing boll buggies have a field 

efficiency of approximately 70% (i.e. 70% of the time spent in the field is spent picking 

cotton).  The remaining 30% of time was spent in support operations such as turning at 

the end of the row, waiting for boll buggies, transferring seed cotton, and maintaining 

row units.  When no boll buggies were used, field efficiency was reduced to 49%. 

 

Fuel Use 

The amount of fuel used per unit of production directly affects the profitability of 

a production operation.  Nelson et al. (2001) estimated that stripper harvesters use 

approximately 190 L (50 gal) of diesel per day and operate for 10 hr/d, but he did not 

report on the yield or area harvested per hour.  Matthews et al. (1982) reported that 

diesel-powered brush strippers consumed 9.1 L/ha (0.98 gal/ac).  Willcutt and Barnes 

(2008) measured fuel consumption of machinery from several typical six-row cotton 

harvesting operations.  Using a six-row John Deere 9976 picker to harvest cotton that 

averaged 5.4 bales/ha (2.2 bales/ac), they reported average fuel consumption of 17.0 

L/ha (1.82 gal/ac), equivalent to 3.14 L/bale (0.83 gal/bale).   

   

Harvest Efficiency 

Harvest efficiency is an important factor for evaluating harvester performance 

because it is a measure of the amount of cotton in the field that is harvested and 

subsequently cleaned, ginned, and made available for marketing.  Machine harvesting of 

cotton has led to lower harvest efficiencies, but the gains in labor efficiency have far 

surpassed the losses in harvest efficiency, resulting in complete conversion of the US 

cotton industry to mechanical harvesters.  Because stripper harvesters are less 

discriminating than picker harvesters, it would be expected that stripper harvesters 
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would have higher harvest efficiency.  Williford et al. (1994) reported that spindle 

pickers may harvest at up to 95% efficiency but typically achieve efficiencies between 

85 and 90%, whereas stripper harvesters can have efficiencies up to 99%.  However, the 

cotton left unharvested by a spindle picker is often less mature, having lower micronaire 

values and subsequently being weaker.  Reductions in harvest efficiency can be the 

result of cotton being left on the plant or being knocked off the plant onto the ground.  

Both methods of loss represent unmarketable lint for the producer. 

Several studies have compared the seed cotton and lint yields of cotton harvested 

with both pickers and strippers.  Brashears and Hake (1995) compared results from two 

varieties of cotton harvested with a two-row spindle picker and a four-row brush-roll 

stripper with and without a field cleaner.  Varieties tested include Paymaster HS26 

(considered a "stripper variety") and Stoneville 132 (an early maturing "picker variety").  

Significant differences were found between the yield of seed cotton and turnout of all 

harvest methods, while there was no significant difference between lint yield for the 

stripper with field cleaner and stripper without field cleaner for either variety.  As 

expected with a less discriminating harvest method, the lint yield for both stripper 

treatments was higher than the lint yield for the picker harvester for both varieties tested.   

The analysis conducted by Brashears and Hake (1995) did not measure the 

amount of cotton left in the field; therefore while the stripper harvester harvested more 

lint than the picker harvester, harvest efficiency between the machines was not 

compared.  Furthermore, the two-row picker utilized in this study does not reflect the 

advances in technology nor capacity of modern harvest machinery, making application 

of this study to modern production systems questionable.  The harvest yield in this study 

was also less than five bales/ha (2 bales/ac), further confounding application of the 

results of this study to new varieties of irrigated cotton on the High Plains.   

Vories and Bonner (1995) reported results from a similar experiment comparing 

spindle picked versus stripped-and-field-cleaned dry-land cotton in Arkansas.  Again, 

significant differences were detected in seed cotton yield and turnout, but harvest 

efficiency was not reported.  As with the picker in the Brashears and Hake (1995) study, 
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the brush stripper used in the Vories and Bonner (1995) study (an Allis Chalmers 880 

with alternating brushes and flaps) does not represent modern harvesting machinery.  

And again, the yields in this study were all below five bales/ha (2 bales/ac).  

Faircloth et al. (2004) did a more comprehensive comparison of harvest methods 

on irrigated cotton in northeast Louisiana, looking at several varieties.  The picker 

harvesters used in this study varied by location, but only one brush stripper (equipped 

with a field cleaner) was used in all locations.  In year one of this study, there was no 

difference in lint yield between harvest methods for any location or variety.  However, in 

year two, differences were detected at all locations with the stripper harvested cotton 

yielding higher than the picker harvested cotton.  The average yield across all 

experiments was 5.2 bales/ha (2.1 bales/ac), with the highest reported yield being 6.7 

bales/ha (2.7 bales/ac) with the brush stripper in year two.  Again, no absolute 

comparison of harvest efficiency was conducted.   

Yates et al. (2007) reported results from a comparison of picker and stripper 

systems on the Texas High Plains, showing increased lint yield by the stripper harvester.  

Again, no absolute measure of harvest efficiency was made, and yields averaged 2.5 

bales/ha (1.0 bale/ac) in year one and 6.4 bales/ha (2.6 bale/ac) in year two.  The same 

picker harvester was used in the Yates et al. (2007) study as in the Brashears and Hake 

(1995) study so that similar limitations exist regarding the applicability of this study to 

modern production systems. 

 

METHODS 

For this study, picker and stripper harvesters were compared based on time-in-

motion, fuel usage, harvest efficiency, and the foreign matter content of seed cotton at 

several locations throughout the High Plains.   

 

Time-in-motion 

Time-in-motion data were collected for each harvest system by an observer riding in 

the cab of the harvester at the four sites described in Chapter II.  A macro in Microsoft 
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Excel was used to record a time stamp at the beginning and end of each of the following 

operations: 

• Begin row 

• End row 

• Start turn at end of row 

• End turn at end of row 

• Stop harvest for full basket 

• Begin transfer of cotton to boll buggy 

• End transfer of cotton to boll buggy 

• Start down time  

• End down time 

 

The time spent in each operation for each harvest system was calculated and 

compared. Basket capacity (in bales) was determined by comparing the number of 

basket dumps made into each module by the number of bales produced from each 

module at the gin. 

 

 Fuel Use 

Fuel use was measured by filling harvesters full of diesel before commencing 

harvest operations.  After harvest operations, a commercially-available fuel meter 

(Model MD130; Great Plains Industries, Inc.; Wichita, KS ) was used to determine the 

volume of diesel consumed by measuring the volume required to refill the harvester’s 

diesel tank to a predetermined level.  The corresponding area harvested was measured 

manually in 2006 and by GPS in 2007.  

 

Harvest Efficiency 

Harvest efficiency tests were conducted to determine the amount of seed cotton 

left in the field by each harvester.  In 2006, all observations were made in a field planted 
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in ST 4554 B2RF.  In 2007, observations were made on four distinct varieties at three 

locations.   

Before mechanical harvesting, locations within each experimental field were 

randomly selected and marked (fig. 8).  At each assigned location, all seed cotton on all 

plants within a 3.0 m (10 ft) length of row was hand harvested to determine the yield of 

seed cotton in that portion of the field.  Approximately 1.5 m (5 ft) from the end of the 

hand harvested row, a second 3.0 m (10 ft) length was marked and the furrow space 

cleaned of any seed cotton to determine the harvest efficiency of the mechanical 

harvester by assuming that the yields in both 3.0 m sections were equal.  After 

mechanical harvesting, all of the cotton left on the plants within the second 3.0 m (10 ft) 

length was collected, and any cotton lying on the ground was also collected separately.   

 

 

 
Figure 8. Schematic of harvest efficiency test plots. 

 

 

The mass of cotton left on the plant and that knocked off the plant were used to 

determine harvest efficiency (eq. 1) 

 

%1001 x
H

GP
⎥⎦
⎤

⎢⎣
⎡ +
−=η     (1) 

 

where: η = harvest efficiency (%), 

 P = mass left on plants in 3.0 m length of mechanically harvested row (g), 

 G = mass on ground in 3.0 m length of row after mechanical harvest (g), and 

 H = mass of cotton hand harvested in 3.0 m length of row. 
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An analysis of variance test was conducted on harvest efficiencies with the 

General Linear Model function in SPSS (SPSS 14.0; SPSS Inc., Chicago, Ill.) with the 

null hypothesis (α = 0.05) that all harvest efficiencies were equal.  Means were 

compared with the Least Significant Difference (LSD) pair-wise multiple comparison 

test. 

Seed cotton moisture content samples were collected from all plots at the time of 

harvest as described in Chapter II.  Plant height was measured in all plots in 2007 as 

described in Chapter II. Correlations were tested between harvest efficiency and both 

seed cotton moisture and plant height with Pearson’s two-tailed correlation test (α = 

0.05). 

 

RESULTS AND DISCUSSION 

Time-in-motion   

As expected, the amount of time spent in each harvest operation was highly 

dependent on the harvester operator and the amount of support equipment (e.g. boll 

buggies and module builders) available at each location.  Average time-in-motion data 

collected from each site (excluding outliers) are shown in table 2.  Due to the number of 

covariates, time-in-motion data did not lend themselves to statistical analysis.    
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Table 2. Time-in-motion data. 
Harvester Location Yield 

(bales/ha 
[bales/ac]) 

Speed  
(km/h 
[mph]) 

Basket 
Capacity 
(bales) 

Dump Time 
(s) 

Turn at  
End of Row 

(s) 

Picker Site 1 5.4 (2.2) 6.4 (4.0) -- 77 20 
 Site 2 9.1 (3.7) 6.0 (3.7) 4.60 49 23 
 Site 3 6.2 (2.5) 7.7 (4.8)[a] 3.99 104 45 
 Site 4 8.1 (3.3) 5.8 (3.6) 5.85 -- 42 
 Avg.   4.81 76 32.5 
S. w/ FC[b] Site 1 4.9 (2.0) 6.0 (3.7) 1.98 54 27 
 Site 2 9.1 (3.7) 4.5 (2.8)[c] -- -- -- 
 Site 4 8.1 (3.3) 4.8 (3.0) 2.26 36 36 
 Avg.   2.12 45 31.5 
S. w/o FC[d] Site 1 5.9 (2.4) 5.5 (3.4) 1.79 54 31 
 Site 3 6.2 (2.5) 8.9 (5.5)[a] 1.79 20 27 
 Avg.   1.79 37 29.0 
[a] Harvested in 2nd gear 
[b] S. w/FC = stripper with field cleaner 
[c] Data from 8-row stripper with field cleaner 
[d] S. w/o FC = stripper without field cleaner 
 

 

The smaller basket capacity on the stripper required more frequent transfer of 

stripped cotton to a boll buggy compared to the picker, but the transfer process was 

faster due to the dumping mechanism on the stripper compared to a floor chain transfer 

system on the larger picker basket.  As previously mentioned, the dump time for the 

picker at Site 3 was substantially longer than at Sites 1 and 2 because the boll buggies at 

this site were not equipped with a hydraulic vane packer, so the boll buggy operator had 

to tip the buggy half way through the transfer process to make additional room for cotton 

coming from the picker basket.  The additional transfer time at Site 3 points to the 

number of variables that can affect the efficiency of harvest operations as well as the 

need for evaluation of the complete harvest system when comparing harvester operation.   

The results of a simulation of the time spent harvesting, transferring cotton, and 

turning at the end of the row is shown in table 3, assuming no harvester down time and 

915 m (3000 ft) rows planted on 76 cm (30 in) centers. Average harvester basket 

capacities and dump times from table 2 were assumed.  Because there was no practical 

difference between harvest systems in the amount of time spent turning at the end of the 

row, an end-row turn time of 30 s was assumed for all harvesters. 
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Table 3. Time-in-motion simulation.[a] 
 Picker Stripper w/FC Stripper w/o FC 

3.7 bales/ha (1.5 bales/ac) 
Speed (kph [mph]) 7.7 (4.8) 8.9 (5.5) 8.9 (5.5) 
Harvest time (hr/ha [hr/ac]) 0.320 (0.130) 0.289 (0.117) 0.289 (0.117) 
   Harvesting (%) 88.7 85.6 85.7 
   Transferring (%) 5.1 7.6 7.4 
   Turning (%) 6.2 6.9 6.9 

7.4 bales/ha (3.0 bales/ac)
Speed (kph [mph])  6.1 (3.8) 4.8 (3.0) 5.1 (3.2) 
Harvest time (hr/ha [hr/ac]) 0.411 (0.166) 0.518 (0.210) 0.488 (0.198) 
   Harvesting (%) 87.2 87.7 87.2 
   Transferring (%) 7.9 8.5 8.7 
   Turning (%) 4.8 3.8 4.1 

9.9 bales/ha (4.0 bales/ac)
Speed (kph [mph]) 5.6 (3.5) 4.5 (2.8) 4.8 (3.0) 
Harvest time (hr/ha [hr/ac]) 0.453 (0.183) 0.565 (0.229) 0.531 (0.215) 
   Harvesting (%) 86.0 86.1 85.6 
   Transferring (%) 9.6 10.3 10.7 
   Turning (%) 4.4 3.5 3.7 
[a] Simulation assumes no harvester downtime. 

 

 

In general, due to the larger basket capacity, in high-yielding stands, the picker 

was able to harvest a unit area of cotton more quickly than was either stripper.  This 

advantage was compounded when extremely high yielding cotton was field-cleaned due 

to limitations on the flow rate of seed cotton processed through the field cleaner.  In 

lower yielding cotton where the field cleaner was not the bottleneck in the system, the 

stripper was able to harvest at a faster rate than the picker, giving it an advantage in 

terms of area harvested per unit time.   

 

Fuel Use 

The average fuel consumption for the picker in 2006 and 2007 was 26.2 L/ha 

(2.80 gal/ac).  No correlation was detected between fuel use per unit area and yield.  The 

measured fuel consumption in this study was approximately 55% higher than that 

reported by Willcutt and Barnes (2008).  However, Willcutt and Barnes (2008) observed 

fuel consumption from a John Deere 9976 harvester, which has a 250 horsepower 

engine, while observations in this study were from a John Deere 9996 harvester, which 

has a 350 horsepower engine.  The ratio of fuel use to engine rated horsepower were 
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roughly equivalent in both studies.  Because the stripper harvesters were operated by 

custom harvesters, insufficient data on stripper fuel use was collected to draw any 

conclusions from field measurement.  However, all stripper harvesters had 175 HP 

engines, from which it may be deduced that, under similar engine loads, the fuel 

consumption for strippers would be approximately half that of the John Deere 9996 

picker harvesters. 

 

Harvest Efficiency 

Analyzing data from all plots for each harvester, no correlations were detected 

between harvest efficiency and moisture content (n = 29), plant height (n = 24), or yield 

(n = 29).  Overall differences in harvest efficiency were detected between harvest 

methods (p < 0.0005) but not by sampling location or variety.  Average harvest 

efficiencies from all sites are shown in table 4. 

 

 
Table 4. Harvest efficiency. 

Harvest Method Harvest Efficiency[a] 
(%) 

Picker 95.3 a 
Stripper w/ Field Cleaner 97.8 b 
Stripper w/o Field Cleaner 98.5 b 
[a] No differences were detected (α = 0.05) in values in the same 

column followed by the same letter. 
 

 

For a given harvest method, no differences were detected between varieties or 

locations.  While they demonstrate that pickers, on average, leave more cotton in the 

field, these tests do not give an indication of the maturity and value of the remaining 

seed cotton. 

 

CONCLUSIONS 

Harvester performance was measured as a function of time-in-motion, fuel 

consumption, and harvest efficiency at four irrigated sites on the High Plains.  Time-in-
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motion performance was highly dependent on equipment used in the harvest system and 

machinery operators.  In a system where sufficient support equipment such as boll 

buggies and module builders were available, although stripper harvesters have smaller 

basket capacity than pickers, strippers spent more time harvesting than pickers in lower 

yielding cotton.  In higher yielding cotton, pickers spent more time harvesting than 

strippers.  Field cleaner capacity severely limited stripper ground speed in high yielding 

cotton. 

Fuel consumption for a six-row John Deere 9996 picker was 26.2 L/ha (2.80 

gal/ac).  No correlation was detected between fuel use per unit area and yield.   

The John Deere 9996 picker was shown to have statistically lower harvest 

efficiency than the John Deere 7460 stripper regardless of variety or harvest location.  

However, these tests gave no indication of the quality or value of cotton left unharvested 

by the picker.  If the cotton left unpicked is immature, the value of lint per unit area may 

be greater for picked cotton even though less cotton is harvested.  
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CHAPTER IV 

GINNING 

 

INTRODUCTION 

Mechanical methods of separating cotton lint from the seed have been around for 

centuries.  The Churka gin was a rudimentary machine that used rollers to pinch fibers 

from the seed.  In 1794, Eli Whitney received a patent for a cotton gin that used metal 

spikes in concentric rows to pull cotton fibers through a narrow slot that seeds could not 

fit through.  In 1796, Henry Ogden Holmes received a patent for a gin employing metal 

saws rather than spikes and “ribs” that allowed cleaned seeds to fall out the bottom of 

the gin.  These improvements, which first allowed for continuous flow ginning, represent 

the principle on which modern gin stands function (Mayfield and Anthony, 1994).   

In 1834, Alex Jones developed the first successful mechanical feeder for the 

cotton gin.  The first half of the 20th century saw the development of seed cotton dryers 

and cleaners as well as lint cleaners (Mayfield and Anthony, 1994).  Today, most gin 

facilities employ a labyrinth of machinery to automatically feed and disperse seed cotton 

modules; pneumatically convey seed cotton between machinery stages; regulate seed 

cotton moisture for cleaning and ginning; separate lint from seeds; clean, compress, and 

package lint; and weigh and convey cotton seed.  While the machinery specifications 

and sequences in each gin differ, all gins have the same goal of preserving fiber quality 

while removing foreign matter and seed from the lint in a timely manner without wasting 

lint.   

Foreign matter in seed cotton may include sticks, burrs, leaf, grass, or other 

objects.  Increased foreign matter in seed cotton results in more modules of seed cotton 

per unit area, resulting in greater seed cotton transportation costs and more required 

cleaning at the gin.  Because of the indiscriminate manner in which stripper harvesters 

remove seed cotton from the plant, stripped cotton generally has more foreign matter 

than picked cotton.  Field cleaners were added to strippers to reduce the amount of 
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foreign material in the module, but stripped-and-field-cleaned seed cotton generally 

contains more foreign matter than picked seed cotton.   

While each gin is unique, typical machinery sequences for modern saw gins 

processing upland picker and stripper cotton are shown in fig. 9.  Due to the increased 

foreign matter content of stripped cotton, a gin processing stripped cotton typically has 

an extra stage of seed cotton cleaning compared to a gin processing picked cotton.  Non-

field-cleaned stripped cotton typically has approximately 320 kg (700 lbs) of foreign 

matter per bale compared to 45 kg (100 lbs) for picked cotton (table 5).  Stripped cotton 

that has been field-cleaned typically has approximately 180 kg (400 lbs) of foreign 

matter per bale. 

 

 
Table 5. Typical trash levels for picked and stripped cotton (Baker et al., 1994). 

 Type of Trash Picked 
(kg [lbs]) 

Stripped 
(kg [lbs]) 

 

 Burs 15 (34) 204 (450)  
 Sticks 4 (9) 52 (115)  
 Fine Trash 12 (26) 50 (110)  
 Motes 14 (30) 11 (25)  
 Total 45 (99) 318 (700)  

 

 

The ginning process typically begins with dispersal of a seed cotton module.  

After the module is dispersed and seed cotton fed into the gin, the ideal moisture content 

for seed cotton cleaning is around 5%wb (Hughs et al., 1994).  Heated air is typically 

used to lower seed cotton moisture in a dryer. Fiber strength is affected by moisture 

content; fibers at 15% moisture content are 1.7 times stronger than fibers at 4% moisture 

content (Moore and Griffin, 1964).  To prevent fiber breakage during ginning and lint 

cleaning, the ideal moisture content of seed cotton at the gin stand is 6 to 7%wb 

(Mayfield et al., 1994).  Furthermore, the force required to compress lint in the bale 

press increases exponentially as moisture content decreases (Anthony et al., 1994a).  

Moisture may be added back to seed cotton before the extractor feeder and/or lint slide 

with atomizing water sprays or humid air.   
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(a) 

 
(b) 

Figure 9. Example of typical machinery sequences for modern saw gins processing upland a.) picked 

and b.) stripped cotton (Anthony et al., 1994b; Baker, 1994). 
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Anthony and Eckley (1994) reported that gins typically use 40 to 60 kW-h of 

electricity per bale, and that electricity consumption per bale has remained steady since 

1962.  Hughs et al. (1994) suggested that a gin would use approximately 320 MJ/bale 

(300,000 BTU/bale) worth of natural gas or commercial propane in moisture control 

processes.  While neither Anthony and Eckley (1994) nor Hughs et al. (1994) suggested 

differences in energy use between gins processing picked and stripped cotton, it is 

reasonable to assume that more gas and electricity would be consumed when processing 

more material at a gin.     

The cost to the producer of ginning seed cotton varies between gins and by year 

but is often a function of the mass of seed cotton processed. Therefore, producers may 

expect to pay less per bale of lint for picked seed cotton compared to stripped seed 

cotton. Gins may also be able to recognize substantial savings in utility and maintenance 

costs by using less cleaning machinery and less heat for drying on picked cotton versus 

cotton harvested with a stripper.  Based on the fee structure of the gin, these savings may 

or may not be passed on to the producer, but differences in ginning costs may represent 

an important input into any decision matrix used to compare harvester options.  The cost 

of module transportation is often included in the cost of ginning, as well.  Total 

transportation costs may be affected by the method of harvest as increased foreign matter 

content in seed cotton results in more modules that must be moved to the gin.   

The objective of this study was to compare the cost of transporting and ginning 

seed cotton harvested with picker harvesters and stripper harvesters with and without 

field cleaners.  Comparisons between harvest systems were made based on differences in 

foreign matter content of seed cotton, turnout, energy consumption at the gin, and the 

cost of ginning to the producer. 

 

METHODS 

Foreign Matter Content 

At Sites 1, 3, and 4, 1.0 kg samples for fractionation analysis were collected from 

the weigh wagon for each replication of each harvest-method-by-variety combination.  
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For each sample, foreign matter in the seed cotton was determined by the Pneumatic 

Fractionator Method described by Shepherd (1972).  Large foreign matter was removed 

from the samples by hand before fractionation and was categorized into burrs, sticks, and 

other.  The mass of the entire sample and those of each fraction of foreign matter were 

determined with an Ohaus scale (Model CT1200-S, Florham Park, NJ) with a 0.1 g 

resolution.  An analysis of variance test was conducted on the percent composition of 

samples from each treatment with the General Linear Model function in SPSS (SPSS 

14.0; SPSS, Inc.; Chicago, Ill.) with the null hypothesis (α = 0.05) that the percentages 

of total foreign material, hulls, sticks, leaf, pin trash, and motes between treatments were 

equal.  Means were compared with the Least Significant Difference (LSD) pair-wise 

multiple comparison test. 

 

Turnout 

Turnout is a measure of the mass of marketable lint per unit mass of seed cotton 

entering the gin.  Turnout is a function of the foreign matter content of seed cotton, the 

number of stages of cleaning, and variety (which primarily affects the mass of seed per 

unit mass of lint).  Williford et al. (1994) reported that turnout for picked cotton is 

around 33% while turnout for stripped cotton typically ranges from 15 to 26%.  In 2006, 

turnout for seed cotton from each harvest method at Site 1 was measured from the full-

size modules ginned at New-Tex gin in Plains, Texas.  Because only one module was 

produced with each harvest method, no statistical analysis was conducted on 2006 

turnout data.  In 2007, lint and seed turnout were measured from the samples ginned at 

the USDA-ARS Cotton Production and Processing Research Unit. An analysis of 

variance test was conducted on the lint turnout, seed turnout, and average seed weight 

per bale of samples from Sites 3 and 4 with the General Linear Model function in SPSS 

with the null hypothesis (α = 0.05) that means between all samples were equal.  Means 

were compared with the Least Significant Difference (LSD) pair-wise multiple 

comparison test. 
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Energy Consumption 

Electricity and natural gas consumption were monitored for each module ginned 

at New-Tex Gin in 2006.  Due to rainfall late in the season, two stages of lint cleaning 

were used to remove leaf from both picked and stripped seed cotton.  Again, because 

only one module was produced with each harvest method, no statistical analysis was 

conducted on energy consumption data.  In 2007, all samples were ginned at the USDA-

ARS Cotton Production and Processing Research Unit gin in Lubbock, Texas.  Lot sizes 

were too small to successfully measure utility consumption during ginning of each 

sample. 

 

Cost to Producer 

The cost of ginning varies from gin to gin and from year to year.  At many gins, 

costs are a function of the mass of seed cotton processed.  Various other costs such as 

module transport costs, bagging and tie charges, and classing fees may be included as 

well.  In this study, the fee schedules for ginning at several gins were compared and the 

cost of ginning to the producer was analyzed as a function of harvest method.  

 

RESULTS AND DISCUSSION 

Foreign Matter Content 

A MANOVA test using Wilk’s Lambda (n = 60) revealed significant differences 

in foreign matter content and composition as a function of location (p = 0.018), variety 

(p = 0.011), harvest treatment (p < 0.0005), and interactions of location and treatment (p 

< 0.0005).  Response variables differing significantly by location include sticks, grass, 

leaf, and pin trash.  Response variables differing significantly by variety include sticks 

and pin trash.  Response variables differing significantly by location-treatment 

interaction include burrs and pin trash.  The composition of seed cotton from each 

harvest treatment is shown in table 6.  
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Table 6. Percent composition of harvested seed cotton.[a]

 Picked Stripped with FC Stripped without FC 
Burs 1.8x 9.1y 19.9z 
Sticks 0.6x 2.9y 2.0z 
Leaf 1.7x 3.6y 3.6y 
Pin Trash 0.8x 1.2y 0.3z 
Motes 0.01x 0.01x 0.02x 
Total Foreign Matter[b] 5.0 x 17.0 y 25.8 z 
[a] No significant differences were detected (α = 0.05) between means in the same row followed by  
     the same letter. 
[b] The data in this table are from grab samples of seed cotton and may not be representative of the 

mass of foreign matter that would be removed from seed cotton at t commercial gin. 
 

 

The percent of burs (p<0.0005) and total foreign matter (p<0.0005) was higher 

for the stripper without field cleaner than the stripper with field cleaner.  The amount of 

foreign material of all classes, with the exception of pin trash and motes, was higher for 

the stripper without the field cleaner than the spindle picker (p < 0.0005 in all cases).  

Spindle picked seed cotton had a lower percentage of total foreign material, burs, sticks, 

and leaf than the seed cotton that was stripped-and-field-cleaned (p < 0.0005 in all 

cases).  

The fraction of picked seed cotton comprised of burs and sticks compares well to 

the fractions reported by Baker et al. (1994) (table 5), while the percentages of pin trash, 

motes, and total foreign matter reported by Baker et al. (1994) are above the 90% 

confidence interval of measured data.  Similarly, for non-field-cleaned stripped cotton, 

the fraction of burrs compares well with the fraction reported by Baker et al. (1994), but 

the reported composition of all other components is above the 90% confidence interval 

for measured data. 

 

Turnout 

Lint turnout values for the modules from Site 1 ginned at a commercial gin are 

shown in table 7.  Due to lack of independent samples, no statistical analysis was 

performed on data from Site 1.   
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Table 7. Turnout of modules from Site 1. 
Treatment Lint Turnout 

(%) 
Picked 35.6 
Stripped w/ Field Cleaner 30.2 
Stripped w/o Field Cleaner 26.6 

 

 

Significant differences were detected in lint turnout from cotton harvested at 

Sites 3 and 4 by variety (p < 0.0005), treatment (p < 0.0005), and the interaction between 

location and treatment (p = 0.004).  The average lint turnout for each variety and harvest 

treatment for Sites 3 and 4 is shown in table 8 (n = 6 for each variety x treatment mean).  

For each variety, the lint turnout of stripped cotton was significantly lower than the lint 

turnout for picked samples.  The higher turnout values for picked cotton indicate that 

less raw seed cotton is required to capture the lint and seed from a field, thus requiring 

fewer modules and lower energy inputs to process the cotton which will reduce 

transportation and ginning costs to the gin and may reduce costs to the producer. 

 

 
Table 8. Turnout from Sites 3 and 4.[a] 

Variety Lint Turnout (%) 
Picked Stripped Average 

FM 9058 F 38.4 a 31.5 a 34.9 a 
FM 9063 B2RF 35.4 b 29.8 a,b 32.6 b 
PHY 485 WRF 32.7 c 27.7 c 30.2 c 
ST 4554 B2RF 35.1 b 29.6 b 32.4 b 
Average 35.4 29.7 32.5 
[a] No significant differences were detected (α = 0.05) between means 

in the same column followed by the same letter.  Significant 
differences were detected between treatments for all varieties. 

 

 

For all sites, turnout for both the picked and the non-field-cleaned cotton was slightly 

higher than predicted by Williford et al. (1994).     

Seed turnout varied by harvest treatment (p < 0.0005) and location-treatment 

interaction (p = 0.030).  The average seed turnout for picked samples was 54.6% 

compared to 45.8% from stripped samples.  The average weight of seed per 220 kg (480 



36 
 

 

lbs) bale varied significantly (p < 0.0005; n = 12) by variety only (table 9).  The 

variation in seed weight per bale explains the differences in lint turnout as function of 

variety for a given harvest treatment. 

 

 
Table 9. Average seed weight per 220 kg (480 lbs) bale.[a] 

Variety Seed Weight per Bale 
(kg [lbs]) 

FM 9058 F 312 (688) a 
FM 9063 B2RF 342 (754) b 
PHY 485 WRF 352 (777) c 
ST 4554 B2RF 340 (749) b 
[a] No significant differences were detected (α = 0.05) 

between means followed by the same letter. 
 

 

Energy Consumption 

Energy consumption during ginning for the modules from Site 1 ginned at a 

commercial gin is shown in table 10. 

 

 
Table 10. Energy consumption for modules from Site 1. 

Treatment Electrical 
Consumption  
(kW-h/bale) 

Natural Gas 
Consumption 

(MJ/bale [BTU/bale]) 
Picked 44.6 133 (126,000) 
Stripped w/ Field Cleaner 47.6 152 (144,000) 
Stripped w/o Field Cleaner 59.4 161 (153,000) 

 

 

Energy consumption at the gin increased as the amount of foreign material in the 

seed cotton increased.  Electrical consumption for all harvest methods was within the 

range predicted by Anthony and Eckley (1994).  Natural gas consumption was less than 

half of that predicted by Hughs et al. (1994).  Low gas consumption is likely due to the 

arid climate in the area where the cotton was harvested and the timeliness with which 

modules were ginned, preventing moisture increase in the modules due to precipitation.  
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Again, lower energy inputs to process picked cotton versus stripped cotton will reduce 

costs to the gin and may reduce costs to the producer. 

 

Cost to Producer 

The ginning schedules for the 2007-2008 crop for three commercial gins where 

cotton from all sites was ginned are shown in table 11.  The estimated cost per bale for a 

10,000 kg (22,000 lbs) module assuming average turnouts from table 8 are also shown.  

Producers at Sites 1 and 2 both use the same gin.   

 

 
Table 11. Ginning schedules for 2007-2008 crop for commercial gins on the High Plains. 
Gin Ginning[a] 

($/Mg [$/cwt]) 
Bag and Tie 

($/bale) 
Classing 
($/bale) 

Mod. Trans. 
($/module) 

Cost per Bale 
for Picked 
Module[b] 

Cost per Bale 
for Stripped 

Module[c] 
1 $55.06 ($2.50) N/A N/A $50 $37.50 $42.86 
2 $41.85 ($1.90) $17.00 $1.80 N/A $44.93 $48.66 
3 $58.47 ($2.65) N/A N/A N/A $36.44 $41.64 

[a] Cost per unit seed cotton; cwt = 100 lbs. 
[b] Assuming 35.4% turnout. 
[c] Assuming 29.7% turnout. 
 

 

In all cases, the average cost of ginning per bale is greater for stripped-and-field-cleaned 

cotton than for picked cotton.  On average, it cost the producer $4.76 per bale more to 

gin stripped-and-field-cleaned cotton versus picked cotton, giving a cost advantage to 

producers that pick their cotton over those that strip. 

 

CONCLUSIONS 

The cost of ginning cotton harvested with picker harvesters, stripper harvesters 

with field cleaners, and stripper harvesters without field cleaners was compared on the 

basis of foreign matter content, turnout, energy consumption during ginning, and cost to 

the producer.  Picker harvested cotton had less burs, sticks, and leaf than stripped-and-

field-cleaned cotton.  The reduced foreign matter content in the picked cotton led to 
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greater turnout, lower energy consumption during ginning, and a lower overall cost to 

the producer for module transportation and ginning.  
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CHAPTER V 

FIBER QUALITY 

  

INTRODUCTION 

The quality of cotton fibers is dependent on many factors, including genetics, 

environmental conditions during production, and handling during harvest and 

processing.  A number of fiber quality parameters influence the quality of yarn and 

fabrics produced from raw fibers and, therefore, the price that consumers are willing to 

pay for those fibers.  Fiber length, strength, tenacity, maturity, fineness, and uniformity 

are among the properties that affect the way in which bundles of fibers will perform in 

spinning.  Fiber maturity, diameter, color, reflectance, the presence or foreign matter, 

seed-coat fragments, and neps (entanglements in fibers) all affect the way a fabric 

absorbs dye and, therefore, the quality of the finished product.   

 

HVI 

The High Volume Instrument (HVI) system is the suite of instruments used by 

the USDA Agricultural Marketing Service (AMS) to class US cotton for marketing 

according to quality indicators.  HVIs characterize fiber qualities by analyzing a sample 

of fibers.  Fiber quality parameters reported by HVI include micronaire, length, length 

uniformity, strength, elongation, reflectance, yellowness, and trash.   

 

Micronaire 

Micronaire is a measure of fiber fineness and maturity.  The definition of fiber 

fineness (Pierce and Lord, 1939) is given in eq. 2: 

 

( )TPTAH w π−== 52.152.1                                        (2) 

 

where: H = fineness (mtex), 

 Aw = wall area (µm2), 



 

 

40

 T = wall thickness (µm), and 

 P = perimeter (µm). 

 

Maturity refers to the degree of thickening of the fiber secondary wall (Pierce 

and Lord, 1939).  When a cotton fiber is developing, it is a round, hollow tube.  As the 

fiber matures, cellulose is deposited on the inside of the tube, thickening the cell wall. 

When fibers begin to desiccate, the tube collapses and becomes “kidney-shaped” with a 

hollow center (lumen) (fig. 10), and the fiber twists. 

 

 

 
Figure 10. Cross-section of cotton fiber (Uster Technologies, 2004). 

 

 

The more mature a fiber is, the more convolutions will form during desiccation 

(fig. 11).  A fiber is considered immature if the cell wall accounts for less than 25% of 

the cross-sectional area of the fiber (Pierce and Lord, 1939).   
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Figure 11. Cotton fibers of varying maturity: the fiber on the left is “fully mature,” the one in the 

center is immature, and the one on the right is dead (Uster Technologies, 2004). 

 

 

The classical definition of maturity (Pierce and Lord, 1939) is given in eq. 3: 

 

( )
22 577.0

4
677.0
4

577.0 P
TPT

P
A

M w πππθ −
===                                   (3) 

 

where: M = maturity ratio, 

 θ = degree of thickening, 

 Aw = wall area (µm2), 

 T = wall thickness (µm), and 

 P = perimeter (µm). 

  

Circularity is the ratio of the cross-sectional area of a fiber to the area of a circle 

having the same perimeter.  The maturity ratio (M) is the ratio of the number of fibers 

with circularity values greater than 0.5 to the number of fibers with circularity values 

below 0.25.  The degree of thickening (θ) is calculated as the ratio of the cross-sectional 
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area of a fiber to the area of a circle having the same perimeter as the fiber (Pierce and 

Lord, 1939).   

Lord (1956) determined that resistance to airflow through a randomly oriented 

plug of fibers was related to fineness and maturity according to eq. 4: 

 

1316.1886.3 2 ++= MICMICHM                                         (4) 

 

where: H = fineness (mtex), 

 M = maturity ratio, and 

 MIC = measured micronaire. 

 

To measure micronaire with the HVI, approximately 10 g of randomly oriented 

fibers are placed in a chamber and compressed to a fixed volume.  Air is passed through 

the sample, and micronaire is determined based on the permeability of the sample.  The 

relationship between micronaire and market value is shown in fig. 12 (adapted from 

USDA-AMS, 2001). 

 

 

 
Figure 12. Relationship between micronaire and market value (adapted from USDA-AMS, 2001). 

 

 

Micronaire alone cannot characterize fiber fineness or maturity.  Fiber fineness is 

an indicator of the fiber circumference and is predominately affected by variety.  Fiber 

maturity is an indicator of the portion of the fiber cross section that has been filled with 
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cellulose.  All else being equal, the finer the fibers, the less permeable a sample of given 

mass will be, and the lower the micronaire reading.  However, the less mature the fibers, 

the more fibers will be in a sample of a given mass and, therefore, the less permeable the 

sample.  Therefore, a sample of fine, immature fibers could have the same micronaire 

value as a sample of coarse, mature fibers. 

 

Length 

The HVI measures fiber length and length uniformity by measuring light 

penetration through combed beards of fibers.  Two 10 g samples are placed in the HVI 

and subsamples of lint fibers are grasped on one end by a clamp.  The instrument then 

combs the clamped fibers to orient them parallel to one another and straighten them, thus 

forming fiber beards.  Light is passed through both beards, and the variation in light 

penetration across each fiber beard is used to estimate the length of all fibers within both 

beards.  The average length of the longest one-half of fibers (upper-half mean length or 

UHML) is reported. 

Length uniformity is the ratio between the mean length of all the fibers and the 

UHML and is expressed as a percentage.  Ramey and Beaton (1989) reported a negative 

correlation between short fiber content and HVI length uniformity and concluded that 

the HVI uniformity index can be used to predict some aspects of a cotton’s performance 

in spinning.  Table 12 shows typical ranges of length uniformity (USDA-AMS, 2001). 

 

 
Table 12. Length uniformity (USDA-AMS, 2001). 

Degree of Uniformity HVI Uniformity Index 
(%) 

Very High Above 85 
High 83-85 

Intermediate 80-82 
Low 77-79 

Very Low Below 77 
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Strength and Elongation 

After measuring length and length uniformity, the strength and elongation of 

fibers in the beard are measured.  Each beard of fibers is clamped by a second jaw 3.18 

mm (1/8 in.) from the first.  The force required to break the beard is measured along with 

the distance the beard elongates before breaking.  The mass of fibers broken is estimated 

by measuring the light attenuation of fibers from an array of red light-emitting diodes 

and adjusting for the micronaire of the sample (Keskin et al., 2001).  Strength is reported 

in g/tex, where a tex is the mass (in grams) of 1,000 m of fiber.  Elongation is reported 

as a percent of the original gauge length.  Table 13 shows typical degrees of strength for 

cotton fiber bundles (USDA-AMS, 2001). 

 

 
Table 13. Fiber strength (USDA-AMS, 2001). 

Degree of Strength HVI Strength (g/tex) 
Very Strong Above 30 

Strong 29-30 
Average 26-28 

Intermediate 24-25 
Weak Below 24 

     

 

Color and Trash 

HVI measures the reflectance (Rd), yellowness (+b), and trash content of a 

sample by analyzing two pictures of the sample.  The reflectance and yellowness of a 

cotton affects its ability to absorb dye, and degraded color may be indicative of 

weathered cotton that will not process well.  The trash content of cotton affects the 

efficiency with which a bale can be processed.  Bragg et al. (1995) found that increased 

bark concentrations did not significantly reduce the quality of yarn produced with an 

older rotor-spinning frame, but the number of yarn breaks during spinning increased 

approximately 66% for each one percent increase in bark content, thus reducing the 

efficiency with which barky cottons may be spun.  No effect was seen on yarn quality or 

processing efficiency when modern textile processing equipment was used.  Bargeron et 



 

 

45

al. (1988) reported that grass contamination in cotton increased ends down and 

decreased yarn strength when cotton is ring-spun. 

The trash content is determined by measuring the portion of the sample surface 

area that is occupied by non-lint material, as observed in the pictures of the sample.  

While the HVI trash content analysis has been demonstrated to measure false positives 

when shadows appear on the HVI scan, reasonable correlations have been made between 

HVI trash measurements and classer leaf grades (USDA-AMS, 2001). 

 

AFIS 

Unlike the HVI, which estimates fiber properties from a bundle of fibers, the 

Advanced Fiber Information System (AFIS) measures properties of individual fibers.  

For each replication, a 0.5 g sample is formed into a 30 cm long sliver and placed in the 

sampling tube of the AFIS.  A mini-card separates individual fibers, which then pass 

through two optical sensors: one for trash, neps, and dust and the other for length and 

maturity.  The entire sample is analyzed for trash, neps, and dust while only 3,000 fibers 

are analyzed for length and maturity.   

 

Nep Classification 

Neps are bundles of fibers that are entangled together and can lead to blemishes 

in fabrics, especially in fabrics made from ring-spun yarns (Gupta and Vijayshankar, 

1985).  Neps result in greater waste during processing and may lead to imperfections in 

yarns and fabrics.  Fiber neps may occur naturally in the boll, but nep counts are 

increased by mechanical processing of fibers. Seed-coat neps are fragments of 

cottonseed that still have fibers attached to them.  Seed-coat neps account for a large 

portion of imperfections in coarse yarns but contribute less to imperfections in finer 

yarns.  This variation in the contribution of seed-coat neps to yarn neps may be the result 

of fewer seed-coat neps per mass of cotton in longer staple cottons as are used in the 

production of fine yarns, or it may be the result of increased detection of small, fibrous 

neps in finer yarns that escape detection in coarser yarns (Gupta and Vijayshankar, 
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1985).  Table 14 contains general ranges for nep counts in raw upland cotton (Uster 

Technologies, 2004). 

 

 
Table 14. Nep counts (Uster Technologies, 2004). 

Description Neps/g  
Very High Above 451 

High 301-450 
Medium 201-300 

Low 101-200 
Very Low Below 101 

 

 

AFIS provides counts and sizes for fiber and seed-coat neps, using differences in 

electrical wave forms from fibers, fiber clumps, and seed coats to differentiate among 

the classes of neps.       

 

Length 

The length of each individual fiber measured by the AFIS is recorded so that a 

fiber length distribution can be determined.  Fiber length is estimated by measuring the 

length of time it takes for a given fiber to pass through the optical sensors at a known 

speed.  This length is likely slightly underestimated due to unaccounted-for crimp in 

individual fibers.  AFIS reports a mean length of fibers by weight and number, the 

coefficient of variation for length measurements, the upper quartile length (UQL or 

average length of the longest 25% of fibers), and short fiber content (SFC) (i.e. fibers 

shorter than 1.27 cm [0.5 in]).  Table 15 contains general ranges for SFC in raw upland 

cotton (Uster Technologies, 2004). 
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Table 15. Short fiber content (Uster Technologies, 2004). 

Description SFC by Number 
(%) 

SFC by Weight 
(%) 

Very High Above 33 Above 14 
High 29-33 12-14 

Medium 24-28 9-11 
Low 19-23 6-8 

Very Low Below 19 Below 6 
 

 

Maturity and Fineness 

AFIS estimates fiber maturity and fineness by analyzing the shape of individual 

fibers with the two optical sensors.  The sensors indirectly measure the shape of each 

fiber by determining the variations in light attenuation from two different angles as a 

fiber passes through the sensing point in orer to determine the input variables to eq. 3.  

AFIS reports the maturity ratio and the immature fiber content (IFC) of samples.  Table 

16 contains general ranges for maturity ratios and IFC in raw upland cotton (Uster 

Technologies, 2004). 

 

 
Table 16. Maturity data (Uster Technologies, 2004). 

Description Maturity Ratio 
 

Immature Fiber 
Content (%) 

Very High Above 0.95 Above 14 
High 0.91-0.95 12-14 

Medium 0.86-0.90 9-11 
Low 0.76-0.85 6-8 

Very Low Below 0.76 Below 6 
 

 

Fineness algorithms were originally determined by comparing results from AFIS 

optical sensors to cotton fibers analyzed by a cut-and-weigh method (Uster 

Technologies, 2004).   

Montalvo et al. (2007) found that that the AFIS-PRO system had a very narrow 

dynamic range within which reported fineness and maturity measurements are unbiased.  
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The authors found that fineness and maturity values reported by the AFIS-PRO system 

were unbiased when the sample micronaire was equal to 3.8.  As micronaire values 

decreased below 3.8, the magnitude of negative bias in fineness and maturity values 

increased.  As sample micronaire values increased above 3.8, the magnitude of positive 

bias in fineness and maturity values increased.  Because, the AFIS system does not 

consistently assess fiber fineness and maturity across cottons withg varying micronaire 

values, the magnitude of the measurement bias should be accounted for when comparing 

the fineness and maturity of cottons with varying values of micronaire. 

 

Trash Content 

The trash content of a sample is measured by passing all of the fibers from the 

sample sliver through an optical sensing point following the mini card.  AFIS reports 

dust count and size, trash count and size, and percent visible foreign matter.  According 

to the International Textile Manufacturers Federation (ITMF), dust is foreign matter 

smaller than 500 µm while trash is foreign matter larger than 500 µm. 

 

Previous Research 

While research has been conducted to compare fiber quality between stripper and 

picker harvested cotton, most of this research focused on lower yielding stands of cotton 

and used harvest machinery that was not representative of modern harvest systems.  

Furthermore, fiber quality traits are not always sufficient to indicate spinning 

performance and yarn quality, especially if the only fiber quality traits analyzed are 

those indicated by the current USDA cotton classing system.     

Comparing fiber quality between picker and stripper harvested cottons, Brashears 

and Hake (1995) found better leaf grades in Paymaster HS26 harvested with a picker 

harvester versus a stripper harvester with and without field cleaning, but there was no 

difference in leaf grade between the harvest treatments for Stoneville 132.  The authors 

did not suggest a reason for the differences between varieities.  No significant effects 

were seen in HVI staple length, micronaire, strength, or length uniformity between 
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harvest methods.  The two-row picker used by Brashears and Hake (1995) does not 

reflect the advances in technology of modern harvest machinery, making application of 

this study to modern production systems questionable.      

Vories and Bonner (1995) compared fiber quality between stripped (with field 

cleaning) and picked dryland cotton in Arkansas.  None of the HVI parameters were 

significantly different between harvest methods.  In 1992, when weather conditions were 

more harsh, fiber quality indices were better for picker harvested cotton than for stripper 

harvested cotton, confirming the finding of Kerby et al. (1986) that grade differences 

between harvest methods are most pronounced during years of adverse conditions.  

Though not significantly different, micronaire values for stripped cotton were lower than 

those of picked cotton for two of the three years of the study.  Again, the brush stripper 

used in the Vories and Bonner (1995) study (an Allis Chalmers 880 with alternating 

brushes and flaps) does not represent modern harvesting machinery, making 

extrapolation of these results to modern production systems tenuous.    

Baker and Brashears (2000) evaluated the effect of field cleaners on fiber and 

yarn quality of three stripper varieties of cotton.  They found that field cleaners reduced 

lint trash content at each stage of lint cleaning, thus resulting in somewhat better color 

and leaf grades.  Half of the samples analyzed indicated a one leaf grade improvement 

from use of a field cleaner.  Field-cleaned cotton also had higher micronaire and 

maturity ratios and reduced nep counts in fiber and yarn.   

Brashears and Baker (2000) compared the quality of two varieties of cotton 

harvested with a finger stripper, a brush roll stripper (both with field cleaners), and a 

spindle picker.  Leaf grades were similar for Paymaster 2200 regardless of harvest 

method, while the leaf grade for picker harvested Delta and Pine Land (D&PL) 1220 

was significantly lower for the same variety harvested with both strippers.  For both 

varieties, the fiber length of picked cotton was longer and the micronaire was higher than 

that of the same variety that was stripped.  Fiber length of brush stripped cotton was also 

significantly longer than finger stripped cotton.  For both varieties, nep counts were 

significantly lower for the picker harvested cotton than for the stripped cotton.   
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Willcutt et al. (2002) compared lint quality as affected by harvester type for 

picker varieties grown on the Mississippi delta.  They observed better values in nep 

counts, short fiber content by weight, visible foreign matter and immature fiber content 

for picked cotton than stripped cotton samples.  Classer staple, HVI length, uniformity, 

and strength were not affected significantly by harvest method.  

Faircloth et al. (2004) evaluated turnout, fiber quality, and loan value from cotton 

harvested with brush strippers versus spindle harvesters in northeast Louisiana.  Yields 

in this study ranged from 3.04 to 6.67 bales/ha (1.23 to 2.70 bales/ac assuming 220 kg 

[480 lbs] bales).  Few statistically significant differences in fiber quality from the two 

harvesting treatments were observed, but trends of decreased micronaire and increased 

color grade in stripper harvested cotton were seen.  The varieties used in the study are 

not representative of those used on the High Plains and make extrapolation to this region 

troublesome.   

McAlister and Rogers (2005) investigated the effect of harvesting method on 

fiber and yarn quality from Ultra-Narrow-Row cotton grown in South Carolina.  The 

authors reported increased micronaire, strength, UHML, and length uniformity and 

decreased yellowness in picked samples versus stripped samples.  AFIS results showed 

that picked samples has fewer short fibers and neps; less dust, trash, and visible foreign 

matter; was more mature; and was less fine than stripped samples.  However, the 

samples analyzed in this study were not harvested until after Christmas due to extremely 

wet weather during the harvest season.  Due to varietal differences, the use of Ultra-

Narrow-Row cotton, and the extreme weathering of the cotton before harvest, the 

applicability of the results of this study to the High Plains is questionable.  However, the 

protocols for fiber and yarn testing employed in the McAlister and Rogers study are 

helpful in determining the effect of harvesting method throughout the processing chain. 

The objective of this research was to examine the effects of harvest method on 

fiber quality from irrigated cotton harvested on the High Plains of Texas with modern 

harvest equipment.  Fiber quality parameters were measured with HVI and AFIS.  This 
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study represents the first commercial-scale harvester comparison project conducted in 

the High Plains region. 

    

METHODS 

Irrigated cotton was harvested from commercial farms on the High Plains of 

Texas in 2006 and 2007.  In 2006, Stoneville 4554 B2RF was harvested from Site 1 in 

late October/early November with a six-row John Deere 9996 spindle picker with Pro-16 

row units equipped with scrapping plates on the front and rear drums, a six-row John 

Deere 7460 stripper harvester with field cleaner, and the same stripper harvester 

bypassing the field cleaner.  A 140 kg sample of seed cotton was collected from each 

plot (four per harvest treatment) and placed in bulk seed bags for ginning.   

In 2007, FM 9058 F, FM 9063 B2RF, PHY 485 WRF, and ST 4554 B2RF were 

harvested from Sites 3 and 4 with a six-row John Deere 9996 spindle picker with Pro-16 

row units equipped with scrapping plates on the front drums and a six-row John Deere 

7460 stripper harvester with field cleaner.  A 140 kg sample of seed cotton was collected 

from each plot (three per harvest treatment per variety per location) and placed in bulk 

seed bags for ginning.  At all sites, defoliation and harvest aid treatments were identical 

for both picked and stripped cotton based on the producer's observations of harvest 

readiness.   

Samples were ginned at the USDA-ARS Cotton Production and Processing 

Research Unit in Lubbock, Texas, on a commercial-scale gin.  In both 2006 and 2007, 

two stages of seed cotton cleaning were used.  Each stage included a tower dryer, stick 

machine, and a six-cylinder incline cleaner.  The gin stand was a Continental Double 

Eagle saw-type gin stand.  Due to late season rains in 2006, the leaf trash was difficult to 

separate so two stages of lint cleaning were used on all samples.  Samples were collected 

for HVI and AFIS measurements after one and two stages of lint cleaning to determine if 

interactions were present between harvest method and lint cleaning.  In 2007, only one 

stage of lint cleaning was used.   
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Lint samples were conditioned at 65% RH ± 2% and 21oC ± 1 (according to 

ASTM D1776-04 Standard Practice for Conditioning of Textiles) for fiber quality 

analysis and tested with an HVI (Model 900A; USTER®; Uster, Switzerland) with four 

micronaire readings, four color readings, and ten length and strength readings per 

sample, and the AFIS with five replications of 3,000 fibers tested per sample at the 

International Textile Center in Lubbock, Texas.   

All treatment means from fiber quality tests were compared with the General 

Linear Model function in SPSS (SPSS 14.0; SPSS, Inc.; Chicago, IL).  A MANOVA test 

was conducted to determine overall differences between harvest treatments before 

conducting pair-wise comparisons.  The null hypothesis tested in all cases was that 

means in each harvest treatment were equal.  Means were compared with the Least 

Significant Difference (LSD) pair-wise multiple comparison test.  Two sample 

Kolmogorov-Smirnov tests were used to compare fiber length distributions between 

harvest treatments.  A 0.05 level of significance was used in all tests except where noted 

differently.   

 

RESULTS AND DISCUSSION 

Because samples collected in 2007 were substantially more mature than samples 

collected in 2006, the results from each year are presented separately.   

 

2006 

The results from HVI and selected parameters from AFIS testing from samples 

collected in 2006 are shown in tables 17 and 18, respectively.  Caution should be used 

when interpreting results because fiber maturity for all samples was low, which may 

exacerbate differences in fiber quality parameters as a function of harvest treatment 

because the thin secondary wall of the fibers may lead to lower fiber strength and 

elongation.  Results of MANOVA analyses (n = 4 for each treatment) indicated that 

overall treatment differences were not detected for HVI results at 95% confidence level, 

so the results of pair-wise comparisons of HVI data should be analyzed cautiously.  
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Treatment differences were detected by MANOVA when analyzing results of AFIS tests 

(p<0.0005 using Wilk’s Lambda).      

 

 
Table 17. Results from 2006 HVI analysis.[a]

 Picked Stripped with FC Stripped without FC 
Micronaire 3.5x 3.2y 3.2y 
Length (cm [in.]) 2.82 (1.11)x 2.77 (1.09)y 2.79 (1.10)x,y 
Uniformity (%) 80.4x 79.4y 79.2y 
Strength (g/tex) 27.1x 26.2x 26.6x 
Elongation (%) 8.4x 8.7x 8.5x 
Reflectance (%) 81.6x 81.1x,y 80.9y 
Yellowness 8.1x 8.5x,y 8.7y 
Leaf 2.0x 2.5x 2.3x 
[a] No significant differences were detected (α = 0.05) between means in the same row followed by  
     the same letter.

 

 
Table 18. Selected results from 2006 AFIS analysis.[a] 
 Picked Stripped with FC Stripped without FC 
Nep count (neps/g) 561x 661x,y 702y 
Short fiber by weight (%) 16.1x 17.3x 17.7x 
Visible foreign matter (%) 1.06x 1.18x 1.15x 
Immature fiber content (%) 12.8x 13.7x 13.8x 
Maturity ratio 0.78x 0.78x 0.77x 
[a] No significant differences were detected (α = 0.05) between means in the same row followed by  
     the same letter. 

 

 

Micronaire for spindle picked cotton was significantly higher than for either 

stripper treatment, confirming the results of Brashears and Baker (2000).  Stripper 

harvesters tend to have higher harvesting efficiencies than pickers; however, the increase 

in lint fiber harvested is typically comprised of less mature fibers that therefore have 

lower micronaire values.  Length uniformity was also significantly better for picked 

cotton versus both stripper treatments.  Both micronaire and length uniformity values for 

picked cotton were within the base market value range, while both stripper treatments 

led to micronaire and length uniformities in the discount range.  Unlike the results from 
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Baker and Brashears (2000) no differences were seen in fiber quality parameters 

between stripped cotton that was field-cleaned versus non-field-cleaned cotton. 

Average AFIS length distributions by number for all treatments are shown in fig. 

13.  All length distributions are poor and skewed to the right due to the lack of maturity.  

Nevertheless, we can see that the fiber length distribution of the picked cotton is slightly 

better (less fiber fragments, less short fibers, and more of the longer fibers).  Results of 

the Kolmogorov-Smirnov tests showed significant differences between the fiber length 

distributions of the picked samples and both stripped samples (p < 0.01), but no 

significant difference was detected between the fiber length distributions of the stripped 

samples with and without a field cleaner. 

 

 

 
Figure 13. 2006 AFIS length distributions by number. 
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No significant interactions were detected between harvest treatment and lint 

cleaning for fiber quality parameters testing with HVI and AFIS.  As expected, lint 

cleaning resulting in a greater reduction in visible foreign matter for both stripper 

treatments than for picked cotton.  However, no differences were detected in the change 

in length, strength, nep count, nor nep size of fibers between harvest treatments 

suggesting that differences in fiber quality reported in tables 17 and 18 are the result of 

harvest treatment rather than interactions between harvest treatment and lint cleaning.   

 

2007 

The average results of HVI and selected parameters of AFIS testing from 

samples collected in 2007 are shown in tables 19 and 20, respectively.  A MANOVA test 

using Wilk’s Lambda revealed significant differences in HVI and AFIS results as a 

function of harvest location, variety, and treatment (all p-values < 0.0005; n = 24 for 

each treatment).  Multivariate interactions were also significant between variety and 

location (p < 0.0005 for HVI; p = 0.008 for AFIS) as well as variety and harvest 

treatment (p = 0.036 for HVI; p = 0.043 for AFIS). 

 

 
Table 19. ANOVA results from 2007 HVI analysis.[a]

 Picked Stripped with FC Significant Variables[b] 
Micronaire 4.2x 4.0x None 
Length (cm [in.]) 2.97 (1.17)x 2.95 (1.16)x V,  L, V*L 
Uniformity (%) 82.1x 81.9x V, L, V*L 
Strength (g/tex) 29.3x 29.6x V, L, V*L 
Elongation (%) 8.7x 8.7x V, L 
Reflectance (%) 80.9x 79.9y V, L, T, V*T 
Yellowness 8.3x 8.6y V, L, T 
Leaf 1.3x 1.8y V, T 
[a] No significant differences were detected (α = 0.05) between means in the same row followed by  
     the same letter. 
[b] V = variety; L = location; T = harvest treatment; V*L = variety-location interaction; V*T = 

variety-treatment interaction  
 

 

While differences in treatment means were detected only in color and leaf grades, 

a paired-samples t-test (α = 0.05) was conducted comparing differences in HVI 
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parameter values between picked and stripped samples from the same plot to reduce 

varietal and location impacts.  Results of the paired-samples t-test revealed significant 

improvements in micronaire, reflectance, yellowness, and leaf grade from picked 

samples versus stripped samples (table 21). 

 

 
Table 20. Selected ANOVA results from 2007 AFIS analysis.[a] 
 Picked Stripped with FC Significant Variables[b] 
Nep count (neps/g) 310x 370y V, L, T 
Short fiber by weight (%) 10.3x 10.8y V,  L, T, V*L, V*T 
Visible foreign matter (%) 1.46x 2.23y V, T, V*T 
Immature fiber content (%) 8.7x 9.5y V,  L, T, V*L 
Maturity ratio 0.85x 0.84y V, T 
[a] No significant differences were detected (α = 0.05) between means in the same row followed by  
     the same letter. 
[b] V = variety; L = location; T = harvest treatment; V*L = variety-location interaction; V*T = 

variety-treatment interaction 
 

 
Table 21. Selected paired sample t-test results from 2007 HVI analysis. 
 Mean Difference[a] p-value 
Micronaire 0.1 0.001 
Reflectance (%) 1.0 <0.0005 
Yellowness -0.3 <0.0005 
Leaf -0.5 0.005 
[a] Mean difference = (Avg. of picked samples) – (Avg. of stripped samples). 

 

 

Differences in micronaire values between harvest treatments were less 

pronounced in 2007 than 2006, but on average, fibers were more mature in 2007 due to 

better growing conditions, as can be seen by the more normal shape of the AFIS length 

distribution for FM 9058 from 2007 (fig. 14) compared to 2006 (fig. 13).  These results 

confirm the conclusions of Kerby et al. (1986) that grade differences between harvest 

methods are more pronounced during years of adverse growing conditions.  As with the 

results from Willcutt et al., (2002), significant differences were detected between harvest 

treatments in nep counts, short fiber content, and visible foreign matter in 2007, but nep 

counts and short fiber content were both reduced relative to 2006 values.  Significant 
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differences (p < 0.01 for all tests) were detected between the average fiber length 

distributions from each treatment for all varieties (see fig. 14 for example fiber length 

distributions from 2007).  Overall, variety had a greater impact on fiber quality 

parameters than harvest treatment. 

 

 

 
Figure 14. 2007 AFIS length distributions of FM 9058 F by number. 

 

 

Differences in the quality of fibers as measured by the HVI led to significant 

differences in the value of lint by harvest treatment in 2006 but not in 2007 as indicated 

by the average loan values and West Texas spot prices (table 22; USDA-AMS, 2007). 
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Table 22. Average loan values and West Texas spot prices (USDA-AMS, 2007).[a] 
 2006  2007 
 Loan 

($/kg [$/lbs]) 
Spot Price 

($/kg [$/lbs]) 
 Loan 

($/kg [$/lbs]) 
Spot Price 

($/kg [$/lbs]) 
Picked 1.264 (0.5738)x 1.160 (0.5268)x  1.301 (0.5907)x 1.191 (0.5408)x 
Stripped w/FC 1.167 (0.5300)y 1.104 (0.5014)y  1.288 (0.5849)x 1.187 (0.5390)x 
Stripped w/o FC 1.165 (0.5291)y 1.087 (0.4934)y  -- -- 
[a] No significant differences were detected (α = 0.05) between means in the same column followed by the 

same letter. 
 

 

No significant differences were detected the loan rates or spot prices between 

locations or varieties in 2007.  The higher quality of picked cotton compared to stripped 

cotton from the same field led to higher average sale prices for picked cotton.  The 

reduction in price for stripped cotton compared to picked cotton in both 2006 and 2007 

was less severe than the reduction in loan value.   

 

CONCLUSIONS 

The effect of harvest treatment on fiber quality was compared for four varieties 

of cotton commonly grown on the High Plains of Texas.  Fiber quality indices were 

determined with HVI and AFIS instruments and were compared for cotton harvested 

with a spindle picker, a brush-roll stripper with a field cleaner, and the same stripper 

harvester without a field cleaner (in 2006 only).  Each year, all samples underwent 

similar cleaning regimes during ginning. 

In 2006, micronaire, length, and length uniformity as measured by HVI were 

better for picker harvested cotton than for stripped cotton leading to a higher loan value 

and average sale price for the producer.  In 2007, when growing conditions were better 

and fibers were more mature, differences in fiber quality parameters between picked and 

stripped cottons were less pronounced leading to less discrepancy in the value of cotton 

harvested.  However, in 2007, differences in nep counts, short fiber content, and visible 

foreign matter between harvest treatments were distinguishable. 

The results of this study indicate that producers may realize greater fiber quality 

and lint value by using picker harvesters, but the magnitude of those differences may be 
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a function of growing conditions and/or fiber maturity.  Varietal differences also played 

a large role in determining fiber properties, but in 2007, no differences were seen in the 

value of harvested lint as a result of these differences.    
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CHAPTER VI 

YARN QUALITY 

 

INTRODUCTION 

The cotton producer’s final customer is the textile mill to which he sells his 

cotton.  Textile mills vary in the type and quality of cotton they purchase based on the 

product they are producing.  Higher quality textiles require longer, finer yarns with 

sufficient strength to endure spinning and weaving or knitting processes.  Mills 

producing products such as denim or socks use lower quality cotton because it is less 

expensive yet still meets the requirements to produce goods that will satisfy their 

customers.  Cottons of varying quality can also be blended together or with synthetic 

fibers to produce yarns of varying quality with characteristics desirable for specific 

applications.   

  The first stage of processing at a textile mill includes opening, cleaning, and 

blending.  Bales are placed in a laydown room where layers are skimmed off and 

transported pneumatically to an opener.  Opening involves gently separating masses of 

fibers to prepare them to feed into the carding machine.  Partial cleaning may also occur 

in this step.  Cotton or cotton blends are then placed into a feed control system that 

further reduces tuft size and regulates the flow of material to the carding machine.  

The card cleans and parallelizes fibers for subsequent formation into yarn.  

Cleaning is conducted by either rotating licker-inns with pins or wire that remove 

foreign matter or by flats with increasingly densely packed wire located around the card 

cylinder to thin the fiber web and remove trash.  The resulting web is then fed through a 

trumpet and condensed into a sliver of parallel fibers that are placed into cans. 

Slivers formed by the card are then blended and drafted during breaker drawing.  

Multiple slivers are combined during this process to reduce variability in the final sliver.  

Fibers in the sliver are further parallelized, and the sliver density is made more uniform.  

Morton and Summers (1949 and 1950) demonstrated that the number of fiber hooks 

resulting from fiber crimp is reduced by drafting, up to three stages, at which point the 
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majority of fibers have no hooks.  Garde et al. (1961) demonstrated that “trailing hooks” 

are reduced during drafting more efficiently than “leading hooks.”  Because the sliver is 

drafted in the direction that it is, breaker drawing removes “trailing hooks” on the fibers 

coming from the card web.  The sliver resulting from breaker drawing is again placed in 

a can.  For open-end spinning, drawing may be omitted and the slivers can be spun with 

no further pre-processing. 

After breaker drawing, slivers that will not be combed proceed directly to 

finisher drawing.  Slivers that will be combed are formed into a lap by blending multiple 

slivers and spreading them into a thin lap that is then combed to remove short fibers and 

residual foreign material. Between 10 and 15 percent of the material is removed as noils 

during the combing process (Werber and Backe, 1994).  The slivers formed after 

combing then undergo finish drawing, which again blends, parallelizes, and evens the 

slivers, this time removing “leading hooks” resulting from fiber crimp.   

The final step before ring spinning is roving.  Roving involves further drafting 

the sliver to avoid exceeding the weight limits of the spinning frame during the spinning 

process.  During roving, a slight twist is placed into the material before it is wound onto 

a bobbin to prevent breaking the roving as it is drawn into the spinning frame.   

Most yarn is formed by either ring or open-end spinning methods.  In ring 

spinning, roving is again drafted and then drawn through a traveler rotating around a 

bobbin which adds more twist to the resulting yarn. In open-end spinning, a sliver is fed 

into a rotating opener, where trash is removed and the sliver is drafted.  In the rotor, 

which can spin at speeds exceeding 100,000 rpm, centrifugal force separates the fibers, 

which then align in the groove of the rotor.  The resulting yarn is pulled out of the rotor 

chamber and wound onto a bobbin.   

The performance of fibers during processing and spinning is dependent on 

several fiber properties.  Fiber maturity and strength affect the fiber’s ability to 

withstand the forces placed upon fibers during drafting and spinning.  Fiber length and 

fineness affect the forces between fibers that dictate the “count,” or fineness, of the final 

yarn.  Foreign matter and neps lead to unevenness in yarns and may result in ends down, 
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or breaks, during spinning that greatly reduce production efficiency or may lead to 

imperfections in fabrics.   

The spinning limit (i.e. the maximum yarn count achievable) of a cotton is 

dependent on fiber properties and spinning method.  Yarn count (Ne) is a measure of 

fineness indicating the number of 840 yd skeins that can be made from one pound of 

yarn (ASTM Standards, 2007).  Longer, stronger fibers are better able to withstand the 

large forces placed on them during spinning and are therefore able to be spun into finer 

yarns.  Müller (1991) reported that length distribution of fibers also significantly affects 

the spinning limit of a cotton.  Typically, the minimum number of fibers in the cross-

section of a commercial yarn is approximately 60 for carded, ring-spun yarns and 100 or 

more for carded, rotor-spun yarns (Steadman et al., 1989).  Therefore, finer fibers are 

able to be spun into finer yarns as well.   

While fiber length, strength, and fineness are most frequently correlated to yarn 

properties (Krifa et al., 2001), the trash content of cotton can also affect the maximum 

yarn count achievable without losing efficiency due to excessive ends down.  Due to the 

high angular speeds encountered by fibers during spinning, trash particles can cause 

fiber breaks by exerting centrifugal force on the forming yarn, particularly during rotor 

spinning (Steadman et al., 1989).  Finer yarns are particularly susceptible to end breaks 

due to the presence of trash in the roving.   

 

Yarn Quality Indices 

Count Strength Product 

Count strength product (CSP), also known as skein-break factor, is a measure of 

yarn strength, and is calculated by multiplying the yarn count by the force required to 

break a yarn skein. El Mogahzy (1988) reported that skein break factor increased with 

increasing fiber length, length uniformity, and fiber strength but decreased with 

increasing reflectance (Rd) and fiber fineness.  El Mogahzy et al. (1990) found similar 

results for a different set of cottons but did not find significant correlations between 

reflectance and CSP.  Subramanian (2004) proposed a phenomenological model to 
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predict CSP rather than one derived from multiple linear regression analysis.  While the 

Subramanian (2004) model accounts for the mode of transfer of fiber tenacity to yarn 

tenacity, its usefulness as a predictive equation for yarn tenacity is limited. 

 

 Elongation 

Like fiber elongation, yarn elongation (%) measures the distance a yarn will 

stretch before breaking. Üreyan and Kadoğlu (2006) found that yarn elongation of ring-

spun yarns increased with increasing fiber length and strength but decreased with 

increasing micronaire.   

 

Tenacity 

Yarn tenacity is a measure of the pressure required to break a yarn and is directly 

related to yarn strength.  Yarn tenacity increases with increasing fiber strength (Graham 

and Taylor, 1978; Üreyan and Kadoğlu, 2006).  Ramey et al. (1977) found that fiber 

tenacity measured at 3.2 mm gage length explained more than 70% of the variation in 

observed yarn tenacity.  Longer, more uniform fibers also produce more tenacious yarns 

(Ramey et al., 1977; Müller, 1991; Üreyan and Kadoğlu, 2006).  Graham and Taylor 

(1978) reported that yarn end-breaking strength is related to the slipping resistance of 

fibers, which will increase with length due to greater fiber-to-fiber bonds.  Steadman et 

al. (1989) found that, at fine counts, rotor-spun yarn had fewer end breaks when 

combing, which primarily removes short fibers, was done.   

Testing 42 cottons, Ramey et al. (1977) found no correlation between micronaire 

and yarn tenacity.  Üreyan and Kadoğlu (2006) found that yarn tenacity was negatively 

correlated to micronaire.  However, Üreyan and Kadoğlu (2006) correlated yarn 

properties with HVI fiber properties of fibers removed from the sliver after the finishing 

draw frame.  Because an accurate measure of micronaire requires the fibers in the 

compressed sample to be randomly oriented, the relationship between yarn tenacity and 

the micronaire of a sample of parallelized fibers may not hold for samples taken directly 

from a bale of cotton. 
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Confirming the results of Hunter and Gee (1982), Frydrych (1992) concluded 

that fiber maturity and trash content do not influence yarn strength.  Krifa et al. (2001) 

found that the effect of seed-coat fragments (SCF) on yarn strength varied with fiber 

quality: “…we hypothesize that SCF will only have a significant effect on yarn strength 

if the resistance at the point created by the SCF is even weaker than the weakest point 

already present” (Krifa et al., 2001).   

Smith and Waters (1985) described the relationship between yarn twist and 

strength (fig. 15). 

 

 

 
Figure 15. Example yarn twist curve (Smith and Waters, 1985). 

 

 

Twist in yarns adds strength by tightening the yarn structure, thus decreasing fiber 

slippage.  However, if excessive twist is added to the yarn, the obliquity of the fibers 

from the yarn axis decreases yarn strength (Smith and Waters, 1985).  The twist 

multiplier is a constant which can be multiplied by the yarn number (cotton system) to 

determine the number of turns per inch of yarn.   

Graham and Taylor (1978) tested the effects of roving evenness, spindle speed, 

twist, and front drafting roll load pressure on yarn strength of ring-spun yarns.  They 
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found that, of these parameters, yarn strength was most substantially affected by front-

drafting roll pressure.  The authors speculated that this was because the front-drafting 

roll pressure influences fiber cohesion in the yarn. 

 

Evenness 

Several parameters are used to indicate yarn evenness.  Yarn coefficient of 

variation (CV) is a measure of the variability in the thickness of 100 m of yarn (eq. 5).     

100*
µ
σ

=CV                                                            (5) 

where: CV = coefficient of variation (%), 

 σ = standard deviation of yarn thickness about the mean, and 

 µ = mean yarn thickness. 

Evenness can also be indicated by the number of thick and thin places (points in the yarn 

that are over 50% thicker than or less than 50% of the average thickness, respectively) 

per km of yarn.   

For yarns coarser than 22 tex, rotor-spun yarns are generally more even 

(Steadman et al., 1989).  Furthermore, Delhom et al. (2007) stated that fiber quality has a 

greater effect on the yarn quality (and especially the uniformity) of ring-spun yarns 

compared to rotor-spun yarns. 

Üreyan and Kadoğlu (2006) found that yarn unevenness was positively 

correlated to fiber elongation but negatively correlated to fiber strength, reflectance and 

yellowness (which may indicate fiber maturity), length uniformity, and micronaire. 

Müller (1991) reported that yarn evenness was correlated to fiber length and length 

distribution. Steadman et al. (1989) found that fine count rotor-spun yarns had 

decreasing evenness with increasing twist. 

Neps are perhaps the greatest cause of unevenness in yarns.  Jones and Baldwin 

(1996) reported that most of the +200% imperfections in 20, 27, and 37 tex yarns they 

tested were due to seed-coat neps with correlations increasing for finer yarns.  Frydrych 

and Matusiak (2002) developed theoretical estimations of the critical nep size in fibers, 
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that is, the largest nep size permissible in AFIS fiber testing that will not show up in a 

yarn (as +200% imperfection) for open-end spinning (eq. 6) and ring spinning (eq. 7): 

 
063.0107.0 TDcrit =                                                    (6)   

 
663.0138.0 TDcrit =                                                    (7) 

 

where: Dcrit is the critical nep size (mm), and  

T is the linear density of yarn (tex) 

Experimental data supported the authors’ theoretical conclusions.   

 

Hairiness 

Yarn hairiness is a measure of the number of fiber ends and loops protruding 

from the body of a yarn (Zhu and Ethridge, 1997).  Hairy yarns tend to cling together in 

subsequent stages of processing making them difficult to manipulate.   Dyed fabrics 

made from hairy yarns have an undesirable hazy appearance. 

In general, ring-spun yarns are hairier than rotor-spun yarns of the same count, 

and coarse yarns are hairier than fine yarns (Barella and Manich, 1988).  Barella and 

Manich (1988) found that ring-spun yarns of the same count were 2.5 times more hairy 

than rotor-spun yarns of the same count.  They also found that fiber length, length 

uniformity, and micronaire explained only 33% of the hairiness of 15 tex ring-spun 

yarns and 18% of 30 tex ring-spun yarns.  For rotor-spun yarns, fiber parameters 

explained 38-40% of hairiness for both 30 and 50 tex yarns. 

Zhu and Ethridge (1997) reported that fiber length is the dominant fiber trait 

affecting yarn hairiness, confirming the results of Barella and Manich (1988).  The 

authors found that increasing fiber length, strength, and elongation reduced hairiness for 

both ring and rotor-spun yarns.  Correspondingly, yarns made from cottons with higher 

short fiber content (SFC) were hairier.  The observed effect of these fiber properties on 

hairiness was greater for ring-spun yarns than for rotor-spun yarns.  Viswanathan et al. 
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(1989) reported similar results for length and strength effects but reported that increased 

SFC led to less hairy yarns.  However, the author noted that this observation was 

contradictory to other findings and may be the result of biased measurement techniques. 

Üreyan and Kadoğlu (2006) and Müller (1991) reported negative correlations between 

fiber length and yarn hairiness.  Viswanathan et al. (1989) also found that fiber fineness 

had the greatest effect on yarn hairiness, followed by fiber length, whereas Zhu and 

Ethridge (1997) found no correlation between fiber fineness and yarn hairiness.     

The results from Zhu and Ethridge (1997) contradicted the results of 

Viswanathan et al. (1989) with regards to the effect of fiber maturity on yarn hairiness as 

well.  Zhu and Ethridge (1997) reported that increasing fiber maturity increased hairiness 

for both ring and rotor-spun yarns, while Viswanathan et al. (1989) and Pillay (1964) 

reported no significant correlation between fiber maturity and yarn hairiness.  However, 

Viswanathan et al. (1989), Zhu and Ethridge (1997), and Üreyan and Kadoğlu (2006) 

found significant correlations between micronaire and yarn hairiness.  Zhu and Ethridge 

(1997) reported that yarn hairiness was positively correlated to micronaire and fiber 

diameter for rotor-spun yarn but negatively correlated for ring-spun yarn. Üreyan and 

Kadoğlu (2006) found that hairiness of ring-spun yarns was positively correlated 

micronaire. 

 

Noils 

Noils are the waste from the combing process, which primarily removes short 

fibers from laps of cotton before finisher drawing and roving.  Elevated noils represent 

waste in the processing stream, making the inputs to the finished yarn more expensive.  

 

Previous Research 

Baker and Brashears (2000) evaluated the effect of field cleaners on open-end 

spun yarn quality from three varieties of cotton.  The field-cleaned cotton produced 

open-end spun yarn with a slightly higher evenness coefficient of variation (CV) and 
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more thin places.  All other measured yarn factors were unaffected by the use of a field 

cleaner.   

McAlister and Rogers (2005) investigated the effect of harvesting method on 

fiber and yarn quality from Ultra-Narrow-Row cotton grown in South Carolina.  The 

authors reported fewer thick places in yarns from picked cottons versus stripped cottons, 

while no significant differences were detected in other yarn quality indices.  However, 

the samples analyzed in this study were not harvested until after Christmas due to 

extremely wet weather during the harvest season.  Due to varietal differences, the use of 

Ultra-Narrow-Row cotton, and the extreme weathering of the cotton before harvest, the 

applicability of the results of this study is questionable.   

The objective of this research was to examine the effects of harvest method 

between picker and stripper harvesters on yarn quality from irrigated cotton harvested on 

the High Plains of Texas with modern harvest equipment.  This study represents the first 

commercial-scale harvester comparison project conducted in the High Plains region and 

the first study to analyze the effects of harvest method on ring-spun yarn quality from a 

traditional production system. 

 

METHODS 

Irrigated cotton was harvested from commercial farms on the High Plains of 

Texas and ginned at the USDA-ARS Cotton Production and Processing Research Unit in 

2006 and 2007 as described in Chapter V.  A minimum of 23 kg (50 lbs) of lint from 

each sample was processed into yarn at the International Textile Center.  Figure 16 

shows the process flow from bale to yarn for the samples collected.  Approximately half 

of each sample was carded only while the other half of each sample was carded and 

combed. 
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Figure 16. Spinning process flow chart for ring spinning. 

 

 

 

 

 

 



 

 

70

Warehousing and Laydown 

During warehousing, samples were conditioned and subsamples taken for HVI 

and AFIS analysis to determine the processing order.  Based on the results of HVI 

micronaire tests, the laydown order was established based on sequential micronaire 

values so that the card could be calibrated to consistently achieve the desired air to fiber 

mass ratio in the chute feed.   

 

Opening 

Samples were divided and placed into four bins to start the opening process.  

Within each bin, flat and inclined conveyors moved cotton to a comb that reduced the 

tuft size before dropping the cotton onto a conveyor belt where it was mixed with cotton 

from each of the other three bins.  The cotton was then pneumatically conveyed to a 

mono-cylinder, which is a half-beating point cleaner (i.e. a cleaning machine that does 

not restrain one end of the fiber) where the cotton is gently opened.  The lint was then 

processed through an ERM, which is a full-beating point cleaner (i.e. a cleaning machine 

that restrains one end of the fiber) that uses triangular saw-tooth wire to pull cotton past 

a series of grid bars.  Finally, the cotton was fed into an Automatic Material Handler 

(AMH), which is a feed control system that uses conveyors and a comb similar to the 

initial bins to feed cotton into the air stream leading to the carding machine.   

 

Carding 

From the AMH, cotton was pneumatically conveyed to the card (Model DK-903; 

Trützschler; Mönchengladbach, Germany) after passing an in-line metal detector to 

eliminate foreign matter than may damage the card.  At the chute feed, cotton is drawn 

into the card evenly and drafted by feed rollers.  Three licker-inn rollers opened and 

cleaned the cotton with pins (1st cylinder), coarse saw wire (2nd cylinder), and fine saw 

wire (3rd cylinder).  Cotton was then drawn into a thin web on the card cylinder, which is 

a 130 cm (51 in) diameter cylinder that rotated at 460 rpm.  The card cylinder drew the 

cotton past a series of three stationary flats with increasingly densely packed wire to thin 
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and parallelize the web and then past rotating flats that further conditioned the web.  

Once the web was removed from the carding cylinder, it passed through two rollers that 

crush any remaining foreign matter and then through a trumpet, where the web was 

formed into a sliver, which is placed in a can.  For this project, the sliver had a linear 

density of 4600 tex (65 gr/yd). 

 

Breaker Drawing 

Breaker drawing was conducted on an HSR 1000 draw frame (Trützschler; 

Mönchengladbach, Germany), bypassing the auto-leveler.  Drawing was achieved by 

seven rollers (fig. 17).  The bottom rollers were powered, and the top rollers rotated due 

to the friction of the sliver.  During breaker drawing, “trailing hooks” are removed from 

the fibers.  

 

 

 
Figure 17. Draw frame rollers. 

 

 

Each set of successive rollers (from left to right) rotate faster than the previous 

set, thus drafting the sliver.  The distance between each set of rollers is set based on the 

fiber length.  Therefore, before drawing, the cans from the web were organized 

sequentially by length.  Each sliver from the card was divided into six slivers which 
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were placed in the creel, from which they were fed into the draw frame.  The six slivers 

were blended into one (on the left side of fig. 17) and drafted to form one sliver (exiting 

the right side of fig. 17).  The draft is the ratio of the sliver linear density entering to the 

linear density exiting.  For this project, the draft was 6.76, resulting in final linear 

density of 3900 tex (55 gr/yd).  The sliver exiting the draw frame was split between two 

cans: 2740 m (3000 yards) of sliver were placed in a can for combing while the rest of 

the sliver was placed in a second can to form carded yarn.  One can was taken directly to 

the finisher draw frame (“Carded Process” from fig. 16) and the other was formed into 

laps for combing. 

 

Lap Forming and Combing  

The sliver for carded-and-combed yarn tests was divided into 28 slivers that were 

blended and rolled into eleven laps.  The first two laps and the final lap were discarded 

to avoid “piece ups.”  Each of the eight remaining laps was then combed and all laps 

were combined into a sliver with a final linear density of 3900 tex (55 gr/yd).   

 

Finish Drawing 

Both carded and carded-and-combed samples were divided into six can for finish 

drawing, which was again conducted on a HSR 1000 draw frame (Trützschler; 

Mönchengladbach, Germany).  The finish draw frame operates in a similar manner to the 

breaker draw frame, but the fibers go through the rollers in the opposite direction as the 

breaker draw frame, thus removing “leading hooks” from the fibers.  The final linear 

density of the sliver after finish drawing was 4250 tex (60 gr/yd).   

 

Roving and Spinning 

The final slivers for both combed samples and carded-and-combed samples were 

divided into ten cans which were placed on the roving frame, where they were 

combined, drawn, and placed on bobbins.  A slight twist (0.51-0.63 turn/cm [1.29-1.59 

turns/in]) was added to the sliver, which had a final linear density of 490 tex (hank 
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roving of 1.2), to prevent breaking of the roving during spinning.  The bobbins of roving 

were then spun on a Seussen Fiomax ring spinning frame.  Bobbins were spun into 14.5 

tex (40Ne) yarn with a twist multiple of 4.2 (weaving twist) using a traveler speed of 32 

m/s.  Ten bobbins of yarn were made from each sample.     

 

Yarn Testing 

Yarn count and skein break tests were conducted with a Scott Tester (ten bobbins 

tested per sample); yarn force to break, elongation, tenacity, and work to break were 

tested with a Uster Tensorapid 3 (ten bobbins tested per sample and ten breaks per 

bobbin); and yarn evenness was tested with an Uster Tester 3 (ten bobbins tested per 

sample and 400 m per bobbin).   

All treatment means were compared with the General Linear Model function in 

SPSS (SPSS 14.0; SPSS, Inc.; Chicago, IL).  A MANOVA test was conducted to 

determine overall differences between harvest treatments before conducting pair-wise 

comparisons.  The null hypothesis tested in all cases was that means in each harvest 

treatment were equal.  Means were compared with the Least Significant Difference 

(LSD) pair-wise multiple comparison test.  A 0.05 level of significance was used in all 

tests.   

In order to determine whether the fiber properties that are improved by picker 

harvesting versus stripper harvesting are significant contributors to yarn quality 

parameters, the relative contributions of fiber properties to yarn properties were analyzed 

using a stepwise linear regression (SPSS 14.0; SPSS, Inc.; Chicago, IL).  The stepwise 

linear regression in SPSS is a forward regression in which, after a new variable is added 

to the regression model, the new p-value of all variables already in the model are 

checked to determine if they should remain in the model based on the user-specified 

significance level for inclusion.  For the regression analysis, data from 2006 and 2007 

were combined, yielding 28 data points for each regression.  Carded yarns were analyzed 

separately from carded-and-combed yarns.  No significant autocorrelation was detected 

for any of the regression analyses presented. 
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RESULTS AND DISCUSSION 

Because samples collected in 2007 were substantially more mature than samples 

collected in 2006, the results from each year are presented separately.   

 

2006 

Selected results of carded-and-combed yarn testing are shown in tables 23 and 

24, respectively.  Treatment differences were detected in carded yarn tests (p=0.024 

using Wilk’s Lambda) but not carded-and-combed yarn tests (p=0.205 using Wilk's 

Lambda) with MANOVA (n = 4 for each treatment).  Therefore, pair-wise comparison 

tests of carded yarn tests may be analyzed as presented while combed yarn tests should 

be analyzed with more caution as an insignificant MANOVA result indicates an 

increased likelihood of a Type I error in which the null hypothesis is rejected even 

though it is true.    

 

 

 

 

 

 

Table 23. Selected results of 2006 carded yarn analysis.[a] 
  Picked  Stripped with FC  Stripped without FC  

 Value Quality[b] 
(%) 

Value Quality[b] 
(%) 

Value Quality[b] 
(%) 

CSP (N.tex) 2872.9x N/A 2852.8x N/A 2809.1x N/A 
Elongation (%) 7.80x <5 7.91x <5 7.87x <5 
Tenacity (cN/tex) 11.89x >95 11.86x >95 11.94x >95 
Work to Break (cN.cm) 376.5 x 49 380.4 x 47 382.0x 46 
CV (%) 22.67x >95 23.43y >95 23.32x,y >95 
Thin Places (cnt/km) 597x >95 742x >95 736x >95 
Thick Places (cnt/km) 1641x >95 1837x >95 1808x >95 
Neps +200% (cnt/km)  1542x >95 1787x >95 1785x >95 
Hairiness 4.75x 14 5.08y 27 5.16y 30 
[a]  No significant differences were detected (α = 0.05) between means in the same row followed by 

the same letter. 
[b] Quality percentile is based on global yarn quality statistics for ring-spun carded yarn bobbins for 

weaving (USTER Technologies, 2007). 
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Table 24. Selected results of 2006 carded-and-combed yarn analysis.[a] 
  Picked  Stripped with FC  Stripped without FC 

 Value Quality[b] 
(%) 

Value Quality[b] 
(%) 

Value Quality[b] 
(%) 

Noils (%) 17.05x N/A 17.65x N/A 18.52y N/A 
CSP (N.tex) 3378.4x N/A 3309.6x N/A 3274.8x N/A 
Elongation (%) 7.98x <5 8.00x <5 8.01x <5 
Tenacity (cN/tex) 13.42x >95 13.40x >95 13.26x >95 
Work to Break (cN.cm) 436.3x 14 433.5x 17 428.8x 20 
CV (%) 16.81x 91 17.24y >95 17.37y >95 
Thin Places (cnt/km) 47x >95 58y >95 55x,y >95 
Thick Places (cnt/km) 290x 89 348y 92 360y 92 
Neps +200% (cnt/km)  1030x >95 1260y >95 1320y >95 
Hairiness 4.22x 39 4.41y 50 4.49y 55 
[a]  No significant differences were detected (α = 0.05) between means in the same row followed by the 

same letter. 
[b] Quality percentile is based on global yarn quality statistics for ring-spun combed yarn bobbins for 

weaving (USTER Technologies, 2007). 
 

 

Little difference was detected in carded yarn quality based on harvest treatment 

with the exception of hairiness.  However, greater differences were detected in carded-

and-combed yarn quality indices.  In addition to the reduced percentage of noils seen in 

picked and field-cleaned cotton, picked cotton had a smaller CV, fewer thick and thin 

places, fewer neps, and was less hairy than both stripped treatments.  It should be noted, 

however, that combing is not typically performed on fibers with a staple shorter than 36, 

which was the case for all three harvest treatments.  Unlike Baker and Brashears (2000), 

no differences were seen in yarn evenness between field-cleaned and non-field-cleaned 

cotton, but Baker and Brashears (2000) analyzed open-end spun yarn rather than ring-

spun yarn. 

Compared to global averages, the yarn quality indices reported above for all 

harvest treatments indicate relatively poor yarn quality with a few exceptions: elongation 

for both carded and carded-and-combed yarns was excellent; work-to-break was average 

for carded yarns but good for carded-and-combed yarns; and hairiness, which was near 

average for carded-and-combed yarns but good for carded yarns.   
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2007 

Selected results of carded-and-combed yarn testing are shown in tables 25 and 

26, respectively.  A MANOVA test using Wilk’s Lambda (n = 24 for each treatment) 

revealed significant differences in carded yarn test results as a function of harvest 

location (p < 0.0005), variety (p < 0.0005), and harvest treatment (p = 0.026).  

Multivariate interactions were also significant between variety and location (p < 0.0005).   

For carded-and-combed yarn tests, significant differences were detected as a 

function of harvest location (p < 0.0005) and variety (p < 0.0005) but not harvest 

treatment (p = 0.150).  Therefore, pair-wise comparisons of carded yarn tests (table 25) 

may be analyzed as presented while carded-and-combed yarn tests (table 26) should be 

analyzed with more caution given the increased likelihood of a Type I error.  For carded-

and-combed tests, multivariate interactions were also significant between variety and 

location (p = 0.001). 

  

 
Table 25. Selected results of 2007 carded yarn analysis.[a] 

  Picked  Stripped with FC  Significant Variables[c] 
 Value Quality[b] 

(%) 
Value Quality[b] 

(%) 
 

CSP (N.tex) 3781.3x N/A 3752.3x N/A V, L, V*L 
Elongation (%) 6.79x <5 6.74x <5 V, L, V*L 
Tenacity (cN/tex) 14.48x >95 14.20y >95 V, T, V*L 
Work to Break (cN.cm) 376.4x 49 369.3x 49 V, L, V*L 
CV (%) 19.77x 83 19.88x 85 V, L, V*L 
Thin Places (cnt/km) 189x 95 198x >95 V, L, V*L 
Thick Places (cnt/km) 931x 92 964x 94 V, L, V*L 
Neps +200% (cnt/km)  741x 71 797y 77 V, L, T, V*L 
Hairiness 4.66x 10 4.74y 14 V, L, T, V*L 
[a]  No significant differences were detected (α = 0.05) between means in the same row followed by 

the same letter. 
[b] Quality percentile is based on global yarn quality statistics for ring-spun carded yarn bobbins for 

weaving (USTER Technologies, 2007). 
[c] V = variety; L = location; T = harvest treatment; V*L = variety-location interaction. 
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Table 26. Selected results of 2007 carded-and-combed yarn analysis.[a] 
  Picked  Stripped with FC  Significant Variables[c] 

 Value Quality[b] 
(%) 

Value Quality[b] 
(%) 

 

Noils (%) 16.50x N/A 16.93x N/A V, L, V*L 
CSP (N/tex) 4225.7x N/A 4184.0x N/A V, V*L 
Elongation (%) 7.10x <5 7.04x <5 V, L, V*L 
Tenacity (cN/tex) 15.86x 90 15.83x 91 V, V*L 
Work to Break (cN.cm) 427.2x 20 421.4x 22 V, V*L 
CV (%) 14.98x 70 15.07x 72 V, L, V*L 
Thin Places (cnt/km) 16x 84 17x 85 V, L 
Thick Places (cnt/km) 108x 76 117y 77 V, L, T, V*L 
Neps +200% (cnt/km)  59x 31 69y 39 V, L, T, V*L 
Hairiness 4.22x 39 4.26x 41 V, L, V*L 
[a]  No significant differences were detected (α = 0.05) between means in the same row followed by the 

same letter. 
[b] Quality percentile is based on global yarn quality statistics for ring-spun combed yarn bobbins for 

weaving (USTER Technologies, 2007). 
[c] V = variety; L = location; T = harvest treatment; V*L = variety-location interaction. 

 

 

As with the fiber quality parameters (tables 19-21), varietal and location impacts 

were substantial.  Therefore, paired-sample t-tests (α = 0.05) were conducted comparing 

differences in yarn properties between picked and stripped samples from the same plot to 

reduce varietal and location impacts.  Results of the paired-samples t-tests for carded 

yarns revealed significant improvements in CSP, tenacity, nep count, and yarn hairiness 

from picked samples versus stripped samples (table 27).  For carded-and-combed 

samples, picked cottons had fewer noils and resulted in improvements in yarn evenness 

and nep counts relative to stripped cottons (table 28).  The percentage fibers combed out 

of the laps as noils was significantly correlated to SFC (p < 0.0005). 

 

 
Table 27. Selected paired-sample t-test results of 2007 carded yarn analysis. 
 Mean Difference[a] p-value 
CSP (N.tex) 27.3 0.030 
Tenacity (cN/tex) 0.28 0.015 
Neps + 200% (cnt/km) -55 0.006 
Hairiness -0.08 0.003 
[a] Mean difference = (Avg. of picked sample) – (Avg. of stripped samples). 
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Table 28. Selected paired-sample t-test results of 2007 carded-and-combed yarn analysis.
 Mean Difference[a] p-value 
Noils (%) -0.425 0.002 
CV (%) -0.09 0.039 
Thick Places (cnt/km) -9.3 0.011 
Neps + 200% (cnt/km) -10.1 <0.0005 
[a] Mean difference = (Avg. of picked sample) – (Avg. of stripped samples). 

 

 

Compared to 2006, carded yarn tests in 2007 for both picked and stripped (field-

cleaned) samples showed increases in strength (as demonstrated by increases in CSP and 

tenacity; p < 0.0005 for all tests) but decreases in elongation (p = 0.031 for picked; p = 

0.025 for stripped), which led to no significant differences in work to break (p = 0.997 

for picked; p = 0.677 for stripped).  Yarns in 2007 were also more even, as demonstrated 

by improvements in CV, thin places, thick places, and neps (+200%; p < 0.0005 for all 

tests).  Hairiness improved for stripped samples between 2006 and 2007 (p = 0.006) but 

not for picked samples. 

Combing was more appropriate for samples in 2007, when the average staple was 

37, than 2006, when the average staple was 35.  Like the carded yarn tests, both picked 

and stripped (field-cleaned) samples showed increases in strength (as demonstrated by 

increases in CSP and tenacity; p < 0.0005 for all tests).  While differences in elongation 

were not significant at the 95% confidence interval (p = 0.067 for picked; p = 0.053 for 

stripped), reductions in elongation were enough to offset gains in yarn strength such that 

no significant differences were detected in work to break (p = 0.711 for picked; p = 

0.658 for stripped).  Carded-and-combed yarns in 2007 were also more even, as 

demonstrated by improvements in CV, thin places, thick places, and neps (+200%; p < 

0.0005 for all tests).  No differences were detected between years in hairiness or noils for 

either harvest treatment. 

Like 2006, compared to global averages, the yarn quality indices reported above 

for all harvest treatments indicate relatively poor yarn quality with a few exceptions: 

elongation for both carded and carded-and-combed yarns was excellent; work-to-break 
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was average for carded yarns but good for carded-and-combed yarns; and hairiness, 

which was near average for carded-and-combed yarns but good for carded yarns.   

 

Data Correlations 

Prediction equations from the multiple linear regression analysis are of the form: 

 

∑
=

+=
n

i
ii xCAY

1

    (8) 

 

where: Y = value of predicted yarn parameter, 

 A = regression constant,  

Ci = coefficient of the ith prediction variable, 

 xi = value of the ith prediction variable, and 

 n = number of significant prediction variables in the regression. 

 

Count Strength Product 

Count strength product should increase with increases in fiber strength and 

intermolecular forces between fibers. At a given yarn count, the number of fibers in the 

yarn cross section will increase as fiber fineness increases, and fiber strength will 

increase as fiber maturity increases.  However, the presence of foreign matter may 

reduce forces between fibers.  Therefore, candidate variables for the CSP regression 

analysis included micronaire, fiber length, length uniformity, strength, elongation, color 

(which may indicate weathered fibers), short fiber content, maturity, fineness, and 

foreign matter content. 

The stepwise regression analysis of the effect of fiber properties on CSP is 

summarized in table 29.  Upper quartile length (UQL) from AFIS measurements alone 

accounted for almost 80% of the variation in CSP of carded-and combed yarns and over 

85% in carded yarns.    
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Table 29. Regression analysis for CSP from fiber properties.
Prediction Variable Coefficient R2 Increase in R2 p-value 

Carded Yarn
Constant -1773.9 -- -- 0.003 
UQL[a] (cm) 1454.5 0.856 0.856 <0.0005 
SFCw

[b] (%) -31.9 0.894 0.038 <0.0005 
Carded-and-Combed Yarn 

Constant -7418.9 -- -- <0.0005 
UQL[a] (cm) 949.8 0.790 0.790 <0.0005 
Maturity Ratio 5469.1 0.857 0.067 <0.0005 
Micronaire -153.9 0.867 0.011 0.036 
VFM[c] 121.8 0.886 0.018 <0.0005 
Reflectance 36.3 0.905 0.019 0.002 
[a] UQL = upper quartile length 
[b] SFCw = short fiber content by weight 
[c] VFM = visible foreign matter 

 

 

The results of the regression analyses support the findings of El Mogahzy (1988) 

that CSP increases with increasing fiber length over the range of fiber lengths 

investigated (2.79 cm < UQL < 3.25 cm).  However, unlike El Moghazy (1988) no 

correlation was seen between CSP and fiber strength or length uniformity.     

Of the significant predictive variables for CSP from carded yarn, short fiber 

content (SFC) was significantly impacted by harvester treatment in 2007 (table 21).  

Short fiber content only accounted for 4% of the variation in CSP of carded yarns.  

Upper quartile length, which accounted for over 85% of the variability in CSP in carded 

yarn, is primarily a function of variety rather than harvest treatment.  Even so, in 2007 

there was a slight difference in CSP in carded yarns as a function of treatments in 2007 

(table 27). 

For carded-and-combed yarns, the variables influencing CSP that are affected by 

harvest treatment (maturity ratio in 2007 and micronaire) account for only 8% of the 

variation in CSP.  Therefore, it is not surprising that no differences were detected in CSP 

between harvest treatments for carded-and-combed yarns. 
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Elongation 

Yarn elongation should increase with increases in fiber elongation and 

intermolecular forces between fibers.  Increases in fiber strength should also permit 

greater yarn elongation before breaking.  Therefore, candidate variables for the yarn 

elongation regression analysis included micronaire, fiber length, length uniformity, 

strength, elongation, color (which may indicate weathered fibers), short fiber content, 

maturity, fineness, and foreign matter content. 

The stepwise regression analysis of the effect of fiber properties on yarn 

elongation is summarized in table 30.  Fiber fineness and micronaire account for most of 

the variation in yarn elongation of both carded yarns and carded-and-combed yarns.    

 

 
Table 30. Regression analysis for yarn elongation from fiber properties 
Prediction Variable Coefficient R2 Increase in R2 p-value 

Carded Yarn
Constant -15.0 -- -- <0.0005 
Hs

[a] (mtex) 0.098 0.671 0.671 <0.0005 
Micronaire -1.06 0.833 0.162 <0.0005 
Elongation (%) 0.44 0.896 0.062 <0.0005 
HVI Length (cm) 2.86 0.915 0.019 <0.0005 
Strength (g/tex) -0.12 0.930 0.015 <0.0005 
Yellowness -0.19 0.936 0.006 0.027 

Carded-and-Combed Yarn 
Constant -16.3   <0.0005 
Hs

[a] (mtex) 0.10 0.707 0.707 <0.0005 
Micronaire -1.14 0.832 0.125 <0.0005 
Elongation (%) 0.42 0.918 0.086 <0.0005 
UQL[b] (cm) 2.03 0.936 0.018 <0.0005 
VFM[c] -0.14 0.944 0.009 0.005 
[a] Hs = standard fineness 
 [b] UQL = upper quartile length 
[c] VFM = visible foreign matter 

 

 

The results of the regression analyses support the findings of Üreyan and 

Kadoğlu (2006) that yarn elongation increases with increasing fiber length and 

decreasing micronaire.  However, Üreyan and Kadoğlu (2006) found no significant 

relationship between fiber fineness and yarn elongation. 
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Of the significant predictive variables for yarn elongation having a substantial 

impact, only micronaire was significantly impacted by harvester treatment (tables 17-

21).  Therefore, it is not surprising that no differences were seen in yarn elongation 

between harvest treatments.      

 

Tenacity 

Yarn tenacity increases with increasing yarn strength and elongation.  Therefore, 

candidate variables for the yarn tenacity regression analysis include those for both yarn 

CSP and elongation.  

The stepwise regression analysis of the effect of fiber properties on yarn tenacity 

is summarized in table 31.  The initial regression model for carded-and-combed yarns 

indicated that yarn tenacity was negatively correlated to standard fineness, but the model 

was revised because, all else being equal, finer fibers should result in stronger (and 

therefore more tenacious) yarns.  Upper quartile length (UQL) from AFIS measurements 

alone accounted for almost 80% of the variation in yarn tenacity of carded yarns and 

75% of the variation in carded-and-combed yarns.    

 

 
Table 31. Regression analysis for yarn tenacity from fiber properties.
Prediction Variable Coefficient R2 Increase in R2 p-value 

Carded Yarn
Constant -15.45 -- -- <0.0005 
UQL[a] (cm) 17.87 0.792 0.792 <0.0005 
Maturity Ratio 9.73 0.821 0.028 0.004 

Carded-and-Combed Yarn 
UQL[a] (cm) 3.60 0.744 0.744 0.015 
Elongation (%) -0.52 0.776 0.032 <0.0005 
SFCw

[b] (%) -0.132 0.813 0.037 0.025 
Strength (g/tex) 0.15 0.828 0.016 0.039 
VFM[c]  0.25 0.841 0.013 0.042 
[a] UQL = upper quartile length 
[b] SFCw = short fiber content by weight  
[c] Visible foreign matter 
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Several previous studies (Ramey et al., 1977; Graham and Taylor, 1978; Üreyan 

and Kadoğlu, 2006) have reported significant correlations between fiber strength and 

yarn tenacity.  Ramey et al. (1977) reported that variations in fiber tenacity accounted 

for 70% of variations in yarn tenacity.  However, in this study no correlation was seen 

ers (Graham and Taylor, 1978; Ramey et al., 1977; Müller, 1991; Üreyan and Kadoğlu, 

2006) that longer fibers produce more tenacious yarns due to increased fiber cohesion.  

between yarn strength and fiber strength for carded yarns, and in carded-and-combed 

yarns, variations in fiber strength explained only a small portion of the variation in yarn 

tenacity.  However, the finding that UQL accounted for most of the variation in yarn 

tenacity supports the findings of several other research 

Based on the regression tests performed, significant variations in yarn tenacity as 

a result of harvest treatment would not be expected as UQL is not significantly affected 

by harvest treatment.  Differences in tenacity between carded yarns from picked and 

stripped samples in 2007 were likely the result of interactions between fiber properties or 

the result of a predictive variable that did not appear significant in this analysis due to 

the limited sample size.  No differences were detected in yarn tenacity between harvest 

treatments in 2006. 

 

Evenness 

The evenness of yarns should improve as the fibers constituting a given yarn and 

the spinning conditions become more consistent.  Therefore, it is expected that increased 

yarn unevenness would result from decreasing fiber uniformity and the presence of short 

fibers, neps, foreign matter, and weathered fibers.  Immature fibers that cannot stand the 

forces of spinning may also lead to yarn unevenness.  Candidate variables for evenness 

regression analyses included micronaire, fiber length, length uniformity, strength, 

elongation, color, short fiber content, maturity, fineness, and foreign matter content. 

The stepwise regression analysis of the effect of fiber properties on yarn 

evenness is summarized in table 32.  Substantially different results were found between 

carded yarn tests and carded-and-combed yarn tests.  Mean length by number 
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measurements from AFIS alone accounted for almost 90% of the variation in yarn 

evenness of carded yarns, while fiber length did not appear as a significant prediction 

variable for carded-and-combed yarns.  Results of regression analyses for thick places, 

thin places, and nep counts (+200%) are summarized in tables 33-35.  Short fiber content 

accounted for around 90% of the variation in thin places and yarn neps for carded yarns.  

Short fiber content also accounted for over 80% of the variation in thin and thick places 

in carded-and-combed yarns. 

 

 
Table 32. Regression analysis for yarn mass CV from fiber properties. 
Prediction Variable Coefficient R2 Increase in R2 p-value 

Carded Yarn
Constant 46.03 -- -- <0.0005 
AFIS Length (cm) -4.89 0.882 0.882 <0.0005 
Uniformity (%) -0.36 0.902 0.020 <0.0005 
Hs

[a] (mtex) 0.065 0.916 0.014 <0.0005 
Leaf 0.404 0.931 0.015 <0.0005 
VFM[b] -0.45 0.943 0.012 <0.0005 

Carded-and-Combed Yarn 
SFCw

[c] (%) 0.21 0.848 0.848 <0.0005 
Hs

[a] (mtex) 0.55 0.885 0.037 <0.0005 
VFM[b] -0.33 0.894 0.009 <0.0005 
Leaf 0.30 0.919 0.026 <0.0005 
[a] Hs = standard fineness 
[b] VFM = visible foreign matter 
[c] SFCw = short fiber content by weight 
 

 

The results of the regression analysis of carded yarn mass CV support the 

findings of Müller (1991) that yarn evenness is correlated to fiber length and length 

uniformity.  Üreyan and Kadoğlu (2006) also reported that yarn evenness was negatively 

correlated to fiber length uniformity.   

The reasons behind such diverse results for carded yarns versus carded-and-

combed yarns are not clear.  Based on the regression analysis, yarn evenness was 

primarily predicted by fiber quality parameters that are unaffected by harvest treatment.  

However, differences in yarn CV were detected for carded-and-combed yarns in both 

2006 and 2007. 
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Table 33. Regression analysis for thin places from fiber properties.
Prediction Variable Coefficient R2 Increase in R2 p-value 

Carded Yarn
Constant -2495.5 -- -- <0.0005 
SFCw

[a] (%) 114.2 0.893 0.893 <0.0005 
Length CV (%) -62.8 0.905 0.012 <0.0005 
Maturity Ratio 4495.0 0.913 0.008 <0.0005 
IFC[b] (%) 88.1 0.936 0.023 0.001 
SCN Size[c] (µm) 0.19 0.942 0.006 0.036 
Nep Count (cnt/g) 0.40 0.947 0.004 0.046 

Carded-and-Combed Yarn 
Constant -142.1 -- -- <0.0005 
SFCw

[a] (%) 3.72 0.819 0.819 <0.0005 
SCN Size[c] (µm) 0.033 0.856 0.037 0.001 
Hs

[d] (mtex) 0.48 0.880 0.024 0.002 
[a] SFCw = short fiber content by weight 
[b] IFC = immature fiber content 
[c] SCN Size = seed-coat nep size 
[d] Hs = standard fineness 

 

 
Table 34. Regression analysis for thick places from fiber properties.
Prediction Variable Coefficient R2 Increase in R2 p-value 

Carded Yarn
Constant 6884.4 -- -- <0.0005 
AFIS Length (cm) -1276.7 0.883 0.883 <0.0005 
Uniformity (%) -85.2 0.904 0.022 <0.0005 
Trash Size (µm) 2.95 0.923 0.019 0.001 
Hs

[a] (mtex) 16.2 0.931 0.008 0.002 
Elongation (%) -51.1 0.936 0.005 0.040 

Carded-and-Combed Yarn 
Constant -292.6 -- -- <0.0005 
SFCw

[b] (%) 22.7 0.872 0.872 <0.0005 
SCN Size[c] (µm) 0.18 0.901 0.029 <0.0005 
Leaf Grade 13.3 0.910 0.009 0.023 
[a] Hs = standard fineness 
[b] SFCw = short fiber content by weight 
[c] SCN Size = seed-coat nep size 
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Table 35. Regression analysis for yarn neps (+200%) from fiber properties. 
Prediction Variable Coefficient R2 Increase in R2 p-value 

Carded Yarn
SFCw

[a] (%) 135.2 0.908 0.908 <0.0005 
Length (cm) -705.2 0.921 0.013 0.007 
Elongation (%) -63.2 0.932 0.011 0.008 
IFC[b] (%) 228.3 0.940 0.007 <0.0005 
Length CV (%) -88.8 0.948 0.009 <0.0005 
Maturity Ratio 5906.5 0.956 0.007 0.001 
Hs

[c] (mtex) 12.6 0.959 0.003 0.041 
Carded-and-Combed Yarn 

Constant 540.1 -- -- 0.015 
Nep Count (cnt/g) 0.29 0.869 0.869 <0.0005 
SCN Size[d] (µm) 0.16 0.906 0.038 <0.0005 
Uniformity (%) -8.54 0.922 0.016 0.001 
[a] SFCw = short fiber content by weight 
[b] IFC = immature fiber content 
[c] Hs = standard fineness 
[d] SCN Size = seed-coat nep size 

 

 

Hairiness 

As described above, previous researchers have found contradictory results 

regarding the influence of fiber properties on yarn hairiness.  Furthermore, relative to 

other yarn properties, yarn hairiness has been poorly predicted by regression analyses of 

fiber properties. All HVI and AFIS fiber properties were considered as candidate 

variables for the yarn hairiness regression analysis model.   

The stepwise regression analysis of the effect of fiber properties on yarn 

hairiness is summarized in table 36.  Less than 70% of the variation in yarn hairiness is 

explained by the regression model.    
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Table 36. Regression analysis for yarn hairiness from fiber properties. 
Prediction Variable Coefficient R2 Increase in R2 p-value 

Carded Yarn
Constant 17.74 -- -- <0.0005 
Uniformity (%) -0.16 0.648 0.648 <0.0005 
Trash[a] (cnt/g) 0.001 0.677 0.030 0.026 

Carded-and-Combed Yarn 
SCN Size[b] (µm) -0.001 0.479[c] 0.479 <0.0005 
SFCw

[d] (%) 0.09 0.562 0.083 <0.0005 
Maturity Ratio 4.92 0.627 0.065 <0.0005 
Nep Size (µm) 0.003 0.653 0.027 0.044 
[a] The number of particles larger than 500 µm per gram as counted by AFIS 
[b] SCN Size = seed-coat nep size 
[c] The model originally introduced length uniformity before SCN Size, but length 

uniformity was eliminated as a prediction variable in a later step.  Therefore, SCN Size 
alone does not account for 47.9% of the variability in carded-and-combed yarn 
hairiness.  

[d] SFCw = short fiber content by weight 
 

 

The results of this regression analysis are dissimilar to the results of many other 

researchers (Barella and Manich, 1988; Viswanathan et al., 1989; Müller, 1991; Zhu and 

Ethridge, 1997; Üreyan and Kadoğlu, 2006), who identified fiber length as a dominant 

trait affecting yarn hairiness.  Length was not a significant predictor (p = 0.828 for 

carded yarns; p = 0.541 for carded-and-combed yarn) in the present regression models.  

However, as in the carded yarn model, Barella and Manich (1988) reported correlations 

between length uniformity and yarn hairiness.  The results of the carded-and-combed 

yarn regression model agree with the results of Zhu and Ethridge (1997) in that SFC and 

fiber maturity were both positively correlated with yarn hairiness. 

No previous studies were reviewed that related trash content to yarn hairiness.  

The reasons for the discrepancy in results between this investigation and previous 

studies are unclear at this time.  It is notable that significant differences in yarn hairiness 

were detected in both 2006 and 2007 even through differences in fiber length uniformity 

by harvest treatment were detected in 2006 only. 

 

 

 



 

 

88

CONCLUSIONS 

Harvest treatments were compared on the basis of yarn quality indices for four 

varieties of cotton commonly grown on the High Plains of Texas over two years.  

Regression analyses were also conducted to determine relationships between fiber and 

yarn properties.   

Few differences were detected in carded yarn quality between harvest treatments, 

while more pronounced differences favoring picked cotton were seen in carded-and-

combed yarns.  During both 2006 and 2007, the evenness of carded-and-combed yarns 

was improved by picking over stripping as measured by yarn CV, thick places, and neps 

(+200%), and the hairiness of carded yarns was reduced by picking.  In 2007, when 

fibers were more mature, picking improved the CSP, tenacity, and nep counts of carded 

yarns.  Noils, which were correlated to SFC, were also reduced by picking.  In 2007, 

variety had a greater impact on yarn quality than harvest treatment. 

Results of regression analyses were largely consistent with the findings of 

previous investigations with regards to CSP, yarn elongation, and carded yarn evenness.  

Contrary to previous studies, no significant relationships were detected between yarn 

tenacity and fiber strength or between fiber length and yarn hairiness.    
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CHAPTER VII 

ECONOMIC ANALYSIS 

 

INTRODUCTION 

Cotton production in the High Plains has changed dramatically in the past ten 

years as new varieties with superior quality characteristics have been introduced to the 

region and irrigated production area has increased.  As consumption of US cotton has 

shifted from domestic mills to an export market, demands for increased quality have 

forced producers to reevaluate their production and marketing goals, leading to changes 

in on-farm management practices that have resulted in dramatic increases in length and 

strength grades for cotton classed at the USDA-AMS Cotton Classing Offices in 

Lubbock and Lamesa, Texas.  Furthermore, it is estimated that between 120,000 and 

160,000 ha (300,000 and 400,000 ac) of drip irrigation has been installed on the High 

Plains in the past ten years for cotton production, and over 450,000 ha (1.1 million ac) 

are irrigated with center pivot systems equipped with high efficiency application 

packages.  As a result, yield potentials in the region have dramatically increased, 

sometimes reaching 9.8 to 12.3 bales/ha (4 to 5 bales/ac).  The increased emphasis on 

quality coupled with increased yields have renewed interest in picker harvester systems 

as a means of preserving fiber quality as cotton moves from the field to the mill.  

Although picker harvesters are more expensive to purchase and operate, improvements 

in the quality of cotton harvested and increases in the speed of harvest may make them 

an attractive option to producers of irrigated cotton on the High Plains.     

Several economic analyses have attempted to evaluate various cotton harvest 

systems.  Vories and Bonner (1995) compared gross returns per unit area from picked 

and stripped cotton and found that on average, the stripper system produced a greater 

return to the producer.  However, this study was conducted on cotton yielding less than 

4.9 bales/ha (2 bales/ac) and may not be reflective of returns in higher yielding cotton.  

Vories and Bonner (1995) also made no attempt to analyze differences in operational 

costs between systems but compared returns based on lint value only.  Faircloth et al. 
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(2004) found similar results in northeast Louisiana, but their comparison suffered from 

similar deficiencies. 

Nelson et al. (2001) compared alternative stripper and picker harvesting systems 

and included operational and maintenance costs for each system along with the cost of 

custom harvesting as an alternative to equipment ownership.  The analysis by Nelson et 

al. (2001) includes many important considerations and may serve as a model for further 

comparisons, but Nelson et al. (2001) only compared different stripper systems with 

other stripper systems and picker systems with other picker systems.  No comparison 

was made between picker- and stripper-based harvest systems.  Spurlock et al. (2006) 

conducted a similarly robust economic analysis comparing different row configurations 

for picker harvesters, but again, no comparison was made between picker and stripper 

systems. 

Yates et al. (2007) proposed results for an economic study comparing picker and 

stripper harvesters, but he extrapolated the fiber quality results from an older two-row 

model picker to a new six-row picker and from an older four-row stripper to a new eight-

row picker.  Yates et al. (2007) states that "performance rates" were used in the model, 

but no discussion is given regarding the information included in those "performance 

rates."  Yates et al. (2007) described the economic model used as the Cotton Economics 

Research Institute Cotton Harvesting Cost Calculator, but gave no details of the model.  

Given the lack of information and the questionable extrapolation, the results of Yates et 

al. (2007) should not be considered as a viable economic model. 

Willcutt et al. (2001) described the most comprehensive economic model for 

comparing harvest systems with the COTSIM cotton harvester simulation model 

developed by Chen et al. (1992).  Willcutt et al. (2001) simulated various harvesters on 

various size farms with different row configurations (e.g. skip-row, solid rows, etc.), but 

all production systems were assumed to yield 980 kg of lint per ha (1.8 bales/ac).  

Willcutt et al. (2001) found that, even with a 2.3 cent per kg ($0.05/lb) reduction in price 

for lint, stripper systems yielded higher net returns than picker systems.  However, 

Willcutt et al. (2001) assumed similar basket volumes for both machines, assumed that 
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strippers could operate the same number of hours per day as pickers, and that the same 

number of modules would be produced from both systems.  All of these assumptions are 

erroneous and may significantly affect harvest system economics.  Willcutt et al. (2001) 

concluded, however, that if strippers were operated fewer hours per day than pickers and 

the number of harvest days available was limited, returns from stripper systems quickly 

fell to or below the level of returns from picker harvesters.  Furthermore, Willcutt et al. 

(2001) did not account for slower stripper speeds that will result from higher yielding 

stands, which also favor picker-based systems. 

While each of the aforementioned studies yields insight into the decision matrix 

needed to determine the best harvest system for irrigated cotton on the High Plains, none 

of these studies addresses the issue holistically.    

Several well-known financial metrics are available to assess the economic impact 

of an investment, including payback period (PP), return on investment (ROI), return on 

assets (ROA), and net present value (NPV) (Flaig, 2005).  While each of these metrics is 

important to consider, only NPV considers the time value of money (Blanchard and 

Fabrycky, 1990).   

The objective of this research is to use an NPV model to compare economic 

returns for picker and stripper harvesters on the High Plains of Texas.  Model inputs 

regarding harvester performance and cotton fiber quality from each system were 

determined from field measurements described in previous chapters.  Six-row picker and 

stripper systems were compared.  

 

METHODS 

NPV for each system was calculated as (Bowlin et al., 1990): 
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where: NPV = net present value ($), 

 n = duration of the investment, 

 Ct = net cash flow at time period t, and 

 k = discount rate. 

 

For a given area harvested per machine, the yield required for the NPV of a 

picker system to equal the NPV of a stripper system with a field cleaner and a stripper 

system bypassing a field cleaner were calculated.   

 

Base Scenario 

In the base scenario, the investment cost was determined assuming that each 

machine was purchased with 100% liability and the purchase was amortized into equal 

payments over seven years, assuming the salvage value as the future value.  The real 

interest rate (4.8%) was assumed as the discount rate (eq. 10; Bowlin et al., 1990) and 

was calculated using the average 2007 intermediate agricultural lending rate (9.28%; 

Federal Reserve Bank of Dallas, 2008) adjusted by the farm machinery inflation rate 

(4.3%; USDA-NASS, 2008a).  
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NRk                                                   (10) 

 

where: k = real discount rate, 

 NR = nominal rate (here, intermediate agricultural lending rate), and 

 IR = inflation rate (here, intermediate agricultural lending rate). 

 

The cost of each machine was calculated assuming a purchase price of 90% of 

the MSRP (Spurlock et al., 2006) and a salvage value equal to 45% of the purchase price 

(Nelson et al., 2001).  Taxes, housing, and insurance were calculated as 2% of the 

purchase price per year (ASAE Standards, 2006). 
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Harvester operation parameters and turnout were estimated based on field 

measurements from the 2006 and 2007 harvest seasons (table 37). 
 

 

Table 37. Harvester parameter inputs measured during 2006 and 2007 harvest seasons. 
 Picker Stripper with 

Field Cleaner 
Stripper without 

Field Cleaner 
Speed (kph [mph]) 6.1 (3.8) 5.5 (3.4) 5.5 (3.4) 
Basket Capacity (bales) 4.8 2.1 1.8 
Dump Time (s) 76 45 45 
Lint Turnout (%) 35 30 27 
Seed Turnout (%) 55 46 40 

 

 

A row spacing of 76 cm (30 in.) was assumed.  Harvester fuel use was estimated 

at 26.2 and 13.1 L/ha (2.8 and 1.4 gal/ac) for the picker and stripper, respectively, and a 

spot diesel price of $0.86/L ($3.25/gal) was assumed.  A single application of harvest aid 

was assumed for picked cotton at $25/ha ($10/ac), whereas a second harvest aid 

application (at an additional cost of $25/ha) was assumed for stripped cotton.  Labor 

costs were a function of the time required to harvest a given area based on measured 

time-in-motion data, and a labor rate of $5.85/hr was assumed.  Ginning was assumed to 

cost $0.58/kg ($2.65/cwt) with no bagging and tie charges and no module transportation 

costs.  A seed price of $0.18/kg ($160/ton) was also assumed.  The value of cotton from 

each harvest treatment was determined by averaging the West Texas spot price for 

cotton from each harvest treatment from 2006 and 2007 from Chapter V (table 22).   

 

Input Variability 

A sensitivity analysis was conducted to determine the effect of changes in the 

input parameters on the breakeven yield for a given harvested area.  Sensitivity was 

calculated as: 
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where: S = model sensitivity, and 

 ∆Y = change in breakeven yield per unit change in input parameter I. 

 

The ranges of values for each input parameter to determine a “confidence 

interval” for breakeven lines are shown in table 38. 

 

 
Table 38. Ranges of values for NPV model input parameters. 

Model Input Base Scenario Range 
 Picker Stripper w/FC Stripper w/o FC  

Farm  
    Row Spacing (cm [in]) 76 (30) 76 (30) 76 (30) 76-101 (30-40) 
    Row Length (m [ft]) 915 (3000) 915 (3000) 915 (3000) ±15% 
Harvester 
    Loan Life (yrs) 7 7 7 None 
    Loan Rate (% APR) 4.3% 4.3% 4.3% ±2% 
    Salvage Value (% PP)[a] 45% 45% 45% ±5% 
    T,H,I (% PP)[a,b] 2% 2% 2% ±0.5% 
    MSRP ($) $431,174 $187,303 $169,303[c] None 
    Purchase Price (% MSRP) 90% 90% 90% ±5% 
Operating Costs 
    Diesel ($/gal) $3.25 $3.25 $3.25 ±15% 
    Labor ($/hr) $5.85 $5.85 $5.85 ±10% 
    Harvest Aid Applications 1 2 2 None 
    Harvest Aid Price ($/ap/ha) $24.70 $24.70 $24.70 ±20% 
    End Row Time (s) 20 20 20 ±25% 
    Speed (kph [mph]) 6.1 (3.8) 5.5 (3.4) 5.5 (3.4) ±10% 
    Fuel Use (L/ha [gal/ac]) 26.2 (2.8) 13.1 (1.4) 13.1 (1.4) ±20% 
    Basket Cap. (kg SC [lbs])[c] 3175 (7000) 1590 (3500) 1520 (3350) ±15% 
    Dump Time (s) 76 45 45 ±25% 
Ginning 
    Ginning ($/kg SC [$/cwt])[d] $0.58 ($2.65) $0.58 ($2.65) $0.58 ($2.65) ±15% 
    Lint Turnout (%) 35% 30% 27% ±3% 
    Seed Turnout (%) 55% 46% 40% ±3% 
    Lint Price ($/kg [$/cwt]) $1.1758  

($53.38) 
$1.1458 
($52.02) 

$1.0868  
($49.34) 

None 

    Seed Price ($/kg [$/ton]) $0.18 ($160) $0.18 ($160) $0.18 ($160) ±20% 
[a] PP = purchase price 
[b] T,H,I = taxes, housing, and insurance (taxes = 1%; housing = 0.75%; insurance = 0.25%) 
[c] Currently, stripper harvesters are not commercially available without field cleaners 
[d] SC = seed cotton 
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RESULTS AND DISCUSSION  

Under the conditions analyzed, the NPV of the stripper system without a field 

cleaner was always lower than the stripper system with a field cleaner, indicating that 

stripping without field cleaning is never the most profitable option.  However, this 

analysis does not take into account the risk averted by stripping without field cleaning on 

days that are too windy to transfer picked or field-cleaned seed cotton from the harvester 

basket to a boll buggy or module builder.  The model also does not place a monetary 

value on the reduced risk incurred by being able to pick a field earlier than a producer 

can strip a field or the increased risk incurred through the additional capital investment 

cost of a picker.  

The breakeven yield for a given harvested area decreases as row spacing 

increases.  For example, the breakeven yield between picking and stripping-with-field-

cleaning when harvesting 320 ha (800 ac) per machine per year is 5.75 bales/ha (2.33 

bales/ac) with the base scenario inputs on 76 cm (30 in.) rows, but it decreases to 5.56 

bales/ha (2.25 bales/ac) when on 102 cm (40 in.) rows, assuming the same yield of lint 

per acre. 

The breakeven curve between picking and stripping with a field cleaner is shown 

in fig. 18.  The breakeven curve between picking and stripping without a field cleaner is 

shown in fig. 19.  The black line in both figures represents the breakeven curve for the 

base scenario while the shaded area represents possible breakeven points within the 

range of input variables shown in table 38.  Areas above the breakeven line represent 

scenarios in which more profit may be obtained from picking while areas below the 

breakeven line represent scenarios in which more profit may be obtained by stripper 

harvesting.  Table 39 shows the relative returns per unit area for the picker and stripper-

with-field-cleaner systems relative to stripping without field cleaning assuming one 

machine is used to harvest 243 and 486 ha (600 and 1200 ac), respectively, under the 

base scenario. 
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Figure 18. Breakeven curve between picking and stripping with field cleaner from NPV analysis. 
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Figure 19. Breakeven curve between picking and stripping without a field cleaner from NPV analysis. 
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Table 39. Relative returns ($/ha [$/ac]) for various harvest systems.[a] 

Yield Picker Stripper w/ Field Cleaner Stripper w/o Field Cleaner 
243 ha (600 ac) per Machine 

3.7 (1.5) $22 ($9) $393 ($159) Base 
4.9 (2.0) $281 ($114) $544 ($220) Base 
6.2 (2.5) $539 ($218) $694 ($281) Base 
7.4 (3.0) $798 ($323) $845 ($342) Base 
8.7 (3.5) $1,057 ($428) $996 ($403) Base 
9.9 (4.0) $1,316 ($533) $1,146 ($464) Base 

11.1 (4.5) $1,575 ($637) $1,297 ($525) Base 
12.4 (5.0) $1,834 ($742) $1,448 ($586) Base 

486 ha (1200 ac) per Machine
3.7 (1.5) $396 ($160) $418 ($169) Base 
4.9 (2.0) $655 ($265) $569 ($230) Base 
6.2 (2.5) $914 ($370) $719 ($291) Base 
7.4 (3.0) $1,173 ($475) $870 ($352) Base 
8.7 (3.5) $1,432 ($579) $1,021 ($413) Base 
9.9 (4.0) $1,690 ($684) $1,171 ($474) Base 

11.1 (4.5) $1,949 ($789) $1,322 ($535) Base 
12.4 (5.0) $2,208 ($894) $1,473 ($596) Base 

[a] Assuming the stripper without field cleaner as a base value and with inputs from the Base Scenario. 

 

 

From figs. 18 and 19, it can be seen that the breakeven yield decreases as the area 

harvested per machine increases.  Furthermore, the yields required for picking to be 

more profitable than stripping are achievable on the High Plains if a producer has 

sufficient area to harvest per machine.   

The sensitivity of the NPV model to input parameters is shown in table 40 along 

with the scenarios that would lead to the highest and lowest breakeven yields per unit 

area.  Sensitivity to input variables that differed between stripper and picker treatments 

was described by the average sensitivity value as calculated by eq. 11.  
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Table 40. Sensitivity of NPV model to input parameters. 
Rank Model Input Sensitivity Max. Breakeven Yield  Min. Breakeven Yield 

1 Diff. Lint Price[a] 7.50 Min. Pick. Max. Strip.  Max. Pick. Min. Strip. 
2 Seed Turnout 1.71 Min. Pick. Max. Strip.  Max. Pick. Min. Strip. 
3 Purchase Price 1.35 Max. Pick. Min. Strip.  Min. Pick. Max. Strip. 
4 Lint Turnout 0.59 Max. Pick. Min. Strip.  Min. Pick. Max. Strip. 
5 Salvage Value 0.47 Minimize  Maximize 
6 Ginning 0.30 Minimize  Maximize 
7 Loan Rate 0.26 Maximize  Minimize 
8 Speed 0.23 Min. Pick. Max. Strip.  Max. Pick. Min. Strip. 
9 Harvest Aid Price 0.23 Minimize  Maximize 

10 Fuel Use 0.13 Max. Pick. Min. Strip.  Min. Pick. Max. Strip. 
11 Row Spacing 0.10 Minimize  Maximize 
12 Diesel 0.09 Maximize  Minimize 
13 Seed Price 0.08 Minimize  Maximize 
14 T,H,I[b] 0.05 Maximize  Minimize 
15 Labor 0.01 Minimize  Maximize 
16 Basket Capacity 0.00 Min. Pick. Max. Strip.  Max. Pick. Min. Strip. 
17 Dump Time 0.00 Max. Pick. Min. Strip.  Min. Pick. Max. Strip. 
18 Lint Price 0.00 No effect  No effect 
19 End Row Time 0.00 No effect  No effect 
20 Row Length 0.00 No effect  No effect 

[a] Diff. Lint Price = difference in price between lint harvested with various harvest methods  
[b] T,H,I = taxes, housing, and insurance 

 

 

The NPV model is over four times more sensitive to difference in the price of lint 

between harvester treatments than any other input parameter.  However, the model is 

relatively insensitive to changes in the price of lint if the price of both picked and 

stripped lint increase by the same amount.  The difference in price between picked and 

stripped lint is likely to be most influenced by growing conditions (which affect the 

difference in lint grades) rather than harvest method.  The growing conditions in 2007 

resulted in high fiber maturity values, which is uncommon.  In less ideal years, the 

difference in grade between picked and stripped cotton is expected to be greater (see 

2006 data and Kerby et al., 1986) thus reducing the breakeven yield for a given 

harvested area. 

Seed turnout and harvester purchase price, which are the second and third most 

influential model inputs, are substantially impacted by harvest method.  The model is 

relatively insensitive to changes in harvester basket capacity, dump time, the time spent 

on the turn row, and row length within the ranges analyzed. 
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CONCLUSIONS 

A breakeven analysis based on NPV was conducted to compare picker-based and 

stripper-based harvest systems with and without field cleaners.  Under no conditions 

analyzed was the NPV of a stripper system without a field cleaner greater than a stripper 

system with a field cleaner.  Breakeven curves relating yield to harvested-area-per-

machine were developed to compare picker-based systems with both stripper-based 

systems.  The breakeven yield decreases as the area harvested per machine increases.  

Furthermore, the yields required for picking to be more profitable than stripping are 

achievable on the High Plains if a producer has sufficient area to harvest per machine.   

The results of a sensitivity analysis of the NPV model demonstrate that the model 

is most sensitive to changes in the difference between picked and stripped lint, which is 

most influenced by growing conditions rather than harvest method.  The model is 

relatively insensitive to level changes in the price of lint.  The model is relatively 

sensitive to changes in seed turnout and machinery purchase price.  It is expected that 

the breakeven yield for a given harvested area will decrease with more adverse growing 

conditions (leading to less mature fibers) and increase with more ideal growing 

conditions (leading to more mature fibers).  
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CHAPTER VIII 

SUMMARY AND CONCLUSIONS 

 

Harvest machinery represents a substantial expenditure for cotton producers on 

the High Plains and throughout the United States.  When selecting a harvest system, 

capital investment and maintenance costs must be considered within a framework that 

includes analysis of the timeliness and efficiency of harvest, the quality of fibers 

harvested, and the needs of the textile mill that purchases a producer’s cotton.   

The performance of picker and stripper harvesters on irrigated cotton on the High 

Plains of Texas was evaluated on the basis of harvest efficiency, time-in-motion, the cost 

of ginning, fiber and yarn quality, and economic returns.  Harvester performance data 

and seed cotton samples were collected from four farms with varying soil and weather 

conditions across the High Plains over two harvest seasons.   

Harvest efficiency was measured to determine the amount of seed cotton left in 

the field by each machine.  While stripper harvesters demonstrated higher harvest 

efficiencies, the cotton left in the field by the picker was of lower quality and often 

reduced the value of the lint harvested per unit area. 

Time-in-motion data were collected to characterize the time required for each 

operation of harvest, including time spent on the row harvesting, transferring seed cotton 

to a boll buggy, and turning at the end of the row.  Time-in-motion data were highly 

variable and dependent on the support equipment available, such as the number of boll 

buggies and module builders supporting each harvester.  In general, pickers were able to 

travel faster through the field in high yielding cotton, especially when the field cleaner 

was the bottleneck in harvester operations.  However, as yield decreased, the speed of 

the stripper during harvest superseded that of the picker, especially when bypassing the 

field cleaner.  However, the substantially smaller basket capacity of the stripper required 

more frequent dumping, which dramatically impacted the productivity rate of the 

stripper systems.  
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The cost of ginning picked and stripped (field-cleaned) cotton was compared 

based on ginning schedules from three High Plains gins and measured lint turnouts.  On 

average, it cost the producer $4.76 per bale more to gin stripped-and-field-cleaned cotton 

compared to picked cotton due to the higher foreign matter content of the seed cotton.  

Differences were seen in the content of burs, sticks, leaf, and pin trash in seed cotton as a 

function of harvest method.  The increased foreign matter content also led to increased 

utility consumption by the gin while processing stripped cotton compared to picked 

cotton. 

Fiber quality of cottons from each harvest treatment was analyzed with HVI and 

AFIS.  In 2006, when fibers were immature, micronaire, length, and length uniformity 

were better for picker harvested cotton than for stripped cotton leading to a higher loan 

value and average sale price for the producer.  In 2007, when growing conditions were 

better and fibers were more mature, differences in fiber quality parameters between 

picked and stripped cottons were less pronounced leading to less discrepancy in the 

value of cotton harvested.  However, in 2007, differences in nep counts, short fiber 

content (SFC), and visible foreign matter between harvest treatments were 

distinguishable.  These results support the findings of Kerby et al. (1986) that differences 

in fiber quality between harvest treatments are more pronounced in years of adverse 

growing conditions. 

The results of this study indicate that, by using picker harvesters, producers may 

realize greater fiber quality and lint value, but the magnitude of those differences may be 

a function of growing conditions and/or fiber maturity.  Varietal differences also played 

a large role in determining fiber properties, but in 2007, no differences were seen in the 

value of harvested lint as a result of these differences.    

Yarn quality indices were analyzed to determine differences in ring-spun yarns 

from cottons harvested with picker and stripper harvesters.  Yarn quality was compared 

and regression analyses were conducted to determine relationships between fiber and 

yarn properties.  Few differences were detected in carded yarn quality between harvest 

treatments, while more pronounced differences favoring picked cotton were seen in 
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carded-and-combed yarns.  During both 2006 and 2007, the evenness of carded-and-

combed yarns was improved by picking over stripping as measured by yarn CV, thick 

places, and neps (+200%), and the hairiness of carded yarns was reduced by picking.  In 

2007, when fibers were more mature, picking improved the count strength product 

(CSP), tenacity, and nep counts of carded yarns.  Noils, which were correlated to SFC, 

were also reduced by picking. In 2007, variety had a greater impact on yarn quality than 

harvest treatment. 

Results of regression analyses were consistent with the findings of previous 

investigations with regards to CSP, yarn elongation, and carded yarn evenness.  Contrary 

to previous studies, no significant relationships were detected between yarn tenacity and 

fiber strength or between fiber length and yarn hairiness.    

The results of the harvester performance and lint quality evaluations were used to 

compare the net present value (NPV) of picker and stripper harvesters under a range of 

conditions.  A breakeven analysis based on NPV was conducted to compare the value of 

various harvest systems within the production system.  Under no conditions analyzed 

was the NPV of a stripper system without a field cleaner greater than a stripper system 

with a field cleaner.  Breakeven curves relating yield to harvested-area-per-machine 

were developed to compare picker-based systems with both stripper-based systems.  The 

breakeven yield between picking and stripping decreases as the area harvested per 

machine increases.  The yields required for picking to be more profitable than stripping 

are achievable on the High Plains if a producer has sufficient area to harvest per 

machine.   

The results of a sensitivity analysis of the NPV model demonstrate that the model 

is most sensitive to changes in the difference between picked and stripped lint, which is 

most influenced by growing conditions.  The model is relatively insensitive to level 

changes in the price of lint.  The model is relatively sensitive to changes in seed turnout 

and machinery purchase price.  It is expected that the breakeven yield for a given 

harvested area will decrease with more adverse growing conditions and increase with 

more ideal growing conditions. 
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With increased yields in the High Plains and increased demands from textile 

mills for high fiber quality, picker harvesting is a reasonable and potentially profitable 

alternative for High Plains producers.  The potential profitability of a picker-based 

system on the High Plains depends on the area to be harvested per machine and price 

differential between picked and stripped cotton, which expands as growing conditions 

become more adverse to cotton fiber maturation.     

 

FUTURE WORK 

Based on the availability of funding, more data will be collected to further refine 

the results of this work.  In addition to increasing the sample size of data, the following 

have been identified future work in this area: 

1. Fiber quality parameters measured by HVI systems and reported as part of 

the USDA-AMS cotton classification system provide textile mills with a 

substantial amount of information regarding the type of cotton they are 

purchasing, but these parameters are insufficient to repeatably predict the 

quality of yarn that will result from processing a bale of given HVI quality 

parameters.  Research could be conducted to determine if differences exist in 

yarn quality and spinning performance between bales of cotton that are picker 

harvested versus stripper harvested but have the same HVI classification data.  

In this manner, it would be possible to determine if there is reason to form a 

marketing pool for picked High Plains cotton that could be sold for a 

premium based on the spinnability of cotton in the pool. 

2. Because of differences in basket capacity between picker and stripper 

harvesters, in general, more support equipment such as boll buggies and 

module builders are required to support stripper harvesters if they are to 

harvest as efficiently as possible.  However, larger boll buggies are needed to 

receive a full basket of picked seed cotton compared to those required for 

stripper harvesting.  The economic model may be expanded to include 
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support equipment in order to produce a more comprehensive economic 

comparison between harvest systems. 

3. With the recent advent of on-harvester module builders for pickers by both 

major manufacturers of cotton harvesters, a new layer of data analysis is 

possible.  The economic model may be expanded to compare stripper-based 

systems with on-board module building systems.     
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SEED COTTON MOISTURE CONTENT DATA 
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Table 41. Average seed cotton moisture content data. 
Site Treatment Variety Rep Moisture Content 

(%wb) 
1 Picker ST 4554 B2RF 1 6.11 
1 Picker ST 4554 B2RF 2 7.36 
1 Picker ST 4554 B2RF 3 7.42 
1 Stripper with Field Cleaner ST 4554 B2RF 1 6.63 
1 Stripper with Field Cleaner ST 4554 B2RF 2 7.02 
1 Stripper with Field Cleaner ST 4554 B2RF 3 6.55 
1 Stripper without Field Cleaner ST 4554 B2RF 1 6.10 
1 Stripper without Field Cleaner ST 4554 B2RF 2 6.27 
1 Stripper without Field Cleaner ST 4554 B2RF 3 5.88 
2 Picker FM 9063 B2RF 1 4.64 
2 Picker FM 9063 B2RF 2 4.84 
2 Picker FM 9063 B2RF 3 4.60 
3 Picker FM 9058 F 1 5.65 
3 Picker FM 9058 F 2 5.30 
3 Picker FM 9058 F 3 3.3 
3 Picker FM 9063 B2RF 1 5.54 
3 Picker FM 9063 B2RF 2 5.45 
3 Picker FM 9063 B2RF 3 4.79 
3 Picker PHY 485 WRF 1 5.78 
3 Picker PHY 485 WRF 2 5.34 
3 Picker PHY 485 WRF 3 5.37 
3 Picker ST 4554 B2RF 1 5.60 
3 Picker ST 4554 B2RF 2 5.38 
3 Picker ST 4554 B2RF 3 4.74 
3 Stripper with Field Cleaner FM 9058 F 1 5.15 
3 Stripper with Field Cleaner FM 9058 F 2 4.94 
3 Stripper with Field Cleaner FM 9058 F 3 4.38 
3 Stripper with Field Cleaner FM 9063 B2RF 1 5.11 
3 Stripper with Field Cleaner FM 9063 B2RF 2 4.74 
3 Stripper with Field Cleaner FM 9063 B2RF 3 4.19 
3 Stripper with Field Cleaner PHY 485 WRF 1 4.67 
3 Stripper with Field Cleaner PHY 485 WRF 2 4.85 
3 Stripper with Field Cleaner PHY 485 WRF 3 4.57 
3 Stripper with Field Cleaner ST 4554 B2RF 1 4.48 
3 Stripper with Field Cleaner ST 4554 B2RF 2 4.68 
3 Stripper with Field Cleaner ST 4554 B2RF 3 4.31 
4 Picker FM 9058 F 1 5.05 
4 Picker FM 9058 F 3 5.80 
4 Picker FM 9063 B2RF 1 4.10 
4 Picker FM 9063 B2RF 3 5.15 
4 Picker PHY 485 WRF 1 4.96 
4 Picker PHY 485 WRF 3 5.33 
4 Picker ST 4554 B2RF 1 4.59 
4 Picker ST 4554 B2RF 3 5.56 
4 Stripper with Field Cleaner FM 9058 F 1 5.67 
4 Stripper with Field Cleaner FM 9058 F 2 6.51 
4 Stripper with Field Cleaner FM 9058 F 3 6.61 
4 Stripper with Field Cleaner FM 9063 B2RF 1 4.98 
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Table 41 Continued. 
Site Treatment Variety Rep Moisture Content 

(%wb) 
4 Stripper with Field Cleaner FM 9063 B2RF 2 6.44 
4 Stripper with Field Cleaner FM 9063 B2RF 3 5.56 
4 Stripper with Field Cleaner PHY 485 WRF 1 5.84 
4 Stripper with Field Cleaner PHY 485 WRF 2 6.55 
4 Stripper with Field Cleaner PHY 485 WRF 3 6.00 
4 Stripper with Field Cleaner ST 4554 B2RF 1 5.65 
4 Stripper with Field Cleaner ST 4554 B2RF 2 6.41 
4 Stripper with Field Cleaner ST 4554 B2RF 3 5.58 
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APPENDIX B 

PLANT HEIGHT DATA 
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Table 42. Average plant height data. 
Site Treatment Variety Rep Plant Height (cm) 

2 Picker FM 9063 B2RF 1 76.5 
2 Picker FM 9063 B2RF 2 76.8 
2 Picker FM 9063 B2RF 3 63.3 
2 Picker FM 9063 B2RF 4 72.7 
2 Picker FM 9063 B2RF 5 70.9 
3 Picker FM 9058 F 1 57.2 
3 Picker FM 9058 F 2 58.3 
3 Picker FM 9058 F 3 58.9 
3 Picker FM 9063 B2RF 1 53.7 
3 Picker FM 9063 B2RF 2 55.9 
3 Picker FM 9063 B2RF 3 55.2 
3 Picker PHY 485 WRF 1 66.7 
3 Picker PHY 485 WRF 2 63.6 
3 Picker PHY 485 WRF 3 59.2 
3 Picker ST 4554 B2RF 1 56.3 
3 Picker ST 4554 B2RF 2 53.4 
3 Picker ST 4554 B2RF 3 51.5 
4 Picker FM 9058 F 1 85.2 
4 Picker FM 9058 F 2 75.8 
4 Picker FM 9058 F 3 84.1 
4 Picker FM 9063 B2RF 1 70.6 
4 Picker FM 9063 B2RF 2 76.5 
4 Picker FM 9063 B2RF 3 70.3 
4 Picker PHY 485 WRF 1 82.5 
4 Picker PHY 485 WRF 2 105.1 
4 Picker PHY 485 WRF 3 79.8 
4 Picker ST 4554 B2RF 1 76.2 
4 Picker ST 4554 B2RF 2 78.3 
4 Picker ST 4554 B2RF 3 76.8 
4 Stripper with Field Cleaner FM 9058 F 1 78.6 
4 Stripper with Field Cleaner FM 9058 F 2 77.8 
4 Stripper with Field Cleaner FM 9058 F 3 85.2 
4 Stripper with Field Cleaner FM 9063 B2RF 1 69.8 
4 Stripper with Field Cleaner FM 9063 B2RF 2 76.8 
4 Stripper with Field Cleaner FM 9063 B2RF 3 72.6 
4 Stripper with Field Cleaner PHY 485 WRF 1 91.3 
4 Stripper with Field Cleaner PHY 485 WRF 2 93.7 
4 Stripper with Field Cleaner PHY 485 WRF 3 75.5 
4 Stripper with Field Cleaner ST 4554 B2RF 1 73.3 
4 Stripper with Field Cleaner ST 4554 B2RF 2 90.1 
4 Stripper with Field Cleaner ST 4554 B2RF 3 71.0 
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HARVEST EFFICIENCY DATA 
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Table 43. Harvest efficiency data. 
Site Treatment Variety Rep Left on Plant 

(%) 
Knocked 

Off 
(%) 

Harvest 
Efficiency 

(%) 
1 Picker ST 4554 B2RF 1 5.11 15.40 79.49 
1 Picker ST 4554 B2RF 2 0.80 8.54 90.66 
1 Picker ST 4554 B2RF 3 1.70 7.55 90.74 
1 Picker ST 4554 B2RF 4 0.02 6.14 93.83 
1 Picker ST 4554 B2RF 5 1.85 3.38 94.77 
1 Stripper w/ FC ST 4554 B2RF 1 0.72 1.60 97.69 
1 Stripper w/ FC ST 4554 B2RF 2 0.00 7..88 92.12 
1 Stripper w/ FC ST 4554 B2RF 3 0.75 0.62 98.63 
1 Stripper w/ FC ST 4554 B2RF 4 0.00 0.00 100.00 
1 Stripper w/ FC ST 4554 B2RF 5 3.14 2.43 94.43 
1 Stripper w/o FC ST 4554 B2RF 1 0.15 1.84 98.01 
1 Stripper w/o FC ST 4554 B2RF 2 0.42 1.06 98.52 
1 Stripper w/o FC ST 4554 B2RF 3 0.00 0.69 99.31 
1 Stripper w/o FC ST 4554 B2RF 4 0.00 1.90 98.10 
1 Stripper w/o FC ST 4554 B2RF 5 0.00 1.64 98.36 
2 Picker FM 9063 B2RF 1 2.68 1.34 95.98 
2 Picker FM 9063 B2RF 2 0.33 2.01 97.65 
2 Picker FM 9063 B2RF 3 0.13 0.53 99.34 
2 Picker FM 9063 B2RF 4 0.97 1.06 97.97 
2 Picker FM 9063 B2RF 5 0.44 0.73 98.83 
3 Picker FM 9058 F 1 1.27 3.24 95.49 
3 Picker FM 9058 F 2 0.30 0.65 99.04 
3 Picker FM 9058 F 3 0.66 2.80 96.54 
3 Picker FM 9063 B2RF 1 1.28 1.78 96.94 
3 Picker FM 9063 B2RF 2 1.86 2.30 95.85 
3 Picker FM 9063 B2RF 3 1.36 2.59 96.05 
3 Picker PHY 485 WRF 1 0.29 0.83 98.89 
3 Picker PHY 485 WRF 2 0.65 2.70 96.65 
3 Picker PHY 485 WRF 3 0.14 8.03 91.84 
3 Picker ST 4554 B2RF 1 1.43 3.76 94.81 
3 Picker ST 4554 B2RF 2 0.65 1.81 97.54 
3 Picker ST 4554 B2RF 3 0.44 3.47 96.09 
3 Stripper w/ FC FM 9058 F 1 0.00 1.56 98.44 
3 Stripper w/ FC FM 9058 F 2 1.46 2.89 95.65 
3 Stripper w/ FC FM 9058 F 3 0.02 0.49 99.49 
3 Stripper w/ FC FM 9063 B2RF 1 0.00 1.00 99.00 
3 Stripper w/ FC FM 9063 B2RF 2 0.00 0.74 99.26 
3 Stripper w/ FC FM 9063 B2RF 3 0.00 1.17 98.83 
3 Stripper w/ FC PHY 485 WRF 1 0.00 0.27 99.73 
3 Stripper w/ FC PHY 485 WRF 2 0.00 1.46 98.54 
3 Stripper w/ FC PHY 485 WRF 3 0.00 1.04 98.96 
3 Stripper w/ FC ST 4554 B2RF 1 0.00 3.55 96.45 
3 Stripper w/ FC ST 4554 B2RF 2 0.00 5.20 94.80 
3 Stripper w/ FC ST 4554 B2RF 3 0.31 6.10 93.59 
4 Picker FM 9058 F 1 0.91 4.80 94.29 
4 Picker FM 9058 F 2 2.12 5.36 92.51 
4 Picker FM 9058 F 3 1.86 1.87 96.27 
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Table 43 Continued.   
Site Treatment Variety Rep    

4 Picker FM 9063 B2RF 1 0.00 1.95 98.05 
4 Picker FM 9063 B2RF 2 0.79 3.07 96.14 
4 Picker FM 9063 B2RF 3 0.11 4.12 95.77 
4 Picker PHY 485 WRF 1 1.02 4.21 94.77 
4 Picker PHY 485 WRF 2 0.47 5.12 94.41 
4 Picker PHY 485 WRF 3 0.26 2.19 97.56 
4 Picker ST 4554 B2RF 1 0.35 3.73 95.92 
4 Picker ST 4554 B2RF 2 1.54 11.58 86.88 
4 Picker ST 4554 B2RF 3 0.37 3.05 96.59 
4 Stripper w/ FC FM 9058 F 1 0.00 0.13 99.87 
4 Stripper w/ FC FM 9058 F 2 0.00 0.11 99.89 
4 Stripper w/ FC FM 9058 F 3 0.15 2.94 96.90 
4 Stripper w/ FC FM 9063 B2RF 1 0.00 1.21 98.79 
4 Stripper w/ FC FM 9063 B2RF 2 0.00 8.41 91.59 
4 Stripper w/ FC FM 9063 B2RF 3 0.04 0.33 99.63 
4 Stripper w/ FC PHY 485 WRF 1 0.00 1.58 98.42 
4 Stripper w/ FC PHY 485 WRF 2 0.00 0.45 99.55 
4 Stripper w/ FC PHY 485 WRF 3 0.00 1.24 98.76 
4 Stripper w/ FC ST 4554 B2RF 1 0.08 2.79 97.13 
4 Stripper w/ FC ST 4554 B2RF 2 0.03 1.03 98.94 
4 Stripper w/ FC ST 4554 B2RF 3 0.00 1.73 98.27 
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Table 44. Fractionation analysis data. 
Site Treatment Variety Rep Burs 

(%) 
Sticks 
(%) 

Leaf 
(%) 

Pin Trash 
(%) 

Motes 
(%) 

Total Foreign 
Matter 

(%) 
1 Picker ST 4554 B2RF 1 2.23 0.43 1.98 0.37 0.06 5.08 
1 Picker ST 4554 B2RF 2 2.75 0.49 2.39 0.31 0.06 6.00 
1 Picker ST 4554 B2RF 3 1.93 0.36 1.99 0.36 0.06 4.70 
1 Picker ST 4554 B2RF 4 2.39 0.63 2.71 0.38 0.19 6.36 
1 Picker ST 4554 B2RF 5 1.17 0.47 2.05 0.23 0.06 4.05 
1 Stripper w/ FC ST 4554 B2RF 1 11.79 1.71 3.77 0.53 0.06 17.91 
1 Stripper w/ FC ST 4554 B2RF 2 9.43 1.81 2.99 0.29 0.00 14.52 
1 Stripper w/ FC ST 4554 B2RF 3 10.60 1.36 4.91 0.24 0.06 17.29 
1 Stripper w/ FC ST 4554 B2RF 4 10.13 1.51 3.40 0.19 0.06 15.35 
1 Stripper w/ FC ST 4554 B2RF 5 10.27 0.86 3.73 0.17 0.06 15.09 
1 Stripper w/o FC ST 4554 B2RF 1 18.94 1.30 3.60 0.31 0.06 24.22 
1 Stripper w/o FC ST 4554 B2RF 2 27.48 1.79 3.11 0.18 0.06 32.68 
1 Stripper w/o FC ST 4554 B2RF 3 22.01 1.79 4.04 0.31 0.00 28.15 
1 Stripper w/o FC ST 4554 B2RF 4 17.35 3.48 3.70 0.28 0.00 24.81 
1 Stripper w/o FC ST 4554 B2RF 5 13.81 1.79 3.45 0.24 0.00 19.29 
3 Picker FM 9058 F 1 1.10 0.32 1.06 0.32 0.00 2.80 
3 Picker FM 9058 F 2 2.40 0.46 0.88 0.51 0.00 4.24 
3 Picker FM 9058 F 3 0.86 0.53 0.74 0.92 0.00 3.05 
3 Picker FM 9063 B2RF 1 1.39 0.33 1.13 0.36 0.00 3.20 
3 Picker FM 9063 B2RF 2 1.08 0.52 0.89 0.36 0.00 2.85 
3 Picker FM 9063 B2RF 3 1.98 0.06 0.90 0.52 0.00 6.02 
3 Picker PHY 485 WRF 1 0.87 0.42 0.83 0.51 0.00 2.63 
3 Picker PHY 485 WRF 2 1.31 0.60 1.07 0.78 0.00 3.76 
3 Picker PHY 485 WRF 3 1.39 0.27 0.98 0.79 0.00 3.44 
3 Picker ST 4554 B2RF 1 1.61 0.88 2.88 1.11 0.00 6.47 
3 Picker ST 4554 B2RF 2 1.00 0.35 0.86 0.65 0.00 2.86 
3 Picker ST 4554 B2RF 3 1.77 0.81 0.74 0.59 0.00 3.91 
3 Stripper w/ FC FM 9058 F 1 7.02 2.49 4.19 1.44 0.00 15.28 
3 Stripper w/ FC FM 9058 F 2 8.35 2.07 3.33 1.16 0.00 14.90 
3 Stripper w/ FC FM 9058 F 3 10.44 2.68 3.08 0.70 0.00 18.81 
3 Stripper w/ FC FM 9063 B2RF 1 11.81 2.17 2.28 1.14 0.00 18.30 
3 Stripper w/ FC FM 9063 B2RF 2 8.89 2.26 2.85 1.65 0.00 15.65 
3 Stripper w/ FC FM 9063 B2RF 3 9.97 2.49 3.71 1.19 0.00 17.60 
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Table 44 Continued. 

Site Treatment Variety Rep Burs 
(%) 

Sticks 
(%) 

Leaf 
(%) 

Pin Trash 
(%) 

Motes 
(%) 

Total Foreign 
Matter 

(%)
3 Stripper w/ FC PHY 485 WRF 1 18.50 3.00 3.95 1.55 0.00 27.01 
3 Stripper w/ FC PHY 485 WRF 2 11.29 3.44 3.37 1.40 0.00 19.50 
3 Stripper w/ FC PHY 485 WRF 3 7.83 3.39 3.97 2.36 0.00 17.55 
3 Stripper w/ FC ST 4554 B2RF 1 13.25 4.08 3.74 1.44 0.00 22.51 
3 Stripper w/ FC ST 4554 B2RF 2 6.74 3.48 2.81 1.75 0.00 14.77 
3 Stripper w/ FC ST 4554 B2RF 3 6.74 2.23 3.23 1.65 0.00 13.84 
4 Picker FM 9058 F 1 1.91 0.85 1.87 1.25 0.00 5.88 
4 Picker FM 9058 F 2 2.09 0.53 1.75 0.95 0.00 5.32 
4 Picker FM 9058 F 3 2.22 0.82 1.87 1.02 0.00 5.92 
4 Picker FM 9063 B2RF 1 2.91 0.32 1.18 0.70 0.00 5.10 
4 Picker FM 9063 B2RF 2 0.99 0.98 2.47 0.82 0.00 5.26 
4 Picker FM 9063 B2RF 3 1.53 0.59 3.43 1.09 0.00 6.64 
4 Picker PHY 485 WRF 1 2.27 1.19 1.17 0.90 0.00 5.54 
4 Picker PHY 485 WRF 2 2.39 0.93 1.95 1.24 0.00 6.51 
4 Picker PHY 485 WRF 3 3.91 1.16 2.19 1.18 0.00 8.44 
4 Picker ST 4554 B2RF 1 1.44 0.73 1.75 1.23 0.00 5.15 
4 Picker ST 4554 B2RF 2 1.46 1.14 2.24 1.27 0.00 6.11 
4 Picker ST 4554 B2RF 3 2.60 0.95 2.27 1.45 0.00 7.27 
4 Stripper w/ FC FM 9058 F 1 9.48 3.12 3.04 1.30 0.00 16.94 
4 Stripper w/ FC FM 9058 F 2 6.43 2.02 3.46 1.01 0.00 12.91 
4 Stripper w/ FC FM 9058 F 3 8.83 3.16 5.54 1.62 0.00 19.15 
4 Stripper w/ FC FM 9063 B2RF 1 8.77 2.41 3.26 1.01 0.00 15.45 
4 Stripper w/ FC FM 9063 B2RF 2 7.93 3.74 3.45 1.43 0.00 16.55 
4 Stripper w/ FC FM 9063 B2RF 3 8.09 4.47 8.82 2.28 0.00 23.66 
4 Stripper w/ FC PHY 485 WRF 1 5.92 3.70 1.85 1.04 0.00 12.52 
4 Stripper w/ FC PHY 485 WRF 2 10.18 5.72 2.50 1.17 0.00 19.56 
4 Stripper w/ FC PHY 485 WRF 3 6.68 3.97 2.96 1.46 0.00 15.06 
4 Stripper w/ FC ST 4554 B2RF 1 8.23 2.78 4.07 1.44 0.00 16.51 
4 Stripper w/ FC ST 4554 B2RF 2 5.12 4.38 4.40 1.67 0.00 15.57 
4 Stripper w/ FC ST 4554 B2RF 3 6.08 2.98 3.06 1.37 0.00 13.49 
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Table 45. Turnout data. 
Site Treatment Variety Rep Lint Turnout 

(%) 
1 Picker ST 4554 B2RF M[a] 35.6 
1 Stripper w/ FC ST 4554 B2RF M[a] 30.2 
1 Stripper w/o FC ST 4554 B2RF M[a] 26.6 
3 Picker FM 9058 F 1 39.5 
3 Picker FM 9058 F 2 38.6 
3 Picker FM 9058 F 3 40.7 
3 Picker FM 9063 B2RF 1 36.1 
3 Picker FM 9063 B2RF 2 36.3 
3 Picker FM 9063 B2RF 3 35.8 
3 Picker PHY 485 WRF 1 33.0 
3 Picker PHY 485 WRF 2 31.1 
3 Picker PHY 485 WRF 3 35.3 
3 Picker ST 4554 B2RF 1 36.2 
3 Picker ST 4554 B2RF 2 35.2 
3 Picker ST 4554 B2RF 3 35.8 
3 Stripper w/ FC FM 9058 F 1 29.6 
3 Stripper w/ FC FM 9058 F 2 33.9 
3 Stripper w/ FC FM 9058 F 3 31.2 
3 Stripper w/ FC FM 9063 B2RF 1 28.8 
3 Stripper w/ FC FM 9063 B2RF 2 29.7 
3 Stripper w/ FC FM 9063 B2RF 3 29.4 
3 Stripper w/ FC PHY 485 WRF 1 27.5 
3 Stripper w/ FC PHY 485 WRF 2 27.8 
3 Stripper w/ FC PHY 485 WRF 3 27.4 
3 Stripper w/ FC ST 4554 B2RF 1 28.1 
3 Stripper w/ FC ST 4554 B2RF 2 28.5 
3 Stripper w/ FC ST 4554 B2RF 3 28.8 
4 Picker FM 9058 F 1 36.5 
4 Picker FM 9058 F 2 37.5 
4 Picker FM 9058 F 3 37.3 
4 Picker FM 9063 B2RF 1 35.4 
4 Picker FM 9063 B2RF 2 34.2 
4 Picker FM 9063 B2RF 3 34.3 
4 Picker PHY 485 WRF 1 32.6 
4 Picker PHY 485 WRF 2 30.5 
4 Picker PHY 485 WRF 3 33.8 
4 Picker ST 4554 B2RF 1 35.9 
4 Picker ST 4554 B2RF 2 33.4 
4 Picker ST 4554 B2RF 3 34.2 
4 Stripper w/ FC FM 9058 F 1 31.5 
4 Stripper w/ FC FM 9058 F 2 30.1 
4 Stripper w/ FC FM 9058 F 3 32.4 
4 Stripper w/ FC FM 9063 B2RF 1 29.3 
4 Stripper w/ FC FM 9063 B2RF 2 29.9 
4 Stripper w/ FC FM 9063 B2RF 3 31.8 
4 Stripper w/ FC PHY 485 WRF 1 24.6 
4 Stripper w/ FC PHY 485 WRF 2 29.6 

[a] Data represents a module average. 
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Table 45 Continued.
Site Treatment Variety Rep Lint Turnout 

(%) 
4 Stripper w/ FC PHY 485 WRF 3 29.5 
4 Stripper w/ FC ST 4554 B2RF 1 32.1 
4 Stripper w/ FC ST 4554 B2RF 2 30.4 
4 Stripper w/ FC ST 4554 B2RF 3 29.9 
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Table 46. HVI data. 
Site Treatment Variety Rep Mic. UHML[a] 

(cm) 
Unif. 
(%) 

Strength 
(g/tex) 

Elong. 
(%) 

Rd 
 

+b Color 
Grade 

Leaf 

1 Picker ST 4554 B2RF 1 3.6 2.84 81.3 28.6 8.3 81.8 8.3 21-1   2 
1 Picker ST 4554 B2RF 2 3.4 2.82 80.4 26.1 8.7 81.4 8.0 21-1   2 
1 Picker ST 4554 B2RF 3 3.6 2.77 79.8 27.2 8.4 81.6 7.9 21-2   2 
1 Picker ST 4554 B2RF 4 3.4 2.84 79.9 26.4 8.1 81.5 8.1 21-1   2 
1 Stripper w/ FC ST 4554 B2RF 1 3.2 2.77 79.5 24.8 9.2 81.2 8.4 21-1   2 
1 Stripper w/ FC ST 4554 B2RF 2 3.3 2.77 79.6 26.9 8.5 81.1 8.7 21-1   2 
1 Stripper w/ FC ST 4554 B2RF 3 3.1 2.79 79.3 27.2 8.7 80.7 8.2 21-1   3 
1 Stripper w/ FC ST 4554 B2RF 4 3.3 2.77 79.1 25.9 8.5 81.4 8.5 21-1   3 
1 Stripper w/o FC ST 4554 B2RF 1 3.2 2.77 78.8 26.1 8.8 80.9 8.6 21-1   2 
1 Stripper w/o FC ST 4554 B2RF 2 3.2 2.79 79.6 26.2 8.2 80.4 8.9 21-1   2 
1 Stripper w/o FC ST 4554 B2RF 3 2.9 2.79 78.9 26.8 8.4 80.5 8.9 21-1   3 
1 Stripper w/o FC ST 4554 B2RF 4 3.4 2.79 79.6 27.1 8.6 81.8 8.2 21-1   2 
3 Picker FM 9058 F 1 4.6 2.84 80.6 29.0 7.2 81.5 7.8 21-2   1 
3 Picker FM 9058 F 2 4.1 2.97 80.8 29.9 7.3 83.2 7.4 21-1   1 
3 Picker FM 9058 F 3 3.6 2.97 80.8 28.4 7.2 82.8 7.5 21-1   1 
3 Picker FM 9063 B2RF 1 4.2 3.02 81.1 30.3 7.8 83.2 7.4 21-1   1 
3 Picker FM 9063 B2RF 2 4.3 3.02 80.9 31.8 7.5 84.2 7.2 21-1   1 
3 Picker FM 9063 B2RF 3 4.0 3.05 81.3 31.3 7.5 83.7 7.5 21-1   1 
3 Picker PHY 485 WRF 1 4.4 2.87 82.9 29.0 10.0 78.8 8.7 21-2   1 
3 Picker PHY 485 WRF 2 4.0 2.90 83.0 29.2 9.9 79.4 9.0 21-1   3 
3 Picker PHY 485 WRF 3 4.2 2.90 82.2 29.1 9.7 79.8 8.6 21-1   2 
3 Picker ST 4554 B2RF 1 4.1 2.90 81.8 30.6 9.9 80.8 8.7 21-1   1 
3 Picker ST 4554 B2RF 2 4.0 2.84 81.4 30.6 9.9 80.6 8.8 21-1   1 
3 Picker ST 4554 B2RF 3 3.9 2.87 81.5 28.5 10.3 81.5 8.6 21-1   1 
3 Stripper w/ FC FM 9058 F 1 4.8 2.69 79.0 28.2 7.3 81.0 8.0 21-2   2 
3 Stripper w/ FC FM 9058 F 2 4.0 2.90 79.6 30.1 7.1 82.2 7.5 21-2   1 
3 Stripper w/ FC FM 9058 F 3 3.7 2.90 81.0 28.3 7.2 82.8 7.8 21-1   2 
3 Stripper w/ FC FM 9063 B2RF 1 4.3 3.00 81.0 31.2 7.6 82.5 7.7 21-1   1 
3 Stripper w/ FC FM 9063 B2RF 2 3.8 3.00 80.7 31.0 7.8 83.6 7.6 11-2   2 
3 Stripper w/ FC FM 9063 B2RF 3 3.8 3.02 81.5 31.6 7.4 83.5 7.7 11-2   1 
3 Stripper w/ FC PHY 485 WRF 1 4.1 2.87 82.3 30.5 9.5 77.7 8.8 31-1   3 
3 Stripper w/ FC PHY 485 WRF 2 3.9 2.90 82.8 31.3 9.4 78.3 9.6 21-3   2 

[a] UHML = upper-half mean length 
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Table 46 Continued. 
Site Treatment Variety Rep Mic. UHML[a] 

(cm) 
Unif. 
(%) 

Strength 
(g/tex) 

Elong. 
(%) 

Rd 
 

+b Color 
Grade 

Leaf 

3 Stripper w/ FC PHY 485 WRF 3 4.0 2.92 83.7 29.5 9.9 76.2 8.9 31-3   3 
3 Stripper w/ FC ST 4554 B2RF 1 4.1 2.90 82.3 29.5 10.1 78.0 9.3 21-4   2 
3 Stripper w/ FC ST 4554 B2RF 2 3.7 2.87 81.6 29.6 9.9 77.0 9.7 21-4   2 
3 Stripper w/ FC ST 4554 B2RF 3 3.7 2.90 81.9 29.8 9.9 79.4 8.9 21-2   2 
4 Picker FM 9058 F 1 4.0 3.07 82.6 29.2 7.3 83.5 7.8 21-1   2 
4 Picker FM 9058 F 2 4.0 3.07 82.7 27.8 7.3 82.3 7.8 21-1   1 
4 Picker FM 9058 F 3 4.1 3.07 82.3 29.6 7.3 81.4 8.3 21-1   1 
4 Picker FM 9063 B2RF 1 4.2 3.10 81.8 30.9 7.6 82.8 7.5 21-1   1 
4 Picker FM 9063 B2RF 2 4.4 3.12 83.1 31.3 7.7 83.3 7.6 21-1   1 
4 Picker FM 9063 B2RF 3 4.4 3.12 83.2 30.3 7.9 81.6 7.7 21-1   1 
4 Picker PHY 485 WRF 1 4.0 2.84 82.6 27.2 9.8 77.9 9.2 21-2   2 
4 Picker PHY 485 WRF 2 4.5 2.87 83.8 28.3 10.0 76.1 9.6 31-3   1 
4 Picker PHY 485 WRF 3 4.0 2.92 83.0 28.0 10.1 76.5 9.4 31-3   2 
4 Picker ST 4554 B2RF 1 4.1 2.87 82.4 27.6 10.2 78.5 9.5 21-3   1 
4 Picker ST 4554 B2RF 2 4.4 2.87 82.3 27.4 10.2 78.8 9.4 21-3   1 
4 Picker ST 4554 B2RF 3 4.2 2.92 83.0 28.8 10.2 78.8 9.2 21-1   1 
4 Stripper w/ FC FM 9058 F 1 3.7 3.02 81.3 29.6 7.5 82.0 7.9 21-1   1 
4 Stripper w/ FC FM 9058 F 2 4.0 3.05 81.9 28.9 7.4 81.9 7.9 21-1   1 
4 Stripper w/ FC FM 9058 F 3 4.1 3.15 83.1 30.1 7.3 80.6 8.4 21-2   2 
4 Stripper w/ FC FM 9063 B2RF 1 4.1 3.02 81.9 30.1 7.9 83.9 7.8 11-1   1 
4 Stripper w/ FC FM 9063 B2RF 2 4.4 3.12 82.8 31.2 7.7 82.8 7.7 21-1   1 
4 Stripper w/ FC FM 9063 B2RF 3 4.5 3.10 83.1 30.7 7.7 82.6 7.7 21-1   1 
4 Stripper w/ FC PHY 485 WRF 1 3.9 2.82 82.4 28.4 9.8 76.9 9.4 21-4   2 
4 Stripper w/ FC PHY 485 WRF 2 4.4 2.87 82.8 27.7 10.1 75.5 9.5 31-3   3 
4 Stripper w/ FC PHY 485 WRF 3 3.9 2.92 84.1 29.4 9.9 75.4 9.7 32-1   3 
4 Stripper w/ FC ST 4554 B2RF 1 3.9 2.87 81.4 27.0 10.0 78.8 9.6 21-3   1 
4 Stripper w/ FC ST 4554 B2RF 2 4.1 2.90 82.3 28.1 10.1 76.7 10.4 22-1   2 
4 Stripper w/ FC ST 4554 B2RF 3 4.0 2.90 82.1 28.4 10.0 77.6 10.0 21-3   1 

[a] UHML = upper-half mean length 
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Table 47. AFIS data. 
Site Treatment Variety Rep Nep Count 

(neps/g) 
SFC[a] 

(% by weight) 
VFM[b] 

(%) 
IFC[c] 
(%) 

Maturity 
Ratio 

1 Picker ST 4554 B2RF 1 460 13.7 0.89 11.1 0.81 
1 Picker ST 4554 B2RF 2 613 17.9 1.18 13.8 0.76 
1 Picker ST 4554 B2RF 3 564 15.8 1.01 12.4 0.78 
1 Picker ST 4554 B2RF 4 606 17 1.17 13.7 0.77 
1 Stripper w/ FC ST 4554 B2RF 1 664 16.4 1.17 13.1 0.78 
1 Stripper w/ FC ST 4554 B2RF 2 694 18.5 1.06 14.1 0.76 
1 Stripper w/ FC ST 4554 B2RF 3 624 17.4 1.18 14 0.78 
1 Stripper w/ FC ST 4554 B2RF 4 660 16.8 1.29 13.4 0.78 
1 Stripper w/o FC ST 4554 B2RF 1 706 18.1 1.13 13.6 0.77 
1 Stripper w/o FC ST 4554 B2RF 2 780 18.8 1.18 14.1 0.76 
1 Stripper w/o FC ST 4554 B2RF 3 772 18.4 1.44 15 0.75 
1 Stripper w/o FC ST 4554 B2RF 4 548 15.3 0.83 12.4 0.79 
3 Picker FM 9058 F 1 240 10.5 0.94 8.1 0.89 
3 Picker FM 9058 F 2 289 11.3 0.71 9.6 0.86 
3 Picker FM 9058 F 3 365 11.2 1.1 9.7 0.85 
3 Picker FM 9063 B2RF 1 266 10 1.04 9 0.86 
3 Picker FM 9063 B2RF 2 258 10.1 0.99 8.4 0.86 
3 Picker FM 9063 B2RF 3 342 9.1 0.66 8.7 0.86 
3 Picker PHY 485 WRF 1 275 10 2.14 7.5 0.84 
3 Picker PHY 485 WRF 2 330 9.8 2.45 7.7 0.84 
3 Picker PHY 485 WRF 3 289 9.9 2.4 8 0.85 
3 Picker ST 4554 B2RF 1 372 12.8 1.61 10 0.83 
3 Picker ST 4554 B2RF 2 346 12.7 1.35 10 0.82 
3 Picker ST 4554 B2RF 3 358 12.9 1.6 10 0.82 
3 Stripper w/ FC FM 9058 F 1 309 12.1 1.32 8.5 0.88 
3 Stripper w/ FC FM 9058 F 2 363 12.3 1.48 10 0.86 
3 Stripper w/ FC FM 9058 F 3 506 13.2 1.29 11.7 0.82 
3 Stripper w/ FC FM 9063 B2RF 1 314 10.1 1.51 9.2 0.86 
3 Stripper w/ FC FM 9063 B2RF 2 400 11.4 1.56 10.8 0.83 
3 Stripper w/ FC FM 9063 B2RF 3 414 11.5 1.56 11.5 0.82 
3 Stripper w/ FC PHY 485 WRF 1 347 10.2 3.53 8.5 0.83 

[a] SFC = short fiber content 
[b] VFM = visible foreign matter 
[c] IFC = immature fiber content 
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Table 47 Continued. 
Site Treatment Variety Rep Nep Count 

(neps/g) 
SFC[a] 

(% by weight) 
VFM[b] 

(%) 
IFC[c] 
(%) 

Maturity 
Ratio 

3 Stripper w/ FC PHY 485 WRF 2 438 9.5 3.21 8.8 0.83 
3 Stripper w/ FC PHY 485 WRF 3 332 9 3.71 8.3 0.84 
3 Stripper w/ FC ST 4554 B2RF 1 400 11.4 2.41 10 0.83 
3 Stripper w/ FC ST 4554 B2RF 2 464 12.8 2.85 11.3 0.81 
3 Stripper w/ FC ST 4554 B2RF 3 480 12.5 2.3 11.2 0.81 
4 Picker FM 9058 F 1 374 8.9 1.23 8.6 0.86 
4 Picker FM 9058 F 2 315 9.4 1.04 8.8 0.85 
4 Picker FM 9058 F 3 317 10.2 1.4 9 0.86 
4 Picker FM 9063 B2RF 1 268 8.4 0.67 8.5 0.86 
4 Picker FM 9063 B2RF 2 247 9.4 0.65 8.2 0.86 
4 Picker FM 9063 B2RF 3 226 7.9 0.74 8 0.88 
4 Picker PHY 485 WRF 1 371 10.9 2.09 8.5 0.82 
4 Picker PHY 485 WRF 2 282 9.6 2.49 6.8 0.85 
4 Picker PHY 485 WRF 3 339 10 2.78 8.3 0.82 
4 Picker ST 4554 B2RF 1 338 10.8 1.96 8.6 0.84 
4 Picker ST 4554 B2RF 2 304 10.7 1.48 8.4 0.84 
4 Picker ST 4554 B2RF 3 325 10.4 1.63 9.2 0.84 
4 Stripper w/ FC FM 9058 F 1 366 12.3 1.35 10 0.84 
4 Stripper w/ FC FM 9058 F 2 328 10.6 1.49 8.5 0.86 
4 Stripper w/ FC FM 9058 F 3 313 9.8 1.6 9.7 0.85 
4 Stripper w/ FC FM 9063 B2RF 1 338 9.3 1.28 8.8 0.85 
4 Stripper w/ FC FM 9063 B2RF 2 243 9.9 1.34 8.3 0.86 
4 Stripper w/ FC FM 9063 B2RF 3 244 8.5 1.63 7.6 0.87 
4 Stripper w/ FC PHY 485 WRF 1 359 10.3 3.53 8.9 0.83 
4 Stripper w/ FC PHY 485 WRF 2 364 9.9 3.68 8.3 0.83 
4 Stripper w/ FC PHY 485 WRF 3 400 9.4 4.67 8.9 0.83 
4 Stripper w/ FC ST 4554 B2RF 1 426 11.5 1.73 9.7 0.82 
4 Stripper w/ FC ST 4554 B2RF 2 350 10.7 1.89 8.9 0.84 
4 Stripper w/ FC ST 4554 B2RF 3 375 11.6 2.49 10 0.82 

[a] SFC = short fiber content 
[b] VFM = visible foreign matter 
[c] IFC = immature fiber content 
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Table 48. Carded yarn data. 
Site Treatment Variety Rep CSP[a] 

(N-tex) 
Elong. 

(%) 
Ten. 

(cN/tex) 
Work to 
Break 

(cN-cm) 

CV 
(%) 

Thin 
Places 

(cnt/km) 

Thick 
Places 

(cnt/km) 

Neps 
+200% 

(cnt/km) 

Hairiness 

1 Picker ST 4554 B2RF 1 2796.7 7.56 11.71 358.84 22.45 563 1566 1461 4.58 
1 Picker ST 4554 B2RF 2 2858.6 8.11 12.29 399.39 23.00 661 1735 1701 4.79 
1 Picker ST 4554 B2RF 3 2926.6 7.69 11.35 357.18 22.68 594 1644 1506 4.87 
1 Picker ST 4554 B2RF 4 2909.2 7.85 12.20 390.54 22.56 571 1619 1501 4.75 
1 Stripper w/ FC ST 4554 B2RF 1 2785.6 7.77 11.90 374.68 23.20 677 1786 1597 5.15 
1 Stripper w/ FC ST 4554 B2RF 2 2817.1 8.04 11.39 368.73 23.99 854 1968 2028 5.14 
1 Stripper w/ FC ST 4554 B2RF 3 2906.3 7.96 11.68 378.26 23.37 734 1828 1841 5.05 
1 Stripper w/ FC ST 4554 B2RF 4 2901.3 7.88 12.45 399.75 23.17 703 1766 1684 4.98 
1 Stripper w/o FC ST 4554 B2RF 1 2636.5 7.62 11.72 360.09 23.79 830 1933 1921 5.14 
1 Stripper w/o FC ST 4554 B2RF 2 2827.1 8.03 12.19 396.35 23.31 712 1804 1750 5.18 
1 Stripper w/o FC ST 4554 B2RF 3 2790.8 7.87 11.68 372.82 23.80 876 1949 1983 5.39 
1 Stripper w/o FC ST 4554 B2RF 4 2987.1 7.97 12.17 398.51 22.37 529 1548 1488 4.95 
3 Picker FM 9058 F 1 3370.9 5.19 14.00 277.30 21.57 342 1374 1116 5.16 
3 Picker FM 9058 F 2 4061.6 5.74 15.21 331.44 19.95 190 991 801 4.88 
3 Picker FM 9058 F 3 3977.2 5.93 15.00 338.25 20.40 251 1077 883 4.97 
3 Picker FM 9063 B2RF 1 3887.8 6.01 15.64 355.60 19.91 188 969 753 4.54 
3 Picker FM 9063 B2RF 2 3721.1 5.91 14.86 332.45 19.98 194 978 750 4.76 
3 Picker FM 9063 B2RF 3 4035.9 6.21 15.56 360.65 19.68 179 907 755 4.65 
3 Picker PHY 485 WRF 1 3706.2 7.53 14.75 435.34 19.93 195 922 720 4.71 
3 Picker PHY 485 WRF 2 3881.1 7.55 14.95 446.28 19.80 175 919 703 4.51 
3 Picker PHY 485 WRF 3 3742.5 7.67 14.17 427.82 19.89 196 951 807 4.57 
3 Picker ST 4554 B2RF 1 3491.4 7.66 14.15 441.12 20.55 282 1096 905 4.92 
3 Picker ST 4554 B2RF 2 3452.4 7.18 13.62 401.28 20.78 280 1172 936 4.72 
3 Picker ST 4554 B2RF 3 3514.7 7.78 13.46 421.22 20.74 289 1154 997 4.88 
3 Stripper w/ FC FM 9058 F 1 3069.8 4.86 12.63 235.78 22.46 507 1570 1289 5.26 
3 Stripper w/ FC FM 9058 F 2 3868.4 5.16 14.10 284.34 20.66 252 1135 925 5.15 
3 Stripper w/ FC FM 9058 F 3 3839.7 5.72 14.67 320.84 20.88 282 1212 1119 5.11 
3 Stripper w/ FC FM 9063 B2RF 1 3826.6 5.80 15.33 335.88 20.07 186 999 814 4.69 
3 Stripper w/ FC FM 9063 B2RF 2 3771.8 5.88 14.77 327.48 20.09 207 1007 839 4.73 
3 Stripper w/ FC FM 9063 B2RF 3 4066.6 6.14 15.14 358.68 20.14 190 1038 857 4.82 
3 Stripper w/ FC PHY 485 WRF 1 3541.0 7.60 14.39 426.81 19.64 172 939 764 4.68 

[a] CSP = count strength product 
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Table 48 Continued. 
Site Treatment Variety Rep CSP[a] 

(N-tex) 
Elong. 

(%) 
Ten. 

(cN/tex) 
Work to 
Break 

(cN-cm) 

CV 
(%) 

Thin 
Places 

(cnt/km) 

Thick 
Places 

(cnt/km) 

Neps 
+200% 

(cnt/km) 

Hairiness 

3 Stripper w/ FC PHY 485 WRF 2 3733.0 7.01 14.35 407.90 19.79 177 964 777 4.83 
3 Stripper w/ FC PHY 485 WRF 3 3704.8 7.64 14.23 429.34 19.18 134 792 660 4.50 
3 Stripper w/ FC ST 4554 B2RF 1 3554.0 7.30 12.81 386.04 20.74 262 1166 1018 4.76 
3 Stripper w/ FC ST 4554 B2RF 2 3512.4 7.75 13.42 419.58 20.44 244 1089 1017 4.87 
3 Stripper w/ FC ST 4554 B2RF 3 3549.0 7.82 13.24 419.29 20.86 309 1185 1071 5.02 
4 Picker FM 9058 F 1 4172.3 6.10 15.16 353.29 18.99 119 772 568 4.65 
4 Picker FM 9058 F 2 4032.9 6.06 15.10 345.89 18.66 97 706 561 4.50 
4 Picker FM 9058 F 3 4255.0 6.08 15.79 364.21 18.68 99 717 535 4.48 
4 Picker FM 9063 B2RF 1 4006.9 6.43 15.51 373.85 18.84 94 752 510 4.63 
4 Picker FM 9063 B2RF 2 3952.1 6.13 14.75 348.12 19.11 125 795 576 4.58 
4 Picker FM 9063 B2RF 3 4109.5 6.01 14.70 346.78 19.19 137 782 540 4.46 
4 Picker PHY 485 WRF 1 3602.1 7.46 14.29 419.71 19.62 172 912 724 4.60 
4 Picker PHY 485 WRF 2 3774.7 7.73 13.85 436.16 19.39 182 822 654 4.39 
4 Picker PHY 485 WRF 3 3920.2 8.18 13.72 457.98 18.90 134 735 642 4.56 
4 Picker ST 4554 B2RF 1 3280.2 7.30 13.29 392.65 19.98 196 963 791 4.49 
4 Picker ST 4554 B2RF 2 3375.9 7.72 12.89 404.96 20.01 210 949 773 4.53 
4 Picker ST 4554 B2RF 3 3463.3 7.44 13.17 399.10 19.85 212 938 789 4.59 
4 Stripper w/ FC FM 9058 F 1 4221.2 5.94 15.54 360.77 19.49 150 868 651 4.82 
4 Stripper w/ FC FM 9058 F 2 4159.8 6.11 15.43 356.13 18.54 92 671 502 4.58 
4 Stripper w/ FC FM 9058 F 3 4064.7 5.95 15.18 341.09 19.28 148 868 702 4.64 
4 Stripper w/ FC FM 9063 B2RF 1 3924.2 6.27 14.80 358.25 19.06 121 803 601 4.52 
4 Stripper w/ FC FM 9063 B2RF 2 4105.6 6.42 14.67 364.59 19.06 131 780 533 4.59 
4 Stripper w/ FC FM 9063 B2RF 3 4103.5 6.22 15.48 372.75 18.94 109 713 487 4.61 
4 Stripper w/ FC PHY 485 WRF 1 3892.2 7.76 13.88 440.04 19.61 174 863 731 4.54 
4 Stripper w/ FC PHY 485 WRF 2 3369.7 7.70 13.57 419.24 19.50 167 859 717 4.35 
4 Stripper w/ FC PHY 485 WRF 3 3811.4 7.82 14.11 446.02 19.04 120 774 704 4.68 
4 Stripper w/ FC ST 4554 B2RF 1 3401.1 7.83 13.00 416.27 20.18 244 966 820 4.77 
4 Stripper w/ FC ST 4554 B2RF 2 3398.4 7.35 12.83 383.45 19.58 179 896 648 4.63 
4 Stripper w/ FC ST 4554 B2RF 3 3583.6 7.82 13.29 427.62 19.98 204 972 874 4.61 

[a] CSP = count strength product 
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Table 49. Carded-and-combed yarn data. 
Site Treatment Variety Rep CSP[a] 

(N-tex) 
Elong. 

(%) 
Ten. 

(cN/tex) 
Work to 
Break 

(cN-cm) 

CV 
(%) 

Thin 
Places 

(cnt/km) 

Thick 
Places 

(cnt/km) 

Neps 
+200% 

(cnt/km) 

Hairiness 

1 Picker ST 4554 B2RF 1 3307.87 7.70 13.23 416.38 16.85 47 277 150 4.10 
1 Picker ST 4554 B2RF 2 3320.65 8.20 13.70 455.37 16.73 51 284 177 4.18 
1 Picker ST 4554 B2RF 3 3463.37 8.10 13.19 435.50 16.96 48 298 213 4.22 
1 Picker ST 4554 B2RF 4 3422.99 7.91 13.58 437.91 16.70 45 302 213 4.37 
1 Stripper w/ FC ST 4554 B2RF 1 3280.3 7.98 13.45 435.50 17.32 64 356 241 4.34 
1 Stripper w/ FC ST 4554 B2RF 2 3234.63 7.97 13.34 426.77 17.39 59 356 241 4.40 
1 Stripper w/ FC ST 4554 B2RF 3 3332.18 8.02 13.42 435.80 17.35 62 390 250 4.51 
1 Stripper w/ FC ST 4554 B2RF 4 3392.19 8.03 13.41 435.66 16.88 47 289 202 4.38 
1 Stripper w/o FC ST 4554 B2RF 1 3248.29 8.03 12.92 420.15 17.39 57 351 230 4.46 
1 Stripper w/o FC ST 4554 B2RF 2 3258.46 7.91 12.88 416.33 17.35 52 367 256 4.57 
1 Stripper w/o FC ST 4554 B2RF 3 3346.1 8.09 13.95 453.50 17.69 60 396 283 4.60 
1 Stripper w/o FC ST 4554 B2RF 4 3246.49 8.01 13.31 425.33 17.04 53 326 220 4.34 
3 Picker FM 9058 F 1 4402.30 5.40 15.80 317.35 15.22 17 125 51 4.44 
3 Picker FM 9058 F 2 4547.90 5.99 17.06 372.03 14.72 12 106 62 4.37 
3 Picker FM 9058 F 3 4177.73 6.05 16.93 365.39 14.85 14 111 69 4.49 
3 Picker FM 9063 B2RF 1 4641.20 6.24 15.89 375.10 14.99 15 102 58 4.32 
3 Picker FM 9063 B2RF 2 4716.62 6.43 16.82 404.48 14.84 15 96 57 4.31 
3 Picker FM 9063 B2RF 3 4737.06 6.67 17.25 426.14 14.83 12 107 72 4.16 
3 Picker PHY 485 WRF 1 4325.83 8.10 16.07 506.12 14.98 21 94 45 4.10 
3 Picker PHY 485 WRF 2 4237.97 7.81 15.85 473.69 15.06 20 101 55 4.07 
3 Picker PHY 485 WRF 3 4276.00 7.77 15.93 477.90 15.15 18 110 56 4.18 
3 Picker ST 4554 B2RF 1 3589.10 7.78 14.70 438.82 15.65 26 155 80 4.46 
3 Picker ST 4554 B2RF 2 3760.12 8.07 14.81 457.48 15.47 30 134 73 4.26 
3 Picker ST 4554 B2RF 3 3965.47 7.86 15.24 475.69 15.49 19 143 72 4.31 
3 Stripper w/ FC FM 9058 F 1 3709.38 5.12 14.82 278.70 15.80 20 168 75 4.64 
3 Stripper w/ FC FM 9058 F 2 4165.69 5.78 16.70 345.74 14.90 15 118 75 4.45 
3 Stripper w/ FC FM 9058 F 3 4403.80 6.01 17.08 375.26 15.03 10 123 81 4.60 
3 Stripper w/ FC FM 9063 B2RF 1 4237.77 6.18 16.68 376.68 15.24 18 127 65 4.23 
3 Stripper w/ FC FM 9063 B2RF 2 4314.10 6.13 16.53 369.48 15.21 17 122 67 4.33 
3 Stripper w/ FC FM 9063 B2RF 3 4516.73 6.48 17.55 420.71 15.05 16 113 69 4.36 
3 Stripper w/ FC PHY 485 WRF 1 4396.92 7.81 15.91 484.16 15.05 19 119 76 4.17 

[a] CSP = count strength product 
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Table 49 Continued. 
Site Treatment Variety Rep CSP[a] 

(N-tex) 
Elong. 

(%) 
Ten. 

(cN/tex) 
Work to 
Break 

(cN-cm) 

CV 
(%) 

Thin 
Places 

(cnt/km) 

Thick 
Places 

(cnt/km) 

Neps 
+200% 

(cnt/km) 

Hairiness 

3 Stripper w/ FC PHY 485 WRF 2 4389.22 7.94 16.04 494.74 15.06 17 125 85 4.05 
3 Stripper w/ FC PHY 485 WRF 3 4438.69 8.05 15.81 494.25 14.84 11 93 49 4.05 
3 Stripper w/ FC ST 4554 B2RF 1 3665.97 7.85 14.59 435.95 15.55 30 142 89 4.17 
3 Stripper w/ FC ST 4554 B2RF 2 3973.04 7.75 14.77 447.77 15.48 21 133 75 4.19 
3 Stripper w/ FC ST 4554 B2RF 3 3848.91 7.83 14.52 447.67 15.43 24 141 84 4.50 
4 Picker FM 9058 F 1 4557.70 6.26 16.99 388.21 14.39 7 73 39 4.03 
4 Picker FM 9058 F 2 4729.42 6.31 16.59 391.42 14.33 7 79 54 4.08 
4 Picker FM 9058 F 3 4483.78 6.13 17.09 386.73 14.56 10 92 53 4.32 
4 Picker FM 9063 B2RF 1 4548.52 6.66 16.59 414.63 14.64 10 87 45 4.16 
4 Picker FM 9063 B2RF 2 4239.53 6.54 16.48 398.90 14.93 11 113 48 4.27 
4 Picker FM 9063 B2RF 3 4657.58 6.53 16.62 412.01 14.62 13 83 40 3.99 
4 Picker PHY 485 WRF 1 4013.43 7.84 14.70 451.39 15.11 18 110 59 4.29 
4 Picker PHY 485 WRF 2 3816.33 7.83 14.65 447.48 15.15 20 111 61 4.29 
4 Picker PHY 485 WRF 3 4126.89 8.36 15.38 503.39 14.94 13 96 66 3.99 
4 Picker ST 4554 B2RF 1 3903.57 8.08 14.84 474.95 15.22 21 122 62 4.22 
4 Picker ST 4554 B2RF 2 3877.03 7.85 14.14 443.94 15.18 19 112 68 4.05 
4 Picker ST 4554 B2RF 3 3909.38 7.93 14.24 449.37 15.21 21 121 63 4.09 
4 Stripper w/ FC FM 9058 F 1 4753.05 6.36 17.17 406.20 14.45 9 87 52 4.21 
4 Stripper w/ FC FM 9058 F 2 4638.93 6.31 16.93 396.68 14.36 8 82 63 4.11 
4 Stripper w/ FC FM 9058 F 3 4480.15 6.20 17.18 389.82 14.61 8 87 55 4.33 
4 Stripper w/ FC FM 9063 B2RF 1 4383.86 6.71 16.47 407.11 14.60 12 93 61 4.05 
4 Stripper w/ FC FM 9063 B2RF 2 4243.49 6.45 16.74 401.81 14.84 15 96 50 4.26 
4 Stripper w/ FC FM 9063 B2RF 3 4416.72 6.46 16.29 393.59 14.65 13 83 44 4.26 
4 Stripper w/ FC PHY 485 WRF 1 4258.56 8.10 15.11 482.44 14.80 13 97 58 4.12 
4 Stripper w/ FC PHY 485 WRF 2 3924.02 7.84 14.63 445.21 15.26 20 121 77 4.21 
4 Stripper w/ FC PHY 485 WRF 3 4019.28 8.18 15.52 489.54 15.10 13 125 85 4.30 
4 Stripper w/ FC ST 4554 B2RF 1 3788.85 8.01 14.87 470.42 15.46 22 124 58 4.19 
4 Stripper w/ FC ST 4554 B2RF 2 3738.20 7.84 14.32 441.99 15.40 24 135 63 4.16 
4 Stripper w/ FC ST 4554 B2RF 3 3776.98 7.60 13.76 417.78 15.51 24 152 92 4.27 

[a] CSP = count strength product 
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Card – textile equipment to clean and parallelize fibers for subsequent yarn formation 

Count Strength Product – also known as skein break factor, a measure of yarn 

strength; the product of yarn count and the breaking load of a skein 

Discount Rate – the rate used to discount future cash flows into their present values 

Draft – the ratio of the sliver linear density before drawing to its linear density after 

drawing 

Dust – foreign matter in cotton lint smaller than 500 µm 

Elongation - the ratio of the extension of a fiber bundle or yarn during application of 

tension to the original length of the fiber bundle or yarn 

Evenness – a measure of the cross-section mass variation in a given length of yarn 

Field Efficiency – the percentage of time during harvest operations spent in the process 

of harvesting 

Fineness – an indicator of fiber circumference, predominately affected by variety 

Fractionation – the process used to separate lint and seeds from various classes of 

foreign matter in seed cotton 

Hairiness – a relative indicator of the number of protrusions from the body of a yarn 

Harvest Efficiency – a measure of the amount of seed cotton left in the field after 

harvest 

Hulls – see Burrs 

Immature Fiber – see Maturity 

Leaf Grade – a visual estimate of the amount of leaf particles remaining in cotton lint 

Length Uniformity – see Uniformity Index 

Maturity – the degree of thickening of a fiber’s secondary wall; a fiber is considered 

immature if the cell wall accounts for less than 25% of the cross-sectional area 

(Pierce and Lord, 1939) 

Maturity Ratio - the ratio of the number of fibers with circularity values greater than 

0.5 to the number of fibers with circularity values below 0.25, where circularity 

is the ratio of the cross-sectional area of a fiber to the area of a circle having the 

same perimeter 
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Micronaire – a measure of fiber fineness and maturity, conducted by measuring the 

resistance to airflow of a known mass of randomly oriented fibers 

Motes – immature seeds 

Nep – a tightly tangled mass of fibers; fiber neps may occur naturally in the boll, but nep 

counts are increased by mechanical processing; seed-coat neps are fragments of 

cottonseed that still have fibers attached to them 

Net Present Value – a standard method for appraising the value of long-term projects 

Noils – short fibers removed during the combing process 

Reflectance (Rd) - a measure of the brightness of a sample of fibers 

Roving – a loose assembly of fibers drawn into a single strand with very little twist 

Scrapping Plate – a ribbed plate on the inside of a spindle-picker row unit intended to 

bring the cotton plant in closer proximity to the spindle drum 

Short Fiber Content (SFC) – the percentage of cotton fibers shorter than 1.26 cm (0.5 

inches) 

Skein – a continuous strand of yarn 

Skein Break Factor – see Count Strength Product 

Staple – a measure of fiber length equivalent to 1/32 inch 

Tenacity – a measure of the pressure required to break a fiber or yarn 

Tex – the mass (in grams) of 1,000 m of fiber 

Thick Places – the number of points in 1,000 m of yarn at which the yarn thickness is 

more than 50% the average thickness of the yarn 

Thin Places – the number of points in 1,000 m of yarn at which the yarn thickness is 

less than 50% the average thickness of the yarn 

Turnout – the ratio of the mass of lint produced to the mass of seed cotton ginned  

Uniformity Index (UI) – the ratio between the mean fiber length and the upper-half 

mean fiber length 

Upper-Half Mean Length (UHML) – the average length of the longest one-half of 

fibers 

Upper Quartile Length (UQL) – the average length of the longest 25% of fibers 
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Yarn Count (Ne) – a measure of the linear density of yarn; the number of 840 yard 

skeins that can be made from a one pound hank of yarn 

Yellowness (+b) – a measure of the degree of color pigmentation of cotton fibers 
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