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Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2008

Major Subject: Mathematics



CONTRIBUTIONS TO THE COMPACTNESS THEORY

OF THE ∂-NEUMANN OPERATOR

A Dissertation

by

MEHMET ÇELİK
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ABSTRACT

Contributions to the Compactness Theory

of the ∂-Neumann Operator. (May 2008)

Mehmet Çelik, B.S., Marmara University, Turkey

Chair of Advisory Committee: Dr. Emil J. Straube

This dissertation consists of three parts. In the first part we explore compactness

of the ∂-Neumann operator via the ideal of compactness multipliers. We study the

zero set of the compactness multipliers as the obstruction to compactness of the ∂-

Neumann problem. That is, the ideal of compactness multipliers on a given domain

is used with the purpose to get algebraic information about the boundary of the

domain.

The second part of the dissertation is about independence from the metric of

some estimates for the ∂-Neumann operator. It is a theorem by W. J. Sweeney in

a very general manner which implies that coercive estimates are independent of the

metric on the cotangent bundle, and it seems to be folklore that this is also true for

subelliptic operators. The metric considered is smooth positive definite hermitian

on the whole closure of the domain. Here we give a simple proof specifically for

subellipticity of the ∂-Neumann operator. We also show that compactness of the

∂-Neumann operator is independent of the metric.

The third part of the dissertation is about compactness of the ∂-Neumann op-

erator on a transversal intersection of two smooth domains, both of which have a

compact ∂-Neumann operator. In order to understand the properties of compactness

of the ∂-Neumann problem, this question is of fundamental importance. In particu-

lar, this problem serves as a test to see whether there might be a reasonable notion

of obstruction to compactness that lives in the boundary.
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The results of our research show that on the domains where compactness is un-

derstood, one can identify the common zero set of the multiplier ideal, the obstruction

for compactness of the ∂-Neumann problem. Moreover, although the Sobolev esti-

mates for the ∂-Neumann operator are not independent of the metric our results

also show that compactness and subelliptic estimates of the ∂-Neumann operator

are. Furthermore, on the intersection of two domains compactness of the ∂-Neumann

operator holds when one of the domains satisfies property (P ).
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CHAPTER I

INTRODUCTION

A. Cauchy-Riemann Equations

Many of the differences between the function theories of one and several complex

variables can be accounted for by the nature of holomorphic functions. A holomor-

phic function is a function which is locally a power series in the variables zj where

j = 1, 2, ..., n. Some of the differences are based on the following properties of

holomorphic functions: isolated singularities, integral representation, the Riemann

Mapping theorem, continuation of holomorphic functions on open sets. Besides these

there is one difference which is considered as a principal tool in constructing holomor-

phic functions with some specific properties on a given domain in multidimensional

complex case, inhomogeneous Cauchy-Riemann equations. In one complex variable

theory there exist so many tools for constructing holomorphic functions: Weierstrass

products, Runge’s, Mergelyan’s, Mittag-Leffler theorems and so on, none of which are

useful on a large class of domains in multidimensional complex space. Existence of

such powerful theorems suppresses the role of the inhomogeneous Cauchy-Riemann

equations in one complex variable case. However in the multidimensional complex

case these equations play a central role in the development of the theory.

In C, f = u+ iv, z = x+ iy, the Cauchy-Riemann operator is ∂
∂z

= 1
2

(
∂
∂x

+ i ∂
∂y

)
.

A way to express the operator ∂
∂z

acting on a function f is to use differential form dz,

dual to the vector field ∂
∂z

. Define ∂f = ∂f
∂z
dz. Therefore, for gdz = (Re(g)+iIm(g))dz

The journal model is Transactions of the American Mathematical Society.
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a given 1-form, the inhomogeneous Cauchy - Riemann equations, ∂f = g, that is

∂u

∂x
− ∂v

∂y
= Re(g) &

∂u

∂y
+
∂v

∂x
= Im(g)

form a system of two equations in two unknown real functions, u & v. However, in

Cn for n > 1, the Cauchy-Riemann equations form a system of 2n equations in two

unknown real functions; the system becomes overdetermined.

Today a large part of the study of several complex variables theory is about the

domains of holomorphy. Topics related to this study include the space of square inte-

grable holomorphic functions (Bergman space), classification of domains of holomor-

phy (pseudoconvex, strongly pseudoconvex, Reinhardt, Hartogs domains), ∂-operator

and the solution to the inhomogeneous Cauchy - Riemann equations

∂f = g with a necessary condition ∂g = 0. (1.1)

That is, if (z1, ..., zn) = (x1 + iy1, ..., xn + iyn) denotes the standard coordinates on

Cn the equation (1.1) is ∂f
∂zj

= 1
2

(
∂f
∂xj

+ i ∂f
∂yj

)
= gj, ∀j ∈ {1, ..., n} with a necessary

condition
∂gj
∂zk

= ∂gk
∂zj
∀j, k ∈ {1, ..., n}.

The proof of one of the fundamental problems in several complex variables theory,

the equivalence between domains of holomorphy and pseudoconvex domains, uses the

solution of the inhomogeneous Cauchy-Riemann equations on that type of domains.

For a given smooth data g on a domain finding a smooth solution f for the equation

(1.1) on that domain yields the equivalence of the above two types domains. On

the other hand, if one tries to understand the boundary behavior of holomorphic

functions, for example, whether they can be extended smoothly to the boundary of

a domain or not, one should study the boundary behavior of the Cauchy-Riemann

equations. For a given smooth datum g on the closure of the domain one should look

for a solution of the equation (1.1) which is smooth on the closure of that domain.
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Suppose you found such a solution, say f . Now, since we are on a pseudoconvex

domain which is equivalent to a domain of holomorphy [19], it is always possible to

find a holomorphic function that can not be smoothly extended to a given boundary

point, say that it is h. It is clear that f +h is also a solution of (1.1), but the solution

f +h is not smooth on the closure of the domain. It is obvious that we should get rid

of the holomorphic part of the solution, so one has to look for particular solutions.

In the L2-theory, such a particular solution is provided by the unique solution that is

orthogonal to the holomorphic functions. Generally, the equation (1.1) is considered

as an equation for a (0, q)-form f , given a (0, q + 1)-form g. Thus, in the above

discussions holomorphic functions can be replaced by closed forms, elements of the

kernel of ∂. Moreover, on the last discussion the solution to (1.1) which is of interest to

be orthogonal to holomorphic functions can be interpreted as a (0, q)-form orthogonal

to the closed (0, q)-forms, that is orthogonal to the ker(∂). On the other hand, a form

g is said to be closed if ∂g = 0 and exact if g = ∂f for some form f .

1. The relation between the ∂-problem and the ∂-Neumann problem

The Hodge decomposition states that any form g can be split into three L2 compo-

nents: g = ∂m1 + ∂
?
m2 + γ where γ is harmonic. This follows by noting that exact

and co-exact forms are orthogonal; the orthogonal complement then consists of forms

that are both closed and co-closed. Orthogonality is defined with respect to the L2

inner product on the given domain. Recall that we are looking for a solution orthogo-

nal to the closed forms. The Hodge decomposition is providing us a useful machinery

to define an explicit solution to the inhomogeneous ∂-problem. This is exactly the

part where the ∂-Neumann problem connects with the ∂-problem.

The ∂-Neumann problem is a boundary value problem for the second order op-
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erator

2 = ∂ ∂
?

+ ∂
?
∂. (1.2)

2 is closed, densely defined, selfadjoint operator. The ∂-Neumann problem consists

of inverting the 2 operator. While the operator 2 is elliptic, the boundary conditions

are not coercive, so that from the partial differential equations view the classical

elliptic theory does not apply. The solution to this boundary value problem by J.

J. Kohn [21] on a special class of pseudoconvex domains thus marks an important

milestone in the theory of linear PDE as well as a significant advance in the theory

of functions of several complex variables. The ∂-Neumann problem is a non-elliptic

problem for which regularity theory was established. It is first of its kind. In an

elliptic problem of order m the solution is m degrees smoother than the data, the

∂-Neumann problem does not exhibit the maximal degree of smoothing; the solution

gains a predictable number of derivatives, but that number is less than the degree of

the operator with which one is working.

Let us amplify the connection between the ∂-problem and ∂-Neumann problem

more explicitly. Assume the existence of the solution for the ∂-Neumann problem

in the space of certain level forms with coefficients in L2(Ω). The notation for the

solution operator of the ∂-Neumann problem is N , 2−1 = N . As we mentioned above,

by the Hodge decomposition we have the orthogonal decomposition

g = ∂∂
?
Ng + ∂

?
∂Ng + γ(g), (1.3)

where the coefficients of the form g are in L2(Ω) and γ(g) ∈ Ker(2) = {0}. Now,

consider the necessary condition in the ∂-problem at (1.1), ∂g = 0. Then, ∂
?
∂Ng ∈

ker(∂
?
)∩ ker(∂), from which follows that the second term on the right, in the decom-

position (1.3), is vanishing. Consequently, g = ∂
(
∂
?
Ng
)

with ‖∂?Ng‖2 ≤ C‖g‖2.
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As a result, the operator ∂
?
Ng provides a solution for the ∂-problem, which is or-

thogonal to closed forms. This solution is called canonical solution operator for the

∂-problem, solving the inhomogeneous Cauchy-Riemann equations. The canonical

solution operator, ∂
?
N , involves the ∂-Neumann operator N . Thus, in order to get

a smooth solution f on the closure of Ω for the inhomogeneous Cauchy-Riemann

equations, (1.1), we need to have the ∂-Neumann operator, N mapping forms with

smooth coefficients to forms with smooth coefficients, with smoothness on the closure

of the domain. If N has this property it is said that it is globally regular.

B. Results in the Dissertation

This dissertation concerns compactness of the ∂-Neumann problem [8, 14, 15, 24, 28,

38].

If the ∂-Neumann operator is a compact operator, that is, the image under N of

any bounded subset of the space of forms with L2 coefficients is a relatively compact

subset of that space, then it is globally regular [24].

In the first part of the dissertation we explore compactness of the ∂-Neumann

operator via the ideal of compactness multipliers. In 1979, J. J. Kohn [23] developed

a theory of subelliptic multipliers. He invented an interesting algorithmic procedure

for computing certain ideals. He was able to use these ideals at least in domains

with real analytic boundary to see whether there is a complex analytic variety in the

boundary and whether there is a subelliptic estimate of the ∂-Neumann operator.

Influenced by subelliptic multipliers we define a compactness multiplier notion asso-

ciated to the compactness estimate of the ∂-Neumann operator. It is possible to use

a similar algorithmic procedure for compactness estimate as it is done for subelliptic

estimates in [11, 23]. The algorithm works in the real analytic case for subelliptic
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estimates. A smooth analog of this procedure for the compactness estimate requires

an extra generator involved in the algorithm, otherwise it gives no new information

about the regularity of the operator other than what is known from subelliptic esti-

mates. We chose as a direction to study the zero set of the compactness multipliers

as the obstruction to compactness of the ∂-Neumann problem. That is, the ideal of

compactness multipliers on a given domain is used with the purpose to get algebraic

information about the boundary of the domain. The compactness multiplier notion

is of functional analytic flavor but interacts heavily with potential theoretic sufficient

conditions, such as, Property (P ). On the domains where compactness is understood,

one can identify this obstruction (the common zero set of the multiplier ideal), and

we do this for bounded convex domains in Cn and for complete pseudoconvex Hartogs

domains with smooth boundary in C2.

Let A be the common zero set of the compactness multiplier ideal,

Theorem 1. Let Ω be a bounded convex domain in Cn then

A =

(⋃
α∈Λ

fα(D)

)

Here, the family {fα(D)}α∈Λ denotes the family of nontrivial analytic discs on the

boundary of the domain Ω.

A complete Hartogs domain Ω in C2 with base Ω1 on open set in C1 is defined by

|w| < e−φ(z) for z ∈ Ω1, where φ(z) is an upper semi-continuous real valued function.

Theorem 2. Let Ω be a smooth bounded pseudoconvex complete Hartogs domain in

C2 and K ⊂ Ω1 be below the portion of bΩ with weakly pseudoconvex points. Assume

that boundary points of the form (z, 0) are strictly pseudoconvex. Then the common

zero set of the multiplier ideal is equal to the portion of bΩ above Intf (K)
E

, where

the latter is the Euclidean closure of the fine interior points of the set K.
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Studying the obstructions for the existence of compactness estimate of the ∂-

Neumann operator will help to understand the necessary and sufficient conditions

for the compactness of the ∂-Neumann problem. This is a necessary step towards

understanding global regularity of the ∂-Neumann operator.

The second part of the dissertation is about independence from the metric of

some estimates for the ∂-Neumann operator. A paper by W. J. Sweeney [39] in a

very general manner shows that coercive estimates are independent of the metric

on the cotangent bundle, and folklore says that subelliptic estimates are likewise

independent of the metric. The metric which is considered is smooth positive definite

hermitian on the whole closure of the domain: we let G = {Gq}nq=1 be these metrics.

In particular, the metric on higher level forms is not assumed to be induced by the

metric on (0, 1)-forms. The theorem we give here is specifically for subellipticity of

the ∂-Neumann operator.

Theorem 3. The subellipticity of the ∂-Neumann operator associated with the general

metric G is equivalent to the subellipticity of the ∂-Neumann operator associated with

the Euclidean metric.

Besides, a natural question to ask is whether the same is true for the compactness

of the ∂-Neumann operator. It is also shown that the answer is yes; compactness of

the ∂-Neumann operator is independent of the metric.

Theorem 4. The ∂-Neumann operator associated with the general metric G is com-

pact from L2
(0,q)(Ω, G) to itself if and only if the ∂-Neumann operator associated with

the Euclidean metric is compact from L2
(0,q)(Ω) to itself.

It is interesting to note that the Sobolev estimates of the ∂-Neumann operator

are not independent from such a metric. The Sobolev estimates are very important

in the study of the global regularity for the ∂-Neumann operator. Global regularity
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of the ∂-Neumann operator has always been studied through Sobolev estimates, see

[7, 38].

The third part of the dissertation is about the compactness of the ∂-Neumann

operator on a transversal intersection of two smooth domains. If the ∂-Neumann

operator is compact on two bounded smooth pseudoconvex domains then can we say

that the ∂-Neumann operator is compact on the transversal intersection of these two

domains? In order to understand the properties of the compactness of the ∂-Neumann

operator this question is of fundamental importance. In particular, this problem

serves as a test to see whether there might be a reasonable notion of obstruction

to compactness that lives in the boundary. If it is absent from both boundaries, it

should be absent from the boundary of the intersection. The difficulty is on the non-

smooth part of the intersection. We are only able to give some partial answers to the

question. For example, when one of the domains satisfies property (P ), the answer is

affirmative.
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CHAPTER II

BACKGROUND FOR THE ∂-NEUMANN OPERATOR AND COMPACTNESS

OF THE ∂-NEUMANN OPERATOR

Let Ω ⊂ Cn. We say that Ω has Ck-boundary, 1 ≤ k ≤ ∞, if there exists a neigh-

borhood, U , of the boundary of Ω, and a real valued Ck function ρ defined on U

satisfying

1. Ω ∩ U = {z ∈ U : ρ(z) < 0}, bΩ ∩ U = {z ∈ U : ρ(z) = 0},

U \ Ω = {z ∈ U : ρ(z) > 0}, and

2. dρ 6= 0 on the boundary of Ω.

In this case we call ρ a defining function for Ω.

Let Ω ⊂ Cn be a domain with Ck-boundary and defining function ρ. The real

tangent space, Tp(bΩ), to a point p in the boundary of Ω consists of the vectors

ξ = (ξ1, ..., ξn) = (u1 + iv1, ..., un + ivn) satisfying
∑n

j=1

(
∂ρ(p)
∂xj

uj + ∂ρ(p)
∂yj

vj

)
= 0.

The complex tangent space to bΩ at p consists of those vectors in Tp(bΩ) which

remain in Tp(bΩ) after scalar multiplication by i. Specifically, the complex tangent

space, Hp(bΩ), to a point in bΩ is given by the vectors ξ = (ξ1, ..., ξn) satisfying∑n
j=1

∂ρ(p)
∂zj

ξj = 0.

If ρ is at least a C2 defining function we define the complex Hessian of ρ at a

boundary point z ∈ bΩ as follows:

Lρ(z; ξ) =
n∑

j,k=1

∂2ρ(z)

∂zj∂z̄k
ξjξk,

where ξ is a vector of type (1, 0) in Cn with ξ =
∑n

j=1 ξj
∂
∂zj

.

An upper semicontinuous function, ρ : Ω −→ R∪{−∞}, is plurisubharmonic on

Ω if the restriction of ρ to every complex line that passes through Ω is subharmonic.
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One can check that a C2 function f is plurisubharmonic on Ω if and only if Lf (z; ξ) ≥

0, for z ∈ Ω and any vector ξ of type (1, 0).

Definition 1. A domain Ω ⊂ Cn is said to be pseudoconvex if there exists a contin-

uous plurisubharmonic function ρ on Ω such that {z ∈ Ω : ρ(z) < c} is a precompact

subset of Ω for any real number c ≥ 0.

Notice that in this definition no smoothness is assumed. For a proof of the

following theorem and other equivalent definitions of pseudoconvexity we refer the

reader to [25, 31].

Theorem 5. A domain Ω with C2-boundary in Cn, n ≥ 2, is pseudoconvex if and

only if it has a defining function ρ such that Lρ(z; ξ) ≥ 0 for z ∈ bΩ and ξ ∈ Hp(bΩ).

The restriction of the complex Hessian Lρ(z; ·) on the space of complex tangential

vectors Hp(bΩ) is called the Levi form. It is easy to see that, in the above theorem,

the Levi form of any defining function is non-negative on the boundary. Therefore,

pseudoconvexity is independent of the defining function; it is a well defined notion.

A. The ∂-Neumann Problem

With purpose to prove existence theorems for holomorphic functions on complex

manifolds in fifties Kohn and Spencer introduced the ∂-Neumann problem. Since

then the main applications to complex analysis have centered around the solution of

the inhomogeneous Cauchy-Riemann equations ∂f = g which arises from the solution

of the ∂-Neumann problem. This problem was first solved by Kohn [20, 21], who

proved existence and regularity properties of the ∂-Neumann operator N .

In this section we sketch the setup of the ∂-Neumann problem. We refer the

reader to the books [9, 13] and a survey [7] for a more detailed treatment of the topic.
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Let Ω be a bounded domain in Cn, n ≥ 2, and 0 ≤ q ≤ n. We restrict our atten-

tion to (0, q)-forms, modifications for (p, q)-forms are simple (because ∂ operator does

not see dz differentials). We denote the space of square integrable and smooth (0, q)-

forms by L2
(0,q)(Ω) and C∞(0,q)(Ω), respectively. Let z = (z1, . . . , zn) denote the complex

coordinates for Cn. Any square integrable (0, q)-form u can be written uniquely as a

sum

u =
′∑

J

uJdz̄J

where J = (j1, . . . , jq) is a multiindex set with j1 < j2 < j3 < · · · < jq, dz̄J =

dz̄j1 ∧ . . .∧ dz̄jq , and
∑′ denotes the summation over strictly increasing multiindices.

To simplify the notation sometimes we will suppress the indices from ∂q and just

write ∂. L2
(0,q)(Ω) is a Hilbert space with the inner product coming from the following

norm:

‖u‖2 =
′∑

J

∫
Ω

|uJ |2dV

where dV is the volume element on Cn. When u is a smooth (0, q)-form we define the

action of ∂ as follows:

∂u =
′∑

J

∑
k

∂uJ
∂z̄k

dz̄k ∧ dz̄J .

Then we extend ∂ to weak closure of smooth (0, q)-forms and still denote it by ∂.

Hence u ∈ Dom(∂) if u ∈ L2
(0,q)(Ω) and ∂u ∈ L2

(0,q+1)(Ω) where ∂u is defined in

the distribution sense. One can check that ∂ is a linear, closed, and densely defined

operator. Then the Hilbert space adjoint ∂
∗

: L2
(0,q+1)(Ω)→ L2

(0,q)(Ω) is linear, closed

and densely defined. A square integrable (0, q)-form u belongs to Dom(∂
∗
) if there

exists v ∈ L2
(0,q)(Ω) such that

〈
u, ∂ϕ

〉
= 〈v, ϕ〉 for ϕ ∈ Dom(∂) ∩ L2

(0,q)(Ω)

where 〈· , ·〉 is the inner product on the corresponding Hilbert spaces. When Ω is a
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bounded domain one can easily see that C∞(0,q)(Ω) ⊂ Dom(∂). But for a (0, q)-form

u to be in Dom(∂
∗
) it must satisfy a boundary condition in the weak sense. In

case Ω has C1 boundary, using integration by parts, one can show that a C1-smooth

(0, q)-form u is in the domain of ∂
∗

if and only if it satisfies the following:

n∑
k=1

ukK
∂ρ

∂zk
= 0 on bΩ (2.1)

for all strictly increasing multiindices K such that |K| = q − 1.

Now we will define the complex Laplacian 2(0,q).

Definition 2. 2q = ∂q−1∂
∗
q+∂

∗
q+1∂q is a linear operator defined on L2

(0,q)(Ω) such that

a square integrable (0, q)-form f is in Dom(2q) if and only if f ∈ Dom(∂q)∩Dom(∂
∗
q)

and ∂f ∈ Dom(∂
∗
q+1), ∂

∗
f ∈ Dom(∂q−1).

One can check that 2q is a densely defined, closed (unbounded) linear, self-adjoint

operator on L2
(0,q)(Ω). The ∂-Neumann problem is defined as finding a solution to

2qf = g on Ω for f ∈ Dom(2q). Existence of a solution for the ∂-Neumann problem

on pseudoconvex domains is guaranteed by the following theorem. We refer the reader

to [9] for a proof.

Theorem 6 (Hörmander). Let Ω be a bounded pseudoconvex domain in Cn, n ≥ 2,

and e be the base of the natural logarithm. For each 1 ≤ q ≤ n, there exists a bounded

operator, called the ∂-Neumann operator, Nq : L2
(0,q)(Ω)→ L2

(0,q)(Ω) such that

(1) Range(Nq) ⊂ Dom(2q), and

Nq2q = 2qNq = I on Dom(2q).

(2) For any f ∈ L2
(0,q)(Ω), f = ∂∂

∗
Nqf + ∂

∗
∂Nqf.

(3) ∂Nq = Nq+1∂ on Dom(∂), 1 ≤ q ≤ n− 1.

(4) ∂
∗
Nq = Nq−1∂

∗
on Dom(∂

∗
), 2 ≤ q ≤ n.



13

(5) Let δ be the diameter of Ω. The following estimates hold for any f ∈ L2
(0,q)(Ω) :

‖Nqf‖ ≤
eδ2

q
‖f‖,

‖∂Nqf‖ ≤

√
eδ2

q
‖f‖,

‖∂∗Nqf‖ ≤

√
eδ2

q
‖f‖.

We note that N0 has a similar existence theorem. The main difference between

N0 and Nq for q ≥ 1 is that 20 is not onto. We refer the reader to [9] for more

information on this matter. Using the above theorem one can show that when Ω

is bounded and pseudoconvex, an L2 solution to the ∂-problem exists. In fact, the

solution operator with minimal norm in the L2 sense is ∂
∗
Nq, as the following corollary

shows.

Corollary 1. Let Ω be a bounded pseudoconvex domain in Cn, n ≥ 2. Assume that

1 ≤ q ≤ n, g ∈ L2
(0,q)(Ω), and ∂g = 0. Then f = ∂

∗
Nqg satisfies ∂f = g and

‖f‖ ≤

√
eδ2

q
‖g‖. (2.2)

f is the unique solution to ∂u = g that is orthogonal to Ker(∂).

∂
∗
Nq is called the canonical solution operator for the ∂-problem.

B. Compactness of the ∂-Neumann Operator and Its Applications

In this section we introduce compactness of the ∂-Neumann problem. We refer the

reader to [10, 14, 15, 16, 28, 38] for more information.

We will use the notation W s
(p,q)(Ω) for (0, q)-forms with coefficient functions from

the Sobolev space W s(Ω). The norm on W s(Ω) is denoted by ‖ · ‖s. Compactness of
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the ∂-Neumann problem can be formulated in several useful ways:

Lemma 1. Let Ω be a bounded pseudoconvex domain, 1 ≤ q ≤ n. Then the following

are equivalent:

i) The ∂-Neumann operator, Nq, is compact from L2
(0,q)(Ω) to itself.

ii) The embedding of the space Dom(∂) ∩Dom(∂
∗
), provided with the graph norm

u→ ‖∂u‖+ ‖∂∗u‖, into L2
(0,q)(Ω) is compact.

iii) For every ε > 0 there exists a constant Cε > 0 such that

‖u‖ ≤ ε(‖∂u‖+ ‖∂∗u‖) + Cε‖u‖−1, for u ∈ Dom(∂
∗
) ∩Dom(∂).

iv) The canonical solution operators ∂
∗
Nq : L2

(0,q)(Ω) → L2
(0,q−1)(Ω) and ∂

∗
Nq+1 :

L2
(0,q+1)(Ω)→ L2

(0,q)(Ω) are compact.

The statement in (iii) is called a compactness estimate. The equivalence of (ii)

and (iii) is a result of Lemma 1.1 in [24]. The general L2-theory and the fact that

L2
(0,q)(Ω) embeds compactly into W−1

(0,q)(Ω) shows that (i) is equivalent to (ii) and

(iii). Finally, the equivalence of (i) and (iv) follows from the formula

Nq = (∂
∗
Nq)

∗∂
∗
Nq + ∂

∗
Nq+1(∂

∗
Nq+1)∗

(see [13], p.55, [31]). We refer the reader to [28] for similar calculations.

Remark 1. Compactness of the ∂-Neumann operator is invariant under rotation and

biholomorphism, see [15], or [33] Lemma 2. The key reason for the invariance is that

∂ operator commutes with the pullback (precomposition with a differential).

The next property makes compactness a good tool to investigate global regularity

of the ∂-Neumann operator: compactness can be localized.
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Lemma 2. [15] Let Ω be a bounded pseudoconvex domain in Cn, n ≥ 2, and Nq be

the ∂-Neumann operator on L2
(0,q)(Ω) where 1 ≤ q ≤ n.

1) If for every boundary point p there exists a pseudoconvex domain U that contains

p such that the ∂-Neumann operator on (the domain) U ∩ Ω is compact, then

Nq is compact.

2) If U is smooth bounded and strictly pseudoconvex and U ∩Ω is a domain, then

if Nq is compact, so is the corresponding ∂-Neumann operator on U ∩ Ω.

We say that the ∂-Neumann operator is globally regular if it maps the space of

(0, q)-forms with coefficients in C∞(Ω) into itself. We also say that the ∂-Neumann

operator is exactly regular when it maps (0, q)-forms with coefficient in the L2-Sobolev

spaces W s(Ω) to themselves (for s ≥ 0). One can see that exact regularity implies

global regularity. The next theorem is by Kohn and Nirenberg, it is about compact-

ness implies exact regularity. In fact, the theorem says more than that:

Theorem 7. [24] Let Ω be a bounded pseudoconvex domain in Cn with smooth bound-

ary. If Nq is compact on L2
(0,q)(Ω), then Nq is compact (in particular, continuous) as

an operator from W s
(0,q)(Ω) to itself, for all s ≥ 0.

It is also known that, implication in the other direction is valid as well [24]; if Nq

is a compact operator on W s
(0,q)(Ω) for some s ≥ 0, then Nq is compact in L2

(0,q)(Ω).

In case of convex domains, compactness of the ∂-Neumann problem is very well

studied:

Theorem 8. [14] Let Ω be a bounded convex domain in Cn. Let 1 ≤ q ≤ n. The

following are equivalent:

1) There exists a compact solution operator for ∂ on (0, q)-forms.



16

2) The boundary of Ω does not contain any affine variety of dimension greater than

or equal to q.

3) The boundary of Ω does not contain any analytic variety of dimension greater

than or equal to q.

4) The ∂-Neumann operator Nq is compact.

1. Sufficient conditions for compactness of the ∂-Neumann operator

Kohn and Nirenberg proved in [24] that compactness estimate for the ∂-Neumann

operator implies global regularity. Later, Catlin in [8] started the program of clas-

sifying domains satisfying global regularity of the ∂-Neumann operator through the

existence of compactness estimate. Along the way, he provided a very elementary

(to state) condition, Property (P ), sufficient for the existence of compactness esti-

mate. However, Catlin treated Property (P ) as a necessary condition in his study

of types of domains satisfying global regularity. As a sufficient condition for global

regularity, property (P ) was investigated by Sibony [34, 35]. He studied the condition

by the name B-regularity. Sibony’s work has shown that domains known to satisfy

global regularity by Catlin’s work actually consist of a much bigger class. Since then,

investigating sufficient and necessary conditions for the existence of compactness es-

timate has became a classical approach to study global regularity of the ∂-Neumann

operator.

Definition 3. [8] For a bounded pseudoconvex domain Ω, we say that bΩ satisfies

property (P ) if for every positive number M , there exists a neighborhood U = UM of

bΩ and a C2 smooth function λ = λM on U ∩ Ω, such that

(1.) 0 ≤ λM ≤ 1, and
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(2.) the complex Hessian of λ has all its eigenvalues bounded below by M on U ∩Ω:

n∑
j,k=1

∂2λ

∂zj∂zk
(z)ξjξk ≥M |ξ|2 , ∀z ∈ U ∩ Ω, ξ ∈ Cn.

The following is a relaxed version of Catlin’s condition. It is based on having the

gradients bounded by the complex Hessian of the functions.

Definition 4. Ω satisfies property (P̃ ) if, for every M > 0, ∃φ = φM ∈ C2(UM ∩Ω)

where UM is an open neighborhood of bΩ such that

1. ∃C > 0, for z ∈ UM ∩ Ω, ξ ∈ Cn∣∣∣∣∣
n∑
k=1

∂φ(z)

∂zk
ξk

∣∣∣∣∣
2

≤ C
n∑

j,k=1

∂2φ(z)

∂zj∂zk
ξjξk,

2. for z ∈ UM ∩ Ω, ξ ∈ Cn

n∑
j,k=1

∂2φ(z)

∂zj∂zk
ξjξk ≥M |ξ|2.

The definition of Property (P̃ ) comes from McNeal’s paper [28] where he proved

that on a bounded pseudoconvex domain with smooth boundary, property (P̃q) suf-

fices the compactness of the ∂-Neumann operator on the (0, q)-form level. One can

easily see that (P ) implies (P̃ ) but the other direction is an open question. The

equivalence of these two properties is known only on some special cases; locally con-

vexifiable bounded domains in Cn, (n ≥ 1) [14], bounded pseudoconvex complete

Hartogs domains in C2 [10]. Proving or disproving the equivalence between (P ) and

(P̃ ) on a general domain in Cn would shed new light on the compactness theory of

the ∂-Neumann operator.

The next proposition shows that property (P̃ ) can be restricted on the weakly

pseudoconvex directions on the complex tangent space on the boundary of a smooth

bounded domain. This does not seem to have been observed before, and so we include
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a proof. Consider H(1,0)(bΩ) as the holomorphic tangent bundle on bΩ. For p ∈ bΩ

set Np :=
{
ξ ∈ H(1,0)

p (bΩ) |
∑n

j,k=1
∂2ρ(p)
∂zj∂zk

ξjξk = 0
}

, the null space of the Levi form.

Proposition 1. Let Ω be a bounded pseudoconvex domain with smooth boundary.

Property (P̃ ) restricted to Np is equivalent to Property (P̃ ).

Proof. It suffices to verify conditions in the definition 4. As a first step, we lift the

(P̃ ) conditions from weakly pseudoconvex directions to complex tangential directions.

For every positive real number M define the following function λ̃M(z) := λM(z)+

AMρ(z). Then,

n∑
j,k=1

∂2λ̃M(z)

∂zj∂zk
ξjξk =

n∑
j,k=1

∂2λM(z)

∂zj∂zk
ξjξk + AM

n∑
j,k=1

∂2ρ(z)

∂zj∂zk
ξjξk,

∣∣∣∣∣
n∑
j=1

∂λ̃M(z)

∂zj
ξj

∣∣∣∣∣
2

=

∣∣∣∣∣
n∑
j=1

∂λM(z)

∂zj
ξj + AM

n∑
j=1

∂ρ(z)

∂zj
ξj

∣∣∣∣∣
2

.

By hypothesis, we have λM(z) satisfying (P̃ ) restricted to weakly pseudoconvex direc-

tions, ρ(z) is a defining function for the domain Ω, and AM is a constant depending

on M , to be chosen below. Thus, for z ∈ bΩ and ξ ∈ Nz we have

(1◦.)

∣∣∣∣∣
n∑
k=1

∂λM(z)

∂zk
ξk

∣∣∣∣∣
2

≤ C
n∑

j,k=1

∂2λM(z)

∂zj∂zk
ξjξk,

(2◦.)
n∑

j,k=1

∂2λM(z)

∂zj∂zk
ξjξk ≥M |ξ|2.

For z ∈ bΩ and ξ ∈ Nz we also have

(1◦◦.)

∣∣∣∣∣
n∑
k=1

∂λM(z)

∂zk
ξk

∣∣∣∣∣
2

< 2C
n∑

j,k=1

∂2λM(z)

∂zj∂zk
ξjξk,

(since
n∑

j,k=1

∂2λM(z)

∂zj∂zk
ξjξk ≥M, if |ξ| = 1.);
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and

(2◦◦.)
n∑

j,k=1

∂2λM(z)

∂zj∂zk
ξjξk >

M

2
|ξ|2.

The point is that (1◦◦.) and (2◦◦.) are inequalities, i.e. open conditions.

Let H(1,0)(bΩ) be the holomorphic tangent bundle on bΩ and SH(1,0)(bΩ) the

unit sphere bundle. The fiber over a point p ∈ bΩ is the set of all unit (1, 0)-vectors

in H
(1,0)
p (bΩ). Define the following set K :=

{
(p, ξ) ∈ SH(1,0)(bΩ) | ξ ∈ Np

}
. K is a

compact set, so (1◦◦.) and (2◦◦.) hold in a neighborhood U of K in SH(1,0)(bΩ). Let

K ⊂⊂ U1 ⊂⊂ U , and set

a := min

{
n∑

j,k=1

∂2λM
∂zj∂zk

ξjξk | (z, ξ) ∈ SH(1,0)(bΩ)\U1

}
,

b := min

{
n∑

j,k=1

∂2ρ

∂zj∂zk
ξjξk | (z, ξ) ∈ SH(1,0)(bΩ)\U1

}
.

Choose AM big enough so that a+ AMb ≥M, (note that b > 0). Then,

n∑
j,k=1

∂2λ̃M
∂zj∂zk

ξjξk ≥
n∑

j,k=1

∂2λM
∂zj∂zk

ξjξk >
M

2
|ξ|2 , for (z, ξ) ∈ U. (2.3)

We have used that
∑n

j,k=1
∂2ρ

∂zj∂zk
ξjξk ≥ 0 for (z, ξ) ∈ U (because Ω is pseudoconvex).

Moreover,

n∑
j,k=1

∂2λ̃M
∂zj∂zk

ξjξk ≥ (a+ AMb)|ξ|2 ≥M |ξ|2, for (z, ξ) ∈ SH(1,0)(bΩ)\U1. (2.4)

(2.3) and (2.4) give (2◦◦.).

We can also satisfy (1◦◦.). Chosen AM so big that also ã ≤ a + AMb, where

ã := max{|
∑n

j=1
∂λM
∂zj

ξj|2 : (z, ξ) ∈ SH(1,0)(bΩ)}. Then, for (z, ξ) ∈ U ⊂ SH(1,0)(bΩ)∣∣∣∣∣
n∑
j=1

∂λ̃M
∂zj

ξj

∣∣∣∣∣
2

=

∣∣∣∣∣
n∑
j=1

∂λM
∂zj

ξj

∣∣∣∣∣
2

< 2C
n∑

j,k=1

∂2λM
∂zj∂zk

ξjξk
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≤ 2C
n∑

j,k=1

∂2λ̃M
∂zj∂zk

ξjξk. (2.5)

We have used again that Ω is pseudoconvex, and so
∑n

j,k=1
∂2ρ

∂zj∂zk
ξjξk ≥ 0 for (z, ξ) ∈

U . Moreover, for (z, ξ) ∈ SH(1,0)(bΩ)\U1∣∣∣∣∣
n∑
j=1

∂λ̃M
∂zj

ξj

∣∣∣∣∣
2

=

∣∣∣∣∣
n∑
j=1

∂λM
∂zj

ξj

∣∣∣∣∣
2

≤ ã

< 2(a+ AMb)

≤ 2
n∑

j,k=1

∂2λ̃M
∂zj∂zk

ξjξk. (2.6)

(2.5) and (2.6) give (1◦◦.).

As a second step, we lift the (P̃ ) conditions from the complex tangent space

to the whole Cn. For every positive real number M define the following function

φM(z) := λ̃M(z) +BMρ
2(z). Then,

n∑
j,k=1

∂2φM(z)

∂zj∂zk
ξjξk =

n∑
j,k=1

∂2λ̃M(z)

∂zj∂zk
ξjξk + 2BMρ(z)

n∑
j,k=1

∂2ρ(z)

∂zj∂zk
ξjξk

+ 2BM

∣∣∣∣∣
n∑
j=1

∂ρ(z)

∂zj
ξj

∣∣∣∣∣
2

,

∣∣∣∣∣
n∑
j=1

∂φM(z)

∂zj
ξj

∣∣∣∣∣
2

=

∣∣∣∣∣
n∑
j=1

∂λ̃M(z)

∂zj
ξj + 2BMρ(z)

n∑
j=1

∂ρ(z)

∂zj
ξj

∣∣∣∣∣
2

.

By the first step of the proof λ̃M(z) satisfies the (P̃ ) conditions restricted to

complex tangential directions; BM is a constant depending on M , to be chosen below.

We use an argument similar to one at the first step. Let Y := bΩ × {ξ ∈ Cn :

|ξ| = 1}, then SH(1,0)(bΩ) embeds into Y and so it is compact subset of Y . Thus,

by continuity (as above) we have the analog of (1◦◦.) and (2◦◦.) in a neighborhood

V (⊂ Y ) of SH(1,0)(bΩ). Let V1 ⊂⊂ V . Set c := min{
∑n

j=1
∂2eλM
∂zj∂zk

ξjξk : (z, ξ) ∈ Y \V1},
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d := min{|
∑n

j=1
∂ρ
∂zj
ξj|2 : (z, ξ) ∈ Y \V1}, and l := max{|

∑n
j=1

∂eλM
∂zj

ξj|2 : (z, ξ) ∈ Y }.

Choose BM big enough so that l ≤ c+BMd when (z, ξ) ∈ Y (note that d > 0).

For (z, ξ) ∈ Y \V1∣∣∣∣∣
n∑
j=1

∂φM
∂zj

ξj

∣∣∣∣∣
2

=

∣∣∣∣∣
n∑
j=1

∂λ̃M
∂zj

ξj

∣∣∣∣∣
2

≤ l ≤ c+ 2BMd

≤
n∑

j,k=1

∂2φM
∂zj∂zk

ξjξk. (2.7)

(2.7) and the above discusion before (2.7) give (1◦◦.) on Y .

Choose BM so big that also (c + 2BMd) ≥ M, (note that d > 0). Then, for

(z, ξ) ∈ Y \V1

n∑
j,k=1

∂2φM
∂zj∂zk

ξjξk ≥ (c+ 2BMd)|ξ|2 ≥M |ξ|2, for (z, ξ) ∈ Y \V1. (2.8)

(2.8) and the above discusion before (2.7) give (2◦◦.) on Y .

C. Notions and Theorems Used in the Next Chapters

Let’s first give the basic identity:

Proposition 2 (Twisted Kohn-Morrey Formula [7]). Let Ω be a bounded domain in

Cn with class C2 boundary; let u be a (0, q) form (where 1 ≤ q ≤ n) that is in the

domain of ∂
?

and that is continuously differentiable on the closure Ω; and let a and

φ be real functions that are twice continuously differentiable on Ω, with a ≥ 0. Then

‖
√
a ∂u‖2

φ + ‖
√
a ∂

?

φu‖2
φ =

′∑
K

n∑
j,k=1

∫
bΩ

a
∂2ρ

∂zj∂zk
ujKukKe

−φdσ

+
′∑

J

n∑
j=1

∫
Ω

a

∣∣∣∣∂uJ∂zj

∣∣∣∣2 e−φdV + 2Re(
′∑

K

n∑
j=1

ujK
∂a

∂zj
dzK , ∂

?

φu)φ

+
′∑

K

n∑
j,k=1

∫
Ω

(a
∂2φ

∂zj∂zk
− ∂2a

∂zj∂zk
)ujKukKe

−φdV (2.9)
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Theorem 9 (Basic estimate [18]). Let Ω be a bounded pseudoconvex domain in Cn,

n ≥ 2, e the base of the natural logarithm, and D the diameter of Ω. Then, the

following estimate is valid

‖u‖2 ≤ eD2

q

(
‖∂u‖2 + ‖∂?u‖2

)
(2.10)

∀u ∈ Dom(∂) ∩ Dom(∂
?
) ⊂ L2

(0,q)(Ω), where 1 ≤ q ≤ n.

Theorem 10 (Sobolev Interpolation). Let Ω be a bounded domain in RN with Lip-

schitz boundary. For any ε > 0, u ∈ W s1(Ω), s1 > s > s2, we have the following

inequality:

‖u‖2
s ≤ ε‖u‖2

s1
+ Cε‖u‖2

s2
, (2.11)

where Cε is independent of u.

Usually in the theory of the ∂-Neumann problem to be able to pass from an a

priori estimate like Proposition 2 to a real estimate, the following lemma plays crucial

importance, see [9], or section 1.2 in [18].

Theorem 11 (Density Lemma). Let Ω be a bounded domain with at least C2 bound-

ary, and φ ∈ C2(Ω). Then Dom(∂
?
) ∩ C2(Ω) is dense in Dom(∂

?
) ∩ Dom(∂) under

the graph norm

Q(u, u) = ‖u‖2
φ + ‖∂u‖2

φ + ‖∂?u‖2
φ

Let Ω be a pseudoconvex domain with C∞ boundary in Cn and defining function

ρ. Ω is of finite type if one-dimensional complex varieties have bounded order of

contact at boundary points. The precise definition is as follows. Fix p ∈ bΩ. If f

is a smooth vector-valued function defined near 0 in C, let ν(f) denote its order of

vanishing at 0. For a given non-constant germ of a holomorphic map γ : C −→ Cn
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with γ(0) = p define τ(γ) = ν(r ◦γ)/ν(γ− p). We say p is of finite type in bΩ if there

exists a finite constant τ so that τ(γ) ≤ τ for all germs γ. We say Ω is of finite type

if every point of its boundary is of finite type, see [11].
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CHAPTER III

THE IDEAL OF COMPACTNESS MULTIPLIERS

A. Compactness Multipliers

Let Ω be a bounded pseudoconvex domain in Cn. Recall that a compactness estimate

of the ∂-Neumann operator is said to hold on Ω if for every ε > 0 there is a constant

Cε > 0 such that the following estimate

‖u‖2 ≤ ε
(
‖∂u‖2 + ‖∂?u‖2

)
+ Cε‖u‖2

−1

is valid ∀u ∈ Dom(∂) ∩Dom(∂
?
) ⊂ L2

(0,q)(Ω). (‖ · ‖−1 is the L2-Sobolev (−1)-norm.)

Definition 5. Let Ω be a bounded pseudoconvex domain in Cn with smooth boundary.

A function f ∈ C(Ω) is called a compactness multiplier on Ω if for every ε > 0 there

is a constant Cε,f > 0 such that the following estimate

‖fu‖2 ≤ ε(‖∂u‖2 + ‖∂?u‖2) + Cε,f‖u‖2
−1 (3.1)

is valid ∀u ∈ Dom(∂) ∩ Dom(∂
?
) ⊂ L2

(0,q)(Ω).

Remark 2. The definition of the compactness multiplier is equivalent to having mul-

tiplication operator Mf from Dom(∂) ∩Dom(∂
?
) to L2

(0,q)(Ω) as a compact operator.

That is, Mf (u) = fu is compact on Dom(∂) ∩ Dom(∂
?
): assume we have the above

estimate (3.1) and a sequence {un}∞n=1 in Dom(∂)∩Dom(∂
?
) bounded under the graph

norm Q(u, u) = ‖∂u‖2 + ‖∂?u‖2. By the basic estimate, which says ∀u ∈ L2
(0,q)(Ω)

‖u‖2 ≤ C(‖∂u‖2 + ‖∂?u‖2) is valid, the sequence {un}∞n=1 is also bounded in the

L2
(0,q)(Ω)-norm. Since L2

(0,q)(Ω) embeds compactly into W−1
(0,q)(Ω) there is a subse-

quence {un}∞n=1, which converges in W−1
(0,q)(Ω). Assume that we have passed to a such

subsequence then this gives that the subsequence is Cauchy in L2
(0,q)(Ω) and hence
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converges: ‖f(un−um)‖2 ≤ εQ(un − um, un − um)︸ ︷︷ ︸
<C

+Cε,f ‖un − um‖2
−1︸ ︷︷ ︸

<ε

. ε. Thus, we

have Mf as a compact operator from Dom(∂) ∩Dom(∂
?
) to L2

(0,1)(Ω).

Let JqΩ be the set of the compactness multipliers defined as above, associated

with (0, q) forms, 1 ≤ q ≤ n. We will develop the theory for (0, 1)-forms. For the

general case computations are the same.

Proposition 3. Let Ω be a bounded pseudoconvex domain in Cn with smooth bound-

ary. The set of compactness multipliers J1
Ω is an ideal, closed under the sup-norm.

Proof. Note that ‖fu‖2 ≤ Cf‖u‖2. Replacing f by hg, it is easy to see that hg is a

compactness multiplier whenever g is; ‖(hg)u‖2 ≤ Ch‖gu‖2. Thus, J1
Ω is closed under

multiplication by elements of C(Ω). The sum of two compactness multipliers is a

compactness multiplier; ‖(g + f)u‖2 ≤ ‖gu‖2 + ‖fu‖2. Thus, J1
Ω is an ideal of C(Ω).

J1
Ω is closed under the sup-norm.

Let {fj}∞j=1 ∈ J1
Ω such that fj converges to f in the sup-norm. Now, fix ε > 0

such that there exists j◦(ε) = j◦ ∈ N for which |fj◦ − f | < ε. Thus,

‖fu‖2 = ‖(f − fj◦)u+ fj◦u‖2

≤ ‖(f − fj◦)u‖2 + ‖fj◦u‖2

≤ ε‖u‖2 + ‖fj◦u‖2 (3.2)

Now, for the second term on the right hand side of (3.2) we use fj◦ ∈ J1
Ω and for the

first term we use the basic estimate on Ω, see Theorem 9; ‖u‖2 ≤ C(‖∂u‖2 + ‖∂?u‖).

Therefore,

‖fj◦u‖2 ≤ ε(‖∂u‖2 + ‖∂?u‖2) + Cε,fj◦‖u‖
2
−1
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we get

‖fu‖2 ≤ ε(‖∂u‖2 + ‖∂?u‖2) + Cε,f‖u‖2
−1.

As a result, f ∈ J1
Ω and so J1

Ω is closed ideal under the supremum norm.

Proposition 4. Let Ω be a bounded pseudoconvex domain in Cn with smooth bound-

ary and r be a continuous function on Ω with r|bΩ ≡ 0. Then the function r is a

compactness multiplier.

Proof. Fix ε > 0. Let Ωε := {z ∈ Ω | r(z) < −ε, 0 < ε arbitrarily small}. Choose

ψε ∈ C∞◦ (Ω) such that ψε ≡ 1 on Ωε, 0 ≤ ψε ≤ 1. Then ∀u ∈ C∞(0,1)(Ω) ∩Dom(∂
?
),

‖ru‖2 ≤ ‖r(1− ψε)u‖2
Ω\Ωε + ‖rψεu‖2

Ωε

≤ ε‖u‖2 + C‖ψεu‖2
Ωε

≤ ε
(
‖∂u‖2 + ‖∂?u‖2

)
+ C‖ψεu‖2

Ωε .

Note that in the second inequality we have used the boundness of r on Ω and on the

third one the basic estimate, Theorem 9.

Because of the interior elliptic regularity of ∂ ⊕ ∂? we get the following estimate

‖ψεu‖2
1 ≤ C(‖∂u‖2 + ‖∂?u‖2) (3.3)

for ∀u ∈ C∞(0,1)(Ω) ∩Dom(∂
?
) on Ω. Note that ψεu is still in C∞(0,1)(Ω) ∩Dom(∂

?
).

To be complete let’s show (3.3); by the definition of the Sobolev 1-norm we have

‖ψεu‖2
1 = C

n∑
j,k=1

∫
Ω

{∣∣∣∣∂(ψεuj)

∂zk

∣∣∣∣2 +

∣∣∣∣∂(ψεuj)

∂zk

∣∣∣∣2
}
dV + ‖ψεu‖2

It follows immediately from two integration by part that∫
Ω

∣∣∣∣∂(ψεuj)

∂zk

∣∣∣∣2 dV =

∫
Ω

∣∣∣∣∂(ψεuj)

∂zk

∣∣∣∣2 dV
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of course the boundary integrals are zero because of forms (ψεu) being supported in

the interior of Ω. Then

‖ψεu‖2
1 = C

n∑
j,k=1

∫
Ω

{∣∣∣∣∂(ψεuj)

∂zk

∣∣∣∣2 +

∣∣∣∣∂(ψεuj)

∂zk

∣∣∣∣2
}
dV + ‖ψεu‖2

≤ C

(
n∑

j,k=1

‖∂(ψεuj)

∂zk
‖2 + ‖u‖2

)
≤ C(‖∂u‖2 + ‖∂?u‖2)

the last inequality is coming from the Kohn-Morrey formula, the identity (2.9) in

Proposition 2 (for a ≡ 1 and φ = 0, one obtains all the ∂-derivatives of a form

become bounded by the above estimate). The second term on the second row is

estimated again by the basic estimate. Moreover, the constant C may change on

every row. Then, by using the Sobolev interpolation, Theorem 10,

‖ψεu‖2
Ωε ≤ ‖ψεu‖

2
Ω ≤ ε‖ψεu‖2

1 + Cε‖ψεu‖2
−1

by considering |ψ| ≤ 1 as a continuous multipier in W 1
◦ (Ω), ‖ψεu‖2

−1 . ‖u‖2
−1 we have

‖ψεu‖2
Ωε ≤ ε

(
‖∂u‖2 + ‖∂?u‖2

)
+ Cε‖u‖2

−1.

Therefore, by the density lemma, Theorem 11. ∀u ∈ Dom(∂) ∩Dom(∂
?
) on Ω

‖ru‖2 ≤ ε
(
‖∂u‖2 + ‖∂?u‖2

)
+ Cε‖u‖2

−1.

Thus, r is a compactness multiplier, r ∈ J1
Ω.

Remark 3. The above proposition says that the ideal of compactness multipliers,

JΩ is always nontrivial. In fact, in addition to r as above, every compactly supported

continuous function in Ω is a compactness multiplier. The proof of this is the same

as in Proposition 4.
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Let’s define Aq :=
{
z ∈ Ω | g(z) = 0 ∀g ∈ JqΩ

}
. Aq is a compact subset of Ω.

Note that along the chapter usually we will suppress q or Ω on JqΩ and on AqΩ unless

we need emphasis on these notions.

Theorem 12. The ideal JΩ of compactness multipliers on Ω, is equal to the set of

functions continuous on the closure of Ω which are vanishing on A ⊂ bΩ. That is,

JΩ =
{
g ∈ C(Ω) | g|

A
≡ 0
}

.

Proof. If f ∈ J then by the definition of A, f must vanish on A.

The other direction is by elementary functional analysis, with more general settings.

The following proof can be found in [26] with a negligible modification.

A is subset of bΩ because r, defining function for Ω is an element of J and r does not

vanish in the interior of Ω.

Let f ∈ C(Ω) such that f|
A
≡ 0. We are trying to show that f ∈ J . Let U :=

{|f(z)| < ε}. U is open then Ω\U =: K is closed and so compact. Now for every

z ∈ K there is gz ∈ J such that gz 6= 0 in some open set Vz. Then by compactness

cover K by finitely many open sets {Vzj}mj=1 (corresponding to {gzj}mj=1). Define

g := |gz1 |
2 + |gz2|

2 + ... + |gzm|
2. Clearly g ∈ J and g ≥ c > 0 on K. Now define

fn := f ng
1+ng

∈ J and approximate f within ε on K. Since 0 ≤ ng
1+ng

≤ 1 it follows

that on U we have the estimate 0 ≤ |fn| < ε thus sup|fn − f | < 2ε. As a result, f is

in the closure of J .

Corollary 2. A compactness estimate of the ∂-Neumann operator holds if and only if

A = ∅. That is, a nonempty set A is the obstruction to compactness of the ∂-Neumann

operator.

Remark 4. The setAΩ is a subset of the set of infinite type points on bΩ, (bΩ)∞. That

is, if p ∈ AΩ and p 6∈ (bΩ)∞ then we have compactness estimate in a neighborhood U

of p. This gives the existence of a compactly supported continuous function φ with
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support in U and element of JΩ. However, φ does not vanish on the point p ∈ AΩ.

Therefore, p ∈ (bΩ)∞.

Before we continue further let’s introduce some notions. We say that a compact

subset K ⊂ Cn is B-regular if any continuous functions on K can be approximated

uniformly on K by plurisubharmonic functions continuous in a neighborhood of K.

This definition of B-regularity is equivalent to the following one, see [34]; for any

M > 0 there is a λ ∈ C∞ plurisubharmonic function in the neighborhood of K

such that 0 < λ < 1 and
∑n

j,k=1
∂2λ

∂zj∂zk
(z)ξjξk ≥ M |ξ|2. When K = bΩ, where Ω is a

bounded domain, then the second definition of B-regularity is essentially property (P )

for bΩ. In fact, property (P ) requires the function λ to exist only in a neighborhood

of bΩ intersected with Ω, rather than in a full neighborhood of bΩ, see Definition 3.

However, it is easy to see that on domains with relatively minimally regular boundary

(for instance, when the boundary is locally a graph), the two notions coincide.

If A is not an empty set, then it can not be “too small”, in the following sense.

Lemma 3. If the set A is not empty then it can not satisfy property (P ).

Proof. Assume that A 6= ∅ satisfies property (P ). Fix ε > 0. Then ∃λε such that on

a neighborhood Uε of the set A we have

(1.) 0 ≤ λε(z) ≤ 1

(2.)
∑n

j,k=1
∂2λε(z)
∂zj∂zk

ξjξk ≥ 1
ε
|ξ|2, ∀ξ ∈ Cn, ∀z ∈ Uε.

Now, choose χε ∈ C∞◦ (Uε), χε ≡ 1 on A and 0 ≤ χε ≤ 1 in Uε. Then, for

u ∈ Dom(∂) ∩ Dom(∂
?
) we have ‖u‖2 . ‖χεu‖2 + ‖(1 − χε)u‖2. The second term

on the right hand side of the inequality can be estimated by considering (1 − χε)

as a compactness multiplier, element in JΩ. As for the first term on the right hand

side, we use the function λε. By keeping in mind that e−1 ≤ eλε−1 ≤ 1, in the
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Kohn-Morrey-Hörmander formula (2.9) consider a = 1 − eλε−1 and φ = 1 to get the

following estimate:

n∑
j,k=1

∫
Ω

∂2λε
∂zjzk

(χεuj)(χεuk) ≤ C(‖∂(χεu)‖2 + ‖∂?(χεu)‖2); (3.4)

see [7] for details. Then, by using condition (2.) of property (P ) we get

‖χεu‖2 . ε(‖∂u‖2 + ‖∂?u‖2 + ‖ (∇χε)u‖2)

. ε(‖∂u‖2 + ‖∂?u‖2) + Cε,eχ‖χ̃εu‖2 (3.5)

where χ̃ is a smooth cut off function identically 1 on the support of ∇χ whose support

does not intersect with AΩ, and Cχ := max|∇χ|. The last term on the right hand

side of the inequality can be estimated by considering χ̃ε as compactness multiplier,

element in JΩ. Therefore, we have

‖χεu‖2 ≤ ε(‖∂u‖2 + ‖∂?u‖2) + Cε‖u‖2
−1. (3.6)

As a result, χε + (1 − χε) ∈ JΩ; we have compactness estimate on Ω which

contradicts with the Corollary 2.

Example 1. The set A can not have two dimensional Hausdorff measure zero. A

set of infinite type points with two dimensional Hausdorff measure zero is benign for

property (P ), see [5, 34]. Now, combine this with Remark 4.

Example 2. The set A can not be contained in a subvariety Σ of holomorphic

dimension 0. The reason is that every compact subset K in Σ has property (P ),

see [34] Proposition 12. Compare this example with Example 3 in Chapter V. A

smooth submanifold Σ of bΩ with constant complex dimension of Hp(Σ) ∀p ∈ Σ

has holomorphic dimension zero if ∀p ∈ Σ and ∀ξ ∈ Hp(Σ) we have Lr(z, ξ) =∑n
j,k=1

∂2r
∂zj∂z̄k

ξj ξ̄k > 0.
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1. Characterization of A on a convex domain Ω in Cn

In order to separate characterizations with different forms, as a notation Aq will be

used for characterization with (0, q)-forms.

Theorem 13. Let Ω be a bounded convex domain in Cn then

A1 =

(⋃
α∈Λ

fα(D)

)
.

Here, the family {fα(D)}α∈Λ denotes the family of nontrivial analytic discs on the

boundary of Ω.

Proof. Choose p ∈ bΩ\
(⋃

α∈Λ fα(D)
)

. Then there exists r > 0 such that B(p, r) ∩(⋃
α∈Λ fα(D)

)
= ∅. B(p, r) =: Bp is a ball with center p and radius r.

Choose φ ∈ C∞◦ (Bp). If u ∈ Dom(∂
?
) ∩Dom(∂) ⊂ L2

(0,1)(Ω) then

(φu) ∈ Dom(∂
?
) ∩Dom(∂) ⊂ L2

(0,1)(Bp ∩ Ω).

Now, since Bp ∩ Ω is a convex domain and by assumption there is no disc in the

boundary of the domain then by Theorem 11 in [15] the compactness estimate of the

∂-Neumann operator on Bp ∩ Ω exists, see [14] and [15]. Thus, ∀ε > 0 ∃Cε > 0 such

that

‖φu‖2
Bp∩Ω ≤ ε

(
‖∂(φu)‖2

Bp∩Ω + ‖∂?(φu)‖2
Bp∩Ω

)
+ ‖φu‖2

−1,Bp∩Ω.

Therefore, we have

‖φu‖2
Ω ≤ ε

(
‖∂(φu)‖2

Ω + ‖∂?(φu)‖2
Ω

)
+ Cε‖φu‖2

−1,Ω

≤ ε
(
C1‖∂u‖2

Ω + C2‖∂
?
u‖2

Ω

)
+ Cε,φ‖u‖2

−1,Ω

∀u ∈ Dom(∂
?
) ∩ Dom(∂) ⊂ L2

(0,1)(Ω). Here, we have used that ‖u‖2
Ω . ‖∂u‖2

Ω +

‖∂?u‖2
Ω.
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The part with the (−1) Sobolev norms in the above inequalities is as follows:

There is an isometric embedding W 1
◦ (Ω ∩ Bp) −→ W 1

◦ (Ω). Now take the dual of

this isometric embedding and get W−1(Ω) −→ W−1(Ω ∩Bp), that is, ‖φu‖−1,Ω∩Bp .

‖φu‖−1,Ω. The part with ‖φu‖−1,Ω . ‖u‖−1,Ω uses |φ| ≤ 1 that φ is a continuous

multiplier on W 1
◦ (Ω).

As a result, φ is a compactness multiplier on Ω and does not vanish on Bp ∩ bΩ.

Thus, for an arbitrarily chosen p ∈ bΩ\
(⋃

α∈Λ fα(D)
)

there exists φp ∈ J1
Ω and r′ < r

such that φp 6= 0 on B(p, r′) ∪ Ω ⊂ B(p, r) ∩ Ω, so p 6∈ A1. Therefore, if p ∈ A1 then

p ∈
⋃
α∈Λ fα(D). That is, the set A1 is a subset of

(⋃
α∈Λ fα(D)

)
.

Now, let’s show the other way around, that
(⋃

α∈Λ fα(D)
)

is contained in A1.

Let’s choose p ∈ bΩ\A1. Then, we have a ball with radius r > 0 and center p such

that B(p, r) ∩ A1 = ∅. Moreover, we may take r > 0 small enough so that there is a

compactness multiplier f on Ω that does not vanish on Ω ∩B(p, r).

In order to conclude that there is no disc in the boundary of B(p, r) ∩ Ω by Fu

and Straube’s result in [15], Theorem 11, it suffices to derive a compactness estimate

for the (0, 1)-forms on Bp ∩ Ω, a convex bounded domain. Then for an arbitrarily

chosen p in bΩ\A1 it can be seen that p 6∈
⋃
α∈Λ fα(D) then it can be concluded that⋃

α∈Λ fα(D) is contained in A1.

We claim that there is a compactness estimate on B(p, r) ∩ Ω. Since B(p, r)

is a ball it is a strictly pseudoconvex domain, so we have property (P ) on bB(p, r);

for fixed ε > 0 ∃Vε := {z ∈ Cn | dist(z, bB(p, r)) < ε} and ∃λε ∈ C2(Vε) in a

neighborhood of bB(p, r) such that 0 ≤ λε ≤ 1 and
∑n

i,k=1
∂2λε
∂zj∂zk

ξjξk ≥ 1
ε
|ξ|2 on Vε

for ξ ∈ Cn.

Now, choose φε as a smooth cut off function (0 ≤ φε ≤ 1), φε ≡ 1 near bB(p, r)

and supported in Vε. Let’s take u ∈ Dom(∂)∩Dom(∂
?
) on Ω∩Bp := Ω∩B(p, r) and
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estimate the following

‖u‖2
Ω∩Bp . ‖φεu‖

2
Ω∩Bp + ‖(1− φε)u‖2

Ω∩Bp (3.7)

Note that (1− φε)u can be considered as a form in Dom(∂) ∩Dom(∂
?
) ⊂ L2

(0,q)(Ω)

To find an estimate for ‖φεu‖2
Ω∩Bp we use the inequality extracted from the Kohn-

Morrey formula (2.9). We set a := 1 − eλε−1 and apply Cauchy-Schwarz inequality

to the real valued term which shows up and then absorb ‖eλε−1
2 ∂

?
u‖ to the other

side of the inequality. (For completeness only for the regularization part we consider

(0, q)-forms.) By considering a+ eλε−1 = 1 we get

′∑
|K|=q−1

∫
Ω∩Bp

eλε−1

n∑
j,k=1

∂2λε
∂zj∂zk

(φεujK) (φεukK) dV (z)

≤ ‖∂ (φεu) ‖2
Ω∩Bp + ‖∂? (φεu) ‖2

Ω∩Bp . (3.8)

However, boundary of Ω∩Bp is not a C2 boundary so the Density Lemma (Theorem

11.) may not work (we need at least C1 regular boundary, see [18]). We will use the

regularization procedure, see [37], in order to make the inequality (3.8) work.

Let’s exhaust Ω ∩ Bp by {Ων}∞ν=1 such that Ων ⊂⊂ Ων+1, Ων has pseudoconvex

C2 boundary and Ω ∩Bp =
⋃∞
ν=1 Ων .

On Ων the inequality (3.8) will work and by having property (P ) we will have an

estimate for ‖φεu‖2
Ων

but (φεu)|
bΩν

may not be in the domain of ∂
?

on Ων . However,

if we define the following form on Ων as follows:

(φεu)ν := ∂Nq−1,νϑ(φεu) + ∂
?

νNq+1,ν∂(φεu) (3.9)

for (φεu) ∈ Dom(∂) ∩Dom(∂
?
) on Ω ∩Bp, then (φεu)ν ∈ Dom(∂) ∩Dom(∂

?

ν) on Ων .

In (3.9), ϑ is the formal adjoint of ∂ under the usual L2 norm. When q = 1, the

∂-Neumann operator Nq−1 acts on functions, see [9] Theorem 4.4.3.
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The idea is that when ν −→∞ to get

∂Nq−1∂
?
(φεu) + ∂

?
Nq+1∂(φεu) = (φεu).

Now, we can use the inequality (3.8) on Ων ’s;

′∑
|K|=q−1

∫
Ων

eλε−1

n∑
j,k=1

∂2λε
∂zj∂zk

(φεujK)ν (φεukK)ν dV (z)

≤ ‖∂ (φεu)ν ‖
2
Ων + ‖∂?ν (φεu)ν ‖

2
Ων . (3.10)

Since we have property (P ) on Vε we derive the following from (3.10);

1

ε
‖(φεu)ν‖2

Ων ≤ ‖∂ (φεu)ν ‖
2
Ων + ‖∂?ν (φεu)ν ‖

2
Ων (3.11)

Now, by using the definition of (φεu)ν in (3.9)

∂(φεu)ν = ∂
(
∂Nq−1,νϑ(φεu) + ∂

?

νNq+1,ν∂(φεu)
)

= ∂∂
?

νNq+1,ν∂(φεu),

∂
?

ν(φεu)ν = ∂
?

ν

(
∂Nq−1,νϑ(φεu) + ∂

?

νNq+1,ν∂(φεu)
)

= ∂
?

ν∂Nq−1,νϑ(φεu).

Take into account that ∂∂
?

νNq+1,ν and ∂
?

ν∂Nq−1,ν are orthogonal projections. They

are continuous operators on L2
∗(Ων) hence considering their norms less than 1 in the

respective L2 spaces (3.11) becomes

1

ε
‖(φεu)ν‖2

Ων ≤ ‖∂ (φεu) ‖2
Ων + ‖∂? (φεu) ‖2

Ων

≤ ‖∂ (φεu) ‖2
Ω∩Bp + ‖∂? (φεu) ‖2

Ω∩Bp . (3.12)

Now, one can check that (φεu)ν goes to (φεu) weakly in L2
(0,q)(Ω ∩ Bp) as ν −→

∞, where (φεu)ν is continued by zero on (Ω ∩Bp) \Ων ; Since ∂Nq−1,ν and ∂
?

νNq+1,ν

are bounded in their norms in L2
(0,q−1)(Ων) and L2

(0,q+1)(Ων) respectively, (φεu)ν are

bounded in L2
(0,q)(Ω ∩ Bp) independently of ν. Thus, a suitable subsequence will

converge weakly in L2
(0,q)(Ω ∩ Bp). By observing (φεu) is in Dom(∂) ∩ Dom(∂

?
) ⊂
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L2
(0,q)(Ω ∩ Bp), it can be seen that the limit equals (φεu), see [29], proof of Theorem

1. As a result of combining the above argument with (3.12) we get

1

ε
‖φεu‖2

Ω∩Bp ≤ ‖∂ (φεu) ‖2
Ω∩Bp + ‖∂? (φεu) ‖2

Ω∩Bp . (3.13)

Thus, from (3.7) and (3.13) we get

‖u‖2
Ω∩Bp . ε

(
‖∂ (φεu) ‖2

Ω∩Bp + ‖∂? (φεu) ‖2
Ω∩Bp

)
+ ‖(1− φε)u‖2

Ω∩Bp

. ε
(
‖∂u‖2

Ω∩Bp + ‖∂?u‖2
Ω∩Bp + ‖(∇φε)u‖2

Ω∩Bp

)
+ ‖(1− φε)u‖2

Ω∩Bp .

(1 − φε)u and ∇φεu can be viewed as forms on Ω in Dom(∂) ∩ Dom(∂
?
). Let χε ∈

C∞◦ (Bp) such that χε ≡ 1 on {{supp(∇φε)} ∪ {supp(1− φε)}} ⊂ Bp.

‖u‖2
Ω∩Bp . ε

(
‖∂u‖2

Ω∩Bp + ‖∂?u‖2
Ω∩Bp

)
+ Cφε‖χεu‖2

Ω∩Bp (3.14)

∀u ∈ Dom(∂) ∩Dom(∂
?
) ⊂ L2

(0,q)(Ω ∩Bp).

Now, we will try to estimate the last term in (3.14). χεu ∈ Dom(∂)∩Dom(∂
?
) ⊂

L2
(0,q)(Ω) for any u ∈ Dom(∂) ∩ Dom(∂

?
) ⊂ L2

(0,q)(Ω ∩ Bp), so we have the following

estimate on Ω; ∀ε′ > 0 there exists Cε′ > 0 such that for f ∈ JΩ, we have f -

compactness multiplier estimate

Cφε‖fχεu‖2
Ω ≤ Cφε

[
ε′
(
‖∂(χεu)‖2

Ω + ‖∂?(χεu)‖2
Ω

)
+ Cε′,f‖χεu‖2

−1,Ω

]
≤ Cφε [ε

′(‖∂(χεu)‖2
Ω︸ ︷︷ ︸

. ‖∂u‖2Ω∩Bp

+ ‖∂?(χεu)‖2
Ω︸ ︷︷ ︸

. ‖∂?u‖2Ω∩Bp

+‖∇χεu‖2
Ω)

+ Cε′,fCε‖u‖2
−1,Ω∩Bp ]. (3.15)

Let’s point out that the idea is to use the following, Cφε‖χεu‖2
Ω∩Bp ≤ Cφε,f‖fχεu‖2

Ω

combined with the estimate in (3.15) and the existence of f 6= 0(∈ JΩ) on Ω ∩Bp.

Let’s see how we got the inequalities between the (−1) Sobolev norms, ‖ · ‖−1,Ω
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and ‖ · ‖−1,Ω∩Bp with associated domains.

‖χεu‖2
−1,Ω = sup

06=v∈
“
W 1

(0,q)
(Ω)
”
◦
: ‖v‖1,Ω=1

|(χεu, v)Ω|

= sup
06=v∈

“
W 1

(0,q)
(Ω)
”
◦
: ‖v‖1,Ω=1

|(u, χεv)Ω|

≤ ‖χεv‖1,Ω∩Bp‖u‖−1,Ω∩Bp

≤ Cε‖v‖1,Ω‖u‖−1,Ω∩Bp .

Now, lets estimate ‖∇χεu‖2
Ω in (3.15)

‖∇χεu‖2
Ω . ‖∇χεu‖2

Ω∩Bp

. Cε‖u‖2
Ω∩Bp

. Cε

(
‖∂u‖2

Ω∩Bp + ‖∂?u‖2
Ω∩Bp

)
.

On the last step we used the basic estimate on Ω ∩ Bp, ‖u‖2
Ω∩Bp ≤ C(‖∂u‖2

Ω∩Bp +

‖∂?u‖Ω∩Bp).

By the choice of p and its neighborhood Bp there is f ∈ JΩ such that f 6= 0 on

Ω ∩ Bp. Thus, combining (3.15) and the discussion after it within (3.14) we have a

compactness estimate on Ω ∩Bp. That is, ∀ε > 0 ∃Cε > 0 such that

‖u‖2
Bp∩Ω . ε

(
‖∂u‖2

Bp∩Ω + ‖∂?u‖2
Bp∩Ω

)
+ Cε‖u‖2

−1,Bp∩Ω (3.16)

∀u ∈ Dom(∂) ∩Dom(∂
?
) ⊂ L2

(0,q)(Ω ∩Bp).

As we explained before, by Fu and Straube’s result [15], on a convex domain

the above result implies that there is no any discs in the boundary of Ω ∩Bp, so p 6∈⋃
α∈Λ fα(D). Thus, since we have chosen p ∈ bΩ\A we can conclude that

(⋃
α∈Λ fα(D)

)
is contained in A and as a result(⋃

α∈Λ

fα(D)

)
= A.
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Corollary 3. Let Ω be a bounded convex domain in Cn and 1 ≤ q ≤ n then

Aq =

(⋃
α∈Λ

Kα

)
.

Here, the family {Kα}α∈Λ denotes the family of q-dimensional analytic varieties on

the boundary of Ω.

Proof. The ∂-Neumann operator Nq fails to be compact on L2
(0,q)(Ω) iff the boundary

of the convex domain Ω contains an analytic variety of dimension ≥ q, see [15],

Theorem 11. The proof of the corollary goes exactly along the lines of the proof of

Theorem 13.

2. Characterization of A( 6= ∅) on a smooth bounded pseudoconvex complete

Hartogs domain Ω in C2

Definition 6. A complete Hartogs domain Ω in C2 with base Ω1 on an open set in

C is defined by |w| < e−φ(z) for z ∈ Ω1, where φ(z) is an upper semi-continuous

function.

A complete Hartogs domain Ω is pseudoconvex if and only if φ(z) is a subhar-

monic function on the base Ω1, see [30], section 1.3.7.

Let Ω be a smooth bounded complete Hartogs domain and π : bΩ −→ Ω1 be the

continuous projection map (z, w) 7−→ (z, 0). It follows from the computation of the

Levi form that the weakly pseudoconvex boundary points with w 6= 0 are

{(z, w) ∈ bΩ | |w| = e−φ(z) and ∆φ(z) = 0}.

On a smooth bounded pseudoconvex (not necessarily complete) Hartogs domain

compactness of the ∂-Neumann operator is equivalent to the existence of property (P )
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is a result by Christ and Fu in [10]. Additionally, if the domain is also complete i.e.

in the form Ω := {(z, w) ∈ C2 | z ∈ Ω1 ⊂ C1, |w| < e−φ(z)} and the boundary points

with w = 0 are strictly pseudoconvex, then both of the above conditions (compactness

and property (P )) are equivalent to the set of projected (onto Ω1) infinite type points

of bΩ having nonempty fine interior, a result by Sibony in [34], see also [16].

We will use the following notation: Let D be a subset of Ω1. Define Ω in the

following way:

Ω := {(z, w) ∈ C2 | z ∈ Ω1 ⊂ C1, |w| < e−φ(z)}.

Since π : bΩ −→ Ω1 is a continuous projection map,

π−1(D) := {(z, w) ∈ bΩ | z ∈ D, |w| = e−φ(z)} ⊂ bΩ.

The fine topology is the smallest topology that makes all subharmonic functions

continuous; see, e.g. [17] for properties of this toplogy. It is strictly larger than the

Euclidean topology, and there exist compact sets with empty Euclidean interior, but

nonempty fine interior, see [2] example 7.9.3.

The following notations will be used: Intf (K) for the fine interior points (interior

points under the Fine topology) of the set K, Inte(K) for the interior points under

the Euclidean topology of the set K, and Intf (K)
E

for the Euclidean closure of the

fine interior points of the set K.

The next three propositions are from Sibony’s paper [34]. We will give them

with the original notion of B-regularity, but when we use them in the proof of the

theorem we will refer to it as property (P ).

Proposition 5. [34] Let X ⊂ Cn, Y ⊂ Cm be two compact subsets. Let π be a

continuous map from X to Y . Suppose that the components of π belong to the algebra
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H(X), algebra of the functions that can be uniformly approximated by holomorphic

functions in a neighborhood of X. Suppose also that Y is B-regular and that for all

y ∈ Y compact π−1(y) is B-regular. Then X is B-regular.

Proposition 6. [34] Let X ⊂ C be compact. X is B-regular if and only if it is of

empty fine interior.

Proposition 7. [34] Let X be compact in Cn. Suppose that X = ∪∞k=1Xk where every

Xk is a B-regular compact set. Then X is B-regular.

The following result is a characterization of the set A on a bounded pseudo-

convex complete Hartogs domain with smooth boundary. Denote by K the set

{z ∈ Ω1 | ∆φ(z) = 0}, the set of projected (onto Ω1) infinite type points of bΩ.

Theorem 14. Let Ω be a smooth bounded pseudoconvex complete Hartogs domain

in C2. Assume that the boundary points of the form (z, 0) are strictly pseudoconvex.

Then

A = π−1
(
Intf (K)

E
)
.

Remark 5. The assumption about the boundary points of the form (z, 0) to be

strictly pseudoconvex forces the projected infinite type points to stay away from the

boundary of the base set. In particular, K is a compact subset of Ω1. The case

without the assumption will be investigated at another time.

Proof. According to the Proposition 5 and Proposition 6 we can argue as follows:

Let p ∈ bΩ\π−1
(
Intf (K)

E
)

, then p = (pz, pw) where π(p) = pz ∈ Ω1\Intf (K)
E

.

Then ∃D(pz, r) ⊂ Ω1 such that D(pz, r) ∩ Intf (K)
E

= ∅.

Consider the portion of bΩ over D(pz, r), π
−1 (D(pz, r)) = {(z, w) ∈ C2 | z ∈

D(pz, r), |w| = e−φ(z)} ⊂ bΩ and choose an open ball with center p = π−1(pz),

B((pz, pw), r′) such that B(p, r′) ∩ bΩ ⊂ π−1 (D(pz, r)).
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Let K := {z ∈ Ω1 | ∆φ(z) = 0}, the projected (onto Ω1) infinite type points of

bΩ, be written as the union of two disjoint compact sets K = Intf (K)
E
∪K◦ where

Intf (K◦) = ∅. Now, by Proposition 6 the compact set K◦ has property (P ), and then

by Proposition 5 it follows that π−1(K◦) ⊂ bΩ has property (P ), π is a continuous

projection map from bΩ to K (sending (z, w) to (z, 0)). Thus, we have property (P )

on every compact subset of B(p, r′) ∩ bΩ which implies the existence of compactness

estimate on B(p, r′) ∩ Ω, see [8]. From here on the argument proceeds as in the first

part of the proof of Theorem 13.

Let’s show the other way around, that π−1
(
Intf (K)

E
)

is a subset of A.

Let pz ∈ Ω1\π(A) then ∃r > 0 such that D(pz, r)∩π(A) = ∅ (π(A) is closed!). Then,

construct a new Hartogs domain Ω′ with the base D(pz, r
′) ⊃ D(pz, r). Choose ϕ(z) ∈

C∞◦ (D(pz, r
′)) such that ϕ(z) ≡ 1 on D(pz, r). Now, set ψ(z) := φ(z) on D(pz, r) and

ψ(z) := φ(z)ϕ(z) + h(z) on D(pz, r
′), where h(z) is a smooth radially symmetric

strictly subharmonic function on D(pz, r
′)\D(pz, r), h(z) = 0 on D(pz, r), and equals

1
2

log(r′ 2−|z|2) when |z| is close to r′. (Choose h(z) := v(|z|) log(r′ 2−|z|2)1/2, where

v ∈ C∞(R), supp(v(z)) ⊂ [r,∞) with v′ and v′′ > 0, and v(r′) = 1.) Such a function

can be chosen to have its second (radial) derivative as big as we wish on a given

compact subset of D(pz, r
′)\D(pz, r), in particular on {∆ψ(z) ≤ 0}. Thus,

Ω′ := {(z, w) ∈ C2 | z ∈ D(pz, r
′), |w| < e−ψ(z)}

is smooth bounded pseudoconvex complete Hartogs domain.

We claim that there exists a compactness estimate on Ω′. To prove the claim

consider the boundary of the new domain Ω′ as follows;

bΩ′ = π−1 (D(pz, r)) ∪ π−1
(
D(pz, r

′)\D(pz, r)
)
∪ bD(pz, r

′) ∪ π−1 (bD(pz, r)) .

It will be sufficient to see that each part of the boundary of Ω′ satisfies property
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(P ) or there exists a compactness estimate.

π−1(bD(pz, r)) has property (P ) by Proposition 5; bD(pz, r) is a circle and so a

totally real smooth submanifold in which case it has property (P ).

π−1(D(pz, r
′)\D(pz, r)) is strictly pseudoconvex part of the boundary of Ω. It

can be seen as a countable union of compact sets each one having property (P ); every

compact subsets on a strictly pseudoconvex boundary is having Property (P ).

bD(pz, r
′) by construction is having property (P ); bD(pz, r

′) is also a part of bΩ′

which we set it to be strongly pseudoconvex, so it has property (P ).

Thus, the portion of bΩ′ over D(pz, r′)\D(pz, r) satisfies property (P ); it can be

written as a countable union of compact sets each one satisfying property (P ) then

so does π−1
(
D(pz, r

′)\D(pz, r)
)
∪ bD(pz, r

′) ∪ π−1 (bD(pz, r)), by Theorem 7.

As for the rest of the boundary of Ω′ we do the following: For every q ∈

π−1(D(pz, r)) we can find an open ball B(q, R) such that B(q, R) ∩ Ω′ is having

compactness estimate because we have at least one compactness multiplier f on Ω

that does not vanish on B(q, R)∩Ω′ = B(q, R)∩Ω. Existence of non-vanishing com-

pactness multiplier in this part of the boundary is because we have chosen A away

from this portion of bΩ. The existence of the compactness estimate can be obtained

as in the second part of the proof of Theorem 13. For completeness of the argument

we give a sketch of the proof:

Choose φε as a smooth cut off function such that (0 ≤ φε ≤ 1), φε ≡ 1 near

bB(q, R) and supported in Vε.

Take u ∈ Dom(∂) ∩Dom(∂
?
) on Ω ∩B(q, R) =: Ω ∩Bq and

‖u‖2
Ω∩Bq . ‖φεu‖

2
Ω∩Bq + ‖(1− φε)u‖2

Ω∩Bq . (3.17)

The estimate we get (through the regularization procedure, see the second part of the
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proof of Theorem 13.) for the first term on the right (3.17) is

‖φεu‖2
Ω∩Bq ≤ ε

(
‖∂u‖2

Ω∩Bq + ‖∂?u‖2
Ω∩Bq + ‖(∇φε)u‖2

Ω∩Bq

)
. (3.18)

Then, considering (3.17) in (3.18) we get

‖u‖2
Ω∩Bq . ε

(
‖∂u‖2

Ω∩Bq + ‖∂?u‖2
Ω∩Bq + ‖(∇φε)u‖2

Ω∩Bq

)
+ ‖(1− φε)u‖2

Ω∩Bq . (3.19)

View (1−φε)u and (∇φε)u as forms on Ω in Dom(∂)∩Dom(∂
?
). Use the existence

of compactness multiplier f on Ω such that f 6= 0 on bΩ ∩ Bq to estimate third and

fourth term in (3.19). Combining all gives compactness estimate on B(q, R) ∩ bΩ′ =

B(q, R) ∩ bΩ.

The smooth bounded pseudoconvex complete Hartogs domain Ω′ with the base

D(pz, r
′) has compactness estimate. Moreover, by a result of Christ and Fu, see [10]

Theorem 1.1, existence of Property (P ) and compactness estimate are equivalent on

Ω′. Furthermore, Intf (K)∩D(pz, r) = ∅ by Proposition 6. Recall that pz ∈ Ω1\π(A)

was chosen arbitrarily then Intf (K) ∩ (Ω1\π(A)) = ∅. Therefore, Intf (K) ⊂ π(A).

Now, let us point out that the set A is invariant under rotation. If it was not, then

on a neighborhood U of π−1 (π(A)) \A, which would not be an empty set, the existence

of compactness estimate would fail. This would contradict invariance of compactness

of the ∂-Neumann operator under rotation. Thus, we have π−1 (π(A)) = A, and so

π−1
(
Intf (K)

E
)
⊂ A.

Remark 6. Assume boundary of a bounded (complete) pseudoconvex Reinhardt do-

main Ω to be Lipschitz. Consider the following two theorems. The first one attributed

to Catlin (see Proposition 9 in [15]) is that the existence of the compactness estimate
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on a bounded pseudoconvex domain Ω in C2 with Lipschitz boundary implies the

absence of an analytic disc from the boundary of the domain. The second one, which

is in fact more general than we need, is Theorem 12 on the survey paper [15]; on a

bounded pseudoconvex Reinhardt domain Ω absence of the disc from the boundary

bΩ provides property (P ) which implies the existence of the compactness estimate of

the ∂-Neumann operator on Ω. Thus, combining these two theorems we can say that

on a bounded pseudoconvex Reinhardt domain Ω in C2 with Lipschitz boundary the

absence of the disc from the boundary is equivalent to the existence of the compact-

ness estimate of the ∂-Neumann operator on Ω. The assumption about the boundary

of such a domain to be Lipschitz regular makes the boundary stay free from the coor-

dinate hyperplanes. The reason we want this is if a coordinate hyperplanes becomes

part of the boundary of the domain it creates an analytic disc on the boundary but

does not fail compactness of the ∂-Neumann operator. Moreover, this regularity con-

ditions on the boundary also gives flexibility to the boundary of a Reinhardt domain

to be treated as locally convexifiable, see [15] section 5. Therefore, in a bounded

pseudoconvex Reinhardt domains Ω in C2 with Lipschitz regularity on the boundary

the characterization of the common zero set of the ideal of the multipliers is as in

convex domains, see Theorem 13.
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CHAPTER IV

INDEPENDENCE FROM THE METRIC OF SOME PROPERTIES OF THE

∂-NEUMANN OPERATOR

A theorem by W. J. Sweeney in [39] shows that coercive estimates are independent of

the metric on the tangent bundle, and it appears to be folklore that the same is true

for subelliptic estimates. The metric considered is smooth positive definite hermitian

on the whole closure of the domain. Here, we give a simple proof of this result, but

specifically for subellipticity of the ∂-Neumann operator. Besides, a natural question

to ask is whether the same is true for compactness of the ∂-Neumann operator. The

answer is yes, the compactness of the ∂-Neumann operator is also independent of the

metric. First, we will present a study related with compactness of the ∂-Neumann

operator and the general metric. On the second part, we will give a proof for the

subellipticity of the ∂-Neumann operator independent of the general metric.

A. Notations

Unless otherwise specified Ω will be a pseudoconvex domain with smooth boundary

in Cn. u =
∑′
|J |=q uJdzJ will be a (0, q)-form on Ω. The coefficients uJ are functions,

belonging to various function classes on Ω. Consider A and B as multiindex sets;

A = (a1, a2, a3, . . . , aq), 1 ≤ a1 < a2 < · · · < aq ≤ n.

Let Gq = GAB
q = G

(a1,...,aq)(b1,...,bq)
q for the (0, q)-form level be a metric tensor where

GAB
q is smooth and positive definite Hermitian in the sense of differential geometry

at the closure of the domain Ω. The metric GAB
q is on the q-fold exterior product of

the cotangent bundle where the forms on Ω take their values. L2
(0,q)(Ω, Gq) is a set of
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(0, q)-forms u such that

J = (j1, j2, j3, . . . , jq), 1 ≤ j1 < j2 < · · · < jq ≤ n

dzJ = dzj1 ∧ dzj2 ∧ · · · ∧ dzjn

〈u, v〉Gq : =

〈
′∑

|J |=q

uJdzJ ,
′∑

|K|=q

vKdzK

〉
G

=
′∑

|J |=|K|=q

GJK
q uJ(z)vK(z),

(u, v)Gq :=

∫
Ω

〈u, v〉Gq =
′∑

|J |=|K|=q

∫
Ω

GJK
q uJ(z)vK(z)dV,

and

‖u‖2
Gq :=

∫
Ω

〈u, u〉Gq =
′∑

|J |=|K|=q

∫
Ω

GJK
q uJ(z)uK(z)dV.

∂u = ∂

 ′∑
|J |=q

uJdzJ

 =
′∑

|J |=q

∂uJ ∧ dzJ

=
n∑
j=1

′∑
|J |=q

∂uJ
∂zj

dzj ∧ dzJ .

Remark 7. The general metric Gq does not have to be related to Gq′ for q′ 6= q. In

particular, it is not assumed that Gq is induced by G1.

B. Compactness of the ∂-Neumann Operator and the General Metric

To see that compactness of the ∂-Neumann operator does not depend on the metric,

we will express both Nq and NG
q (the ∂-Neumann operator induced with the metric

G), in terms of the (G)-canonical (Kohn) solution operators. The key point is the
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fact that if f is a ∂-closed form, then the canonical solution induced with a metric

G, ∂
?

GN
G may be composed with a suitable projection to obtain the unweighted

canonical solution ∂
?
N , and vice versa. This composition preserves compactness.

First we will develop a theory of the ∂-Neumann operator induced with the

metric G. It is analogous to the theory of the ∂-Neumann operator with the usual

(Euclidean) metric, δ.

L2
(0,q)(Ω, Gq) is a Hilbert space via the above mentioned inner product; L2

(0,q)(Ω)

is independent of Gq as a set. With such a metric Gq all the induced norms are

equivalent to the Euclidean norm, which is the one induced with the usual metric δ

(Kronecker δ-delta). Thus, the ∂ operator has the same domain and range as it has

when it is associated with the Euclidean metric. In particular:

∂q : L2
(0,q)(Ω, Gq)� ker(∂q+1) ⊂ L2

(0,q+1)(Ω, Gq+1)

is onto and the range of ∂q is closed. ∂q has an adjoint
(
∂q
)?
G

.

In order to demonstrate that the domain of ∂
?

G depends on the metric G we will

calculate
(
∂◦
)?
G1
u and the (boundary) conditions for a smooth (0, 1)-form to be in the

domain of
(
∂◦
)?
G1

. Assume |∇ρ| = 1. Let u be a (0, 1) form u =
∑n

j=1 uj dzj, uj ∈

C1(Ω) and α(z) ∈ C∞(Ω) then

(u, ∂α)G1 =

(
n∑
j=1

ujdzj,
n∑
k=1

∂α

∂zk
dzk

)
G1

=
n∑

j,k=1

∫
Ω

Gjk
1 uj

∂α

∂zk
dV. (4.1)

Note that G◦ is just a function, and we use (G◦)
−1 = G◦ . Then, using integration
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by parts (4.1) becomes

= −
n∑

j,k=1

∫
Ω

∂
(
Gjk

1 uj(z)
)

∂zk
α dV +

n∑
j,k=1

∫
bΩ

Gjk
1 uj α

∂ρ

∂zk
dσ

= −
n∑

j,k,l1=1

∫
Ω

G◦G
◦
∂
(
Gjk

1 uj(z)
)

∂zk
α dV +

n∑
j,k=1

∫
bΩ

Gjk
1 uj α

∂ρ

∂zk
dσ

=

− n∑
j,k=1

G◦
∂
(
Gjk

1 uj(z)
)

∂zk
, α


G◦

+
n∑

j,k=1

∫
bΩ

Gjk
1 uj α

∂ρ

∂zk
dσ.

The same computation with compactly supported smooth (0, q)-forms α annihilates

the boundary term in the previous computation. Thus,

(u, ∂α)G1 =

− n∑
j,k=1

G◦
∂
(
Gjk

1 uj(z)
)

∂zk
, α


G◦

. (4.2)

From (4.2) we get

(
∂◦
)?
G1
u = −

−
n∑

j,k=1

G◦
∂
(
Gjk

1 uj(z)
)

∂zk

 , u ∈ Dom
((
∂◦
)?
G1

)
. (4.3)

The condition for u to be in Dom(∂
?

G1
) is

n∑
j,k=1

∫
bΩ

Gjk
1 uj α

∂ρ

∂zk
dσ =

n∑
j,k=1

∫
bΩ

(
Gjk

1 uj
∂ρ

∂zk

)
αdσ = 0.

Consequently, the boundary condition is

n∑
j,k=1

Gjk
1 uj

∂ρ

∂zk
= 0 for z ∈ bΩ. (4.4)

Note that if G1 is the usual Euclidean metric δ, that is, Gjk
1 = δjk (where δjk is

Kronecker-δ), we get the boundary conditions in (2.1).

The range of
(
∂q
)?
Gq+1

is closed because the range of ∂q is, see for example,
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Lemma 4.1.1 in [9]. However, the range of
(
∂q
)?
Gq+1

is also dense in ker(∂q)
⊥Gq , and

so Im
((
∂q
)?
Gq+1

)
= ker(∂q)

⊥Gq . It follows that

L2
(0,q)(Ω, Gq) = ker(∂q)︸ ︷︷ ︸

Im(∂q−1)

⊕ Im
((
∂q
)?
Gq+1

)
︸ ︷︷ ︸
ker

„
(∂q−1)

?

Gq

«
. (4.5)

For u, v ∈ Dom(∂q)∩Dom
((
∂q−1

)?
Gq

)
, the Dirichlet form QG(u, v) is defined as

QGq(u, v) :=
(
∂u, ∂v

)
Gq+1

+
((
∂q−1

)?
Gq
u,
(
∂q−1

)?
Gq
v
)
Gq−1

. (4.6)

Note that an operator T is closed iff its graph is closed which is the same as saying

that the domain of the operator T , Dom(T ) is complete under the norm

‖ψ‖T = ‖Tψ‖+ ‖ψ‖.

Similarly, Dom(∂q) ∩Dom
((
∂q−1

)?
Gq

)
is complete with respect to

||| u |||2G := QG(u, u) + ‖u‖2
G.

Then, as an application of theorem V III.15 in Reed & Simon [32] (if Q is a closed

symmetric quadratic form then Q is the quadratic form of a unique self adjoint oper-

ator) there is a unique non-negative selfadjoint operator 2G
q associated to QG via

QGq(u, v) = (2G
q u, v), u ∈ Dom(2G

q ). (4.7)

By (4.7), if u ∈ ker
(
2G
q

)
, then QG(u, u) = 0. Therefore, ker(2G

q ) = ker(∂q) ∩

ker
((
∂q−1

)?
Gq

)
= {0} by (4.5). Then, Hörmander’s functional analysis Theorem

1.1.2 in [18] implies

‖u‖2
Gq . ‖∂qu‖

2
Gq+1

+ ‖
(
∂q−1

)?
Gq
u‖2

Gq−1
, ∀u ∈ Dom(∂) ∩Dom

((
∂q−1

)?
Gq

)
. (4.8)
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From (4.8), it follows (as in Euclidean case) from general Hilbert space arguments

that 2G
q has a bounded inverse. In fact: u, v ∈ Dom(∂q) ∩Dom

((
∂q−1

)?
Gq

)
then

∣∣(u, v)Gq
∣∣ ≤ ‖u‖Gq‖v‖Gq

. ‖u‖Gq
(
‖∂qv‖2

Gq+1
+ ‖

(
∂q−1

)?
Gq
v‖2

Gq−1

) 1
2
.

That is, this functional is continuous in the norm induced by QGq on Dom(∂q) ∩

Dom
((
∂q−1

)?
Gq

)
. Thus, it is given by an inner product

(u, v)Gq = QGq(N
G
q u, v).

Both NG
q and Nq can be expressed in terms of the canonical solution operators

Nq =
(
∂
?
Nq

)? (
∂
?
Nq

)
+
(
∂
?
Nq+1

)(
∂
?
Nq+1

)?
,

NG
q =

((
∂q−1

)?
Gq
NG
q

)?
Gq

((
∂q−1

)?
Gq
NG
q

)
+
((
∂q
)?
Gq+1

NG
q+1

)((
∂q
)?
Gq+1

NG
q+1

)?
Gq+1

.

Denote by PG
q the orthogonal projection from L2

0,q(Ω, G) onto ker(∂q). Since (∂q−1)?GqN
G
q

annihilates ker(∂q)
⊥G , we have

(
∂q−1

)?
Gq
NG
q =

(
∂q−1

)?
Gq
NG
q P

G
q .

Now, if f is a ∂-closed (0, q)-form, then ∂
?
Nqf and (∂q−1)?GqN

G
q f are both solutions

of the equation ∂u = f ; orthogonal in the respective inner products to ker(∂q−1).

Therefore the previous formula implies

(
∂q−1

)?
Gq
NG
q = (I − PG

q−1)∂
?
NqP

G
q .

Similarly, (
∂q
)?
Gq+1

NG
q+1 = (I − PG

q )∂
?
Nq+1P

G
q+1,
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and analogously,

∂
?
Nq = (I − Pq−1)

(
∂q−1

)?
Gq
NG
q Pq,

∂
?
Nq+1 = (I − Pq)

(
∂q
)?
Gq+1

NG
q+1Pq+1.

Theorem 15. NG
q is compact if and only if Nq is compact.

Proof. By using the fact that A?A + BB? is compact if and only if A and B are

compact, the above identities, and the fact that composition with bounded operators

(projections in our case) preserves compactness, we get the result.

C. Subellipticity of the ∂-Neumann Operator and the General Metric

Here, we only treat global subellipticity. A subelliptic estimate of order ε > 0 is said

to hold, if

‖u‖2
ε ≤ C

(
‖∂u‖2 + ‖∂?u‖2

)
for all u ∈ C∞(0,q)(Ω) ∩Dom

((
∂q−1

)?
Gq

)
(4.9)

where the norm on the left hand side is the L2-Sobolev norm of order ε. This holds if

and only if NG
q maps L2

(0,q)(Ω) continuously to W 2ε
(0,q)(Ω). The proof is the same as in

the Euclidean case. Let δ represent the usual (Euclidean) metric and G the general

metric.

Theorem 16. NG
q is subelliptic if and only if N δ

q is subelliptic.

Before we give the proof of the theorem let’s first set up some notions. Let’s take u

and v from L2
(0,q)(Ω). Then, define the following linear functional u 7−→ (u, v)L2

(0,q)
(Ω).

Since ∣∣∣(u, v)L2
(0,q)

(Ω)

∣∣∣ ≤ ‖u‖L2
(0,q)

(Ω)‖v‖L2
(0,q)

(Ω) . ‖u‖L2
(0,q)

(Ω)‖v‖L2
(0,q)

(Ω,G)

it is a bounded linear functional. Then, by the Riesz representation theorem, there

is a unique element TGq u in L2
(0,q)(Ω) such that the functional is given by pairing with
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TGq u

(u, v)L2
(0,q)

(Ω) = (TGq u, v)L2
(0,q)

(Ω,G).

Thus we have a bounded linear operator TGq : L2
(0,q)(Ω) −→ L2

(0,q)(Ω, G), which is an

isomorphism. TGq can be computed explicitly as in (4.1)-(4.4).

Lemma 4. u ∈ Dom(∂
?

q−1) if and only if TGq u ∈ Dom
((
∂q−1

)?
Gq

)
. Moreover,

(
∂q−1

)?
Gq
TGq u = TGq−1

(
∂q−1

)?
u. (4.10)

Proof. Let u ∈ Dom(∂
?
) and α ∈ C∞(0,q−1)(Ω) then

(TGq u, ∂α)Gq = (u, ∂α)

= (∂
?
u, α)

= (TGq−1∂
?
u, α)Gq−1 .

Thus, TGq u ∈ Dom
((
∂q−1

)?
Gq

)
, and

(
∂q−1

)?
Gq
TGq u = TGq−1

(
∂q−1

)?
u.

Let TGq u ∈ Dom
((
∂q−1

)?
Gq

)
and α ∈ C∞(0,q−1)(Ω). Then,

(u, ∂qα) = (TGq u, ∂α)Gq

=
((
∂q−1

)?
Gq
TGq u, α

)
Gq−1

= ((TGq−1)−1∂
?

GT
G
q u, α).

So u ∈ Dom(∂
?

q), and ∂
?

qu =
(
TGq−1

)−1 (
∂q−1

)?
Gq
TGq u.

Proof of the theorem: For simplicity we only do the case q = 1. The arguments for

q > 1 are analogous. First assume that there is a subelliptic estimate of order ε > 0

in the norm induced with the G-metric:

‖u‖2
ε,G1
≤ C

(
‖∂u‖2

G2
+ ‖∂?u‖2

G◦

)
∀u ∈ Dom(∂1) ∩Dom

((
∂◦
)?
G1

)
on Ω.
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Now, let u ∈ Dom(∂1) ∩Dom(∂
?

1). Then TG1 u ∈ Dom
((
∂◦
)?
G1

)
. Also,

‖∂
(
TG1 u

)
‖2
G2
.

n∑
j,k=1

‖∂uk
∂zj
‖2 + ‖u‖2, (4.11)

in view of (4.1)-(4.4). (4.11) implies TG1 u ∈ Dom(∂1).

We have

‖u‖2
ε . ‖TG1 u‖2

ε,G1

. ‖∂TG1 u‖2
G1

+ ‖
(
∂◦
)?
G1
TG1 u‖2

G◦

.
n∑

j,k=1

‖∂uk
∂zj
‖2 + ‖u‖2 + ‖TG◦ ∂

?
u‖2

.
n∑

j,k=1

‖∂uk
∂zj
‖2 + ‖u‖2 + ‖∂?◦u‖2

. ‖∂1u‖2 + ‖∂?◦u‖2. (4.12)

The first inequality comes from the set up of TG1 , the second inequality is from the

assumption of having a subelliptic estimate associated with the metric G, the third

inequality is coming from (4.11) and is from (4.10) in Lemma 4. The last inequality

is the basic estimate together with the fact that the sum of bar derivatives of a form

is bounded by the graph norm; both estimates are consequence of the basic identity

(Kohn-Morrey formula (2.9) in Proposition 2.). Thus, we get a subelliptic estimate

in the usual (Euclidean) metric.

Now, let’s show how the subellipticity of N δ
1 (associated with the usual metric)

implies the subellipticity of NG
1 (associated with the metric G). Note that the ∂-

Neumann operator NG
◦ acts on functions and the existence theory of NG

◦ goes along

the lines of N δ
◦ , see [9] Theorem 4.4.3.
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Let u ∈ Dom(∂1) ∩Dom
((
∂◦
)?
G1

)
⊂ L2

(0,1)(Ω, G1) then we write

u =
(
∂1

)?
G2
NG

2 (∂1u) + ∂1N
G
◦

((
∂◦
)?
G1
u
)
. (4.13)

However, since (I − PG
1 ) projects onto the range of

(
∂1

)?
G2

, we write

(
∂1

)?
G2
NG

2 (∂u) =
(
I − PG

1

)
∂
?

1N2(∂1u). (4.14)

As for the second term on the right of (4.13), by considering the commutativity

property ∂◦N
G
◦ = NG

1 ∂◦ we rewrite it as follows:

NG
1 ∂◦ =

((
∂◦
)?
G1
NG

1

)?
G

=
((
I − PG

◦
)
∂
?

◦N1P
G
1

)?
G

= PG
1

(
∂
?

◦N1

)?
G

(
I − PG

◦
)
. (4.15)

Thus, by using (4.14) and (4.15) we write (4.13) as

u =
(
I − PG

1

)
∂
?
N2(∂1u) + PG

1

(
∂
?

◦N1

)?
G

((
∂◦
)?
G1
u
)

; (4.16)

note that (I − PG
◦ )
(
∂◦
)?
G1
u =

(
∂◦
)?
G1
u.

Now, a subelliptic estimate associated with the metric G will follow if we can show

the following two maps are continuous;

(i.) PG
1 : W ε

(0,1)(Ω, G) −→ W ε
(0,1)(Ω, G)

(ii.)
(
∂
?
Nq

)?
G

: L2
(0,q)(Ω, G) −→ W ε

(0,q−1)(Ω, G), q = 1, 2

Let’s first show (i.); let’s write PG
1 = ∂∂

?

GN
G
1 . Since N1 is subelliptic it is

compact and hence by Theorem 15, NG
1 is compact. Since N1 is compact, therefore,

N2 is also compact see e.g. Proposition 3.5 in [36]. Then, ∂∂
?

GN
G
1 , preserves Sobolev

spaces. The proof is exactly the same as for ∂∂
?
N1, see for example Theorem 6.2.2

in [9].

As for (ii.), note that W ε
(0,q)(Ω, G) = W ε

(0,q)(Ω) and
(
W ε

(0,q)(Ω)
)?

= W−ε
(0,q)(Ω),
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since 0 ≤ ε ≤ 1/2, see [27]. Thus, the statement in (ii.) is equivalent to having

continuous map

∂
?
Nq : W−ε

(0,q)(Ω) −→ L2
(0,q−1)(Ω). (4.17)

L2
(0,q−1)(Ω) is dense in W−ε

(0,q)(Ω), so to prove (4.17) we estimate

‖∂?Nqu‖2 + ‖∂Nqu‖2 =
(
∂
?
Nqu, ∂

?
Nqu

)
+
(
∂Nqu, ∂Nqu

)
= (u,Nqu)

. ‖u‖−ε‖Nqu‖ε

≤ (s.c.)‖Nqu‖2
ε + (l.c.)‖u‖2

−ε

. (s.c.)
(
‖∂?Nqu‖2 + ‖∂Nqu‖2

)
+ (l.c.)‖u‖2

−ε. (4.18)

The last inequality comes from the subelliptic estimate associated with the usual

metric. The first term on the right at the last inequality can be absorbed the left side

to obtain

‖∂?Nqu‖2 + ‖∂Nqu‖2 . ‖u‖2
−ε. (4.19)

This was for u ∈ L2
(0,q)(Ω). By density both ∂

?
Nq and ∂Nq extend to W−ε

(0,q)(Ω), and

(4.17) holds. Thus, NG
1 is subelliptic.

Remark 8. Barrett in [4] shows that on the Diederich-Fornæss worm domains [12]

the Bergman projection does not map the Sobolev space W k into itself when k ≥ 0 is

big. Then, a result by Boas and Straube in [6] implies that the ∂-Neumann operator

fails to map the space of (0, 1)-forms with coefficients in W k into itself for k > 0 big.

However, by using a suitable metric on the (0, 1)-forms one can make the ∂-Neumann

operator map the space of (0, 1)-forms with coefficients in W k into itself for any fixed

k ≥ 1. For example, Kohn in [22] uses weighted the L2 space, L2(Ω, e−φt), where
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φt(z) = t |z|2), see Chapter 6 in [9]. Thus, the Sobolev estimates are not independent

of the metric. That is, for a given k ≥ 0 one can choose Gjl = φtδ
j
l with t big

enough, such that ‖NG
1 u‖k,G . ‖u‖k,G holds. On the other hand, for k big enough

the following estimate (induced with Euclidean norm) ‖N δ
1u‖k . ‖u‖k does not hold.

Note that the difference does not lie in the norms (they are equivalent), but in the

operators NG
1 and N δ

1 , respectively.
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CHAPTER V

COMPACTNESS OF THE ∂-NEUMANN OPERATOR ON THE

INTERSECTION OF TWO DOMAINS

Let

Ω1 := {z ∈ Cn | ρ1(z) < 0}

and

Ω2 := {z ∈ Cn | ρ2(z) < 0}

be bounded pseudoconvex domains in Cn with smooth boundaries, and ∇ρ1 and

∇ρ2 be 6= 0 on bΩ1 and bΩ2 respectively. Assume that the compactness estimates

for the ∂-Neumann operator exist on both domains, Ω1 and Ω2. Then, the ques-

tion is whether there is a compactness estimate for the ∂-Neumann operator on the

transversal intersection of Ω1 and Ω2.

By the local property of the compactness of the ∂-Neumann operator, [15], some

parts of the intersection, Ω1 ∩ {z ∈ Cn | ρ2(z) = 0} and Ω2 ∩ {z ∈ Cn | ρ1(z) = 0}

are having compact ∂-Neumann operator locally. The part that needs to be checked

is non-smooth part of the intersection, the set

S := {z ∈ Cn | ρ1(z) = 0 = ρ2(z)}.

In order to understand the properties of the compactness of the ∂-Neumann

operator this question is of fundamental importance. In particular, this problem

serves as a test to see whether there might be a reasonable notion of obstruction to

compactness that lives in the boundary. If it is absent from both boundaries it should

be absent from the boundary of the intersection. The difficulty is on the non-smooth

part of the resultant domain. For example, on a pseudoconvex domain with Lipchitz
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boundary the smooth forms need not be dense in Dom(∂)∩Dom(∂
?
) under the graph

norm, see [9, 18]. But even for smooth forms, the estimate on the intersection is

not clear at all. In this part we present an answer to the question on some special

domains.

A. Transversal Intersections

From now on we will assume that on both domains Ω1 and Ω2 the ∂-Neumann problem

is compact and both are with smooth boundaries unless otherwise stated. We will also

assume that the intersection of the two domains is transversal. That is, bΩ1∩bΩ2 = S

is a smooth manifold.

1. Results on special domains when S is a smooth manifold

Lemma 5. The ∂-Neumann operator is compact on Ω1∩Ω2 where at least one of the

domains satisfies property (P ).

Proof. The proof goes along the lines of proof that compactness is a local property, see

[15]. One can also compare with the second part of the proof of Theorem 13; the only

difference is that instead of using compactness multipliers one uses the compactness

estimate induced from one of the domains.

Thus Ω1 ∩Ω2 has a compact ∂-Neumann operator if at least one of the domains

belongs to a class of domains where property (P ) is known to actually be equivalent

to compactness. These classes are the locally convexifiable domains [15] and Hartogs

domains in C2 [10].



58

2. Special cases in C2 for more general domains

We will use A t B to mean that the sets A and B intersect each other transversally.

Thus, the set S = bΩ1 t bΩ2 is a two real dimensional smooth submanifold. If a point

p ∈ S has a non-trivial complex tangent space Hp(S) we call it an exceptional point

of S. Let K represent the set of exceptional points on S. The set K is a compact

subset of the set S.

Lemma 6. [1] (Chapter 17, Lemma 17.2) Let S be a totally real smooth submanifold

of an open set in C2. Let dS(x) := dist(x, S) = inf{|x− y| | y ∈ S}. Then, there is a

neighborhood U
S

of S such that d2
S(x) is smooth and strictly plurisubharmonic in U

S
.

Example 3. Let K 6= ∅ such that S\K 6= ∅. Then S\K is a smooth manifold with

real dimension 2. By the above lemma we can say that on a neighborhood UL of every

compact subset L of S\K, the part of S with non-exceptional points (i.e. the part

which is totally real) can have a smooth strictly plurisubharmonic function, d2
L(x).

Then it is easy to see that L satisfies Property (P ), (see also Example 2); we have(
∂2d2

L

∂zj∂zk
(z)
)
j,k
≥ C > 0 for z ∈ UL. Thus, for a given M > 0 set λM(z) := 2M

C
d2
L(z) on

z ∈ UL, then
(
∂2λM
∂zj∂zk

(z)
)
j,k
≥M on UL. There is a neighborhood U

M
(⊂ UL) of L with

0 ≤ λM(z) ≤ 1. It is possible to write S\K as a union of countably many compact

subsets {Lj}∞j=1, where each Lj = Lj ⊂⊂ S\K and has property (P ). Thus, if the

set K also has property (P ) then S
(
= S ⊂⊂ C2

)
can be written as

(⋃∞
j=1 Lj

)
∪K.

Since, each of these compact subsets has property (P ) then, by theorem 7 in chapter

III, the set S is also having property (P ). See the next example for some examples

of such set K.

Example 4. (a.) If K, the set of exceptional points on the smooth manifold S, is a

discrete set.

(b.) If K is a smooth curve, say Γ, then the real dimension of Γ is 1. Therefore, Γ is
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actually a totally real 1-dimensional smooth manifold. By using again Lemma 6 we

can see that the curve Γ has property (P ).

(c.) Forthermore, if K is a set of 2-dimensional Hausdorff measure zero then by a

result of Sibony in [34] (for better exposition of the matter see also Boas [5]) the set

K has Property (P ) and then so does the set S as in the previous example. The last

case includes cases (a.) and (b.).

For p ∈ S, let Hp(S) be the complex tangent space and Tp(S) be the real tan-

gent space at the point p ∈ S. We have dimR(Tp(bΩj)) = 3 for j = 1, 2 and

dimR(Hp(bΩj)) = 2 for j = 1, 2. Then since S := bΩ1 t bΩ2 we have

dimR(Tp(S)) = dimR (Tp(bΩ1) t Tp(bΩ2)) = 2.

Thus, if complex tangents exist at a point on S then Tp(S) = Hp(S) at that point. In

other words, if the complex normals are linearly dependent (over C), then and only

then, we have a complex tangent to S.

Lemma 7. p ∈ S is not an exceptional point if and only if

∂ρ1(p) ∧ ∂ρ2(p) 6= 0.

(That is, S is totally real at p if and only if det
(
∂ρj
∂zk

(p)
)

1≤j,k≤2
6= 0.)

Proof. By using the argument on the paragraph before the lemma, S being totally

real at the point p means that the complex normals, ∂ρ1(p) and ∂ρ2(p), to Hp(bΩ1)

and Hp(bΩ2) respectively are not parallel to each other. Then ∂ρ1(p) ∧ ∂ρ2(p) 6= 0.

The converse is the same argument but backward.

Example 5. Assume the set of exceptional points K on the smooth manifold S

is having an inner point (relative to the set S), that is, Interior(K) =: K◦ 6= ∅.

Now, K◦ as a subset in C2 is a real smooth submanifold S all of whose tangents are
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complex tangents. Such a submanifold is a Riemann surface see [3]. Thus, we would

have an analytic disc on the boundaries of Ω1 and Ω2. Existence of the disc on the

boundary contradicts the assumption of having the ∂-Neumann operator compact on

both domains. The contradiction comes from the result of Fu and Straube’s paper

[15], Theorem 4.9: on a bounded pseudoconvex Lipschitz domain in C2, the existence

of an analytic disc in the boundary contradicts the compactness of the ∂-Neumann

operator. Thus, the set of exceptional points has empty interior according to the

relative topology on S.

B. An Example of a Non-transversal Intersection

Let Ω1 := {z ∈ Cn | ρ1(z) < 0} and Ω2 := {z ∈ Cn | ρ2(z) < 0} be bounded pseudo-

convex domains in Cn, n ≥ 2 with smooth boundaries, and ∇ρ1 and ∇ρ2 are 6= 0 on

bΩ1 and bΩ2 respectively.

Proposition 8. Let Ω1 and Ω2 intersect each other such that, if S := {ρ1(z) =

ρ2(z) = 0} ⊂ b(Ω1 ∩ Ω2), then the boundary of S is union of two disjoint boundary

components, bS := S1∪S2 and S1∩S2 = ∅. Assume that the boundary of the resultant

domain, b(Ω1 ∩Ω2), is a piecewise smooth boundary and the non-smooth parts are S1

and S2.

If there exists a compactness estimate for the ∂-Neumann operator on Ω1 and on

Ω2 ⊂ Cn, then there exists a compactness estimate for the ∂-Neumann operator on

Ω1 ∩ Ω2.

Proof. Let K1 := {ρ2(z) = 0} ∩ Ω1 and K2 := {ρ1(z) = 0} ∩ Ω2. K1 and K2 are

relatively disjointly closed in Cn. Then, we can find a smooth function φ(z) on Cn

such that φ ≡ 1 on K1 and φ ≡ 0 on K2.
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For u ∈ Dom(∂) ∩Dom(∂
?
) ⊂ L2

(0,1)(Ω1 ∩ Ω2) write u = φu− (φ− 1)u. Let

v1 := (φ− 1)u ∈ Dom(∂) ∩Dom(∂
?
) ⊂ L2

(0,1)(Ω1),

& (5.1)

v2 := φu ∈ Dom(∂) ∩Dom(∂
?
) ⊂ L2

(0,1)(Ω2).

Now, from the hypothesis ∀ε > 0 ∃Cε > 0 such that for j = 1, 2

‖vj‖2
Ωj
≤ ε(‖∂vj‖2

Ωj
+ ‖∂?vj‖2

Ωj
) + Cε‖vj‖2

−1,Ωj
. (5.2)

Thus, ∀ε > 0 ∃Cε > 0 such that for j = 1, 2

‖vj‖2
Ω1∩Ω2

≤ ε(‖∂u‖2
Ω1∩Ω2

+ ‖∂?u‖2
Ω1∩Ω2

+ ‖(∇φ)u‖2
Ω1∩Ω2

) + Cε‖u‖2
−1,Ω1∩Ω2

. (5.3)

Let’s see how we got the inequalities between the (−1)-Sobolev norms, ‖ · ‖−1,Ωj

and ‖ · ‖−1,Ω1∩Ω2 with associated domains.

‖v2‖2
−1,Ω2

= sup
06=ψ∈

“
W 1

(0,q)
(Ω2)

”
◦
: ‖ψ‖1,Ω2

=1

∣∣(v2, ψ)Ω2

∣∣
= sup

06=ψ∈
“
W 1

(0,q)
(Ω2)

”
◦
: ‖ψ‖1,Ω2

=1

∣∣(u, φψ)Ω2

∣∣
≤ ‖φψ‖1,Ω1∩Ω2‖u‖−1,Ω1∩Ω2

≤ Cφ‖ψ‖1,Ω2‖u‖−1,Ω1∩Ω2 .

By the same way we can get

‖v1‖2
−1,Ω1

≤ C(1−φ)‖ψ‖1,Ω1‖u‖−1,Ω1∩Ω2 . (5.4)

Now, consider the basic estimate on Ω1 ∩ Ω2,

‖u‖2
Ω1∩Ω2

≤ C(‖∂u‖2
Ω1∩Ω2

+ ‖∂?u‖2
Ω1∩Ω2

) (5.5)

∀u ∈ Dom(∂) ∩Dom(∂
?
) ⊂ L2

(0,q)(Ω1 ∩ Ω2).



62

By using (5.5), we can estimate ‖∇φu‖2
Ω1∩Ω2

in (5.3):

‖(∇φ)u‖2
Ω1∩Ω2

≤ max
z∈Ω1∩Ω2

{|∇φ(z)|} ‖u‖2
Ω1∩Ω2

≤ C(‖∂u‖2
Ω1∩Ω2

+ ‖∂?u‖2
Ω1∩Ω2

). (5.6)

Thus, combining estimates at (5.3) and (5.6) we have

‖φu‖2
Ω1∩Ω2

≤ ε(‖∂u‖2
Ω1∩Ω2

+ ‖∂?u‖2
Ω1∩Ω2

) + Cε‖u‖2
−1,Ω1∩Ω2

(5.7)

and

‖(φ− 1)u‖2
Ω1∩Ω2

≤ ε(‖∂u‖2
Ω1∩Ω2

+ ‖∂?u‖2
Ω1∩Ω2

) + Cε‖u‖2
−1,Ω1∩Ω2

. (5.8)

Therefore, φ and (φ − 1) are compactness multipliers, that is φ, (φ − 1) ∈ JΩ1∩Ω2 .

As a result, φ− (φ− 1) = 1 ∈ JΩ1∩Ω2 which implies the existence of the compactness

estimate on Ω1 ∩ Ω2, see Chapter III.
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CHAPTER VI

SUMMARY

In chapter I we gave a glimpse of the theory of inhomogeneous Cauchy-Riemann

equations and how they are related to the ∂-Neumann problem. We also gave some

motivation to study the compactness property of the ∂-Neumann operator, related

with the results in the dissertation.

In the first part of chapter II we gave the set-up of the ∂-Neumann problem.

Then, we defined compactness of the ∂-Neumann operator and presented its basic

properties. In addition, we gave a characterization of property (P̃ ); one of the suffi-

cient conditions for compactness of the ∂-Neumann operator.

In chapter III, we introduced a compactness multiplier notion associated to the

compactness estimate of the ∂-Neumann operator. Then, we used the common zero

set of the ideal of compactness multipliers as an obstruction to compactness of the

∂-Neumann problem. We characterized this new obstruction on domains in Cn where

compactness is understood; on convex domains and on complete pseudoconvex Har-

togs domains with smooth boundary in C2. We believe studying the obstructions to

compactness of the ∂-Neumann operator will help understand necessary and sufficient

conditions for the compactness.

According to a theorem by W. J. Sweeney in [39] coercive estimates are inde-

pendent of the metric on the tangent bundle. It appears to be folklore that the same

is true for subelliptic estimates. The metric considered is smooth positive definite

hermitian on the whole closure of the domain. In chapter IV, we give a simple proof

of this result, but specifically for subellipticity of the ∂-Neumann operator. Moreover,

we show that the compactness of the ∂-Neumann operator is also independent of the

metric. This is of interest because Sobolev estimates are not independent of the met-
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ric. The Sobolev estimates are very important in the study of the global regularity

for the ∂-Neumann operator.

In chapter V we studied the compactness of the ∂-Neumann problem on a

transversal intersection of two smooth domains. If the ∂-Neumann operator is com-

pact on two bounded smooth pseudoconvex domains, then can we say that the ∂-

Neumann problem is compact on the transversal intersection of these two domains?

In order to understand the properties of compactness for the ∂-Neumann problem,

this question is of fundamental importance. In particular, this problem serves as a test

to see whether there might be a reasonable notion of obstruction to compactness that

lives in the boundary. The difficulty is on the non-smooth part of the intersection.

We were only able to give some partial answers to the question.
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