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ABSTRACT 

 

A Proteomic Study of Oxidative Stress in Alcoholic Liver Disease. (May 2008) 

Billy Walker Newton, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Arul Jayaraman 

 

 Alcoholic steatosis (AS) is the initial pathology associated with early stage 

alcoholic liver disease and is characterized by the accumulation of fat in the liver.  AS is 

considered clinically benign as it is reversible, as compared with alcoholic 

steatohepatitis (ASH) which is the next stage of alcoholic liver disease (ALD), and 

mostly irreversible.  Proteomics were used to investigate the molecular basis of AS to 

determine biomarkers representative of AS.  Liver tissue proteins at different stages of 

steatosis from a rodent model of AS were separated by two dimensional electrophoresis 

(2DE), followed by MALDI mass spectrometry (MS) identification of significantly 

expressed proteins.  Expression levels of several proteins related to alcohol induced 

oxidative stress, such as peroxiredoxin 6 (PRDX6) and aldehyde dehydrogenase 2 

(ALDH2) were reduced by 2 to 3-fold in ethanol fed rats, and suggested an increase in 

oxidative stress.  Several proteins involved in fatty acid and amino acid metabolism were 

found at increased expression levels, suggesting higher energy demand upon chronic 

exposure to ethanol.  In order to delineate between the effects of fat accumulation and 

oxidative stress, an in vitro hepatocyte cell culture model of steatosis was developed.  

HepG2 cells loaded with oleic acid surprisingly demonstrated lower cytotoxicity upon 
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oxidative challenge (based on lactate dehydrogenase activity) and inflammation (based 

on TNF-α induced activation of the pro-inflammatory transcription factor NF-κB).  We 

also examined the effect of oleic acid loading in HepG2 cells on protein carbonylation, 

which is an important irreversible protein modification during oxidative stress that leads 

to protein dysfunction and disease.  Fat-loaded hepatocytes exposed to oxidative stress 

with tert-butyl hydroperoxide (TBHP) contained 17% less carbonylated proteins than the 

non-fat loaded control.  Mass spectrometric analysis of carbonylated proteins indicated 

that known classical markers of protein carbonylation (e.g., cytoskeletal proteins, 

chaperones) are not carbonylated in oleic acid loaded HepG2 cells, and suggests that the 

protective effect of fat loading is through interference with protein carbonylation.  While 

counterintuitive to the general concept that AS increases oxidative stress, our fat loading 

results suggests that low levels of fat may activate antioxidant pathways and ameliorate 

the effect of subsequent oxidative or inflammatory challenge.   
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1.  INTRODUCTION 

 The overall goal of this study is to elucidate the molecular basis of alcoholic 

steatosis (AS).   Chronic ingestion of alcohol leads to a sequence of hepatic pathologies 

associated with alcoholic liver disease (ALD),  ranging from alcoholic steatosis (AS) to 

cirrhosis and liver failure (1-3).  Steatosis or the accumulation of fat in the liver is the 

initial pathology that is common to all aspects of ALD.  AS is generally considered 

clinically benign as it is reversible (i.e., fat accumulation can be reversed). On the other 

hand, the subsequent stages of ALD such as alcoholic steatohepatitis (ASH) and are 

mostly irreversible (2) .  The progression of ALD to ASH represents a rate limiting step 

in the progression of ALD, because approximately 50% of individuals with ASH go onto 

develop end-stage liver diseases such as cirrhosis (2-4).  

Although AS reverts upon alcohol withdrawal (5), research indicates that the 

accumulation of fat leads to subsequent liver complications, with the severity of damage 

being related to the extent of fat accumulation (6-8).  Liver damage can have serious 

repercussions as steatotic livers are also highly vulnerable to infection, inflammation, or 

oxidative stress (9-11).  Since, diagnosis and intervention at the AS stage has a higher 

likelihood of returning a patient to normal hepatic function, it is important to understand 

the mechanisms underlying AS in order to diagnose and develop therapies for treating 

ALD.  

 

 

____________ 
This thesis follows the style of Molecular and Cellular Proteomics. 
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However, since the accumulation of fat itself can lead to some degree of 

oxidative stress, the interaction between these two factors is likely to be important in AS 

and early stage ALD. Therefore, investigating the effects of fat accumulation and 

oxidative stress, both individually and in combination, can lead to greater mechanistic 

understanding of AS and approaches for attenuating complications arising from AS. 

One of the main difficulties associated with ameliorating fat accumulation in the 

liver is the lack of reliable diagnostic markers. Researchers have proposed carbohydrate 

dependent transferrin, which is known to be lower in alcoholics (12), and ethanol 

glucuronide (a direct ethanol metabolite) (13) as markers for early stage ALD.  But 

neither of these accurately indicates the progression of AS or ASH.  Proteomic studies 

have had great success in identifying prognostic and diagnostic markers for several 

diseases, including alcohol-related diseases, cerebral palsy, severe combined 

immunodeficiency, and Alzheimer’s disease (14-17).  Recently, two dimensional 

electrophoresis (2DE) based protein separation and quantification followed by MALDI-

TOF MS-identification has been used to identify differentially expressed proteins from 

brains of alcohol preferring and alcohol non-preferring rats (18).  This study and others 

indicate that a 2DE proteomics study has the potential in identifying early stage ALD 

markers.  However, to-date no liver-enriched proteins have been identified from alcohol-

treated liver.    

We hypothesize that a comprehensive proteomic analysis of steatotic livers can 

lead to a fundamental understanding of AS as well as the identification of diagnostic 

markers for AS. Using an in vivo rodent model for AS and a two dimensional gel 



 3

electrophoresis (2DE) / matrix assisted laser desorption identification (MALDI) mass 

spectrometry (MS) proteomics, we systematically investigated the protein basis 

underlying AS.  In parallel, we used an in vitro hepatocyte culture system to investigate 

the effects of fat accumulation and oxidative stress independently.  Since oxidative stress 

also leads to irreversible modification of proteins (e.g., carbonylation) and cellular 

dysfunction (19-22), we also used proteomic methods to establish the extent of protein 

carbonylation and identify proteins that are carbonylated under conditions of oxidative 

stress and steatosis.   



 4

2.  BACKGROUND  

2.1  Alcoholic Liver Disease 

Alcohol abuse is a leading cause of health problems in the developed world. (23).  

In the United States, alcoholism costs more than $185 billion and results in about 

100,000 deaths per year (17).  The liver is the most common target for alcohol and 

chronic alcohol consumption leads to the development of alcoholic liver disease (ALD).  

While, the pathogenesis of ALD has been extensively studied (2, 6, 24-27), far less is 

known about the mechanisms underlying for the development and progression of ALD.  

A complex relationship exists between the amount of alcohol consumption and the 

likelihood of developing ALD (8), and there is considerable individual variability in the 

development of alcohol related liver injury.  The first major pathological condition in the 

progression of ALD is alcoholic steatosis (fatty liver).  Alcoholic steatosis (AS) 

progresses gradually to alcoholic steatohepatitis (fatty liver combined with 

inflammation), then to fibrosis, and ultimately cirrhosis (2). AS is thought to occur 

rapidly upon alcohol consumption, but there is much less clarity on further progression 

of ALD.  Furthermore, evidence exists that alcohol alone may not be enough to cause 

steatohepatitis and necrosis, and additional factors may be needed for the development 

of disease (2, 27).  

2.2  Alcoholic Steatosis and Alcoholic Steatohepatitis 

Steatosis is the first and most common pathology in ALD and occurs in up to 

90% of alcoholics.  Fatty liver is thought to be mainly a result of metabolic disturbances, 

such as decreased fatty acid oxidation, increased triglyceride synthesis, reduced fat 
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export, and mobilization of extrahepatic fat stores (28-31).  The metabolism of ethanol to 

acetaldehyde, and its subsequent conversion to acetate produces NADH.  The cellular 

accumulation of NADH increases substrate available for fatty acid synthesis, as well as 

disrupts mitochondrial beta oxidation, thereby leading to fat accumulation (32).  

Steatosis has long been considered a benign condition, as even severe cases of AS 

recovered after 3-4 weeks of alcohol withdrawal (5, 33, 34).    However, more recent 

studies indicate that the metabolic changes taking place during the steatosis may also 

sensitize the cells to further injury (9, 12, 35, 36).  Lieber (29) suggested that metabolic 

changes of fatty liver alone may be insufficient to cause inflammation.  It is now 

believed that degree of fat accumulation in the liver correlates to the susceptibility of 

subsequent liver damage (6).  Researchers have shown that fatty liver is highly 

vulnerable to oxidative stress or injury mediated by endotoxins or cytokines (9-11).  

While these studies show vulnerabilities of steatotic livers, one study also showed that a 

fatty liver induced by 5 weeks of ethanol exposure demonstrated enhanced capacity to 

regenerate and consequent decline in hepatic injury (37).  This was not due to reduced 

CYP2E1 activity, but possibly through activation of the transcription factor NF-κB (37).  

Evidence exists that alcohol alone may not be enough to cause steatohepatitis and 

necrosis, and further studies are needed to understand mechanisms of AS, and identify 

biomarkers leading to subsequent pathological stages of ALD (1).  While, a detailed 

understanding of the mechanisms underlying the transition from AS to ASH is lacking, it 

is known continued consumption of alcohol in humans eventually results in neutrophilic 

steatohepatitis (38, 39).  Neutrophil infiltration into the liver is hallmark of ASH and 
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contributes to the pathology of ALD.  Alcoholic steatohepatitis reverts back to normal 

hepatic histopathology approximately only 10% of the time (40).  Most patients with 

steatohepatitis (almost 50%) go on to develop fibrosis and cirrhosis (Figure 1).  

Steatohepatitis, therefore represents a major rate limiting step in the progression towards 

cirrhosis and clinical liver disease (2, 3).  It would be beneficial to patients with ALD to 

receive diagnosis and intervention before the onset of steatohepatitis 

 

 

 

 

 

Figure 1.  Progression of alcoholic liver disease.  Consumption of ethanol 
produces hepatic pathology in sequence, ranging from steatosis (fatty liver) on 
one extreme, to fibrosis/cirrhosis on the opposite end of the spectrum (1). 

2.3  Alcohol Metabolism and Oxidative Stress 

The generation of reactive oxygen species (ROS) is an unavoidable consequence 

of aerobic respiration.  Superoxide ( 2
⋅ −Ο ) is a major ROS generated from electron 

transport processes (e.g. ATP synthase I, and cytochrome p450), as well as various 
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oxidase enzymes.  Evidence for the role of 2
⋅ −Ο  in ALD comes from the studies 

demonstrating an inverse relationship between superoxide dismutase (SOD) and liver 

injury (41).  SOD is an enzyme that reduces 2
⋅ −Ο  to hydrogen peroxide (H2O2).  Kessava 

et al. (42) showed that SOD1 knockout mice develop more severe liver damage after 

treatment with ethanol.  While 2
⋅ −Ο  is not a potent oxidant, it reacts catalytically with 

enzyme metal centers to produce more potent oxidants such as hydroxyl radical (OH˙) 

(43), hypochlorous acid (HOCl) (44), and peroxynitrite (ONOO-) (45).  Under basal 

conditions cells have adequate antioxidant systems to deal with the ROS generated 

during normal cellular processes, however consumption of alcohol is thought to cause 

metabolic changes that leads to increased oxidative stress, such that the generation of 

ROS begins to overwhelm cellular antioxidant systems.   

Three main mechanisms explain the effects of alcohol on oxidative stress (1).  

The direct metabolite of alcohol is acetaldehyde, which is a very reactive compound.  

The accumulation of acetaldehyde is thought to be primarily responsible for symptoms 

of alcohol ingestion, as it has been shown to form adducts with biomolecules such as 

lipids (16).  Metabolism of ethanol and acetaldehyde also reduces NAD+ to NADH, and 

the shifting of this NADH/NAD+ ratio greatly reduces NAD+ available for carbohydrate 

and lipid metabolism.  This decrease in metabolic rate reduces the available cellular ATP 

pool (46) and limits energy available to antioxidant pathways; thereby, indirectly leading 

to greater accumulation of ROS.  In addition, ethanol also activates the CYP2E1 

pathway for the metabolism of ethanol, which leads to increased ROS generation (47). 
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2.4  Effects of Oxidative Stress 

Oxidative attack on proteins by ROS can lead to reversible or irreversible 

changes. The ROS associated with oxidative stress causes cellular damage by attacking 

several cellular components such as lipids and proteins. Hydroxyl radicals can damage 

lipids through a process called lipid peroxidation (48).  Malondialdehyde is an end 

product of lipid peroxidation that has been used as a biomarker for oxidative stress (48).  

Proteins are also commonly subject to modification by ROS. While some of these 

changes are considered harmless, others may lead to inactivation of the protein.  

Irreversible proteins modifications tend to inactivate proteins and lead to permanent 

cellular damage (49).  Reversible modifications such as s-glutathionylation, s-

nitrosation, and methionine sulfoxidation may not be entirely unintentional and may 

serve dual purposes.  These modifications may serve to protect proteins by blocking 

sensitive residues from irreversible oxidation and also modulate protein function (redox 

regulation and signaling) (49-51).     

Protein carbonylation is the largest class of irreversible protein modification.  

Carbonylation is characterized as the non-enzymatic irreversible modification of proteins 

by a variety of oxidative pathways that results in the addition of carbonyl group.  Protein 

carbonylation occurs mainly by direct oxidation of the side chains of lysine, arginine, 

proline, and threonine.   
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Figure 2.  Covalent addition of lipid peroxidation product, 4-HNE.  This is a 
major source of protein carbonylation. 

 

 

Covalent addition of lipid peroxidation products such as 4-hydroxy-2-nonenal (HNE) 

(13) to lysine, histidine, and cystine or n-terminal residues is also a major source of 

carbonylation, as shown in Figure 2.  Protein carbonylation is especially damaging since 

cells are unable to repair them and leads to either removal of the modified protein via the 

ubiquitin/proteasomal system or aggregation.  There are many examples relating 

carbonylation to protein dysfunction.  In the mitochondria of Drosophila melanogaster, 

the activity of enzymes such as acotinase and adenine nucleotide translocase was found 

to be inhibited with an increase in carbonylation (52-54).  Carbonylation was also found 

to interfere with chaperone function and protein folding (55, 56).  There is much 

evidence that oxidative stress is involved in many disease states, such as aging (57), and 

the irreversible nature of protein carbonylation makes it an attractive target of study. 
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3.  MATERIALS AND METHODS  

3.1  Reagents and Supplies 

Two dimensional electrophoresis (2DE) gel strips were purchased from (Bio-Rad 

Laboratories, Hercules, CA).  All reagents and supplies for two dimensional gel 

electrophoresis (2DE) buffers, cell lysis buffers, and SDS-PAGE were purchased from 

Fisher Scientific (Hampton, NH), unless otherwise noted.  Deoxyribonuclease (DNase), 

ribonuclease (RNase), iodoacetamide, and oleic acid were purchased from MP 

Biomedical (Solon, Ohio).  Cell culture media and reagents were purchased from 

Hyclone, (Logan, UT), unless otherwise noted.   

3.2  Animals 

Rat livers used in this study were provided by the laboratory of Dr. S. Ramaiah 

(Dept. of Veterinary Pathobiology, Texas A&M University, College Station TX).  

Procedures followed for rats were as follows.  Male Sprague-Dawley rats (220-250 g) 

were purchased from Harlan Sprague Dawley, (Houston, TX).  Male Sprague-Dawley 

rats were housed individually in cages in a temperature-controlled animal facility with a 

12-h light-dark cycle. Rats were utilized after a 1-week equilibration period.  Rats were 

divided into two groups (n=20 each), control diet group and experimental diet group.  

Rats in the experimental group were further divided into a group fed for 3 weeks and a 

group fed for 6 weeks.  The experimental groups were then placed on a Lieber DeCarli 

AS diet model  (37, 58, 59).  The rats were fed either control (isocaloric control diet 

where the calories were adjusted with maltose-dextrin) or EtOH-containing (35.5% of 

total calories) Lieber-DeCarli diet (Bio-Serv, Frenchtown, NJ) for a period of six weeks 
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for the control and three or six weeks for the EtOH groups, respectively.  For the first 

day, rats received plain liquid diet; next, alcohol-treated rats received liquid diet 

containing alcohol to 2% and 4% (w/v), each for 2 days. The 4% alcohol diet was then 

continued for six weeks. The energy distribution from the EtOH liquid is as follows; 

18% protein, 35% fat and either 47% carbohydrate (control group) or 11.5% 

carbohydrate (maltose dextrin) and 35.5% EtOH (EtOH fed groups). The food 

consumption was recorded daily and the control rats were pair-fed according to the food 

consumption of EtOH-fed rats. Rats were weighed at the beginning of the study and 

weekly thereafter. Calories consumed by each rat were measured daily. Rats were 

sacrificed at the end of 3 and 6 weeks respectively (n=10) by CO2 asphyxiation. An 

additional control group (n=10 each, 4% chow) was also employed.  No significant 

difference in body weight gain was observed between isocaloric controls and EtOH fed 

rats.  Livers were harvested from the animals and perfused with phosphate buffered 

saline (PBS) before being frozen at -80 ˚C until needed.   

3.3  Cell Culture   

HepG2 cells (ATTC, Manassas, VA) were cultured in media containing 9.6 g/l 

modified eagle medium/Earle’s balanced salt solution (MEM/EBSS) powdered media, 

1.62 g/l sodium bicarbonate, 110 mg/l sodium-pyruvate, 10% fetal bovine serum, 200 

units/ml penicillin, and 200 µg /ml streptomycin.  Cells were maintained at 37 ˚C under 

a humidified 5% CO2 environment.  H35 rat hepatoma cells with a NF-κB reporter 

plasmid (H35 NF-κB) (60) were cultured in Dulbecco’s minimal eagle’s medium 

supplemented with 10% bovine serum, 200 units/ml penicillin, and 200 µg /ml 
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streptomycin. This cell line was generated by stably inserting a DNA fragment 

consisting of four tandem repeats of the NF-κB DNA binding sequence upstream of the 

CMV-minimal promoter and a 2h half-life variant of the enhanced green fluorescence 

protein (d2EGFP) (60). 

3.4  Two Dimensional Electrophoresis   

Liver tissue samples were homogenized in a standard two dimensional 

electrophoresis (2DE) buffer consisting of 2M thiourea, 7M urea, 4 wt% CHAPS, 50 

mM DTT, 0.5 vol% ampholytes (pH 3-11) (Bio-Rad Laboratories, Hercules, CA).  One 

tablet of Complete Mini™  protease inhibitor cocktail (Roche, Basel, Switzerland) was 

added to 10 ml buffer.  Nuclease stock solution was prepared that contained 100 mM 

Tris pH 7, 50 mM MgCl, RNase 0.5 mg/ml, and DNase 1.0 mg/ml.  After 

homogenizing, nuclease stock was added 1:10 to the 2DE buffer.   The homogenate was 

centrifuge at 13000 rcf for 15 min, after which the supernatant was collected and the 

protein concentration determined by the BCA assay (Bio-Rad).  The sample was further 

processed using the 2DE ReadyPrep (Bio-Rad) clean up kit per the manufacturer’s 

instructions.  

Homogenized supernatants were diluted in a buffer containing 9.5 M urea, 2 wt% 

CHAPS, 18 mM DTT, and  0.5 % ampholytes.  Two sizes of immobilized pH gradient 

(IPG) strips (pH 5-8) (Bio-Rad) were used during the experiment.  All spot detection and 

image analysis were done using 7cm strips, while 13.5 cm strips were used for gels for 

excising spots for MS analysis.  40 µg of protein was loaded onto 7 cm strips and 300 µg 

was loading onto 13.5 cm strips.  After a minimum of 16 hrs of rehydration, isoelectric 
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focusing (IEF) was carried out on a Protean IEF cell (Bio-Rad) in 3 steps: 250V for 15 

minutes, followed by a linear gradient of 250V – 4000V for one hour, and then 4000V 

for 5 hours.  Proteins in the IPG strips were then reduced with DTT and alkylated with 

iodoacetamide in SDS equilibration buffer for fifteen minutes each as previously 

described (55).  SDS-PAGE was conducted on 10% acrylamide gels at 125V for 70 

minutes.  Seven cm gels were fixed for 15 minutes in solution containing 20% methanol 

and 7% acetic acid and stained with Sypro Ruby stain (Invitrogen, Carlsbad, CA) 

overnight.  The 13.5 cm gels were stained with GelCode Coomassie stain (Pierce, 

Rockford, IL).  Gels were imaged using a VersaDoc 3000 imager (Bio-Rad), and image 

analysis was conducted using PDQuest 7.4 software (Bio-Rad).  After imaging and 

analysis, statistically significant differentially expressed protein spots were selected for 

excision.   Spots were manually excised from the 13.5 cm gel with a 1 ml pipette, 

subjected to in-gel digestion using sequencing grade trypsin (Promega, Madison, WI), as 

previously described (61), and then used for MALDI-TOF-MS analysis. 

3.5  MALDI Mass Spectrometry   

Trypsin-digested protein spots were spotted onto MALDI targets using a 

ProMS™ robot capable of sample cleanup prior to MALDI-MS analysis (Genomic 

Solutions, Ann Arbor, MI).  The MALDI-MS experiments were performed in a 4700 

Proteomics Analyzer MALDI-TOF/TOF (Applied Biosystem, Foster City, CA).  Twenty 

tandem MS spectra per spot were acquired.  All MS and MS/MS data were queried 

against the Swiss-Prot protein sequence database using the GPS Explorer (Applied 

Biosystems) software.  The parameters for database searching were as follows: 
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taxonomy, Rattus Norvegicus; database, Swiss Prot; enzyme, trypsin; maximum missed 

cleavages, 1; variable modifications, oxidation (Met); peptide tolerance, 85 ppm; and 

MS/MS fragment tolerance, 0.3 Da. The generated MALDI-MS data was confirmed by 

re-analyzing five spots.   

3.6  In vitro Fat Loading Model 

Fat loading of HepG2 cells was done by exposing cells at ~ 70% confluency to 

1.0 mM oleic acid for 48 hr.  An oleic acid stock solution (75 mM) was prepared by 

mixing oleic acid with a solution of 3 mg/ml solution of bovine serum albumin and 75 

mM sodium hydroxide, with vortexing and heating to aid in dissolution of oleic acid. 

The solution was sterilized by passing through a 0.22 micron syringe filter.  The stock 

solution dissolved into culture media at desired final media concentrations. 

The extent of fat loading was assessed by oil red O staining.  An oil red O (Alfa 

Aesar, Ward Hill, MA) stock solution was made by dissolving 0.7 g oil red O in 200 ml 

isopropanol and passing mixture through a 0.22 µm syringe filter.  Oil red O working 

solution was prepared by combining four parts deionized water with six parts oil red O 

stock solution and passing through a syringe filter.  Cultured cells were fixed with 10% 

formalin in phosphate buffered saline for 2 h, with the buffer being replaced with fresh 

formalin containing buffer after the first 10 minutes.  After the formalin solution was 

removed, cells were rinsed with 60% isopropanol and allowed to dry.  The oil red O 

working solution was added to cells and incubated for 10 minutes.  The cells were rinsed 

with water to remove excess stain, dried briefly, and then imaged. 
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3.7  Oxidative Challenge Experiments with Tert-Butyl Hydroperoxide   

Oxidative challenge experiments were conducted on fat-loaded and non fat-

loaded HepG2 cells at approximately 85%-90% confluency.   Standard media was 

repaced with low serum media containing 1% fetal bovine serum.  Tert-butyl 

hydroperoxide (TBHP) (Acros Organics, Geel, Belgium) was added to the media at the 

desired final concentrations.  After an 8 hr exposure, culture supernatants were removed, 

and stored at -20 °C.  The culture flasks were rinsed with PBS and frozen at -80 ˚C until 

further processing.   

3.8  LDH Cytoxicity Assay   

Lactate dehydrogenase (LDH) levels in supernatants from fat-loaded and TBHP 

exposed HepG2 cells were measured using the Cytotox-One LDH cytoxicity assay 

(Promega, Madison, WI).  Equal volumes (100 µl)  of culture supernatant and cytoxicity 

assay buffer were combined and incubated according to the manufacturer’s instructions.  

LDH measurements were made in replicate for each cell exposure condition. 

3.9  NF-κB Reporter Assays and Fluorescence Microscopy  

H35 NF-κB cells were grown in 6 well plates (Corning, NY) and loaded with 

0.15 or 0.90 mM oleic acid as described above for HepG2 cells.  Reporter cells were 

exposed to 25 ng/ml TNF-α (R&D Systems, Minneapolis, MN) for 24 hrs in triplicate.  

GFP measurements were made using an Axiovert 200M fluorescence microscope (Zeiss, 

Thornwood, NY). Cell culture dishes were placed in a controlled environment chamber 

in the microscope and maintained at 37 ˚C and 10% CO2 throughout the experiment. 

Multiple imaging locations (3 per culture well) were randomly selected and the positions 
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marked before the addition of TNF-α using the 'mark and find' feature of the using the 

Zeiss AxioVision imaging software. Fluorescence and phase contrast images were 

obtained at the marked positions throughout the duration of the experiment using a 20X 

objective every 1 h for 24 h using an AxioCam MrM digital camera. 

3.10  Biotin Tagging of Carbonylated Proteins 

Carbonylated proteins from whole cell extracts were linked to biotin hydrazide 

following the protocol described by Mirzaei et al. (20, 21).  HepG2 cells (~5x106 cells) 

were lysed with 600 µl of lysis buffer (0.1 % w/v SDS, 0.5 % w/v sodium deoxycholate, 

1.0 % w/v CHAPS, 0.1 M NaCl, 0.1 M sodium phosphate, 1 mM EDTA; pH 7.5), 

supplemented with 80 µl nuclease stock solution (100 mM sodium bicarbonate pH 7, 50 

mM MgCl, RNase 0.5 mg/ml, and DNase 1.0 mg/ml), 10 µl of mammalian protease 

inhibitor cocktail (Sigma Aldich, St. Louis, MO), and 70 µl of 50 mM biotin hydrazide 

(Pierce, Rockwell, IN) stock solution in DMSO.  Half of this lysis solution was added to 

the cells, and incubated for 15 minutes, and the lysate collected.  This step was repeated 

with the remaining lysis solution.  The lysate was incubated for 30 minutes with 15 µM 

sodium cyanoborohydride (Fisher Scientific, Hampton, NH) to reduce hydrazone bonds. 

The lysate was incubated for at least 30 minutes, passed through a 22 gauge needle ten 

times, and centrifuged at 13000 rcf for 8 mins at 4 ˚C.  The supernatant was collected 

and dialyzed to remove detergents and excess reagents.   Dialysis cassettes (2.0K 

MWCO, 0.5-2.0 ml) were purchased from Pierce and hydrated for 2 minutes in dialysis 

buffer containing 25 mM ammonium bicarbonate (pH 8.0) and 4 mg/ml BSA.  Cell 

lysates were added to the cassettes per manufacturer’s instructions, and the lysates were 
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dialyzed for two hours after which the buffer was replaced with fresh dialysis buffer.  

The buffer was replaced again after two hours, and then dialyzed for at least eight hours.  

The concentration of carbonylated protein in the dialyzed lysate was assayed by the 

Bradford assay (Bio-Rad).   

3.11  Affinity Purification of Carbonylated Proteins   

One ml of monomeric avidin beads (Pierce, Rockford, IL) was placed in a 5 ml 

centrifuge column (Pierce).  In order to bind non-reversible sites, the column was 

washed by adding 3 ml of elution buffer containing 2 µM biotin and 25 mM ammonium 

bicarbonate, vortexing the beads, centrifuging at 1000 rcf for 45 seconds. The washing 

step was repeated twice, and the column regenerated by washing three times with 3 ml 

of regeneration buffer containing 0.1 M glycine, pH 2.8.   The column was then washed 

four times with 3 ml of 25 mM ammonium bicarbonate.  The dialyzed sample was added 

to the column and incubated at room temperature for one hour with gentle vortexing 

every 20 minutes and then centrifuged.  The column was then washed 4 times with 3 ml 

of 25 mM ammonium bicarbonate to remove nonspecifically bound proteins.  The 

biotinylated carbonylated proteins were eluted of the column by washing the beads five 

times with 0.7 ml of the elution buffer.  The flow-through was collected and then 

lyophilized, using a Centrivap concentrator and cold trap (Labconco, Kansas City, MO). 

 



 18

3.12  Carbonylated Protein Detection and LC/MS/MS Sample Preparation   

Lyophillized carbonylated proteins were rehydrated either in 50 µl of 25 mM 

ammonium bicarbonate for quantification using the Bradford assay or in 40 µl of 

reducing SDS-PAGE buffer (62) and resolved on a 7 cm 10% acrylamide gel.  Gels were 

fixed for 15 minutes in solution containing 20% methanol and 7% acetic acid and 

stained with Sypro Ruby stain overnight.  Stained gels were imaged using a VersaDoc 

imager (Bio-Rad) and gel lanes were manually excised and cut into 36 gel slices.  The 

gel slices were used for robotic in gel digestion and mass spectrometry analysis.   

3.13  LC MS/MS Analysis  

Peptides from each gel slice were separated using reverse phase chromatography 

on a 150 µm X 10cm column (Vydac) using an LC-Packings autosampler and pumps 

(LC Packings, Sunnyvale, CA).  A gradient of 2-40% acetonitrile was used to elute the 

peptides from the column at a flow rate of 1 µL/min.  MALDI matrix (5mg/mL α-cyano-

4-hydroxycinnamic acid) was mixed with the column eluant through a “T” junction at 

1.4 µl/min and spotted directly onto a MALDI sample plate using an LC-Packings 

Probot.  All MALDI-MS experiments were performed using a 4800 Proteomics 

Analyzer (Applied Biosystems). Data were acquired with the reflectron detector in 

positive mode (700-4500 Da, 1900 Da focus mass) using 800 laser shots (40 shots per 

sub-spectrum) with internal calibration. Collision induced dissociation tandem MS 

spectra were acquired using air at the medium pressure setting as the collision gas with 1 

kV of collision energy. All MS and MS/MS data were searched against the Swiss-Prot 

protein sequence database using the GPS Explorer (Applied Biosystems) software.
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                                                        4.  RESULTS 

4.1  Two Dimensional Gel Electrophoresis   

Two Dimensional Electrophoresis (2DE) was used to investigate changes in the 

rat liver proteome during alcoholic steatosis generated using the Lieber-DiCarli model. 

Liver proteins were extracted from animals in a six weeks ethanol fed group, a three 

weeks ethanol fed group, and a control group, and separated by 2DE as described in 

Materials & Methods. In order to account for biological variability, liver tissue from 

three animals was included in each experimental group, and each tissue sample was 

processed in duplicate (for a total of 6 gels per experimental group).  Based on 

preliminary optimization results (not shown), first dimension isoelectric focusing (IEF) 

strips were loaded with 40 µg of protein. Second dimension gels were stained with a 

fluorescent stain (Sypro Ruby) because of its sensitivity and broad dynamic range.  

Under these separation conditions, a total of 175 spots were detected on all gels.  

Representative gel images from each experimental group are shown in Figures 3A – C. 

A composite master gel was generated using the PDQuest image analysis software (Bio-

Rad) in which protein spot features present in all the gels were imported onto a single 

synthetic gel (Figure 3D).   

 The intensity of each protein spot (i.e., spot volume) was normalized to the spot 

volume of the entire gel (i.e., of all the protein spots).  Statistically significant changes in 

protein expression were determined using two sequential data analysis criteria. First, a 

protein spot had to be present in a minimum of 4 out of 6 gels for each sample to be 

included in the analysis. Next, protein spots were analyzed based on the fold-change in 
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expression. A protein spot in a gel from the ethanol-treated group was determined to 

exhibit a statistically significant change in expression if its spot volume was 1.3-fold 

different (increased or decreased) relative to the control group.  The 1.3 fold change 

(plus/minus) value was the lowest fold-change that was different from the untreated 

control by one standard deviation (i.e. 67% confidence limits). This analysis resulted in 

21 spots (corresponding to 18 proteins) being classified as differentially expressed in 

ethanol-treated groups relative to the control group.  
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Figure 3.  Representative 2DE gel images from steatotic livers.  A. isocaloric 
control group, B. 3 weeks ethanol fed group, C. 6 weeks ethanol fed group, D. 
composite master gel image.  
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Proteins determined as differentially expressed were identified using MALDI-

TOF mass spectrometry.  In order to facilitate excision of protein spots, a 13 cm IEF 

strip was loaded with 350 µg of protein. Second dimension was performed using 11 cm 

Criterion precast gels (BioRad) and stained with Gelcode Blue stain for visualization. 

Protein spots were manually excised by comparing to the 7 cm gel images, digested with 

trypsin, purified, and analyzed using mass spectrometry.  All of the excised proteins 

spots resulted in a positive identification, with most protein scores over one hundred.   
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Figure 4.  Composite master gel image with annotated up or down regulated 
proteins. 
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The identified differentially expressed proteins are shown in Table 1.  Figure 4 is a 

composite master gel image with annotated up or down regulated proteins.  The proteins 

can be identified from their SSP numbers, which are listed in Table 1. 

Two trends are evident in the proteome data. First, a majority of differentially 

expressed proteins were mitochondrial proteins involved in amino acid and fat 

metabolism, chaperone proteins.  This is not surprising, as the mitochondria are well 

established as an important site for oxidative damage; therefore, any treatment that 

generates ‘stress’ is expected to be reflected in the mitochondrial proteome. Second, 

proteins differentially expressed at 6 weeks were also significantly altered at 3 weeks as 

well, indicating that alterations in protein expression seen with steatosis are initiated at 

an early stage during ethanol exposure.  

The up-regulation of proteins involved in fat and amino acid metabolism was 

observed. Acyl-CoA dehydrogenase and delta3,5-delta2, 4-dienoyl-CoA isomerase are 

both involved in mitochondrial beta oxidation of fatty acids (63, 64), with the former 

enzyme catalyzing the first step in the process. Similarly, 3-hydroxyisobutyrate 

dehydrogenase is an oxidoreductase that acts on CH-OH group of donors and is involved 

in leucine, isoleucine, and valine catabolism (65), while 2-oxoisovalerate dehydrogenase 

is an oxidoreductase that acts on aldehyde or oxo-group of donors (65).  ADP/ATP 

translocase 2 is increased in expression, which catalyzes the exchange of ADP and ATP 

across the mitochondrial membrane. 
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 Table 1.  Differentially expressed proteins in normal and steatotic livers.  

Fold Change Over 
Control Group 

  

Protein Name 
  

Accession 
No. 

  

Protein 
Score

SSP 
No. 

3 Weeks 
Ethanol 
Group 

6 Weeks 
Ethanol 
Group 

Senescence marker protein-30 (SMP-
30) (Regucalcin) Q03336 588 1201 -1.85 -1.71 
Myosin Va (Myosin 5A) (Dilute 
myosin heavy chain, non-muscle) Q9QYF3 50 1202 -2.51 -2.25 
Phosphatidylethanolamine-binding 
protein (PEBP) P31044 531 2001 -1.53 -2.01 
Hsc70-interacting protein (Hip) 
(Putative tumor suppressor ST13) P50503 87 2403 -1.21* -1.92 
Isocitrate dehydrogenase [NADP] (cp) P41562 786 8401 -2.04 -1.89 
Ketohexokinase (EC 2.7.1.3) (Hepatic 
fructokinase) Q02974 364 5101 -1.53 -1.56 
Endoplasmic reticulum protein ERp29 
precursor (ERp31) P52555 643 5102 -1.57 -1.80 
Plectin 1 (PLTN) (PCN) P30427 62 4202 -1.99 -1.65 
Adenosine kinase (AK) Q64640 238 4401 -1.77 -1.28* 
Peroxiredoxin 6 ((Antioxidant protein 
2) O35244 856 3004 -1.33 -1.62 
3-hydroxyanthranilate 3,4-
dioxygenase(3-HAO) P46953 729 2101 -1.61 -1.50 
Aldehyde dehydrogenase (ALDH 2)  P11884 218 3502 -2.36 -1.97 
Aldehyde dehydrogenase (ALDH 2)  P11884 713 4503 -1.49 -1.70 
Serum albumin precursor P02770 581 3803 1.70 1.90 
Plectin 1 (PLTN) (PCN) P30427 51 6103 10.99 11.93 
3-hydroxyisobutyrate dehydrogenase, 
(HIBADH) (mp) P29266 356 6101 1.64 1.33 
ADP/ATP translocase 2 Q09073 58 6501 3.49 3.43 
Acyl-CoA dehydrogenase, short-chain 
specific, (SCAD) (mp) P15651 551 7306 1.47 2.30 
Acyl-CoA dehydrogenase, short-chain 
specific, (SCAD) (mp) P15651 102 6301 9.29 13.58 
Delta3,5-delta2,4-dienoyl-CoA 
isomerase, (mp) Q62651 147 7101 1.69 2.07 
2-oxoisovalerate dehydrogenase (mp) P11960 645 4402 3.48 2.77 
Glutamate dehydrogenase, (GDH) 
(mp) P10860 488 7602 1.73 1.67 
 

Note: marked entries were lower then 1.3 fold change cut-off. 
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Interestingly, both aldehyde dehydrogenase (ALDH2) and peroxiredoxin 6 

(PRDX6) were found to be down-regulated in the ethanol group as compared to the 

control. In the liver, ethanol is first converted to acetaldehyde, which is thought to be 

more toxic than ethanol itself (47). ALDH2 is the enzyme responsible for metabolizing 

acetaldehyde to acetic acid; therefore, its down-regulation suggests an accumulation of 

acetaldehyde and increasing hepatotoxicity.  PRDX6 is an important antioxidant enzyme 

that is involved in cellular redox regulation (66). Specifically, PRDX6 reduces H2O2 and 

phospholipid hydroperoxides and is an important mediator in the protection against 

oxidative injury. The decrease in PRDX6 expression is indicative of increased oxidative 

stress in the liver after 3 and 6 weeks of ethanol consumption.  

While one would expect an increase in the expression of anti-oxidant systems 

during oxidative stress, prior reports have shown that a decrease in anti-oxidant enzymes 

itself is an indicator of oxidative stress. This is because reactive oxygen species (ROS) 

are constantly generated in the cell during metabolism and are scavenged by anti-oxidant 

systems. This equilibrium is disturbed when there is an increase in the production of 

ROS, which leads to oxidative stress. This, in turn, leads to down-regulation of anti-

oxidant systems, and further increases ROS levels and oxidative stress. Therefore, the 

down-regulation of PRDX6 is indicative of hepatocellular damage and increased ROS 

levels in the ethanol-treated group. 
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4.2  In vitro HepG2 Fat Loading Model 

Our data, combined with previous work implicating fat accumulation and 

oxidative stress with ALD (6-8), motivated the development of an in vitro experimental 

model that would allow independent investigation of the effects fat loading and 

oxidative stress in hepatocytes.  A fat loading hepatocyte cell culture model was 

developed with oleic acid as the model fatty acid because it has been reported to have 

the least toxicity to cells (67, 68).   

A fat loading solution (sodium oleate) was developed as described in Materials & 

Methods to produce a solution that dissolved easily in media and did not significantly 

alter media pH.  Oil red O staining was used to verify that hepatocytes were loaded with 

fat, as shown in Figure 5. The data show significant lipid accumulation after 48 h 

exposure with no obvious loss of viability, and indicates this model can be used for 

generating steatotic hepatocytes. 

 

Control 0.90 mM Oleic 0.15 mM Oleic 

Figure 5.  Fat accumulation in oil red O stained HepG2 cells.  Cells were exposed to 
indicated oleic acid concentration for 48 hours. 
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  In order to simulate the effect oxidative stress during AS, fat loaded hepatocytes 

were initially exposed to a direct oxidant such as hydrogen peroxide.  However, it is 

likely that H2O2 is rapidly scavenged by hepatocytes which possess extensive catalase 

and peroxidase enzymes (69), and much higher concentrations may be required to 

generate oxidative stress.  Therefore, we used TBHP as the pro-oxidant molecule instead 

of H2O2.  Since TBHP is not a substrate of catalase, it allows for greater generation of 

hydroxyl radicals (69).  Since, oxidant exposure times beyond 6-8 hrs begin to show 

signs of apoptosis in many cells (69).  Therefore, an exposure time of 8 hr with 500 µm 

TBHP was chosen for subsequent experiments.   

4.3  Cytotoxicity in Fat-loaded HepG2 Cells 

The LDH assay is a standard method of measuring the cytotoxicity of many 

chemicals.  Fat- loaded and non fat-loaded HepG2 cells were either exposed to TBHP or 

to blank buffer.  Reduced serum media (1% vs. 10%) was used to conduct the exposure 

experiment, as prior reports (69) have suggested that serum components may quench the 

applied oxidative stress.  Figure 6 shows that fat-loaded cells have lower levels of LDH 

in the culture supernatant, both in the presence and absence of TBHP. Since LDH is a 

marker for cell membrane integrity, these results suggest that oleic acid-loaded HepG2 

cells are less susceptible to pro-oxidant damage as compared to normal cells.  These 

results are somewhat surprising, as several studies have suggested that fat accumulation 

is cytotoxic, especially under conditions of oxidative stress (6-8). 
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Figure 6.  LDH activity in HepG2 culture supernatants exposed to 0.15 mM oleic 
acid for 48 hr and then to 500 µM TBHP for 8 hr. 

 

 

 

4.4  Cytokine Inflammation in Fat-loaded HepG2 Cells   

It has been proposed that during AS, hepatocytes become sensitized to the effects 

of cytokines (9-11), which leads to steatohepatitis  (i.e., a 2-hit model).  Therefore, we 

investigated the extent of inflammation in fat-loaded hepatocytes reporter cells by 

monitoring the activation of the transcription factor NF-κB by the cytokine TNF-α. This 

is a relevant model as TNF- α is well established to be present during steatohepatitis and 

NF-κB is a known pro-inflammatory transcription factor. Experiments were carried out 
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using rat hepatoma (H35) GFP-reporter cells for NF-κB (60). Reporter cells were loaded 

with 0.15 or 0.90 mM oleic acid for 48 h and exposed to 10 ng/mL of TNFα.  Activation 

of NF-κB leads to expression of GFP from the minimal CMV promoter and 

fluorescence, which was continuously monitored using fluorescence microscopy. The 

data in Figure 7 show that the 0.15 and 0.90 mM oleic acid treated cells displayed 

approximately 33% and 67% less florescence than the normal HepG2 cells,  
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Figure 7.  H35 reporter cells expressing NF-κB linked GFP.  H35 cells were fat 
loaded with oleic acid for 48 hr and the exposed to 25 nM TNFα for 24 hours.  
Fluorescence intensity was measured every hour. 
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suggesting that TNF-α−mediated NF-κB activation is attenuated in the fat loaded cells.  

This result is consistent with the LDH cytotoxicity assay results showing that fat-loaded 

cells are less susceptible to oxidative stress. 

4.5  Isolation and Identification of Carbonylated Proteins  

Carbonylated proteins from TBHP-treated fat-loaded or control HepG2 cells 

were tagged with biotin hydrazide and affinity purified using monomeric avidin-linked 

beads as described in Materials & Methods.  The lysis buffer for this procedure 

contained components that were all dialyzable and did not contain amines (e.g. Tris) that 

could compete with the biotin hydrazide for Schiff base formation. The protocol used 

was adapted from Mirzai et al (20), with the main difference being that procedure was 

conducted in semi-batch mode using disposable centrifuge spin columns.  Equal 

amounts of protein from TBHP-treated control or fat-loaded HepG2 cells were loaded 

onto each column, bound to the monomeric avidin in the column, and eluted as 

described in M&M. Quantification of the eluted (carbonylation) protein showed that 

cells treated with 0.15 mM oleic acid prior to TBHP exposure had 17% less carbonylated 

protein than normal cells exposed to TBHP, and indicated that carbonylated protein 

levels were decreased in the oleic acid-loaded samples upon TBHP exposure as 

compared to normal cells.  However, this measurement of carbonylated protein content 

does not provide any information on the extent of carbonylation of specific proteins. 

Therefore, mass spectrometry was used to identify carbonylated proteins in normal and 

fat-loaded HepG2 cells exposed to TBHP. 
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Parallel samples from TBHP-treated fat-loaded or control cells were purified and 

separated on 8-16% SDS PAGE using standard protocols and visualized using Sypro 

Red staining. Qualitative inspection of the gel image (Figure 8), as well as quantification 

of the overall protein in the gel (not shown) by densitometry was consistent with the 

Bradford assay results (i.e. less protein was present in TBHP-exposed fat-loaded cells 

compared to normal controls). Each lane in the gel was cut into 36 evenly spaced slices 

of 1-2 mm. Proteins in each gel slice were digested in-gel with trypsin, and subjected to 

LC-MS/MS analysis.  The mass spectrometry data show that 249 carbonylated proteins 

were identified from the non fat loaded TBHP treated cells, while only 119 proteins were 

identified from TBHP-treated fat loaded cells.  Only 24 proteins were common between 

the two samples (Figure 9).  Since carbonylated proteins are typically cleared from cells 

through the proteasomal/ubiquitin system or aggregate in the cell, leading to cellular 

dysfunction, a decrease in carbonylation is an indicator of increased resistance to 

oxidative stress.  The overall trend of finding fewer carbonylated proteins in the fat 

loaded sample is consistent with the data from the Bradford assay and the gel density 

measurement showing less carbonyl content with fat loading. 
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N  Non Fat-Loaded Sample 

F  Fat-Loaded Sample 

N F
 

 

 

Figure 8.  Carbonylated proteins resolved on an 8-16% acrylamide gel.  Gel 
lane containing non fat-loaded (N) sample showed average density of 17% less 
than the fat loaded sample (F). 

 Non Fat-loaded + TBHP Fat-loaded + TBHP 

235 24  95 

 

 

  

Figure 9.  Distribution of carbonylated proteins in normal and fat-loaded HepG2 cells.   

Selected proteins belonging to different functional categories (e.g., metabolism) 

that were carbonylated in either of the experimental groups are listed in Table 2.  

Cytoskeletal proteins were identified in both experimental groups; this is expected as 

these are highly abundant and are likely more susceptible to attack by ROS (70).    
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 Table  2.  Carbonylated proteins detected in normal and fat-loaded HepG2 cells
Experimental Group in which 
Protein Detected  

rotein Category and Name 

  

Accession 
No. 

Non Fat Loaded 
+ TBHP  

Fat Loaded +   
TBHP 

etabolism Proteins       
ructose-bisphosphate aldolase A P05062 - + 
otassium-transporting ATPase alpha 
hain 2 P54707 + - 
alate dehydrogenase (mp) P40926 + - 
lyceraldehyde-3-phosphate 
ehydrogenase P04406 + - 
at Transport and Synthesis Proteins       
ong chain acyl coA ligase P33121 + - 
TP-binding cassette sub-family A 
ember 1 O95477 + - 

-acylglycerol O-acyltransferase 1 Q96PD6 + - 
ong-chain fatty acid transport protein 6 Q9Y2P4 - + 
ytoskeletal Proteins       
ollagen Q01955 + - 
atenin P26232 + - 
yosin V P35580 + + 
ctin, cytoplasmic 2 P63261  + + 
ntioxidant Proteins       
hioredoxin reductase 1 Q16881 - + 
haperone Proteins       
eptidyl-prolyl cis-trans isomerase P68106 + - 
SP10 P61604 + - 
SP75 Q12931 + - 
naJ homolog P59910 + - 
rotein disulfide-isomerase precursor P07237 + - 
eat shock 70 kDa protein 4 P34932 - + 
eat-shock protein 105 kDa Q92598 - + 
bitiquin & Drug Resistance Protein       
biquitin carboxyl-terminal hydrolase 
4 Q70CQ2 + - 
3 ubiquitin-protein ligase UBR1 Q8IWV7 + - 
robable E3 ubiquitin-protein ligase 
YCBP2 O75592 + - 
ultidrug resistance-associated protein 

 Q5T3U5 + - 



 33

It is interesting to note that long-chain fatty acid binding protein 6 was carbonylated only 

in the oleic acid treated sample.  It is unclear whether this protein exhibits greater than 

average susceptibility to carbonylation or if simply greater quantities were induced by 

the fat-loading.   

Chaperone proteins are common targets of ROS attack and researchers have 

identified damaged or malfunctioning chaperone proteins as part cellular pathologies 

(71).  Peptidyl-prolyl cis-trans isomerase is an abundant and ubiquitous folding protein 

that catalyzes the cis-trans isomerization of certain proline residues (72).  The fact that 

these proteins are carbonylated in normal HepG2 cells but not in oleic-loaded cells 

further supports the hypothesis that oleic acid-loading protects HepG2 cells against 

TBHP-induced oxidative stress. 
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5.  DISCUSSION, SUMMARY, AND CONCLUSIONS 

Alcoholic liver disease is a significant public health problem and costs associated 

with alcoholism are approximately $185 billion annually (23).  The major pathologies of 

ALD are alcoholic steaotosis, alcoholic steatohepatitis, and upon continued ethanol 

consumption, fibrosis and cirrhosis.  Steatosis represents an attractive target for 

understanding the molecular basis of ALD not only because there is a lack of 

understanding of molecular mechanisms underlying this disease, but also of its 

subsequent progression to ASH and end-stage liver disease.  From a clinical stand point, 

targeting AS for diagnosis and treatment is desirable, because once ALD progresses to 

ASH, only 10% of livers revert back to normal (40). 

 Our 2DE-MS analysis identified 18 proteins as differentially expressed between 

the ethanol and control groups (Table 1).  Interestingly, these 18 spots were detected in 

both the 3 weeks and 6 weeks ethanol fed groups. The observation that proteins 

characterizing steatosis at 3 weeks are also differentially expressed at 6 weeks suggests 

changes in protein expression occur rapidly during the development of AS.  The modest 

changes in expression between the 3 weeks group and the 6 weeks ethanol fed group 

also suggests that effect of ethanol on protein expression levels off after 3 weeks; 

however, prior reports (1) have shown that extensive pathological changes are observed 

only after 6 weeks of alcohol exposure. Together, our data are consistent with the notion 

that alcohol consumption rapidly induces steatosis (1, 2).  

Alcohol consumption up-regulated the expression of proteins involved in fat and 

amino acid metabolism, and likely reflects increased cellular demand for energy in AS.  
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One possible source for increased energy requirements is the response to alcohol-

induced oxidative stress.  Increased ATP requirement would be expected during 

oxidative stress, as several studies (73, 74) have linked ATP depletion with oxidative 

stress and related cellular damage.  Acyl-CoA dehydrogenase and delta3,5-delta2, 4-

dienoyl-CoA isomerase are both involved in mitochondrial beta oxidation of fatty acids 

(63, 64).   The former catalyzes the first step of beta oxidation, and the latter is necessary 

for the beta oxidation of unsaturated fatty acids, namely docosahexaenoic acid (64).  It is 

interesting that these enzymes are upregulated, as the depletion of NAD+ from ethanol 

and acetaldehyde metabolism is thought to interfere with fatty acid metabolism (75).  3-

hydroxyisobutyrate dehydrogenase is necessary for branched chain amino acid 

catabolism (65) and its increase also suggests an increased energy requirement.  

The increase in ADP/ATP translocase 2 (involved in the movement of ATP and ADP 

across the mitochondrial membrane) also supports the AS induced increase in cellular 

energy production.  It would interesting to verify increased fatty acid beta oxidation and 

ATP generation during AS.   

 The expression levels of ALDH2 and PRDX6 are reduced in the ethanol treated 

group compared to the control group.  While one might expect that a state of oxidative 

stress induces an increase in the expression of anti-oxidant systems, several studies have 

actually reported that key enzymes involved in counteracting the effects of oxidative 

stress are actually reduced during oxidative stress, and thus their reduced expression 

actually indicates a state of oxidative stress.  A recent study (76) also showed that 

mitochondrial proteins (e.g. ALDH2) of alcohol-fed rats were oxidatively modified and 
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nitrosylated, and that the enzymatic function of these proteins was reduced.  It has been 

suggested that the cysteine residues and metal centers found at the active sites of many 

anti-oxidant and metabolism proteins makes them more vulnerable to ROS attack (76, 

77). The expression levels of such oxidatively-modified proteins are often decreased, as 

has been demonstrated for glutathione S-transferase A4 (GSTA4) in obese mice (78).  

Therefore, it is possible most of the decrease in PRDX6 and ALDH2 is due to increased 

carbonylation.  Together, these changes in protein expression clearly indicate an 

increased state of oxidative stress in AS. 

 Our data showing an increase in enzymes involved fatty acid oxidation (acyl-

CoA dehydrogenase and delta3,5-delta2, 4-dienoyl-CoA isomerase) is contrary to the 

generally accepted view that AS results in decreased fatty acid oxidation.  This 

motivated the development of an in vitro experimental model that would allow the 

investigation of the effects of fat accumulation and oxidative stress separately.   A fat 

loading hepatocyte cell culture model was developed using the HepG2 human 

hepatoblastoma cell line with oleic acid as the model fatty acid.  Our observations on 

oleic acid-loaded HepG2 cells being less susceptible to TBHP-induced oxidative stress 

and TNF-α induced inflammation is surprising as the accumulation of fat is generally 

associated with increased susceptibility to oxidative stress (9-11).  However these results 

are in agreement with a recent study (67) that also reported that fat-loaded HepG2 

spheroids were less susceptible to oxidative challenge and inflammation.   However, it is 

also possible that the effect of fat loading depends on the type of fatty acid used. Prior 

work by Nanji et al. (7) has shown that  the severity of ALD pathology in alcohol fed 
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rats correlates to the amount of linoleic acid in the diet.  This is also supported by 

Gomez-Lechon et al. (68) who demonstrated that composition and concentration of fatty 

acid loading is important in determining fat loading toxicity.  The authors show that fat 

loading hepatocytes with 0.5 mM oleic acid for 24 hours did not significantly reduce cell 

viability, but fat loading with 1.0 mM palmitic acid reduced cell viability by 40%.  Thus, 

development of an accurate model representing fat accumulation in AS likely depends 

on fatty acid composition and concentration.  Investigating the effect of different fatty 

acids (palmitic, linoleic) as well as combinations of fatty acids is a logical next line of 

investigation.  

Based on our data showing that oxidative stress is a key determinant of protein 

expression changes in AS, we hypothesized that carbonyl modification of proteins will 

also be significant during AS and can explain the down-regulation of anti-oxidant 

enzymes such as PRDX6 and ALDH2. Carbonylation is a widely prevalent irreversible 

oxidative modification of proteins (70), and it is known that carbonylated proteins are 

susceptible to ubiquitination and subsequent degradation by proteosomal/lyosomal 

pathways (79, 80).  Our findings on less carbonylated proteins being present in oleic 

acid-loaded HepG2 cells is also in good agreement with cytotoxicity and inflammation 

assays. Our results (Figure 8) show that a majority of carbonylated proteins are found 

towards the bottom of the gel. (i.e., below 45 kilodaltons). This indicates that the 

majority of detected carbonylated proteins were fragmented, and is likely the result of 

increased degradation (as would be expected with carbonylated proteins).   
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It is not surprising that a broad spectrum of proteins (cytoskeleton, metabolism, 

fatty acid synthesis and transport) were all carbonylated, as the oxidant exposure likely 

produces an even distribution of TBHP and subjects a broad range of proteins to 

oxidative damage.  Many chaperone proteins were carbonylated (Table 2), and our data 

show reduced levels of chaperone proteins Hsc70 and Erp29.  Chaperone proteins are 

common targets of ROS attack and researchers have identified damaged or 

malfunctioning chaperone proteins as part cellular pathologies (71).  Peptidyl-prolyl cis-

trans isomerase is an abundant and ubiquitous folding protein that catalyzes the cis-trans 

isomerization of certain proline residues (72).  Chaperone proteins are involved in 

protein folding and have been reported as vulnerable to oxidative stress (70), and this 

supports the finding that mice fed ethanol intragastrically developed protein misfolding 

response and endoplasmic reticulum stress (81).  The fact that several ubuquitin related 

proteins were carbonylated suggests a reduced ability to clear damaged proteins and may 

contribute to the formation of protein aggregates associated with oxidized proteins (20, 

21, 70, 81).  Similarly, it is also possible that excessive degradation or dysfunction of 

fatty acid transport and synthesis proteins contribute to the possible toxic effects fat 

accumulation, and explains the association of increased fat accumulation with increased 

oxidative stress in alcoholic steatosis.   

Development of an in vitro fat loading hepatocyte model actually demonstrated 

that fat loading with low concentration oleic acid actually produces enhanced protection 

against oxidative stress and TNF-α induced inflammatory response.  It thus appears that 

in vitro fat-loading in order to accurately mimic fat accumulation during alcoholic 
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steatosis is a complex and multi-variate phenomenon and requires careful consideration. 

Further directions in this regard include evaluating the effect of different fatty acids, 

both individually and in combination.  

The identification of carbonylated proteins yielded interesting results and 

suggested chaperone, ubutiquin, and fatty acid transport and synthesis proteins are 

vulnerable to carbonylation during a state of oxidative stress.  Future work in this area 

will focus on determining if these carbonylated proteins are decreased in expression 

using quantitative iTRAQ mass spectrometry (82). This, coupled with multi-dimensional 

protein identification approaches such as liquid chromatography, will generate a more 

quantitative picture of protein modifications during oxidative stress.  
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