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ABSTRACT 

FPGA Based Image Processing with R-functions and the Curvelet Transform. 

(May 2003) 

John L. Wisinger Jr. , B. S. , Texas ARM University 

Chair of Advisory Committee: Dr. Rabi Mahapatra 

In the past few years, image processing has begun to make its way into many 

new areas, both academic and commercial. One of the most popular areas is in com- 

puter generated animation. This includes films, video games, medical imaging, and 

various other multimedia systems for both entertainment and more serious applica- 

tions. Two fairly recent independant developments in this field are R-functions and 

the curvelet transform. R-functions were developed to make it possible to represent 

complex objects by using a collection of simpler primitives. The curvelet transform 

was designed to extract specific features from complex objects. 

Although impressive performance can be achieved with R-functions and curvelets, 

the complexity of their implementation is quite a drain on standard microprocessors. 

It is for this reason that an FPGA implementation was developed. By offloading some 

of the processing work into a properly configured FPGA, speeds can be achieved in 

excess of one hundred times faster than current high end servers. 

This increase in processing speed and image representation ability combine to 

have some useful applications. Now, highly complex image processing can be done 

in small areas allowing for the design of systems that were previously not feasible 

to develop. By using the concepts presented in this thesis, ideas have come about 

for the development of a large scale Boltzman equation solver, and a satellite hyper- 

spectral imaging system. The Boltzman equation solver has been developed before, 



but only by using very costly and space consuming servers. Design of the satellite 

hyperspectral imaging system has been hindered by the low data transmission rate of 

the communication system. By processing some of the data on the system itself this 

problem is removed. 

This thesis proves that R-functions and numeric transforms can be done in an 

FPGA to give far better performance than regular microprocessors. It also shows 

the power of the R-function and the curvelet and ridgelet transforms. With further 

development, this could yield some amazing results. 
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CHAPTER I 

INTRODUCTION 

Image processing has become a very popular field in the past few years. It consist of 

two main areas. One involves breaking complex images into smaller parts. The other 

consists of combining these smaller parts into complex images. Both of these are 

important in many modern high end computing tasks. The best example would be 

computer generated animation. To create the characters, complex images are built 

up from much simpler shapes. Once the scene has been created, it must often be 

decomposed in a different form in order to compress it into a digital video. These 

tasks are very complex and require a large amount of computation to be completed. 

Creating specialized hardware would greatly reduce the time consumed by these pro- 

cesses. Also, the use of advanced techniques in image construction and decomposition 

would greatly increase the speed and efFectiveness of the overall process. It is for this 

reason that an FPGA implementation of R-functions and the curvelet transform are 

proposed and demonstrated. 

A. Motivation 

1. Why R-functions 

A popular field known as computational solid geometry (CSG) involves the modeling 

of complex objects through the combination of simpler functions such as lines and 

circles. When this is done incrementally, there is repeated floating point rounding 

that causes a loss of accuracy as well as the obvious delay of computing the location 

of a point among so many functions. R-functions ofFer a solution to this problem. 

The journal model is IEEE Zansactions on Automatic Control. 



Through the use of R-functions, the many small functions can be combined into one 

large function that represents the entire complex image. This reduces the floating 

point error and greatly increases the speed in which the locations of points within the 

object can be calculated. 

2. Why the curvelet transform? 

It hss long been known that the wavelet transform has many limitations when it 

comes to representing straight lines and edges in image processing. Not long ago, 

researchers at Stanford developed a solution to this problem[1, 2]. They created the 

curvelet transform, a transform that uses wavelets, but handles edges and lines much 

better. 

3. The correlation between R-functions and curvelets 

R-functions are used for object modeling. The curvelet transform is used for image 

processing. On the surface, these may seem unrelated. On further inspection, it can 

be seen that the curvelet transform is used for image decomposition and reconstruc- 

tion. R-functions are used for object construction. In many cases this object will be 

converted into an image. 

To model any object, the basic shapes that make it up need to be known. Once 

this is done, R-functions can be used to create the model. To get these basic shapes, 

the curvelet transform can be used for edge finding and similar techniques to decom- 

pose an image into its basic parts. These parts can then be used to model the object 

with R-functions. 



4. Why implement R-functions and curvelets in hardware? 

One of the primary advantages to FPGAs is their reconfigurable architecture. This 

opens up a whole world of possibilities unavailable in microprocessors, digital signal 

processors (DSPs), application specific integrated circuits (ASICs), or any other chip 

with a specific architecture. 

One of the most obvious possibilities is the reduction of the total number of chips 

(which reduces cost and board area). In many cases, it is useful to have a device 

that performs two difFerent tasks. One example would be a device that implements 

several different transforms and their inverses. The hardwired architecture of standard 

microprocessors and DSPs gives the designer limited opportunities to change they 

way these things are done. Obviously it is possible to store any number of transform 

algorithms in memory and then run them on these processors, but the hardware is 

unable to adapt to the different transforms, and therefore the designer is forced to 

make due with what is given to them. 

One solution to this would be an ASIC. This would give the designer the freedom 

to modify the hardware in the most optimal way for each transform. Unfortunately, 

a separate ASIC would be required for every transform that was desired. This is 

the advantage of an FPGA. Several transforms can be designed and stored in ROM 

on the board. A single FPGA can be reprogrammed on the fly to perform any of 

these stored transforms when needed. Take the example of designing a board that 

needs to perform five different transforms. One could design a board with ten parallel 

DSPs or microprocessors that can be used in any way to calculate the transforms. 

Instead, that same area and money can be used for ten FPGAs to achieve an increase 

in speed. A board could be filled with ten different ASICs (two for each transform), 

which would give an even higher speed than FPGAs. The advantage to FPGAs is that 



if the application needed ten of one transform and none of the others, eight ASICs 

would sit idle, while other data would be waiting. The FPGAs could be reconfigured 

very quickly to handle this problem. 

Another major advantage to FPGAs is the fact that they can be configured as 

dedicated processors. That means that there is no overhead for an operating system. 

This is a large time advantage. The other speedup is in stages of the data path within 

the processor. Many instructions do not need to go through each stage of the data 

path, but in order to keep the pipeline running smoothly, they must sit in that stage 

and wait. With an FPGA design, this is unnecessary since those other instructions 

would not be included. 

By implementing the curvelet transform and the R-function concept as an FPGA 

coprocessor, these complex transforms could be done on large amounts of data faster 

than any current method. By using highly parallel hardware and the most advanced 

transforms, large amounts of image data can be processed in very small amounts of 

time. 

B. Related Work 

1. R-functions 

R-functions were developed by Vladimir Rvachev in the mid 1960s [3]. Since then they 

have been used in many applications. Most of these are related to the modeling of solid 

objects [4]. Many involve computer graphics applications, but some are also used for 

system modeling and equation solving. There have been numerous implementations 

of R-functions on these different applications [5, 6]. However, as far as we know, there 

has never been an attempt to implement R-functions in hardware. 



2. Curvelet 

Due to the relative newness of the ridgelet and curvelet transforms, there have been 

very few implementations of each. The majority of the published work is from those 

who originally developed the transforms[1]. All of these implementations have been 

done in software only. Most of them were Matlab implementations of the equations 

themselves. Both transforms were used several times to demonstrate their various 

abilities such as denoising and compression[7, 8]. To our knowledge, this is the only 

hardware implementation of the radon and ridgelet transforms as well as their in- 

verses. 

3. FPGA based implementation 

The wavelet transform has been implemented rather exhaustively[9, 10]. It has been 

done in hardware, software and every combination of the two. Because of this fact, 

implementing the wavelet transform will be the smallest part of this work. The 

radon transform has many software implementations, and even a one-sided hardware 

implementation, but we have not seen any complete implementations in any form of 

hardware. 

4. Codesign 

The codesign methodology (the combination of hardware and software) is becoming 

increasingly more popular[11, 12]. Its use often involves FPGAs, and it has helped 

to show the superior performance that FPGAs can provide. There have been a few 

instances of using codesign techniques in image processing[13, 14]. These focus pri- 

marily on the wavelet transform. We have never seen any attempts at using codesign 

for radon, ridgelet or curvelet transforms. 



C. Thesis contribution 

The primary contribution of this thesis is the combination of R-functions, the curvelet 

transform, and the FPGA. By using the three of these together, this thesis proves that 

impressive results can be obtained. Large amounts of image data can be decomposed 

and reconstructed in a small amount of time while taking up a small amount of area. 

One possible application of the curvelet in an FPGA would be in the development 

of a hyperspectral imager. This device would orbit the earth and take pictures of the 

sky over time. What would then be left, are three-dimensional pictures of stars that 

become represented as lines (since the star moves over time). This data then needs 

to be sent back to stations on the earth for processing. The problem is that the slow 

communication system from space to earth, does not allow this much data to be sent 

fast enough. Obviously the best solution would be to compress this data. 

This is where the curvelet transform becomes useful. The curvelet is the best at 

compressing straight lines in images, so it would be the optimum choice. The next 

problem is speed. There needs to be a way to compress this data as fast as the camera 

can take pictures. Other features that the hyperspectral imaging device might need 

are navigation, power management and communication control. These features will 

not constantly be needed, so using dedicated processing power for them would be 

somewhat wasteful. By having FPGAs in the system, they could be reconfigured to 

control the device's movement, power, etc. when needed, or be used to do transforms 

when the device is located in the proper spot. This means that the FPGAs that are in 

the system to do image processing can also be used for totally different purposes. This 

would be totally impossible if using an ASIC. Since DSPs are designed specifically for 

signal processing, tasks that require different capabilities (such as bus communication 

or power electronics control) could not be done by them, while an FPGA would be 



perfect. 

There is some overhead in using an FPGA in a system. In order for an FPGA 

to be reconfigured, the configuration must be stored in memory chips in the system. 

Every time an FPGA is reconfigured, it takes a certain amount of time to do this. 

This time can range from 1. 2 ms for the smallest Virtex chip (XCV50) to 31ms for 

the largest Virtex-E (XCV3200E). For some FPGAs, partial reconfiguration is also 

an option if the entire chip does not need to be modified. This can happen in as little 

as 4 ps to change a tiny fraction of the chip. FPGAs also consume more power than 

most ASICs and are usually less dense then ASICs. These things may point against 

FPGAs, but the advantages definitely outweigh the disadvantages. 

Another advantage of FPGAs is the ability to find a radiation hardened version. 

Radiation hardness is a very important quality for electronics devices that will be 

used in space (as well as some other areas). FPGAs are widely used as radiation 

hardened devices, and it is also common to see DSPs implemented in an FPGA in 

order to gain radiation hardness. Radiation hardened DSPs are not easy to find on 

the market (something which would make their cost very high). FPGAs are also 

known to consume less power than DSPs. 



CHAPTER II 

BACKGROUND 

A. R-functions 

1. The purpose of R-functions 

Although R-functions have many uses, the most interesting in modern research is 

probably the ability to describe geometric objects. Previously, complex objects 

needed to be described by a system of functions (or, for solid objects, inequalities 

would be used). With the use of R-functions, these complex objects can now easily 

be described with only one inequality. If chosen properly, these functions can even 

have a very useful set of logic properties as shown in Tables I and II. R-functions have 

been used in many applications including medical diagnostics and computer graphics 

(for movie-making and video games). 

2. R-functions defined 

An R-function is a real function that has some property that is entirely dependent 

upon the corresponding property of its inputs. An example would be a function in 

which the sign was determined only by the sign of the input arguments. In simpler 

words, a real function can be described as an R-function if a certain property (like 

sign) can only change when some of its inputs change that property. Sign allows only 

two levels of partitioning, positive or negative (or three if you count zero as its own 

category). However there are some R-functions in which the space of real numbers is 

partitioned into k subsets allowing more in depth analysis. For the purposes of this 

work, we will concentrate only on the two subset cases. 



3. R-function mathematics 

There are three R-functions defined for this work, conjunction, disjunction and nega- 

tion. It can be shown that all other logic functions can be derived from these three 

basics (technically, disjunction is not needed for completeness, but it is included for 

convenience). 

a. Conjunction 

The R-function for conjunction is defined as 

1 
$1 Aa$2 = $1+$2 $1+$2 2c/$1$2 

For the application described in this thesis, the value of /2 turns out to be unim- 

portant (it is only important when the R-functions need to be differentiable). If /2 is 

chosen to be 1, the equation becomes 

1/ 
$1R1$2 I$1+$2 $1 $2 ) 

This should be recognized as the exact definition of the min($„$2) operator. At 

this point all of the mathematics becomes simply a comparison. 

b. Disjunction 

The R-function for disjunction is defined as 

1 ( $1 Va$2 = $1+$2+ $1+$2 2&$1$2 
I+/2 X 

Of course if we again choose a to be 1, we get 

1 /' 

$1V1$2 '$1+$2+ ($1 $2) ) ~ 
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Table I. Basic Logic Properties of R-functions 

x Ax 

xVx 

xt Ax2 

xr Vx2 

xt Ax2 

xg Vx2 

x2Axy 

x2 Vxt 

xg Vxg 

xg Axs 

which is the definition of the max(xq, x2) operator. 

c. Negation 

The R-function for negation is the simplest of all being defined as 

It should be clear that each of these three operators can be implemented very 

efficiently with little calculation involved. 

d. Logic properties of R-functions 

R-functions have many of the same properties as their companion Boolean functions. 

Tables I and II show a list of several of these properties. For a complete list of all of 

the properties, consult the references [5]. 
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Table II. Advanced Logic Properties of R-functions 

(x, nx, )+(x, Vx, ) 

(x, nx, )(x, Vx, ) 

x, n(x, nx, ) 

x, V (x, V x, ) 

x1 A (x2 V xs) 

x1 V (x2 A xs) 

(xl A x2) V x1 

(x1 V x2) n x1 

X1+ X2 

X1X2 

(x, n x, ) n, x, 

(x, V x, ) V x, 

(x, n x, ) V (x, n x, ) 

(x1 V x2) A (x1 V xs) 

4. An example usage of R-functions 

The power of R-functions can best be shown in an example. Figure 1 shows a two 

dimensional object alongside the simple functions that compose its borders. 

The simple functions shown in the second object are represented by the following 

mathematical inequalities[5]: 

-1 21 1 

Fig. 1. Complex object and its basic components 
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fli — — (9 — x — y & 0) circle; 

fig — (x — 1 & 0) vertical strip; 

Os — — 
(y — s & 0) line; 

04 — — (y+s & 0) line; 

By shading in the area in the first object of Figure 1 on the second image, it can 

be seen that the proper logical combination of the simple functions is 

fl = [(Os A f14) v fig] A (f13 V f14) A fli. 

By inserting the four simple inequalities into the above function, the original 

object is created perfectly with the use of only one function. This will hold true for 

even the most complex of objects. 

B. Transforms 

The curvelet transform is a combination of several other transforms. To understand 

how curvelets work, a certain knowledge of the transforms that comprise the curvelet 

is required. 

1. Wavelets 

a. The purpose of the wavelet transform 

Wavelets are designed to hierarchically decompose a function. This function can be an 

image, signal, surface, etc. First, we label the vector space that includes all possible 

functions that can be contained in an image with j — 1 pixels as Vi. Next, we define 

a new vector space Wi as the orthogonal complement of Vi in V0+'l. 

Any set of linearly independent functions t'ai, that span Wi are called wavelets. 

The particular basis functions chosen determine the type of wavelet decomposition 
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that can be performed. 

Using the wavelet basis functions, we can recursively break a function into its 

course shape and a set of detail functions. If this is done enough, eventually what 

is left is a very simple course function and a large set of (hopefully similar) detail 

coeiffcients that correspond to the wavelet basis functions[9, 15]. 

b. The Haar wavelet 

The one dimensional Haar basis is the simplest wavelet basis. Its functions are given 

by 

g&(x):= g(2z' — i), i = 0, . . . , 2' — 1, 

where 

1 for0&s&1/2 

4'(a):= — 1 for 1/2 & x & 1 

0 otherwise. 

The implementation of the Haar wavelet decomposition can most easily be shown 

with an example. Begin with a one dimensional "image" containing four pixels: 

[5795] 
If we average the two pairs of pixels, we obtain 

[57] 
The detail coefficients are the differences between the original numbers and their 

average. In this case since 3 is 2 less than 5 and 9 is 2 greater than 7, the detail 

coefffcients are 
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If we repeat this process until only one average is left, we get 

Iteration Averages Detail Coefficients Image 

[3795] 
[5 v] 
[61 

[3v9s] 
[5 v — 22] 

[ 6 — 1 — 2 2 ] 

In the end, a large average is left, but the detail coefficients tend to be small 

and similar numbers. This is the feature that makes the wavelet transform good for 

image compression. 

c. The inverse Haar wavelet 

Once the Haar wavelet is understood, its inverse becomes very simple. By reversing 

all the steps in the original transform, the inverse is created. The inverse in the above 

example can be shown as 

Iteration Averages Detail Coefficients Image 

[6] 
[sv] 

[ 3 7 9 5 ] 

[ 
— I ] 

[ — 2 2 ] 

[ 6 — 1 — 2 2 ] 

[s v — 22] 
[37951 

If the values are stored to one decimal place perfect reconstruction can be ob- 

tained. 

d. The "a trous" wavelet 

The "a trous" wavelet begins by selecting a low-pass filter H that satisfies 



b(k) 

where bq, is the Kronecker delta[10]. 

In this case, the Lagrange interpolation filter was used. It is given as 

The wavelet functions are defined as 

When the image is decomposed, it gives the course approximation and the detail 

functions (wavelet coefficients). By taking the scalar product of the function f(x) 

with the scaling function Si(x) the first approximation is given as 

Subsequent approximations are therefore given by the direct "a trous" decompo- 

sition 

The recursive "A trous" decomposition is defined as 

c, (k) = gh]c, y(k+2 l). 
I 

The recursive formula for the wavelet coefficients is 

tc, (k) = c, , (k) — c, (k). 



The "a trous" algorithm can best be explained with the following C code 

for(j = 1; j &= MAX LEVEL; j++) 

for(1 = 0; 1 & YRANGE; 1++) 

for(k = 0; k & XRANGE; k++) 

c [j] [k] [1] = 0; 

for(y = 0; y & FILTER DEGREE; y++) 

for(x = 0; x & FILTER DEGREE; x++) { 
if(k-offx & 0) offx -= XRANGE; 

if(1-offy & 0) offy -= YRANGE; 

c[j] [k] [1] += c[j-1] [(k-offx)%XRANGE] [(1-offy)%YRANGE] 

/ filter mask(x, y); 

e[j] [k] [1] = c[j-1] [k] [1] — c [j] [k] [1]; 

where FILTER DEGREE is the number of coefficients in the filter, XRANGE 

and YRANGE are the dimensions of the image and offx and offy are given by 

/ FILTER DEGREE 
of fs =2' x ~x— 

2 

"filter~ask(x, y)" is the Lagrange interpolation filter given above convoluted 

with itself. 
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e. The inverse "a trous" wavelet 

As with all of the wavelet transforms, the inverse of the "a trous" is just the sum of 

its parts. Formally, it is given by the following equation 

where I is a two dimensional image. 

2. Radon 

a. The purpose of the radon transform 

The radon transform has several purposes. Most of them involve reconstructing 

images. Its inverse, called back projection, is especially effective for this. The radon 

transform basically looks for lines in the image and tries to compress or reconstruct 

(depending on the application) based on those lines. 

Unfortunately, the obvious discrete version of this transform is not effective for 

digital images. Since digital images have finite boundaries, the lines from the radon 

transform have different lengths depending on where they cross through the image. 

When this is reversed by the back projection equation, the unequal lengths are falsely 

interpreted and the recovered image looks very unlike the original. 

The most popular solution to this problem involves the use of the Fourier trans- 

form. However, the newly developed finite radon transform was chosen in this case 

due to its more efficient FPGA implementation. Since an understanding of the radon 

transform aids in the explanation of the finite radon transform, both are included 

here. 
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b. The radon transform 

The continuous radon transform is a collection of line integrals over a function (or in 

this case an image). These integrals are given by 

Rf (Pq t) = f j f (x„x2)6(xI cos 0 i x2 sm fl — t) dx, dx2. 

The discrete version of this transform would simply replace the integral with a 

sum) 

Rr(8, t) = P g f(x&, xz)6(x&cos0+x2sin9 — t). 
*ref *~cf 

At this point, implementation becomes fairly straightforward. Each point in the 

radon transformed image is simply the addition of all the points along a line in the 

image. The values 8 and t control the angle and oifset of the line. 

c. The inverse radon transform 

The inverse radon transform is also known as back projection. By itself, it has several 

uses[16, 17, 18]. The continuous version is given by 

Br(x, y) = f g(x cos 0+ y sin 8, 0) d8, 

with the discrete being given by 

B~(x, y) = gg(xcoso+ ysin0, 0). 
Heg 

d. The digital radon transform using the Fourier domain 

There is a fundamental property of the Radon transform known as the projection-slice 

formula 
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Ff(Acos8, Asin0) = jRf(t, 0)e ' 'dt. 

This formula is the basis for the approximation of the radon transform using the 

Fourier domain. For an image f (iq, ia) the following steps will produce the approxi- 

mate radon transform 

1. SD-FFT. Compute the two-dimensional FFT of f. 

2. Cartesian to Polar Conversion. Use an interpolation scheme to convert to a 

polar coordinate system. 

3. ID-IFFT. Compute the IFFT for each value of the angular parameter. 

The inverse of this is basically each step backwards. Due to the fact that this 

method was not chosen for the FFGA implementation, further details will be omitted. 

Consult the references for more information[1, 19, 8, 7]. 

e. The finite radon transform 

To combat the previously mentioned "wrapping" problem in the digital radon trans- 

form, the finite radon transform (FRAT) was developed[20]. If we say Z» = {0, 1, . . . , p— 

I), where p is a prime number, then the FRAT of any real function f is defined as 

In this case Lq ~ is defined as 

Lq ~ 
= ((i, j): j = ki + l (mod p), r 6 Z»), k c Z». 
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The primary things that make the FRAT different than the original radon trans- 

form are the normalization factor — ' and the modulus in the definition of the line 

LI, n This modulus has the effect of making all lines equal length, by "wrapping" 

them around the image, and therefore making the inversion much easier[21, 22]. 

f. The inverse finite radon transform 

Just as with the regular radon transform, the inverse finite radon transform is known 

as finite back projection (FBP). It is given by 

where Pcl is the set of indexes for lines crossing the point (i J) or 

P;„= ((k, l): l = j — ki (mod P), k C Zr) + ((P, i)). 

It can easily be shown that this equation combined with the FRAT gives back 

the original function. The only real disadvantage to the FRAT and FBP combination 

(instead of the regular radon transform) is that the sides of the image must be prime 

numbers[21, 22]. 

3. Ridgelet 

a. The purpose of the ridgelet transform 

A singularity is when several pixels are very similar in color. A point singularity would 

be several pixels in a cluster that have similar color. The wavelet transform is very 

good with images that have point singularities. However, it has poor performance on 

images with many straight lines in them. The ridgelet transform is very similar to 

the wavelet, except that it performs better with line singularities. Put more simply, 
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the wavelet transform would work well on a night sky image, but not vertical bars. 

The ridgelet performs well on both [23, 16]. 

b. The continuous ridgelet transform 

Just as the wavelet transform breaks an image into a wavelet basis (called wavelets), 

the ridgelet transform breaks an image into a ridgelet basis (called ridgelets). The 

ridgelets are defined as 

r xq cos 8+ xs sin 8 — b 
@. p, e(x) =u r4 

a 

Using the given ridgelets, an equation can be derived to give the ridgelet coeS- 

cients. This ridgelet transform equation is 

Rf (a, b, 8) = f g, aa(x) f (x) dx. 

For reference, the formal definition of the wavelet transform is similarly given as 

It was also discovered that the ridgelet transform is exactly the application of a 

1-dimensional wavelet transform to the slices of the radon transform, 

Ry(9, t) = f Rf(8t) y , ( ] dc 

This means that the ridgelet transform can be implemented simply by imple- 

menting the radon and wavelet transforms [17, 18]. 
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c. The inverse continuous ridgelet transform 

By solving the ridgelet transform equation for f(x), the inverse ridgelet transform 

can be obtained. 

Of course this can also be implemented by performing an inverse one dimensional 

wavelet followed by the inverse radon transform. 

d. The finite ridgelet transform 

Since the ridgelet transform is going to be implemented using a radon transform, a 

change in the radon transform requires a change in the ridgelet. Fortunately, just by 

using the FRAT and a one dimensional wavelet, the finite ridgelet transform (FRIT) 

is created. 

FRITI(k, m) = (FRATI(k, . ), re~ (. )) 

Interestingly, it can be shown that the FRIT (when using the Haar wavelet) is 

orthonormal[21, 22]. 

e. The inverse finite ridgelet transform 

The inverse finite ridgelet transform (IFRIT) is simply the inverse wavelet followed 

by the finite back projection algorithm. 



4. Curvelet 

a. The purpose of the curvelet transform 

As mentioned before, the wavelet transform performs well on point singularities and 

the ridgelet performs well on line singularities. However, most photographic images 

contain few straight lines and points. If an image contains several objects, along their 

edges will be curve singularities. The curvelet transform is specifically designed to 

handle these curve singularities. 

By using the curvelet transform, it has been shown that a large amount of an 

image can be recovered with very few of the curvelet coeScients[1, 8]. This makes it 

excellent for image compression. The transform has also been used to clean up noisy 

images with surprising accuracy[7]. 

b. The curvelet transform 

The curvelet transform is a combination of all the previously mentioned transforms. It 

consist of breaking an image into subbands and then applying the ridgelet transform 

to each of these subbands. The steps in the algorithm are 

1. Apply the "a trous" algorithm with a degree of three. 

2. Apply the FRAT to each of the three subbands. 

3. Apply the one dimensional Haar wavelet to the rows of the subbands. 

In the end, three new images remain that store the data from the original image. 

Depending on the application these can be modified as needed. 

c. The inverse curvelet transform 

The inverse curvelet transform is the reverse of the previous. 
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l. Apply the inverse one dimensional Haar wavelet to the rows of the subbands. 

2. Apply the FBP to the subbands. 

3. Add all of the images together (as in the inverse "6 trous"). 

Since each individual part of the curvelet transform is fully invertable, the 

curvelet transform does have the property of exact reconstruction. 
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CHAPTER III 

R-FUNCTION HARDWARE DESIGN AND IMPLEMENTATION 

A. Hardware Platform 

In order to test the R-function architecture, it was programmed on a Xilinx XCV1000E 

FPGA. The input and output image were sized at 200 x 200. There was no particular 

reason for this size other than the fact that some size needed to be chosen. The FPGA 

was connected to a PC through a parallel port. The PC sent a clock and reset signal 

to the FPGA. The FPGA sent data to the PC one pixel at a time. In practical usage, 

the FPGA would be reprogrammed every time a new object was to be modeled. The 

entire design was done asynchronously in order to give maximum speed (at the cost 

of area). 

B. Basic Shapes for Building Objects 

In order to construct complex objects, a library of simpler functions is required. For 

this work, four useful functions were chosen. Obviously, any other functions would 

work, but only a limited amount can be implemented. With the functions chosen for 

this project, any two dimensional object can be modeled. 

1. Circle (x and y second order) 

The definition of the inside of a circle is given by the well known inequality 

Az +By +C & 0. 

The asynchronous architecture for this is shown in Figure 2. 
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Fig. 2. Asynchronous circle calculation 

2. Line (x and y first order) 

A line is needed to define a half plane (the line is the point where the plane is cut in 

half). The inequality for the upper half of a plane is 

mz+b — y(0. 

This architecture is shown in Figure 3. 

3. Polynomial in x (x second order, y zeroth) 

Although circles and lines are enough to draw a figure, having polynomials is con- 

venient. The inequality for the "inner" portion of a second order polynomial in x is 

defined as 

z +za+b & 0. 
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mult 

OUT 

Fig. 3. Asynchronous line calculation 

The FPGA design is displayed in Figure 4. 

4. Polynomial in y (y second order, x zeroth) 

Similar to the polynomial in x, a polynomial in y is also very useful. Of course, the 

inequality for the "inner" portion of a second order polynomial in y is defined just as 

it was in x 

y +yu+b&0. 

The hardware is also similar as shown in Figure 5. 

C. R-functions 

The R-functions are even easier to implement than the inequalities themselves. Con- 

junction and disjunction are created simply by implementing a max and min operator 

in hardware. Negation just changes the sign of its input. These operations are shown 

in Figure 6 
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Fig. 5. Asynchronous polynomial in y calculation 
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Fig. 6. R-function FPGA architecture 
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Fig. 7. FPGA architecture for R-function design 

D. Combining the Pieces 

Once the R-functions and the primitives have been implemented, the rest is easy. 

The first step is to connect all the primitives and R-functions in the proper way to 

produce the desired object. Once this has been done, the constants in the primitive 

equations need to be set. A seperate module was created to hold these constants. The 

last step is to generate the input coordinates. If the entire image is desired, the best 

solution is to simply have counters that go through every pixel and input them into 

the object equations. For some applications, not all pixels are needed, so a random 

number generator or some semi-random method may be preferred. This generator is 

controlled by an external clock and the results are returned through the parallel port. 

The result is a logic one if the pixel is within the image and a logic zero otherwise. 

These connections are shown in Figure 7. 



CHAPTER IV 

RIDGELET HARDWARE DESIGN AND IMPLEMENTATION 

A. Hardware Platform 

In order to test the ridgelet architecture, it was programmed on a Xilinx XCV1000E 

FPGA. The input image was sized at 17 x 17 to fill the prime number requirement 

of the FRAT. The FPGA was connected to a PC through a parallel port. Since the 

parallel port is limited to sending eight data bits and receiving four, a separate control 

block wss added in the FPGA to convert the sixteen bits used in the transform to and 

from the size handled by the parallel port. The FPGA can be quickly reprogrammed 

to switch between the ridgelet transform and its inverse. 

B. Architecture 1 

This architecture focuses on parallelism. The time of the entire transform is equal to 

the time it takes to place the image onto the FPGA plus the time it takes to read 

it back. There is no time necessary for computation since this is done during the 

writing. 

1. Wavelet 

The Haar wavelet is basically a repeated sequence of adds, subtracts and shifts. The 

standard way to do this in software would require many steps. There would be one 

clock cycle for each add and subtract all throughout the process. Obviously this 

would be very time consuming. 

In an FPGA, this can be sped up enormously. Since the entire transform is simply 

a large cascade of adders and subtractors, everything can be done in one cycle. The 
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Fig. 8. Two input Haar wavelet 

shifters can even be removed by simply connecting the output bus of one part one bit 

higher on the part it feeds. 

a. Haar wavelet architecture 

The basic step in the Haar transform is the averaging and differencing of two numbers. 

This simply means the two numbers have to be added, subtracted and divided by two. 

The divide by two is handled simply by dropping the lowest bit. The addition and 

subtraction are performed using a small adder in parallel with a small subtractor as 

shown in Figure 8. 

By connecting several of these two input Haar wavelet boxes in a pyramid style, 

the Haar wavelet can be performed on any size one dimensional image desired. For 

this implementation, a sixteen input transform was needed. It is constructed as shown 

in Figure 9. 
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Fig. 9. Sixteen input Haar wavelet 



b. Inverse Haar wavelet architecture 

The basic step in the inverse Haar transform (Figure 10) is simply an addition and 

a subtraction. This is the same as the Haar transform without the divide by two. 

Because of this, the two input inverse Haar transform block in Figure 11 looks very 

similar to the Haar transform block in Figure 8. 

As would be expected, the sixteen input inverse Haar transform looks like a 

reversed form of the pyramid for the Haar transform. By comparing Figures 9 and 

10 the inverse can easily be seen. The inputs are simply fed backwards through the 

pyramid starting with just two inputs and doubling until the full sixteen is reached. 

Since this is all done at once, a noticeable speedup is achieved compared to doing 

each addition and subtraction separately. 

2. Generic transform 

In many transforms, each output pixel is simply the addition of a certain set of 

input pixels. Examples include the radon, back projection and Hough transforms. 

Because of this, a generic architecture was developed that would take in a square 

image and return an identically sized image with the output pixels equaling the 

additive combinations of the input pixels based on the look up tables. These look 

up tables could then be loaded with the proper values for whichever transform was 

desired. 

a. Transform architecture 

The architecture is basically a matrix of accumulators the size of the output image. 

Each input pixel is presented individually to the matrix, and the look up tables control 

the enable signals of the accumulators. This allows the values in the look up tables 



I13 
Ihaar-2 

I9 
Ihaar-2 

I3 

01 
Ihaar-2 

03 
Ihaar-2 p4 

05 
Ihaar-2 

I15 
116 Ihaar-2 

IIp Ihaar-2 

111 
Ihaar-2 

07 
14 Ihaar-2 

I5 09 
Ihaar-2 p1p 

011 
I6 Ihaar-2 p12 

I14 Ihaar-2 
17 013 

Ihaar-2 p14 

Ihaar-2 
015 

Is Ihaar-2 016 

Fig. 10. Sixteen input inverse Haar wavelet 
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Fig. 11. Two input inverse Haar wavelet 

to control which accumulators add in the pixel value as it is presented and which 

accumulators will ignore it. A control block consisting mainly of a counter is used to 

switch the output values of the look up table for each incoming pixel. 

A simple block of four accumulators with the controlling look up table is shown 

in Figure 12. For this particular design, a 17 x 17 image was used. This means the 

forward transform would have an input of 17 x 17 and an output of 17 x 18. The 

inverse transform would have an input of 17 x 18 and an output of 17 x 17. Figure 13 

shows the full accumulator matrix for all accumulators (289 for the inverse transform 

306 for the forward). It should be understood that acc32 is simply 32 accumulators 

connected in the fashion shown in Figure 12. 

When in output mode, the control block begins to switch the multiplexers so that 

the pixels in the accumulator matrix are sent out one at a time. The output is shifted 

right to normalize the pixel values for the radon and back projection transforms. 

Part of the goal of the architecture is to take full advantage of the features the 

FPGA has to offer. The Virtex FPGA used in this implementation contains built 
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Fig. 14. Control system for the accumulator matrix 

in Block RAM (BRAM) that can be pre-programmed with certain values. These 

BRAMs were used as the look up tables in the design. Their address was controlled 

by a counter as shown in Figure 14. 

b. Finite radon transform data 

The look up table data for the finite radon transform (FRAT) and inverse finite radon 

transform (IFRIT) was created using a C program. The program calculated a list of 

which pixels in the output image are affected by certain pixels in the input image. 

It then converted this data into a proper form to store in the FPGA Block RAM so 

that the accumulators would be properly controlled. 

3. Ridgelet 

As mentioned before, the ridgelet transform is simply the radon transform followed 

by the wavelet transform. To create the ridgelet on an FPGA, all that needs to be 

done is to connect its two component transforms together. 

a. Finite ridgelet transform architecture 

Once the radon and wavelet transforms have been implemented, the ridgelet is straight- 

forward. Each output row of the radon is simply passed through the wavelet transform 

before it reaches the final output multiplexer. The primary advantage to this method 

is that it does not require any extra clock cycles to perform the ridgelet than it does 
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Fig. 15. Combining the radon and the wavelet to make the ridgelet 

to perform the radon. The combination of the radon with the wavelet is shown in 

Figure 15. 

b. Inverse finite ridgelet transform architecture 

The inverse ridgelet requires that the inverse wavelet happen before the inverse radon. 

In this case, each input row is passed through the inverse wavelet before it reaches the 

inverse radon. Since pixels enter one at a time, there is a need for registers to store 

an entire row before the inverse wavelet takes place. This register setup is shown in 

Figure 16. Unfortunately, this adds extra clock cycles (equal to the number of pixels 

in a row). For a 17 x 17 pixel image, this changes the number of clock cycles from 

(289+289)=578 to (289+289)+17=595. The connections are shown in Figure 17. 

C. Architecture 2 

This architecture focuses on flexibility. Instead of the massive parallelism in architec- 

ture 1, a more compact and iterative approach is used. Each function is broken into 

its own module and a primary control block directs the flow of data. This allows for 

a higher clock rate, and blocks can be rearranged or added to increase parallelism as 

desired. 
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Fig. 17. Combining the inverse radon and the wavelet to make the inverse ridgelet 
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Fig. 18. RAM reading module for the second ridgelet architecture 

1. Read and load blocks 

This architecture is based on the Block RAM inside the FPGA. The image is loaded 

into the RAM, and then processed. When the transform is complete, the image is 

then returned to the host PC. In order for this to work, modules had to be developed 

to load data into the Block RAM and read the data from the Block RAM. 

The read and load modules are fairly straightforward. The read module, pictured 

in Figure 18, consists of a block that connects the output of the RAM to the parallel 

port as well as providing some control signals to the RAM. A tristate buffer is used 

to control which module has access to the RAM's data and control busses. 

The load module is very similar. As can be seen in Figure 19, the only difference 

in the read and load modules is that the load module connects to the input data of 

the RAM instead of the output data (this is for obvious reasons). Another tristate 

buffer is pictured, since all RAM inputs must have these to avoid signal contention. 

2. Radon transform 

The radon transform in this architecture is noticeably different than the one in the 

first. As mentioned before, all image data is stored in the Block RAM. The radon 

transform block uses a block called "frat calculator" to generate the list of which 

points in the input image affect which points in the output image. In the first ar- 

chitecture this was stored on chip (which takes quite a bit of storage space). After 
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Fig. 19. RAM loading module for the second ridgelet architecture 

the point list is calculated, "address generator" (Figure 20) converts the pixel values 

into RAM locations and switches the RAM address input. The accumulator is used 

to sdd the entire group of pixels chosen by "frat calculator" (Figure 21). The local 

control block organizes the flow of this process with input from the main controller. 

The diagram can be seen in Figure 22. 
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mux addr 
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Read Wrrte 

Fig. 20. Address generation module for the second ridgelet architecture 

3. Wavelet transform 

The wavelet transform in this design has much in common with that of the previous 

architecture. The usage of Block RAM makes an obvious difference, but the values 

are still read into a block of registers, transformed and then fed into a second block of 
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Fig. 23. Wavelet transform module for the second ridgelet architecture 

registers so that they can be transferred into RAM again. Just as in the first archi- 

tecture, this process is pipelined to increase speed. One change to the Haar transform 

block itself is the addition of a clock to aid pipelining. The flow is demonstrated in 

Figure 23. 

4. Control block 

Now that all the pieces have been described, the overall combination can be explained. 

Data comes in from the PC's parallel port. At this point it goes through the RAM 

loader and into the RAM. The control block decides how much data it will accept 

and uses the RAM loader to accomplish this. Next, the control block runs the radon 

transform block, and then the Haar transform (or their inverses). At the end, the 

data is transferred back to the parallel port through the RAM reader. 

The advantage of this design is the ease of adding more modules. To double the 

speed of the radon transform, another radon block can be added with no other changes 

(except making the control block aware of the new addition). With the exception of 

the RAM loader and reader (which are limited by the size of the FPGA input bus), 

all modules can be duplicated to increase speed at the cost of area. The design (with 

only one of each module) is pictured in Figure 24. 
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CHAPTER V 

CURVELET SOFTWARE DESIGN AND IMPLEMENTATION 

A. Software Platform 

The PC used was a Dual AMD Athlon MP 1800 running at 1. 5 GHz. A C program 

running on this PC reads in a 289 x 289 image file (in PNM format) and runs the "a 

trous" decomposition on it. Next, it sends this image through the parallel port with 

the proper control signals for the FPGA. It then reads the image back and stores it in 

another PNM file. The PC side is identical for the ridgelet transform and its inverse. 

B. Individual Programs 

There are two separate activities that are performed on the PC. One is the "a trous" 

wavelet decomposition. The other is the control of the FPGA (which does the ridgelet 

transform). 

1. "A trous" decomposition 

The first step in the codesigned curvelet transform is the PC implementation of the 

"a trous" wavelet decomposition. The process begins with a 289 x 289 image on the 

PC. This file is stored in PNM format due to the ease of converting between PNM 

images and human readable number matrices. When the program is run, it reads in 

this image and performs the "s, trous" decomposition. This leaves 3 new 289 x 289 

images. The steps that this program follows are best shown in the flowchart in Figure 

25. The inverse is also performed by adding the three images together to produce the 

original. 
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2. FPGA control 

Since the FPGA acts as a coprocessor, there needs to be a way for the processor 

within the PC to control it. For a high speed implementation, a PCI bus or some 

form of direct connection would be the best. For demonstration purposes, this design 

uses the parallel port. A 289 x 289 image is taken in and broken into 289 separate 17 

x 17 images. These images are then sent one by one to the FPGA and the ridgelet 

transform or its inverse is performed. For the inverse, the image would be 306 x 306 

and would be broken into 17 x 18 blocks. A summary is shown in Figure 26. 

C. Combined Overall Process 

Though all the pieces have been explained, it may not be obvious how the entire 

process fits together. Figure 27 shows the flow from original image to the final. 

It should be noted that this shows only the transform and inverse transform. In 

practical use, it would be more likely to make some modification to the image (such 

as thresholding) in between transforming it and inverse transforming it. 
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CHAPTER VI 

RESULTS 

A. R-function Performance 

1. A practical example 

When Vladimir Rvachev originally proposed R-functions, he came up with the simple 

example of a chess pawn to demonstrate their power. This same pawn object was 

implemented in the FPGA to show the performance of the system described in this 

thesis. 

The pawn consist of ftve circles and two polynomials. They are given by the 

following inequalities: 

(Dj) 1 x (y 7) & Oj 

(D2) 4 — x2 — (y — 7)2 & 0; 

(Ds) 64 — (x — 8) — (y — 7) & 0; 

(D4) 64 — (x+ 8)s (y 7)2 & 0. 

(D ) 4 — x2 — (y — 4)2 & 0; 

(D, ) 0 — x'&0; 

(D) P — y)y &o; 

These combine according to the following equation: 

D = Dg V (Ds A Ds) V (D2 R Ds R D4 R Ds A D7) 

When implemented in the FPGA, this object gave speed and area results as 

shown in Table III. The area is shown in terms of SLICEs (the units inside a Xilinx 

FPGA), and in percentage of the total area of a XCV1000E chip. The objects per 

second value describes how many 200 x 200 pixel pawns can be drawn per second. 

The visual result from the FPGA can be seen in Figure 28. 
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Table III. Speed and Area of Pawn R-functions 

Max clock Speed 

Area (in SLICEs) 

Area (in %) 

200 x 200 pixel frames per second 

65 MHz 

3673 

29 'Fa 

1625 

Max size of image for 30 frames/sec 1471 x 1471 

Fig. 28. Pawn generated with R-functions 
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2. Tradeoffs 

After the pawn was created, some experiments were run to see how the performance 

was affected by the addition of primitives to the object. Figures 29 and 30 show how 

the speed and area of the design are affected by the addition of more lines and circles. 

Figure 29 shows the size for a design with one line (or circle), two lines (or circles), 

etc. Figure 30 shows similar data for speed. It is worth noting that due to the Xilinx 

routing tools, the speed can fluctuate (depending on how well the tool routed), but 

overall speed is not largely affected after the first couple of primitives. This means 

that although more primitives take more area, their afl'ect on speed is not consistent 

enough to worry about. 

Based on this data, it can be seen that circles take up approximately twice the 

FPGA area as lines do. It can also be seen that the maximum size object on a 

XCV1000E is one containing 20 circles, 40 lines, or some combination thereof. Due 

to the number of multipliers, second order polynomials are the same size as circles. 

B. Ridgelet Architecture 1 Performance 

The parallel port described in the design is just for the test setup. The speed of 

that port is much lower than the speed of the FPGA. The entire ridgelet transform 

takes approximately 1. 6 seconds with the parallel port. In a real implementation, 

something similar to a PCI bus would be a much better communication system. The 

Xilinx synthesis tools do give the performance of any compiled design. Based on those 

numbers, we can determine the speed of the transform when the PCI (or some other 

high speed bus) is used. The FRIT architecture would take 289x289 send cycles plus 

another 289x306 for reading. This would all be at a clock rate of 33MHz. The IFRIT 

would have (306+17)x289 send cycles and 289x289 for the read. The maximum clock 
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Fig. 29. Area data for R-function lines and circles 
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Fig. 30. Speed data for R-function lines and circles 



Table IV. Common Image Sizes and Numbers of Pixels 

Image Size 

800 x 600 

1024 x 768 

Number of Pixels 

480000 

786432 

speed for the inverse is 18MHz. 

By multiplying these numbers out, the total time for the FRIT is 5. 2 ms. Total 

for the inverse FRIT is 9. 8 ms. This means the entire process takes 15 ms. For a 

comparison, this same process took 1. 5s on a dual Athlon MP 1800. That gives a 

speed increase factor of 100. 

Figure 31 shows the completion time of the first ridgelet architecture for various 

image sizes. The y-axis shows the amount of time (in milliseconds) for the entire 

transform to take place. The x-axis shows the number of pixels in the image. The 

graph shows the results for both the finite radon transform (FRIT) and its inverse 

(IFRIT). The maximum size of pixels that can be processed in 33 ms (30 frames per 

second) in the case of FRIT is 534285. For the IFRIT it is 283333. For reference, 

a short list of common image sizes and the number of pixels in them can be seen in 

Table IV. 

C. Ridgelet Architecture 2 Performance 

The second architecture has several more cycles, but the clock rate is higher. For the 

289x289 image, there are 17x18x289 read and 17zx289 write cycles. For the entire 

radon transform (or its inverse), 17 x18x289 clock cycles are necessary. For the Haar 

transform, an additional (17+4)x17x289 clock cycles are needed. The time for this 
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Fig. 31. Speed data for the first ridgelet architecture 

entire process, at its speed of 60MHz, is 30ms (34 frames per second). This is almost 

six times the first forward architecture and triple the first inverse architecture. The 

advantage is in size. This architecture is one eighth the size of the first ridgelet 

architecture. Another advantage is the fact that some blocks can be repeated to 

increase speed (or pipelining can be utilized). Due to the large amount of clock cycles 

used by the radon transform relative to the Haar, it turns out not to be very useful 

to increase the number of Haar blocks, but increasing the number of radon blocks has 

a noticeable effect (up to a point). 

The reconfigurability advantages of the second ridgelet architecture are shown 

in Figure 32. More blocks of the radon or Haar type can be added to increase the 

speed of the transform at the cost of area. It should be obvious that increasing the 

number of radon blocks has a much larger affect on the speed than increasing the 

number of Haar blocks. The y-axis shows the time (in milliseconds) that it takes to 
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Fig. 32. Speed data for the second ridgelet architecture 

complete the entire FRIT or IFRIT. The x-axis shows the number of radon or Haar 

blocks used in the FPGA. Each line shows the size of the image and the type of block 

that was repeated inside the FPGA. The lines with darkened shapes represent an 

architecture with one radon block and the number of Haar blocks shown on the x- 

axis. The lines with white shapes represent an architecture with one Haar block and 

the number of radon blocks shown on the x-axis. These numbers can be compared to 

rough estimations of the time to complete the same transform performed on a Texas 

Instruments DSP TMS320VC5502 running at 200MHz. These estimates are 1. 35s 

(1024 x 768), 828ms (800 x 600) and 114ms (289 x 289). 

It can also be shown that the addition of radon blocks has a fairly small effect 

on the overall area taken within the FPGA. The addition of Haar blocks has a much 

larger effect. Combined with the previous speed results, this works out very well since 

the radon is the block that should be added anyway. The results of this experiment 
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Fig. 33. Area data for the second ridgelet architecture 

are shown in Figure 33 (these are the same for all image sizes). 

Table V shows the minimum amount of each of the four types of blocks needed 

to reach video quality imaging (30 frames/sec), for each of the given image sizes. The 

last column shows the amount of slices in the FPGA what would be taken up by that 

particular design. 

One of the previously stated advantages of FPGAs is their in field reprogramma- 

bility. From Figure 32, it can be seen that as more blocks are added, the time decreases 

asymptotically to a certain point. This point varies with the number of FPGAs used. 

In a system consisting of several FPGAs that could be reconfigured, the more FPGAs 

used, the lower the asymptotical point would become. This is shown in Figure 34. 

The y-axis shows the asymptotical minimum time, and the x-axis shows the number 

of FPGAs. The lines are the same as Figure 32. From Figure 34, it can be seen that 

two FPGAs is twice as fast as one, three FPGAs are thrice as fast as one, etc. 
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Fig. 34. Speed data for multiple FPGAs with the second ridgelet architecture 

Table V. Minimum Ridgelet 2 Blocks Needed for Video Quality 

radon blocks Haar blocks load RAM read RAM total slices 

289 x 289 

800 x 600 

1024 x 768 

20 

20 

828 

1968 

2736 
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

A. Summary 

1. R-functions 

~ An asynchronous parallel architecture was developed to represent the equations 

of a circle, line and polynomial as well as the R-functions for conjunction, 

disjunction and negation. 

~ These were connected in the proper order to create the image of a pawn on the 

FPGA, and speed and area measurements were taken. This design took 3673 

slices (29% of the Virtex XCV1000E) and ran at 65MHz. It took 0. 62ms to 

draw the entire image. 

~ A tradeoff study was done comparing size and speed of the design when more 

circles and lines were added to the image to be modeled. Circles take twice 

the space of lines, and on the XCV1000E, a total of 40 lines, 20 circles or some 

combination thereof would fit. 

2. Curvelet 

a. Ridgelet 1 (Full Parallel Scheme) 

~ An array of accumulators was put on the FPGA. This array is controlled by 

data calculated by a C program and stored in the FPGA Block RAM to perform 

the finite radon transform and its inverse. 

~ An array of adders and subtractors was put together in the proper order to 

create the Haar and inverse Haar wavelet transforms. These were connected 
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inline with the accumulators that due the finite radon transform and its inverse. 

~ For a 17x17 image, the finite ridgelet transform architecture uses 306 accumu- 

lators and takes in an image one pixel at a time. These pixels are passed into 

the accumulators (controlled by the Block RAM) creating a 17x18 image inside 

the FPGA. Once all pixels have been passed in, they are passed out one at a 

time (controlled by multiplexers) returning the transformed image. 

~ The inverse finite ridgelet transform is similar, except that it takes in a 17x18 

image and has 289 accumulators so that it can return a 17x17 image. The 

architecture is valid for any square block size with the side equal to a prime 

number that will fit on an FPGA. 

b. Ridgelet 2 (Shared Module Architecture) 

~ Separate modules were created to perform the many activities of the transform. 

One is for loading an image into RAM and one is for reading an image from 

RAM. Two other blocks perform the finite radon transform (or its inverse) and 

the Haar wavelet transform (or its inverse). 

~ In the radon transform, only certain pixels from the input image affect certain 

pixels in the output image. In the first architecture, this data is pre-calculated 

and stored in RAM. . In this architecture, it is calculated during operation by 

a module specifically for this purpose. 

~ Unlike the first architecture, this one is not limited to a 17x17 block. It is limited 

only by the size of the RAM on the FPGA. Obviously making the image smaller 

would increase the speed of the transform. 

~ The other primary advantage to this architecture is the ability to put more 
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blocks of certain types on the FPGA in order to increase speed at the cost of 

area. 

~ A tradeoff study was done for this architecture showing what the speed area 

tradeoff would be for various image sizes. It was discovered that large speed 

increases were achieved with little area costs when the radon block was repli- 

cated. Replicating the Haar block gave little speed increase at a fairly large 

area overhead. Details are given in the results chapter. 

~ Based on the data collected, to reach video quality imaging with the first archi- 

tecture, 4792 slices would be needed for any image size 543 x 543 for the first 

architecture. The second architecture would use the exact same area to do a 

1132 x 1132 image for either the FRIT or IFRIT in the same amount of time. 

c. Software 

~ The trous algorithm was implemented in software to complete the curvelet 

transform. 

~ The ridgelet was completed in software in order to make speed comparisons. 

~ A parallel port control was written in software (as well as a small addition to 

the hardware) to demonstrate the transforms on the FPGA. 

B. Conclusions 

Based on the results presented in this thesis it is quite obvious that the FPGA is 

far more efficient (in speed and area) at implementing II-functions and the various 

transforms. It is also clear that II-functions and the curvelet transform are two of 

the most powerful methods of modeling and processing images. The use of these two 
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together is shown to make a powerful team that can be used to accomplish tasks that 

have previously been unimplementable. 

C. Future Work 

There are several future possibilities that can be based on this work. One improve- 

ment could involve replacing the Haar wavelet with one more suited to certain types 

of images. Another could involve replacing the finite radon transform with the digital 

radon transform involving the fast fourier transform and its inverse. 

Besides improvements to the design, other developments can be built on top of 

this. The primary ones are the hyperspectral imager and equation solver mentioned 

in the introduction. Both of these devices are things that could never have been done 

or were extremely costly in money, human time and processing time. With the new 

techniques discussed in this thesis the possibility of creating these devices and similar 

ones can be seen. 
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