
FPGA BASED IMAGE PROCESSING WITH R-FUNCTIONS AND THE

CURVELET TRANSFORM

A Thesis

by

JOHN L. WISINGER JR.

Submitted to the Office of Graduate Studies of
Texas ARM University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2003

Major Subject: Computer Engineering

FPGA BASED IMAGE PROCESSING WITH R-FUNCTIONS AND THE

CURVELET TRANSFORM

A Thesis

by

JOHN L. WISINGER JR.

Submitted to Texas ASSAM University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

Rabi Mahapatra
(Chair of Committee)

Hank Walker,
(Me ber)

Karen Butler-P y
(Member)

Do aid Friesen
(Head of Department)

May 2003

Major Subject: Computer Engineering

ABSTRACT

FPGA Based Image Processing with R-functions and the Curvelet Transform.

(May 2003)

John L. Wisinger Jr. , B. S. , Texas ARM University

Chair of Advisory Committee: Dr. Rabi Mahapatra

In the past few years, image processing has begun to make its way into many

new areas, both academic and commercial. One of the most popular areas is in com-

puter generated animation. This includes films, video games, medical imaging, and

various other multimedia systems for both entertainment and more serious applica-

tions. Two fairly recent independant developments in this field are R-functions and

the curvelet transform. R-functions were developed to make it possible to represent

complex objects by using a collection of simpler primitives. The curvelet transform

was designed to extract specific features from complex objects.

Although impressive performance can be achieved with R-functions and curvelets,

the complexity of their implementation is quite a drain on standard microprocessors.

It is for this reason that an FPGA implementation was developed. By offloading some

of the processing work into a properly configured FPGA, speeds can be achieved in

excess of one hundred times faster than current high end servers.

This increase in processing speed and image representation ability combine to

have some useful applications. Now, highly complex image processing can be done

in small areas allowing for the design of systems that were previously not feasible

to develop. By using the concepts presented in this thesis, ideas have come about

for the development of a large scale Boltzman equation solver, and a satellite hyper-

spectral imaging system. The Boltzman equation solver has been developed before,

but only by using very costly and space consuming servers. Design of the satellite

hyperspectral imaging system has been hindered by the low data transmission rate of

the communication system. By processing some of the data on the system itself this

problem is removed.

This thesis proves that R-functions and numeric transforms can be done in an

FPGA to give far better performance than regular microprocessors. It also shows

the power of the R-function and the curvelet and ridgelet transforms. With further

development, this could yield some amazing results.

To

Bob

ACKNOWLEDGMENTS

Thanks to Brenna, Brian, Ian, Joe, Junyi and Siddharth for making my life in

grad school fun. Thanks to Texas A8cM for making my life in grad school. Thanks

to my parents for making my life

vn

TABLE OF CONTENTS

CHAPTER Page

INTRODUCTION .

A. Motivation . .
1. Why II-functions .
2. Why the curvelet transform?

3. The correlation between R-functions and curvelets

4. Why implement R-functions and curvelets in hardware?

B. Related Work

1. R-functions . .
2. Curvelet

3. FPGA based implementation.
4. Codesign

C. Thesis contribution

BACKGROUND

A. R-functions

1. The purpose of R-functions .

2. R-functions defined

3. R-function mathematics

a. Conjunction . .
b. Disjunction

c. Negation . .
d. Logic properties of R-functions

4. An example usage of R-functions.

B. Transforms.

1. Wavelets

a. The purpose of the wavelet transform

b. The Haar wavelet

c. The inverse Haar wavelet.
d. The "a, trous" wavelet

e. The inverse "a trous" wavelet

2. Radon.
a. The purpose of the radon transform .

b. The radon transform

8

8
8
9
9
9

10
10
11
12
12
12
13
14
14
17
17
17
18

CHAPTER Page

c. The inverse radon transform.
d. The digital radon transform using the Fourier

domain . .
e. The finite radon transform.
f. The inverse finite radon transform.

3. Ridgelet.
a. The purpose of the ridgelet transform.

b. The continuous ridgelet transform.

c. The inverse continuous ridgelet transform. . .
d. The finite ridgelet transform.
e. The inverse finite ridgelet transform .

4. Curvelet

a. The purpose of the curvelet transform

b. The curvelet transform

c. The inverse curvelet transform.

18

18
19
20

20

20

21
22

22

22

23
23
23

23

R-FUNCTION HARDWARE DESIGN AND IMPLEMENTATION 25

A. Hardware Platform

B. Basic Shapes for Building Objects.
1. Circle (x and y second order)

2. Line (x and y first order)

3. Polynomial in x (x second order, y zeroth)

4. Polynomial in y (y second order, x zeroth)

C. R-functions

D. Combining the Pieces . .

25

25

25

26

26

27

27

30

IV RIDGELET HARDWARE DESIGN AND IMPLEMENTATION

A. Hardware Platform

B. Architecture 1 .
1. Wavelet. . . .

a. Haar wavelet architecture

b. Inverse Haar wavelet architecture

2. Generic transform

a. Transform architecture .
b. Finite radon transform data

3. Ridgelet . .
a. Finite ridgelet transform architecture

b. Inverse finite ridgelet transform architecture

31
31
31
32

34

34
34
39
39
39
40

CHAPTER Page

C. Architecture 2

1. Read and load blocks

2. Radon transform

3. Wavelet transform

4. Control block

40
42

42

43
45

V CURVELET SOFTWARE DESIGN AND IMPLEMENTATION

A. Software Platform

B. Individual Programs

1. "A trous" decomposition

2. FPGA control

C. Combined Overall Process

VI RESULTS

A. R-function Performance

1. A practical example

2. Tradeoffs

B. Ridgelet Architecture 1 Performance

C. Ridgelet Architecture 2 Performance

D. Software "A Trous" Performance

VII CONCLUSIONS AND FUTURE WORK .

A. Summary

1. R-functions . .
2. Curvelet

a. Ridgelet 1 (Full Parallel Scheme)

b. Ridgelet 2 (Shared Module Architecture)

c. Software .
B. Conclusions

C. Future Work .

REFERENCES

47

47
47
47
49
49

52

52

52

54
54

56
61

63
63
63
63
64
65
65
66

67

VITA 70

LIST OF TABLES

TABLE Page

I Basic Logic Properties of R-functions 10

II Advanced Logic Properties of R-functions 11

III Speed and Area of Pawn R-functions

IV Common Image Sizes and Numbers of Pixels.

V Minimum Ridgelet 2 Blocks Needed for Video Quality 60

LIST OF FIGURES

FIGURE Page

Complex object and its basic components

Asynchronous circle calculation

Asynchronous line calculation 27

Asynchronous polynomial in x calculation

Asynchronous polynomial in y calculation

28

R-function FPGA architecture 29

FPGA architecture for R-function design

Two input Haar wavelet

10

Sixteen input Haar wavelet

Sixteen input inverse Haar wavelet

12

Two input inverse Haar wavelet

Four accumulator block

Full 289 accumulator matrix . .

37

38

14 Control system for the accumulator matrix . 39

Combining the radon and the wavelet to make the ridgelet 40

16 Registers for inverse transform 41

17 Combining the inverse radon and the wavelet to make the inverse

ridgelet 41

18 RAM reading module for the second ridgelet architecture . 42

FIGURE Page

19

20

22

23

RAM loading module for the second ridgelet architecture. . . .

Address generation module for the second ridgelet architecture .

FRAT calculation module for the second ridgelet architecture

Radon transform module for the second ridgelet architecture . .

Wavelet transform module for the second ridgelet architecture .

43

43

44

44

45

24 Connections of the main control module for the second ridgelet

architecture . . 46

25 "A trous" decomposition program flowchart 48

26 FPGA control program flowchart

27 Overall process flowchart .

28 Pawn generated with R-functions 53

29 Area data for R-function lines and circles

Speed data for R-function lines and circles 55

Speed data for the first ridgelet architecture . .

Speed data for the second ridgelet architecture

Area data for the second ridgelet architecture

34 Speed data for multiple FPGAs with the second ridgelet architecture 60

A fingerprint image and its subbands 61

Subbands after FRIT and IFRIT and the recombination 62

CHAPTER I

INTRODUCTION

Image processing has become a very popular field in the past few years. It consist of

two main areas. One involves breaking complex images into smaller parts. The other

consists of combining these smaller parts into complex images. Both of these are

important in many modern high end computing tasks. The best example would be

computer generated animation. To create the characters, complex images are built

up from much simpler shapes. Once the scene has been created, it must often be

decomposed in a different form in order to compress it into a digital video. These

tasks are very complex and require a large amount of computation to be completed.

Creating specialized hardware would greatly reduce the time consumed by these pro-

cesses. Also, the use of advanced techniques in image construction and decomposition

would greatly increase the speed and efFectiveness of the overall process. It is for this

reason that an FPGA implementation of R-functions and the curvelet transform are

proposed and demonstrated.

A. Motivation

1. Why R-functions

A popular field known as computational solid geometry (CSG) involves the modeling

of complex objects through the combination of simpler functions such as lines and

circles. When this is done incrementally, there is repeated floating point rounding

that causes a loss of accuracy as well as the obvious delay of computing the location

of a point among so many functions. R-functions ofFer a solution to this problem.

The journal model is IEEE Zansactions on Automatic Control.

Through the use of R-functions, the many small functions can be combined into one

large function that represents the entire complex image. This reduces the floating

point error and greatly increases the speed in which the locations of points within the

object can be calculated.

2. Why the curvelet transform?

It hss long been known that the wavelet transform has many limitations when it

comes to representing straight lines and edges in image processing. Not long ago,

researchers at Stanford developed a solution to this problem[1, 2]. They created the

curvelet transform, a transform that uses wavelets, but handles edges and lines much

better.

3. The correlation between R-functions and curvelets

R-functions are used for object modeling. The curvelet transform is used for image

processing. On the surface, these may seem unrelated. On further inspection, it can

be seen that the curvelet transform is used for image decomposition and reconstruc-

tion. R-functions are used for object construction. In many cases this object will be

converted into an image.

To model any object, the basic shapes that make it up need to be known. Once

this is done, R-functions can be used to create the model. To get these basic shapes,

the curvelet transform can be used for edge finding and similar techniques to decom-

pose an image into its basic parts. These parts can then be used to model the object

with R-functions.

4. Why implement R-functions and curvelets in hardware?

One of the primary advantages to FPGAs is their reconfigurable architecture. This

opens up a whole world of possibilities unavailable in microprocessors, digital signal

processors (DSPs), application specific integrated circuits (ASICs), or any other chip

with a specific architecture.

One of the most obvious possibilities is the reduction of the total number of chips

(which reduces cost and board area). In many cases, it is useful to have a device

that performs two difFerent tasks. One example would be a device that implements

several different transforms and their inverses. The hardwired architecture of standard

microprocessors and DSPs gives the designer limited opportunities to change they

way these things are done. Obviously it is possible to store any number of transform

algorithms in memory and then run them on these processors, but the hardware is

unable to adapt to the different transforms, and therefore the designer is forced to

make due with what is given to them.

One solution to this would be an ASIC. This would give the designer the freedom

to modify the hardware in the most optimal way for each transform. Unfortunately,

a separate ASIC would be required for every transform that was desired. This is

the advantage of an FPGA. Several transforms can be designed and stored in ROM

on the board. A single FPGA can be reprogrammed on the fly to perform any of

these stored transforms when needed. Take the example of designing a board that

needs to perform five different transforms. One could design a board with ten parallel

DSPs or microprocessors that can be used in any way to calculate the transforms.

Instead, that same area and money can be used for ten FPGAs to achieve an increase

in speed. A board could be filled with ten different ASICs (two for each transform),

which would give an even higher speed than FPGAs. The advantage to FPGAs is that

if the application needed ten of one transform and none of the others, eight ASICs

would sit idle, while other data would be waiting. The FPGAs could be reconfigured

very quickly to handle this problem.

Another major advantage to FPGAs is the fact that they can be configured as

dedicated processors. That means that there is no overhead for an operating system.

This is a large time advantage. The other speedup is in stages of the data path within

the processor. Many instructions do not need to go through each stage of the data

path, but in order to keep the pipeline running smoothly, they must sit in that stage

and wait. With an FPGA design, this is unnecessary since those other instructions

would not be included.

By implementing the curvelet transform and the R-function concept as an FPGA

coprocessor, these complex transforms could be done on large amounts of data faster

than any current method. By using highly parallel hardware and the most advanced

transforms, large amounts of image data can be processed in very small amounts of

time.

B. Related Work

1. R-functions

R-functions were developed by Vladimir Rvachev in the mid 1960s [3]. Since then they

have been used in many applications. Most of these are related to the modeling of solid

objects [4]. Many involve computer graphics applications, but some are also used for

system modeling and equation solving. There have been numerous implementations

of R-functions on these different applications [5, 6]. However, as far as we know, there

has never been an attempt to implement R-functions in hardware.

2. Curvelet

Due to the relative newness of the ridgelet and curvelet transforms, there have been

very few implementations of each. The majority of the published work is from those

who originally developed the transforms[1]. All of these implementations have been

done in software only. Most of them were Matlab implementations of the equations

themselves. Both transforms were used several times to demonstrate their various

abilities such as denoising and compression[7, 8]. To our knowledge, this is the only

hardware implementation of the radon and ridgelet transforms as well as their in-

verses.

3. FPGA based implementation

The wavelet transform has been implemented rather exhaustively[9, 10]. It has been

done in hardware, software and every combination of the two. Because of this fact,

implementing the wavelet transform will be the smallest part of this work. The

radon transform has many software implementations, and even a one-sided hardware

implementation, but we have not seen any complete implementations in any form of

hardware.

4. Codesign

The codesign methodology (the combination of hardware and software) is becoming

increasingly more popular[11, 12]. Its use often involves FPGAs, and it has helped

to show the superior performance that FPGAs can provide. There have been a few

instances of using codesign techniques in image processing[13, 14]. These focus pri-

marily on the wavelet transform. We have never seen any attempts at using codesign

for radon, ridgelet or curvelet transforms.

C. Thesis contribution

The primary contribution of this thesis is the combination of R-functions, the curvelet

transform, and the FPGA. By using the three of these together, this thesis proves that

impressive results can be obtained. Large amounts of image data can be decomposed

and reconstructed in a small amount of time while taking up a small amount of area.

One possible application of the curvelet in an FPGA would be in the development

of a hyperspectral imager. This device would orbit the earth and take pictures of the

sky over time. What would then be left, are three-dimensional pictures of stars that

become represented as lines (since the star moves over time). This data then needs

to be sent back to stations on the earth for processing. The problem is that the slow

communication system from space to earth, does not allow this much data to be sent

fast enough. Obviously the best solution would be to compress this data.

This is where the curvelet transform becomes useful. The curvelet is the best at

compressing straight lines in images, so it would be the optimum choice. The next

problem is speed. There needs to be a way to compress this data as fast as the camera

can take pictures. Other features that the hyperspectral imaging device might need

are navigation, power management and communication control. These features will

not constantly be needed, so using dedicated processing power for them would be

somewhat wasteful. By having FPGAs in the system, they could be reconfigured to

control the device's movement, power, etc. when needed, or be used to do transforms

when the device is located in the proper spot. This means that the FPGAs that are in

the system to do image processing can also be used for totally different purposes. This

would be totally impossible if using an ASIC. Since DSPs are designed specifically for

signal processing, tasks that require different capabilities (such as bus communication

or power electronics control) could not be done by them, while an FPGA would be

perfect.

There is some overhead in using an FPGA in a system. In order for an FPGA

to be reconfigured, the configuration must be stored in memory chips in the system.

Every time an FPGA is reconfigured, it takes a certain amount of time to do this.

This time can range from 1. 2 ms for the smallest Virtex chip (XCV50) to 31ms for

the largest Virtex-E (XCV3200E). For some FPGAs, partial reconfiguration is also

an option if the entire chip does not need to be modified. This can happen in as little

as 4 ps to change a tiny fraction of the chip. FPGAs also consume more power than

most ASICs and are usually less dense then ASICs. These things may point against

FPGAs, but the advantages definitely outweigh the disadvantages.

Another advantage of FPGAs is the ability to find a radiation hardened version.

Radiation hardness is a very important quality for electronics devices that will be

used in space (as well as some other areas). FPGAs are widely used as radiation

hardened devices, and it is also common to see DSPs implemented in an FPGA in

order to gain radiation hardness. Radiation hardened DSPs are not easy to find on

the market (something which would make their cost very high). FPGAs are also

known to consume less power than DSPs.

CHAPTER II

BACKGROUND

A. R-functions

1. The purpose of R-functions

Although R-functions have many uses, the most interesting in modern research is

probably the ability to describe geometric objects. Previously, complex objects

needed to be described by a system of functions (or, for solid objects, inequalities

would be used). With the use of R-functions, these complex objects can now easily

be described with only one inequality. If chosen properly, these functions can even

have a very useful set of logic properties as shown in Tables I and II. R-functions have

been used in many applications including medical diagnostics and computer graphics

(for movie-making and video games).

2. R-functions defined

An R-function is a real function that has some property that is entirely dependent

upon the corresponding property of its inputs. An example would be a function in

which the sign was determined only by the sign of the input arguments. In simpler

words, a real function can be described as an R-function if a certain property (like

sign) can only change when some of its inputs change that property. Sign allows only

two levels of partitioning, positive or negative (or three if you count zero as its own

category). However there are some R-functions in which the space of real numbers is

partitioned into k subsets allowing more in depth analysis. For the purposes of this

work, we will concentrate only on the two subset cases.

3. R-function mathematics

There are three R-functions defined for this work, conjunction, disjunction and nega-

tion. It can be shown that all other logic functions can be derived from these three

basics (technically, disjunction is not needed for completeness, but it is included for

convenience).

a. Conjunction

The R-function for conjunction is defined as

1
$1 Aa$2 = $1+$2 $1+$2 2c/$1$2

For the application described in this thesis, the value of /2 turns out to be unim-

portant (it is only important when the R-functions need to be differentiable). If /2 is

chosen to be 1, the equation becomes

1/
$1R1$2 I$1+$2 $1 $2)

This should be recognized as the exact definition of the min($„$2) operator. At

this point all of the mathematics becomes simply a comparison.

b. Disjunction

The R-function for disjunction is defined as

1 ($1 Va$2 = $1+$2+ $1+$2 2&$1$2
I+/2 X

Of course if we again choose a to be 1, we get

1 /'

$1V1$2 '$1+$2+ ($1 $2)) ~

10

Table I. Basic Logic Properties of R-functions

x Ax

xVx

xt Ax2

xr Vx2

xt Ax2

xg Vx2

x2Axy

x2 Vxt

xg Vxg

xg Axs

which is the definition of the max(xq, x2) operator.

c. Negation

The R-function for negation is the simplest of all being defined as

It should be clear that each of these three operators can be implemented very

efficiently with little calculation involved.

d. Logic properties of R-functions

R-functions have many of the same properties as their companion Boolean functions.

Tables I and II show a list of several of these properties. For a complete list of all of

the properties, consult the references [5].

11

Table II. Advanced Logic Properties of R-functions

(x, nx,)+(x, Vx,)

(x, nx,)(x, Vx,)

x, n(x, nx,)

x, V (x, V x,)

x1 A (x2 V xs)

x1 V (x2 A xs)

(xl A x2) V x1

(x1 V x2) n x1

X1+ X2

X1X2

(x, n x,) n, x,

(x, V x,) V x,

(x, n x,) V (x, n x,)

(x1 V x2) A (x1 V xs)

4. An example usage of R-functions

The power of R-functions can best be shown in an example. Figure 1 shows a two

dimensional object alongside the simple functions that compose its borders.

The simple functions shown in the second object are represented by the following

mathematical inequalities[5]:

-1 21 1

Fig. 1. Complex object and its basic components

12

fli — — (9 — x — y & 0) circle;

fig — (x — 1 & 0) vertical strip;

Os — —
(y — s & 0) line;

04 — — (y+s & 0) line;

By shading in the area in the first object of Figure 1 on the second image, it can

be seen that the proper logical combination of the simple functions is

fl = [(Os A f14) v fig] A (f13 V f14) A fli.

By inserting the four simple inequalities into the above function, the original

object is created perfectly with the use of only one function. This will hold true for

even the most complex of objects.

B. Transforms

The curvelet transform is a combination of several other transforms. To understand

how curvelets work, a certain knowledge of the transforms that comprise the curvelet

is required.

1. Wavelets

a. The purpose of the wavelet transform

Wavelets are designed to hierarchically decompose a function. This function can be an

image, signal, surface, etc. First, we label the vector space that includes all possible

functions that can be contained in an image with j — 1 pixels as Vi. Next, we define

a new vector space Wi as the orthogonal complement of Vi in V0+'l.

Any set of linearly independent functions t'ai, that span Wi are called wavelets.

The particular basis functions chosen determine the type of wavelet decomposition

13

that can be performed.

Using the wavelet basis functions, we can recursively break a function into its

course shape and a set of detail functions. If this is done enough, eventually what

is left is a very simple course function and a large set of (hopefully similar) detail

coeiffcients that correspond to the wavelet basis functions[9, 15].

b. The Haar wavelet

The one dimensional Haar basis is the simplest wavelet basis. Its functions are given

by

g&(x):= g(2z' — i), i = 0, . . . , 2' — 1,

where

1 for0&s&1/2

4'(a):= — 1 for 1/2 & x & 1

0 otherwise.

The implementation of the Haar wavelet decomposition can most easily be shown

with an example. Begin with a one dimensional "image" containing four pixels:

[5795]
If we average the two pairs of pixels, we obtain

[57]
The detail coefficients are the differences between the original numbers and their

average. In this case since 3 is 2 less than 5 and 9 is 2 greater than 7, the detail

coefffcients are

14

If we repeat this process until only one average is left, we get

Iteration Averages Detail Coefficients Image

[3795]
[5 v]
[61

[3v9s]
[5 v — 22]

[6 — 1 — 2 2]

In the end, a large average is left, but the detail coefficients tend to be small

and similar numbers. This is the feature that makes the wavelet transform good for

image compression.

c. The inverse Haar wavelet

Once the Haar wavelet is understood, its inverse becomes very simple. By reversing

all the steps in the original transform, the inverse is created. The inverse in the above

example can be shown as

Iteration Averages Detail Coefficients Image

[6]
[sv]

[3 7 9 5]

[
— I]

[— 2 2]

[6 — 1 — 2 2]

[s v — 22]
[37951

If the values are stored to one decimal place perfect reconstruction can be ob-

tained.

d. The "a trous" wavelet

The "a trous" wavelet begins by selecting a low-pass filter H that satisfies

b(k)

where bq, is the Kronecker delta[10].

In this case, the Lagrange interpolation filter was used. It is given as

The wavelet functions are defined as

When the image is decomposed, it gives the course approximation and the detail

functions (wavelet coefficients). By taking the scalar product of the function f(x)

with the scaling function Si(x) the first approximation is given as

Subsequent approximations are therefore given by the direct "a trous" decompo-

sition

The recursive "A trous" decomposition is defined as

c, (k) = gh]c, y(k+2 l).
I

The recursive formula for the wavelet coefficients is

tc, (k) = c, , (k) — c, (k).

The "a trous" algorithm can best be explained with the following C code

for(j = 1; j &= MAX LEVEL; j++)

for(1 = 0; 1 & YRANGE; 1++)

for(k = 0; k & XRANGE; k++)

c [j] [k] [1] = 0;

for(y = 0; y & FILTER DEGREE; y++)

for(x = 0; x & FILTER DEGREE; x++) {
if(k-offx & 0) offx -= XRANGE;

if(1-offy & 0) offy -= YRANGE;

c[j] [k] [1] += c[j-1] [(k-offx)%XRANGE] [(1-offy)%YRANGE]

/ filter mask(x, y);

e[j] [k] [1] = c[j-1] [k] [1] — c [j] [k] [1];

where FILTER DEGREE is the number of coefficients in the filter, XRANGE

and YRANGE are the dimensions of the image and offx and offy are given by

/ FILTER DEGREE
of fs =2' x ~x—

2

"filter~ask(x, y)" is the Lagrange interpolation filter given above convoluted

with itself.

17

e. The inverse "a trous" wavelet

As with all of the wavelet transforms, the inverse of the "a trous" is just the sum of

its parts. Formally, it is given by the following equation

where I is a two dimensional image.

2. Radon

a. The purpose of the radon transform

The radon transform has several purposes. Most of them involve reconstructing

images. Its inverse, called back projection, is especially effective for this. The radon

transform basically looks for lines in the image and tries to compress or reconstruct

(depending on the application) based on those lines.

Unfortunately, the obvious discrete version of this transform is not effective for

digital images. Since digital images have finite boundaries, the lines from the radon

transform have different lengths depending on where they cross through the image.

When this is reversed by the back projection equation, the unequal lengths are falsely

interpreted and the recovered image looks very unlike the original.

The most popular solution to this problem involves the use of the Fourier trans-

form. However, the newly developed finite radon transform was chosen in this case

due to its more efficient FPGA implementation. Since an understanding of the radon

transform aids in the explanation of the finite radon transform, both are included

here.

18

b. The radon transform

The continuous radon transform is a collection of line integrals over a function (or in

this case an image). These integrals are given by

Rf (Pq t) = f j f (x„x2)6(xI cos 0 i x2 sm fl — t) dx, dx2.

The discrete version of this transform would simply replace the integral with a

sum)

Rr(8, t) = P g f(x&, xz)6(x&cos0+x2sin9 — t).
*ref *~cf

At this point, implementation becomes fairly straightforward. Each point in the

radon transformed image is simply the addition of all the points along a line in the

image. The values 8 and t control the angle and oifset of the line.

c. The inverse radon transform

The inverse radon transform is also known as back projection. By itself, it has several

uses[16, 17, 18]. The continuous version is given by

Br(x, y) = f g(x cos 0+ y sin 8, 0) d8,

with the discrete being given by

B~(x, y) = gg(xcoso+ ysin0, 0).
Heg

d. The digital radon transform using the Fourier domain

There is a fundamental property of the Radon transform known as the projection-slice

formula

19

Ff(Acos8, Asin0) = jRf(t, 0)e ' 'dt.

This formula is the basis for the approximation of the radon transform using the

Fourier domain. For an image f (iq, ia) the following steps will produce the approxi-

mate radon transform

1. SD-FFT. Compute the two-dimensional FFT of f.

2. Cartesian to Polar Conversion. Use an interpolation scheme to convert to a

polar coordinate system.

3. ID-IFFT. Compute the IFFT for each value of the angular parameter.

The inverse of this is basically each step backwards. Due to the fact that this

method was not chosen for the FFGA implementation, further details will be omitted.

Consult the references for more information[1, 19, 8, 7].

e. The finite radon transform

To combat the previously mentioned "wrapping" problem in the digital radon trans-

form, the finite radon transform (FRAT) was developed[20]. If we say Z» = {0, 1, . . . , p—

I), where p is a prime number, then the FRAT of any real function f is defined as

In this case Lq ~ is defined as

Lq ~
= ((i, j): j = ki + l (mod p), r 6 Z»), k c Z».

20

The primary things that make the FRAT different than the original radon trans-

form are the normalization factor — ' and the modulus in the definition of the line

LI, n This modulus has the effect of making all lines equal length, by "wrapping"

them around the image, and therefore making the inversion much easier[21, 22].

f. The inverse finite radon transform

Just as with the regular radon transform, the inverse finite radon transform is known

as finite back projection (FBP). It is given by

where Pcl is the set of indexes for lines crossing the point (i J) or

P;„= ((k, l): l = j — ki (mod P), k C Zr) + ((P, i)).

It can easily be shown that this equation combined with the FRAT gives back

the original function. The only real disadvantage to the FRAT and FBP combination

(instead of the regular radon transform) is that the sides of the image must be prime

numbers[21, 22].

3. Ridgelet

a. The purpose of the ridgelet transform

A singularity is when several pixels are very similar in color. A point singularity would

be several pixels in a cluster that have similar color. The wavelet transform is very

good with images that have point singularities. However, it has poor performance on

images with many straight lines in them. The ridgelet transform is very similar to

the wavelet, except that it performs better with line singularities. Put more simply,

21

the wavelet transform would work well on a night sky image, but not vertical bars.

The ridgelet performs well on both [23, 16].

b. The continuous ridgelet transform

Just as the wavelet transform breaks an image into a wavelet basis (called wavelets),

the ridgelet transform breaks an image into a ridgelet basis (called ridgelets). The

ridgelets are defined as

r xq cos 8+ xs sin 8 — b
@. p, e(x) =u r4

a

Using the given ridgelets, an equation can be derived to give the ridgelet coeS-

cients. This ridgelet transform equation is

Rf (a, b, 8) = f g, aa(x) f (x) dx.

For reference, the formal definition of the wavelet transform is similarly given as

It was also discovered that the ridgelet transform is exactly the application of a

1-dimensional wavelet transform to the slices of the radon transform,

Ry(9, t) = f Rf(8t) y , (] dc

This means that the ridgelet transform can be implemented simply by imple-

menting the radon and wavelet transforms [17, 18].

22

c. The inverse continuous ridgelet transform

By solving the ridgelet transform equation for f(x), the inverse ridgelet transform

can be obtained.

Of course this can also be implemented by performing an inverse one dimensional

wavelet followed by the inverse radon transform.

d. The finite ridgelet transform

Since the ridgelet transform is going to be implemented using a radon transform, a

change in the radon transform requires a change in the ridgelet. Fortunately, just by

using the FRAT and a one dimensional wavelet, the finite ridgelet transform (FRIT)

is created.

FRITI(k, m) = (FRATI(k, .), re~ (.))

Interestingly, it can be shown that the FRIT (when using the Haar wavelet) is

orthonormal[21, 22].

e. The inverse finite ridgelet transform

The inverse finite ridgelet transform (IFRIT) is simply the inverse wavelet followed

by the finite back projection algorithm.

4. Curvelet

a. The purpose of the curvelet transform

As mentioned before, the wavelet transform performs well on point singularities and

the ridgelet performs well on line singularities. However, most photographic images

contain few straight lines and points. If an image contains several objects, along their

edges will be curve singularities. The curvelet transform is specifically designed to

handle these curve singularities.

By using the curvelet transform, it has been shown that a large amount of an

image can be recovered with very few of the curvelet coeScients[1, 8]. This makes it

excellent for image compression. The transform has also been used to clean up noisy

images with surprising accuracy[7].

b. The curvelet transform

The curvelet transform is a combination of all the previously mentioned transforms. It

consist of breaking an image into subbands and then applying the ridgelet transform

to each of these subbands. The steps in the algorithm are

1. Apply the "a trous" algorithm with a degree of three.

2. Apply the FRAT to each of the three subbands.

3. Apply the one dimensional Haar wavelet to the rows of the subbands.

In the end, three new images remain that store the data from the original image.

Depending on the application these can be modified as needed.

c. The inverse curvelet transform

The inverse curvelet transform is the reverse of the previous.

24

l. Apply the inverse one dimensional Haar wavelet to the rows of the subbands.

2. Apply the FBP to the subbands.

3. Add all of the images together (as in the inverse "6 trous").

Since each individual part of the curvelet transform is fully invertable, the

curvelet transform does have the property of exact reconstruction.

25

CHAPTER III

R-FUNCTION HARDWARE DESIGN AND IMPLEMENTATION

A. Hardware Platform

In order to test the R-function architecture, it was programmed on a Xilinx XCV1000E

FPGA. The input and output image were sized at 200 x 200. There was no particular

reason for this size other than the fact that some size needed to be chosen. The FPGA

was connected to a PC through a parallel port. The PC sent a clock and reset signal

to the FPGA. The FPGA sent data to the PC one pixel at a time. In practical usage,

the FPGA would be reprogrammed every time a new object was to be modeled. The

entire design was done asynchronously in order to give maximum speed (at the cost

of area).

B. Basic Shapes for Building Objects

In order to construct complex objects, a library of simpler functions is required. For

this work, four useful functions were chosen. Obviously, any other functions would

work, but only a limited amount can be implemented. With the functions chosen for

this project, any two dimensional object can be modeled.

1. Circle (x and y second order)

The definition of the inside of a circle is given by the well known inequality

Az +By +C & 0.

The asynchronous architecture for this is shown in Figure 2.

26

sub
A

mu1 t

sub
A

add3 OUT

sub

mult

sub

Fig. 2. Asynchronous circle calculation

2. Line (x and y first order)

A line is needed to define a half plane (the line is the point where the plane is cut in

half). The inequality for the upper half of a plane is

mz+b — y(0.

This architecture is shown in Figure 3.

3. Polynomial in x (x second order, y zeroth)

Although circles and lines are enough to draw a figure, having polynomials is con-

venient. The inequality for the "inner" portion of a second order polynomial in x is

defined as

z +za+b & 0.

27

mult

OUT

Fig. 3. Asynchronous line calculation

The FPGA design is displayed in Figure 4.

4. Polynomial in y (y second order, x zeroth)

Similar to the polynomial in x, a polynomial in y is also very useful. Of course, the

inequality for the "inner" portion of a second order polynomial in y is defined just as

it was in x

y +yu+b&0.

The hardware is also similar as shown in Figure 5.

C. R-functions

The R-functions are even easier to implement than the inequalities themselves. Con-

junction and disjunction are created simply by implementing a max and min operator

in hardware. Negation just changes the sign of its input. These operations are shown

in Figure 6

28

mult

add3

mult

Fig. 4. Asynchronous polynomial in x calculation

mu1t

add3 OUT

mult

Fig. 5. Asynchronous polynomial in y calculation

29

min OUT

conjuntion

X
OUT

Y

disjuntion

inv OUT

negation

Fig. 6. R-function FPGA architecture

30

PC
parallel

port

number
generator

oblect

Fig. 7. FPGA architecture for R-function design

D. Combining the Pieces

Once the R-functions and the primitives have been implemented, the rest is easy.

The first step is to connect all the primitives and R-functions in the proper way to

produce the desired object. Once this has been done, the constants in the primitive

equations need to be set. A seperate module was created to hold these constants. The

last step is to generate the input coordinates. If the entire image is desired, the best

solution is to simply have counters that go through every pixel and input them into

the object equations. For some applications, not all pixels are needed, so a random

number generator or some semi-random method may be preferred. This generator is

controlled by an external clock and the results are returned through the parallel port.

The result is a logic one if the pixel is within the image and a logic zero otherwise.

These connections are shown in Figure 7.

CHAPTER IV

RIDGELET HARDWARE DESIGN AND IMPLEMENTATION

A. Hardware Platform

In order to test the ridgelet architecture, it was programmed on a Xilinx XCV1000E

FPGA. The input image was sized at 17 x 17 to fill the prime number requirement

of the FRAT. The FPGA was connected to a PC through a parallel port. Since the

parallel port is limited to sending eight data bits and receiving four, a separate control

block wss added in the FPGA to convert the sixteen bits used in the transform to and

from the size handled by the parallel port. The FPGA can be quickly reprogrammed

to switch between the ridgelet transform and its inverse.

B. Architecture 1

This architecture focuses on parallelism. The time of the entire transform is equal to

the time it takes to place the image onto the FPGA plus the time it takes to read

it back. There is no time necessary for computation since this is done during the

writing.

1. Wavelet

The Haar wavelet is basically a repeated sequence of adds, subtracts and shifts. The

standard way to do this in software would require many steps. There would be one

clock cycle for each add and subtract all throughout the process. Obviously this

would be very time consuming.

In an FPGA, this can be sped up enormously. Since the entire transform is simply

a large cascade of adders and subtractors, everything can be done in one cycle. The

IN1

IN2

I

+ 5
I

OUT1

5
OUT2

L J

Fig. 8. Two input Haar wavelet

shifters can even be removed by simply connecting the output bus of one part one bit

higher on the part it feeds.

a. Haar wavelet architecture

The basic step in the Haar transform is the averaging and differencing of two numbers.

This simply means the two numbers have to be added, subtracted and divided by two.

The divide by two is handled simply by dropping the lowest bit. The addition and

subtraction are performed using a small adder in parallel with a small subtractor as

shown in Figure 8.

By connecting several of these two input Haar wavelet boxes in a pyramid style,

the Haar wavelet can be performed on any size one dimensional image desired. For

this implementation, a sixteen input transform was needed. It is constructed as shown

in Figure 9.

33

I1
Z2 Haar-2

I3
Haar-2

I5
Z6 Haar-2

01

03

Haar-2
09

Haar-2
013

I7
18 Haar-2 04

Haar-2 010

015
Haar-2

I9
Izp Haar-2

05

Haar-2
011

I11
Z12 Haar-2 pg

I13 07
I14 Haar-2

Haar-2 p14

I15
115 Haar-2 pa

Haar-2 p12

Fig. 9. Sixteen input Haar wavelet

b. Inverse Haar wavelet architecture

The basic step in the inverse Haar transform (Figure 10) is simply an addition and

a subtraction. This is the same as the Haar transform without the divide by two.

Because of this, the two input inverse Haar transform block in Figure 11 looks very

similar to the Haar transform block in Figure 8.

As would be expected, the sixteen input inverse Haar transform looks like a

reversed form of the pyramid for the Haar transform. By comparing Figures 9 and

10 the inverse can easily be seen. The inputs are simply fed backwards through the

pyramid starting with just two inputs and doubling until the full sixteen is reached.

Since this is all done at once, a noticeable speedup is achieved compared to doing

each addition and subtraction separately.

2. Generic transform

In many transforms, each output pixel is simply the addition of a certain set of

input pixels. Examples include the radon, back projection and Hough transforms.

Because of this, a generic architecture was developed that would take in a square

image and return an identically sized image with the output pixels equaling the

additive combinations of the input pixels based on the look up tables. These look

up tables could then be loaded with the proper values for whichever transform was

desired.

a. Transform architecture

The architecture is basically a matrix of accumulators the size of the output image.

Each input pixel is presented individually to the matrix, and the look up tables control

the enable signals of the accumulators. This allows the values in the look up tables

I13
Ihaar-2

I9
Ihaar-2

I3

01
Ihaar-2

03
Ihaar-2 p4

05
Ihaar-2

I15
116 Ihaar-2

IIp Ihaar-2

111
Ihaar-2

07
14 Ihaar-2

I5 09
Ihaar-2 p1p

011
I6 Ihaar-2 p12

I14 Ihaar-2
17 013

Ihaar-2 p14

Ihaar-2
015

Is Ihaar-2 016

Fig. 10. Sixteen input inverse Haar wavelet

IN1

ZN2

I
OUT1

I

OUT2

Fig. 11. Two input inverse Haar wavelet

to control which accumulators add in the pixel value as it is presented and which

accumulators will ignore it. A control block consisting mainly of a counter is used to

switch the output values of the look up table for each incoming pixel.

A simple block of four accumulators with the controlling look up table is shown

in Figure 12. For this particular design, a 17 x 17 image was used. This means the

forward transform would have an input of 17 x 17 and an output of 17 x 18. The

inverse transform would have an input of 17 x 18 and an output of 17 x 17. Figure 13

shows the full accumulator matrix for all accumulators (289 for the inverse transform

306 for the forward). It should be understood that acc32 is simply 32 accumulators

connected in the fashion shown in Figure 12.

When in output mode, the control block begins to switch the multiplexers so that

the pixels in the accumulator matrix are sent out one at a time. The output is shifted

right to normalize the pixel values for the radon and back projection transforms.

Part of the goal of the architecture is to take full advantage of the features the

FPGA has to offer. The Virtex FPGA used in this implementation contains built

reg

reg

OUT

reg

reg

Fig. 12. Four accumulator block

acc32

acc32

acc32

acc32

acc32

mux

acc32

acc32 OUT

acc32

acc32

accl

Fig. 18. Full 289 accumulator matrix

CLK

counter AOBB

Vrrtex
Block

RAM

Accumulator
oat. a out Blocks

Fig. 14. Control system for the accumulator matrix

in Block RAM (BRAM) that can be pre-programmed with certain values. These

BRAMs were used as the look up tables in the design. Their address was controlled

by a counter as shown in Figure 14.

b. Finite radon transform data

The look up table data for the finite radon transform (FRAT) and inverse finite radon

transform (IFRIT) was created using a C program. The program calculated a list of

which pixels in the output image are affected by certain pixels in the input image.

It then converted this data into a proper form to store in the FPGA Block RAM so

that the accumulators would be properly controlled.

3. Ridgelet

As mentioned before, the ridgelet transform is simply the radon transform followed

by the wavelet transform. To create the ridgelet on an FPGA, all that needs to be

done is to connect its two component transforms together.

a. Finite ridgelet transform architecture

Once the radon and wavelet transforms have been implemented, the ridgelet is straight-

forward. Each output row of the radon is simply passed through the wavelet transform

before it reaches the final output multiplexer. The primary advantage to this method

is that it does not require any extra clock cycles to perform the ridgelet than it does

40

Prxel
ru Accumulator

Matrix Wavelet

Pixel
Out

Fig. 15. Combining the radon and the wavelet to make the ridgelet

to perform the radon. The combination of the radon with the wavelet is shown in

Figure 15.

b. Inverse finite ridgelet transform architecture

The inverse ridgelet requires that the inverse wavelet happen before the inverse radon.

In this case, each input row is passed through the inverse wavelet before it reaches the

inverse radon. Since pixels enter one at a time, there is a need for registers to store

an entire row before the inverse wavelet takes place. This register setup is shown in

Figure 16. Unfortunately, this adds extra clock cycles (equal to the number of pixels

in a row). For a 17 x 17 pixel image, this changes the number of clock cycles from

(289+289)=578 to (289+289)+17=595. The connections are shown in Figure 17.

C. Architecture 2

This architecture focuses on flexibility. Instead of the massive parallelism in architec-

ture 1, a more compact and iterative approach is used. Each function is broken into

its own module and a primary control block directs the flow of data. This allows for

a higher clock rate, and blocks can be rearranged or added to increase parallelism as

desired.

par.
port reg reg

reg
inverse

Haar reg

or

reg pass
through

reg

reg reg

count

Fig. 16. Registers for inverse transform

Pixel
In Registers Inverse

Wavelet
Inverse

Radon

Pixel
OLLt

Fig. 17. Combining the inverse radon and the wavelet to make the inverse ridgelet

42

parallel port

RAM Data Bus
read

control

from
mern control

RAM Controls

Fig. 18. RAM reading module for the second ridgelet architecture

1. Read and load blocks

This architecture is based on the Block RAM inside the FPGA. The image is loaded

into the RAM, and then processed. When the transform is complete, the image is

then returned to the host PC. In order for this to work, modules had to be developed

to load data into the Block RAM and read the data from the Block RAM.

The read and load modules are fairly straightforward. The read module, pictured

in Figure 18, consists of a block that connects the output of the RAM to the parallel

port as well as providing some control signals to the RAM. A tristate buffer is used

to control which module has access to the RAM's data and control busses.

The load module is very similar. As can be seen in Figure 19, the only difference

in the read and load modules is that the load module connects to the input data of

the RAM instead of the output data (this is for obvious reasons). Another tristate

buffer is pictured, since all RAM inputs must have these to avoid signal contention.

2. Radon transform

The radon transform in this architecture is noticeably different than the one in the

first. As mentioned before, all image data is stored in the Block RAM. The radon

transform block uses a block called "frat calculator" to generate the list of which

points in the input image affect which points in the output image. In the first ar-

chitecture this was stored on chip (which takes quite a bit of storage space). After

from
main control

from
parallel port

load
control

RAM Controls

RAM Data Bus

from
main control

Fig. 19. RAM loading module for the second ridgelet architecture

the point list is calculated, "address generator" (Figure 20) converts the pixel values

into RAM locations and switches the RAM address input. The accumulator is used

to sdd the entire group of pixels chosen by "frat calculator" (Figure 21). The local

control block organizes the flow of this process with input from the main controller.

The diagram can be seen in Figure 22.

Theta
addrl = 17T + Theta

mux addr

addr2 = 17X + Y

Read Wrrte

Fig. 20. Address generation module for the second ridgelet architecture

3. Wavelet transform

The wavelet transform in this design has much in common with that of the previous

architecture. The usage of Block RAM makes an obvious difference, but the values

are still read into a block of registers, transformed and then fed into a second block of

44

CLK

CLR

Counter

X(0 — 17)
T(0 — 16)
Y(0 — 16)

Theta = XT + Y Theta

X
Y

T

Fig. 21. FRAT calculation module for the second ridgelet architecture

from
main control

local
control

Raml
Data

accumulator am 2
Data

frat
calculator

Ram 1
Control

Remi
Control

address
generator

Ram2
Control

Fig. 22. Radon transform module for the second ridgelet architecture

45

f rom
main control

local
control

Remi
oat. a

registers Maar
Transform registers RAM2

nate

Fig. 23. Wavelet transform module for the second ridgelet architecture

registers so that they can be transferred into RAM again. Just as in the first archi-

tecture, this process is pipelined to increase speed. One change to the Haar transform

block itself is the addition of a clock to aid pipelining. The flow is demonstrated in

Figure 23.

4. Control block

Now that all the pieces have been described, the overall combination can be explained.

Data comes in from the PC's parallel port. At this point it goes through the RAM

loader and into the RAM. The control block decides how much data it will accept

and uses the RAM loader to accomplish this. Next, the control block runs the radon

transform block, and then the Haar transform (or their inverses). At the end, the

data is transferred back to the parallel port through the RAM reader.

The advantage of this design is the ease of adding more modules. To double the

speed of the radon transform, another radon block can be added with no other changes

(except making the control block aware of the new addition). With the exception of

the RAM loader and reader (which are limited by the size of the FPGA input bus),

all modules can be duplicated to increase speed at the cost of area. The design (with

only one of each module) is pictured in Figure 24.

Main
Control

Parallel
Port

RAM
loader

RAM
reader

ata In

Data Out
ata In Data Out Radon

ata In

Data Out Wavelet

Fig. 24. Connections of the main control module for the second ridgelet architecture

47

CHAPTER V

CURVELET SOFTWARE DESIGN AND IMPLEMENTATION

A. Software Platform

The PC used was a Dual AMD Athlon MP 1800 running at 1. 5 GHz. A C program

running on this PC reads in a 289 x 289 image file (in PNM format) and runs the "a

trous" decomposition on it. Next, it sends this image through the parallel port with

the proper control signals for the FPGA. It then reads the image back and stores it in

another PNM file. The PC side is identical for the ridgelet transform and its inverse.

B. Individual Programs

There are two separate activities that are performed on the PC. One is the "a trous"

wavelet decomposition. The other is the control of the FPGA (which does the ridgelet

transform).

1. "A trous" decomposition

The first step in the codesigned curvelet transform is the PC implementation of the

"a trous" wavelet decomposition. The process begins with a 289 x 289 image on the

PC. This file is stored in PNM format due to the ease of converting between PNM

images and human readable number matrices. When the program is run, it reads in

this image and performs the "s, trous" decomposition. This leaves 3 new 289 x 289

images. The steps that this program follows are best shown in the flowchart in Figure

25. The inverse is also performed by adding the three images together to produce the

original.

start

read
289 x 289
PNM image

perform atrous
decomposition

by f ormul a

write three
new images

to PNM files

perform inverse
atrous

decomposition

write result
to 289 x 289

PNM file

stop

Fig. 25. sA tronsu decomposition program flowchart

2. FPGA control

Since the FPGA acts as a coprocessor, there needs to be a way for the processor

within the PC to control it. For a high speed implementation, a PCI bus or some

form of direct connection would be the best. For demonstration purposes, this design

uses the parallel port. A 289 x 289 image is taken in and broken into 289 separate 17

x 17 images. These images are then sent one by one to the FPGA and the ridgelet

transform or its inverse is performed. For the inverse, the image would be 306 x 306

and would be broken into 17 x 18 blocks. A summary is shown in Figure 26.

C. Combined Overall Process

Though all the pieces have been explained, it may not be obvious how the entire

process fits together. Figure 27 shows the flow from original image to the final.

It should be noted that this shows only the transform and inverse transform. In

practical use, it would be more likely to make some modification to the image (such

as thresholding) in between transforming it and inverse transforming it.

start

read
PNM image

break image
into blocks

Loop for
all blocks

send all
pixels to

FPGA

read all
pixels from

FPGA

wrrte results
to

PNM file

s 't op

Fig. 26. FPGA control program flowchart

start

read
289 x 289
PHM image

inverse
curvelet

if
curvelet

atrous
transform into

3 new images

Loop for
all 3 images

break image
into 17 x 17

blocks

send all 289
pixels to

FPGA to trans

read all 289
new pixels
from FPGA

write results
to 289 x 289

PNM file

combine images
usrng inverse

atrous inverse
curvelet urvelet

stop

Fig. 27. Overall process flowchart

52

CHAPTER VI

RESULTS

A. R-function Performance

1. A practical example

When Vladimir Rvachev originally proposed R-functions, he came up with the simple

example of a chess pawn to demonstrate their power. This same pawn object was

implemented in the FPGA to show the performance of the system described in this

thesis.

The pawn consist of ftve circles and two polynomials. They are given by the

following inequalities:

(Dj) 1 x (y 7) & Oj

(D2) 4 — x2 — (y — 7)2 & 0;

(Ds) 64 — (x — 8) — (y — 7) & 0;

(D4) 64 — (x+ 8)s (y 7)2 & 0.

(D) 4 — x2 — (y — 4)2 & 0;

(D,) 0 — x'&0;

(D) P — y)y &o;

These combine according to the following equation:

D = Dg V (Ds A Ds) V (D2 R Ds R D4 R Ds A D7)

When implemented in the FPGA, this object gave speed and area results as

shown in Table III. The area is shown in terms of SLICEs (the units inside a Xilinx

FPGA), and in percentage of the total area of a XCV1000E chip. The objects per

second value describes how many 200 x 200 pixel pawns can be drawn per second.

The visual result from the FPGA can be seen in Figure 28.

53

Table III. Speed and Area of Pawn R-functions

Max clock Speed

Area (in SLICEs)

Area (in %)

200 x 200 pixel frames per second

65 MHz

3673

29 'Fa

1625

Max size of image for 30 frames/sec 1471 x 1471

Fig. 28. Pawn generated with R-functions

54

2. Tradeoffs

After the pawn was created, some experiments were run to see how the performance

was affected by the addition of primitives to the object. Figures 29 and 30 show how

the speed and area of the design are affected by the addition of more lines and circles.

Figure 29 shows the size for a design with one line (or circle), two lines (or circles),

etc. Figure 30 shows similar data for speed. It is worth noting that due to the Xilinx

routing tools, the speed can fluctuate (depending on how well the tool routed), but

overall speed is not largely affected after the first couple of primitives. This means

that although more primitives take more area, their afl'ect on speed is not consistent

enough to worry about.

Based on this data, it can be seen that circles take up approximately twice the

FPGA area as lines do. It can also be seen that the maximum size object on a

XCV1000E is one containing 20 circles, 40 lines, or some combination thereof. Due

to the number of multipliers, second order polynomials are the same size as circles.

B. Ridgelet Architecture 1 Performance

The parallel port described in the design is just for the test setup. The speed of

that port is much lower than the speed of the FPGA. The entire ridgelet transform

takes approximately 1. 6 seconds with the parallel port. In a real implementation,

something similar to a PCI bus would be a much better communication system. The

Xilinx synthesis tools do give the performance of any compiled design. Based on those

numbers, we can determine the speed of the transform when the PCI (or some other

high speed bus) is used. The FRIT architecture would take 289x289 send cycles plus

another 289x306 for reading. This would all be at a clock rate of 33MHz. The IFRIT

would have (306+17)x289 send cycles and 289x289 for the read. The maximum clock

55

Circles ~
Lines — -x —-

3000

1000

1 2 3 4 5 6 7 8 9 10

Objects

Fig. 29. Area data for R-function lines and circles

85

80

Circles ~
Lines — -it ——

75

70

2 65

60

55

50

45

1 2 3 4 5 6 7 8 9 10

Objects

Fig. 30. Speed data for R-function lines and circles

Table IV. Common Image Sizes and Numbers of Pixels

Image Size

800 x 600

1024 x 768

Number of Pixels

480000

786432

speed for the inverse is 18MHz.

By multiplying these numbers out, the total time for the FRIT is 5. 2 ms. Total

for the inverse FRIT is 9. 8 ms. This means the entire process takes 15 ms. For a

comparison, this same process took 1. 5s on a dual Athlon MP 1800. That gives a

speed increase factor of 100.

Figure 31 shows the completion time of the first ridgelet architecture for various

image sizes. The y-axis shows the amount of time (in milliseconds) for the entire

transform to take place. The x-axis shows the number of pixels in the image. The

graph shows the results for both the finite radon transform (FRIT) and its inverse

(IFRIT). The maximum size of pixels that can be processed in 33 ms (30 frames per

second) in the case of FRIT is 534285. For the IFRIT it is 283333. For reference,

a short list of common image sizes and the number of pixels in them can be seen in

Table IV.

C. Ridgelet Architecture 2 Performance

The second architecture has several more cycles, but the clock rate is higher. For the

289x289 image, there are 17x18x289 read and 17zx289 write cycles. For the entire

radon transform (or its inverse), 17 x18x289 clock cycles are necessary. For the Haar

transform, an additional (17+4)x17x289 clock cycles are needed. The time for this

57

120

FRIT ~
IFRIT — -x ——

xx

80
E

E
60

X
x

X X
x

X
X

X
K

20

X

200000 400000 600000 800000 l e+06 1. 2e+06

Total Pixels

Fig. 31. Speed data for the first ridgelet architecture

entire process, at its speed of 60MHz, is 30ms (34 frames per second). This is almost

six times the first forward architecture and triple the first inverse architecture. The

advantage is in size. This architecture is one eighth the size of the first ridgelet

architecture. Another advantage is the fact that some blocks can be repeated to

increase speed (or pipelining can be utilized). Due to the large amount of clock cycles

used by the radon transform relative to the Haar, it turns out not to be very useful

to increase the number of Haar blocks, but increasing the number of radon blocks has

a noticeable effect (up to a point).

The reconfigurability advantages of the second ridgelet architecture are shown

in Figure 32. More blocks of the radon or Haar type can be added to increase the

speed of the transform at the cost of area. It should be obvious that increasing the

number of radon blocks has a much larger affect on the speed than increasing the

number of Haar blocks. The y-axis shows the time (in milliseconds) that it takes to

58

250

200

B
150

s

100

50

sr
cr

~---e--—

1 2 3 4 5 6 7 8

Number of Blocks

9 10

1024x768 Hear ~
800x600 Hear — ~ ——

289x289 Hear - - - ~- --

1024x768 Radon o
800x600 Radon — -e-
289x289 Radon ---rs-

Fig. 32. Speed data for the second ridgelet architecture

complete the entire FRIT or IFRIT. The x-axis shows the number of radon or Haar

blocks used in the FPGA. Each line shows the size of the image and the type of block

that was repeated inside the FPGA. The lines with darkened shapes represent an

architecture with one radon block and the number of Haar blocks shown on the x-

axis. The lines with white shapes represent an architecture with one Haar block and

the number of radon blocks shown on the x-axis. These numbers can be compared to

rough estimations of the time to complete the same transform performed on a Texas

Instruments DSP TMS320VC5502 running at 200MHz. These estimates are 1. 35s

(1024 x 768), 828ms (800 x 600) and 114ms (289 x 289).

It can also be shown that the addition of radon blocks has a fairly small effect

on the overall area taken within the FPGA. The addition of Haar blocks has a much

larger effect. Combined with the previous speed results, this works out very well since

the radon is the block that should be added anyway. The results of this experiment

59

Haar ~
Radon — -&& ——

4ooo

1 2 3 4 5 6 7 8 9 10

Blocks

Fig. 33. Area data for the second ridgelet architecture

are shown in Figure 33 (these are the same for all image sizes).

Table V shows the minimum amount of each of the four types of blocks needed

to reach video quality imaging (30 frames/sec), for each of the given image sizes. The

last column shows the amount of slices in the FPGA what would be taken up by that

particular design.

One of the previously stated advantages of FPGAs is their in field reprogramma-

bility. From Figure 32, it can be seen that as more blocks are added, the time decreases

asymptotically to a certain point. This point varies with the number of FPGAs used.

In a system consisting of several FPGAs that could be reconfigured, the more FPGAs

used, the lower the asymptotical point would become. This is shown in Figure 34.

The y-axis shows the asymptotical minimum time, and the x-axis shows the number

of FPGAs. The lines are the same as Figure 32. From Figure 34, it can be seen that

two FPGAs is twice as fast as one, three FPGAs are thrice as fast as one, etc.

60

120

80

40

20

2 3 4 5 6 7

Number of FPGAs

8 9 10

1024x768 Haar ~
800x600 Haar — ~—
289x289 Hear ---~---

1024x768 Radon
800x600 Radon — -e. —

289x289 Radon — -a-—

Fig. 34. Speed data for multiple FPGAs with the second ridgelet architecture

Table V. Minimum Ridgelet 2 Blocks Needed for Video Quality

radon blocks Haar blocks load RAM read RAM total slices

289 x 289

800 x 600

1024 x 768

20

20

828

1968

2736

]fan
1

\
l 2P,

/'

i;:~r
, . f. g4 j, f/,

I' f/ 'I /. 'i~
I

f

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

A. Summary

1. R-functions

~ An asynchronous parallel architecture was developed to represent the equations

of a circle, line and polynomial as well as the R-functions for conjunction,

disjunction and negation.

~ These were connected in the proper order to create the image of a pawn on the

FPGA, and speed and area measurements were taken. This design took 3673

slices (29% of the Virtex XCV1000E) and ran at 65MHz. It took 0. 62ms to

draw the entire image.

~ A tradeoff study was done comparing size and speed of the design when more

circles and lines were added to the image to be modeled. Circles take twice

the space of lines, and on the XCV1000E, a total of 40 lines, 20 circles or some

combination thereof would fit.

2. Curvelet

a. Ridgelet 1 (Full Parallel Scheme)

~ An array of accumulators was put on the FPGA. This array is controlled by

data calculated by a C program and stored in the FPGA Block RAM to perform

the finite radon transform and its inverse.

~ An array of adders and subtractors was put together in the proper order to

create the Haar and inverse Haar wavelet transforms. These were connected

64

inline with the accumulators that due the finite radon transform and its inverse.

~ For a 17x17 image, the finite ridgelet transform architecture uses 306 accumu-

lators and takes in an image one pixel at a time. These pixels are passed into

the accumulators (controlled by the Block RAM) creating a 17x18 image inside

the FPGA. Once all pixels have been passed in, they are passed out one at a

time (controlled by multiplexers) returning the transformed image.

~ The inverse finite ridgelet transform is similar, except that it takes in a 17x18

image and has 289 accumulators so that it can return a 17x17 image. The

architecture is valid for any square block size with the side equal to a prime

number that will fit on an FPGA.

b. Ridgelet 2 (Shared Module Architecture)

~ Separate modules were created to perform the many activities of the transform.

One is for loading an image into RAM and one is for reading an image from

RAM. Two other blocks perform the finite radon transform (or its inverse) and

the Haar wavelet transform (or its inverse).

~ In the radon transform, only certain pixels from the input image affect certain

pixels in the output image. In the first architecture, this data is pre-calculated

and stored in RAM. . In this architecture, it is calculated during operation by

a module specifically for this purpose.

~ Unlike the first architecture, this one is not limited to a 17x17 block. It is limited

only by the size of the RAM on the FPGA. Obviously making the image smaller

would increase the speed of the transform.

~ The other primary advantage to this architecture is the ability to put more

65

blocks of certain types on the FPGA in order to increase speed at the cost of

area.

~ A tradeoff study was done for this architecture showing what the speed area

tradeoff would be for various image sizes. It was discovered that large speed

increases were achieved with little area costs when the radon block was repli-

cated. Replicating the Haar block gave little speed increase at a fairly large

area overhead. Details are given in the results chapter.

~ Based on the data collected, to reach video quality imaging with the first archi-

tecture, 4792 slices would be needed for any image size 543 x 543 for the first

architecture. The second architecture would use the exact same area to do a

1132 x 1132 image for either the FRIT or IFRIT in the same amount of time.

c. Software

~ The trous algorithm was implemented in software to complete the curvelet

transform.

~ The ridgelet was completed in software in order to make speed comparisons.

~ A parallel port control was written in software (as well as a small addition to

the hardware) to demonstrate the transforms on the FPGA.

B. Conclusions

Based on the results presented in this thesis it is quite obvious that the FPGA is

far more efficient (in speed and area) at implementing II-functions and the various

transforms. It is also clear that II-functions and the curvelet transform are two of

the most powerful methods of modeling and processing images. The use of these two

66

together is shown to make a powerful team that can be used to accomplish tasks that

have previously been unimplementable.

C. Future Work

There are several future possibilities that can be based on this work. One improve-

ment could involve replacing the Haar wavelet with one more suited to certain types

of images. Another could involve replacing the finite radon transform with the digital

radon transform involving the fast fourier transform and its inverse.

Besides improvements to the design, other developments can be built on top of

this. The primary ones are the hyperspectral imager and equation solver mentioned

in the introduction. Both of these devices are things that could never have been done

or were extremely costly in money, human time and processing time. With the new

techniques discussed in this thesis the possibility of creating these devices and similar

ones can be seen.

67

REFERENCES

[1] E. Candhs and D. Donoho, "Curvelets: A surprisingly effective nonadap-

tive representation of objects with edges, " Unpublished manuscript. Available

at http: //www-stat. stanford. edu/~donoho/Reports/1999/curveletsurprise. pdf,

1999.

[2] E. Candes and D. Donoho, "Ridgelets: A key to higher-dimensional

intermittency? " Unpublished manuscript. Available at http: //www-

stat. stanford. edu/ donoho/Reports/1999/RoySoc. pdf, 1999.

[3] V. I. Rvachev, Theory of R-functions aud Some Appli cati ons (in Russian), Kiev:

Naukova Dumka, Ukraine, 1982.

[4] V. Shapiro, "Maintenance of geometric representations through space decom-

positions, " International Journal of Computational Geometry and Applications,

vol. 7, no. I/2, pp. 21 — 56, 1997.

[5] V. Shapiro, "Theory of R-functions and applications: A primer, " Tech. Rep.

CPA88-3, Cornell University Mechanical Engineering Department, New York,

New York, 1988.

[6] V. Shapiro and I. Tsukanov, "Implicit functions with guaranteed differential

properties, " in SOLID MODELING '99, 1999, pp. 258 — 269.

[7] J. Starck, E. Candes, and D. Donoho, "The curvelet trans-

form for image denoising, " Unpublished manuscript. Available at

http: //citeseer. nj. nec. corn/starck00curvelet. html, 2000.

[8] D. Donoho and M. Duncan, "Digital curvelet transform: Strategy, im-

plementation and experiments, " Unpublished manuscript. Available at

http: //citeseer. nj. nec. corn/donoho99digital. html, 1999.

[9] E. Stollnitz, T. DeRose, and D. Salesin, "Wavelets for computer graphics: A

primer, part 1, " IEEE Computer Graphics and Applications, vol. 15, no. 3, pp.

76-84, 1995.

[10] M. Feil and A. Uhl, "Real-time image analysis using wavelets: The'a trous'

algorithm on MIMD architectures, " Real-Time Imaging IV, vol. 3645, pp. 56—

65, 1999.

[11] R. K. Gupta and G. De Michelli, "Hardware-software cosynthesis for digital

systems, " IEEE Design and Test of Computers, vol. 10, no. 3, pp. 29 — 41, 1993.

[12] R. K. Gupta, C. Coelho Jr. , and G. De Micheli, "Program implementation

schemes for hardware-software systems, " IEEE Computer, vol. 27, no. 1, pp.

48-55, 1994.

[13] J. Wilberg, "Codesign for real-time video applications, " Ph. D. dissertation,

Brandenburg University of Technology Cottbus, Brandenburg, Germany, 1996.

[14] R. Janka and L. M. Wills, "A novel codesign methodology for real-time em-

bedded COTS multiprocessor based signal processing systems, " in CODES '00,

2000, pp. 157-162.

[15] E. Stollnitz, T. DeRose, and D. Salesin, "Wavelets for computer graphics: A

primer, part 2, " IEEE Computer Graphics and Applications, vol. 15, no. 4, pp.

75-85, 1995.

69

[16] E. Candes, "Ridgelets and their derivatives: Representation

of images with edges,
" Unpublished manuscript. Available at

http: //citeseer. nj. nec. corn/384752. html, 1999.

[17] D. Donoho, "Ridge functions and orthonormal ridgelets, " Unpublished

manuscript. Available at http: //citeseer. nj. nec. corn/145161. html, 1999.

[18] E. Candes, "Monoscale ridgelets for the representation of images

with edges, " Unpublished manuscript. Available at http: //www-

stat. stanford. edu/ emmanuel/papers/Monoscale. pdf, 1999.

[19] E. Candes and D. Donoho, "Curvelets and curvilinear integrals, " Unpublished

manuscript. Available at http: //citeseer. nj. nec. corn/383973. html, 1999.

[20] F. Matus and J. Flusser, "Image representations via a finite radon transform, "

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no.

10, pp. 996-1006, 1993.

[21] M. Do and M. Vetterli, "The finite ridgelet transform for image representation, "

Unpublished manuscript. Available at http: //citeseer. nj. nec. corn/519266. html,

2001.

[22] M. Do and M. Vetterli, "Orthonormal finite ridgelet transform

for image compression, " Unpublished manuscript. Available at

http: //citeseer. nj. nec. corn/do00orthonormal. html, 2000.

[23] E. Candes, "Ridgelets: Estimating with ridge functions, " Unpublished

manuscript. Available at http: //citeseer. nj. nec. corn/386438. html, 1999.

70

VITA

John L. Wisinger Jr.

3712 Dauterive Dr.

Chalmette, LA 70043

John L. Wisinger Jr. was born in New Orleans, LA in 1978. He was raised in

the nearby suburb Chalmette and went to Brother Martin High School. In 1996,

he graduated and headed to College Station, Texas to begin his life as a computer

engineer (and become the butt of so many Aggie jokes).

At Texas AJrM, John began work on a Bachelor of Science degree in Com-

puter Engineering in the Department of Electrical Engineering. During this endeavor,

John developed an interest in embedded systems design. The ever growing collection

of John's new found wisdom and knowledge shone brightly forth in the design of

IDAPIC, an Internet data acquisition device that served as his senior design project.

In May of 2000, John entered Reed Arena and, four hours later, walked out the

proud owner of a diploma. In his effort to postpone entrance into the real world, he

returned to ASSAM that fall to begin work on a master's degree. There he worked on

different embedded systems designs as well as being a teaching assistant (and some-

times a teacher) for senior design courses. He also found a home on the university's

solar race car team.

This thesis is a combination of the knowledge that John has learned and devel-

oped in his many years of schooling. He hopes that by the time this thesis is published,

he will have found a happy life designing little computers to make the world a better

place (or at least make it easier to watch television and get some munchies from the

fridge).

